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Block Me If You Can!?

Context-Sensitive Parameterized Verification

Parosh Aziz Abdulla1, Frédéric Haziza1, and Lukáš Holík2

1 Uppsala University, Sweden
2 Brno University of Technology, Czech Republic

Abstract. We present a method for automatic verification of systems with a pa-
rameterized number of communicating processes, such as mutual exclusion pro-
tocols or agreement protocols. To that end, we present a powerful abstraction
framework that uses an efficient and precise symbolic encoding of (infinite) sets
of configurations. In particular, it generalizes downward-closed sets that have
successfully been used in earlier approaches to parameterized verification. We
show experimentally the efficiency of the method, on various examples, includ-
ing a fine-grained model of Szymanski’s mutual exclusion protocol, whose cor-
rectness, to the best of our knowledge, has not been proven automatically by any
other existing methods.

1 Introduction

We consider the verification of safety properties for parameterized systems: systems
that consist of an arbitrary number of components (processes) organized according to
a certain predefined topology. In this paper, we consider the case where the system has
a linear topology (the processes form an array). Our method can be easily extended
to other topologies such as rings, trees, or multisets (the latter are systems where the
processes are entirely anonymous, e.g. Petri nets). Processes can perform two types
of transitions, namely local and global transitions. In the former, the process does not
need to check the states of the rest of the processes in the system. A global transition is
either universal or existential. For example, in a universal transition, a process (at po-
sition i) may perform a transition only if all processes to its left (i.e. with index j < i)
satisfy a property ϕ. In an existential transition, it is required that some (rather than all)
processes satisfy ϕ. Parameterized systems arise naturally in the modeling of mutual
exclusion algorithms, bus protocols, distributed algorithms, telecommunication proto-
cols, and cache coherence protocols. The task is to perform parameterized verification,
i.e. to verify correctness regardless of the number of processes. This amounts to the
verification of an infinite family; namely one for each possible size of the system. We
consider safety properties, i.e. properties that forbid reachability of bad configurations.
For instance, mutual exclusion protocols must guarantee that no reachable configuration
contains two processes in the critical section.
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(UPMARC), the Czech Science Foundation (13-37876P, 14-11384S), Brno University
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An important line of research in parameterized verification has been based on the
observation that such systems may have invariants that are downward-closed wrt. a nat-
ural ordering on the set of configurations (e.g. the subword ordering for systems with
linear topologies, or the multiset ordering on Petri nets). The existence of downward-
closed invariants allows the employment of well quasi-ordered transition systems [2, 1].
In particular, a downward-closed set D can be characterized by a finite set of counter-
examples. This set contains the configurations that are the minimal elements of the
complement ofD (notice the complement ofD is upward-closed). This characterization
gives compact symbolic representations leading to very efficient implementations. This
observation has resulted in several powerful frameworks such as the “Expand, Enlarge,
and Check” method [26], monotonic abstraction [6], and small model based verification
[4]. Although these frameworks are applicable to a wide range of parameterized sys-
tems, there are several classes of systems that are beyond their applicability. The reason
is that such systems do not allow good downward-closed invariants, and hence over-
approximating the set of reachable configurations by downward-closed sets will give
false counter-examples. In this paper, we propose a method that targets a class of invari-
ants which are needed in many practical cases and cannot be expressed as downward-
closed sets, hence cannot be inferred by the above-mentioned methods. Specifically,
we express invariants as quantified formulae over process indices and states within a
configuration. The formulae are of the form:

φ= ∀i1, . . . , in ∃in+1, . . . , in+m : ψ(i1, . . . , in+m)

where i1, . . . , in+m are pairwise distinct position variables and ψ(i1, . . . , in+m) is a
boolean formula that relates the process positions, their local states and the topological
constraints at those positions. We call these properties almost downward-closed (hence-
forth ∀∃-formulae), since they are a generalization of downward-closed sets. Observe
that downward-closed properties correspond to the special case where the formulae
solely have universal quantification.

Let us illustrate the notion of an almost downward-closed good invariant with the
example of a barrier implementation (see Fig. 1). All processes start in the state B before
the barrier. The first process at the barrier moves to state P and acts as a pivot. All other
arriving processes must wait in state W as long as there is a pivot. When all processes
have arrived at the barrier, the pivot can proceed to the state A after the barrier, which
in turn releases the waiting processes.

B

W P

A

∃ P ∀ B

6 ∃ P ∀W

Fig. 1: Barrier.

The system is correct if there cannot be at the same time a
process in the state B and a process in the state A. A waiting
process W trying to move to the state A counts on the fact that
if there is a process in B, then there is also a process in P. If
this implication did not hold, the barrier would be incorrect,
because the move from W to A could be performed under
presence of B. The weakest good invariant must reflect this
implication, and state that (i) A and B never coexist, and (ii) if W and B appear together
then P is present. The first condition denotes a downward-closed set, any configuration
that does not contain both A and B satisfies it. On the contrary, the second condition
is not downward-closed. It is an implication of the form “contains W and B”⇒ “must



contain P”, which can be characterized using the disjunction of a downward-closed set
(the antecedent) and an upward-closed set (the consequent). (Recall A⇒B⇔¬A∨B
and when A is upward-closed, ¬A is downward-closed). This example illustrates an
almost downward-closed property, and also a situation where inferring such properties
is needed. The system does not indeed have any good downward-closed invariant.

We propose a method that can fully automatically infer almost downward-closed
invariants through the creation of small models. This allows to carry out parameterized
verification fully automatically through analyzing, in an abstract domain, only a small
number of processes (rather than the whole family). To define the abstraction, we will
first introduce a new symbolic encoding, called context-sensitive views, that allows to
characterize almost downward-closed sets. Context-sensitive views are generalizations
of minimal elements used for characterizing downward-closed sets. They retain enough
information in order to disable (or block) universal transitions, which would have been
otherwise enabled without the presence of contexts. We show that our abstract predicate
transformer is exact, so the method is guaranteed to find the weakest almost downward-
closed good invariant (if it exists).

To simplify the presentation, we will assume in the first part of the paper that
global transitions are performed atomically. However, in reality, such transitions are
implemented as a for-loop ranging over process indices and do not assume atomicity.
Moreover, any number of processes may be performing a for-loop simultaneously. This
makes the model of fine-grained systems and the verification task significantly harder,
since it requires to distinguish intermediate states of such for-loops. We show that our
method retains its simplicity and efficiency when instantiated to the (more complicated)
case of fine-grained parameterized systems where the atomicity assumption is dropped.
To the best of our knowledge, it is the only method which combines the ability to infer
almost downward-closed invariants with the support of fine-grained modeling. We have
used it to fully automatically verify several systems which were not previously verified
automatically. Among these, we highlight the fully automatic verification of the fine-
grained and complete version of Szymanski’s mutual exclusion protocol, which has
been considered a challenge in parameterized verification.

Outline. We first consider a basic model in Section 2 which only allows atomically
checked global conditions and instantiate the abstract domain for such systems in Sec-
tion 4. We present our verification procedure in Section 5 and introduce in Section 6
how the settings are adapted to cope with non-atomicity. We report on our experimen-
tal results in Section 7, describe related work in Section 8 and conclude the paper in
Section 9.

2 Parametrized Systems

We introduce a standard model [31, 13, 6, 30] of parameterized systems operating on
a linear topology, where processes may perform local or global transitions. Formally,
a parameterized system is a pair P = (Q,∆) where Q is a finite set of process local
states and ∆ is a set of transition rules over Q. A transition rule is either local or
global. A local rule is of the form s→ s′, where the process changes its local state
from s to s′ independently from the local states of the other processes. A global rule is



either universal or existential. It is of the form: ifQ j ◦ i : S then s→ s′, where Q ∈
{∃,∀}, ◦ ∈ {<,>, 6=} and S ⊆ Q. We call s the source, s′ the target, Q the quantifier
and ◦ the range. S represents a set of witness process states. Here, the ith process
checks the local states of the other processes before it makes the move. For the sake
of presentation, we only consider, in this section, a version where each process checks
atomically the other processes. The more realistic and more difficult case, where the
atomicity assumption is dropped, will be introduced in Section 6. For instance, the
condition ∀j < i : S means that “every process j, with a lower index than i, should be
in a local state that belongs to the set S”; the condition ∀j 6=i : S means that “the local
state of all processes, except the one at position i, should be in the set S”.

A configuration in P is a word over the alphabetQ. We use C to denote the set of all
configurations and c[i] to denote the state of the ith process within the configuration c.
We use Ja;bK to denote the set of integers in the interval [a;b] (i.e. Ja;bK = [a;b]∩N).
For a configuration c, a position i≤ |c|, and a transition δ ∈∆, we define the immediate
successor δ(c, i) of c under a δ-move of the ith process (evaluating the condition) such
that δ(c, i) = c′ iff c[i] = s, c′[i] = s′, c[j] = c′[j] for all j : j 6= i and either (i) δ is a
local rule s→ s′, or (ii) δ is a global rule of the form ifQ j ◦ i : S then s→ s′, and
one of the following two conditions is satisfied:
– Q = ∀ and for all j ∈ J1; |c|K such that j ◦ i, it holds that c[j] ∈ S
– Q = ∃ and there exists some j ∈ J1; |c|K such that j ◦ i and c[j] ∈ S.

For a set of configurationsX ⊆C, we define the post-image ofX as the set post(X) =
{δ(c, i) | c ∈X,i≤ |c|, δ ∈∆}.

An instance of the reachability problem is defined by a parameterized system P =
(Q,∆), a set I ⊆Q+ of initial configurations, and a set B ⊆Q+ of bad configurations.
We say that c ∈ C is reachable iff there are c0, . . . , cl ∈ C such that c0 ∈ I , cl = c, and
for all 0 ≤ i < l, there are δi ∈∆ and j ≤ |ci| such that ci+1 = δi(ci, j). We use R to
denote the set of all reachable configurations (from I ). We say that the system P is safe
with respect to I and B if no bad configuration is reachable, i.e.R∩B = ∅.

The set I of initial configurations is usually a regular set. In order to define the
set B of bad configurations, we use the usual subword relation v, i.e., u v s1 . . .sn iff
u= si1 . . .sik ,1≤ i1 < .. . < ik ≤ n. We assume that B is the upward-closure {c ∈ C |
∃b ∈ Bmin : bv c} of a given finite setBmin⊆Q+ of minimal bad configurations. This
is a common way of specifying bad configurations which often appears in practice.

3 Example: Szymanski’s Protocol

We illustrate the notion of a parameterized system with the example of Szymanski’s mu-
tual exclusion protocol [33]. The protocol ensures exclusive access to a shared resource
in a system consisting of an unbounded number of processes organized in an array. The
transition rules of the parameterized system are given in Fig. 3 and the source code in
Fig. 2. The state of the ith process is modelled with a number, which reflects the values
of the program location and the local variable flag[i]. A configuration of the induced
transition system is a word over the alphabet { 0 , . . . , 11 } of local process states. The
task is to check that the protocol guarantees exclusive access to the shared resource
regardless of the number of processes. A configuration is considered to be bad if it con-



0 flag[i] = 1;
1 for(j=0;j<N;j++){ if(flag[j]≥ 3) goto 1 ; }
2 flag[i] = 3;
3 for(j=0;j<N;j++){

if (flag[j] = 1) {
4 flag[i] = 2;
5 for(j=0;j<N;j++){ if(flag[j]==4) goto 7 ; }
6 goto 5 ;

}
}

7 flag[i] = 4;
8 for(j=0;j<i;j++){ if(flag[j]≥ 2) goto 8 ; }
9 /* Critical Section */
10 for(j=i+1;j<N;j++){ if(flag[j]==2 ‖ flag[j]==3) goto 10 ; }
11 flag[i] = 0; goto 0 ;

Fig. 2: Szymanski’s protocol implementation (for process i)

tains two occurrences of state 9 or 10 , i.e., the set of minimal bad configurations Bmin
is { 9 9 , 9 10 , 10 9 , 10 10 }. Initially, all processes are in state 0 , i.e. I = 0

+.

Standing outside
the waiting room
with the intention

to enter, eventually
blocking the doorway

Waiting for the
last one to enter

Critical Section

Emptying the waiting room
and reopening the entry door

Non
critical
work

Entry Door

Exit Door

0

1

2

3

5
7

8

9

10

11

∀j 6= i : {0,1,2,5,6}

∀j 6= i : ¬{1,2}

∃j 6= i : {1,2}

∃j 6= i : {8,9,10}

4

6

∀j < i : {0,1,2}

∀j > i : ¬{3..7}

Fig. 3: Szymanski’s protocol transition system

Many techniques [4, 3, 7, 13, 30, 8,
12] have been used to verify automat-
ically the safety property of Szyman-
ski’s mutual exclusion protocol but
only in restricted settings. They either
assume atomicity of the global con-
ditions and/or only consider a more
compact variant of the protocol (i.e.
where the invariant can be expressed
solely by a downward-closed set). The
full and fine-grained version has been
considered a challenge in the verifi-
cation community. To the best of our
knowledge, this paper presents the first
technique to address the challenge of
verifying the protocol fully automati-
cally without atomicity assumption.

4 Views and ∀∃-Formulae

We introduce our symbolic encoding and show how it corresponds to ∀∃-formulae.

Context-sensitive views. A context-sensitive view (henceforth only called view)
is a pair (b1 . . . bk,R0 . . .Rk), often written as R0b1R1 . . . bkRk, where b1 . . . bk is a
configuration and R0 . . .Rk is a context, such that Ri ⊆Q for all i ∈ J0;kK.
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Fig. 4: Projection

We call the configuration b1 . . . bk the base of the view
where k is its size and we call the set Ri the ith con-
text. We use Vk to denote the set of views of size up
to k. For k,n ∈ N,k ≤ n, let Hk

n be the set of strictly
increasing injections h : J0;k+1K→ J0;n+1K, i.e.
1≤ i < j ≤ k =⇒ 1≤ h(i)< h(j)≤ n. Moreover,
we require that h(0) = 0 and h(k+1) = n+1.

Projections. We define the projection of a configuration. For h ∈Hk
n and a config-

uration c= q1 . . . qn, we use Πh(c) to denote the view v =R0b1R1 . . . bkRk, obtained
in the following way (see Fig. 4):
(i) bi = qh(i) for i ∈ J1;kK, (ii) Ri = {qj | h(i)< j < h(i+1)} for i ∈ J0;kK. Intu-
itively, respecting the order, k elements of c are retained as the base of v, while all other
elements are collected into contexts as sets in the appropriate positions.

We also define projections of views. For a view v =R0b1R1 . . . bnRn and h ∈Hk
n ,

we overload the notation for the projection of configurations and use Πh(v) to denote
the view v′ =R′0b

′
1R
′
1 . . . b

′
kR
′
k, such that (i) b′i = bh(i) for i ∈ J1;kK and

(ii)R′i = {bj |h(i)< j < h(i+1)}∪(
⋃
h(i)≤j<h(i+1)Rj) for all i∈ J0;kK (see Fig. 5).

h(i) h(i+1)

i i+1

Fig. 5: View Projection

We define an entailment relation on views of the
same size. Let u = R0b1R1, . . . , bnRn and v =
R′0b
′
1R
′
1, . . . , b

′
nR
′
n be views of the same size n. We say

that v entails u or that u is weaker than v, denoted u4 v, if
b1 · · ·bn = b′1 · · ·b′n andRi⊆R′i for all i∈ J0;nK. Views of
different sizes are not comparable. For two sets V and W
of views, we write V 4W if every w ∈W entails some
v ∈ V . Formally, V 4W ⇔∀w ∈W,∃v ∈ V,v 4 w. We
use bV c to denote the set of views in V that are weakest, i.e. minimal w.r.t. 4. We use
V tW to denote the set bV ∪W c.
Abstraction and Concretization. Let k∈N. The abstraction functionαk maps x,
a view or a configuration, into the set of its projections of the size k or smaller: αk(x) =
{Πh(x) | h ∈H`

|x|, `≤min(k, |x|)}. For a set X of views or of configurations, we de-
fine αk(X) as the set b∪x∈Xαk(x)c, i.e. its weakest projections. The concretization
function γk maps a set of views V ⊆Vk into the set of configurations γk(V ) = {c ∈ C |
V 4 αk(c)}.

We pinpoint the fact that views work collectively, rather than individually. That is,
a set of configurations is characterized by a set of views. Consider for example that
a set V of views contains the view WB[P]. We write contexts in square brackets and
we omit empty contexts for brevity. Then, in order to characterize the configuration
WBP, it must also contain the views [W]BP and W[B]P (or weaker). The three views
together characterize the configuration, while the view WB[P] alone cannot. Abstraction
and concretization are illustrated on a larger example in Fig. 6.

Lemma 1. For any k ∈ N, V ⊆ V and X ⊆ C, X ⊆ γk(V ) ⇐⇒ V 4 αk(X), i.e. the
pair (αk,γk) forms a Galois connection.

For any set X ⊆ C and k ∈ N, it is clear that γk(αk(X))⊇X . In fact, we can observe
that the precision of the abstraction increases with k, i.e. γ1(α1(X)) ⊇ γ2(α2(X)) ⊇
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Fig. 6: Abstraction and Concretization

γ3(α3(X)) ⊇ . . . ⊇ X . We illustrate this property with the following example. Con-
sider the set X of configurations of the barrier protocol from Fig. 1 described by the
regular expression BB+P. Its abstraction with k = 1 is the set of views V1 = α1(X) =
{B[B, P], [B]B[P], [B]P}.The concretization γ1(V1) is the set of configurations follow-
ing the regular expression B(B|P)∗B(B|P)∗P (i.e. the information preserved is that con-
figurations begin by B, end by P, and there are at least two Bs). With k = 2, we get
V2 = α2(X) = {BB[P],B[B]P, [B]BP}∪V1. Its concretization is γ2(V2) = BB+P which
is equal to the original set X . The role of contexts may be seen already with k = 1: the
concretization of V1 preserves the information that there is at least one P and at least
two Bs present in every configuration. This set is not downward-closed.

Views vs ∀∃-formulae. An ∀∃-formula is a formula of the form:

φ= ∀i1, . . . , in ∃in+1, . . . , in+m : ψ(i1, . . . , in+m)

∀ i1 i2 i3 ∃ i4 i5 i6 i7 :ψ(. . .)

1 4 2 6 5 3 7

1 4 2 5,6 3 7

Fig. 7: view↔ ∀∃-formula

where i1, . . . , in+m are pairwise distinct position vari-
ables and ψ(i1, . . . , in+m) is a boolean combination of
basic formulae. A basic formula is either (i) a topological
predicate of the form ij < ik or (ii) a state predicate of
the form c[ij ] = q, where j,k ∈ J1;n+mK and q ∈Q.

The notion of satisfaction by a configuration c of a
basic formula ψ(i1, . . . , i`) is defined in the natural way.
More precisely, an assignment ρ is a function that maps
the indices i1, . . . , i` to pairwise different positions within
the configuration c (i.e. ρ(ij) ∈ J0; |c|K and ρ(ij) 6= ρ(ik)
for all j,k ∈ J1;`K). We write c |=ρ ψ, if c satisfy the formula ψ(i1, . . . , i`) under the
assignment ρ. We say that c satisfies φ and write c |= φ, if for every assignment ρ of
i1, . . . , in, there exists an assignment ρ′ of in+1, . . . in+m such that c |=ρ∪ρ′ ψ. We use
JφK to denote the set {c ∈ C | c |= φ} of all configurations that satisfy φ.

Lemma 2. For any set C of configurations, there exists an ∀∃-formula φ such that
C = JφK iff there exists a finite set of views V and k ∈ N such that C = γk(V ).

Lemma 2 shows that the ∀∃-formulae correspond to sets of views. Intuitively, the base
of a view captures the predicates in an ∀∃-formula relating the position variables from



the universal quantification, while the contexts capture those from the existential quan-
tification. For example, we recall the set V1 = α1(X) = {B[B, P], [B]B[P], [B]P}, where
X is the set of configurations described by the regular expression BB+P. Its concretiza-
tion γ1(V1) is expressed by the ∀∃-formula ∀i ∃j,k : (c[i], c[j], c[k] = B,B, P ∧ i <
j,k)∨ (c[j], c[i], c[k] = B,B, P∧ j < i < k)∨ (c[j], c[i] = B, P∧ j < i). For k = 2, the
concretization of V2 = α2(X) = {BB[P],B[B]P, [B]BP} ∪ V1 is expressed by the ∀∃-
formula ∀i, j ∃k : (c[i], c[j], c[k] = B,B, P∧ i < j < k)∨ (c[i], c[k], c[j] = B,B, P∧ i <
k < j)∨ (c[k], c[i], c[j] = B,B, P∧k < i < j).

5 Verification Procedure

We present our verification method for the class of parameterized systems described in
Section 2. We fix a parameterized system P = (Q,∆) for the rest of the section. We
use the abstract domain from Section 4. For k ∈ N, the abstract post-image of a set of
views V is defined, as usual, as αk ◦post ◦γk(V ). The core of our verification procedure
consists in checking whether there is a k ∈N such that the least fixpoint of αk ◦post ◦γk
is a set of views with the following properties: its concretization (i) covers the set I of
initial configurations and (ii) is disjoint from the set B of bad configurations. More
precisely, the precision of the abstraction increases with k, so we iterate the fixpoint
computation µX.αk(I)tαk ◦ post ◦ γk(X) for increasing values of k starting from
k = 1, until point (ii) holds.

We present our procedure in a stepwise manner. Since γk(V ) is in general infinite,
we need to compute the abstract post-image symbolically. First, we introduce a sym-
bolic abstract transformer and show that it precisely corresponds to the abstract post.
Although we show that is possible to compute the abstract transformer precisely (and
therefore the aforementioned fixpoint), we also introduce an over-approximation for
efficiency reasons. Finally, we stitch the different components together and describe
the sound and complete procedure. Since the symbolic transformer is exact, if there
exists an almost downward-closed invariant (i.e., good invariant expressible by an ∀∃-
formula, or equivalently by a set of views), then the iteration is guaranteed to discover
it and terminate for some value of k [14].

Symbolic post operator. To define the symbolic post operator, we first define
a transition relation on views. For a view v = (base,ctx), i ≤ |base|, and a transi-
tion δ ∈ ∆, we define the symbolic immediate successor of v under a δ-move of the
ith process from base, denoted δ#(v, i). Informally, the moving process checks the
other processes from the base. In addition, if δ is a universal transition, the moving
process checks as well the processes in the contexts. If the transition is enabled, the
moving process from base changes its state according to the δ-transition, otherwise it
is blocked. The contexts do not change. In fact, we can here observe the role played by
a context: it retains enough information in a view to disable (or block) universal transi-
tions, which would have been otherwise enabled without the presence of contexts. This
reduces the risk of running a too coarse over-approximation.

Formally, for a view v = R0b1R1. . .bnRn and i ≤ n, δ#(v, i) = R0b
′
1R1. . .b

′
nRn

iff bi = s, b′i = s′, bj = b′j for all j : j 6= i and either (i) δ is a local rule s→ s′, or
(ii) δ is a global rule of the form ifQ j ◦ i : S then s→ s′, and one of the following



two conditions is satisfied: (a) Q = ∀ and it holds both that bj ∈ S for all j ∈ J1;nK such
that j ◦ i and that Rj ⊆ S for all j ∈ J0;nK such that j ◦ i, or (b) Q = ∃ and there exists
j ∈ J1;nK such that j ◦ i and bj ∈ S. Note that we do not need to check the contexts
in the latter case. Indeed, this is supported by the fact that the views work collectively.
If there is a view where a process appears in a context, then there is always another
view where it appears in the base, while the others are in a context. Finally, for a set of
views V , we define spost(V ) = {δ#(v, i) | v ∈ V,i≤ |v|, δ ∈∆}.

We now explain how we define the symbolic post operating on views. It is based on
the observation that a process needs at most one other process as a witness in order to
perform its transition (cf. existential transitions). A moving process can appear either
(i) in the base of a view, or (ii) in a context. Extending adequately the view with one
extra process is enough to determine whether the moving process, in case (i), can per-
form its transition. However, in case (ii), since spost only updates processes of the base,
a first extension with one process “materializes” the moving process into the base and
a second extension by one process considers its witness. Therefore, it is sufficient to ex-
tend the views with two extra processes to determine if a transition is enabled, whether
the moving process belongs to the base or a context of a view. Formally, for a set V of
views of size k and for ` > k, we define the extensions of V of size ` as the set of views∮ `
k (V ) = αl(γk(V )). Finally, we define the symbolic post as αk ◦ spost ◦

∮ k+2
k (V ).

Lemma 3 allows us to conclude that the symbolic post is the best abstract transformer.

Lemma 3. For any k and set of views V of size up to k,
V tαk ◦post ◦γk(V ) = V tαk ◦ spost ◦

∮ k+2
k (V )

The definition of
∮ `
k (V ) still involves the potentially infinite set γk(V ), so it cannot

be computed in a straightforward manner. We show how
∮ `
k (V ) can be computed via

a translation to finite automata, consisting of three steps, sketched here and described
in details in the technical report [5]:

1. Translate V into an ∀∃-formula φ such that JφK = γk(V ) (by Lemma 2)
2. Translate φ into a finite automaton Aφ such that L(Aφ) = JφK
3. Compute α`(L(Aφ))

Approximation. The described automata-theoretic procedure to compute
∮ `
k (V )

comes at some cost. Step 2 involves internally the complementation of an intermedi-
ate automaton, which is at worst exponential, both in time and space. We therefore in-
troduce an over-approximation and compute �

∫ `
k (V ) = {v ∈ V |αk(v)< V, |v| ≤ `}, i.e.

the set of views of size ` that can be generated from V , without inspecting its concretiza-
tion first. By lemma 4 (below), it follows that the views in �

∫ `
k (V ) over-approximate the

views in
∮ `
k (V ) and may enable more universal transitions than they should. Indeed,

views in �
∫ `
k (V ) have (at least) the same bases as the views in

∮ `
k (V ), but they might have

smaller contexts (and are therefore weaker). Consider for example the case where k= 2,
`= 3 and the set of views V = {ab,bc,ac[e], ce[f ],ae,be,af,bf,cf,ef}. The set �

∫ 3
2 (V )

contains the view abc[e] but
∮ `
k (V ) contains the view abc[e,f ] because the smallest

configuration in γ2(V ) that has abc as a subword is abcef (this is due to the view ce[f ]



which enforces the presence of f ). Another example is V = {ab,bc,ac[e],a[c]e, [a]ce}.
Here, �

∫ 3
2 (V ) contains abc[e], however, there is no view with the base abc in

∮ 3
2 (V )

since there is no configuration with the subword abc in γ2(V ).

Lemma 4. For any `≥ k and V ⊆ V , �
∫ `
k (V )4

∮ `
k (V )

Sound and Complete algorithm. We combine the fixpoint computation of the
symbolic post with a systematic state-space exploration in order to find a bad configura-
tion. The algorithm (described succintly in Alg. 1) proceeds by iteration over configura-
tions and views of size up to k, starting from k= 1 and increasing k after each iteration.
Every iteration consists in two computations in parallel: (i) Using the exact post-image,
we compute the set Rk of configurations reachable from the initial configurations, in-
volving only configurations of size k (line 2). Note that there are only finitely many
such configurations and that we consider, in this paper, length-preserving transitions,3

so this step terminates and (ii) the fixpoint computation of the symbolic post over views
of size up to k. Alg. 1: Verification Procedure

1 for k := 1 to ∞ do
2 if bad(Rk) then return Unsafe

3 V := µX .αk(I )tαk ◦spost ◦
∮ k+2
k (X)

4 if ¬bad(V ) then return Safe

A reachable bad configuration
of some size must be reachable
through a sequence of transitions
involving configurations of some
maximal size, so it will be eventu-
ally discovered. By lemma 4, it is
sound to replace the fixpoint computation of the symbolic post with the approximated
set of views �

∫ k+2
k (line 3). Finally, the termination criteria on line 2 and 4 require the

use of the function bad which returns either if a set of configurations contains a bad
configuration or whether a set of views characterizes a bad configuration. The func-
tion bad is implemented by checking whether any configuration from Bmin appears in
its input set either (i) as a subword of a configuration or (ii) within the base of a view.
We do not inspect any context, because the views work collectively and there is always
another view in the set which contains this context in its base.

The resulting verification algorithm is sound and terminates for some k if and only
if there is a reachable bad configuration or if there is a good almost downward-closed
invariant. It uses the property of small models, that is, most behaviors are captured with
small instances of the systems, either in the form of configurations and views.

Acceleration. The fixpoint computation on line 3 can be accelerated by leveraging
the entailment relation. It is based on the observation that Rk contains configurations
of size up to k, which can be used as initial input for the fixpoint computation (rather
than I ). All views of size k in αk(Rk) have empty contexts (i.e. they are weakest).

3 Although, in this paper, there is no process deletion nor creation, our method works
with non length-preserving transitions. The set Rk is not anymore computed by
simply searching through the state-space, since a sequence of transitions from a con-
figuration of size k might lead to arbitrarily many configurations of larger sizes. The
alternative definition of Rk is configurations that may be reached via sequences of
transitions involving configurations of the size up to k. This again defines a finite
search space, and it holds that every reachable configuration is within Rj for some j.



They avoid the computations of the symbolic post on any stronger views. A similar
argument can be used to see that it is not necessary to apply spost on the views in
�
∫ k+2
k (X) that are stronger than the views in αk+2(Rk+2). We therefore seed the fix-

point computation with a larger set than αk(I ), namely αk(Rk ∪Rk+1 ∪Rk+2), and
cache the set of views αk+2(Rk+2).

6 Non-atomically checked global conditions

We extend our model and method to handle parameterized systems where global condi-
tions are not checked atomically. We replace both existentially and universally guarded
transition rules by the following variant of a for-loop rule:

if foreach j ◦ i : S then s→ s′ else s→ e

where e ∈ Q is an escape state and the other s, s′, ◦ and S are named as in Sec-
tion 2. For instance, line 3 of Szymanski’s protocol is be replaced by if foreach j 6=
i : ¬{1,2} then 3→ 7 else 3→ 4. Essentially, for a configuration with linear topol-
ogy, a process at position i inspects the state of another process at position j, in-order.
Without loss of generality, we will assume that the for-loops iterate through process
indices in increasing order. If the state of the process at position j is not a reason for the
process i to escape, process i moves on to inspect the process at position j+ 1, unless
there is no more process to inspect in which case process i completes its transition.

We extend the semantics of a system with for-loop rules from transition systems of
Section 2 in the following way: A configuration is now a pair c = (q1 · · ·qn,X) where
q1 · · ·qn ∈ Q+ is as before and where X : J1;nK→ J0;nK is a total map which assigns
to every position i of c the last position which has been inspected by the process i.
Initially,X(i) is assigned 0.

We fix a rule δ = if foreach j ◦ i : S then s→ t else s→ e from ∆, a config-
uration c with |c| = n, and i ∈ J1;nK. We first define the position next(i) which the
process at position i is expected to inspect next. Formally, next(i) = min{j ∈ J1;nK |
j >X(i), j ◦ i} is the smallest position larger than thanX(i) which satisfies next(i)◦ i.
Notice that if process i has already inspected the right-most position j which satisfies
j ◦ i, then (and only then) next(i) is undefined.

We distinguish three types of δ-move on c by the process at position i: (i) δi(c, i)
for a loop iteration, (ii) δe(c, i) for escaping and (iii) δt(c, i) for termination. Each type
of move is defined only if qi = s.
– δi(c, i) is defined if next(i) is defined and qnext(i) ∈ S. It is obtained from c by only
updatingX(i) to next(i). Intuitively, process i is only ticking position next(i).
– δe(c, i) is defined if next(i) is defined and qnext(i) 6∈ S. It is obtained from c by
changing the state of the process i to e and resettingX(i) to 0. Intuitively, process i has
found a reason to escape.
– δt(c, i) is defined if next(i) is undefined, and it is obtained from c by changing the
state of the process i to t and resetting X(i) to 0. Intuitively, process i has reached the
end of the iteration and terminates its transition (i.e. moves to its target state).
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Fig. 8: Projection with non-
atomicity. The blue states have
been inspected by process i, the
green states have not.

We now instantiate the abstract domain by
adapting the notion of views from Section 4. A
view is now of the form (R0q1R1 . . . qnRn,X,ρ),
where (q1 · · ·qn,X) is a configuration called the
base, and (R0, · · · ,Rn,ρ) is a context, such that
R0, . . . ,Rn ⊆Q and ρ : J1;nK→ 2Q is a total map
which assigns a subset of Q to every i ∈ J1;nK.
Intuitively, the role of ρ(i) is to keep track of the
processes that process i has not yet inspected in
case they get mixed up in a context with other al-
ready inspected processes. This will be the case,
as depicted in Fig.8, for one context only, say R`
(in fact, R` is the context whereX(i) is projected to). It is trivial to see that contexts of
higher (resp. lower) indices than ` contain processes that are not (resp. are) inspected
by process i.

The projection of a configuration into a view is defined similarly as in Section 5. For
h ∈ Hk

n,k ≤ n, and a configuration c = (q1· · ·qn,X), Πh(c) = (Πh(q1· · ·qn),X′,ρ′)
where X′ and ρ′ are defined as follows. For all i ∈ J1;kK, there exists ` such that
h(`) ≤X(i) < h(`+ 1). Then, X′(i) = ` and ρ′(i) = {qj |X(i)< j < h(`+1)}. The
projection of views is defined analogously. Note that this definition also implies that the
concretization of a set of views is precise enough and reconstructs configurations with
in-order ticks.

The entailment relation between the views v = (R0q1R1 . . . qnRn,X,ρ) and v′ =
(R′0q′1R′1 . . . q′nR′n,X

′,ρ′) (of the same size) is defined such that v 4 v′ iff (i) both have
the same base, i.e. (q1 · · ·qn,X) = (q′1 · · ·q′n,X

′), (ii) Ri ⊆ R′i for all i ∈ J0;nK, and
(iii) ρ(i)⊆ ρ′(i) for all i ∈ J1;nK. This intuitivelly reflects that the more unticked states
within a context the likelier it is for a transition to be blocked, and the larger contexts
are the likelier they retain non-ticked states.

Finally, abstraction, concretization, and spost (and therefore symbolic post) are
then adapted using the new definition of projection, entailment and post. This also
implies that the contexts are inspected in-order and all processes in a context at once.
Lemma 1, 3 and 4 hold in the same wording. The symbolic post with contexts and non-
atomicity is precisely the abstract post and we use a similar over-approximation than in
Section 5.

3
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7 Experiments

We have implemented a prototype in OCaml based on our method to verify the safety
property of numerous protocols.

Table 1: Linear topologies± Atomicity

Protocol Time |V |

∀∃-example* 0.005 22 3
0.006 - 7

Burns 0.004 34 3
0.011 64 3

Dijkstra 0.027 93 3
0.097 222 3

Szymanski* 0.307 168 3
1.982 311 3

Szymanski (compact)* 0.006 48 3
0.557 194 3

Szymanski (random) 1.156 - 7

Bakery 0.001 7 3
0.006 30 3

Gribomont-Zenner* 0.328 143 3
32.112 888 3

Simple Barrier* 0.018 61 3
(as array) 1.069 253 3

* contexts needed 3: Safe 7: Unsafe

We report the results running on a 3.1 GHz computer
with 4GB memory. Table 1 displays, for various pro-
tocols with linear topology (over 2 lines), the running
times (in seconds) and the final number of views gen-
erated (|V |). The first line is the result of the atomic
version of the protocol, while the second line corre-
sponds to the non-atomic version. The complete de-
scriptions of the experiments can be found the tech-
nical report [5]. In most cases, the method terminates
almost immediately illustrating the small model prop-
erty: all patterns occur for small instances of the sys-
tem.

For the first example of Table 1 in the case of
non-atomicity, our tool reports the protocol to be
Unsafe (7). The method is sound. It is indeed a real
error and not an artifact of the over-approximation. In fact, this is also the case when
we intentionally tweak the implementation of Szymanski’s protocol and force the for-
loops to iterate randomly through the indices, in the non-atomic case. The tool reports
a trace, that is, a sequence of configurations — here involving only 3 processes — as
a witness of an (erroneous) scenario that leads to a violation of the mutual exclusion
property.

Table 2: Petri Net with Inhibitor Arcs

Protocol Time |V |
Critical Section with lock 0.001 42 3
Priority Allocator 0.001 33 3
Barrier with Counters 0.001 22 3
Simple Barrier

contexts
needed 0.001 8 3

Light Control 0.001 15 3
List with Counter Automata 0.002 38 3

The method is not limited to linear topologies.
We also used the method to verify several exam-
ples with a multiset topology: Petri nets with in-
hibitor arcs. Inhibitor places should retain some
content (therefore creating a context) in order to not
fire the transition and potentially make the over-
approximation too coarse. The bottom part of Ta-
ble 2 lists examples where the contexts were neces-

sary to verify the protocol, while the top part lists examples that did not require any.

Table 3: Leveraging the heuristics

Protocol Time |V | it.

Agreement
insertion heuristic 8.247 199 28
all contexts 3.9503.950 216 1
contexts discovery 166.893 121 4

Gribomont-Zenner
insertion heuristic 0.3280.328 143 7
all contexts 0.808 317 1
contexts discovery 50.049 217 3

Szymanski,
non-atomic

insertion heuristic 2.0532.053 311 26
all contexts 48.065 771 1
contexts discovery 732.643 896 7

Heuristics. If α2(R2 ∪R3) = α2(R2 ∪
R3∪R4), it is likely the case that the com-
putation in Alg. 1 (line 3) is already at fix-
point for k= 2 and discovered all the bases
of the system in the sets from the above
equation. It is therefore interesting to in-
spect whether a new base could be discov-
ered by the symbolic post, while ignoring
contexts (to consider the weakest views). If
not, a fixpoint is indeed discovered and the invariant is strong enough to imply safety. If



so, we can stop the computations, detect which views led to the new inserted base and
remember their contexts for the next round of computations. This heuristic happen to be
very successful in the case of Szymanski’s protocol (in its non-atomic full version). On
the other hand, this idea can be used in general: Do not remember any contexts, there-
fore considering the weakest views, and if the procedure discovers a counter-example,
we trace the views that generated it and remember their contexts for the next round of
computations, in a CEGAR-like fashion. It is however inefficient if all views most likely
need a context (as shown with the ring agreement example). Table 3 presents the results
of using the insertion and context discovery heuristics. The time is given in seconds and
it. represents the number of iteration to terminate.

8 Related work

An extensive amount of work has been devoted to regular model checking, e.g. [29, 15];
and in particular augmenting regular model checking with techniques such as widen-
ing [11, 34], abstraction [12], and acceleration [8]. All these works rely on computing
the transitive closure of transducers or on iterating them on regular languages. There
are numerous techniques less general than regular model checking, but they are lighter
and more dedicated to the problem of parameterized verification. The idea of counter
abstraction is to keep track of the number of processes which satisfy a certain prop-
erty [27, 22, 16, 17, 32]. In general, counter abstraction is designed for systems with
unstructured or clique architectures, but may be used for systems with other topologies
too.

Several works reduce parameterized verification to the verification of finite-state
models. Among these, the invisible invariants method [9, 31] and the work of [30]
exploit cut-off properties to check invariants for mutual exclusion protocols. In [10],
finite-state abstractions for verification of systems specified in WS1S are computed
on-the-fly by using the weakest precondition operator. The method requires the user to
provide a set of predicates to compute the abstract model. Environment abstraction [13]
combines predicate abstraction with the counter abstraction. The technique is applied
to Szymanski’s algorithm (with atomicity assumption).

The only work we are aware of that attempts to automatically verify systems with
non-atomic global transitions is [7]. It applies the recently introduced method of mono-
tonic abstraction [6], which combines regular model checking with abstraction in or-
der to produce systems that have monotonic behaviors wrt. a well quasi-ordering on
the state-space. The verification procedure in this case operates on unbounded abstract
graphs, and thus is a non-trivial extension of the existing framework. The method of [26,
25] and its reformulated, generic version of [24] come with a complete method for well-
quasi ordered systems which is an alternative to backward reachability analysis based
on a forward exploration, similarly to our recent work [4].

Constant-size cut-offs have been defined for ring networks in [21] where commu-
nication is only allowed through token passing. More general communication mecha-
nisms such as guards over local and shared variables are described in [20]. However, the
cut-offs are linear in the number of states of the components, which makes the verifica-
tion task intractable on most of our examples. The work in [28] also relies on dynamic



detection of cut-off points. The class of systems considered in [28] corresponds essen-
tially to Petri nets.

Most of the mentioned related works can verify only systems with good downward-
closed invariants, up to several exceptions: Regular model checking can express even
more complicated properties of states with the word topology. Our method is signifi-
cantly simpler and more efficient. The data structure [23] extends the data structures
discussed in [18, 19] so that they are able to express almost downward-closed sets of
states with multiset topology. The work [3] allows to infer almost downward-closed
invariants using an extension of backward reachability algorithm with CEGAR. Last,
in [30], the need of inferring almost downward-closed invariants may be sometimes
circumvent by manually introducing auxiliary variables.

The only two works we are aware of that support handling non-atomic global tran-
sitions are [4] and [3].

Our method is simpler and more efficient than most of the mentioned methods, but
what distinguishes it most clearly is that it is the only one that combines handling non-
atomic global transitions and automatic inference of almost downward-closed proper-
ties.

9 Conclusion and Future Work

We have presented a method for automatic verification of parameterized systems which
alleviates the lack of precision from [4] that it exhibits on systems without fully down-
ward-closed invariants. This is a unique method that combines the feature of discovering
non downward-closed invariants while allowing to model systems with fine-grained
transitions.

The method performs parameterized verification by only analyzing a small set of
instances of the system (rather than the whole family) and captures the reachability of
bad configurations to imply safety. Our algorithm relies on a very simple abstraction
function, where a configuration of the system is approximated by breaking it down into
smaller pieces. This gives rise to a finite representation of infinite sets of configurations
while retaining enough precision. We showed that the presented algorithm is complete
for systems with almost downward-closed invariants. Based on the method, we have
implemented a prototype which performs efficiently on a wide range of benchmarks.

We are currently working on extending the method to the case of multi-threaded
programs running on machines with different memory models. These systems have
notoriously complicated behaviors. Showing that verification can be carried out through
the analysis of only a small number of threads would allow more efficient algorithms
for these systems.
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