
http://www.diva-portal.org

This is the published version of a paper presented at First International Workshop on Automotive
Software Architectures (WASA 2015), Montréal, QC, Canada, May 4, 2015.

Citation for the original published paper:

Arts, T., Mousavi, M. (2015)

Automatic Consequence Analysis of Automotive Standards (AUTO-CAAS) [Position Paper].

In: Yanja Dajsuren, Harald Altinger & Miroslaw Staron (ed.), WASA '15: Proceedings of the First

International Workshop on Automotive Software Architecture (pp. 35-38). New York, NY: ACM

Press

http://dx.doi.org/10.1145/2752489.2752495

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-29102



Automatic Consequence Analysis of Automotive
Standards (AUTO-CAAS)

[Position Paper]

Thomas Arts
Quviq AB

Gothenburg, Sweden
thomas.arts@quviq.com

Mohammad Reza Mousavi
∗

Center for Research on Embedded Systems
Halmstad University
Halmstad, Sweden

m.r.mousavi@hh.se

ABSTRACT
This paper provides some background and the roadmap of
the AUTO-CAAS project, which is a 3-year project financed
by the Swedish Knowledge Foundation and is ongoing as a
joint project among three academic and industrial partners.
The aim of the project is to exploit the formal models of
the AUTOSAR standard, developed by the industrial part-
ner of the project Quviq AB, in order to predict possible
future failures in concrete implementations of components.
To this end, the deviations from the formal specification will
be exploited to generate test-cases that can push concrete
components to the corners where such deviation will result
in observable failures. The same information will also be
used in the diagnosis of otherwise detected failures in order
to pinpoint their root causes.

Categories and Subject Descriptors
C.3 [C.3 Special-purpose and Application-Based Sys-
tems]: Real-time and embedded systems; D.2.5 [Testing
and Debugging]: Diagnostics

General Terms
Verification, Reliability

Keywords
AUTOSAR, Model-Based Testing, Finite State Machines,
QuickCheck, Diagnostics

∗Mousavi’s research has been partially supported by the
Swedish KK Foundation (Stiftelsen för Kunskaps- och
Kompetensutveckling award number(s): 20140302 (AUTO-
CAAS) and the Swedish Research Council (Vetenskap-
sr̊adet) award number(s): 621-2014-5057 (Effective Model-
Based Testing of Parallel Systems).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
WASA’15, May 4, 2015, Montréal, QC, Canada.
ACM 978-1-4503-3444-0/15/05.
http://dx.doi.org/10.1145/2752489.2752495.

1. INTRODUCTION
The Automotive Open System Architecture (AUTOSAR)

standard is gaining momentum with several automotive man-
ufacturers (such as Volvo) and there is a growing trend to-
wards new vehicle platforms based on the latest versions of
this standard. The standard enables manufacturers to allow
Tier-1 suppliers to contract arbitrary Tier-2 software devel-
oper for ECUs, as long as the developed software conforms
to the specified behavior according to AUTOSAR. This is in
clear contrast to earlier situation, in which a preferred Tier-
2 developer was appointed to develop software for all Tier-1
hardware suppliers. This paradigm shift brings about eco-
nomical and financial benefits (both for suppliers and man-
ufacturers). However, it also introduces certain risks and
challenges.

The AUTOSAR standard is complex and does leave room
for interpretation and optimizations. In order to be com-
petitive, Tier-2 developers strive after implementing several
optimizations and utilizing room for interpretation of the
standard to make their product out-perform in the compe-
tition.

The AUTO-CAAS project, for Automatic Consequence
Analysis of Automotive Standards, aims at exploiting the
technology of model-based testing in order to detect devia-
tions from the AUTOSAR standard and furthermore trace
the consequences of such deviations into visible deviating be-
haviors (failures). The project has started as of March 2013
and will continue for 3 years. It is funded by the Swedish
Knowledge Foundation and involves 3 partners: Halmstad
University, Quviq AB and ArcCore AB. Halmstad Univer-
sity is the knowledge provider in this project. It provides
the necessary knowledge and research skills in order to co-
develop a novel, yet practical, approach for the research
problem and co-develop it within the toolsets provided by
QuviQ and ArcCore. The role of QuviQ in this project is to
provide both the tools and the models for the conformance
testing according to the AUTOSAR standard. The role of
ArcCore in this project is to provide the implementation
and the implementation platforms for the AUTOSAR stan-
dard, respectively, based on their Arctic Core and Arctic
Studio products, which provide support for various levels of
AUTOSAR development and integration.

In the remainder of this paper, we provide an overview of
the roadmap for the AUTO-CAAS project. The rest of this
paper is organized as follows. In Section 2, we provide an
overview of the background technologies (theories and tools)



Figure 1: A typical eco-system for Model-Based
Testing

that are to be used throughout the project and in Section 3,
we sketch our expected results and our research approach.

2. BACKGROUND THEORIES AND TOOLS
In this section, we provide an overview of the theories and

tools that form the foundations of the AUTO-CAAS project.

2.1 AUTOSAR
Standardizing the conformance testing process has been

mentioned as a key goal of the AUTOSAR standard [7]. The
recent releases of the AUTOSAR standard have partially
achieved this goal by providing a standard for interfaces,
behaviors and configurations for basic software [1]. Accord-
ing to AUTOSAR, conformance and inter-operability tests
take place at various levels in the development of vehicle
functions: starting from testing individual components, go-
ing on with (micro-) integration to modules, integration into
ECUs and single vehicle functions after integration into the
network. A final step of testing is performed in the opera-
tional environment involving multiple vehicle functions. The
scope of this project is from conformance testing of module
micro-integration to testing single vehicle functions. In par-
ticular, we exploit the results of model-based conformance
testing to predict and diagnose inter-operability failures at
the vehicle function level. Conformance test results are very
helpful in identifying signature faults as well as behavioral
faults. However, there are “gray areas” [8] in the results of
conformance testing, which are non-conclusive. The main
reason for the existence of these gray areas is due to the
under-specification of the context in which the component
interfaces are being used. This leaves some room for vari-
ous, at times conflicting, design decisions by the suppliers
and the OEMs. Such conflicting design decisions can give
rise to later failures when composing modules into ECUs
and ECUs into vehicle functions.

2.2 Model-based testing
Model-based testing (MBT) [4] is a rigorous and struc-

tured technique to test computer systems. A schematic view
of a typical MBT ecosystem is given in Figure 1. The fig-
ure refers to the ecosystem used in our earlier experience

with model-based testing of an embedded system in the fi-
nancial domain [3]. The MBT process starts with making
test models from the requirements and standards. Then a
conformance test engine is in charge of generating test cases
from the test models. Subsequently, the generated test cases
are executed in order to interact with the implementation
under test and to establish whether it conforms to the spec-
ification.

Examples of MBT test engines include Microsoft Spec-
Explorer [17], UPPAAL TRON [11], UPPAAL Yggdrasil,
RT-Tester [15] and QuickCheck [2, 12]. We refer to [3, 12,
18] for our prior experience with industrial application of
some of these tools.

In the context of this project, we will use the property-
based testing approach as implemented in the QuickCheck
tool. In particular, we will use the existing rigorous spec-
ification of the AUTOSAR standard in QuickCheck. The
property-based approach improves upon traditional model-
based testing techniques by allowing for programming-language
abstractions for specifying data generators. It also allows for
incrementally building finite-state machine models by gradu-
ally learning from the interaction with the system under test.
The shrinking approach implemented in the QuickCheck
tool provides an effective means for generating the minimal
test-case, hence, defining a clear focus in the process of fault
detection and diagnosis.

Our industrial partner ArcCore provides both examples
of experimental correct implementation of components and
modules, as well as examples of components and modules
that demonstrate non-conforming behavior. We also plan
to use standard fault injection and mutation techniques for
generating a wide range of possibly incorrect components
and modules. In addition, ArcCore provides a development
environment for AUTOSAR in order to modify and develop
new examples at will.

When composing such components and modules, a sum-
mary of detected (non-conforming) behavior will be used to
predict possible failures. Moreover, in case of actual fail-
ures, the behavioral summary model built through interac-
tion with the implementations will be used to designate the
root cause of failure.

2.3 Fault diagnosis and automated debugging
Fault diagnosis and model-based fault diagnosis have a

long tradition in dynamical systems and supervisory control
[13, 6, 14]. Fault diagnosis ideas have subsequently been
exploited in computer systems, e.g., in the form of spectrum-
based diagnosis of software systems [10]. In spectrum-based
diagnosis, passed and failed executions are scrutinized, and
annotated with information about the execution of each line
(block or module) of program code. Note that for diagnosis,
one does not differentiate whether in a particular run a block
caused the failure or not; it is just checked whether the block
is part of the whole execution. An alternative approach to
spectrum-based fault diagnosis, which uses more semantic
information, is delta debugging [21]. It uses a set of passing
and failing conditions in order to efficiently uncover a small
failing execution. Subsequently, the comparison of system
states in passing and failing runs can reveal the root cause
of failure in this approach.

To exploit these approaches in our context, we exploit the
extra information obtained in the process of conformance
testing to narrow down the search process when applying



fault diagnosis and debugging techniques. We envisage that
exploitation of these extra pieces information, which are
made available through conformance testing will result in
faster and more accurate diagnosis. We have tried both
spectrum-based diagnosis and delta debugging in our past
research [20] and hence, do have in-house knowledge about
both.

2.4 Symbolic execution and concolic testing
Symbolic execution has been successfully applied to test

and verify computer (particularly software) systems in the
past ten years [19, 5]. To apply symbolic execution in soft-
ware testing, one usually starts by running the system un-
der test (symbolically or concretely with random seed val-
ues) and following the execution trace until reaching deci-
sion points. Conditions at decision points are accumulated
along the execution and by using constraint solvers (such as
powerful satisfiability-modulo-theory solvers), the obtained
conditions are turned into concrete valuations for param-
eters. Hence, new concrete test cases are obtained, lead-
ing to maximum coverage of the code. This technique is
often called “concolic (a combination of concrete and sym-
bolic techniques in) testing”. In our context, concolic testing
can be particularly useful in producing summaries of models
and implementation during the conformance testing process,
similar to the approaches reported in [9, 16]. In this con-
text, we will exploit the results obtained from a companion
project (EFFEMBAC), which focuses on the integration of
model-based testing with concolic testing. While EFFEM-
BAC focuses on the establishing a fundamental link between
these two techniques, AUTO-CAAS will apply these tech-
niques on the concrete case studies at hand.

3. EXPECTED RESULTS AND APPROACH
We develop an automated diagnosis approach that ex-

ploits the information from the conformance testing process.
In this case, the goal is to predict whether the integration of
concrete realizations will lead to any failure. Additionally,
we use the information gathered during the conformance
testing process in order to diagnose the later observed inte-
gration and vehicle-function level failures and find the root
cause of failure. This will resolve a contemporary problem
in the application in the practice of automotive software
and systems. Particularly, use of the popular AUTOSAR
standard in our research forms the basis of our model-based
approach and enables its wide-spread application in indus-
trial practice. Next, we give the steps involved in achieving
these goals in more detail.

3.1 From conformance testing to summaries
The first technical milestone of the project is to create

model and implementation summaries that compactly de-
scribe the variation points between the AUTOSAR model
and the implemented component / module. These symbolic
models also include possible parameterizations of the im-
plementation. To this end, we define a formal framework
that is expressive enough to act as the common semantic
domain both for AUTOSAR models and implementations.
Moreover, we shall specify the semantic properties and de-
fine composition and reduction techniques for such models
and implementations and prove them correct.

Next, we produce summaries of deviating behavior dur-
ing the process of conformance testing for individual com-

ponents and modules. We envisage to use ideas from con-
colic testing to make this extraction possible and efficient.
We first provide a mathematical description of this process
and apply it to small examples. After successful applica-
tion of the mathematical definitions to small examples, we
will implement these definitions and integrate them with
QuickCheck.

3.2 Aligning failures with summaries
Next, we use the summary of mismatching behaviors gath-

ered in the previous phase in order to both predict possible
failures, as well as exploit an existing failure trace in or-
der to find the root cause for failure. Both goals boil down
to a guided (respectively, forward and backward) search in
the composition of summaries in order to reach a failure
(a particular failure in the second case). In this task, we
will exploit and integrate the existing bodies of knowledge
in the (symbolic) model checking literature and the auto-
mated debugging and fault diagnosis approaches. Similar to
the previous step, we first focus on the mathematical defi-
nition of an abstract framework for predicting failures from
composition of component models and deviation summaries,
as well as analyzing observed failure traces into deviations of
individual components. Subsequently, we apply simple ex-
amples distilled from realistic models and implementations
to validate our models and algorithms. After having gained
sufficient confidence (both by having proven formal prop-
erties as well as successful application to small examples),
we implement the developed techniques and apply them to
larger case studies.

Throughout the project and as a bi-product of our con-
tinuous involvement with examples of correct and incorrect
AUTOSAR components, we build a benchmark library of
such components. This benchmark will be made freely avail-
able online for researchers and practitioners in the area of
testing AUTOSAR-based software.

4. REFERENCES
[1] AUTOSAR BSW & RE Conformance Test

Specification, Release 4.0, Revision 2, 2011.

[2] T. Arts, J. Hughes, J. Johansson, and U. Wiger.
Testing telecoms software with Quviq QuickCheck. In
Proc. of ERLANG’06, ACM, 2006.

[3] H.R. Asaadi, R. Khosravi, M.R. Mousavi, and
N. Noroozi. Towards Model-Based Testing of
Electronic Funds Transfer Systems. In Proc. of
FSEN’11, vol. 7141 of LNCS, Springer, 2012.

[4] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A.
Pretschner. (Eds.) Model-Based Testing of Reactive
Systems. volume 3472 of LNCS, Springer, 2005.

[5] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid,
Corina S. Pasareanu, Koushik Sen, Nikolai Tillmann,
Willem Visser: Symbolic execution for software testing
in practice: preliminary assessment. In Proc. of ICSE
2011, ACM, 2011.

[6] R.J. Chen and R.J. Patton. Robust Model-Based
Fault Diagnosis for Dynamical Systems. Kluwer, 1999.

[7] H. Fennel et al., Achievements and Exploitation of
the AUTOSAR Development Partnership, SAE
Convergence Congress, Detroit, 2006.

[8] A.A. Gilberg, B.B. Kunkel, C.A. Ribault,
D.P. Robin, and E.N. Spinner. Conformance Testing



for the AUTOSAR Standard, Embedded Real Time
Software and Systems Conference, 2010.

[9] P. Godefroid. Compositional dynamic test generation.
In Proc. of POPL 2007, IEEE, 2007.

[10] M.J. Harrold, G. Rothermel, K. Sayre, R. Wu, and
L. Yi. An empirical investigation of the relationship
between spectra differences and regression faults.
Software Testing Verification and Reliability,
10(3):171–194, 2000.

[11] A. Hessel, K.G. Larsen, M. Mikucionis, B. Nielsen,
P. Pettersson, and A. Skou. Testing real-time
systems using UPPAAL. In Proc. of FMT’08, vol.
4949 of LNCS, Springer, 2008.

[12] J. Hughes. QuickCheck testing for fun and profit. In
Proc. of PADL’07, Springer, 2007.

[13] R. Isermann. Supervision, fault-detection and
fault-diagnosis methods - an introduction. Control
engineering practice, 5(5): 639–652, 1997.

[14] R. Isermann. Model-based fault-detection and
diagnosis-status and applications. Annual Reviews in
control, 29(1), 71–85, 2005.

[15] J. Peleska and W.-l. Huang, Model-Based Testing
With RT-Tester. Lecture slides of the HSST’13,
Halmstad University, 2013.

[16] J.H. Siddiqui and S. Khurshid. Scaling symbolic
execution using staged analysis. ISSE 9(2): 119–131,
2013.

[17] M. Veanes, C. Campbell, W. Grieskamp,
W. Schulte, N. Tillmann, and L. Nachmanson.
Model-based testing of object-oriented reactive
systems with Spec Explorer. In Proc. of FMT’08, vol.
4949 of LNCS, pp. 39–76, Springer, 2008.

[18] V. Vishal, M. Kovacioglu, R. Kherazi, and M.R.
Mousavi. Integrating Model-Based and
Constraint-Based Testing Using SpecExplorer. In
Proc. of MoTiP’12, IEEE CS, 2012.

[19] N. Williams, B. Marre, P. Mouy, and R. Muriel.
PathCrawler: Automatic Generation of Path Tests by
Combining Static and Dynamic Analysis. In Proc. of
the EDCC’05, pp. 281–292. Springer, 2005.

[20] M. Woehrle, R. Bakhshi, and M.R. Mousavi.
Mechanized Extraction of Topology Anti-patterns in
Wireless Networks. In Proc. of iFM’2012, vol. 7321 of
LNCS, Springer, 2012.

[21] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transactions
Software Eng. 28:183–200, 2002.


