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Abstract

This thesis uses the Minimum Norm Quadratic Unbiased Estimation (MINQUE) to esti-
mate standard deviation of observations of a total station. Different setups are created by
altering the number of stations and targets and their relative position in the network to
study the effect that different setups have to the estimation and define what are important
to minimize the effect of the setup to the estimation.

A lot of research has been done around methods for estimation of variance and covari-
ance components, since it is useful in many fields. Various approaches exists to solve the
problem of variance components estimation. Geodesy is a special case, were their often is
a apriori knowledge of how well an instrument is able to record measurements. There is
an ISO-standard for testing and verification of geodetic instrument but also an alternative
approach the KTH-Total Station Check.

For the estimation three main types of setups were defined and used in the simulation.
These main types were then altered to see how different changes to the setup effect the
overall estimation. The alterations were changes in distance between station and targets,
changes in vertical distance between stations and targets and the amount of observations
carried out by adding more stations and targets to the setups.

The result of the simulations shows that the tested changes in the setups do effect
the estimation. It was not possible to determine by how much for each change, because
a change in vertical displacement also meant a change in angles and distance between
the station and the target. Increasing the amount of stations and targets or one of them
shows that standard deviation of the estimation becomes smaller. The effect can be seen
independent of which type of setup that is used. The most important factor to how good
the estimation will be is the amount of observations.
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Sammanfattning

I det här examensarbetet används ”Minimum Norm Quadratic Unbiased Estimation”-
metoden (MINQUE) för att skatta standardavvikelsen för de olika observationerna i en
totalstation. Olika geometrier av uppställningar skapades genom att förändra antalet sta-
tioner och bakobjekt och deras relativa position i förhållande till varandra i nätet för att
studera effekten som de olika geometrierna hade på skattningen och definierar vilka parame-
trar som är viktiga för att minimera effekten av geometrins utformning på skattningen.

Det har utförts mycket forskning på och runt skattning av varians- och kovarians-
komponenter, då det är användbart inom många olika områden. Flera olika metoder
existerar för att lösa problemet med skattning av varianskomponenter. Geodesi är ett
specifikt område som det används inom, här är ofta ett apriori-värde känt för skattningen
eftersom information om hur bra instrumentet borde mäta är tillgängligt. Det finns en
ISO-standard för test och verifiering av geodetiska instrument men det finns också en
alternativ metod KTH-Total Station Check.

För skattningen definierades och användes tre huvudtyper utav geometrier. Dessa tre
huvudtyper ändrades sedan för att se hur förändringen påverkande skattningen. Förän-
dringarna var i avståndet mellan stationen och bakobjektet, den vertikala skillnaden mellan
stationerna och bakobjekten och antalet observationer som gjordes genom att öka antalet
stationer och punkter i geometrin.

Resultatet av simuleringarna visar att de testade förändringarna i geometrierna påverkade
skattningen. Det var inte möjligt att bestämma hur mycket det påverkade för varje typ av
förändring, då en förändring i t.ex. vertikal skillnad också innebar en förändring i avstånd
och vinkel mellan stationen och bakobjektet. Genom att öka antalet stationer och bakob-
jekt eller endast stationer eller bakobjekt så förbättrades standardavvikelsen. Effekten sågs
oavsett vilken huvudtyp av geometri som användes. Detta visar att den viktigaste faktorn
för hur bra skattningen blir är hur många observationer som utförs.
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Chapter 1

Introduction

1.1 Background

Geodetic surveying have many different applications today, cadastral surveying for deter-
mination and marking parcels, map production, civil works and for construction works to
mention a few. A great toolbox of methods and equipment is available to users working in
the field of surveying, from different remote sensing applications to classic geodetic survey-
ing with leveling instruments and total stations. The types of object surveyed differs for
the different purposes, from deformation monitoring, construction parts for as built docu-
mentation, markers for parcel boundaries, terrain points for creation of terrain models, to
simple data collection for point-of-interest in GIS-applications. All these different types of
surveyed objects are presented in some sort of coordinate system, globally defined, a local
system on the construction site, etc. The required accuracy vary between the purposes,
from millimeter accuracy to a few meters.

The use of GNSS receivers has increased during the recent years, one reason may be
because of accessibility of receivers. For very simple applications such as tracking the
distance covered by a runner a simple sport watch or smartphone with a GNSS-chipset
will be sufficient. But the use is also increasing in higher accuracy applications as ditch
and cable laying for construction work. This is due to the accuracy of the positioning
solutions is improving with the better reference stations and reference networks available
and applications for GNSS receivers are still growing. But despite this it is still limited due
to the need of free line of sight between the satellites and the receiver and by precision and
accuracy and therefore there is still a need for geodetic surveying with total station. Fields
where the total station would be the preferred choice (not including the obvious, situations
where the line of sight between satellite and receiver is blocked) is when sub-millimeter
precision is needed. Examples of this can be for deformation monitoring.

Independent of what surveying method chosen there are tolerances to be met and
therefore in all practical applications of surveying methods the same questions are still
valid. What precision and accuracy can be expected from the chosen method? Will it
be enough to be within the limit of tolerances. The error of the result has a minimum
theoretical size depending on the chosen method but in practical use a few more error
sources are introduced, for example errors introduced by the user by incorrect handling
of the instrument, the quality and calibration of the instrument and the environmental
conditions on the surveying site. There is a need to reduce these errors to a minimum or
at least determine the size of them.

Depending on what type of instrument or method was used to collect the measurements,
there are different error sources and therefore different methods and practices to reduce
them. In this thesis the focus will be on the instrument total station which provides three
kind of observations, sloping length, vertical and horizontal angle. This type of instrument
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contains different sensors that work together to measure these three observations and the
sources of errors are complex when the different components errors influence the overall
error.

For the user it becomes complicated to verify that the instruments work according
to the specified accuracy in practical use. An approach to a practical verification of a
total station is described by Horemuz & Kampmann. A Free station positioning approach.
By measuring a number of targets from a minimum of two station set-ups an estimation
of the accuracy of measured horizontal direction, vertical direction and slope distances
can be derived with a variance-covariance component estimation.(Horemuz & Kampmann
2005) Such approach will give an indication of how well the user is measuring with the
current station set-up and a verification of, from the manufactured specified, accuracy. The
geometry of the backsights and their spread around the station will affect the quality of free
station setup. The geometry of the setups for the above described approach to verify the
total stations accuracy will effect the result of variance-covariance component estimation.
The effect of the geometry of the station set-up to the estimation will be investigated in
this thesis.

1.2 Aim of the research

The purpose is to perform an analytic investigation of the geometry of station set-ups and
targets to find which will give the best result for the estimation of variance components with
the MINQUE-method. This will be put to test in simulations and used to give suggestions
for a optimal design and procedures of set-ups and targets to use with the KTH Total
Station Check for estimation of the accuracy of a certain total station and the deviations
of a station set up.

1.3 Previous work

1.3.1 Variance components estimation

The estimation of variance components is a field where a lot of research has been done,
since it’s not only of interest for geodetic applications but also for applied mathematics and
statistical inferences. Various different approaches exit to solve the problem of variance
components estimation. The common approach in the geodetic field and the one used in
this thesis is the Minimum Norm Quadratic Unbiased Estimator (MINQUE) first pub-
lished by Radhakrishna Rao (1971). Further there is the classic Helmert’s method from
the beginning of the 20th century , described by Kelm (1978). Another method is the Best
Quadratic Unbiased Estimates (BQUE). With the BQUE method an optimal estimate is
defined as the quadratic unbiased estimate, with the minimum variance, in MINQUE the
quadratic unbiased estimate is found by minimizing the Euclidean norm, for the Helmert’s
method this estimate is not optimized (Fan 1997). There are more methods for estimations,
like Maximum likelihood estimation variance components described by Kubik (1970) and
Koch (1986), most of these estimations solve the problem by using a least squares anal-
ysis of the residuals. Fan (1997) points out a few differences between Helmert’s method,
BQUE and MINQUE, that are of interest. The Helmert’s method, as mentioned previ-
ously, does not have any optimization of the estimate and also requires that the observation
errors are normally distributed. The BQUE also requires normal distribution of observa-
tion errors. With MINQUE a priori information of variance covariance components is not
needed as in BQUE, though it is possible to include them in the calculation. A problem
with using these estimations applied to geodetic problems is that the variance components
can get negative values. Sjöberg have proposed method for estimating non-negative vari-
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ance components when a non-negative solution is not found with other methods(Sjöberg
1984)(Sjöberg 1985)(Sjöberg 2011). For a more detailed reading on MINQU estimation,
the paper by Radhakrishna Rao (1971) on the subject is recommended. Persson (1980)
review of the theory can also be of interest.

1.3.2 Geometry of station setup

The geometry of the backsight relative to the free station setup and how it will effect the
setup has been investigated previously. Lithen presented a new method for calculating a
free station setup but also noted that it works best when the geometry of the backsights
are spread around the station in a way so that the station is interpolated rather than
extrapolated (Lithen 1986). This is followed up by Svensson (1987) with a simulation
of different geometry of setups where it is suggested that larger over-determinations will
increase the possibility to check for gross errors. In Broberg & Johansson (2014) study
it is suggested that a geometry where the free station is interpolated will give the lowest
uncertainty.

1.3.3 Calibration and verification of total station

There is an ISO-standard for testing and verification for geodetic instruments, ISO 17123,
it is divided into 7-parts where part 3 describes a field test for a theodolite, part 4 describes
field test for a EDM and part 5 describes a field test for a total station. The standard
contains procedures for how the measurements should be done, calculations for measure-
ment data and examples of numerical calculations. For a test of horizontal and vertical
angles according to ISO 17123-3, two test courses needs to be constructed one for horizon-
tal angles and a second one for vertical angles. The EDM can be tested according to ISO
17123-4 on a constructed baseline with known length between different marked points. ISO
17123-5 describes a test for standard deviation of measured coordinates X,Y and height.
There are number of papers that describe a actual field test carried out according to this
standard. In the paper "Verification of Selected Precision Parameters of the Trimble S8
DR Plus Robotic Total Station " are all three field test methods conducted with a total
station Trimble S8 DR Plus and the result of the test is presented (Sokol et al. 2014). The
test of horizontal and vertical angles where done according to ISO-standard 17123-3 and
two test courses where setup. The EDM was tested according to ISO-standard 17123-4
and a test according to ISO17123-5 for measuring and calculating coordinates was also
conducted. And in the paper by Pawlowski & Aksamitauskas (2008) is also a field test for
testing according to ISO 17123-5 with procedures conducted and the results of the test is
presented.
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Chapter 2

Theory

In this chapter the principle of the total station (the instrument of interest for the simu-
lations), the fundamentals of how it works, witch types of measurements it provides and
the errors it can have are presented. A short definition of a cartesian coordinate systems
will be defined and different method’s for adjustment will be presented leading to the main
theorem of MINQUE method.

2.1 The total station

In short, total station is an instrument used to measure angles and distances. It is a combi-
nation of two types of instrument, a theodolite and an EDM (Electronic Distance Meter).
The EDM measures the distance and the theodolite measures horizontal and vertical an-
gles, in total that are three observations. To easier understand how the instrument work,
we look at these two parts individually.

The principal of a theodolite can be described as a telescope attached on two axis,
one vertical and one horizontal. On both these axis a graded scale is attached and when
the telescope is moved around one or both of the axis it is possible to read of the change
on the corresponding graded scale. The vertical angle is measured as the angle between
the zenith line in the instrument and the line of sight towards the point. The horizon-
tal direction cannot be directly measured instead the directional difference between two
points is measured, where the horizontal direction already is known towards one of these
points.(Egeltoft 2003)

The directional difference is the angle different between two directions, measured from
the instruments zero-orientation clockwise. If, as specified above, the horizontal angle is
known towards one of the points, this direction can be used to oriented the total station
and determine the horizontal direction towards the other point. See figure 2.1.

An EDM can work in two ways but both imply that a signal is sent away reflected and
then returned to the source. The first principal uses the lights travel time to determine
the distance, time of flight. A short light beam is sent away and the time for it to hit
the target and return to the EDM is measured. With the travel time known the distance
traveled can be computed which should be twice the distance to the target.(Egeltoft 2003)

2 ∗D1 = c ∗ (tb − ta) (2.1)

D1 =
c ∗ (tb − ta)

2

From equation (2.1), where D is the distance between the transmitter and the reflector,
ta is the time when the light is sent, tb is when it received back and c is the velocity of
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Figure 2.1: Principal of horizontal angle measurement (Egeltoft 2003)
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Figure 2.2: Principal for the time of flight method (Egeltoft 2003)

light, it can be seen that the distance is dependent on how accurate the travel time can be
measured and the velocity of light in the medium.

The second solution is phase measurement. Where instead of measuring the travel time,
the knowledge of the wavelength of the transmitted signal is used. A transmitted signal
will after being reflected at the target return to the transmitter. The distance between the
transmitter and the reflector can be described as the number of waves times the wavelength
divided by two. However it is very unlikely that the measured distance is a exact number
of wavelengths. It is more likely that it will be a number of whole wavelengths and a
fraction of a wavelength (2.2). To determine the fraction, the phase shift is determined.
the difference between two waves phase angle. (Ghilani & Wolf 2002)

D1 =
n ∗ λ+ d

2
(2.2)

To determine the distance with this method the number of wavelengths needs to be
determined. This is not possible to do without transmitting more signals with longer
wavelengths.(Ghilani & Wolf 2002)

In both these methods for observing the distance the sender and reflector needs to be at
the same height otherwise will the measurement not be a straight line between the points
but instead a leaning line.

By combining these two instruments into one, the total station are not only performing
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Figure 2.3: Principal for the phase method (Egeltoft 2003)

more observations at once but also solves the problem with leaning lines for the observation
of the horizontal length. The EDM is attached at the aim and one can read of the vertical
angle between the total station and the target and it is possible to calculate the straight
line (distance) between them. For vertical angles the formula is (2.3). Hd1 is the horizontal
distance, D1 is the slope distance and Zv1 is the vertical angle.

Hd1 = D1 ∗ sin(Zv1) (2.3)

Automatic target recognition (ATR) denotes, when it comes to total station, the pos-
sibility for the total station to automatically find and sight the prism. This removes the
need for the surveyor to manually aim the total station towards the prism and therefore
removes the human error but instead introduces a new error source from automatic target
recognition.

2.1.1 Instrumental coordinate system

An internal coordinate system can be defined for the total station such as the origin for
the system coincide with origin in the instrument, the xy-plane is the horizontal plane and
y-axis is the zero direction for the instrument. The z-axis is the normal vector from the
horizontal plane, which coincides with the instruments vertical axis. The coordinates are
expressed as a distance towards the point, horizontal angle towards it from the y-axis, and
a zenith angle from the z-axis (D, Hv, Zv).

2.2 Coordinate system

The coordinate system described above is a type of coordinate system, were the points
are expressed with polar coordinates. It should be considered that this system is only a
relative system towards the position of the station were the origin is. If a new station
is established a new coordinate system will be defined. It is therefore not a convenient
way to express a points position. A better way is to define a coordinate system that is
valid for all the points and expresses the points position in it. There are different types of
coordinate system for different purpose. They are designed with their usage in mind, for
example a coordinate system just for a small building site does not have to consider the
same problems as a coordinate system designed for a large country. To solve the problem
in this thesis a three-dimensional cartesian coordinate system will be used (see section
3.1.1). Such a coordinate system is defined by three axis, any two perpendicular to each
other, and creating a plane through these two axis. Each axis should have the same scale,
and an orientation, a unit of length and the origin is picked as the point were the three
axis meet. If such a coordinate system is defined it is possible to describe all points in
the system with a x-, y- and z-coordinate (x,y,z). It is also possible to describe all points
with spherical coordinates (as a distance from origin and two angles at origin, one on the
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xy-plane and one on the plane that goes through z-axis and the point, towards the point).
The transformation between polar coordinates and Cartesian coordinates can be expressed
as (2.4), (2.5) and (2.6).

D1 =
√

x21 + y21 + z21 (2.4)

Hv1 = arctan

(
x1
y1

)
(2.5)

Zv1 =

√
x21 + y21
z1

(2.6)

As mentioned above these types of coordinate system are described with six parameters,
origin (x,y,z), orientation (e.g. rotation around each axis), and scale. This implies that
to be able to fixate a coordinate system of this type in space, six coordinates needs to be
defined in space. It is important that this fixation of coordinate does not create a tension
in the system.

2.3 Basic survey method

Consider the three observations that can be received from a station set up with a total
station and assume that a points coordinates (x,y,z) in a rectangular Cartesian coordinate
system is known and the horizontal zero direction on that point is also known. This gives
an simple solution to how to determine a unknown points coordinates in this coordinate
system. The total station is set up above the known point (A) and measures the distance
(D), the vertical angle (Zv) and the horizontal angle (Hv) towards the unknown point P.
The horizontal angle can be measured because the horizontal zero direction is known. From
these observations the coordinates of P can be calculated (Anderson & Mikhail 1998).

The x-coordinate for point P is calculated by first reducing the distance down to the
horizontal plane, and then is the horizontal distance (Hd) and the horizontal angle used to
calculate the distance along the x-axis (2.8). The y-coordinate is calculated in a similar way
but instead the horizontal distance and horizontal angle is used to calculate the distance
along the y-axis (2.9), and the z-coordinate is a simple reduction of the horizontal distance
directly on the z-axis with the vertical angle (2.10).

HdAP = DAP ∗ sinZv (2.7)

xP = xA +HdAP ∗ cosφAP (2.8)

yP = yA +HdAP ∗ sinφAP (2.9)

ZP = zA +HdAP ∗ cosZv (2.10)

For the example described above the horizontal zero direction is assumed to be known,
this is rarely the case or never the case in practice. To solve this for the example above
another known point is needed, point B. This known point is used as the zero direction
for the horizontal angle measurement and instead a difference in horizontal direction is
measured between the direction towards the known point and the direction towards the
unknown point P. This approach is known as the polar method. See Figure 2.4 for an
example in a 2-dimensional coordinate system.
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Figure 2.4: The polar method, in a 2-dimensional space (Egeltoft 2003)

This approach changes the equations for the x- and y-coordinate from the example
above, because the horizontal angle now needs to be calculated. The angle between direc-
tion towards B and towards P is measured and the horizontal angle towards B can be said
to be known since it can be derived from the known coordinates. Therefore the horizontal
angle towards P can be expressed as the sum of the horizontal angle towards B and the
angle between B and P (2.11) (Egeltoft 2003).

φAB = arctan(
xB − xA
yB − yA

) (2.11)

φAP = φAB + β

2.4 Errors and their adjustments

In geodetic application one often divides the errors that may occur into three different
categories, systematic, gross and random errors. The systematic errors affect the result as
one would guess in a systematic way. The sources can be a badly calibrated instrument, the
environment the measures are carried out in or because of the observer. It could for example
be that the scale of a leveling rod is wrong and all length measured with it will be three
centimeters too long (Fan 1997). It is possible to correct the observation if the systematic
error is known or if it is possible to observe the error in the observations. Another way to
treat it, is to try and reduce the error by avoiding badly calibrated instruments, etc.

The gross error is often an error that occurs because of the human factor of failures
in instruments. It could be that you read the observations wrongly and/or write it down
incorrectly or the observation is not being measured from the correct point. These errors
are because of their form not easy to remove by statistical means, but can be discovered by
over determine an observation (e.g. measure more than one complete round) (Fan 1997).

Then there is the third type of errors, random errors, and they are as one can guess
random, the errors sources could be of any kind. To avoid random errors the best solution
is to improve the condition the measurements are taking place in, better instruments and
suitable routines (Fan 1997).
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In the case of the total stations’s precision, there are the internal systematic errors
of the total station, the external systematic errors and also the random errors that occur
because of the environment the observations are carried out in. The types of errors to
consider for the total station are axis errors, eccentricity errors, circle graduation errors,
EDM errors (refraction, propagation) and the correlation between them. These errors are
systematic.

2.4.1 Horizontal collimation error

This error is a result of a mechanical error in the instrument when the line of sight produced
by crosshair is not perpendicular to the horizontal axis. The horizontal collimation error
can be detected and determined by measuring in both telescopic positions. Consider a
point P at the same height as the instrument and two horizontal angle measurements
towards it (Hv1,Hv2), and then the error (C0) can be expressed as (2.12).

C0 =
Hv1 −Hv2 − 200gon

2
(2.12)

It should be noted that the size of the error on the horizontal reading (C) depends on
the zenith angle (Zv) as in (2.13), but the collimation error (C0) does not. Consider figure
2.5 where the total station is placed at "O" and reading the horizontal angle towards "A".
But because of the collimation error instead the horizontal angle towards "B" is read on
the horizontal plane. It then can be seen that the size of the error on the reading will be
dependent on the zenith angle Zv.(Bjerhammar 1967)

sinC =
sinC0

sinZv
(2.13)

For small values on C the dependency could be shortened to (2.14)

C =
C0

sinZv
(2.14)

The error can be corrected for in two ways, the common way is to measure in two
telescope positions, because then the collimation error will diverge in different direction
if the two positions are compared. Therefore using the mean of the two measured angles
will remove the error. The other way is to determine the (C0) and calculate the error (C)
which then is used to correct the horizontal angle.

Even if the collimation error can be corrected or eliminated, by the above described
methods, the size of the error is always of interest to determine how big the influence is
at different horizontal readings. The collimation error can be determined as in (2.12) by
measuring the angle in two circle position and considering that the size on zenith angle
effects the influence. This gives us the following (2.15).

C =
1

sinZv
(
Hv1 −Hv2 − 200gon

2
) (2.15)

2.4.2 Vertical collimation error

The error occurs when the instrument is leveled but the vertical angle reading diverges from
100 gon at the horizon. The size of the error (CZv) can de detected and removed from the
observations by measuring the vertical angle in two telescope positions (Zv1, Zv2). The
sum of the readings should be 400 gon (2.16). (Bjerhammar 1967)

CZv =
Zv2 + Zv1 − 400gon

2
(2.16)
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Figure 2.5: Collimation error on the horizontal axis (Bjerhammar 1967)

2.4.3 Horizontal axis error

When the horizontal axis deviates from the horizontal plane a horizontal axis error occurs
(also known as tilting axis error). In figure 2.6, let (i) denote the angle between the true
horizontal plane and the horizontal axis and let (d) denote the horizontal angle error and
(Zv) denotes the zenith reading. Then for small values on (d) and (i) and assuming that
t = 100gon − Zv, the following relationship between the horizontal angle error and the
horizontal axis error is true (2.17). (Bjerhammar 1967)

d = i ∗ cotZv (2.17)

This error can be removed by measuring in two telescope positions. But to detect the
size of the error, the collimation error first needs to be removed (Bjerhammar 1967).

2.4.4 Vertical axis error

The vertical axis error is the effect of an unleveled total station as described in 2.4.3. The
vertical axis deviates from the plumb line.

Modern instruments have a built in compensator that levels the instrument within a
certain range. Therefore it is not as important to have a well calibrated plate bubble to
level the instrument. But one still needs to consider that the compensator can be badly
calibrated and causes an unleveled instrument.

If all measurements are carried out from the same station set up, then the this error
becomes systematic due to the effect that all the observations will have the same error,
but if the measurement is carried out from more than one station set up then the error
becomes random. Each set up will have its own error due to how well leveled it is. This
also holds for the horizontal axis error.

For a horizontal reading on the horizontal plane the vertical axis error won’t apply
but for a total station this is normally not the case. Therefore the error will effect both
the vertical angle as well as the horizontal angle. The effect of the vertical axis error
along with the horizontal axis error on the horizontal angle error is then (2.18), where α is
tilting of the horizontal axis with a maximum at α = 100gon and minimum at α = 0gon.
(Bjerhammar 1967)
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Figure 2.6: Horizontal axis error (Bjerhammar 1967)

d = i ∗ sinα ∗ cotZv (2.18)

The influence on the zenith distance reading occurs instead because the angle is mea-
sured from a incorrect zenith direction, the difference between the two zenith direction is
the angle (i) and then the error can be calculated as the difference between the zenith
distance (v) from the true zenith direction (Zv0) and the zenith distance form the actual
zenith direction (Zv) (2.19).

v = Zv0 − Zv (2.19)

The vertical axis error can not be eliminated by measuring in two telescopic positions.

2.4.5 Compensator index error

Modern total stations are equipped with compensators for leveling the instrument, to avoid
horizontal axis and vertical axis errors. But there exists an error with compensators that
correspond to the displacement of the compensator center compared to the instruments
origo. This error can be eliminated by measuring in two telescopic positions.

2.4.6 Automatic target recognition collimation error

This error is in principal the same as the horizontal collimation error in section 2.4.1, but
is instead that the ATR:s (automatic target recognition) line of sight is not parallel with
the optical axis of the telescope. The error can be calculated in the same way as for the
horizontal collimation error and it can also be eliminated by measuring in two telescopic
positions.

2.4.7 EDM instrument errors

There are three types of instrumental errors, zero error, scale error and cyclic error. The
zero error is deviation between the center of the EDM and the center of the origo of the
total station. This error is constant. The scale error is an error proportional to measured
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distance and is caused by unexpected deviations to signals frequencies. Cyclic errors occurs
from deviations in phase shift measurements.

2.4.8 EDM atmospheric errors

Independent of which method used in the EDM, errors will occur that are dependent on the
atmospheric variations. The velocity of light and the wavelength in a specific atmosphere
can be determined by measuring the temperature and pressure in the environment the
measurement is carried out in. The longer the distance is, the larger are the corrections.
Therefore it is normally expressed as parts per millions (ppm), meaning for every kilometre
is a correction in millimetre added. Most modern total station can correct for this. Another
atmospheric variation that affect the observation is refraction of light. This is because there
might exist small variations of the climate along the observation. They normally occur
above surfaces (for example the ground) and create a change of the index of refraction. It
is a good practice to avoid performing measurements close to the ground.

2.5 Instrument calibration and verification

All these potential sources of error influence the overall accuracy and precision. By measur-
ing in two telescopic positions the collimation errors, horizontal axis error and compensator
index error can be canceled out, however to always measure in two telescopic positions is
not seen as an efficient way to perform surveys. It is preferred to be able to measure in
only one telescopic position to save time in field. The errors also influence each other
and makes it difficult to determine the magnitude of the combined error, it is therefore
important to have a calibrated and adjusted instrument to maintain the high accuracy
of the instrument. Different methods exists for this, but can be divided into two types,
calibrations carried out in field or calibrations in a laboratory environment. Because total
station is a high accuracy instrument it is sensitive to mechanical shock and temperature
changes and should be calibrated and controlled after such events.

A field calibration has the advantage of being able to calibrate the instrument in the
environment it is being used (correct temperature). A calibration according to the instru-
ment manufacturers instructions is one option. Normally it is possible to calibrate the
instruments angle measurements with this method, but for errors on the EDM a pre built
calibration area is needed. One should note that a calibration in field will only add a
constant to correct for the error. Problems with performing a field calibration is that it
can be affected by environment as well. It could be vibrations from construction work or,
instrument/reflector moves during the calibration.

The other option is to have it calibrated and adjusted in a laboratory environment. This
is often performed by the manufacturers service technician and instead of only performing
an electronic calibration of the instrument as in the field, the possibility to mechanically
adjust the instrument exists. Since the environment is controlled therefore the atmospheric
effects such as pressure, temperature and refraction can be measured and be considered
well-known. But the instrument will be calibrated for a certain temperature, a normal
indoor temperature, which might differ significantly from the temperature on the site
where the survey will be carried out. It is therefore recommended to perform an instrument
calibration in field after a calibration in a laboratory environment to adjust for the changes
in temperature.

It can be clearly seen that it is difficult even with good calibration procedures to be
able to document that the instruments overall accuracy is according to manufacturers
specifications. A method for verifying the total station accuracy can solve this problem.
There is as mentioned in section 1.3.3 a ISO-standard (ISO17123) that describes methods
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for verifying measuring equipment of different sorts, including the total station. However
there also exists another method, the KTH-TSC, presented by Horemuz & Kampmann.

2.5.1 KTH-TSC

The KTH Total Station Check is a method for verifying the total stations accuracy. In
the paper by Horemuz & Kampmann two methods are described, one for free station po-
sitioning and one for three-dimensional spatial co-ordinate-transformation. The method
of free station positioning is of interest for this thesis hence the idea here is to find a op-
timal design for such verification. The method works as of a first station set-up is made
and all targets are measured then the instrument is moved to a second position and the
same targets are measured from the second position. See figure 2.7. With a method for
adjustment of the network can then the coordinates of the stations be calculated as well
as the accuracy for each observation type.(Horemuz & Kampmann 2005)

If the method of KTH-TSC is compared to the tests from the ISO-standard, the KTH-
TSC would only need one test course for calculating the accuracy and in principal only one
station, but with the ISO-standard two tests will be needed one for the angle measurements
and another one for the distance measurements to be able to get verification for all three
observations. This will require more station setups. The other method in the ISO-standard
for calculations of coordinates only requires one test course but requires three station
setups.

X
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P
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P
2

P
4

P
1

Figure 2.7: Spatial free station positioning

2.6 Network adjustment

When measuring a network of points errors in the measurement leads to inconsistency, it
is therefore important to correct these errors in the network to remove the inconsistency.
There are different approaches for performing this adjustment and the most common is
according to the least square principal (Fan 1997). An adjustment of a geodetic network
depends on both a functional model and a priori statistical model. The functional model
is a number of either condition or observation equations. Observations equations describe
the relation between the observation and the parameters to be estimated. The number of
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unknown parameters should be as many as the necessary observations. It is important to
choose independent parameters. The priori statistical model is simply the expectation and
variance-covariance matrix of the measurement errors.

2.6.1 The variance-covariance matrix

An general model for a variance-covariance model is defined for a general functional model
where L is the observation vector, ε is the error vector and L̃ is the true observation vector.

L̃
nx1

= L
nx1

− ε
nx1

(2.20)

Furthermore the expectations on the error is considered to be zero.

E(ε) = 0 (2.21)

The error vector has a variance-covariance matrix defined as in (2.22)

Q
nxn

= E(εεT ) =


q11 q12 · · · q1k
q21 q22 · · · q2k
· · · · · · · · · · · ·
qk1 qk2 · · · qkk

 (2.22)

This matrix can be broken down to represent individual variance components. If one
considers the above variance-covariance matrix to be built up by sub matrices on each
row/column so q = k(k + 1)/2. Each of these matrices are expressed as the product of a
variance component and a matrix (2.24) (Fan 1997).

Q
nxn

=


σ11 ∗Q11 σ12 ∗Q12 · · · σ1k ∗Q1k

σ21 ∗Q21 σ22 ∗Q22 · · · σ2k ∗Q2k

· · · · · · · · · · · ·
σk1 ∗Qk1 σk2 ∗Qk2 · · · σkk ∗Qkk

 (2.23)

Q
nxn

=

q∑
i=1

(σj ∗Qj) (2.24)

Where σj(j = 1, . . . , q) are the variance components and Qj(j = 1, . . . , q) is a nxn matrix
corresponding to each variance-component.

2.6.2 Estimation of variance-covariance components

A problem that may occur with the least square method is as mentioned above that it is
dependent on the relative accuracy more than the absolute accuracy. The relative accuracy
works well when using measurements or observations of the same type, because one can
then form a weight matrix from the relative accuracy. A sort of empirical weighting is
done based on the available information, for example an angle measurement done in two
circle positions should have higher weight than another angle measurement only done in
one. But how should two observations be weighted if they have correlations to each other
or for the case of a total station, the observations are of different kinds. If the absolute
accuracy is known for each observation type it can be used as a relative accuracy between
the different types of observations (Fan 1997).

Another way to solve the problem is to, instead of using a empirical weighting, estimate
the variance-covariance matrix of the observation from the observations and their condition
equations or observations equations.
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There exists a few different methods for estimation of variance-covariance matrix, but
the one described and used here is MINQUE-method (Minimum Norm Quadratic Un-
biased Estimate). The Indian mathematician C. Radhakrishna Rao has written articles
explaining and deriving the method and for more detailed explanation of it, the article by
Radhakrishna Rao (1971) can be of interest.

2.6.3 Estimation of the variance components with MINQUE

This derivation of the method follows the one presented by Radhakrishna Rao (1972).
First consider the functional model for adjustment by elements as in equation (2.25).

L = AX + ϵ (2.25)

Where L is the observation vector, A is the coefficient matrix, X is the parameter vector
and ϵ is the error vector

This is the functional model used and the error is assumed to have zero expectation and
a variance covariance model defined as in section 2.6.1. The expectation and the variance
of L is formulated in (2.26).

E(L) = AX (2.26)
E(ϵ) = 0

V (L) = E(ϵϵT ) = σ1Q1 + · · ·+ σqQq

Where Qi = UT
i Ui, because ϵ = U ∗ εE(ϵ) = U ∗E(ε) = 0, E(ϵϵT ) = U ∗E(εεT )∗UT =∑q

j=1 Uj ∗E(εjε
T
j ) ∗UT

j =
∑q

j=1 σj ∗UjU
T
j =

∑q
j=1 σj ∗Qj The problem to estimate then

becomes the unknown parameters X and the variance components.
The estimation should be seen as an estimation of the linear function of the variance

components in (2.27) by a quadratic form LTML of the random variable L.

p1σ1 + · · ·+ pqσq (2.27)

The estimation to the above problem (eg. determine the M-matrix) with the MINQUE
method can be defined from certain criteria, (1) invariance, (2) unbiasedness and (3) min-
imum euclidian norm.

Invariance

If instead of the unknown parameter X a approximate value is introduced and the difference
between them are expressed as γ = X −X0. The adjustment model with the approximate
value will be written as (2.28). This changes the estimation of the linear function of variance
components from LTML to (L − AX0)

TM(L − AX0). However the solution should still
have the same numerical solution so that LTML holds. This implies that MA = 0 must
be true. The estimation LTML that is independent of X0 is called an invariant estimate.

L−AX0 = Aγ − ϵ (2.28)

Unbiadness

Under the above assumption of restriction, the quadratic form could be expressed by means
of the vector ε.

LTML = εTUTMUε (2.29)

If LTML is unbiased for
∑

pjσj , then (2.30) is valid for all σ.
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E(εTUTMUε) =

q∑
j=1

E(εTj U
T
j MUjεj) (2.30)

=

q∑
j=1

(UT
j MUj)

=

q∑
j=1

pjσj

⇒ tr(UT
j MUj)

= tr(MQj) = pj

Minimum euclidian norm

An estimator to
∑

pjσj , if ε had been known is ε∆ε, where ∆ is(2.31). But the estimator
that has been derived is (εTUTMUε). The difference between them is then (εT (UTMU −
∆)ε).

∆ =


p1
c1

p2
c2

. . .
pq
cq

 (2.31)

This difference could be made smaller by minimizing the norm of it. If the norm is
chosen as the euclidian norm and with the determined restriction on M, the following could
be derived.

(UTMU −∆)2 = tr(UTMU −∆)(UTMU −∆) (2.32)

= tr(UTMUUTMU)− tr(∆∆)

= tr(MQMQ)− tr(∆∆)

Note that tr(∆∆) does not involve the matrix M and therefore does not need to be
considered. The problem of the MINQUE is then to find a M matrix that is valid under
the conditions in (2.33).

MA = 0 (2.33)
tr(Mqj) = pj

tr(MQMQ) = minimum

One can not expect all εj to have the same standard deviation, this can be expressed
by nj =

1√
σj
εj , and inserting this term into (εT (UTMU −∆)ε) gives us (2.34).

nTΛ1/2(UTMU −∆)Λ1/2n (2.34)

Λ =

 σ1Ic1
. . .

σqIcq

 (2.35)

Then the solution will be as (2.36), where Q∗ = σ1Q1 + · · ·+ σqQq
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MA = 0 (2.36)
tr(Mqj) = pj

tr(MQ∗MQ∗) = minimum

2.6.4 MINQUE of variance components

With the principal idea of MINQUE presented above, now the variance component can be
computed with those ideas.

Choose Qj such as described in section 2.6.1 with σ0
1, . . . , σ

0
q if there exists a priori

ratios of the unknown variance component.

Q = Q1 + · · ·+Qq (2.37)

Q0 = σ0
1Q1 + · · ·+ σ1

qQq (2.38)

The MINQUE of
∑

pjσj is found by (2.39).

LTML =
∑

λjL
TRQjRL (2.39)

If uT = (u1, . . . , uq) where uj = LTRQjRL then (2.39) can be expressed as (2.40).

LTML = λTu = pTS−1u (2.40)

pTS−1 = pT σ̂

Sσ̂ = u

This shows how to estimate the variance components with MINQUE, where the parts
are defined as,

uj = LTRQjRL

sij = tr(RQjRQj)

R = Q−1(1− P )

P = A(ATQ−1A)−1ATQ−1

A covariance matrix of the variance components can be computed as (2.41). Where
the diagonal elements of Q represents the squared standard deviations of the estimation
for each variance component.

Qσ̂σ̂ = (STS)−1 (2.41)

Qσ̂σ̂ =

 ˆσ1,1 ˆσ1,2 ˆσ1,3
ˆσ2,1 ˆσ2,2 ˆσ2,3
ˆσ3,1 ˆσ3,2 ˆσ3,3

 (2.42)
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Methodology

In this part the above theory will be applied on the experiment, to define the network
(e.g. numbers of targets, station set-ups and geometry) of observations for estimating the
variance components of a certain total station in certain conditions.

3.1 Problem statement

The aim is to find an optimal design of network and a general idea is to reduce the amount
of needed station set-ups and targets. Certain criteria should be fulfilled to make this
method valid to use in field; it must provide good estimations of the variance components
and it should be time effective (no more set ups or targets than necessary for receiving
an acceptable estimation). The methodology used will be to try and define a geometry
between stations and targets that will have the lowest standard deviations. Then stations
and/or targets will be added to see if the standard deviation will increase or decrease.

3.1.1 Datum definition

The coordinate system used for the simulation will be a three dimensional cartesian system
and to be able to define the datum for such a system, six parameters are needed (see section
2.2). If the criteria for this simulation is considered, the datum should be defined such as it
is not in need of any other points than those measured from the stations in the simulation.
The stations should neither need to be on known points. Therefore the parameters for the
coordinate system are defined by fixing six of the coordinates of the stations and targets
in the network. It is important to consider which coordinates that are fixed to avoid
constraints in the network. To define the datum in this simulation the first station set-up
(STN1) is chosen as the origin of the system. To define the XY-plane and to lock the
rotation around the X-axis, the y- and z-coordinates of station two (STN2) is fixed in the
system. To lock the rotation around the Y-axis, the z-coordinate of the first target (P1) is
fixed in the coordinate system. Figure 3.1 illustrates this definition.

3.2 Observation equation

From the definition of polar coordinates, it can be seen that measurements from a total
station can be used to describe a points coordinates, relative to the total stations position.
See equations (2.4), (2.5) and (2.6). These measurements can be seen as the observations
that should be adjusted. From them the observation equations for the adjustment can
be defined. If Dsp is the measured slope distance between Station S and Target P, the
observation equation for slope distance will then be as (3.1)
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X

Y

STN2

y,z is known
STN1

x,y,z is known

P
1

z is known

Figure 3.1: The definition of the coordinate system

Dsp =
√

(xp − xs)2 + (yp − ys)2 + (zp − zs)2 (3.1)

This equation is a non-linear equation that needs to be linearized. The linearized
equation becomes (3.2) where (x0s, y

0
s , z

0
s )(x

0
p, y

0
p, z

0
p) is the approximate coordinates and

(δxs, δys, δzs)(δxp, δyp, δzp) are the corrections of them. (Fan 1997)

(Dsp −D0
sp)− εsp = a ∗ δxs + b ∗ δys + c ∗ δzs − a ∗ δxp − b ∗ δyp − c ∗ δzp (3.2)

D0
sp =

√
(x0p − x0s)

2 + (y0p − y0s)
2 + (z0p − z0s )

2 (3.3)

a =
∂Dsp

∂xs
= −

x0p − x0s
D0

sp

b =
∂Dsp

∂ys
= −

y0p − y0s
D0

sp

c =
∂Dsp

∂zs
= −

z0p − z0s
D0

sp

For coordinates that are fixed in stations or targets, their corresponding corrections
should be removed from the observation equation. For the horizontal direction and the
vertical angle we can form observation equation on the same principles. For horizontal
direction see (3.4), (3.5) and (3.6).

Hvsp = arctan

(
yp − ys
xp − xs

)
− βs (3.4)

(Hvsp −Hv0sp)− εsp = a ∗ δxs + b ∗ δys − a ∗ δxp − b ∗ δyp − βs (3.5)
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Hd0sp =
√

(x0p − x0s)
2 + (y0p − y0s)

2 (3.6)

α0
sp = arctan

(
y0p − y0s
x0p − x0s)

2

)

a =
∂Dsp

∂xs
=

y0p − y0s
(Hd0sp)

2

b =
∂Dsp

∂ys
= −

x0p − x0s
(Hd0sp)

2

And for the vertical angle see (3.7), (3.8) and (3.9).

Zvsp =

√
(xp − xs)2 + (yp − ys)2

zp − zs
(3.7)

(Zvsp − Zv0sp)− εsp = a ∗ δxs + b ∗ δys + c ∗ δzs − a ∗ δxp − b ∗ δyp − c ∗ δzp (3.8)

D0
sp =

√
(x0p − x0s)

2 + (y0p − y0s)
2 + (z0p − z0s )

2 (3.9)

Hd0sp =
√
(x0p − x0s)

2 + (y0p − y0s)
2

a =
∂Dsp

∂xs
=

(x0p − x0s) ∗ (z0p − z0s )

Hd0sp ∗ (D0
sp)

2

b =
∂Dsp

∂ys
=

(y0p − y0s) ∗ (z0p − z0s )

Hd0sp ∗ (D0
sp)

2

c =
∂Dsp

∂zs
= −

Hd0sp
(D0

sp)
2

3.3 Computations and implementation

With the unknown parameters defined, the estimation of the variance-covariance compo-
nents can be done. The calculations have been performed with Matlab and the simplest
case is presented here.

Consider Figure 3.2, which shows two stations and the observation from the stations
towards the target. The coordinate system is defined as in section 3.1.1 and observation
equation are defined as (3.2), (3.5) and (3.8) in section 3.2. Then the functional model
will be as in (3.10) with the corresponding matrices defined as (3.11), (3.12) and (3.13).
The elements of the A-matrix corresponds to the partial derivates of the corresponding
observation equation.

L̃
6∗1

= A
6∗3

X
1∗3

+ ε
6∗1

(3.10)

L =



DSTN1−P1

HvSTN1−P1

ZvSTN1−P1

DSTN2−P1

HvSTN2−P1

ZvSTN2−P1

 (3.11)
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Figure 3.2: Test with two stations and one point

A =



0 dSTN1−P1 eSTN1−P1

0 cSTN1−P1 dSTN1−P1

0 dSTN1−P1 eSTN1−P1

aSTN2−P1 dSTN2−P1 eSTN2−P1

aSTN2−P1 cSTN2−P1 dSTN2−P1

aSTN2−P1 dSTN2−P1 eSTN2−P1

 (3.12)

X =

xSTN2

xP1

yP1

 (3.13)

The a variance-covariance matrix for the a priori values of the observations should
be defined as in (2.23). In this case there are three variance-components, one for each
observation and the a priori value is set to a normal value for a standard total station.

σd = 1mm+ 1ppm (3.14)
σhv = 0, 45mgon

σZv = 0, 45mgon

The a priori values of the distance observation is divided in two parts a standard
error and an error that grows with the distance (parts per million). This means that
when calculating the a priori values of a certain distance, the approximate distance of the
observation needs to be known. In this case the variance-covariance matrix can be formed
as (3.15)(3.16)(3.17)(3.18).
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Q1 =



1 +
DSTN1−P1

1000 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 1 +
DSTN2−P1

1000 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(3.15)

Q2 =



0 0 0 0 0 0
0 0, 3 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0, 3 0
0 0 0 0 0 0

 (3.16)

Q3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0, 3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0, 3

 (3.17)

Q0 = Q1 +Q2 +Q3 (3.18)

With the definition of MINQUE in (2.40) and (2.41) the standard deviation of the
observation for this particular geometry can be calculated.

3.3.1 Matlab implementation

For the calculation of the observations equations and the standard deviations for different
"stations-geometry" a Matlab code has been written. The principal idea explained in
section 3.3 was translated into an algorithm. The main problem is to define the A- and
Q-matrix. To do this, first the size of the matrices has to be determined. The minimum
is a setup with two stations and one target and with six "known" coordinates, but there
is no upper limit of over determinations. The columns in the A-matrix is then m =
(numberofstations+numberoftargets) ∗ 3− 6. The rows of the A-matrix corresponds to
the amount of observations n = numberofstations∗numberoftargets∗3. The Q-matrix is
a m∗m−matrix. To populate the matrices a nested for loop is used. In the first level it goes
through the stations and in the second level it goes through the targets. Dependent on the
station number there are three cases. In the second level there are two cases. All together
this gives us six cases. The first case is if it is station one and target one, then all the
partial derivatives corresponding to the stations coordinates and the targets z-coordinate
should not be considered because they are not being adjusted and should not be placed
in any element of A-matrix. The second case is when it is station one but not target one,
then all coordinates corresponding the target should be considered. The third case is when
it is station two and target one, then the partial derivatives corresponding to the stations
y- and z-coordinate and the targets z-coordinate are not considered. The fourth case is
when it is station two but not target one, then the partial derivatives corresponding to the
stations y- and z-coordinate and all of the targets coordinates are considered. The fifth
case is when is any other station and target one, then all partial derivatives corresponding
to the stations coordinates and the targets x- and y-coordinate are part of the observation
equation and should be inserted in its corresponding element in the A-matrix. The sixth
case is when it is not station one or station two and not target one, then all station and
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target coordinates should be adjusted and therefore part of the A-matrix. An algorithm
corresponding to this was defined.

Listing 3.1: Algorithm for creating A-matrix and Q-matrix
1 Read s t a t i o n s and t h e i r c oo rd ina t e s
2 Read t a r g e t s and t h e i r coo rd inate
3 Def ine s i z e o f A matrix as nXm, n= 'number o f s t a t i o n s ' ∗ 'number o f ...

t a r g e t s ' ∗3 ,
4 m =( 'number o f s t a t i o n s '+-number o f ta rge t s ' ) ∗3 -6 .
5 Def ine s i z e o f Q matrix as nXn.
6 For s t a t i o n i
7 For t a r g e t j
8 case 1 i == 1 , j == 1
9 c a l c u l a t e p a r t i a l d e r i v a t e s f o r t a r g e t s x - and y - coord inate ,

10 f o r a l l th ree ob s e r v a t i o n s .
11 I n s e r t in cor re spond ing element in A matr ix .
12 Calcu la te q - element f o r Q_1 f o r d i s t a n c e s .
13 I n s e r t q - element in element in corre spond ing Q matr ix .
14 case 2 i == 1
15 c a l c u l a t e p a r t i a l d e r i v a t e s f o r t a r g e t s x - , y - and ...

z - coord inate s ,
16 f o r a l l th ree ob s e r v a t i o n s .
17 I n s e r t in cor re spond ing element in matr ix .
18 Calcu la te q - element f o r Q_1 f o r d i s t a n c e s .
19 I n s e r t q - element in element in corre spond ing Q matr ix .
20 case 3 i == 2 , j == 1
21 Calcu la te p a r t i a l d e r i v a t e s f o r s t a t i o n s x - and t a r g e t s x - . . .
22 and y - coord inate , f o r a l l th ree ob s e r v a t i o n s .
23 I n s e r t in cor re spond ing element in matr ix .
24 Calcu la te q - element f o r Q_1 f o r d i s t a n c e s .
25 I n s e r t q - element in element in corre spond ing Q matr ix .
26 case 4 i == 2
27 Calcu la te p a r t i a l d e r i v a t e s f o r s t a t i o n s x - and t a r g e t s ...

x - , y - . . .
28 and z - coord inate , f o r a l l th ree ob s e r v a t i o n s .
29 I n s e r t in cor re spond ing element in matr ix .
30 Calcu la te q - element f o r Q_1 f o r d i s t a n c e s .
31 I n s e r t q - element in element in corre spond ing Q matr ix .
32 case 5 j == 1
33 Calcu la te p a r t i a l d e r i v a t e s f o r s t a t i o n s x - , y - , z - and ...

t a r g e t s . . .
34 x - and y - coord inate , f o r a l l th ree ob s e r v a t i o n s .
35 I n s e r t in cor re spond ing element in matr ix .
36 Calcu la te q - element f o r Q_1 f o r d i s t a n c e s .
37 I n s e r t q - element in element in corre spond ing Q matr ix .
38 case 6
39 Calcu la te p a r t i a l d e r i v a t e s f o r s t a t i o n s x - , y - , z - and ...

t a r g e t s . . .
40 x - , y - and z - coord inate , f o r a l l th ree ob s e r v a t i o n s .
41 I n s e r t in cor re spond ing element in matr ix .
42 Calcu la te q - element f o r Q_1 f o r d i s t a n c e s .
43 I n s e r t q - element in element in corre spond ing Q matr ix .

With the principal algorithm a Matlab code was written. The complete Matlab code
is attached in appendix A.
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Results

In this chapter the results of the simulation will be presented. Starting with the simplest
case and geometry and continuing with more complex networks with an increasing number
of targets and stations to find the optimal design. In Appendix B all networks used and
mentioned in this chapter are listed.

4.1 The simplest case

Starting with considering a network with two stations and one target as in Figure 3.2. In
this particular network the angle between the observations at the point is 100 gon, meaning
that the lines from the station towards the target are perpendicular to each other at the
target. For an estimation with only horizontal angle observations this would be the best
case. By comparing different networks of this type, the best solution for an estimation with
two stations and one target can be found. In Table 4.1 the result for different networks
are presented. Type S1 is as in Figure 3.2 and S2 is as Figure B.1b. These two types
can be seen as resulting in similar results and both have an angle at the point that is
100 gon. This can be compared to the other two S3 and S4 as in Figure B.1c and B.1d,
where in S3 the target is placed on a line that goes through both points, but in between
the stations. In S4 the targets are placed on a line that goes through both lines and the
target is on the outside of the stations. In all networks the heights are set to zero for
all stations/targets. But in the simulations it has been seen that the impact of changing
the height of the target in relation to the stations greatly affect the final result. By only
shifting the height of the target by less than one meter the result can shift by a factor
ten. This only affect the standard deviation in distances and vertical angle observations
because the horizontal angle is not dependent on the z-coordinate. Measuring towards one
target from two stations is clearly not enough to get reliable results.

Table 4.1: Result for standard deviation, two stations one target.

Type Distance (mm) Horizontal angle (mgon) Vertical angle (mgon)

S1 0,752 0,479 0,895
S2 0,745 0,477 0,885
S3 1,414 0,707 1,346
S4 0,471 0,707 0,837
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Figure 4.1: Types with two stations, two targets

4.1.1 The case with two targets

A network with only one target is not enough for the simulation instead a test with networks
containing two targets and two stations is carried out. The result can be seen in Table
4.2. In this simulation four different networks are tested. T1 and T4 are defined on the
same rule for the targets as in S1 and S2, the difference between them is that T4 have one
target on each side of the stations and T1 on have both targets on the same side. T3 and
T2 are defined on the same principle as S3 and S4, for T3 the targets are on a straight line
in between the stations and for T2 the targets are on a straight line on either side of the
stations.

Table 4.2: Result for standard deviation, two stations, two targets.

Type Distance (mm) Horizontal angle (mgon) Vertical angle (mgon)

T1 0,216 0,144 0,237
T2 0,162 0,184 0,217
T3 4.198 1,487 3,206
T4 0,232 0.146 0.230

The result from this test shows that placing the targets on a straight line in between
the stations as in T3 is far worse than the other networks, however the other networks are
compared to each other quite similar in the estimation and compared to the test with only
one target all networks except T3 show a far better estimation. This raises the question
of how much the geometry of the network affect the result compared to the number of
targets.
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(a) Type A
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(b) Type B
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(c) Type C
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(d) Type D

Figure 4.2: Types with two stations, three targets

4.2 Increasing the number of targets

In the previous section a geometry has been shown to be better than the others for the
estimation. To try and further improve the estimation more stations or targets or both
can be added. When more targets are added the design is altered for each target that is
added. To be able to consider them as different types of design and compare them, three
main types are defined.

• Type A, all targets are placed on one side of the line that is formed between the
stations. Figure 4.2a is an example of a Type A geometry.

• Type B, all targets are placed on two sides of the line that is formed between the
stations. Figure 4.2b is an example of a Type B geometry.

• Type C, all targets are spread evenly around the stations on a circle. Figure 4.2c is
an example of a Type C geometry.

• A fourth special case to consider Type D, where the design follows the idea from
S1/S2/T1/T2. Figure 4.2d is an example of a Type D geometry.

A simulation is made for each type from three targets up to eight targets. For type D there
has only been made calculations for up to six targets. And all geometries have the height
set to zero for both stations and targets. The result is presented in Figure 4.3a, Figure
4.3b and Figure 4.3c.

For each type of measurement distance, horizontal direction and zenith direction small
differences exists between the different types. For example type C is slightly better than
the others for distance and horizontal direction but slightly worse for zenith direction. The
general trend of the estimation for each type is similar and the largest influence of the
result is the number of targets. More targets gives better estimation for each type and
compared to each other. The spread of the targets does not influence as much.
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Figure 4.3: Standard deviation when increasing number of targets
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Figure 4.4: Increasing the number of stations

4.3 Increasing the number of stations

As an alternative to increasing the number of targets, instead the number of stations can
be increased. The same design is used with three targets and the stations are placed in the
same way for all three designs, they are placed upon the border of a circle with a radius of
five. Figure 4.4 shows an example of how stations are added. The result of the calculations
is presented in Figure 4.5a, Figure 4.5b and Figure 4.5c. Type D is not considered here
because it is not possible to create such geometry with more than two stations. Increasing
the number of station set-ups increases the number of observations with the same size
as the number of targets since all targets should be observed from the new set-up. This
means that for a design with three targets extended with one station set-up, three new
observations are carried out. Therefore a large decrement of the size of estimation should
be expected. These calculations show a similar trend compared to increasing the number of
targets. There exist differences between the types but when the number of observations are
increased the differences between the types becomes smaller and the estimation becomes
better. As expected a large step between two and three station can be seen for all types and
it can be suspected that by adding additional station the estimations standard deviation
will decrease but the steps will be smaller and smaller.
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Figure 4.5: Standard deviation when increasing number of stations
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4.4 Increasing the number of both targets and stations

By comparing the figures for increasing the number of targets with them for increasing the
number of stations it can be seen that the result will be similar for those with equal amount
of observations. This tells us that the amount of observations is the most important factor.
Calculations were done with the possible combinations from three to eight targets with two
to eight stations for each of the three types. The result is plotted in a table with the x-axis
representing the number of observations in that particular estimation. Examining Figure
4.6a it shows that the amount of observations is the key factor, not if it is stations or
targets that are increased. For Type B and type C we get similar results in Figure 4.6b
and 4.6c. It also shows that the difference between the types is not of big importance
compared to the number of observations. In Appendix C, Figure C.1a, C.1b, C.2a, C.2b,
C.3a and C.3b show the result for horizontal direction and vertical direction for each type.

4.5 Influence of height difference

For all the simulations that has been made the spread in height has not been changed. The
influence of the Z-coordinate is still of importance, it influences the result of the estimation
for both distance and zenith directions. In the calculations carried out all z-coordinates
were set to zero. To test the influence of the height difference in between targets and
stations, geometries with all z-coordinates set to zero are compared to the same geometry
but with changed values on z-coordinates.

For all types with two stations and three targets, in Z1 the height has been set for one
of the targets to 2 meters, in Z2 it has been changed to - 2 meter and in Z3 it has been
changed to 10 meters. An example of this for type A is shown in Figure 4.7. The result
is in Figure 4.8. The effect of different height values on the targets influence the overall
estimation.

4.6 Influence of distance to target

The a priori values of the estimation are defined in such way that we expect the a priori
values to become larger when the observed distance becomes larger. This should also effect
the estimation, if observed distance is longer the estimation should be larger. This can be
tested in the same way as the influence of height difference was tested. The three types
with two stations and three targets are altered so that some of the observed distances
becomes longer. For D1 the length towards P1 is altered from 10 meter to 50 meters, for
D2 the length is altered to 100 meters and for D3 is also P3 altered from 10 meters to 100
meters.

Figure 4.9 compares the different versions for each type. For setups with longer observed
distance the estimation for distance is slightly worse than those with a shorter observed
distance, except for D3 for type C that actually is slightly better than the original setup.
By this alteration of the setups, the angles for both the horizontal direction as well as the
zenith direction are affected and that needs to be considered as well.
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Figure 4.6: Standard deviation compared to number of observations
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Figure 4.7: Example of change in height of one target
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Discussion and analyze

5.1 Discussion

There exists infinite numbers of possible setups that can be used for this estimation. In
this thesis a few have been simulated to define the importance of certain attributes such
as length from station to target, angle between observations, spread of targets, influence of
elevation change and number of observations. From the estimations it can be seen that all
these attributes to the setup effects the estimation, however most of them are dependent
of each other. A change in height will also change the distance between the station and the
target, a longer distance from the station to the target will change the angle between the
observations from different stations, etc. This dependency makes it difficult to point out
a single attributes importance, but it can be seen that for a small amount of estimations,
less than three targets and only two stations, the affect of these changes will be larger. As
more targets and stations are added the difference between the designs becomes smaller
and to distinguish different attributes effect is also harder.

In Figure 5.1a, 5.1b and 5.1c a best fit curve is plotted for standard deviation compared
to number of observations for each type (A,B and C) of design. Some alteration in between
each type but also within each type due to different number of station and targets, and
the effect this have on different attributes, can be seen. It is quite clear that the largest
effect on the estimation is the number of observations. More observations gives a better
result, independent from the geometry of the setup.

5.1.1 Optimal design

When considering an optimal design for the estimation, the application of the theory
to the environment where these measurements will be done needs to be considered. If
the work is carried out in a narrow shaft, should the estimation be done in the shaft
under those restrictions of possible setups, or should the estimation be carried out before
entering the shaft where the possibilities of the setups is less limited, but the environment
(light, pressure, temperature) might be different. This is not a question to be answered in
this thesis but it is important to point out as something that needs to be considered as
well. As stated above the single most important factor to the estimation is the number of
observations, more observations gives a better result of the estimation. The geometry of the
design is less important. The recommendation for an optimal design is, rather than creating
certain angles between observations or a certain minimum distance between stations and
targets, to make sure there are a sufficient number of observations done. Another factor to
consider is that for each extra measurement needed, more time in the field will be needed
to perform the verification. The total station used in the simulations have a priori values
as in (3.14), if an estimation should have a standard deviation of one tenth of the expected
a priori value then a minimum of 14 observations needs to be measured to have a standard
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Figure 5.1: Standard deviation compared to number of observations for all types
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deviation less than 0,045 mgon for the two direction observations. This is equivalent to
two stations and seven targets or three stations and four targets. The Figures 5.1a, 5.1b
and 5.1c can be used as guides when deciding the number of observations needed for the
verification.

5.2 Conclusions

For estimation of variance-covariance components with the MINQUE method for verifi-
cation of standard deviation of a total station the following can be said. The geometry
of the network will affect the estimation, the distance between stations and targets, the
spread of the targets around the stations and the spread in height both of stations and
targets. This is however not as important as the number of observations, with more ob-
servations the estimations will be better and in practice it would be easier to increase the
number of observations than to try and improve the network in such way that an optimal
setup would be created. In practice it would be convenient to use existing backsights, on a
construction site for example, there is normally existing backsights with different types of
reflectors. The accuracy for reflection of the signal and how it could affect the calculations
has not been considered in the calculations. Further work on this topic could be to verify
the results in this thesis by field tests and considering the effect of using different types
of backsights in the same estimation or a verification of these results by using a different
method for estimation of variance components.
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Appendix A

Matlab code for calculations

Matlab code used for the calculations.

Listing A.1: Matlab code
1 %% Implementation o f Minque - e s t imat i on
2 % Master Thes i s work
3 % Joe l Bergkv i s t
4

5 % c l e a r everyth ing
6 c l e a r a l l ;
7 c l o s e a l l ;
8 c l c ;
9

10 %% Indata
11

12 % Sta t i on s coo rd ina t s
13 S = [0 0 0 ; . . .
14 10 0 -1 . . .
15 ] ;
16

17 % Points coo rd ina t s
18 P = [ 7 . 5 4 .33 2
19 ] ;
20

21 % A- p r i o r i v a l u e s
22 qd = 1 ;
23 ppm = (1/1000) ;
24 qhv = 2 . 5 ;
25 qvv = 2 . 5 ;
26

27 i f S < 2
28 e r r o r ( ' stat ionCheck : need more than 1 s t a t i o n ' )
29 end
30

31 %% A- matrix
32

33 % number o f s t a t i o n s
34 nS = s i z e (S , 1 ) ;
35

36 % number o f po in t s
37 nP = s i z e (P, 1 ) ;
38

39 % locked elements in s t a t i o n s i s always 5 .
40 l ockedElementStat ion = 5 ;
41

42 % po int s i s always 1
43 lockedElementPoints = 1 ;
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44

45 tota lLockedElements = lockedElementStat ion + lockedElementPoints ;
46

47 tota lFreeElements = (nS + nP) ∗3 - tota lLockedElements ;
48

49 % de f i n e s i z e A matrix
50 A = zero s (nS∗nP∗3 , tota lFreeElements ) ;
51

52 % de f i n e s i z e Q mat r i c i e s
53 Q1 = ze ro s (nS∗nP∗3 , nS∗nP∗3) ;
54 Q2 = ze ro s (nS∗nP∗3 , nS∗nP∗3) ;
55 Q3 = ze ro s (nS∗nP∗3 , nS∗nP∗3) ;
56

57 % ca l c u l a t e a l l l ength from s t a t i o n s to po in t s
58 % ca l c u l t e ho r i z on t a l d i s t anc e from s t a t i o n s to po in t s
59 d i s t ance = ze ro s ( s i z e (S , 1 ) , s i z e (P, 1 ) ) ;
60 hd = ze ro s ( s i z e (S , 1 ) , s i z e (P, 1 ) ) ;
61

62 f o r i = 1 : s i z e (S , 1 )
63 f o r j = 1 : s i z e (P, 1 )
64 d i s t ance ( i , j ) = sq r t ( . . .
65 (P( j , 1 ) - S ( i , 1 ) )^2 . . .
66 + (P( j , 2 ) - S( i , 2 ) )^2 . . .
67 + (P( j , 3 ) - S( i , 3 ) )^2 . . .
68 ) ;
69 hd( i , j ) = sq r t ( . . .
70 (P( j , 1 ) - S ( i , 1 ) )^2 . . .
71 + (P( j , 2 ) - S( i , 2 ) )^2 . . .
72 ) ;
73 end
74 end
75

76 % f i l l in A matrix
77

78 commutationCount = 0 ;
79

80 f o r i = 1 : s i z e (S , 1 )
81 f o r j = 1 : s i z e (P, 1 )
82

83 % di s t an c e s
84 distanceRow = 3∗commutationCount + 1 ;
85 a = (P( j , 1 ) - S( i , 1 ) ) / d i s t ance ( i , j ) ;
86 b = (P( j , 2 ) - S( i , 2 ) ) / d i s t ance ( i , j ) ;
87 c = (P( j , 3 ) - S( i , 3 ) ) / d i s t ance ( i , j ) ;
88 d = -a ;
89 e = -b ;
90 f = - c ;
91

92 switch i
93 case 1
94 i f j == 1
95 % se t in d i s t an c e s f o r po in t s
96 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
97 columnRangeEndP = columnRangeStartP + 1 ;
98 A( distanceRow , columnRangeStartP : columnRangeEndP) = [ d e ] ;
99 Q1( distanceRow , distanceRow )= qd+abs ( d i s t anc e ( i , j ) ) ∗ppm;

100

101 e l s e
102 % se t in d i s t an c e s f o r po in t s
103 columnRangeStartP = 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - ...

2) ∗3) - 5 ;
104 columnRangeEndP = columnRangeStartP + 2 ;
105 A( distanceRow , columnRangeStartP : columnRangeEndP) = [ d e f ] ;
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106 Q1( distanceRow , distanceRow )= qd+abs ( d i s t anc e ( i , j ) ) ∗ppm;
107

108 end
109 case 2
110 i f j == 1
111

112 % se t in d i s t an c e s f o r s t a t i o n s
113 columnRangeStartStat = 1 ;
114 columnRangeEndStat = 1 ;
115 A( distanceRow , columnRangeStartStat : columnRangeEndStat ) = ...

[ a ] ;
116

117 % se t in d i s t an c e s f o r po in t s
118 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
119 columnRangeEndP = columnRangeStartP + 1 ;
120 A( distanceRow , columnRangeStartP : columnRangeEndP) = [ d e ] ;
121 Q1( distanceRow , distanceRow )= qd+abs ( d i s t anc e ( i , j ) ) ∗ppm;
122

123 e l s e
124 % se t in d i s t an c e s f o r s t a t i o n s
125 columnRangeStartStat = 1 ;
126 columnRangeEndStat = 1 ;
127 A( distanceRow , columnRangeStartStat : columnRangeEndStat ) = ...

[ a ] ;
128 Q1( distanceRow , distanceRow )= qd+abs ( d i s t anc e ( i , j ) ) ∗ppm;
129

130

131 % se t in d i s t an c e s f o r po in t s
132 columnRangeStartP = 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - ...

2) ∗3) - 5 ;
133 columnRangeEndP = columnRangeStartP + 2 ;
134 A( distanceRow , columnRangeStartP : columnRangeEndP) = [ d e f ] ;
135 Q1( distanceRow , distanceRow )= qd+abs ( d i s t anc e ( i , j ) ) ∗ppm;
136

137 end
138 otherwi se
139

140 i f j == 1
141 % se t in d i s t an c e s f o r s t a t i o n s
142 columnRangeStartStat = 1 + (1 + ( i - 3) ∗3) ;
143 columnRangeEndStat = 2 + columnRangeStartStat ;
144 A( distanceRow , columnRangeStartStat : columnRangeEndStat ) ...

= . . .
145 [ a b c ] ;
146 Q1( distanceRow , distanceRow )= qd+abs ( d i s t ance ( i , j ) ) ∗ppm;
147

148 % se t in d i s t an c e s f o r po in t s
149 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
150 columnRangeEndP = columnRangeStartP + 1 ;
151 A( distanceRow , columnRangeStartP : columnRangeEndP) = ...

[ d e ] ;
152 Q1( distanceRow , distanceRow )= qd+abs ( d i s t ance ( i , j ) ) ∗ppm;
153 e l s e
154 % se t in d i s t an c e s f o r s t a t i o n s
155 columnRangeStartStat = 1 + (1 + ( i - 3) ∗3) ;
156 columnRangeEndStat = 2 + columnRangeStartStat ;
157 A( distanceRow , columnRangeStartStat : columnRangeEndStat ) ...

= . . .
158 [ a b c ] ;
159 Q1( distanceRow , distanceRow )= qd+abs ( d i s t ance ( i , j ) ) ∗ppm;
160

161 % se t in d i s t an c e s f o r po in t s
162 columnRangeStartP = . . .
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163 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - 2) ∗3) - 5 ;
164 columnRangeEndP = columnRangeStartP + 2 ;
165 A( distanceRow , columnRangeStartP : columnRangeEndP) = ...

[ d e f ] ;
166 Q1( distanceRow , distanceRow )= qd+abs ( d i s t anc e ( i , j ) ) ∗ppm;
167 end
168 end
169

170

171 % hor i z on t a l ang l e s
172 hangleRow = 3∗commutationCount + 2 ;
173 hangleA = (P( j , 2 ) - S( i , 2 ) ) /hd( i , j ) ^2;
174 hangleB = (P( j , 1 ) - S( i , 1 ) ) /hd( i , j ) ^2;
175 hangleC = 0 ;
176 hangleD = - hangleA ;
177 hangleE = - hangleB ;
178 hangleF = 0 ;
179

180 switch i
181 case 1
182 i f j == 1
183 % se t in ho r i z on t a l ang l e s f o r po in t s
184 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
185 columnRangeEndP = columnRangeStartP + 1 ;
186 A(hangleRow , columnRangeStartP : columnRangeEndP) = . . .
187 [ hangleD hangleE ] ;
188 Q2( hangleRow , hangleRow )= qhv ;
189

190 e l s e
191 % se t in ho r i z on t a l ang l e s f o r po in t s
192 columnRangeStartP = 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - ...

2) ∗3) - 5 ;
193 columnRangeEndP = columnRangeStartP + 2 ;
194 A(hangleRow , columnRangeStartP : columnRangeEndP) = . . .
195 [ hangleD hangleE hangleF ] ;
196 Q2( hangleRow , hangleRow )= qhv ;
197

198 end
199 case 2
200 i f j == 1
201

202 % se t in ho r i z on t a l ang l e s f o r s t a t i o n s
203 columnRangeStartStat = 1 ;
204 columnRangeEndStat = 1 ;
205 A(hangleRow , columnRangeStartStat : columnRangeEndStat ) = ...

[ hangleA ] ;
206 Q2( hangleRow , hangleRow )= qhv ;
207

208

209 % se t in ho r i z on t a l ang l e s f o r po in t s
210 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
211 columnRangeEndP = columnRangeStartP + 1 ;
212 A(hangleRow , columnRangeStartP : columnRangeEndP) = . . .
213 [ hangleD hangleE ] ;
214 Q2( hangleRow , hangleRow )= qhv ;
215

216 e l s e
217 % se t in ho r i z on t a l ang l e s f o r s t a t i o n s
218 columnRangeStartStat = 1 ;
219 columnRangeEndStat = 1 ;
220 A(hangleRow , columnRangeStartStat : columnRangeEndStat ) = ...

[ hangleA ] ;
221 Q2( hangleRow , hangleRow )= qhv ;
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222

223

224 % se t in ho r i z on t a l ang l e s f o r po in t s
225 columnRangeStartP = 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - ...

2) ∗3) - 5 ;
226 columnRangeEndP = columnRangeStartP + 2 ;
227 A(hangleRow , columnRangeStartP : columnRangeEndP) = . . .
228 [ hangleD hangleE hangleF ] ;
229 Q2( hangleRow , hangleRow )= qhv ;
230

231 end
232 otherwi se
233

234 i f j == 1
235 % se t in ho r i z on t a l ang l e s f o r s t a t i o n s
236 columnRangeStartStat = 1 + (1 + ( i - 3) ∗3) ;
237 columnRangeEndStat = 2 + columnRangeStartStat ;
238 A(hangleRow , columnRangeStartStat : columnRangeEndStat ) ...

= . . .
239 [ hangleA hangleB hangleC ] ;
240 Q2( hangleRow , hangleRow )= qhv ;
241

242 % se t in ho r i z on t a l ang l e s f o r po in t s
243 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
244 columnRangeEndP = columnRangeStartP + 1 ;
245 A(hangleRow , columnRangeStartP : columnRangeEndP) = . . .
246 [ hangleD hangleE ] ;
247 Q2( hangleRow , hangleRow )= qhv ;
248 e l s e
249 % se t in ho r i z on t a l ang l e s f o r s t a t i o n s
250 columnRangeStartStat = 1 + (1 + ( i - 3) ∗3) ;
251 columnRangeEndStat = 2 + columnRangeStartStat ;
252 A(hangleRow , columnRangeStartStat : columnRangeEndStat ) ...

= . . .
253 [ hangleA hangleB hangleC ] ;
254 Q2( hangleRow , hangleRow )= qhv ;
255

256 % se t in ho r i z on t a l ang l e s f o r po in t s
257 columnRangeStartP = . . .
258 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - 2) ∗3) - 5 ;
259 columnRangeEndP = columnRangeStartP + 2 ;
260 A(hangleRow , columnRangeStartP : columnRangeEndP) = . . .
261 [ hangleD hangleE hangleF ] ;
262 Q2( hangleRow , hangleRow )= qhv ;
263 end
264 end
265

266

267 % v e r t i c a l ang l e s
268 vangleRow = 3∗commutationCount + 3 ;
269 vangleA = (P( j , 1 ) - S( i , 1 ) ) ∗(P( j , 3 ) - ...

S( i , 3 ) ) / d i s t anc e ( i , j ) ^2∗hd( i , j ) ;
270 vangleB = (P( j , 2 ) - S ( i , 2 ) ) ∗(P( j , 3 ) - ...

S( i , 3 ) ) / d i s t anc e ( i , j ) ^2∗hd( i , j ) ;
271 vangleC = hd( i , j ) / d i s t anc e ( i , j ) ^2;
272 vangleD = - vangleA ;
273 vangleE = - vangleB ;
274 vangleF = - vangleC ;
275

276 switch i
277 case 1
278 i f j == 1
279 % se t in v e r t i c a l ang l e s f o r po in t s
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280 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
281 columnRangeEndP = columnRangeStartP + 1 ;
282 A(vangleRow , columnRangeStartP : columnRangeEndP) = . . .
283 [ vangleD vangleE ] ;
284 Q3( vangleRow , vangleRow )= qvv ;
285

286 e l s e
287 % se t in v e r t i c a l ang l e s f o r po in t s
288 columnRangeStartP = 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - ...

2) ∗3) - 5 ;
289 columnRangeEndP = columnRangeStartP + 2 ;
290 A(vangleRow , columnRangeStartP : columnRangeEndP) = . . .
291 [ vangleD vangleE vangleF ] ;
292 Q3( vangleRow , vangleRow )= qvv ;
293

294 end
295 case 2
296 i f j == 1
297

298 % se t in v e r t i c a l ang l e s f o r s t a t i o n s
299 columnRangeStartStat = 1 ;
300 columnRangeEndStat = 1 ;
301 A(vangleRow , columnRangeStartStat : columnRangeEndStat ) = ...

[ vangleA ] ;
302 Q3( vangleRow , vangleRow )= qvv ;
303

304

305 % se t in v e r t i c a l ang l e s f o r po in t s
306 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
307 columnRangeEndP = columnRangeStartP + 1 ;
308 A(vangleRow , columnRangeStartP : columnRangeEndP) = . . .
309 [ vangleD vangleE ] ;
310 Q3( vangleRow , vangleRow )= qvv ;
311

312 e l s e
313 % se t in v e r t i c a l ang l e s f o r s t a t i o n s
314 columnRangeStartStat = 1 ;
315 columnRangeEndStat = 1 ;
316 A(vangleRow , columnRangeStartStat : columnRangeEndStat ) = ...

[ vangleA ] ;
317 Q3( vangleRow , vangleRow )= qvv ;
318

319

320 % se t in v e r t i c a l ang l e s f o r po in t s
321 columnRangeStartP = 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - ...

2) ∗3) - 5 ;
322 columnRangeEndP = columnRangeStartP + 2 ;
323 A(vangleRow , columnRangeStartP : columnRangeEndP) = . . .
324 [ vangleD vangleE vangleF ] ;
325 Q3( vangleRow , vangleRow )= qvv ;
326

327 end
328 otherwi se
329

330 i f j == 1
331 % se t in v e r t i c a l ang l e s f o r s t a t i o n s
332 columnRangeStartStat = 1 + (1 + ( i - 3) ∗3) ;
333 columnRangeEndStat = 2 + columnRangeStartStat ;
334 A(vangleRow , columnRangeStartStat : columnRangeEndStat ) ...

= . . .
335 [ vangleA vangleB vangleC ] ;
336 Q3( vangleRow , vangleRow )= qvv ;
337
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338 % se t in v e r t i c a l ang l e s f o r po in t s
339 columnRangeStartP = ( s i z e (S , 1 ) ) ∗3 - 5 + 1 ;
340 columnRangeEndP = columnRangeStartP + 1 ;
341 A(vangleRow , columnRangeStartP : columnRangeEndP) = . . .
342 [ vangleD vangleE ] ;
343 Q3( vangleRow , vangleRow )= qvv ;
344 e l s e
345 % se t in v e r t i c a l ang l e s f o r s t a t i o n s
346 columnRangeStartStat = 1 + (1 + ( i - 3) ∗3) ;
347 columnRangeEndStat = 2 + columnRangeStartStat ;
348 A(vangleRow , columnRangeStartStat : columnRangeEndStat ) ...

= . . .
349 [ vangleA vangleB vangleC ] ;
350 Q3( vangleRow , vangleRow )= qvv ;
351

352 % se t in v e r t i c a l ang l e s f o r po in t s
353 columnRangeStartP = . . .
354 1 + ( ( s i z e (S , 1 ) ) ∗3) + (2 + ( j - 2) ∗3) - 5 ;
355 columnRangeEndP = columnRangeStartP + 2 ;
356 A(vangleRow , columnRangeStartP : columnRangeEndP) = . . .
357 [ vangleD vangleE vangleF ] ;
358 Q3( vangleRow , vangleRow )= qvv ;
359 end
360 end
361

362

363 commutationCount = commutationCount + 1 ;
364 end
365 end
366

367 Q0 = Q1+Q2+Q3;
368 Q = {Q1 Q2 Q3} ;
369

370 %% Calcu la t ing var iance - covar iance components
371

372 R0=inv (Q0) - inv (Q0) ∗A∗ inv (A' ∗ inv (Q0) ∗A) ∗A' ∗ inv (Q0) ;
373

374 S i j = ze ro s (3 , 3) ;
375

376 f o r i =1:3
377 f o r j =1:3
378 S i j ( i , j )=t ra c e (R0∗Q{ i }∗R0∗Q{ j }) ;
379 end
380 end
381

382 %Estimation o f standard dev i a t i on o f var iance - components ( ind ipendet ...
o f obse rvat i on vec to r )

383

384 V=inv ( S i j ' ∗ S i j ) ;
385

386 s d i s t = sq r t (V(1 , 1 ) ) ; %Standard dev i a t i on s f o r d i s t ance
387 shv = sq r t (V(2 , 2 ) ) ; %Standard dev i a t i on s f o r ho r i z on t a l ang le
388 svv = sq r t (V(3 , 3 ) ) ; %Standard dev i a t i on s f o r v e r t i c a l ang le
389

390 %% Output
391

392 s p r i n t f ( ' Standard e r r o r o f the est imated var iance - components \n ...
Distance %0.10 f , Hor i zonta l Angle %0.10 f , Ve r t i c a l ang le %0.10 f ' , ...
sd i s t , shv , svv )

393

394 %% Plot
395

396 hold on

45



397 g r id on
398 ax i s equal
399

400 L1X = [ S (1 , 1 ) ; P(1 , 1 ) ] ;
401 L1Y = [ S (1 , 2 ) ; P(1 , 2 ) ] ;
402 L2X = [ S (2 , 1 ) ; P(1 , 1 ) ] ;
403 L2Y = [ S (2 , 2 ) ; P(1 , 2 ) ] ;
404

405 p lo t (L1X, L1Y, ' - - ' ) ;
406 p lo t (L2X, L2Y, ' - - ' ) ;
407

408 f o r i =1:nS
409 p lo t (S( i , 1 ) ,S ( i , 2 ) , ' o ' , ' Markeredgecolor ' , 'k ' , ' Marker faceco lo r ' , 'b ' )
410 end
411 f o r i =1:nP
412 p lo t (P( i , 1 ) ,P( i , 2 ) , ' s ' , ' Markeredgecolor ' , ' r ' , ' Marker faceco lo r ' , ' g ' )
413 end
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Appendix B

Geometry of setups

Simulated setups not previously shown. For setups with more than two stations, only the
principal for adding more station to the setup is presented here.
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Figure B.1: Types with two stations, one targets
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Figure B.2: Type A, two stations, three
targets

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

Y−axis

X
−

ax
is

Figure B.3: Type A, two stations, four
targets
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Figure B.4: Type A, two stations, five
targets
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Figure B.5: Type A, two stations, six
targets
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Figure B.6: Type A, two stations, seven
targets
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Figure B.7: Type A, two stations, eight
targets
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Figure B.8: Type B, two stations, three
targets
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Figure B.9: Type B, two stations, four
targets
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Figure B.10: Type B, two stations, five
targets
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Figure B.11: Type B, two stations, six
targets
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Figure B.12: Type B, two stations, seven
targets

−5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

Y−axis

X
−

ax
is

Figure B.13: Type B, two stations, eight
targets
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Figure B.14: Type C, two stations, three
targets
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Figure B.15: Type C, two stations, four
targets
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Figure B.16: Type C, two stations, five
targets
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Figure B.17: Type C, two stations, six
targets
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Figure B.18: Type C, two stations, seven
targets
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Figure B.19: Type C, two stations, eight
targets
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Figure B.20: Type D, two stations, three
targets
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Figure B.21: Type D, two stations, four
targets
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Figure B.22: Type D, two stations, five
targets
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Figure B.23: Type D, two stations, six
targets
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Figure B.24: Type A, six stations, four
targets
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Figure B.25: Type A, seven stations,
four targets
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Figure B.26: Type A, eight stations, four targets
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Appendix C

Figures

Figures not presented previously.
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Figure C.1: Standard deviation compared to number of observation
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Number of observations

m
go

n

 

 
2 stations
3 stations
4 stations
5 stations
6 stations
7 stations
8 stations

(b) Zenith direction, for type B

Figure C.2: Standard deviation compared to number of observation
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Figure C.3: Standard deviation compared to number of observation
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