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Abstract. The performance of an Evolutionary Algorithm (EA) can be
greatly influenced by its parameters. The optimal parameter settings are
also not necessarily the same across different problems. Finding the op-
timal set of parameters is therefore a difficult and often time-consuming
task. This paper presents results of parameter tuning experiments on the
NSGA-II and NSGA-III algorithms using the ZDT test problems. The
aim is to gain new insights on the characteristics of the optimal param-
eter settings and to study if the parameters impose the same effect on
both NSGA-II and NSGA-III. The experiments also aim at testing if the
rule of thumb that the mutation probability should be set to one divided
by the number of decision variables is a good heuristic on the ZDT prob-
lems. A comparison of the performance of NSGA-II and NSGA-III on
the ZDT problems is also made.

Keywords: parameter tuning, NSGA-II, NSGA-III, ZDT, bilevel opti-
mization, multi-objective problems

1 Introduction

Real-world optimization problems are often formulated with multiple objectives
and are therefore preferably solved using multi-objective evolutionary algorithms
(MOEAs). Metaheuristics such as EAs involve a set of user-defined parameters
that control various aspects of the algorithm. It is well-known [1, 10] that these
settings can greatly affect the search process and the overall performance of the
algorithm. However, setting them for a particular problem is not always intu-
itive. A strategy that is often used is to choose parameter values that have been
shown to be effective on similar problems. Some metaheuristics, such as evolu-
tionary strategies (ES), come with their own heuristics or recommendations for
choosing the parameters. Neither method guarantees maximal performance from
the algorithm. This paper addresses this issue by using the idea of optimal pa-
rameters, similar in principle to the one proposed in [9]. The parameter-setting
problem can itself be viewed as an optimization problem in which the objective is
to maximize the performance of the algorithm used on a particular problem. For
single-objective problems, this performance indicator could be directly related
to the best function value attained by the algorithm. Since this work considers



multi-objective problems, a commonly used performance indicator is the hyper-
volume [12]. Thus, our formulation contains a multi-objective problem nested
within a single-objective problem and resembles the following,

Maximize
p

HV (p)

where, HV (p) is the hypervolume of the non-dominated set
obtained by solving the following problem with parameters p
Minimize

x
{f1(x), f2(x), . . . , fM (x)}

Subject to gj(x) ≥ 0 ∀ j ∈ {1, 2, . . . , J}
hk(x) = 0 ∀ k ∈ {1, 2, . . . ,K}
xl ≤ x ≤ xu

(1)

The algorithmic parameters of the lower-level optimization problem become the
variables for the upper-level optimization problem.

Many real-world optimization problems are also designed to be scalable with
respect to the variables. For example, consider a production line involving sev-
eral machines in which their processing times have to be optimized for maxi-
mizing the overall throughput and minimizing the work in process of the line.
Adding additional operations (machines) to such a line is equivalent to scaling
the original optimization problem since the objectives remain the same. In such a
situation, it is beneficial to study how the optimal parameter values for the algo-
rithm change with respect to the problem size. Another important aspect is the
computational cost. Objective functions in the real world are rarely analytical.
In other words, evaluation of the objective functions may involve computation-
ally expensive simulations. Studying the impact of the available computational
budget on the optimal parameter values can lead to considerable savings in time
and cost.

In order to illustrate the above ideas, two MOEAs, namely NSGA-II [4] and
NSGA-III [3], are chosen with the ZDT test suite [13] to experimentally study
the effects of problem size and available budget. NSGA-II and the ZDT test
problems is a combination that is commonly used to assess the performance
of a new metaheuristic. Finding the optimal parameters and the corresponding
hypervolume for this combination will also allow a new metaheuristic to be
compared against the NSGA-II best-case performance on the ZDT problems.
Other test problems are not included in this study because that would reduce
the number of experiments performed on each problem. This trade-off will allow
for a more in-depth analysis of the ZDT problems.

It is worthwhile to mention here that the goal of this paper is not to find
parameter settings that work across a range of problems, but to study how the
optimal parameters vary for a given problem with the number of variables and
budget size. In order to achieve this, several experiments will be performed on
each problem to get multiple sets of optimized parameters. A secondary aim of
this paper is to see how NSGA-III compares to NSGA-II in terms of performance
and whether they use similar optimal parameter settings. Though NSGA-III was
originally designed to handle many (> 3) objective problems, this paper will



address how it performs against NSGA-II on the ZDT problems. Testing against
problems with three or more objectives would be interesting but is out of scope
of this paper and left for future work.

The rest of the paper is organized as follows. Section 2 introduces the pa-
rameter setting problem and related work. In Section 3 a description of the
experimental design is provided. The experimental results appear in Section 4.
The conclusions are summarized in Section 5.

2 Background

The problem of finding the optimal set of parameters for a particular prob-
lem can itself be formulated as an optimization problem and solved by an EA.
This bilevel optimization approach is called a meta-EA [5]. Though computa-
tionally intensive, the approach is highly parallelizeable since replications of the
optimizations, at both the upper and lower-level, are independent. A software
framework was developed as part of this work that could efficiently distribute
and run optimizations in parallel. This software together with a cluster of ho-
mogeneous commodity computers enabled the scope of the experiments to be
extended well beyond what would have been feasible on a single computer.

One issue that has to be considered when testing different parameters is that
they are usually not independent. This means that changing the parameters one
by one may lead to to sub-optimal settings. Changing them simultaneously on
the other hand will require a large number of experiments to be performed. It is
therefore impractical to perform parameter tuning manually, even though there
exist different techniques to overcome this problem to some extent. A detailed
description and taxonomy of the available techniques can be found in [5].

2.1 Classification and Terminology

It is possible to distinguish three layers in parameter tuning: The application
layer, the algorithm (lower) layer and the design (upper) layer [5]. The problem
to be solved is located on the application layer and the metaheuristic to solve
that problem is on the algorithm layer. On the design layer is the parameter tuner
that tests different parameters for the metaheuristic on the algorithm layer. To
avoid confusion, the quality of solutions for the problem on the application layer
is called fitness while the quality of the parameters is called utility [5]. The
classification that was proposed in [6] distinguishes between parameter tuning
where the parameters are static and parameter control where they can change
during the optimization.

Tuners can be divided into two main categories: iterative and non-iterative [5].
Non-iterative tuners generate all parameters at the start, usually in a system-
atic fashion. This allows the utility landscape to be modeled from the utility
of the evaluated parameters. Iterative tuners, on the other hand, generate the
parameters iteratively as the tuner progresses. This makes them more suitable
for finding the (near-)optimal parameter vectors, because they can perform a
search of the utility landscape.



2.2 Related Work

Using a bilevel optimization approach to do parameter tuning has been done
before in the literature. In [1] a Genetic Algorithm (GA) was tuned on single
objective sphere problem. The authors found that the GA using the optimized
parameters to be significantly better than a GA with "standard" parameters.

Another example is [7] which used a GA to tune the parameters for a GA
on a set of numerical test functions. The result were then validated on a image
registration task, showing a small but statistical significant advantage to the
tuned GA against a "standard" GA.

A more recent example is [9] in which the authors used NSGA-II to tune
the parameters of Partical Swarm Optimization (PSO) and Differential Evolu-
tion (DE). The algorithms were tuned against both the precision and speed of
convergence. It was found that in addition to finding good parameters, the ap-
proach could also extract relationships between parameters and the impact of a
parameter on the quality criteria.

3 Experimental Design

The meta-EA approach only provides a single optimal parameter set p∗ for each
experiment, meaning that it does not provide much insight into the utility land-
scape. This paper will address this issue by running several different experiments
on the same test problem. Two things will be varied for all test problems: the
function evaluation budget and the number of decision variables (N).

3.1 Experimental Setup

The experiments involve four aspects that this paper studies, these are listed
in Table 1. Each experimental setting is combination of these different aspects.
Thus, in total there are 350 (2 MOEAs × 5 test problems × 7 budget sizes ×
5 problem sizes) different experimental settings each of which is independently
replicated 20 times. The outcome of each replication is the set of parameters
with the best hypervolume. Therefore, each experimental setting produced 20
different sets of parameters.

Each experimental setting was a bilevel optimization with a function evalua-
tion budget of 1000, using the parameters shown in the third column of Table 2.
The budget was based on manually analyzing a small number of bilevel opti-
mizations and identifying the fact that most of them stopped improving after
about 500 evaluations. The MOEA being optimized, at the algorithm layer, was
also independently replicated 20 times for each set of parameters being evalu-
ated. The average hypervolume from these optimizations was then used as the
utility of that set of parameters.

3.2 Experimental Settings

The following paragraphs explain each row of Table 1.



Table 1. Experimental settings and corresponding choices

Experimental setting Experimental choices

MOEA NSGA-II, NSGA-III
Test problem ZDT1, ZDT2, ZDT3, ZDT4, ZDT6
Function evaluations 100, 500, 2000, 3500, 5000, 6500, 8000
Number of decision variables 2, 10, 20, 30, 40

MOEAs and Test Problems The two tuned MOEAs, NSGA-II and NSGA-
III, on the algorithm layer are both real-value coded. That is why the binary
coded test problem ZDT5 was excluded from the experiments. All other ZDT
test problems are used in this study. The reference point for the hypervolume
calculations for ZDT{1, 2, 3, 6} is (11, 11) and (11, 1000) for ZDT4. The reason
for the higher reference point on ZDT4 is that some of the optimizations failed
to reach any solution within the (11, 11) reference point.

Both NSGA-II and NSGA-III use the SBX crossover operator and a polyno-
mial mutation.

Function Evaluations It has been argued that keeping the parameters static
during an optimization is not optimal [6]. This would also indicate that it is ad-
vantageous to use different parameters for different function evaluation budgets,
even though the parameters are static during the run. In order to test this, each
experiment will be performed with different budget sizes.

Number of Decision Variables A number of different rules of thumb have
been proposed in the literature. For example, in a binary coded GA, the mutation
rate should be proportional to the length of the chromosome [8], pm = 1/l. For
a real-value coded GA the length is substituted with the number of decision
variables. Previous work has found this rule to be accurate on a single objective
sphere problem [1]. This rule will be tested by varying the number of decision
variables for each problem.

3.3 Meta-EA Parameters

At the design layer is a real-value coded meta-EA using the SBX crossover and
a polynomial mutation. This introduces the problem of choosing a good set of
parameters at the design layer as well. To avoid using yet another meta-EA to
solve this problem, a full factorial experimental design was performed instead.
The values for each parameter is shown in Table 2. To limit the runtime of these
experiments only one test problem, ZDT1, was selected as the test problem on
the application layer. To further limit the scope only the NSGA-II algorithm



was used at the algorithm layer. The function evaluation budget for NSGA-II
on the algorithm layer was 1000 and the number of replications were 10. On
the design layer the function evaluation budget for the meta-EA was 250 with
10 replications. The parameters with the highest average hypervolume was then
chosen as the set of parameters to use at the design layer for the rest of the
experiments. The chosen parameters are shown in the third column in Table 2.

Table 2. Full factorial experimental design for meta-EA parameter settings

Meta-EA Parameter Possible Values Selected

Population Size 4, 8, 16 8
Mutation Probability 0.2, 0.4, 0.6, 0.8 0.4
Mutation Distribution Index 1, 2, 5, 10, 20, 40 1
Crossover Probability 0.2, 0.4, 0.6, 0.8 0.6
Crossover Distribution Index 1, 2, 5, 10, 20, 40 40

3.4 Parameters

NSGA-II and NSGA-III have very similar parameters, the only difference is that
NSGA-III does not directly specify the population size. It is instead based on
the number of reference points. The reference points are systematically created
by placing them on a normalized hyperplane as described in [2]. To obtain the
number of reference points created by this method the following equation is used:
H =

(
M−1+divisions

divisions

)
1. Population size for NSGA-II (pop): An integer in the range [2, 300]. Upper

bound determined by small scale experiments that showed all optimizations
used a population size less than 300.

2. Divisions for NSGA-III (divisions): The number of divisions along each ob-
jective. The population size is set to exactly the number of reference points
created by the divisions. An integer in the range [1, 299]. Upper bound set
to 299 to get the same population size limits as for NSGA-II.

3. Mutation probability (pm): The probability of random changes to the deci-
sion variables. A real-value in the range [0, 1].

4. Mutation Distribution Index (ηm): Index governing the proximity of the
mutated child to its parent. A real-value in the range [0, 300]. Upper bound
determined by small scale experiments that showed all optimizations used a
ηm less than 300.

5. Crossover probability (pc): The probability of creating offspring from par-
ents. A real-value in the range [0, 1].



6. Crossover Distribution Index (ηc): Index governing the proximity of the mu-
tated children to the parents. A real-value in the range [0, 300]. Upper bound
determined by small scale experiments that showed all optimizations used a
ηc less than 300.

The parameters of the optimization on the algorithm layer in Equation (1)
become variables for the optimization on the design layer. Thus the variable
vector p in Equation (1) is p = {pop, pm, ηm, pc, ηc} for NSGA-II and p =
{divisions, pm, ηm, pc, ηc} for NSGA-III.

3.5 Performance Measure

The hypervolume measure is used to assess the performance of the EA at the
algorithm layer. The hypervolume is the volume in objective space formed by a
reference point and the Pareto front. The hypervolume is calculated using the
technique described in [11], which also discusses the hypervolume measure in
more detail. The advantage of the hypervolume measure is that provides single
measure for both the convergence and spread of the solutions. The drawback is
that it can be computationally expensive and that it can be sensitive to inclusion,
or exclusion, of extremal points. Each EA keeps a Pareto archive of unlimited
size that is used to calculated the hypervolume at the end of the optimization.
So even though no limit was set for the archive size it is of course limited in
practice by the available memory and running complexity of the hypervolume
calculation. Neither proved to be a problem for the experiments in this study.

4 Experimental Results

This section will present the results from the experiments. Due to the large
number of experiments conducted, totally 350, only a subset of all results can
fit in this paper. The results for the most common problem size, 30, are shown
in Table 3 and Table 4 for NSGA-II and NSGA-III respectively. The values are
the median together with the standard deviation.

The experiments were run on a heterogeneous cluster of commodity hard-
ware. In total there were 91 computers and the experiments took approximately
170 hours to complete.

4.1 Population Size

Most of the experiments found that a small population size was most optimal.
Many found the smallest possible size, two, to be the best. Having a small pop-
ulation size increases the selection pressure since only a small amount of solu-
tions survive each generation. Thus, allowing the optimization to advance more
quickly. However, this comes at the cost of diversity among the solutions, but
based on the results, the ZDT problems do not seem to require much diversity
among the solutions. One reason the population size can be kept small is the fact



Table 3. Optimal parameter values for NSGA-II with N = 30

Budget HV pop pm ηm pc ηc
Z
D

T
1

100 105.46 ± 2.62 2.0 ± 33.56 0.17 ± 0.03 0.04 ± 33.24 0.64 ± 0.24 178.27 ± 101.50
500 118.42 ± 0.06 2.0 ± 0.0 0.07 ± 0.00 0.07 ± 0.21 0.43 ± 0.11 138.81 ± 88.95
2000 120.62 ± 0.00 2.0 ± 0.0 0.04 ± 0.00 0.15 ± 0.41 0.49 ± 0.06 1.57 ± 25.64
3500 120.66 ± 0.00 2.0 ± 0.0 0.03 ± 0.00 0.07 ± 0.55 0.74 ± 0.08 0.33 ± 0.19
5000 120.66 ± 0.0 2.0 ± 0.0 0.02 ± 0.00 0.12 ± 0.45 0.94 ± 0.04 0.09 ± 0.08
6500 120.66 ± 2.84 2.0 ± 0.0 0.02 ± 0.00 0.01 ± 0.46 0.99 ± 0.01 0.05 ± 0.07
8000 120.66 ± 2.84 2.0 ± 0.0 0.01 ± 0.00 0.06 ± 0.35 0.99 ± 0.00 0.03 ± 0.05

Z
D

T
2

100 92.19 ± 2.78 2.0 ± 2.83 0.16 ± 0.03 0.05 ± 65.34 0.83 ± 0.25 131.68 ± 91.13
500 114.19 ± 4.27 2.0 ± 4.79 0.07 ± 0.01 0.08 ± 64.09 0.54 ± 0.18 149.06 ± 90.18
2000 120.25 ± 0.00 2.0 ± 0.0 0.05 ± 0.00 0.30 ± 0.42 0.44 ± 0.07 254.41 ± 78.27
3500 120.32 ± 0.00 2.0 ± 0.0 0.03 ± 0.00 0.07 ± 0.45 0.66 ± 0.07 0.31 ± 0.18
5000 120.33 ± 0.00 2.0 ± 0.0 0.02 ± 0.00 0.05 ± 0.71 0.93 ± 0.06 0.05 ± 0.07
6500 120.33 ± 2.84 2.0 ± 0.0 0.02 ± 0.00 0.20 ± 0.84 0.99 ± 0.02 0.01 ± 0.03
8000 120.33 ± 1.42 2.0 ± 0.0 0.02 ± 0.00 0.07 ± 0.67 0.99 ± 0.00 0.01 ± 0.02

Z
D

T
3

100 110.31 ± 1.58 2.0 ± 1.74 0.17 ± 0.13 0.06 ± 20.89 0.77 ± 0.22 107.82 ± 85.04
500 125.72 ± 0.20 2.0 ± 0.0 0.07 ± 0.01 0.05 ± 0.34 0.59 ± 0.13 93.57 ± 63.37
2000 128.69 ± 0.00 2.0 ± 0.0 0.05 ± 0.01 1.48 ± 0.86 0.62 ± 0.09 207.58 ± 127.42
3500 128.76 ± 0.00 2.0 ± 0.0 0.03 ± 0.00 0.31 ± 0.88 0.85 ± 0.07 0.16 ± 0.11
5000 128.77 ± 0.00 2.0 ± 0.6 0.02 ± 0.00 0.63 ± 2.90 0.98 ± 0.02 0.03 ± 0.62
6500 128.77 ± 0.00 3.5 ± 1.92 0.02 ± 0.00 0.05 ± 1.17 0.99 ± 0.00 1.92 ± 2.40
8000 128.77 ± 0.0 6.0 ± 2.70 0.02 ± 0.01 0.25 ± 39.46 0.99 ± 0.02 3.27 ± 7.72

Z
D

T
4

100 7874.47 ± 40.69 2.0 ± 0.86 0.10 ± 0.03 5.23 ± 97.64 0.98 ± 0.05 28.36 ± 100.76
500 9534.32 ± 218.76 2.0 ± 4.15 0.05 ± 0.03 3.46 ± 130.49 0.94 ± 0.11 33.89 ± 81.29
2000 10233.5 ± 230.31 33.5 ± 18.85 0.03 ± 0.01 67.14 ± 119.39 0.99 ± 0.07 41.67 ± 13.91
3500 10644.55 ± 177.93 29.5 ± 33.41 0.02 ± 0.01 26.21 ± 132.47 0.99 ± 0.14 41.89 ± 33.14
5000 10898.0 ± 147.19 4.0 ± 45.68 0.02 ± 0.01 7.73 ± 125.00 0.99 ± 0.16 39.21 ± 58.90
6500 10945.1 ± 99.07 3.0 ± 44.47 0.02 ± 0.01 9.14 ± 95.20 0.94 ± 0.20 26.79 ± 16.83
8000 10960.95 ± 99.50 4.5 ± 62.07 0.02 ± 0.01 10.35 ± 115.74 0.99 ± 0.14 33.41 ± 15.60

Z
D

T
6

100 43.81 ± 0.34 2.0 ± 0.0 0.18 ± 0.03 0.03 ± 0.13 0.73 ± 0.16 142.08 ± 103.52
500 70.17 ± 0.41 2.0 ± 0.0 0.07 ± 0.01 0.01 ± 0.22 0.53 ± 0.18 79.68 ± 91.39
2000 106.75 ± 0.19 2.0 ± 0.0 0.05 ± 0.00 0.02 ± 0.15 0.40 ± 0.07 128.93 ± 77.69
3500 114.81 ± 0.04 2.0 ± 0.0 0.05 ± 0.00 0.11 ± 0.27 0.32 ± 0.05 223.53 ± 86.08
5000 116.17 ± 0.01 2.0 ± 0.0 0.05 ± 0.00 0.10 ± 0.41 0.28 ± 0.05 209.40 ± 89.19
6500 116.37 ± 0.00 2.0 ± 0.0 0.05 ± 0.00 0.08 ± 0.43 0.30 ± 0.05 16.30 ± 42.55
8000 116.40 ± 0.00 2.0 ± 0.0 0.04 ± 0.00 0.24 ± 0.87 0.38 ± 0.05 3.42 ± 35.33

Table 4. Optimal parameter values for NSGA-III with N = 30

Budget HV divisions pm ηm pc ηc

Z
D

T
1

100 105.02 ± 3.98 1.0 ± 88.43 0.20 ± 0.14 0.08 ± 48.35 0.83 ± 0.27 151.25 ± 100.56
500 118.30 ± 0.06 1.0 ± 0.0 0.07 ± 0.01 0.06 ± 0.22 0.88 ± 0.11 95.01 ± 98.37
2000 120.62 ± 0.00 1.0 ± 0.0 0.04 ± 0.00 0.15 ± 0.45 0.97 ± 0.05 1.60 ± 68.94
3500 120.66 ± 0.00 1.0 ± 0.0 0.02 ± 0.00 0.20 ± 0.87 0.99 ± 0.00 0.23 ± 0.21
5000 120.66 ± 2.84 1.0 ± 0.49 0.02 ± 0.00 0.18 ± 0.76 0.99 ± 0.02 0.32 ± 0.34
6500 120.66 ± 0.0 2.0 ± 0.43 0.02 ± 0.00 0.08 ± 0.34 0.99 ± 0.01 0.27 ± 0.20
8000 120.66 ± 2.84 2.0 ± 0.0 0.02 ± 0.00 0.46 ± 0.84 0.99 ± 0.00 0.22 ± 0.16

Z
D

T
2

100 91.46 ± 3.43 1.0 ± 64.72 0.17 ± 0.03 0.01 ± 60.35 0.92 ± 0.24 148.35 ± 96.71
500 114.01 ± 0.14 1.0 ± 0.0 0.06 ± 0.00 0.00 ± 0.09 0.92 ± 0.06 142.13 ± 78.08
2000 120.24 ± 0.00 1.0 ± 0.0 0.05 ± 0.00 0.11 ± 0.50 0.94 ± 0.09 230.93 ± 78.70
3500 120.32 ± 0.00 1.0 ± 0.0 0.03 ± 0.00 0.07 ± 0.54 0.99 ± 0.02 0.32 ± 0.17
5000 120.33 ± 0.00 1.0 ± 0.21 0.02 ± 0.00 0.11 ± 1.15 0.99 ± 0.00 0.11 ± 0.19
6500 120.33 ± 2.84 2.0 ± 0.45 0.02 ± 0.00 0.45 ± 2.65 0.99 ± 0.01 0.16 ± 0.23
8000 120.33 ± 2.84 2.0 ± 0.35 0.02 ± 0.00 0.43 ± 1.02 0.99 ± 0.00 0.13 ± 0.14

Z
D

T
3

100 109.38 ± 5.39 1.0 ± 106.74 0.19 ± 0.25 0.13 ± 109.57 0.83 ± 0.34 157.28 ± 86.58
500 125.57 ± 0.11 1.0 ± 0.0 0.08 ± 0.01 0.24 ± 0.28 0.95 ± 0.15 82.53 ± 56.98
2000 128.68 ± 0.00 1.0 ± 0.0 0.05 ± 0.01 0.60 ± 0.75 0.97 ± 0.06 11.93 ± 91.16
3500 128.76 ± 0.00 1.0 ± 0.55 0.02 ± 0.01 0.51 ± 1.86 0.99 ± 0.05 0.23 ± 12.31
5000 128.77 ± 0.00 2.0 ± 0.80 0.02 ± 0.01 1.22 ± 14.54 0.99 ± 0.03 0.85 ± 2.68
6500 128.77 ± 0.00 2.0 ± 1.04 0.03 ± 0.01 17.44 ± 40.01 0.99 ± 0.00 0.01 ± 2.43
8000 128.77 ± 0.00 4.0 ± 2.03 0.02 ± 0.01 0.39 ± 86.62 0.99 ± 0.01 5.81 ± 27.95

Z
D

T
4

100 7808.50 ± 103.39 1.0 ± 0.92 0.10 ± 0.11 6.64 ± 111.21 0.98 ± 0.14 42.87 ± 108.69
500 9117.17 ± 253.37 8.5 ± 4.40 0.10 ± 0.05 264.02 ± 129.77 0.99 ± 0.01 97.43 ± 107.31
2000 10420.05 ± 217.01 13.5 ± 15.15 0.03 ± 0.01 32.66 ± 129.23 0.99 ± 0.07 42.41 ± 30.90
3500 10662.05 ± 173.42 22.5 ± 24.28 0.02 ± 0.01 124.65 ± 140.48 0.99 ± 0.03 33.41 ± 35.91
5000 10893.45 ± 144.74 2.0 ± 33.95 0.02 ± 0.01 7.56 ± 139.79 0.99 ± 0.06 43.74 ± 17.90
6500 10942.75 ± 117.76 1.0 ± 42.92 0.02 ± 0.01 8.81 ± 130.25 0.99 ± 0.11 44.83 ± 16.98
8000 10959.35 ± 98.00 1.0 ± 48.80 0.02 ± 0.01 9.50 ± 113.74 0.99 ± 0.09 39.72 ± 17.57

Z
D

T
6

100 43.41 ± 3.90 1.0 ± 97.06 0.19 ± 0.09 0.15 ± 66.85 0.92 ± 0.31 110.77 ± 81.40
500 69.93 ± 0.45 1.0 ± 0.0 0.08 ± 0.01 0.03 ± 0.18 0.89 ± 0.16 82.35 ± 79.93
2000 106.27 ± 0.21 1.0 ± 0.0 0.05 ± 0.00 0.07 ± 0.13 0.69 ± 0.16 144.05 ± 73.31
3500 114.63 ± 0.08 1.0 ± 0.0 0.05 ± 0.00 0.14 ± 0.33 0.58 ± 0.12 167.48 ± 88.15
5000 116.13 ± 0.01 1.0 ± 0.0 0.05 ± 0.00 0.08 ± 0.28 0.58 ± 0.07 161.48 ± 77.15
6500 116.36 ± 0.00 1.0 ± 0.0 0.05 ± 0.00 0.16 ± 0.92 0.61 ± 0.08 23.18 ± 94.26
8000 116.40 ± 0.00 1.0 ± 0.0 0.05 ± 0.00 0.25 ± 0.68 0.78 ± 0.11 6.02 ± 2.21



that the hypervolume is calculated from the, unlimited, Pareto archive. Using
the last generation to calculate the hypervolume would in most cases result in
a smaller hypervolume, since fewer solutions would be used in the calculation.
An exception to the small population size is experiments with N = 2. This is
especially true when the budget size is 100. One reason for this might be that
a random search, which both NSGA-II and NSGA-III degenerates to when the
population size is greater or equal to the budget, has about the same perfor-
mance when the problem is easy to solve and the function evaluation budget is
very limited.

The median values for the population size parameter using NSGA-II are
shown in Table 5. The same observations can be made for the NSGA-III and are
not shown for that reason.

4.2 Mutation Probability: 1/N Rule of Thumb

Each experiment was run with five different values for the number of decision
variables. This was done to test the accuracy of the rule of thumb that the
mutation rate should be set to one divided by the number decision variables.
Since each experiment was also run with different function evaluation budgets,
it is also possible to see if that had any affect on the mutation probability.
The usefulness of this evaluation is limited by the small number of problems
used in this paper and no generalization can be made how this rule works on
other problems. The mutation probabilities are also only from the best set of
parameters found. Therefore, this evaluation does not test the accuracy of this
rule of thumb for sub-optimal sets of parameters.

The experiment results can be divided into two groups based on the relation-
ship between the mutation probability and the number of variables. ZDT{1, 2,
3} is in one group and ZDT{4, 6} is in the other. The first group start with a
relatively high mutation probability for two variables, which then decreases and
is kept almost constant for 10, 20, 30 and 40 variables. The second group has a
more gradual decrease in the mutation probability. The median values from two
problems are shown here, ZDT1 in Figure 1 and ZDT4 in Figure 2.

On ZDT1 the rule slightly overestimates the mutation probability for budget
sizes greater than 500 when N is 10 and 20 because the optimized mutation
probability does not change much between N 10 and 40. It also underestimates
for all N when the budget size is less than 2000. On ZDT4 the rule overestimates
when N is 2 and the budget size is greater than 500. It also underestimates for
all N when the budget size is 100. For all other cases the rule matches well with
the data.

Based on these results the rule of thumb is able to estimate good values for the
mutation probability, especially for larger budgets, on the ZDT test problems.

4.3 Mutation Probability vs Budget Sizes

A trend that can be observed throughout all experiments is that mutation prob-
ability decreases as the function evaluation budget increases. The trend is most



Table 5. Experimental results for population sizes in NSGA-II

N 100 500 2000 3500 5000 6500 8000
Z
D

T
1

2 79.5 ± 121.99 11.0 ± 3.02 12.0 ± 5.83 15.0 ± 6.70 15.5 ± 6.27 20.0 ± 4.48 22.0 ± 6.66
10 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.8
20 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
30 2.0 ± 33.56 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
40 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0

Z
D

T
2

2 2.0 ± 100.89 6.0 ± 1.65 17.5 ± 2.24 18.5 ± 6.49 22.0 ± 4.43 26.5 ± 4.02 28.0 ± 4.57
10 2.0 ± 3.26 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.43
20 2.0 ± 59.58 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
30 2.0 ± 2.83 2.0 ± 4.79 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
40 2.0 ± 1.74 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0

Z
D

T
3

2 4.0 ± 119.75 4.5 ± 2.53 14.0 ± 5.20 32.0 ± 8.46 37.5 ± 7.40 48.5 ± 24.04 56.0 ± 34.45
10 2.0 ± 3.31 2.0 ± 0.0 4.0 ± 1.90 9.0 ± 2.71 11.0 ± 1.10 11.5 ± 0.78 11.0 ± 3.28
20 2.0 ± 2.71 2.0 ± 0.0 2.0 ± 0.73 2.0 ± 1.69 4.5 ± 2.53 9.0 ± 3.28 10.0 ± 2.25
30 2.0 ± 1.74 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.6 3.5 ± 1.92 6.0 ± 2.70
40 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.43 2.0 ± 0.0 2.0 ± 0.87

Z
D

T
4

2 3.0 ± 110.51 2.0 ± 15.87 8.0 ± 4.01 8.0 ± 2.47 12.0 ± 3.46 12.0 ± 2.78 17.0 ± 5.01
10 2.5 ± 1.81 2.0 ± 8.92 3.0 ± 30.32 3.0 ± 28.57 5.0 ± 56.69 6.0 ± 35.50 11.0 ± 85.31
20 2.5 ± 1.57 12.0 ± 6.07 4.0 ± 23.04 4.0 ± 34.12 4.0 ± 50.59 6.5 ± 60.39 6.0 ± 50.64
30 2.0 ± 0.86 2.0 ± 4.15 33.5 ± 18.85 29.5 ± 33.41 4.0 ± 45.68 3.0 ± 44.47 4.5 ± 62.07
40 2.5 ± 0.97 2.0 ± 2.62 15.0 ± 16.91 2.5 ± 28.88 77.0 ± 40.10 4.0 ± 38.47 6.0 ± 59.35

Z
D

T
6

2 2.0 ± 79.04 2.0 ± 0.53 11.0 ± 2.94 20.0 ± 5.35 23.5 ± 4.63 26.0 ± 3.62 29.0 ± 5.31
10 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.6 2.0 ± 1.39
20 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
30 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
40 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
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Fig. 1. Applicability of 1/N rule of thumb for pm on ZDT1

2 10 20 30 40
Number of decision variables

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
u
ta
ti
o
n
 p
ro
b
a
b
ili
ty

NSGA-II

100
500
2000
3500
5000
6500
8000
1/N

2 10 20 30 40
Number of decision variables

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
u
ta
ti
o
n
 p
ro
b
a
b
ili
ty

NSGA-III

100
500
2000
3500
5000
6500
8000
1/N

Fig. 2. Applicability of 1/N rule of thumb for pm on ZDT4
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Fig. 3. Trends with budget size and ηc on ZDT1, ZDT2 and ZDT6

100 500 2000 3500 5000 6500 8000
Function evaluations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
ro
ss
o
v
e
r 
p
ro
b
a
b
ili
ty

NSGA-II

2
10
20
30
40

100 500 2000 3500 5000 6500 8000
Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
ro
ss
o
v
e
r 
p
ro
b
a
b
ili
ty

NSGA-II

2
10
20
30
40

100 500 2000 3500 5000 6500 8000
Function evaluations

0.0

0.2

0.4

0.6

0.8

1.0

C
ro
ss
o
v
e
r 
p
ro
b
a
b
ili
ty

NSGA-II

2
10
20
30
40

Fig. 4. Trends with budget size and pc on ZDT1, ZDT2 and ZDT6

prominent on ZDT{1, 2, 3} and less so on ZDT{4, 6}. Figure 5 and 6 shows the
median values for NSGA-II on ZDT1 and ZDT6. The results for NSGA-III are
similar, but they are not shown here because of space limitations.

4.4 Budget Size, pc and ηc

A trend how pc changes with respect to the budget size can be observed on all
problems except ZDT4, although it is most clear on ZDT{1, 2, 3}. For small
budgets pc is relatively high. As the budget size increases pc first falls and then
rises, approaching a value of one. The point at which it starts to rise is related
to the number of decision variables. Another trend is that there is a point at
which an increase of the budget size causes a sharp fall of ηc. One explanation
for why pc is high and ηc is low for large budget sizes is based on the fact that
most experiments use a population size of two. The two individuals are pushed
apart by the crowding distance and with a large enough budget they will end up
at each of the two extreme values. The rest of the non-dominated front is then
filled by crossing these two solutions, and since they are at opposite extremes a
low ηc is preferred. These trends are shown for NSGA-II on ZDT1, ZDT2 and
ZDT6 in Figure 3 and Figure 4, the values are the median.

4.5 Hypervolume Comparisons Between NSGA-II and NSGA-III

The mean hypervolume values for both NSGA-II and NSGA-III are shown in
Table 6. It is not possible, due to the number of experiments performed, to
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Fig. 5. Mutation probabilities with varying budget sizes for NSGA-II on ZDT1

100 500 2000 3500 5000 6500 8000
Function evaluations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
u
ta
ti
o
n
 p
ro
b
a
b
ili
ty

N=2

100 500 2000 3500 5000 6500 8000
Function evaluations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
u
ta
ti
o
n
 p
ro
b
a
b
ili
ty

N=10

100 500 2000 3500 5000 6500 8000
Function evaluations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
u
ta
ti
o
n
 p
ro
b
a
b
ili
ty

N=20

100 500 2000 3500 5000 6500 8000
Function evaluations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
u
ta
ti
o
n
 p
ro
b
a
b
ili
ty

N=30

100 500 2000 3500 5000 6500 8000
Function evaluations

0.00

0.05

0.10

0.15

0.20

0.25

M
u
ta
ti
o
n
 p
ro
b
a
b
ili
ty

N=40

Fig. 6. Mutation probabilities with varying budget sizes for NSGA-II on ZDT6



Table 6. Hypervolume results for NSGA-II and NSGA-III

ZDT1 ZDT2 ZDT3
N NSGA-II NSGA-III NSGA-II NSGA-III NSGA-II NSGA-III

1
0
0

2 119.68 119.43 118.58 116.73 126.41 125.58
10 115.35 111.60 107.64 105.04 119.34 117.46
20 109.27 106.38 95.78 96.77 112.78 108.35
30 104.92 103.35 91.39 90.65 110.06 104.97
40 103.06 101.24 87.85 86.87 108.01 102.54

5
0
0

2 120.65 120.66 120.32 120.32 128.76 128.76
10 120.53 120.51 120.11 120.08 128.50 128.46
20 119.77 119.69 117.87 117.77 127.41 127.27
30 118.43 118.29 113.22 114.00 125.71 125.55
40 116.88 116.64 110.72 109.39 123.96 122.75

2
0
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.32 128.77 128.77
20 120.65 120.65 120.31 120.31 128.74 128.74
30 120.62 120.62 120.25 120.24 128.69 128.68
40 120.55 120.55 120.14 120.12 128.61 128.60

3
5
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.32 120.32 128.76 128.76
40 120.65 120.65 120.31 120.31 128.75 128.75

5
0
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.33 120.33 128.77 128.77
40 120.66 120.66 120.32 120.32 128.77 128.77

6
5
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.33 120.33 128.77 128.77
40 120.66 120.66 120.33 120.33 128.77 128.77

8
0
0
0

2 120.66 120.66 120.33 120.33 128.77 128.77
10 120.66 120.66 120.33 120.33 128.77 128.77
20 120.66 120.66 120.33 120.33 128.77 128.77
30 120.66 120.66 120.33 120.33 128.77 128.77
40 120.66 120.66 120.33 120.33 128.77 128.77

ZDT4 ZDT6
N NSGA-II NSGA-III NSGA-II NSGA-III

1
0
0

2 10993.44 10990.83 109.83 106.26
10 10461.61 10411.53 63.63 61.04
20 9251.83 9192.64 49.29 47.53
30 7889.13 7781.64 43.82 41.48
40 6391.02 6289.29 40.93 40.29

5
0
0

2 10999.46 10999.46 116.41 116.41
10 10849.93 10828.18 103.26 102.69
20 10221.37 10247.87 82.07 81.78
30 9447.10 9273.20 70.23 70.03
40 8524.69 8408.60 63.34 63.06

2
0
0
0

2 10999.7 10999.69 116.42 116.42
10 10970.92 10973.84 116.35 116.34
20 10778.65 10793.25 113.59 113.37
30 10416.11 10425.08 106.76 106.31
40 9968.78 9899.27 99.29 98.87

3
5
0
0

2 10999.7 10999.7 116.43 116.43
10 10991.61 10984.64 116.41 116.41
20 10896.30 10911.16 116.24 116.21
30 10656.69 10666.82 114.80 114.65
40 10402.90 10438.98 111.48 111.19

5
0
0
0

2 10999.7 10999.7 116.43 116.43
10 10993.38 10993.26 116.42 116.41
20 10931.79 10946.89 116.40 116.39
30 10779.01 10780.29 116.17 116.13
40 10498.14 10557.02 115.19 115.03

6
5
0
0

2 10999.7 10999.7 116.43 116.43
10 10997.87 10994.22 116.42 116.42
20 10945.27 10956.11 116.41 116.41
30 10896.20 10849.03 116.37 116.36
40 10787.64 10712.04 116.11 116.06

8
0
0
0

2 10999.7 10999.7 116.43 116.43
10 10995.99 10998.15 116.42 116.42
20 10977.54 10966.47 116.41 116.41
30 10887.89 10889.35 116.40 116.40
40 10752.03 10840.82 116.34 116.32



include all parameter settings used to obtain the hypervolume results. A subset
of all the parameter settings and their corresponding hypervolumes are presented
in Table 3 and Table 4. A Welch-t test with a significance of 5% is performed to
determine if the two samples, NSGA-II and NSGA-III, are statistical different.
If the null hypothesis can be rejected, the greater hypervolume is shown in bold.

The difference in hypervolume between NSGA-II and NSGA-III is for the
most part small. However, for some of the experiments, NSGA-II is slightly
better. NSGA-III is statistically better on some experiments but the difference
is too small to be concluded as significant.

To summarize, NSGA-II is found to be marginally better than NSGA-III on
the ZDT problems. Both NSGA-II and NSGA-III can find solutions very close
to the Pareto front for ZDT{1, 2, 3, 6}. The most difficult problem is ZDT4,
for which with N > 10 none of algorithms could reach the maximum theoretical
hypervolume within 8000 evaluations.

5 Conclusions and Further Work

This paper utilized a bilevel optimization framework to find optimal parameter
values for two different MOEAs, namely NSGA-II and NSGA-III, for maximal
performance on the ZDT test suite. Both the number of decision variables and
the function evaluation budgets were simultaneously varied to determine how
they affect the optimal parameter settings for the respective algorithm. This
made it possible to test the rule of thumb that the mutation probability should
be set to 1/N . The results show that, on the ZDT test problems, this rule is a
good heuristic.

The experiments also made it possible to see what affect the different function
evaluation budgets has on the optimized parameters. An important observation
was that the optimal mutation probability is not only dependent on the number
of decision variables but also on the available budget size. Specifically, it was
observed that the optimal mutation probability decreases with increasing budget.

It was also clear from the results that the ZDT test problems do not require
much diversity in the population because most experiments found the optimal
population size to be less than 10, often close to the minimum of just two indi-
viduals. This also indicates that a parameter controlling the elitism should have
been included in the experiments.

Another aim of this paper was to compare the performance between NSGA-
II and NSGA-III on the ZDT test problems. From the results, it is possible to
discern a slight advantage with NSGA-II over NSGA-III on the ZDT problems.
As far as the optimal parameter values are concerned, it was observed that the
differences are small.

Extending these experiments to scale the number of objectives instead of the
number of decision variables would be interesting, and is intended as future work.
Since these results, as well as other earlier work, indicate that it is sub-optimal
to keep parameter settings static during the run, it would be be worthwhile
to modify an EA, on the algorithm layer, to be able to use multiple sets of



parameters during an optimization. This would allow a meta-EA to tune multiple
sets of parameters at different intervals of the optimization, instead of being
limited to a single set throughout the optimization run.
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