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Abstract 

Systems modeling and simulation methods such as System Dynamics (SD) and agent-based (AB) 

modeling have been used to foster a better understanding of the dynamics and complexity of natural, 

technical, and social systems. System Dynamics provides an aggregate-level perspective, highlighting 

thinking in feedback loops and employing differential equations to model the causal relations in a 

system, exploring the system's dynamics by numerically solving the equations. Agent-based modeling, 

in a bottom-up method, focuses on constituent units (agents) and their interactions to explore the 

emerging behavior at a system level by means of simulation. Comparing these modeling methods can 

help us understand their strengths and weaknesses in order to choose the right approach for a given 

modeling problem. It may also support the analysis of a given system to build multiple models using 

the different approaches and comparing them, in particular to treat fundamental uncertainties in 

systems modeling and simulation. In this paper, we review the existing studies comparing the SD and 

AB approaches and models, investigating the aims, methodology, and results of such comparative 

studies. We also highlight lessons learned for future model comparisons by examining how the 

corresponding SD and AB models are built for the purpose of comparison. A procedure for 

transforming System Dynamics models into agent-based models is presented and discussed using 

examples from the literature. 
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1 Introduction  

Systems modeling and simulation approaches, such as System Dynamics (SD) modeling, at a macro 

level, and agent-based (AB) modeling, at a micro level, have been widely employed in the natural and 

social sciences to describe the dynamics of complex phenomena, ranging from environmental 

assessment (Kelly et al. 2013), ecological and environmental systems (e.g., see Ford 1999 for SD; 

Hare and Deadman 2004 and Matthews et al. 2007 for AB), and sustainability (e.g., see Hjorth and 

Bagheri 2006 for SD; Köhler et al. 2009 for AB) to biology (e.g., see Ruth and Hannon 1997 for SD; 

An et al. 2009 for AB), economics (e.g., see Radzicki and Sterman 1994 for SD; Tesfatsion 2006 for 

AB), and social sciences (e.g., see Lane 1999 for SD; Gilbert and Troitzsch 2005 for AB). In general, 

SD modeling, an approach based on ordinary differential equations (ODEs), models a system at the 

aggregate level with a focus on causal relations and feedback loops, and describes the system in terms 

of state variables (stocks) and their rates of change with respect to time (flows). In contrast, AB 

modeling looks at a system not at the aggregate level, but at the level of its constituent units, or 

―agents‖ (Bonabeau 2002) and explores the macro behavior emerging from micro-level dynamic 

interactions among agents (agents can be individuals, groups, households, firms, vehicles, etc.). 

Despite their differences, both SD and AB modeling approaches can address the same modeling 

problems and the same questions regarding the dynamics of a given system (Scholl 2001). There has 

been an academic discourse on the necessity and advantages of comparing the SD and AB paradigms, 

two modeling traditions with fundamentally different perspectives. Given the extensive use of SD and 

AB approaches in environmental modeling and sustainability assessment (Kelly et al. 2013), it seems 

useful to further elaborate on the strengths and weaknesses of each approach and investigate the 

possibility and advantages of building and comparing corresponding models using SD and AB to treat 

the uncertainty of models used in environmental and sustainability studies.  

In this paper, we review previous studies which have compared these two approaches. Our review 

includes two groups of studies: (i) studies comparing SD and AB approaches without conducting 

simulation experiments and (ii) studies based on simulation case studies which involve building and 

comparing SD and AB models applied to the same modeling problem. Thus, the goals of our review of 

the comparative studies are as follows: 

(a) To better understand the differences between the two modeling approaches in general, to 

clarify when these approaches are appropriate, and what must be taken into account when 

utilizing them; 

(b) To clarify the comparison method employed by the reviewed studies, how we can design 

simulation studies to compare models based on these two approaches, and what procedures 

can be used to build corresponding SD and AB models in such comparative studies; 

(c) To highlight the advantages of employing comparative studies in the field of sustainability 

assessment. 

As for goal (b), such model comparisons—also known as alignment of computational models—

not only provide rigorous results to inform decisions regarding the choice of the modeling approach 

that suits a given modeling problem better, but also can help to determine to what extent two models 

claiming to deal with the same phenomenon can produce the same results (Axtell et al. 1996). In other 
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words, multi modeling—using multiple models to describe the same domain—can be used to address 

uncertainties associated with the system and model (Uusitalo et al. 2015). Model-to-model comparison 

and analysis also support the principle of scientific replicability in the field of simulation modeling 

(Rouchier et al. 2008; Halbe et al. 2015).  

In the next section (Section 2), basic definitions of the two modeling approaches, SD and AB, will 

be described. After a brief overview of our research method and the studies reviewed (in Section 3), 

we will then present and discuss the main findings of reviewing two groups of comparative studies 

(Section 4), separating studies with a focus on the general approaches (without experimentation) and 

those based on case studies with detailed simulation experiments, taking into account aspects such as 

comparison aim, methodology, and results in the studies reviewed. Based on what we learn from the 

methodology of model-based comparison in the studies reviewed, we will highlight the transformation 

procedure used to build an AB model given an SD model using examples from the reviewed studies. 

In the final section (Section 5), we will draw conclusions from our review.  

 

2 Definitions 

2.1 What is System Dynamics? 

The System Dynamics Society introduces SD as follows: ―System dynamics is a computer-aided 

approach to policy analysis and design. It applies to dynamic problems arising in complex social, 

managerial, economic, or ecological systems—literally any dynamic systems characterized by 

interdependence, mutual interaction, information feedback, and circular causality‖
1
 (See Richardson 

2011 for an overview of SD and suggestions for further reading). 

With an emphasis on feedback thinking (Richardson 1991), System Dynamics is equipped with 

both qualitative and quantitative methods to help us better understand ―the structure and dynamics of 

complex systems‖ (Sterman 2000). Qualitative SD methods include diagramming techniques, such as 

causal loop diagrams (CLDs) and stock/flow diagrams (SFDs, see Figure 1), which are employed—in 

a way similar to the systems thinking approach (Senge 2014; Mingers and White 2010)—to 

communicate the contents of models in processes of model conceptualization and model exposition 

(Lane 2008). Quantitative SD methods include techniques from dynamic systems theory (such as 

differential equations) and numerical methods (such as Euler‘s method, used in computer simulation 

for numerical approximations of differential equations) which are employed to ―simulate logical 

consequences of models‖ (Lane 2008). Diagrams, although useful for learning and group model 

building, are insufficient for creating reliable policy insights because without formalisms and their 

numerical solution, the models lack the ability to reveal roughly correct timescales and to show the 

outcome of competing feedback loops. Therefore, they can lead to incorrect interpretations of system 

behavior (Lane 2008; Sterman 1994).  

The main concepts of the SD method are as follows (Grösser and Schaffernicht 2012):  

                                                      

1
 http://www.systemdynamics.org/what-is-s/  
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 The feedback loop, which is a ―logically closed causal chain‖ where an initial change in a variable 

is fed back to its origin. The elements that constitute a feedback loop are variables and links.  

 The polarity of a feedback loop is positive if it reinforces initial changes and is negative if it 

dampens them. 

 There are three categories of variables: stocks, flows, and auxiliary variables. ―Stocks and flows—

the accumulation and dispersal of resources—are central to the dynamics of complex systems.‖ 

(Sterman 2001) 

 Causal links include link polarity (positive or negative), delays in the links, and the shape of 

relationships (linear or nonlinear).  

 

 

Figure 1. A stock/flow diagram used to visualize a simple SD model. Adapted from Sterman (2000) 

 

Emphasizing the system structure as a cause of dynamic behavior, system dynamics is capable of 

identifying the behavioral patterns of complex systems. This is because the complexity of the system 

stems from the interactions of the components, not the components themselves (Sterman 2000; Phelan 

1999). 

The aim of system dynamics modeling is to ―explain behaviour by providing a causal theory, and 

then to use that theory as the basis for designing policy interventions into the system structure which 

then change the resulting behaviour and improve performance‖ (Lane 2008). 

Previous studies have pointed to a number of fields as theoretical origins of the SD method, including 

differential equations (Gilbert and Troitzsch 2005, p.28), control theory and the modern theory of 

nonlinear dynamics (Sterman 2002), dynamic systems theory (Grösser and Schaffernicht 2012), 

servomechanisms engineering (Richardson 2011), and systems theory (Phelan 1999).  

Mathematically, a formal system dynamics simulation model is a system of coupled, nonlinear, 

first-order differential (or integral) equations of the form (Richardson 2011),   

dS/dt = inflow – outflow = g(S, P),    S(t0) = S0  (initial value)   (1) 

where S is a stock variable (level or state variable), P is a set of parameters, and g is a nonlinear 

function. Simulation of such systems is conducted by partitioning the simulated time into discrete 

intervals of length h and stepping the system through time one h at a time. Each stock variable is 

computed from its previous value and its net rate of change S´(t): S(t) = S(t - h) + h . S´(t - h) 
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2.2 What is agent-based modeling? 

Agent based modeling (also known as agent based simulation or—not exactly equivalent—individual-

based modeling
2
) is a simulation modeling method which describes the system in terms of its 

constituent units—called agents—with autonomous behavior. The interactions of agents with each 

other and the environment result in behavior emerging at the system level—see Bonabeau (2002) for 

an overview on AB modeling in human systems; see Macal and North (2010) for a brief tutorial on 

AB modeling; see Hare and Deadman (2004) for an overview of AB modeling in environmental 

modeling; see Heath et al. (2009) for a survey of AB modeling practices. A synonym of AB modeling 

would be ―microscopic modeling, and an alternative would be macroscopic modeling‖ (Bonabeau 

2002). 

In terms of theoretical foundations, AB modeling can be traced back to complexity theory (Phelan 

1999), complex systems (and complex adaptive systems) (Macal and North 2010), artificial life (and 

distributed artificial intelligence) (Hare and Deadman 2004), object-oriented software engineering 

(Macal and North 2005), cellular automata (Macy and Willer 2002), graph theory, and category theory 

(Borrill and Tesfatsion 2011).  

A typical AB model has three elements (based on Macal and North 2010): 

1. A set of agents (agent instances which are created in the run time according to agent types) 

with attributes or state variables and behavior rules;  

2. A set of agent relationships and methods of interaction: an underlying topology of 

connectedness defines how and with whom agents interact; 

3. The agents‘ environment: agents interact with their environment in addition to other agents. 

Mathematically, we can assume that at each time t an individual agent i, i ∈ {1,…, n} is well 

described by a state variable xi,t ∈ R
k
, and let the evolution of the agent‘s state variable be specified by 

the difference equation:  

xi,t+1 = fi(xi,t, x-i,t; αi)  (2)  

 where we assume that the behavioral rules may be individual-specific both in the functional 

form of the phase line fi(.) and in the parameters αi, and may also be based on the state x-i of all 

individuals other than i. 

 where x-i is the state of all individuals other than i and α are some structural parameters.  

 

                                                      

2
 In this paper we consider ―individual-based modeling‖ (IBM) a subset of agent based modeling. IBM, which is mainly used 

in ecology (Grimm 1999; Heckbert et al. 2010), ―stipulates that populations of organisms should be disaggregated and thus 

represented in terms of discrete individuals which are unique only in terms of characteristics‖ (Hare and Deadman 2004). 

Many studies use the two terms as if they were interchangeable (see Grimm 1999 and Grimm et al. 2006). There is little 

difference (if any) between agent-based modeling and individual-based modeling (Nielsen 2012). For example, ―all models 

of a certain type (concentrated on and dealing with individuals) can be said to be individual-based if that is literally the case, 

but they need to perform with a certain level of agency of the ‗actors‘ in the model before it is correct also to refer to them as 

agent-based‖ (Nielsen 2012). 
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3 Research method 

3.1 Review method 

We reviewed studies comparing AB and SD models and approaches. The studies were selected based 

on searching the following keywords in the topic (title, abstract, and keywords) of English-language 

articles indexed by Scopus and Web of Science. The search keywords included ―agent-based‖ / 

―individual-based,‖ ―System Dynamics‖ / ―differential equations,‖ and comparison/compare. A brief 

overview of the studies selected is presented in the following section. The studies selected were then 

analyzed with regard to the comparison aim, criteria, methodology, and results. Moreover, using 

examples from the studies reviewed, we clarified a transformation procedure used to produce 

equivalent models for the comparison aims in the reviewed studies.  

3.2 Overview of the studies reviewed  

The studies reviewed can be classified in two groups: Group A, including the studies that compare SD 

and AB approaches in general, without investigating the differences in terms of concrete simulation 

experiments; Group B, including the comparative studies which build equivalent models and run 

simulations using AB and SD approaches. Table 1 lists the studies reviewed and their subject areas.  

 

Table 1. List of the studies reviewed and their subject areas 

Group A 

Study  

 

Subject area 

 Group B 

Study  

 

Subject area 

Phelan (1999) General  Wilson (1998) Ecology, population 

dynamics 

Scholl (2001) General  Parunak et al. (1998) Management, industrial 

supply networks 

Lorenz (2009) General  Rahmandad and Sterman (2008) Epidemiology 

Behdani (2012) Supply chains Macal (2010) Epidemiology 

Kelly et al. (2013) Integrated environmental 

assessment 

Figueredo et al. (2013) Immunology  

Ip et al. (2013) Public health  

Ouyang (2014) Critical infrastructure 

systems 

 

3.2.1 Group A: Comparative studies without experimentation 

Phelan (1999), in a theoretical analysis, discusses similarities and differences of SD and AB modeling 

approaches in the context of comparing systems theory and complexity theory and addressing their 

common vocabulary and concepts. 
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Scholl (2001), calling for ―cross study and joint research‖ between SD and AB modeling 

approaches, highlights the overlaps between the two techniques, the modeling principles of each 

technique, and their respective strengths and weaknesses. 

Lorenz (2009) proposes that three aspects be compared and that this helps with the choice between 

SD and AB: structure (―How is the model built?‖), behavior (―What are the central generators of 

behavior?‖), and emergence (―Can the model capture emergence?‖ Note: Lorenz (2009) uses the 

following definition of emergence: ―the arising of novel and coherent structures, patterns and 

properties during the process of self-organization in complex systems‖). He argues that the structure of 

SD models is static, which means that differential equations initially defined do not change during the 

simulation run. The structure of AB models, on the other hand, is dynamic, because ―agents are 

created or destroyed and interactions are defined through the course of the simulation run.‖ The 

second aspect (behavior) focuses on the central generators of behaviors in the model. For SD the 

behavior generators are feedback and accumulations, while for AB they are micro-macro-micro 

feedback and interaction of the systems elements. The third aspect lies in their capacity to capture 

emergence, which differs between the two approaches. AB modeling is capable of capturing 

emergence, while the single-level structure of SD models does not provide that possibility.  

Heckbert et al. (2010), in their review of AB models in ecological economics, briefly compare AB 

modeling with other complex systems modeling tools including SD modeling. They note that while 

SD models, as ―the most used modeling tool for complex systems,‖ has been useful in modular 

modeling of interconnected systems of the biosphere, hydrosphere, atmosphere, and anthroposphere, 

and also in participatory modeling leading to participant learning and awareness, SD models fail to 

describe the ―decisions and actions of multiple actors‖ and multiple spatial relationships; SD models 

are ―fundamentally not adaptive‖; and the ability to evolve in SD equations and feedbacks is ―limited 

to variations in parameter values‖ (Heckbert et al. 2010).  

Kelly et al. 2013 review five modeling approaches including SD and AB modeling (the other three 

are Bayesian networks, coupled component models, and knowledge-based models). Regarding AB and 

SD modeling, they note the uncertainty in interpretation of data, measurements, or conditions, in 

which both SD and AB methods ―require comprehensive testing of the model to allow this 

understanding to be developed.‖ They criticize both approaches because the level of testing required to 

develop this understanding (which is dependent on the modeling objective) is rarely carried out. 

However, Kelly et al. (2013) note that time and other resource constraints contribute to this weakness.  

Ouyang (2014), with a focus on simulation and modeling in the field of critical infrastructure 

systems, compares SD and AB approaches (together with other approaches such as empirical 

approaches, economic theory based approaches, and network based approaches), using comparison 

criteria including quantity of input data, accessibility of input data, types of interdependencies, 

computation complexity, maturity, etc.  

3.2.2 Group B: Comparative studies with experimentation  

Wilson (1998) compares an AB model and two versions (i.e., deterministic and stochastic versions) of 

differential equation models for population dynamics in a predator-prey system, demonstrating the 

role of stochasticity in spatial processes.  
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Comparing equations with agents, Parunak et al. (1998) illustrate how SD and AB models can be 

used to model industrial supply networks. To be able to choose between these two methods, they 

emphasize the importance of further development of a group of cases that demonstrate the respective 

strengths and weaknesses of the two approaches. 

Rahmandad and Sterman (2008) use the spread of contagious diseases as an example to compare 

results of AB and SD modeling, analyzing the effect that heterogeneity and different network 

structures have on the differences between AB- and SD-based results. They note that previous AB and 

SD models of the same phenomenon ―sometimes agree and sometimes diverge, especially when 

compartments contain smaller populations.‖ Rahmandad and Sterman (2008) find that ―AB models 

relax aggregation assumptions, but entail computational and cognitive costs that may limit sensitivity 

analysis and model scope. Because resources are limited, the costs and benefits of such disaggregation 

should guide the choice of models for policy analysis.‖ 

Macal (2010) argues that many systems can be modeled equally well by either method. He 

presents a formal specification for SD and AB models and uses the specification to build equivalent 

AB models, illustrating his work with an example of an SIR epidemic model (S: susceptible; I: 

infected, R: recovered).  

Figueredo et al. (2013) investigate the potential contribution of AB models when compared to 

ordinary differential-equation models (a proxy for the SD method) in a biological domain, using the 

example of immune interactions with early-stage cancer. They find that it is possible to obtain 

equivalent AB models (i.e., implementing the same mechanisms), but not everything modeled in the 

SD equations can be implemented in the AB model, for example, no ―half‖ agents can be modeled in 

the AB method. However, Figueredo et al. (2013) note that this does not matter if the population sizes 

in ―the original model definition are large enough.‖ The simulation output in both SD and AB models 

in their studies differed depending on the attributes of the system being modeled. But the population 

size had a positive impact on result similarity—the bigger the population, the closer the simulation 

outputs. Figueredo et al. (2013) conclude that in some cases, ―additional insight‖ from using AB 

models was obtained, mainly due to their stochastic nature which can produce different results (normal 

and extreme cases). They also note that in AB models, the variability in the output graph is closer to 

the real world, whereas in SD, output graphs better show the underlying pattern in the results (e.g., 

predator-prey pattern). 

 

4 Main findings and discussion 

4.1 The aim of the SD-AB comparison in the studies reviewed 

The studies reviewed mention various reasons for comparing SD and AB approaches and models. 

Table 2 summarizes the aim of the comparison in the studies reviewed, including those without 

experimentation (Group A) and those with a simulation component (Group B). As shown in Table 2, 

the main purpose of comparing SD and AB approaches and models is to provide insights about when 

to choose an SD approach and when it is appropriate to use AB modeling. In addition to this purpose, 

studies comparing models (Group B) seek to enhance knowledge and inform modeling research 

communities in certain domains, for example immunology—where differential equation modeling 
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(quantitative SD) is considered an established modeling approach—about the capabilities of the 

relatively new approach, i.e., AB modeling. So comparative studies, including experimentation and 

model comparison (Group B), employ the two different approaches to build multiple models in order 

to address the same problem and to better understand the system under study, (hopefully) with less 

uncertainty.  

 

Table 2. The aim of comparisons of SD and AB approaches and models in the studies reviewed 

Study  Purpose of the comparison  

GROUP A:  

Scholl (2001) Since both approaches have “produced rich bodies of research and literature on widely overlapping fields of 

application,” “at the very least, it will be insightful to compare the aggregate behavior and emergent influence on the 

environment of agent-based models with the predictions of aggregate-level feedback models regarding the same 

subject area.” 

Schieritz and Milling 

(2003) 

To give both AB and SD modeling communities “the opportunity to learn about each other’s modeling paradigm, 

question own assumptions, see problems from a different viewpoint and probably identify potentials of integration 

that can overcome some of the pitfalls a single approach might have in certain areas.” 

Lorenz (2009) To facilitate a “superior choice of simulation methodology” (to avoid “abductive fallacy,” i.e., the fallacy of applying 

an inadequate simulation methodology to a given simulation task) 

Behdani (2012) To support “the choice of appropriate simulation paradigm,” which is an “important step in the model development 

process” 

Kelly et al. (2013) To “assist modellers and model users in the choice of an appropriate modelling approach for their integrated 

assessment applications and that enables more effective learning in interdisciplinary settings.” 

Ip et al. (2013) SD and AB are compared in the context of reconciling statistical and systems approaches. 

Ouyang (2014) To better understand critical infrastructure systems (CIS) to support planning, maintenance, and emergency 

decision making, modeling and simulation of interdependencies across CISs has recently become a key field of study. 

 

GROUP B: 

 

Wilson (1998) “the philosophy of this work is that […] insights about important processes and mechanisms can be ascertained 

through the comparison of a variety of modeling frameworks” 

The goal of this study was to determine an appropriate stochastic population-level SD model that captures 

generality to gain insight beyond the specific AB models examined in the study. 

Rahmandad and 

Sterman (2008) 

When is it better to use agent-based (AB) models, and when should differential equation (DE) models be used? 

Macal (2010) How to translate a deterministic SD model into an equivalent time-stepped, stochastic AB model. 

Figueredo et al. 

(2013) 

Pointing to limitations in the use of SD mathematical models in the field of cancer immunology such as spatial 

interactions and emerging properties, the authors motivate the use of alternative systems simulation modeling 

approaches such as AB models in immunology. Using a comparative approach, they aim to show the potential 

contribution of AB models to help cancer-related immunology studies. 

Parunak et al.  

(1998) 

To understand the relative capabilities and advantages of SD and AB approaches. (They motivate this by pointing to 

ethical and practical importance of the comparison question for modelers: ethical aspects are associated with the 

duty of modelers to prioritize the domain being modeled, not a given modeling approach, and practical aspects are 

related to the funding sources interested in spending resources on modeling approaches that will provide the best 

results for the domain-specific problems.) 
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4.2 The methodology of the SD-AB comparison in the studies reviewed 

Here we present the comparison methodology employed in the studies reviewed with a simulation 

component (Group B). Table 3 presents the main stages followed in the studies comparing SD and AB 

models given the same modeling problem. In order to build corresponding models for purposes of 

comparison, some studies start from a given AB model and create at least one equivalent SD model, 

and some start from the SD model and then build an AB model. For example, Wilson (1998) and 

Rahmandad and Sterman (2008) start from an AB model, but Macal (2010) and Figueredo et al. 

(2013) follow an SD-to-AB modeling path.  

Table 3. Summarizing the methodology of comparison between SD and AB models in the reviewed studies  

Study  Comparison methodology  

Wilson (1998) - Start from a given AB model (for a predator-prey system).  

- Describe agents (predator and prey) and the discrete-time equations for their behavioral rules (prey reproduction, 

predation, predation reproduction, predator mortality, dispersal). 

- Build a series of SD models assuming that the AB model is closer to the real process, and that the SD differential 

equations can be adjusted to bring the two models into agreement: The initial SD model using ordinary differential 

equations describes reactions between the two species, but the second SD, which is to represent dispersal through 

space, requires extension to a set of spatio-temporal integrodifferential equations.  

Rahmandad and 

Sterman (2008) 

- Develop the agent-based SEIR model and ten AB scenarios (two conditions of heterogeneous and homogenous; for 

each condition they examine five network topologies, including fully connected, random, Watts-Strogatz small world, 

scale-free, and lattice networks.) 

- Derive the classical differential equation SD model from the AB model. 

- Calibrate the SD model to the trajectory of the infectious population in 200 randomly selected simulations from each 

of the ten AB scenarios. 

- Perform sensitivity analysis with regard to population size, the basic reproduction number (R0), and disease natural 

history. 

- Compare results of AB means with those of uncalibrated base case SD and also calibrated SD. 

Macal (2010) - Formulate the SD model, assuming the state equations are in reduced form and devoid of auxiliary variables and 

auxiliary equations. 

- Build the compartmental AB model as an illustrative artifact to guide us towards a fully individual-based AB model (the 

compartmental AB model is a kind of “naïve” AB model in which the agents—though satisfying the criteria to be an AB 

model as defined by Macal (2010) and providing equivalent results to the SD model—provide no additional 

(heterogeneous) information or implementation advantages over the SD model.  

- Build an individual-based AB model. 

Figueredo et al. 

(2013) 

- Start from the established SD differential equations for the interaction of immune cells and molecules with tumor cells.  

- Develop the AB model based on the SD model: 

1. Identify the possible agents (immune cells, tumor cells, and molecules); 

2. Identify the behavior and rules of each agent (die, kill tumor cells, suffer apoptosis); 

3. Implement the agents and add them to an environment; 

4. Establish connections and run the simulation. 

- Compare the results: Statistically compare the outcome samples obtained by SD and AB simulation using the Wilcoxon 

rank-sum test (to formally establish whether they are statistically different from each other). This test is applied as it is 

robust when the populations are not normally distributed; this is the case for the samples obtained by the SD and AB 

models.)  

Parunak et al.  

(1998) 

- Construct an experiment with an AB model of a supply network. (The AB model includes three types of agents:  

Company agents, Production Planning and Inventory Control agents, and Shipping agents.). 

- Build the SD model corresponding the AB model (the procedure is not described in the paper). 



S u b m i t t e d  t o  t h e  j o u r n a l  o f  E n v i r o n m e n t a l  M o d e l l i n g  &  S o f t w a r e   

P a g e  | 12 

4.3 Results of the SD-AB comparison in the studies reviewed 

4.3.1 Criteria for choosing between SD and AB modeling approaches 

The question of criteria for choosing an appropriate approach for addressing a given modeling 

problem drives all the studies reviewed. For example, Kelly et al. (2013) consider three main questions 

to be answered when choosing a modeling approach: (i) what is the modeling purpose? (ii) what types 

of data are available for developing and specifying the model? (iii) who are the model users and what 

requirements concerning the scales and formats of model outputs exist? Regarding the modeling 

purpose, Lorenz (2009) notes that the characteristics of the method have to fit both the phenomenon 

(what is being modeled?) and the purpose (why is it being modeled?).   

Table 4 summarizes both the criteria and the associated results of the comparison in the studies 

reviewed. Below we take a closer look at some of these criteria.  

 

Modeling purpose 

As shown in Table 4, the modeling purpose is one of the criteria for choosing the right modeling 

approach. Kelly et al. (2013) identify five main purposes for using models in the field of integrated 

environmental assessment: (i) prediction, where the purpose is to estimate ―the value of a system 

variable in a specified time period given knowledge of other system variables in the same time 

period;‖ (ii) forecasting, which involves ―predicting the value of a system variable in future time 

periods (short-, medium- or long-term), without knowledge of the values of other system variables in 

those periods;‖ (iii) management and decision-making under uncertainty, where models are used in 

problem formulation and can be incorporated into decision support systems and integrated assessment 

tools; (iv) social learning, which refers to the capacity of a social network to communicate, learn from 

past behavior, and perform collective action, e.g., dealing with complex technical tasks and at the 

same time the social relational activities; (v) developing system understanding/experimentation, where 

the purpose is to summarize and ―integrate available knowledge on system components in order to 

improve understanding of the entire system and the way it may react to changes in system drivers‖ 

(Kelly et al 2013). They then argue that both SD and AB approaches are more appropriate for the 

social learning and improving system understanding/experimentation purposes, and not for the other 

three purposes. Kelly et al. (2013) explain this by noting the emphasis of both methods on ―exploring 

the plausibility of assumptions and outcomes, rather than on accurate prediction, forecasting or 

decision-making. Such models are often developed to allow decision-makers and stakeholders to 

experiment with the model and try out differing assumptions about poorly understood processes. 

These models do not tend to be highly prescriptive about policy implications‖ (Kelly et al. 2013).  

In contrast to this view of policy-support uses of modeling and simulation, one of the studies 

reviewed, Rahmandad and Sterman (2008), has a clear a focus on policy support, building SD and AB 

simulation models in order to compare the results of the simulations in response to policy 

interventions in public health. Policy support is mentioned as the modeling purpose of many SD 

studies. For example, Lane (2008) sees ―designing policy interventions into the system structure‖ as 

the purpose of SD modeling, and Hilty et al. (2006), in their SD model of the impact of information 

and communication technology (ICT) on the environment, while stating that forecasting was not their 

modeling purpose, highlight the function of system experimentation and note that the ―final goal of the 
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project was to formulate policy recommendations based on new insights about the relative relevance 

of ICT application fields for environmental sustainability‖ (Hilty et al. 2006). As for AB models, there 

are many studies aiming at supporting decision making and policy options (e.g., Berger 2001; Sopha et 

al. 2011). 

 

Input data 

As presented in Table 4, another criterion mentioned in the studies reviewed concerning the choice of 

modeling approach is the input data and its various aspects. Ouyang (2014) highlights two aspects: (i) 

the quantity of input data needed for a simulation modeling task, for which that study ranks the SD 

approach as medium to large, and the AB approach as large (given the large amount of disaggregate 

data needed to describe the heterogeneity in individual attributes and network structures in the AB 

approach; see Rahmandad and Sterman 2008); and (ii) accessibility or availability of input data, for 

which that study ranks the SD approach as medium level of access, and the AB approach as difficult to 

access (given the better access to statistical data on aggregate level of a population in SD than 

individual level data in AB).  

The type of available data is another aspect of input data considered by Kelly et al. (2013), who 

describe two main types of data available to build a model: quantitative data (such as time series, 

spatial, or survey data) and qualitative data (such as expert opinion and stakeholder beliefs derived 

from workshops and interviews). Both SD and AB modeling approaches require quantitative data for 

simulation purposes. Though qualitative data can be used throughout the modeling process, 

incorporating qualitative data into SD and AB models and ―assessing the impacts of soft variables is 

challenging‖ (Kelly et al. 2013). 

 

Feedback effect 

Both SD and AB models capture the feedback effect (Rahmandad and Sterman 2008; Lorenz 2009). 

However, as seen in Table 4, feedback loops are recognized as the focus and basic building block of 

the SD approach (Scholl 2001; Lorenz 2009). SD is equipped with explicit diagramming methods, 

such as causal loop diagrams, which makes it easier to communicate and think about feedbacks in the 

system. Feedback loops enable an SD model to endogenously represent dynamic aspects of a system 

(Richardson 1999). AB models, however, have feedback at more than one level of modeling, and 

micro-macro-micro feedback is central in generating behavior (Lorenz 2009). However, AB models 

may hide, within the complexity of agent interactions, the feedback mechanisms key to dynamics of 

interest (Fallah-Fini et al. 2013). On the other hand, feedbacks in SD are structural, and their ability to 

evolve is limited to variations in parameter values. 
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Table 4. Summary of the results of comparisons in the studies reviewed (Group A) 

Study Criteria for comparing 

Approaches  

Comparison 

System Dynamics modeling Agent-based modeling 

Phelan (1999) Research agenda 

Techniques 

Epistemology 

Confirmatory1 

Circular flows 

Post-positivist3 

Exploratory2 

Agent-based models 

Positivist4 

Scholl (2001) Focus  

 

Approach  

Feedback loops 

 

Deductive5  

Individuals interacting based on 

generally simple rules 

Inductive6 

Lorenz (2009), 

Schieritz and Milling 

(2003) 

Basic building block 

Unit of analysis 

Level of modeling 

Perspective 

Adaptation 

Handling of time 

Mathematical formulation 

Origin of dynamics 

Feedback loop 

Structure 

Macro 

Top-down 

Change of dominant structure 

Continuous  

Integral equations 

Stocks 

Agent 

Rules 

Micro 

Bottom-up 

Change of structure  

Discrete  

Logic 

Events 

Behdani (2012) Capturing emergence? 

 

Capturing self-organization? 

 

Capturing co-evolution? 

 

Capturing path dependency? 

Debatable (lack of modeling 

more than one system level) 

Hard (lack of modeling individual 

decision making) 

Hard (system structure is fixed) 

Debatable (no explicit 

consideration of history to 

determine future state 

Yes (via modeling system at two 

distinctive levels) 

Yes (via modeling autonomous 

agents) 

Yes (network structure is modified 

by agents’ interactions) 

Yes (current and future state can 

be explicitly defined based on 

system history) 

Kelly et al. (2013) Reason for modeling/type of 

application 

Type of data available to populate 

model 

Focus on breadth of system 

Focus on depth of specific processes 

Aggregated effects 

Interactions between individuals 

System understanding; Social 

learning  

Quantitative data (common); 

Qualitative data (possible) 

Common feature 

Possible feature  

Common feature 

No 

System understanding; Social 

learning 

Quantitative data (common); 

Qualitative data (possible) 

Possible feature 

Common feature 

Possible feature 

Common feature 

Ip et al. (2013) Generality7 

Realism8 

Fit9 

Precision10 

Moderate-High 

Low 

Low-Moderate 

Moderate-High 

Moderate 

High 

Low-Moderate 

Low-Moderate  

Ouyang (2014) Quantity of input data needed 

Accessibility level of input data 

Computation cost (performance) 

Medium, Large 

Medium level of access 

Medium  

Large 

Difficult to access 

Slow 

Notes: 1. Confirmatory analysis aims at understanding the behavior of an overall system when the behavior of the components is known 

with a high degree of accuracy; 2. Exploratory analysis aims at deriving a set of component relations that will yield an overall system 
exhibiting the observed behavior; 3. Post-positivism contests the notion of positivism that observation reflects reality; the closest we can get 
to ontological reality is a shared agreement about experiential reality (arising from our shared perceptions with others); 4. Positivism 

maintains that our sensory perceptions provide accurate knowledge of reality (Phelan 1999). 5. The SD approach is deductive, i.e., it 
describes dynamic systems by their feedback structure at an aggregate level without accounting for individual agents or events (the 
dynamics of the underlying structures are seen as dominant.). 6. The AB approach is inductive; i.e., the modeler may modify rules and 
parameters and then try to understand what the resulting outcomes are with regard to the emergent behavior of the overall system (Scholl 

2001). 7. Generality: applicability of the model to phenomena other than that for which it was developed; 8. Realism: degree to which the 
model reflects reality as viewed by experts in the field; 9. Fit: degree to which the model output matches historical data and has predictive 
accuracy; 10. Precision: fineness of model and level of details specified (Ip et al. 2013). 
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4.3.2 Results of model comparisons  

Table 5 presents a brief summary of the results of the comparison of AB and SD models in the studies 

with simulation experiments reviewed (Group B).   

 

Table 5. Summary of the results of comparisons in the studies reviewed (Group B) 

Study  Result of the SD-AB comparison 

Wilson (1998) - The study compares an AB model of a predator-prey system with a series of SD models, including a deterministic 

and stochastic SD model.  

- The deterministic SD leads to qualitatively different behaviors than the AB model.  

- The study finds good agreement between AB results and the stochastic SD results under various dispersal 

scenarios.  

Rahmandad and 

Sterman (2008) 

- The SD and mean AB dynamics differ for several metrics relevant to public health, including diffusion speed, peak 

load on health services infrastructure, and total disease burden.  

- The response of the models to policies can also differ even when their base case behavior is similar.  

- In some conditions, however, these differences in means are small compared to variability caused by stochastic 

events, parameter uncertainty, and model boundary.  

Macal (2010) - Probabilistic elements in the SD model are identified, isolated, and translated into probabilities that are used 

explicitly in the AB model. For the SIR epidemic model, the two probabilities are related to agent contact and to 

agent transmission of infection.  

- The equivalence of the model results is not exact in terms of numerical accuracy for the reasons noted.  

- The study shows that the AB model is able to provide information beyond what the SD model provides due to 

the explicitly stochastic nature of the AB model. 

Figueredo et al. 

(2013) 

- It is possible to obtain equivalent AB models from a given SD model (i.e., implementing the same mechanisms). 

- However, the simulation output of both types of models might differ depending on the attributes of the system to 

be modeled.  

- In some cases, additional insight from using AB modeling was obtained.  

- Overall, the authors confirm that AB modeling is a useful addition to immunologists’ tool set, as it has extra 

features that allow for simulations with characteristics that are closer to the biological phenomena. 

Parunak et al.  

(1998) 

- The SD model shows the same periodicities as the AB model.  

- The SD model does not show many of the effects observed in the AB and in real supply networks, including the 

memory effect of backlogged orders, transition effects, or the amplification of order variation.  

 

4.4 Lessons learned from comparison methodology—A transformation 

procedure  

SD assumes homogeneity and perfect mixing within compartments (stock variables). For example, in 

an epidemic model using SD, a well-mixed population is assumed, i.e., the probability of any infected 

individual contacting any susceptible individual is reasonably well approximated by the average
3
. 

However, the perfect mixing assumption is relaxed in AB models, where heterogeneity is captured 

across individuals (in heterogeneous attributes and behavioral rules), in the network of interactions 

among them (in various network topologies), and in different mixing sites for population subgroups 

(Rahmandad and Sterman 2008).  

                                                      

3 see Jones, James Holland. 2013. ―Notes on R0.‖ Department of Anthropological Sciences, Stanford University. 
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The studies reviewed (with simulation experimentation; Group B) build equivalent models to 

conduct the comparison. The result of that comparison is reported in Section 3. In this section, based 

on what we have learned from the methodology of model-based comparison in the studies reviewed, 

we highlight the transformation procedure used to build an AB model given an SD model using 

examples from the studies reviewed, which is a procedure that relaxes assumptions of homogeneity 

and perfect mixing within compartments of the SD model. The reasons why we highlight this 

procedure, which is a subordinate step in the studies reviewed (which were analyzed in the previous 

section), are that: (i) this procedure is one of the aspects of the studies reviewed here, and thus fits the 

scope of our review; (ii) it is insightful to formulate this procedure to better understand differences 

between the SD and AB modeling approaches; (iii) the procedure provides user guidance for future 

comparative studies; and (iv) even if we do not intend to compare the two models, given the 

availability of either an SD or AB model, it is useful to be able to reuse knowledge embedded in one 

type of model by following such a procedure to build a new model of the other type.  

First we introduce the selected examples and then describe the procedure. Figure 3 visually 

presents the main elements of SD and AB, which are discussed in the following.  

 

 

Figure 3. Visual demonstration for mapping the elements of an SD model onto the relevant elements in the equivalent AB 
model. The dashed line depicts the mapping of the stock variable and flow function in the SD model onto the agent state 

and transition rule, respectively, in the AB model. The homogenous value of a stock variable in the SD model at any point in 

time during the simulation corresponds to the average value of the respective agent state in the population of 

heterogeneous agents. The red circle represents only one agent (“instance”) among the group of agents, corresponding to 

the population in the SD model.  
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4.4.1 An overview of examples taken from the studies reviewed 

Since the procedure will be described using examples from the literature, we first introduce the 

examples here.  

Example 1: An epidemic model—SIR and SEIR 

Macal (2010) and Rahmandad and Sterman (2008) use a classic epidemic model which divides the 

population into three (SIR, as in Macal 2010) or four (SEIR, as in Rahmandad and Sterman 2008) 

compartments: susceptible (S), infected (I; symptomatic), and recovered (R; immune to reinfection)—

and also exposed (E; asymptomatic infectious) in an SEIR model. The following system of differential 

equations describes an SIR model: 

dS/dt = - βIS/N       

dI/dt = βIS/N - γI 

dR/dt = γI 

Initial conditions: S0 = N-1, I0 = 1, R0 = 0, 

where N is the population size (assumed to be fixed); β is the likelihood that an infected individual 

transmits the infection to a susceptible individual upon contact; γ is the rate at which infected 

individuals recover from an infection (assuming permanent immunity). 

Example 2: An immunological model—Tumor and effector cells 

Figueredo et al. (2013) investigate a model of immuno-interactions with cancer using three case 

studies: the first SD model involves interactions between tumor cells and generic effector cells (two 

populations); the second model adds to the previous model the influence of IL-2 cytokine molecules in 

the immune responses of effector cells towards tumor cells (three populations); and the third model 

adds interactions between effector cells, tumor cells, and IL-2 and TGF-b molecules (four populations) 

(Figueredo et al 2013). The following system of differential equations describes a model involving 

only two populations of tumor and effector cells (the first case study in Figueredo et al 2013): 

dT/dt = Tf(T) − dT(T,E) 

dE/dt = pE(T,E) − dE(T,E) − aE(E) + Φ(T) 

where T is the number of tumor cells; E is the number of effector cells; f(T ) is the growth of tumor 

cells, dT(T, E) is the number of tumor cells killed by effector cells; pE(T, E) is the proliferation of 

effector cells; dE(T, E) is the death of effector cells when fighting tumor cells; aE(E) is the death 

(apoptosis) of effector cells, Φ(T) is the treatment or influx of cells. 

4.4.2 The procedure for creating an AB model corresponding to a given SD model 

1. Identify populations and their respective states in the SD model 

Consider the SD model defined earlier in Eq. (1) with a system of differential equations of the form:  

dS/dt = inflow – outflow = g(S, P),    S(t0) = S0  (initial value)   (1) 

where one differential equation is associated with each stock variable S. This equation includes at least 

one inflow and/or outflow term, which in turn can be a function of S and other stock variables.  

Step 1.1: Identify populations in the SD model.  
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For example, in Example 1, there is only one population, which is the population of individuals 

studied in the scope of the SEIR epidemic model. In Example 2, at least two populations can be 

identified: the population of tumor cells and population of effector cells.  

Step 1.2: For each population identified in Step 1.1, list the states associated with the population. 

Stock variables, which are differentiated over time, guide us towards these states.  

In the SEIR model in Example 1, there are four stock variables, so all members of a population 

are in one of four states—susceptible, exposed, infected, or removed. In Example 2, we have already 

identified two populations. The population of tumor cells can be associated with the stock variable, T, 

which indicates the number of tumor cells (―alive‖). If the members of this population are not in the 

―alive‖ state, there should be another implicit state (not clearly expressed as a stock variable in the 

equations for Example 2), e.g., ―non-alive‖ or ―dead‖ state. The other population in Example 2 is the 

population of effector cells, associated with the stock variable E, which represents the number of 

effector cells (―alive‖). As explained earlier for tumor cells, we can also consider an implicit state 

―dead‖ for the effector cells.  

 

2. Define agents and agent states  

Step 2.1: For each population identified in Step 1.1, define an agent (class) a, to represent the 

members of the population. 

Step 2.2: For each population state S in the SD model (identified in Step 1.2), define a state variable s 

to the respective agent a (associated with the population) in a way that sa = S. 

In Example 1, following Step 2.1 and 2.2, for the population of individuals, we can define an 

agent called ―individual‖ which can be in any of the following states: susceptible (S), exposed (E), 

infected (I), and recovered (R).  

Similarly in Example 2, since we have two populations, we can define two agents: tumor cell and 

effector cell. Each of these agents can be either in the state ―alive‖ or ―dead.‖ 

 

3. Identify the flows between stocks in the SD model and define transition rules between agent 

states  

Step 3.1: Identify the flows between stocks in the SD model 

Note that the flows between stocks at the population level in the SD model are equal to the value 

of the sum of the underlying probabilistic transition rates for each population member. 

Step 3.2: Define transition rules between agent states of the agent associated with the population. 

In Example 1, looking at the equations in the epidemic model, following Step 3.1, we can identify 

these flow rates: the flow βIS/N leaves the stock Susceptible and enters the stock Infected; the flow γI 

goes from the stock Susceptible to Recovered.  

Then in Step 3.2, we can define two transition rules for the states of the agent ―individual.‖ At 

this step, we can use state charts to define and visualize the agents‘ states, transitions between the 

states, events that trigger transitions, timing, and agent actions. Most of the transitions occur according 

to the rates developed in Step 3.2 (e.g., see Figueredo et al. 2013). In Example 2, for the flow rate ―aT 

(1 - Tb)‖ in the SD model we can define the transition ―proliferation‖ with the rate ―a - 

(TotalTumor.b)‖ for agent state ―alive.‖   
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4. Add heterogeneity in individual attributes 

Step 4.1: Identify individual attributes (agent parameters) based on the parameters used in formulating 

transition rules defined in Step 3.2. 

Step 4.2: Add heterogeneity in individual attributes. 

In the studies reviewed, various approaches were chosen to represent heterogeneity in AB models 

when the comparative experiments were designed.  

In Example 1 (Rahmandad and Sterman 2008), following Step 4.1, we can identify four 

individual attributes for an agent in the epidemic model: expected contact rate, infectivity, emergence 

time, and disease duration. In Step 4.2, Rahmandad and Sterman (2008) choose to add heterogeneity 

(to relax the perfect mixing assumption) on the expected contact rate for each individual to create 

heterogeneity conditions in individual attributes. They do so by defining the expected contact 

frequency for a link (defined based on network topology; see next step) between individuals i and j, 

c[i, j], as a function of a random variable, λ[i] and λ[j], in which λ[i] represents different propensities 

for each agent i to use its links. We should make sure that the average value of expected contact 

frequency for the population of agents in the AB model equals the value used in the SD model. (Note 

that in this example, the AB model uses the same values as the SD model for other individual 

attributes, i.e., infectivity, emergence time, and disease duration.)  

In Example 2 (Figueredo et al. 2013), following Step 4.1, we can identify agent parameters of the 

tumor cell, such as a and b (associated with proliferation and death by age), m (related to damaging the 

effector cell), and n (for death caused by effector cells), as well as parameters of the effector cell, such 

as m for death due to age, d for death by apoptosis, p and g for proliferation, and s for its injection as 

treatment. In Step 4.2, Figueredo et al. (2013) choose to vary the following individual attributes in 

several scenarios defined in their analysis: different death rates of tumor cells (b, varying between 

0.002 and 0.004), different effector cells apoptosis rates (d, varying between 0.1908, 0.3743, and 2), 

and different treatments (s, varying between 0.318, 0.1181, and 0). 

 

5. Add network structure (heterogeneity) for agent interactions 

The network of interactions between agents—also called contact network, relationship network, or 

social network—is a feature of modeling which is specific to AB modeling, and we cannot find 

anything explicitly equivalent in the SD model (even though the influence of the network is 

aggregated in macro-level parameters in the SD model).  

Step 5.1 Add a network for the interaction of agents. 

Among the studies reviewed on the comparison of SD and AB modeling, only one study, 

Rahmandad and Sterman (2008) examines the influence of various network structures in disease 

diffusion dynamics. That study explores five different network structures: fully connected, random, 

small world, scale-free, and lattice.  

Unlike SD models, AB models have the ability to represent the network of interactions among agents. 

Various approaches can be used in modeling the interactions among agents (Bargigli and Tedeschi, 

2014): from local interaction (where agents‘ behavior is directly affected by others‘ behavior, rather 

than being mediated by a centralized agent or market mechanism) to global interactions (where 

individual behavior depends on the behavior of all other agents), from deterministic to stochastic (e.g., 

switching from one partner to another depends on a probability), from exogenous to endogenous 
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interactions, and from static—i.e., the neighboring sets are determined once and for all—to dynamic 

interactions—i.e., the interactive structure evolves over time depending on model assumptions 

(Bargigli and Tedeschi, 2014). The choice of approaches depends on the phenomenon to be modeled 

and on the model purpose. At this step, Macal and North (2010) suggest questions such as:  

 How do the agents interact with each other?  

 How expansive or focused are agent interactions? 

This step defines possible network structures for the interactions of agents with each other. Several 

network structures have been widely used in AB modeling studies and also supported by simulation 

tools (Borshchev 2013): 

 Random networks, where agents are connected randomly with a given average number of 

connections per agent; 

 Distance-based networks, where any two agents are connected if the distance between them is 

less than a given maximum (in continuous space only); 

 Ring lattice networks, in which agent connections form a ring where an agent is connected to a 

given number of closest agents; 

 Small-world networks, which can be considered as ring lattice networks where some links 

have been ―re-wired‖ to long-distance agents; 

 Scale-free networks, where some agents are ―hubs‖ with a lot of connections and some are 

―hermits‖ with few connections. 

 

Another approach is to determine network structure from a field study. For example, Ahuja and 

Carley (1998) analyze email interaction among members of a virtual organization to determine the 

network structure associated with three tasks in the organization.  

Mathematically, interaction networks in AB modeling are based on graph theory. Using AB 

modeling, Peres (2014) investigates the impact of network characteristics in 160 topologies on the 

diffusion of innovations.  

 

6. Add spatial heterogeneity and mobility  

Step 6.1 Add spatial heterogeneity and mobility to the AB model. 

As discussed earlier, spatial heterogeneity has not been well addressed in the SD-AB comparisons—

except for Wilson (1998), who uses the rules embodied by a spatially explicit AB model. Pérez and  

Janssen (2015), in a study of the effect of spatial heterogeneity and mobility in AB models on the 

performance of social-ecological systems, analyzes the system‘s outcomes (resources, agents‘ 

occupational level, and cooperation) under several scenarios in which the mobility of the agents and 

the landscape configuration (from homogeneous to very heterogeneous landscape) are varied. 

4.4.3 Application of the procedure in sustainability assessments 

Both SD and AB modeling and simulation approaches have been used (often in separate studies and 

sometimes in hybrid studies) in sustainability assessments (including research areas such as integrated 

assessment, environmental modeling, transition modeling, and social-ecological modeling as described 

in Halbe et al. 2015); mainly for purposes such as social learning, theory building, system 



S u b m i t t e d  t o  t h e  j o u r n a l  o f  E n v i r o n m e n t a l  M o d e l l i n g  &  S o f t w a r e   

P a g e  | 21 

understanding, and experimentation; for policy making under uncertainty; and to a lesser extent for 

prediction and forecasting (Kelly et al. 2013). Comparing SD/AB models in the field of sustainability 

assessment provides an opportunity to better understand the dynamics of the social, economic, and 

ecological systems by providing complementary macro and micro perspectives and managing the 

model uncertainty rooted in the modeling approaches (Uusitalo et al. 2015). Micro-level AB models 

would provide an analysis instrument different than the macro-level SD models in the analysis of the 

behavior of the base case system and also under various policy interventions. Comparison of analyses 

conducted using macro-level SD models and micro-level AB models would increase the quality of 

model-based sustainability assessment and the associated scenario analysis and policy simulations.  

Consider the following SD example. Employing an SD approach, Hilty et al. (2006) model the 

enabling potential and rebound effects of ICT on environmental sustainability. This prospective study 

(revisited recently in Achachlouei and Hilty 2015c) assesses the impact of ICT on environmental 

sustainability in the European Union within a time horizon until 2020. To highlight the advantages of 

employing comparative studies in the field of sustainability assessment, here we will briefly outline 

the application of the transformation procedure described above to create an AB model corresponding 

to a submodel, namely the SD model in Hilty et al. (2006), with a focus on a small submodel on 

passenger transport and the rebound effect of ICT. One aspect of this SD model is that it uses feedback 

loops (closed causal chains) to model the direct rebound effects of cost and time efficiency provided 

by ICT—the increase in demand for a resource as a consequence of increasing the efficiency of using 

this resource in production or consumption is known as direct rebound effects. Applying the 

transformation procedure to the passenger transport submodel of this SD model (described in 

Achachlouei and Hilty 2015a), we can build a corresponding AB model (described in Achachlouei and 

Hilty 2015b). In our example of ICT effects on sustainability, for the case of rebound effects induced 

by time and cost efficiency provided by ICT applications, one can reuse the knowledge represented in 

the SD model and build a corresponding AB model to focus on individual level modeling of 

passengers (as agents) and their choices of transport modes characterized by reusing knowledge from 

an SD model and then adding heterogeneity (in individual attributes and network structures) relevant 

to the sustainability assessment purposes. And then, the collection of empirical data at the individual 

level can initialize the AB model based on the individual level of ICT adoption and use as well as 

choices of transport mode. Analysis of such AB models can provide new insights with regard to the 

sustainability impacts of increased use of ICT including different types of rebound effects. Detailed 

discussion of this example, i.e., the application of the transformation procedure in sustainability 

assessment of ICT can be found in (Achachlouei and Hilty 2015b). 

4.5 Limitations of the studies reviewed and future research  

4.5.1 Treatment of space 

The treatment of space is considered an advantage of AB modeling over SD (Lorenz 2009), because 

AB models can be spatially explicit, i.e., ―agents are associated with a specific location from which 

they may or may not be able to move‖ (Scholl 2001). However, Kelly et al. (2013) note that both SD 

and AB modeling can represent space, although the capability of SD is limited due to the immaturity 

of SD model building tools—not because of the method itself. For example, Riley (2007) adds spatial 

compartments to the SD model to capture heterogeneity by location in patch models. 
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However, in the studies with simulation experimentation (Group B) reviewed, except for Wilson 

(1998), which studies the role of spatial dynamics in the comparison of SD and AB models in the 

predator-prey model, none of reviewed studies include a spatial aspect in their experiments to compare 

SD and AB models. Figueredo et al. (2013) note that since they have chosen SD models which do not 

consider spatial dynamics between effector cells and tumor cells, their corresponding AB models do 

not include space (distance) and how it would affect the simulation results. Similarly, Rahmandad and 

Sterman (2008) do not include spatial heterogeneity in their models, although they note the possibility 

of SD models disaggregating the population ―more finely to account for clustering, heterogeneity, and 

other attributes that vary across individuals (e.g., age, sex, location).‖   

Future research can provide better insights on the comparison of the ability of SD and AB models 

to treat spatial attributes of complex systems.   

4.5.2 Quantitative comparison  

The studies reviewed note the increased computational costs when implementing AB models (see e.g., 

Rahmandad and Sterman 2008). However, no quantitative comparison between SD and AB modeling 

has been presented. It is common that studies comparing programming languages at the level of 

computational implementation investigate quantitative properties such as run time, memory 

consumption, program structure, the amount of effort required for writing them (Prechelt 2003), 

usability, readability, performance, and functional features (Purer 2009).  

To better understand the computational costs of AB models compared to SD, one can conduct 

objective empirical comparisons between these two approaches using a number of implementations of 

the same set of well-defined requirements—e.g., in another computational context, Prechelt (2003) 

compares scripting languages using 80 implementations created by 74 different programmers.   

4.5.3 Mental models of dynamic systems 

Beyond quantitative simulation aspects, the SD and AB modeling approaches each support a certain 

perspective and a specific way of thinking about the system being modeled and its dynamics. SD 

highlights the causal links between variables and also the feedback loops in the system, whereas AB 

modeling starts with actors (constituent units) in the system and their network of interactions. These 

perspectives correspond to different types of mental models that humans build of dynamic systems. A 

mental model of a dynamic system (MMDS) is ―a relatively enduring and accessible, but limited, 

internal conceptual representation of an external system whose structure maintains the perceived 

structure of that system‖ (Doyle and Ford 1998). The studies reviewed on SD-AB comparisons do not 

compare the mental models behind these approaches. The MMDSs in the context of SD models have 

been widely studied (for a review, see Grösser and Schaffernicht 2012), addressing the poor 

performance of humans in comprehending complex dynamic systems which involve feedback 

relations distant in time and space. Such studies aim to measure changes in the MMDSs and cognitive 

maps associated with the SD approach (Langfield-Smith and Wirth, 1992; Doyle et al., 2008). 

However, analogous studies are not available for AB models. One advantage of using AB modeling is 

argued to be the explicit representation of the actors and individuals (constituent units of the system), 

which helps ―digital computers handle discrete systems in a natural way, and when the computational 

model, and the system it represents, are both built from easily identifiable discrete components, the 
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mapping between system and model can be made simpler and easier to understand‖ (Bithell et al 

2008).  

Arguments about the AB approach‘s ―natural way‖ and ―easier to understand‖ manner can be 

evaluated in a comprehensive conceptualization and experimental measurement of the MMDS of AB 

models compared to that of SD models. Such studies, for example, should consider the limits of AB 

models when used without computer simulations; that is, the emergent behavior of complex systems 

modeled using the AB approach can only be observed if we run computer simulations over a 

populations of heterogeneous agents.  

4.5.4 Diagramming techniques 

In SD, the use of diagramming techniques such as causal loop diagrams (CLDs) and stock/flow 

diagrams (SFDs) extends the communicative power of this approach beyond the mathematical 

equations (differential equations) used in simulation modeling. Despite their limitations, such as their 

insufficiency for policy support, diagramming techniques help SD modelers communicate the contents 

of models with other stakeholders, supporting group decision making, participatory modeling, and 

feedback thinking (Lane 2008). In AB modeling, due to its roots in object-oriented analysis and design 

in software engineering, several object-oriented diagramming techniques such as UML
4
 class 

diagrams and state charts have been employed (Borshchev and Filippov 2004; Grimm et al. 2006; 

Heath et al. 2012).  

In terms of their capability for communication and conceptualization, these AB diagramming 

techniques have not been evaluated in the literature. To compare the capability of diagramming 

techniques in the SD and AB approaches, mental models of dynamic systems and also techniques from 

human-computer interaction (HCI) design research can provide insightful evaluations (for the reasons 

similar to those explained by Lane 2008 for the evaluation and improvement of SD diagramming 

techniques).   

4.5.5 Decision-making agents 

The studies reviewed comparing SD and AB models using simulation examples (Group B) choose 

systems where individuals do not make decisions—decision making here means that agents have a 

utility function based on which the agents evaluate various decision alternatives. For example, in the 

epidemic model by Rahmandad and Sterman (2008), agents do not make decisions, they simply 

change their state, e.g., from infected to recovered, according to the respective transition rates. 

Figueredo et al. (2013) also model cancer cells which do not make decisions, either. 

One reason for this could be the higher complexity of AB models involving human decision making, 

which would complicate the comparison of AB and SD modeling. Since there are many fields of 

application (including human decision making) for which both SD and AB simulation models have 

been produced—for example, technology adoption and diffusion—future research can encompass 

comparisons of SD-AB models for such domains to provide new insights on the benefits and 

challenges of such comparative studies.  

                                                      

4
 Unified Modeling Language 
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4.5.6 Other approaches to disaggregation 

It should be noted that AB modeling is not the only way to add heterogeneity to homogenous SD 

models. Fallah-Fini et al. (2013) present a method for disaggregation of aggregate compartmental 

models without the need to explicitly model every individual in AB modeling. This method, focusing 

on an attribute of interest, describes a method for connecting the micro-level dynamics associated with 

elements in a population with the macro-level population distribution in SD models. Fallah-Fini et al. 

(2013) find that their proposed method delivers accurate results with less computation than the AB 

model. In another study, Osgood (2009) demonstrates a technique for using dimensional analysis and 

scale modeling to reduce the computational burdens associated with AB modeling. Given a 

homogeneous compartmental SD model with a large population, Osgood (2009) formulates a 

―reduced-scale‖ AB model that simulates a smaller population. Future work combining the procedure 

from SD to AB modeling (detailed in this paper) with these midway disaggregation methods would be 

extremely valuable. 

 

5 Conclusions 

Reviewing the literature comparing AB and SD approaches and models, we answered the following 

questions: 

1. What are the advantages and disadvantages of the approaches? For what sorts of situations 

or research questions should AB models be used, and when are SD models appropriate? 

The studies reviewed suggest that both approaches are capable of representing temporal aspects of 

dynamic systems, but AB approaches are more appropriate for modeling spatially explicit complex 

systems. AB modeling is also a better approach for modeling heterogeneity in individual attributes and 

in the network of interactions among population elements; however, this means that AB modeling 

requires the collection of more data at the level of individuals, which in turn lead to a slower modeling 

process, higher computational costs, and more difficult calibration in the AB modeling, compared to 

the SD approach.  

2. How can we design simulation experiments to compare SD and AB models given a modeling 

question? 

The studies reviewed, as far as they compare models in simulation experiments, use the same 

parameters for both the AB and SD models. Some studies, starting from a given AB model, build a 

corresponding SD model by averaging over populations of agents, and others use an SD model as a 

starting point and build an equivalent AB model by adding heterogeneity in individual attributes and 

interaction networks among agents. In addition to reviewing the methods employed by the 

comparative studies, we also highlighted a transformation procedure as to how to disaggregate an SD 

compartmental model into a more heterogeneous AB model. This procedure, which is accompanied by 

two examples, may help future comparative or complementary SD-AB studies.  

Based on our discussion of the limitations of the reviewed studies, we suggest future research to 

apply comparisons of SD and AB models to socio-economic and socio-ecological systems; to compare 

the potential of these approaches not only with regard to computer simulation, but also with regard to 



S u b m i t t e d  t o  t h e  j o u r n a l  o f  E n v i r o n m e n t a l  M o d e l l i n g  &  S o f t w a r e   

P a g e  | 25 

the mental models of dynamic systems they inspire, the support of communication in group-based 

modeling and analysis, and the usability of associated diagramming techniques. 

 

Acknowledgements 

The authors would like to thank Empa and the Center for Sustainable Communications (CESC at 

KTH, funded by Vinnova) for making this work possible as a part of the first author‘s Ph.D. project. 

 

References  

Achachlouei, Mohammad Ahmadi, and Lorenz M. Hilty. 2015a. ―Using Systems Thinking and 

System Dynamics Modelling to Understand Rebound Effects.‖ In EnviroIno 2014 Selected 

Contributions. Progress in IS. Springer. (forthcoming) 

———. 2015b. ―Using Agent-Based Modeling to Assess the Indirect Effects of ICT on 

Environmental Sustainability.‖ Manuscript in preparation.  

———. 2015c. ―Modeling the Effects of ICT on Environmental Sustainability: Revisiting a System 

Dynamics Model Developed for the European Commission.‖ Advances in Intelligent Systems 

and Computing 310:449–474. 

Ahuja, Manju K., and Kathleen M. Carley. 1998 ―Network structure in virtual organizations.‖ Journal 

of Computer‐Mediated Communication 3(4). 

An, Gary, Qi Mi, Joyeeta Dutta-Moscato, and Yoram Vodovotz. 2009. ―Agent-Based Models in 

Translational Systems Biology.‖ Wiley Interdisciplinary Reviews: Systems Biology and 

Medicine 1 (2): 159–71. 

Axtell, Robert, Robert Axelrod, Joshua M. Epstein, and Michael D. Cohen. 1996. ―Aligning 

Simulation Models: A Case Study and Results.‖ Computational & Mathematical Organization 

Theory 1 (2): 123–41. 

Bargigli, Leonardo, and Gabriele Tedeschi. 2014. ―Interaction in agent-based economics: A survey on 

the network approach.‖ Physica A: Statistical Mechanics and its Applications 399: 1–15. 

Behdani, Behzad. 2012. ―Evaluation of Paradigms for Modeling Supply Chains as Complex Socio-

Technical Systems.‖ In 2012 Winter Simulation Conference (wsc), edited by C. Laroque, J. 

Himmelspach, and R. Pasupathy. 

Berger, Thomas. 2001. ―Agent-based spatial models applied to agriculture: a simulation tool for 

technology diffusion, resource use changes and policy analysis.‖ Agricultural economics 

25(2): 245–260. 

Bithell, Mike, James Brasington, and Keith Richards. 2008. ―Discrete-element, individual-based and 

agent-based models: Tools for interdisciplinary enquiry in geography?‖ Geoforum 39(2): 625–

642. 

Bonabeau, Eric. 2002. ―Agent-Based Modeling: Methods and Techniques for Simulating Human 

Systems.‖ Proceedings of the National Academy of Sciences of the United States of America 

99 (Suppl 3): 7280–87. 

Borrill, Paul L., and Leigh Tesfatsion. 2011. ―Agent-Based Modeling: The Right Mathematics for the 

Social Sciences?‖ The Elgar Companion to Recent Economic Methodology 228.  

Borshchev, Andrei. 2013. The Big Book of Simulation Modeling: Multimethod Modeling with 

AnyLogic 6. AnyLogic North America. 

Borshchev, Andrei, and Alexei Filippov. 2004. ―From System Dynamics and Discrete Event to 

Practical Agent Based Modeling: Reasons, Techniques, Tools.‖ In Proceedings of the 22nd 

International Conference of the System Dynamics Society.  



S u b m i t t e d  t o  t h e  j o u r n a l  o f  E n v i r o n m e n t a l  M o d e l l i n g  &  S o f t w a r e   

P a g e  | 26 

Doyle, James K., and David N. Ford. 1998. ―Mental Models Concepts for System Dynamics 

Research.‖ System Dynamics Review 14 (1): 3–29. 

Doyle, James K., Michael J. Radzicki, and W. Scott Trees. 2008. ―Measuring change in mental models 

of complex dynamic systems.‖ Complex decision making. Springer Berlin Heidelberg. 269–

294. 

Fallah‐Fini, Saeideh, et al. 2013. ―Connecting micro dynamics and population distributions in system 

dynamics models.‖ System dynamics review 29(4): 197–215. 

Figueredo, Grazziela P., Peer-Olaf Siebers, and Uwe Aickelin. 2013. ―Investigating Mathematical 

Models of Immuno-Interactions with Early-Stage Cancer under an Agent-Based Modelling 

Perspective.‖ BMC Bioinformatics 14 (Suppl 6): S6. 

Ford, Frederick Andrew. 1999. Modeling the Environment: An Introduction to System Dynamics 

Models of Environmental Systems. Island Press.  

Gilbert, Nigel, and Klaus Troitzsch. 2005. Simulation for the social scientist. McGraw-Hill Education 

(UK). 

Grimm, Volker. 1999. ―Ten Years of Individual-Based Modelling in Ecology: What Have We Learned 

and What Could We Learn in the Future?‖ Ecological Modelling 115 (2): 129–48. 

Grimm, Volker, Uta Berger, Finn Bastiansen, Sigrunn Eliassen, Vincent Ginot, Jarl Giske, John Goss-

Custard, et al. 2006. ―A Standard Protocol for Describing Individual-Based and Agent-Based 

Models.‖ Ecological Modelling 198 (1): 115–26. 

Grösser, Stefan N., and Martin Schaffernicht. 2012. ―Mental Models of Dynamic Systems: Taking 

Stock and Looking Ahead.‖ System Dynamics Review 28 (1): 46–68. 

Halbe, J., D. E. Reusser, G. Holtz, M. Haasnoot, A. Stosius, W. Avenhaus, and J. H. Kwakkel. 2015. 

―Lessons for Model Use in Transition Research: A Survey and Comparison with Other 

Research Areas.‖ Environmental Innovation and Societal Transitions 15: 194–210 

Hare, M., and Peter Deadman. 2004. ―Further towards a Taxonomy of Agent-Based Simulation 

Models in Environmental Management.‖ Mathematics and Computers in Simulation 64 (1): 

25–40. 

Heath, B. L., F. W. Ciarallo, and R. R. Hill. 2012. ―Validation in the Agent–based Modelling 

Paradigm: Problems and a Solution.‖ International Journal of Simulation and Process 

Modelling 7 (4): 229–39. 

Heath, Brian, Raymond Hill, and Frank Ciarallo. 2009. ―A Survey of Agent-Based Modeling Practices 

(January 1998 to July 2008).‖ Journal of Artificial Societies and Social Simulation 12 (4): 9. 

Heckbert, Scott, Tim Baynes, and Andrew Reeson. 2010. ―Agent-Based Modeling in Ecological 

Economics.‖ Annals of the New York Academy of Sciences 1185 (1): 39–53. 

Hilty, Lorenz M., Peter Arnfalk, Lorenz Erdmann, James Goodman, Martin Lehmann, and Patrick A. 

Wäger. 2006. ―The relevance of information and communication technologies for 

environmental sustainability–a prospective simulation study.‖ Environmental Modelling & 

Software 21(11): 1618–1629. 

Hjorth, Peder, and Ali Bagheri. 2006. ―Navigating towards Sustainable Development: A System 

Dynamics Approach.‖ Futures 38 (1): 74–92. doi:10.1016/j.futures.2005.04.005. 

Ip, Edward H., Hazhir Rahmandad, David A. Shoham, Ross Hammond, Terry T.-K. Huang, Youfa 

Wang, and Patricia L. Mabry. 2013. ―Reconciling Statistical and Systems Science Approaches 

to Public Health.‖ Health Education & Behavior 40 (October): 123S – 131S. 

doi:10.1177/1090198113493911. 

Kelly, Rebecca A., Anthony J. Jakeman, Olivier Barreteau, Mark E. Borsuk, Sondoss ElSawah, Serena 

H. Hamilton, Hans Jørgen Henriksen, et al. 2013. ―Selecting among Five Common Modelling 

Approaches for Integrated Environmental Assessment and Management.‖ Environmental 

Modelling & Software 47 (September): 159–81. doi:10.1016/j.envsoft.2013.05.005. 

Köhler, Jonathan, Lorraine Whitmarsh, Björn Nykvist, Michel Schilperoord, Noam Bergman, and 

Alex Haxeltine. 2009. ―A Transitions Model for Sustainable Mobility.‖ Ecological Economics 

68 (12): 2985–95. doi:10.1016/j.ecolecon.2009.06.027. 



S u b m i t t e d  t o  t h e  j o u r n a l  o f  E n v i r o n m e n t a l  M o d e l l i n g  &  S o f t w a r e   

P a g e  | 27 

Langfield-Smith, Kim, and Andrew Wirth. 1992. ―Measuring differences between cognitive maps.‖ 

Journal of the Operational Research Society: 1135–1150. 

Lane, David C. 1999. ―Social theory and system dynamics practice.‖ European Journal of 

Operational Research 113(3): 501–527. 

Lane, David C. 2008. ―The Emergence and Use of Diagramming in System Dynamics: A Critical 

Account.‖ Systems Research and Behavioral Science 25 (1): 3–23. doi:10.1002/sres.826. 

Lorenz, Tobias. 2009. ―Abductive Fallacies with Agent-Based Modeling and System Dynamics.‖ In 

Epistemological Aspects of Computer Simulation in the Social Sciences, edited by Flaminio 

Squazzoni, 141–52. Lecture Notes in Computer Science 5466. Springer Berlin Heidelberg. 

http://link.springer.com/chapter/10.1007/978-3-642-01109-2_11. 

Macal, Charles M. 2010. ―To Agent-Based Simulation from System Dynamics.‖ In Simulation 

Conference (WSC), Proceedings of the 2010 Winter, 371–82. 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5679148. 

Macal, Charles M., and Michael J. North. 2005. ―Tutorial on Agent-Based Modeling and Simulation.‖ 

In Proceedings of the 37th Conference on Winter Simulation, 2–15. Winter Simulation 

Conference. http://dl.acm.org/citation.cfm?id=1162712. 

———. 2010. ―Tutorial on Agent-Based Modelling and Simulation.‖ Journal of Simulation 4 (3): 

151–62. 

Macy, Michael W., and Robert Willer. 2002. ―From Factors to Actors: Computational Sociology and 

Agent-Based Modeling.‖ Annual Review of Sociology, 143–66. 

Matthews, Robin B., Nigel G. Gilbert, Alan Roach, J. Gary Polhill, and Nick M. Gotts. 2007. ―Agent-

Based Land-Use Models: A Review of Applications.‖ Landscape Ecology 22 (10): 1447–59. 

doi:10.1007/s10980-007-9135-1. 

Mingers, John, and Leroy White. 2010. ―A Review of the Recent Contribution of Systems Thinking to 

Operational Research and Management Science.‖ European Journal of Operational Research 

207 (3): 1147–61. doi:10.1016/j.ejor.2009.12.019. 

Nielsen, Søren Nors. 2012. ―Book Review: Agent-Based and Individual-Based Modeling: A Practical 

Introduction, SF Railsback, V. Grimm. Princeton University Press, Princeton (2011).‖ Basic 

and Applied Ecology, no. 13: 568–69. 

Osgood, Nathaniel. 2009. ―Lightening the performance burden of individual‐based models through 

dimensional analysis and scale modeling.‖ System Dynamics Review 25(2): 101–134. 

Ouyang, Min. 2014. ―Review on Modeling and Simulation of Interdependent Critical Infrastructure 

Systems.‖ Reliability Engineering & System Safety 121 (January): 43–60. 

doi:10.1016/j.ress.2013.06.040. 

Parunak, H. Van Dyke, Robert Savit, and Rick L. Riolo. 1998. ―Agent-based modeling vs. equation-

based modeling: A case study and users‘ guide.‖ Multi-agent systems and agent-based 

simulation. Springer Berlin Heidelberg. 

Peres, Renana. 2014. ―The Impact of Network Characteristics on the Diffusion of Innovations.‖ 

Physica A: Statistical Mechanics and Its Applications 402: 330–43. 

Pérez, Irene, and Marco A. Janssen. 2015 ―The effect of spatial heterogeneity and mobility on the 

performance of social–ecological systems.‖ Ecological Modelling 296: 1–11. 

Phelan, Steven E. 1999. ―A Note on the Correspondence between Complexity and Systems Theory.‖ 

Systemic Practice and Action Research 12 (3): 237–46. 

Prechelt, Lutz. 2003. ―Are scripting languages any good? A validation of Perl, Python, Rexx, and Tcl 

against C, C++, and Java.‖ Advances in Computers 57: 205–270. 

Purer, Klaus. 2009. ―PHP vs. Python vs. Ruby–The web scripting language shootout.‖ Seminar aus 

Programmiersprachen.  

Radzicki, Michael J., and John D. Sterman. 1994. ―Evolutionary Economics and System Dynamics.‖ 

Evolutionary Concepts in Contemporary Economics, 61–89. 



S u b m i t t e d  t o  t h e  j o u r n a l  o f  E n v i r o n m e n t a l  M o d e l l i n g  &  S o f t w a r e   

P a g e  | 28 

Rahmandad, Hazhir, and John Sterman. 2008. ―Heterogeneity and Network Structure in the Dynamics 

of Diffusion: Comparing Agent-Based and Differential Equation Models.‖ Management 

Science 54 (5): 998–1014. 

Richardson, George P. 2011. ―System dynamics, the basic elements of.‖ Complex Systems in Finance 

and Econometrics. Springer New York. 856–862. 

Richardson, George P. 1991. ―System Dynamics: Simulation for Policy Analysis from a Feedback 

Perspective.‖ In Qualitative Simulation Modeling and Analysis, 144–69. Springer. 

http://link.springer.com/chapter/10.1007/978-1-4613-9072-5_7. 

———. 2011. ―System Dynamics, the Basic Elements of.‖ In Complex Systems in Finance and 

Econometrics, 856–62. Springer. http://link.springer.com/content/pdf/10.1007/978-1-4419-

7701-4_48.pdf. 

Riley, Steven. 2007. ―Large-scale spatial-transmission models of infectious disease.‖ Science 

316(5829): 1298–1301. 

Rouchier, Juliette, Claudio Cioffi-Revilla, J. Gary Polhill, and Keiki Takadama. 2008. ―Progress in 

Model-to-Model Analysis.‖ Journal of Artificial Societies and Social Simulation 11 (2): 8. 

Ruth, Matthias, and Bruce Hannon. 1997. Modeling Dynamic Biological Systems. Springer. 

http://link.springer.com/chapter/10.1007/978-1-4612-0651-4_1. 

Schieritz, Nadine, and Peter M. Milling. 2003. ―Modeling the Forest or Modeling the Trees.‖ In 

Proceedings of the 21st International Conference of the System Dynamics Society, 20–24.  

Scholl, H. J. 2001. ―Agent-Based and System Dynamics Modeling: A Call for Cross Study and Joint 

Research.‖ In Proceedings of the 34th Annual Hawaii International Conference on System 

Sciences, 2001. IEEE. doi:10.1109/HICSS.2001.926296. 

Senge, Peter M. 2014. The Fifth Discipline Fieldbook. Random House LLC. 

Sopha, Bertha Maya, Christian A. Klöckner, and Edgar G. Hertwich. 2011. ―Exploring policy options 

for a transition to sustainable heating system diffusion using an agent-based simulation.‖ 

Energy Policy 39(5): 2722–2729. 

Sterman, John D. 1994. ―Learning in and about Complex Systems.‖ System Dynamics Review 10 (2-

3): 291–330. 

———. 2000. Business Dynamics: Systems Thinking and Modeling for a Complex World. Vol. 19. 

Irwin/McGraw-Hill Boston.  

———. 2001. ―System Dynamics Modeling.‖ California Management Review 43 (4): 8–25. 

———. 2002. ―All models are wrong: reflections on becoming a systems scientist.‖ System Dynamics 

Review 18 (4): 501–531. 

Tesfatsion, Leigh. 2006. ―Agent-Based Computational Economics: A Constructive Approach to 

Economic Theory.‖ Handbook of Computational Economics 2: 831–80. 

Uusitalo, Laura, Annukka Lehikoinen, Inari Helle, and Kai Myrberg. 2015. ―An Overview of Methods 

to Evaluate Uncertainty of Deterministic Models in Decision Support.‖ Environmental 

Modelling & Software 63: 24–31. 

Wilson, William G. 1998. ―Resolving Discrepancies between Deterministic Population Models and 

Individual-Based Simulations.‖ The American Naturalist 151 (2): 116–34. 

 

 

 


