
Thesis no: XXXX-20XX-XX

Accelerating IISPH

A parallel GPGPU solution using CUDA

André Eliasson & Pontus Franzén

Faculty of Computing

Blekinge Institute of Technology

SE�371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology

in partial ful�llment of the requirements for the degree of Master of Science in Game and

Software Engineering. The thesis is equivalent to 20 weeks of full time studies.

Contact Information:

Author(s):
André Eliasson
E-mail: aael10@student.bth.se
Pontus Franzén
E-mail: pontus.franzen@live.se

University advisor:
Prof. Prashant Goswami
Department of Creative Technologies

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE�371 79 Karlskrona, Sweden Fax : +46 455 38 50 57

Abstract

Context. Simulating realistic �uid behavior in incompressible �uids
for computer graphics has been pioneered with the implicit incom-
pressible smoothed particle hydrodynamics (IISPH) solver. The al-
gorithm converges faster than other incompressible SPH-solvers, but
real-time performance (in the perspective of video games, 30 frames
per second) is still an issue when the particle count increases.
Objectives. This thesis aims at improving the performance of the
IISPH-solver by proposing a parallel solution that runs on the GPU
using CUDA. The solution should not compromise the physical accu-
racy of the original solution. Investigated aspects are execution time,
memory usage and physical accuracy.
Methods. The proposed implementation uses a �ne-grained approach
where each particle is calculated on a separate thread. It is compared
to a sequential and a parallel OpenMP implementation running on the
CPU.
Results and Conclusions. It is shown that the parallel CUDA
solution allow for real-time performance for approximately 19 times
the amount of particles than that of the sequential implementation.
For approximately 175 000 particles the simulation runs at the con-
straint of real-time performance, more particles are still considered
interactive. The visual result of the proposed implementation devi-
ated slightly from the ones on the CPU.

Keywords: implicit incompressible smoothed particle hydrodynam-
ics, �uid simulation, real-time, GPGPU

i

Preface

Acknowledgment

We would like to thank Prashant Goswami for the proposed research area and
his invaluable knowledge and help.

We would also like thank fellow student Mattias Frid Kastrati for giving feed-
back and proof-reading our thesis.

Finally we would like to thank our peers who gave us valuable feedback with
their oppositions.

About abbreviations

Throughout this thesis certain terms are abbreviated to ease reading. At the �rst
occurrence they are written in full (except from units, such as MB). They are
also listed below.

AoS � Array of Structs
API � Application Programming Interface

EOS � Equation Of State

FPS � Frames Per Second

GPGPU � General-Purpose computing on Graphics Processing Unit

ISPH � Incompressible Smoothed Particle Hydrodynamics
IISPH � Implicit Incompressible Smoothed Particle Hydrodynamics

PCISPH � Predictive-Corrective Incompressible Smoothed Particle
Hydrodynamics

PPE � Pressure Poisson Equation

ii

PSNR � Peak Signal-to-Noise Ratio

SPH � Smoothed Particle Hydrodynamics
SoA � Structure of Arrays
SSIM � Structured Similarity Index Measure

VRAM � Video Random Access Memory

WCSPH � Weakly Compressible Smoothed Particle Hydrodynamics

iii

List of Figures

4.1 Particle spacing . 9
4.2 Kernel visualizations . 10

5.1 Constant variables data structure 16
5.2 Particle data structure . 17
5.3 Particle rearranging . 18
5.4 CUDA particle bu�ers . 21
5.5 Advection prediction comparison 23
5.6 Pressure solve comparison . 24
5.7 Integration comparison . 25
5.8 DirectX interoperability commands 25

6.1 All test scenes . 30
6.2 Gallery scene with boundary particles 30

7.1 Scene time-lapses . 32
7.2 Time usage setup 1 (CUDA vs OpenMP) 33
7.3 Time usage setup 2 (CUDA vs OpenMP) 34
7.4 Time usage setup 1 (CUDA vs seq. CPU) 35
7.5 Detailed time usage setup 1 (CUDA) 35
7.6 Memory usage . 36
7.7 PSNR comparison sequential vs OpenMP 37
7.8 PSNR comparison sequential vs CUDA 38

iv

List of Tables

5.1 Mapping of the particle data struct's variables 17

6.1 Computer speci�cations for experiments 28

7.1 Time usage SPH (CUDA) . 36
7.2 Performance between global and shared memory 38

8.1 Average time usage setup 1 . 39
8.2 Average time usage setup 2 . 40
8.3 Average time usage sequential CPUs 40
8.4 Average memory usage . 42
8.5 PSNR values . 43

v

List of Algorithms

1 IISPH-algorithm . 8

2 CUDA physics update . 20
3 FindGridCellStartEnd . 22
4 AdvectionPrediction_CPU . 23
5 AdvectionPrediction_CUDA . 23
6 PressureSolve_CPU . 24
7 PressureSolve_CUDA . 24
8 Integration_CPU . 25
9 Integration_CUDA . 25

vi

Contents

Abstract i

Preface ii

List of Figures iv

List of Tables v

List of Algorithms vi

1 Introduction 1

1.1 SPH based methods . 1
1.1.1 Smoothed Particle Hydrodynamics 1
1.1.2 Weakly Compressible SPH 2
1.1.3 Incompressible SPH . 2
1.1.4 Predictive-Corrective Incompressible SPH 2
1.1.5 Local Poisson SPH . 3
1.1.6 Implicit Incompressible SPH 3

1.2 Problem . 3
1.3 GPGPU and CUDA . 3
1.4 Thesis Outline . 4

2 Aims, Objectives and Research Question 5

2.1 Objectives . 5
2.2 Research questions . 6

3 Related Work 7

4 IISPH 8

4.1 Terminology . 9
4.2 Kernel functions . 9
4.3 Advection prediction . 11
4.4 Pressure solve . 12
4.5 Integration . 14

vii

5 Implementation 15

5.1 CPU . 16
5.1.1 Neighbors . 17
5.1.2 Advection prediction . 18
5.1.3 Pressure solve . 18
5.1.4 Integration . 19

5.2 GPU . 19
5.2.1 Initialization . 20
5.2.2 Neighbors . 22
5.2.3 Advection prediction . 23
5.2.4 Pressure solve . 24
5.2.5 Integration . 25
5.2.6 DirectX interoperability 25

5.3 Alternative approaches . 26
5.3.1 Shared memory . 26
5.3.2 Compute Capability 5.X 27

6 Experimental Method 28

6.1 Time measurement functions . 28
6.2 Test scenes . 29
6.3 Memory usage . 30
6.4 Physical precision comparison . 31

7 Results 32

7.1 Time usage . 33
7.2 Memory usage . 36
7.3 Physical precision . 37
7.4 Shared memory . 38

8 Analysis and Discussion 39

8.1 Time usage . 39
8.2 Memory usage . 41
8.3 Physical precision . 42
8.4 Shared memory . 43

9 Conclusions and Future Work 44

9.1 Future work . 45

References 46

A Additional Experiments Data 49

viii

Chapter 1

Introduction

Fluids are common elements included in the environments of video game worlds.
The behavior of them can be achieved with various techniques, such as animat-
ing a height-map. This technique is limited to only simulate the surface of the
�uid however and require additional methods for water splashes and sub-surface
simulation. To simulate the entire body of a �uid, alternative methods such as
smoothed particle hydrodynamics (SPH) [1] can be used.

In video games, real-time performance is assumed to range between 30 to 60 or
more frames per second (FPS) to ensure the player an acceptable experience [2].
This infers that the time between two consecutive frames may not exceed at the
most 33 ms; which includes the time to compute the scene of the frame and to
render it on screen.

Implicit incompressible SPH (IISPH) is a state-of-art SPH-solver which al-
lows for realistic �uid behaviors of incompressible �uids (such as water) [3]. In
order for IISPH to be suitable for simulating �uids in games, it would need to
meet the requirement for real-time performance. Other limiting factors would
be interaction with game objects and computations to be completed within a
given time-frame together with other logic, however this is out of the scope of
this thesis.

With the increased use of general-purpose computing on GPU (GPGPU) for
massive parallel data computation it is a logical strategy to implement IISPH to
be run on the GPU to overcome the real-time performance barrier.

1.1 SPH based methods

In this section a brief description on how realistic �uid behavior can be achieved
for computer graphics using particles and how it has been improved in terms of
performance and compressibility.

1.1.1 Smoothed Particle Hydrodynamics

Realistic �uid simulations can be achieved with the SPH method where the �uid's
body is represented as a set of particles. SPH uses various external forces, such

1

as gravity and viscosity, combined with internal pressure forces to calculate the
velocities of the particles [1].

The pressure is computed with an equation of state (EOS). An EOS is an
equation describing the physical state of a system according to a set of variables
known as state variables which have an internal relationship with each other, such
as mass, density and pressure. However, this pressure computation also results
in forces which penalize compression [3].

SPH allows for easy boundary handling and mass conservation which can
accomplish realistic movement and behavior, and e�ects such as water splashes.
SPH is not without its limitations though. Restrictions such as a non-real-time
performance [4] and an abundance of e�cient incompressible SPH-solvers [3, 4,
5, 6] render the method unsuitable in application areas such as video games.

1.1.2 Weakly Compressible SPH

Much work has been done to improve SPH in terms of visual quality and per-
formance. Weakly compressible SPH (WCSPH) [7] utilizes a sti� EOS in order
to address compressibility. Density �uctuations are kept low by assuming a high
speed of sound in the medium. Though the computations of SPH andWCSPH are
inexpensive per frame, compared to alternative approaches [3]; a higher sti�ness
requires smaller time-steps (time simulated between two frames) in the physics
simulation, which results in that the total number of frames required for a given
time-frame increases when compressibility decreases.

1.1.3 Incompressible SPH

It was suggested that by solving a pressure projection equation similar to the
Eulerian methods [8], rather than the EOS in SPH and WCSPH, an enforcement
of incompressibility could be achieved. Then by projecting either the intermediate
velocity �eld [9] or the variation of particles' density [10] onto a divergence-free
space, incompressibility can be enforced through a pressure Poisson equation
(PPE). Incompressible SPH (ISPH) allows for use of larger time-steps but at an
expense of additional computation cost per time-step (frame).

1.1.4 Predictive-Corrective Incompressible SPH

Further improvements suggest predictor-corrective schemes to combine the advan-
tage of large time-steps from the ISPH method with WCSPH's low computation
cost per time-step. The predictive-corrective incompressible SPH (PCISPH) [6]
method is such an approach which utilizes a predictor-corrective scheme of the
EOS. The velocity of the particle is predicted based on previous velocity and then
corrects it based on the new pressure. It is an iterative process that repeats its
process for as long as the density error is above a speci�ed user-de�ned threshold

2

(e.g. if the error margin is within 0.1 % deviation from the rest density). PCISPH
outperforms WCSPH in terms of performance in regard to incompressibility with
as much as a factor of 55 while approaching incompressibility as well.

1.1.5 Local Poisson SPH

An alternative approach to combine the advantages of WCSPH and ISPH was
proposed by He et al. [11] with Local Poisson SPH. The PPE is solved by con-
verting the di�erential PPE to a continuous integral. A discretization method
is used to convert this form to a discretized summation in the local pressure in-
tegration domain for all particles. The pressure solver is then integrated into a
predictive-corrective framework. The result was improvements in both density
error and convergence rate of the solver, rivaling the performance of PCISPH.

1.1.6 Implicit Incompressible SPH

Another discretization of the PPE was proposed by Ihmsen et al. [3] with IISPH,
which is an improvement of the PCISPH-method. An issue with traditional ISPH-
solvers is that they do not scale well with large-scale scenarios comprising of
millions of particles. IISPH gained a signi�cant speed-up compared to ISPH
and PCISPH as a result of a discretization of the PPE, reportedly a speed-up
factor of 6.2 and 5.2 times compared to PCISPH for two di�erent scenarios.
This resulted in a performance that scaled better with large-scale scenarios while
further enforcing incompressibility.

Any further details of the algorithm are being referred to chapter 4.

1.2 Problem

Incompressible SPH-solvers addressed the issue with incompressibility in the �uid.
It was further improved with the implementation of the state-of-the-art incom-
pressible SPH-solver IISPH [3]. However, because of it being a sequential im-
plementation running on the CPU, there is still a gap in performance. IISPH
cannot by itself be considered a feasible solution for �uid simulations in real-time
applications. As a consequence this severely limits the utility of IISPH in certain
�elds where real-time performance are considered important e.g. video games
and virtual reality.

1.3 GPGPU and CUDA

The basics of GPGPU is to utilize the graphics card's processing units to com-
pute general tasks. The three major application programming interfaces (APIs)

3

are NVIDIA® CUDA® 1 [21], Microsoft® Direct Compute and the Apple® 2

and Khronos� Group OpenCL� 3. These APIs allow programmers to utilize the
GPU's computational power in areas where massive computations can be exe-
cuted in parallel. This has resulted in increased performance of computationally
heavy applications, such as in analyzing air tra�c �ows and visualizations of
molecules [21].

CUDA was the chosen programming platform because of its computational
power, its interoperability with Microsoft® DirectX® 4 rendering API and be-
cause of the project outline preferring CUDA. The supporting development lan-
guages are C, C++ and Fortran.

CUDA Toolkit 7.0 was used during the implementation and is distributed with
supplementary libraries. Thrust [22] is one of those libraries and was originally
created by Hoberock and Bell. Thrust is a parallel algorithms library with CUDA
interoperability providing parallel implementations of basic algorithms such as
sort, transform and reduce.

1.4 Thesis Outline

So far a brief introduction to �uid simulations with various SPH-solvers has been
given as well as the problem and a short introduction of CUDA. In chapter 2
a more explanatory description of the problem and the research questions this
thesis aims to answer are given. This is followed in chapter 3 by other related
work that has aimed at similar areas as this thesis. The IISPH-algorithm is
described in detail in chapter 4 and in chapter 5 the implementations of it are
covered. Chapter 6 describes the methodology of the experiments with the results
summarized in chapter 7. This is followed by a discussion of what was achieved
in chapter 8 and �nally a short conclusion and future work in chapter 9.

1NVIDIA and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation
in the United States and/or other countries.

2Apple is a trademark of Apple Inc., registered in the U.S. and other countries.
3OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.
4Microsoft and DirectX are either registered trademarks or trademarks of Microsoft Corpo-

ration in the United States and/or other countries.

4

Chapter 2

Aims, Objectives and Research Question

This thesis aims to improve the performance of the IISPH-algorithm by proposing
a parallel implementation which can run on the GPU. The proposed algorithm
was implemented and experimented on using CUDA and comparisons was made
to a sequential and parallel CPU-implementation.

2.1 Objectives

To achieve this goal a set of sub-tasks was created to track the progress; of which
some were required to be completed before others, whereas some could be done
in parallel:

� Get accustomed to either the original or a reconstructed implementation of
the proposed algorithm in [3]. Two reasons existed for this task:

� With the actual code available, a detailed study of the algorithm's
nature could be acquired which alleviated the workload and under-
standing of it when proposing the parallel one.

� To evaluate the performance of the proposed parallel CUDA-implemen-
tation it was necessary to gather data and compare test results with a
sequential as well as a parallel CPU-implementation in order to make
any conclusions regarding the proposed CUDA-implementation.

� With the in-depth study, areas which could be bene�cial of running in
parallel was identi�ed. Suitable methods of parallelization were proposed
for one and each of the parts of the algorithm. If any part had been required
to run sequentially it would had been of importance to identify it and decide
whether it would cause problems or if it could have been solved with an
alternative approach.

� Using the parallel proposal and the knowledge from the sequential CPU-
code the CUDA-version was implemented.

5

� To see a visual representation of the simulations, rendering the particles
was required. In the CPU-version the necessary particle data was sent to
the GPU for rendering each frame. In the CUDA-version it was desirable to
not have to copy this data from the GPU to the CPU and back again; thus
connecting CUDA to DirectX to allow it to modify the bu�ers was desired.

� Creating appropriate scenarios to be run when measuring performance. As-
pects such as the number of particles and the layout of test scene itself could
be a�ecting the result.

� Suitable measurements were needed to evaluate two aspects in experiments
using the scenarios. The performance in terms of execution time and the
visual quality in terms of identical visual outcome were necessary to be
examined.

� An analysis of the gathered data was made to evaluate whether a posi-
tive result had been achieved or if further improvements were necessary to
achieve a su�cient result.

2.2 Research questions

This thesis aims to answer the following research questions:

RQ1. Is it possible to achieve real-time performance of IISPH using CUDA?

1. What sections of the algorithm are the most time consuming?

2. For how many particles can the proposed solution be considered real-
time?

RQ2. Will a parallel implementation with CUDA achieve better performance than
that of a parallel version on the CPU?

RQ3. Can IISPH gain increased performance utilizing a parallel implementation
with CUDA but without compromising the physical accuracy?

Hypothesis:

� It is believed that the memory usage between the implementations will be
similar.

6

Chapter 3

Related Work

Various improvements have been proposed for CPU and GPU oriented approaches
of SPH [12]. While some of these have already been covered in section 1.1, this
chapter will focus on related parallelization and optimizations of SPH- and ISPH-
solvers.

In this thesis the approach of parallelizing IISPH was by using a �ne-grained
(data parallelism) approach on the GPU. Each particle is run in parallel and
they are themselves responsible for calculating their own values. An alternative
coarse-grained (task parallelism) approach on the GPU is presented by Goswami
et al. [13] which utilizes groups of particles using shared memory and CUDA. By
dividing the particles into small groups and utilizing shared memory a signi�cant
performance increase of SPH was gained.

A recent study by Thaler et al. [14] shows a parallel multi-core implementa-
tion of IISPH with focus on a �ne-grained approach with promising performance
results, however without any information about how the visual results compare to
a sequential implementation. In this thesis a similar algorithm structure is pro-
posed; with variables being calculated in sections with synchronization in-between
when necessary. In their multi-core solution it is necessary to communicate and
balance the load e�ciently between cores to fully utilize the cores capabilities.

Another shared memory approach with CUDA for PCISPH is presented by Nie
et al. [15]. A good speed-up was achieved compared to both sequential and
multi-core CPU-implementations. They also found that the sorting method for
neighbor search to be a bottleneck and provide with a new parallel sorting method
to increase performance. The implementation utilizes a structure of arrays (SoA)
pattern for particle data due to better coalesced memory access which is crucial
to maximize the bandwidth the GPU supports. Using a SoA pattern means that
each variable is a separate array stored in a consecutive section of memory.

7

Chapter 4

IISPH

In this chapter an overview of the IISPH-algorithm will be given and details that
may not be obvious will be addressed as well. Any details on the derivation of
the algorithm are considered out-of-scope of the thesis and are being referred to
the paper by Ihmsen et al. [3]. All equations and details in this chapter are cited
from the same paper unless stated otherwise.

Algorithm 1: IISPH-algorithm proposed by Ihmsen et al. [3].

1 Procedure ADVECTION PREDICTION
2 foreach particle i do
3 compute ρi(t) =

∑
jmjWij(t)

4 predict vadvi = vi(t) + ∆t
Fadv

i (t)
mi

5 dii = ∆t2
∑
j −

mj

ρ2i
∇Wij(t)

6 foreach particle i do
7 ρadvi = ρi(t) + ∆t

∑
jmj(v

adv
ij)∇Wij(t)

8 p0i = 0.5pi(t−∆t)
9 compute aii(4.5)

10 Procedure PRESSURE SOLVE
11 l = 0
12 while ρlavg − ρ0 > η ∨ l < 2 do

13 foreach particle i do
14

∑
j dijp

l
j = ∆t2

∑
j −

mj

ρ2j (t)
∇Wij(t)

15 foreach particle i do

16 compute pl+1
i (4.8)

17 pi(t) = pl+1
i

18 l = l + 1

19 Procedure INTEGRATION
20 foreach particle i do

21 vi(t+ ∆t) = vadvi + ∆t
Fp

i (t)

mi

22 xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t)

8

4.1 Terminology

An overview of the algorithm is presented as pseudo code by Ihmsen et al. [3]
in Algorithm 1. It consists of three parts labeled as procedure, viz. advection
prediction, pressure solve and integration.

Bold variables indicate three dimensional vectors whereas italic variables are
considered as scalar values.

The W's are kernel functions used to sample the in�uence a particle has on a
neighboring particle dependent of the distance between the two.

A speci�c particle in the �uid is identi�ed with an index denoted with the
subscript of i. The j denotes one of the neighbors of i and k denotes the neighbors
of j. It is worth to note that in the set of neighbors k the particle with index i is
included, since if j is a neighbor to i it follows that i is a neighbor of j.

The nabla symbol ∇ indicates the del operator that operates in the scalar
�eld of W to produce a non-normalized direction vector between the particles.
In the cases where the results that are to be computed are scalar values the dot
product is used which will be mentioned in the subsequent sections.

In the computations a global support radius is needed for various tasks. An
illustration of it can be seen in Figure 4.1. It is computed as n ∗ 2r, where r is
the radius of the particle and n ∈ N de�ning how many particle widths from the
center point of the particle neighbors are considered to in�uence it.

2r

Figure 4.1: A particle (center circle) with its particle spacing (dashed circle) being equal to
twice its radius as illustrated by the red line. The particle to the right has its center point within
the particle spacing and is thus considered to be a neighbor.

4.2 Kernel functions

Three sets of kernels was provided by Prashant Goswami and are used when sim-
ulating IISPH: Wpoly6, Wspiky and Wviscosity, see Figure 4.2. Wpoly6 is used when
calculating density, Wspiky is used in pressure related computations and Wviscosity

9

 0 0.03 0.06 0.09 0.12 0.15 0.18

In
flu

en
ce

 fa
ct

or

Distance

 0

1

 0 0.03 0.06 0.09 0.12 0.15 0.18

In
flu

en
ce

 fa
ct

or

Distance

 -1

0

 0 0.03 0.06 0.09 0.12 0.15 0.18

In
flu

en
ce

 fa
ct

or

Distance

 0

1

Figure 4.2: The three kernels visualized with a global support radius of 0.18 m. Left: Wpoly6.
Middle: Wspiky. Right: Wviscosity. In all kernels the in�uence is decreasing when nearing the
support radius. Full in�uence in the graphs is visualized with 1 or -1 and no in�uence as 0.

is used in the particles' viscosity equation. Each kernel is used to determine the
in�uence that a particle provides to a neighbor based on the distance to it; closer
particles impart higher in�uence whereas those beyond the support radius provide
none.

Each kernel returns zero if either the provided distance d between two particles
is zero (special case) or if the distance is larger than a provided global support
radius R (not to be confused with the particles radius which was used to compute
the support radius). This e�ectively limits the number of particles which in�uence
a speci�c particle.

Wpoly6(d,R) =


0 if d < 0 or d ≥ R
8(1−6s2+6s3)

πR3 if d
R
< 0.5

16(1−s)3
πR3 if d

R
≥ 0.5

(4.1)

The Wpoly6 is constructed as a cubic spline [1] according to (4.1), where s = d
R
.

Although it is possible to use alternative kernels, a study by Fulk and Quinn [16]
have found that no other kernels give a signi�cantly better result for density
computations than the cubic spline.

Wspiky(d,R) =

{
0 if d < 0 or d ≥ R
−8∗3465
512πR5 ∗ (1−d

2

R2)3
(4.2)

The function for Wspiky (4.2) follows an ordinary cos(x) pattern. The major
di�erence is that it only returns negative values instead of in the range of [−1 : 1].

Wviscosity(d,R) =

{
0 if d < 0 or d ≥ R
45(R−d)
πR6

(4.3)

Wviscosity returns an in�uence value according to a linear function (4.3).

10

4.3 Advection prediction

Advection is the conserved movement of a property in a �uid due to its bulk
motion. When a �uid is �owing the internal properties such as regional density
and pressure �uctuations will follow. As an example, imagine a river of water
�owing in one direction. When dripping some color into the water it too will follow
downstream rather than instantly disperse in all directions. The �rst component
in IISPH is to predict this physical behavior for each particle.

In order to do this, iterating each particle in two passes is required. In the
�rst pass (lines 3-5 Algorithm 1) density ρi, intermediate velocity vadvi and dis-
placement factor dii is calculated. During the second pass (lines 7-9 Algorithm 1)
intermediate density ρadvi , initial pressure value p0i and advection factor aii is
computed.

In the �rst pass of advection prediction the density of a particle ρi (line 3)
can be calculated as the summation of the products from each of its neighboring
particle's massmj and a �nite support kernel functionWij which uses the distance
between particles i and j as an input parameter.

Then an intermediate velocity vadvi (line 4) can be predicted as the particle's
current velocity vi and by taking Newton's second law of motion into account for
all external non-pressure forces Fadvi (such as gravity and viscosity). This is done
by combining all those forces into a single net force, divide it with the particle's
mass mi and multiply with the time-step ∆t, resulting in a velocity caused by
non-pressure forces which is added to the current velocity.

Fvisc
i = −

∑
j

(vi − vj)(
mj

ρi
)2ConstviscWij (4.4)

The viscosity force for a particle i is calculated according to Equation 4.4
where Constvisc is computed as 2 ∗ sizeFactor and the kernel used is Wviscosity.

Displacement is a quantity that measures a particle's distance of movement
from its equilibrium position in the �uid as the �uid is transmitting a wave. The
last part of the �rst pass is to compute each particle's displacement factor dii (line
5) which is repeatedly used in the following equations. It is the square of the time-
step ∆t2 multiplied with the summation of the negative value of each neighbor's
mass mj divided by the particle's calculated density squared ρ2i multiplied with
Wspiky which also uses the distance between i and j as an input parameter.

In the second pass of advection prediction the �rst variable to be calculated
is the intermediate density ρadvi (line 7). This incorporates the contribution of
advection created through pressure forces. It is the sum of the current density ρi
and the multiplication of the time-step ∆t and a summation of multiplications
iterating for each neighbor. The multiplications are between the mass of the
neighbor mj, the dot product of the intermediate velocity vector vadvij between i
and j and the non-normalized distance vector and �nally the Wspiky previously
used with the distance between i and j as input parameter.

11

The initial pressure value p0i (line 8) is set to 0.5 of the previous frame's
pressure value pi in order to receive optimal convergence. This was empirically
proven by Ihmsen et al. [3]. In the �rst frame it is set to 0.

aii =
∑
j

mj(dii − dji)∇Wij (4.5)

The advection factor aii which will be needed in the pressure solver is �nally
computed according to (4.5) where mj is the neighbor's mass. The displace-
ment factor dii is already computed and dji can be computed according to (4.6)
which is similar to how dii was calculated, only that it is not a summation over
all neighbors, the mass mi is the particle's mass and the non-normalized vector
to multiply with Wspiky is spanning from j to i. A dot product is used (4.5) be-
tween the di�erence vector from the displacement factors and the non-normalized
distance vector of j and i.

dji = −∆t2
mj

ρ2j
∇Wij (4.6)

4.4 Pressure solve

The second component of the algorithm is to solve the pressure equation. Simi-
larly to advection prediction it requires to iterate each particle in two passes. In
the �rst pass (line 14 Algorithm 1) the total movement due to pressure forces
from neighboring particles

∑
jdijp

l
j are computed. The second pass (lines 16-

17 Algorithm 1) computes the pressure pl + 1
i for the next frame and assigns it.

The pressure equation is solved employing relaxed Jacobi, which is an iterative
process for approximating a solution to an equation [17]. This makes the nature
of the solver iterative, meaning the two passes are iterated in a loop as it con-
verges towards the pressure value. The average density of the next frame can be
predicted according to (4.7). Due to this the iterative process can be controlled
by terminating when the error in density is less than a threshold η. That is when
the di�erence of the average predicted density ρavgl and the �uid's rest density ρ0
(the average density value of the �uid when perfectly still) is smaller than the
threshold value η.

ρl+1
i = ρadvi + pi

∑
j

mj(dii − dji)∇Wij+∑
j

mj

(∑
j

dijpj − djjpj −
∑
k 6=i

djkpk

)
∇Wij

(4.7)

The sum of movement caused by the pressure of neighboring particles is com-
puted similarly to the displacement factor in advection prediction. It di�ers in

12

that instead of dividing the neighbor's mass with the particle's density, it is di-
vided by the neighbor's density and that the resulting quotient is multiplied with
the neighbor's pressure plj for this iteration.

pl+1
i = (1− ω)pli + ω

1

aii

(
ρ0 − ρadvi −∑

j

mj

(∑
j

dijp
l
j − djjpj −

∑
k 6=i

djkp
l
k

)
∇Wij

) (4.8)

Computing the pressure is achieved according to (4.8). The calculation utilizes
the current iteration's pressure values pli in order to get the next iteration's values
pl + 1
i . The �rst term (1-ω)pli is altering the pressure using a relaxation factor ω.
Optimal convergence is achieved by setting it to the value of 0.5. The second
term is calculated as the relaxation factor ω divided with the advection factor aii
and multiplied with the deviation from the rest density, computed as ρ0 minus
the intermediate density ρadvi and (4.9).∑

j

mj

(∑
j

dijp
l
j − djjp

l
j −

∑
k 6=i

djkp
l
k

)
∇Wij (4.9)

The summation of (4.9) should only add pressure values caused by each neigh-
boring particle. All terms to this have already been computed with one exception.
The movement caused by neighbors' pressure forces

∑
jdijp

l
j was computed in the

previous pass. The product djjp
l
j is the product of the neighbor's displacement

factor and pressure, both of which are calculated and available to use. The∑
k 6=idijp

l
j is the same as (4.10) which is partially computed.∑

k 6=i

djkp
l
k =

∑
k

djkp
l
k − djip

l
i (4.10)

The �rst term in (4.10) is the neighbor's movement caused by pressure forces
from its neighbors and too has already been computed in the previous pass. The
second term however is the movement of the neighbor caused by the particle's
pressure (particle i of which the pressure is being calculated), thus it should
be excluded since only pressure values from neighbors to particle i should be
considered.

djipi = −∆t2(
mi

ρ2i (t)
pli∇Wji(t)) (4.11)

This is calculated according to (4.11), wheremi is the particle's mass, ρ2i is the
particle's density squared and pli is the particles pressure in the current iteration.
The vector to be multiplied with Wspiky is spanning between j and i. Once the
movement caused by the particle itself is excluded the result is multiplied as
according to (4.9) with the neighbor's mass mj, the dot product of the result and

13

the vector between the particle i and neighbor j and Wspiky function which is
using the distance between i and j as parameter. Finally the computed pressure
is assigned to the particle, if the value would be negative it is clamped to zero
due to negative pressure values not being allowed.

In order to control the compression the density error needs to be calculated
as well. As mentioned above it can be solved according to (4.7). Most values
are already computed, the intermediate density ρadvi was used before when com-
puting the pressure pi. The second term's summation for each neighbor uses the
di�erence of the displacement factor dii (already available) and the neighbors'
displacements due to the particle itself dji (can be calculated again (4.11) ex-
cluding the pressure pli). Wspiky again utilizes the distance between i and j and
the support radius as input. The third term is the exactly the same as (4.9).

4.5 Integration

Once the pressure is computed it is possible to update the particles with correct
velocities vi(t+∆t) and positions xi(t+∆t) achieved in the integration procedure
(lines 21-22 Algorithm 1).

The velocity vi(t + ∆t) is calculated as the intermediate velocity vadvi which
were calculated in advection prediction and by adding the velocity caused by the
pressure force Fpi (t) according to Newton's second law of motion. The pressure
force Fpi (t) should preserve momentum and is obtained according to (4.12) [1, 3].

Fp
i (t) = −mi

∑
j

mj

(pi(t)
ρ2i (t)

+
pj(t)

ρ2j(t)

)
∇Wij(t) (4.12)

The position xi(t+∆t) is then updated by adding the product of the time-step
∆t and the velocity vi(t+ ∆t) to the current position xi(t).

14

Chapter 5

Implementation

Three versions of the algorithm were implemented. The �rst one was a sequential
version running on the CPU. The second one was the proposed parallel version
running on the GPU. A parallel implementation of the CPU-version was also
developed using OpenMP. All three versions are based on the proposed IISPH-
algorithm by Ihmsen et al. [3], see Algorithm 1, implemented in C++.

DirectX 11.0 is used for rendering, billboards are used to represent each par-
ticle. Billboards were used because it made it possible to render more particles
due to the small amount of triangles compared to a spherical object. DirectX
11.0 was chosen due to previous experience and it allowed for reusing an already
existing graphics engine and basic program structure.

Microsoft Visual Studio® 2013 1 was used as developing environment because
of previous experience have been exclusively utilizing it. Additional software used
was the NVIDIA Nsight� Visual Studio Edition 2 in order to assist with GPU
debugging and pro�ling.

IISPH needs a set of variables whose values are constant throughout the sim-
ulation, such as the gravity constant, viscosity constant, time-step etc. These
variables can be seen in Figure 5.1. They are collected into a single static class
which can be accessed from anywhere within the program.

Figure 5.2 illustrate the information needed for each particle. However, how
it was implemented di�ers between the CPU-versions and the GPU-version. This
will be covered in respective implementation details below.

To keep the particles inside the speci�ed simulation domain, a set of particles
called boundary particles are utilized. These do not move during the simulation;
instead they have a �xed position and act as impenetrable walls, providing the
necessary forces to keep the moving �uid particles within the simulation domain.

1Visual Studio is either a registered trademark or trademark of Microsoft Corporation in
the United States and/or other countries.

2Nsight is a trademark and/or registered trademark of NVIDIA Corporation in the United
States and/or other countries.

15

// defines particle resolution

float sizeFactor

double globalSupportRadius

// time step

float deltaT

// physical quantities

double fluidParticleSpacing

float gravityConst

float fluidRestDensity

float initialMass

float fluidGasConst

float fluidViscConst

float densityError

// convergence constant

float relaxationFactor

// Iteration values for

// pressure solve loop

uint minIterations

uint maxIterations

Figure 5.1: Constant variables data structure. These variables are used throughout the physics
simulation but their values are never modi�ed once initialized.

5.1 CPU

During the initialization of the simulation a neighbor grid is created which divides
the simulation domain into a uniform grid. Each cell receives a unique identi-
�er and calculates which other cells that are neighbors of it and stores theirs
identi�ers. The cell is thereafter stored in a vector container.

The particles' data are stored in the manner of array of structs (AoS), that is
each particle is an object consisting of the data according to Figure 5.2 and the
data being localized in a consecutive section of memory.

The particles are created according to a user speci�ed scene as the struct
mentioned above. The variables of the algorithm in Algorithm 1 correlate to the
ones in the struct as can be seen in Table 5.1. In the creation process all values are
set to default values of zero except from the position and whether the particle is
a boundary particle or not. The last two variables in Figure 5.2 indicate whether
a particle is a boundary particle and at which cell ID (from now on denounced as
z-index) the particle is currently residing in. These variables are implementation
speci�c to assist with various tasks, such as �nding particle neighbors, hence they
are not represented in Algorithm 1.

The following sections describes the reoccurring events for each simulated
frame.

16

float3 position

float3 velocity

float density

float pressure

float advection

float densityAdvection

float3 velocityAdvection

float3 displacement

float3 sumPressureMovement

bool isStaticBoundaryParticle

uint index

Figure 5.2: The particle data structure. These are the variables that are stored for each
particle. Total memory usage per particle reaches 81 bytes. Note that indexations to identify
neighbor particles are not included.

Struct Algorithm

position xi
velocity vi
density ρi
pressure pl + 1

i

advection aii
densityAdvection ρadvi

velocityAdvection vadv
i

displacement dii
sumPressureMovement

∑
jdijp

l
j

Table 5.1: Mapping of the variables in the particle data struct to the ones in the IISPH-
algorithm.

5.1.1 Neighbors

Before calculating how the particles are distributed in the grid and �nding each
particle's neighbors they need to be sorted. This is done according to which cell
they belong to by using the cell's identi�er, calculated as described in section 3.1
in Goswami et al. [13]. After the sorting, the particles belonging to the same
cell have been grouped together, see Figure 5.3. Thrust's CPU-version of sort is
used for the particle sorting.

To make it easier to �nd a particle's neighbors, each cell stores the container
index of the �rst occurring particle which is inside of the cell and saves how many
of the following particles which also exist inside the cell.

To �nd all neighbors of a particle, it is required to scan the cell the particle
resides in and the 26 neighboring cells. Since each cell knows which particles re-
sides in them from previous calculations, it is only a matter of iterating through
those particles and check if they are closer or equal to a global support radius, if
closer, then a reference to that particle is added to the current particle. Since a

17

Figure 5.3: Illustrating how particle's IDs are sorted based on location in the spatial uniform
grid. Throughout the simulation, particles will change which cell they are spatially located in
(top part). In each frame a sorting occurs grouping particles with the same cell ID together,
illustrated with a black arrow. The result is particles stored by cell ID (bottom part).

particle's neighbors are available, the directions between a particle and its neigh-
bors and the in�uence of every kernel are computed and stored as well, to later
be used during physics computations.

5.1.2 Advection prediction

Advection prediction is divided into two major sections, each section iterating the
particles. In both sections a particle's neighbors are fetched once, temporarily
stored locally, to later be iterated when calculating density, viscosity and dis-
placement since these calculations require data from surrounding neighbors.

The �rst section computes the density, intermediate velocity and displace-
ment factor for each particle according to lines 3-5 in Algorithm 1 and stores
the resulting values in their respective variables density, velocityAdvection and
displacement. When calculating a particle density, its own density contribution is
added before iterating over its neighbors adding their contribution to the particle
density.

By using the stored results from the �rst section, the second section calculates
each particle's intermediate density, initial pressure and advection factor accord-
ing to lines 7-9 in Algorithm 1. These are stored in the variables densityAdvection,
pressure and advection. The initial pressure can be stored in the pressure variable
by multiplying itself with 0.5, as mentioned in section 4.3.

5.1.3 Pressure solve

Computing pressure values are done according to section 4.4 with certain modi-
�cations. A safeguard was added to the while-loop to prevent it from locking in
an in�nite loop by not only checking if the average density error is smaller than
the acceptable error but also if the iteration counter l < 50.

According to Algorithm 1 the pressure should be split into two for-loops, the
�rst one calculates the movement due to neighboring particles' pressure values and

18

stores it in sumPressureMovement. The second loop computes the next iteration's
pressure before storing it in pressure. Both loops are implemented according to
the pseudo code in Algorithm 1 with no modi�cations.

As previously mentioned it is possible to predict the density in the next frame
in order to compute the average density error, thus a third for-loop was added. For
each particle the density of it in the next iteration is computed as Equation 4.7.
Only density values greater than the �uid's rest density are considered as errors.
Should the value be less than the rest density, the contribution to the error is
clamped to 0.

5.1.4 Integration

The integration works accordingly to the algorithm with a few additions and
changes. Collision handling is added to ensure that the particles stay inside the
simulation domain and also to avoid getting invalid cell indices due to particles
going outside of the uniform grid. It has been modi�ed so particles that are
�agged as boundaries are not updating their positions and velocities. Finally in
the function the new position and velocity are stored in their respective variables
position and velocity.

5.2 GPU

One of many performance issues that has to be taken into account when designing
an algorithm or programming on the GPU is the memory transfer bottleneck
occurring when moving memory back and forth to the CPU. One naïve approach
would be to do all the computations on the GPU and, to render the results, one
would copy the data back to the CPU to be able to update the bu�ers used when
rendering.

However due to the interoperability with DirectX, once the particles are in
GPU memory they are never transferred back to the CPU. This e�ectively re-
moves the memory transfer bottleneck for rendering. In addition to avoiding the
slow transfer rates between CPU and GPU, by removing a synchronization point
even more time is saved.This also makes it possible to save overall memory since
there is no longer a need to have a copy of the data on the CPU and another one
on the GPU.

CUDA textures [23] are used throughout the implementation whenever re-
peated access to an array of data is used within a function. This is due to their
fundamental nature of utilizing the GPU's cache to improve the overall speed
when repeatedly fetching contiguous data. The gained speed is highly dependent
on how the memory is accessed and if the data has enough locality to allow coa-
lescing. This usage is read-only and thus cannot be utilized if an array must be
read from and written to during the same kernel.

19

Algorithm 2: CUDA physics update

Procedure NEIGHBOR SORT
Kernel calcIndex

Kernel sortParticles

Kernel sortParticleData

Kernel FindGridCellStartEnd

Kernel updateNeighbors

Procedure ADVECTION PREDICTION
Kernel computeDisplacementFactor

foreach particle i do
compute ρi(t)

predict vadvi

compute dii

Kernel computeAdvectionFactor
foreach particle i do

compute ρadvi

compute p0i
compute aii(4.5)

Procedure PRESSURE SOLVE
l = 0
while ρerri > η ∨ l < 2 do

Kernel computeSumPressureMovement
foreach particle i do

compute
∑
j dijp

l
j

Kernel computePressure
foreach particle i do

compute pl+1
i (4.8)

assign pi(t)

Kernel predictDensity
foreach particle i do

compute ρl+1
i (4.7)

Kernel calcDensityError
foreach particle i do

reduce ρerri

l = l + 1

Procedure INTEGRATION
Kernel integration

foreach particle i do
compute vi(t+ ∆t)
compute xi(t+ ∆t)

Furthermore whenever a
kernel directly modi�es or does
computations on a particle or
cell, that kernel is launched
so every particle or cell gets
assigned one thread. For
that, the necessary number of
CUDA blocks needs to be com-
puted. It is computed as
ceil(t/s), where t is the to-
tal number of threads needed
and s is a speci�ed num-
ber of threads for each block.
This can create threads that
will be unused, this is han-
dled by checking if a threads
global id which is calculated
as blockIdx.x ∗ blockDim.x +
threadIdx.x is lower than the
total number of objects avail-
able, if so then the thread will
continue to run and if not it
will terminate.

The number of threads per
block is limited by the graph-
ics card's compute capability,
e.g. a modern graphics card
with compute capability 5.x
can have a maximum of 1024
threads for each block, for
more details about the di�er-
ent compute capabilities see
the CUDA Toolkit Documen-
tation [23]. An overview of
kernels used can be seen in Al-
gorithm 2.

5.2.1 Initialization

The CUDA implementation requires initialization and allocation of device mem-
ory, which is video RAM (VRAM), from the host. Constant variables used
throughout the program as global constants such as the FluidConstants are ini-
tialized on the host and copied to constant memory on the device.

20

ref:Computecapabilities
ref:Computecapabilities

Unlike the CPU-versions the data of the particles are arranged into SoA in the
GPU-version. One advantage of SoA is that it allows for coalesced memory access
of consecutive threads. SoA also avoids the issue of padding between elements due
to memory alignment which may occur with AoS. The host allocates the arrays
in device memory and initializes the particles' starting positions; transferring the
position data to the corresponding array in device memory.

In order to render the simulation, data such as the particles' positions and
colors are necessary. This information can be shared from CUDA to DirectX
without the need to copy the data from the device to the host and back again by
using interoperability, this is covered in subsection 5.2.6.

uint deviceParticleHash[N]

uint deviceParticleId[N]

uint2 deviceCellGrid[N] //start(x), end(y)

//position(x,y,z), isBoundary(w)

float4 deviceParticlePosition[N]

float4 deviceParticleVelocity[N]

float deviceParticleDensity[N]

float deviceParticlePressure[N]

float deviceParticleDensityAdv[N]

float4 deviceParticleVelocityAdv[N]

float4 deviceParticleSumPressureMovement[N]

//displacement(x,y,z), advection(w)

float4 deviceParticleDisplacement[N]

float deviceParticleDensityNextIteration[N]

uint deviceNeighborGrid[N]

uint deviceParticleNeighbors[N]

Figure 5.4: The di�erent bu�ers allocated on the device and used in the physics calculations.
Bu�ers beginning with deviceParticle are corresponding to the variables in the particle struct
seen in Figure 5.2.

The initialization begins by constructing the scene of particles precisely as
the CPU version does. After the creation the constant variables in Figure 5.1 are
transferred to the constant memory on the GPU. It is followed by the initialization
of all bu�ers (see Figure 5.4) used during the simulation by allocating memory and
setting default values. The bu�ers are allocated as mentioned above as contiguous
linear memory blocks residing in global memory on the GPU.

The total allocation size depends on the number of particles. For one particle
264 bytes are needed for the physics simulation (104 bytes for the particle data and
160 bytes allocated for neighbors), additional 56 bytes are used when swapping
values during the data sort and �nally 36 bytes are used for rendering. Note that
only 20 bytes (float4 color and float scale) are required for the rendering, the
additional 16 bytes (float4 position) acts as a separator between the rendering

21

and physics. As such a total of 356 bytes are needed for each particle throughout
the implementation.

After the bu�er initialization a parallel version of createGridNeighbors is
launched to create and store the grid structure directly on the GPU.

The �nal step in the initialization is the initial data transfer, the transfer can-
not begin before the necessary rendering resources are bound to the physics, see
function one in Figure 5.8. When the resources are bound the previously created
particles data is transferred to global memory with the addition of rendering data
such as color and scale for the two types of particles, boundary and �uid.

5.2.2 Neighbors

The �rst kernel launch calcIndex in the physics loop calculates the z-index for
each particle according to section 3.1 in Goswami et al. [13] and stores it in
deviceParticleHash. It also stores an identi�er in deviceParticleId which is used
when sorting the particles in the next kernel.

After the z-index and identi�er assignment the particles are grouped together
by their z-index value and sorted according to their id using Thrusts sort_by_key
algorithm. The ids stored are no longer following a sequence, each element is
instead indicating which particle that should be stored at that bu�er location
in the bu�ers. This is crucial in sortParticlesData where the variables used
between updates; position, velocity, color, scale and pressure needs to be relocated
accordingly to the new z-index values.

Algorithm 3: FindGridCellStartEnd

gridIndex = zValue[index]

sharedIndex[t.x+1] = gridIndex

if index > 0 && t.x == 0 then

sharedIndex[0] = zValue[index - 1]

end

cell[index] = default

__syncthreads()

if index == 0 || gridIndex != sharedIndex[t.x] then

cell.x = index

if index > 0 then

cell[sharedIndex[t.x]].y = index

end

end

if index == numParticles - 1 then

cell[gridIndex].y = index + 1

end

FindGridCellStartEnd is launched to make �nding a particle's neighbors
more convenient and e�ciently, the goal for this kernel is described in subsec-
tion 5.1.1. To avoid the need for iterating every particle and check if it is a valid

22

neighbor, the kernel runs according to Algorithm 3 which is inspired by a particle
demo by NVIDIA [24]. Where index is the global thread index, t.x is the same as
threadIdx.x and sharedIndex[] is a shared memory array with an allocated size
of CUDA blocksize+ 1.

The updateNeighbors works as described in subsection 5.1.1, with one major
di�erence. Instead of sequentially iterating every particle, each particle is assigned
one thread to �nd all of its neighbors. Apart from the algorithm itself, the way
it is stored di�ers as well; since there is no such thing as a vector container on
the GPU, especially not a vector container of vector containers which the CPU
version utilizes. The GPU stores the neighbors in deviceParticleNeighbors which
is allocated as a contiguous memory block with room for the (total number of
particles ∗ max number of neighbors allowed) elements. This is a 2D array stored
as a 1D array, as such it is accessed as [x, y] = x ∗ max number of neighbors
allowed + y.

Because of the contiguous memory allocation and for simplicity it was decided
not to store pre-computed frame based values such as distances between particles,
which is done in the CPU-implementations.

Algorithm 4: AdvectionPrediction_CPU

Procedure ADVECTION PREDICTION
foreach particle i do

compute ρi(t) =
∑
jmjWij(t)

predict vadvi = vi(t) + ∆t
Fadv

i (t)
mi

dii = ∆t2
∑
j −

mj

ρ2i
∇Wij(t)

foreach particle i do
ρadvi = ρi(t) + ∆t

∑
jmj(v

adv
ij)∇Wij(t)

p0i = 0.5pi(t−∆t)
compute aii(4.5)

Algorithm 5: AdvectionPrediction_CUDA

Procedure ADVECTION PREDICTION
Kernel computeDisplacementFactor

foreach particle i do
compute ρi(t)

predict vadvi

compute dii

Kernel computeAdvectionFactor
foreach particle i do

compute ρadvi

compute p0i
compute aii(4.5)

Figure 5.5: Comparison between CPU- (left) and CUDA-solution (right) for advection predic-
tion. The two kernels in the CUDA-solution correspond to the for-loops in the CPU-solution.
A thread will be allocated for each particle i.

5.2.3 Advection prediction

Due to the necessity of the advection prediction part to run its two loops sepa-
rately, one after the other, it is required to have a synchronization barrier between
the two when developing a parallel version. This can be achieved either by using
thread synchronization (using __syncthreads) or by launching each loop as a
separate kernel since kernel launches are done in sequence on the CPU. Using
__syncthreads will only allow threads within a block to be synchronized [25],
thus only a single block would be possible to be utilized if this method were cho-

23

sen. Due to this restriction, the separation into two kernel launches was chosen,
see Figure 5.5.

Parallelism is achieved by assigning each particle a thread to compute its val-
ues and removing the two outer for-loops which the CPU iterated over for each
particle. Input-parameters with repeated access to arrays are fetched as textures
to alleviate the accessing from global memory. Because of the outputs from
computeDisplacementFactor are completed before computeAdvectionFactor

can begin it is safe to access the dependent data using texture fetches.

5.2.4 Pressure solve

The pressure solver can be parallelized with the same strategy as advection predic-
tion, that is, each particle will be assigned a thread and the for-loops is replaced by
kernel launches. However, due to that these loops are themselves iterated repeat-
edly as long as the average density error is greater than an acceptable threshold,
this strategy will restrict how much of the pressure solver that is executed on
the GPU. Kernel launches are done from the CPU and thus the while-loop and
its conditional checks too will be CPU-code. An alternative solution is discussed
in subsection 5.3.2.

Algorithm 6: PressureSolve_CPU

Procedure PRESSURE SOLVE
l = 0
while ρerri > η ∨ l < 2 do

foreach particle i do∑
j dijp

l
j = ∆t2

∑
j −

mj

ρ2j (t)
∇Wij(t)

foreach particle i do

compute pl+1
i (4.8)

pi(t) = pl+1
i

foreach particle i do

compute ρl+1
i (4.7)

foreach particle i do

reduce ρerri = max(ρl+1
i − ρ0, 0)

l = l + 1

Algorithm 7: PressureSolve_CUDA

Procedure PRESSURE SOLVE
l = 0
while ρerri > η ∨ l < 2 do

Kernel computeSumPressureMovement
foreach particle i do

compute
∑
j dijp

l
j

Kernel computePressure
foreach particle i do

compute pl+1
i (4.8)

assign pi(t)

Kernel predictDensity
foreach particle i do

compute ρl+1
i (4.7)

Kernel calcDensityError
foreach particle i do

reduce ρerri

l = l + 1

Figure 5.6: Comparison between CPU- (left) and CUDA-solution (right) for pressure solve.
The four kernels in the CUDA-solution correspond to the for-loops in the CPU-solution. A
thread will be allocated for each particle i. The condition check for the while-loop is still executed
on the CPU.

As can be seen in Figure 5.6 another kernel is added beside the ones that
computes the movements due to pressure, pressure values and the one that tries

24

to predict the density for the density error. The kernel calcDensityError is a
small kernel that adds up the estimated density values using Thrust reduce.

As with advection prediction, pressure solve kernels use texture fetches to
reduce global memory access for input-parameters.

5.2.5 Integration

This procedure is the least changed, see Figure 5.7, due to its simple and straight-
forward structure. Just as in the CPU-version it has the additional collision han-
dling and the boundary particles do not update their velocities nor positions. It
is launched as every other kernel and utilizes CUDA textures whenever possible.

Algorithm 8: Integration_CPU

Procedure INTEGRATION
foreach particle i do

vi(t+ ∆t) = vadvi + ∆t
Fp

i (t)

mi

xi(t+ ∆t) = xi(t) + ∆tvi(t+ ∆t)

Algorithm 9: Integration_CUDA

Procedure INTEGRATION
Kernel integration

foreach particle i do
compute vi(t+ ∆t)
compute xi(t+ ∆t)

Figure 5.7: Comparison between CPU- (left) and CUDA-solution (right) for integration. The
kernel in the CUDA-solution corresponds to the for-loop in the CPU-solution. A thread will be
allocated for each particle i.

5.2.6 DirectX interoperability

cudaGraphicsD3D11RegisterResource(cudaGraphicsResource **resource,

ID3D11Resource *pD3DResource, unsigned int flags)

cudaGraphicsUnregisterResource(cudaGraphicsResource_t resource)

cudaGraphicsMapResources(int count, cudaGraphicsResource_t *resources,

cudaStream_t stream = (cudaStream_t)0)

cudaGraphicsUnmapResources(int count, cudaGraphicsResource_t *resources,

cudaStream_t stream = (cudaStream_t)0)

cudaGraphicsResourceGetMappedPointer(void **devPtr, size_t *size,

cudaGraphicsResource_t resource)

Figure 5.8: The interoperability commands used which allow CUDA to manipulate the bu�ers
for DirectX.

To connect CUDA to DirectX four functions where used, their signatures can
be seen in Figure 5.8. The functions always returns a cudaError_t indicating if
anything went wrong or if the function call succeeded, e.g. an error indicating an
invalid value or a unknown error [26].

The �rst function is used to tell CUDA to register a given resource accom-
panied with optional �ags. The �ags give CUDA a hint to how the resource is

25

going to be used e.g. as a surface reference. However, there are limitations on
which Direct3D resources that can be registered, a few of those limitations are
resources allocated as shared and the primary render target cannot be registered.
The second function is used to unregister a registered resource [26].

The third and fourth functions are used to map and unmap count resources
to allow access from CUDA. While the resources are mapped, access is granted.
However, if DirectX should try to access the resources while it is bound it will
cause unde�ned behavior. Function three guarantees any DirectX API calls are
done before any following CUDA work begins, while function four guarantees that
all CUDA work is completed before new DirectX calls are issued [26].

The �nal function is used to get a void** pointer which points to the �rst
element in the provided resource. If desired, the accessible size can also be pro-
vided. Otherwise providing the function with nullptr will block the function
from returning a size [26].

These functions are used for each connected Direct3D resource. The resources
used are allocated in three structured bu�ers containing the positions, colors and
scales for each particle. Function one is used only once for each resource after the
initialization of the physics and graphics, function two is used when the physics
destructor is called.

Since function three and four are synchronization points in the program they
should not be used in abundance because, if not carefully placed, they could very
well limit the program's overall performance. Therefore, in the implementation
each of the three resources call function three closely followed by function �ve at
the beginning of each reoccurring update while function four is the �nal call in
each update.

5.3 Alternative approaches

The proposed implementation was one of few alternatives that emerged during the
implementation stage. Alternatives ranged from function changes to fundamental
structure changes in kernels. Those worth mentioning are the shared memory
approach and adjustments due to newer compute capabilities.

5.3.1 Shared memory

A solution based on Goswami et al. [13] was implemented. This was done by
inserting one stage before advection prediction and after �nding all cells start and
end particles, this stage copies the bu�er containing cells start and end particles
indices to a new bu�er and modi�es it. In the new bu�er all the empty cells were
removed and the cells with a particle count above 27 was divided into chunks,
each containing up to a maximum of 27 particles.

26

To be able to use the new bu�er with the kernels, modi�cations had to be
made accordingly. Kernels were now launched with a �xed number of threads,
viz. 27, one for each particle with as many blocks as the new bu�er had cells.

All kernels had to be slightly modi�ed to accompany the new solution. The
initial process was changed to determine the maximum amount of possible neigh-
bors residing in neighboring cells. Before iterating through the maximum amount
of neighbors each thread copies its particle's relevant data into shared memory.
During the frame each thread copies a neighboring particle into shared mem-
ory and synchronizes the threads directly afterwards without leaving the frame.
Finally during the frames each thread iterates over the data residing in shared
memory and runs the desired computations such as calculating density for the
assigned particle.

5.3.2 Compute Capability 5.X

Due to hardware limitations on the development platform, it was necessary to
restrict the solution to compute capability 3.0. This e�ectively restricted which
features in CUDA that could be used.

With the introduction of compute capability 3.5 dynamic parallelism was sup-
ported [23]. This allows for a kernel to launch separate kernels that are run in
parallel. The control loop for the compression when solving the pressure equation
could take advantage of this feature by launching its subsequent kernels (the ker-
nels to compute movement due to pressure, pressure values, calculate a predicted
density and the average density error) as child kernels. Thus unnecessary returns
to CPU in order to launch kernels could have been avoided.

Another feature set introduced with compute capability 3.5 is the atomic min
and max operations. This could have been used in the kernel for �nding a cell's
start and end indices. With these atomic operations the branching factor could
have been reduced by the possibility to eliminate certain if statements. This in
turn could have led to better performance.

27

Chapter 6

Experimental Method

Experiments were conducted on all versions by running identical scenarios with
implemented test scenes and measuring the computation times required to com-
plete each scenario. Due to the aim of the thesis and that it is commonly done [3,
13, 14], measuring the time required for running the simulation was deemed as
the best method to gather relevant data. All scenarios assume identical relative
camera position and view direction.

Additionally, the particles' memory usage was gathered as well. Since a single
graphics card only has a certain amount of memory it is a limiting factor on how
many particles that can be residing in memory simultaneously. For instance a 4
GB graphics card can theoretically hold approximately 12 million particles with
the proposed solution.

The SPH CUDA algorithm presented by Goswami et al. [13] was modi�ed to
the proposed �ne-grained solution so the performance cost of adding incompress-
ibility to �uids could be observed.

The experiments were run on two di�erent hardware setups according to Ta-
ble 6.1.

Setup 1 Setup 2

CPU Intel® Core� 1 i7-3770, 3.4GHz, 8MB Cache Intel® Xeon® 1 E5-1650, 3.2GHz, 12MB Cache
GPU MSI GeForce GTX 970 Gaming 4G NVIDIA Quadro K4000
RAM Corsair Vengeance DDR3, 1600MHz, 16GB DDR3, 1600MHz, 16GB

OS Windows® 2 7 Ultimate 64-bit Windows® 2 8.1 Enterprise 64-bit

Table 6.1: Computer speci�cations for experiments.

6.1 Time measurement functions

To measure the time and to get as close accuracy as possible in terms of what was
measured, three separate timers were used: one for CPU-code, one for CUDA-

1Intel, Intel Core and Xenon are either registered trademarks or trademarks of Intel Corpo-
ration in the United States and/or other countries.

2Windows is either a registered trademark or trademark of Microsoft Corporation in the
United States and/or other countries.

28

code and one for rendering. Timings of the physics simulation were conducted
using two approaches. Both methods computed the time used per frame and
calculated an average time usage. The �rst one created a time stamp right before
launching the physics simulation, ran the current frame's simulation and created
a new time stamp right after the end of the simulation, which allowed for an eval-
uation of total time required by the frame. Adding one layer of detail, the second
method used the same approach but on comparable (CPU compared to GPU)
subsections inside of the physics-function. This allowed for identi�cation of which
sections of the physics simulation that were the most computationally expensive.
The two approaches were run separately to not cause inaccurate timings due to
overhead.

The CPU-version utilizes the QueryPerformanceCounter API available in Mi-
crosoft Windows which can provide the frequency of the CPU core as well as
the number of clock ticks between two time stamps [27]. The time can thus be
evaluated in milliseconds and seconds, and �nally converted to FPS.

CUDA provides the methods cudaEventRecord, which is used to record an
event, and cudaEventElapsedTime [28] which evaluates the time between two
recorded events. The GPU-timer for CUDA measurements used this.

The time required to render each frame was measured using the ID3D11Query
interface which is used to query the graphics card for data. Using D3D11_QUERY_T-
IMESTAMP and D3D11_QUERY_TIMESTAMP_DISJOINT it is possible to receive reliable
time stamps in clock ticks and the GPU core frequency [29, 30] which is used to
convert the result similar to how the CPU-timer does.

6.2 Test scenes

Four di�erent test scenes were implemented with varying complexity, simple,
breaking dam, two blocks and gallery, see Figure 6.1. All scenes are of the same
dimensions and use identical setup for static boundary particles and collision
boxes. The boundary particles creates a box with an open top domain. This
can be seen in Figure 6.2 where the green particles represent the static boundary
particles and the blue ones are the �uid particles. The number of particles ranged
from 4 000 to 200 000 particles.

In simple-scene a block of �uid particles begins by falling towards the bottom
of the box before collapsing. In breaking dam the �uid particles are stacked
directly on the bottom as a block alongside one of the walls, collapsing into
the box. The two blocks-scene is similar to the simple-scene but consist of two
smaller separate blocks which fall towards the bottom of the box. The last scene,
gallery, is more complex. It contains obstructions created with static boundary
particles which were used to build a wall and some pillars. A small block of �uid
particles begins by falling towards the �ground� before interacting with the walls
and pillars.

29

Figure 6.1: The four test scenes. Top left: simple, 121 000 particles. Top right: breaking
dam, 114 000 particles. Bottom left: two blocks, 116 000 particles. Bottom right: gallery, 99
000 particles. Note that boundary particles have been omitted during rendering.

Figure 6.2: The gallery scene with 51 000 boundary particles (green) and 48 000 �uid particles
(blue).

6.3 Memory usage

To measure the total memory allocated by the CUDA-solution, the CUDA allo-
cation function was wrapped in a new function which then was used instead when
allocating new bu�ers. In the function a variable was increased by the allocated
size every time a new bu�er was allocated. The memory footprint for the constant
variables seen in Figure 5.1 is neglected in the tests since the memory usage for
these variables are equal between the implementations.

Since the CPU-version utilizes C++ std::vector it is troublesome to get an
accurate number of the total amount of memory allocated due to the dynamic
nature of the container. This is only a problem for the std::vector containing
the particles' neighbors since the number of neighbors di�er between frames. As
such an average number of neighbors where calculated during each simulation.
To get how much memory a struct was allocating the C++ function sizeof was

30

used. To get the total allocated size for the CPU-implementation, the size of each
struct was multiplied with its corresponding count e.g. the number of particles
multiplied with the size of the particle struct.

6.4 Physical precision comparison

The parallel GPGPU-implementation should not alter the visual quality of IISPH;
thus a veri�cation of this was necessary to be performed. Two common techniques
to measure errors and noise in images are the peak signal-to-noise ratio (PSNR)
and structured similarity index measure (SSIM) [18]. Both methods are sensi-
tive for di�erent image degradations due to lossy compressions. SSIM has been
criticized for giving an unreliable result [19].

The PSNR was chosen as the metric for comparing the simulations. An ac-
ceptable value for images with bit depths of 8-bit ranges between 30 � 40 dB. The
higher the value, the better the result is.

The comparison images were saved as portable network graphics (PNG), which
is a lossless format, to avoid issues due to image degradation.

31

Chapter 7

Results

To ease further reading this section will only present a compilation of processed
data. All collected data can be reviewed in Appendix A. Multiple test runs were
executed. The data presented is from a single run but has been cross-validated
with the others to ensure the values being reasonable.

Figure 7.1: All four scenes visualized at the same time interval. From top to bottom: simple-
scene (121 000 particles), breaking dam (114 000 particles), gallery (99 000 particles) and
two blocks (116 000 particles). In this case a time-step of 3.5 ms and particle spacing of 0.05
m was used.

32

In all measured scenarios a �xed time-step of 3.5 ms and particle spacing of
0.09 m was used. All kernels were launched with blocks of a maximum of 256
threads per block. To increase or decrease the total number of particles in a scene
the dimension was changed. Each of the scenes used the same set of dimensions,
hence the number of particles varied between scenes. To ensure accuracy of the
time measurements the average frame-time was computed from test scenarios
running for 300 and 1 000 frames. The deviation between these two cases was
considered negligible and thus only data from the 1 000 frames scenarios are being
presented in this section.

A time-lapse for the scenes can be seen in Figure 7.1.

7.1 Time usage

Note that the lines for the graphs comparing the scenes in this section ends at
di�erent x-values. This is due to the amount of particles varying between scenes
and all scenes were running with the same dimension changes to scale them up
(resulting in increased amount of particles) during the experiments.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000 180 000 200 000

T
im

e
p

er
 f

ra
m

e
(m

s)

Number of particles

Computation time in all scenes between parallel CPU and GPU for setup 1

GPU: Breaking dam GPU: Gallery GPU: Simple GPU: Two blocks

CPU: Breaking dam CPU: Gallery CPU: Simple CPU: Two blocks

Figure 7.2: The graph visualizes the computation time of the algorithm per frame on setup
1 for the CUDA-solution compared to OpenMP. All four tests scenes used a time-step of 3.5
ms and a particles spacing of 0.09 m. Measurements was taken over 1 000 frames. The black
horizontal dashed line denotes the 30 FPS mark.

The CUDA-solution is able to achieve higher performance than an OpenMP-
implementation on the CPU according to Figures 7.2 and 7.3. The CPU has a
steady time per frame regardless of scene while the CUDA times �uctuate ever

33

so slightly on computer setup 2, but on setup 1 the �uctuation is greater. The
cause for the �uctuation in setup 1 is unknown.

Although the scenes di�er slightly from each other, they still follow a linear
growth when the amount of particles increases. As an example, on setup 1 the
gallery-scene with approximately 150 000 particles required 25.4 ms per frame to
compute the physics calculations using the proposed CUDA-implementation. In
the same scenario using OpenMP, the time required was 183.1 ms. On setup 2
the corresponding values were 58.1 ms with CUDA and 124.6 ms with OpenMP.

0

20

40

60

80

100

120

140

160

180

200

 0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000 180 000 200 000

T
im

e
p

er
 f

ra
m

e
(m

s)

Number of particles

Computation time in all scenes between parallel CPU and GPU for setup 2

GPU: Breaking dam GPU: Gallery GPU: Simple GPU: Two blocks

CPU: Breaking dam CPU: Gallery CPU: Simple CPU: Two blocks

Figure 7.3: The graph visualizes the computation time of the algorithm per frame on setup
2 for the CUDA-solution compared to OpenMP. All four tests scenes used a time-step of 3.5
ms and a particles spacing of 0.09 m. Measurements was taken over 1 000 frames. The black
horizontal dashed line denotes the 30 FPS mark.

As seen in Figure 7.4 the sequential CPU-solution also follows a linear growth
rate and the times compared with the CUDA-solution is signi�cantly slower. The
same �uctuations can be observed for the CUDA-implementation as in Figure 7.2.
Computer setup 2 was tested as well but the result was not as good as on setup
1 and is thus not included in this chapter.

When disabling OpenMP, the CPU-version required for the gallery-scene with
approximately 150 000 particles 582.6 ms to calculate the physics each frame.

Figure 7.5 show a linear growth for time spent in the majority of the kernels in
the implementation except for FindGridCellStartEnd and DensityError which
seems to be more or less constant during the experiment. All measurements can
be directly mapped to the kernels in Algorithm 2. Note that these are the total
execution times for a single frame, meaning that the kernels in the pressure solve
procedure are the total execution time per frame and not per iteration.

34

0

100

200

300

400

500

600

700

800

0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000 180 000 200 000

T
im

e
p

er
 f

ra
m

e
(m

s)

Number of particles

Computational time in all scenes between sequential CPU and GPU for setup 1

GPU: Breaking dam GPU: Gallery GPU: Simple GPU: Two blocks

CPU: Breaking dam CPU: Gallery CPU: Simple CPU: Two blocks

Figure 7.4: The graph visualizes the computation time of the algorithm per frame on setup 1
for the CUDA-solution compared to the sequential CPU-implementation. All four tests scenes
used a time-step of 3.5 ms and a particles spacing of 0.09 m. Measurements was taken over
1 000 frames.

0

1

2

3

4

5

6

7

5 225 9 055 14 089 31 054 53 539 83 822 125 836 176 699

T
im

e
p

er
 f

ra
m

e
(m

s)

Number of particles

Computation times between different kernels for breaking dam for setup 1

Sorting FindGridCellStartEnd UpdateNeighbors DisplacementFactor

AdvectionFactor SumPressureMovement Pressure PredictDensity

DensityError Integration

Figure 7.5: Visualizing the computation time for each kernel in each frame in the breaking
dam scene. A time-step of 3.5 ms and particle spacing of 0.09 m was used. Measurements was
taken over 300 frames on computer setup 1.

35

As such it is clear that the execution time for the advection prediction and
pressure solve procedures are the majority of the total execution time each frame.
Where pressure solve is the slower one of the two.

To show the cost of incompressibility the �ne-grained approach presented
was applied to SPH and measured with both setups, the results can be seen
in Table 7.1. The results for both setups in Table 7.1 follow a linear growth rate
just as IISPH does where setup 2 are slightly steeper than setup 1.

SPH CUDA Setup 1 Setup 2

Particles time (ms) FPS time (ms) FPS
7 600 0.79 1268 1.42 707
20 000 1.15 874 3.89 277
54 000 3.19 329 6.90 146
103 000 7.42 173 14.04 76
175 000 16.55 64 22.19 46

Table 7.1: Table showing the results of a SPH implementation according the �ne-grained
approach presented in this thesis.

7.2 Memory usage

0

20

40

60

80

100

120

140

160

180

 0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000 180 000 200 000

M
em

o
ry

 u
sa

g
e

(M
B

)

Number of particles

Physics memory usage in all scenes

GPU: Breaking dam GPU: Gallery GPU: Simple GPU: Two blocks

CPU: Breaking dam CPU: Gallery CPU: Simple CPU: Two blocks

Figure 7.6: The memory usage in all scenes is growing linearly with the number of particles.

A similar linear growth in memory usage was detected in both the CPU-
and the GPU-implementation for all test scenes when the number of particles
increased, see Figure 7.6. As an example the gallery-scene noted for approximately

36

150 000 particles a usage of 126 MB on the CPU-versions and 59 MB on the
GPU-version whereas the result in the breaking dam scene was 128 MB and 56
MB respectively.

7.3 Physical precision

The simple-scene was used when doing the image comparison. The program
took a screen capture every 50 frame for each solution, sequential, OpenMP and
CUDA. The boundary particles are not rendered while doing the comparisons
since they remain constant throughout the simulation and they are not relevant
for rendering, because they are only used during physics computations to get a
better wall collision. For all the screen captures the camera's position and view
direction are identical.

The results can be seen in Figures 7.7 and 7.8. There is no di�erence between
the sequential and the OpenM- version as can be seen in the bottom row in Fig-
ure 7.7. There is however di�erences between the sequential and CUDA-version,
see the bottom row in Figure 7.8, the most noticeable is the back section in frame
150 is quite scattered compared to the sequential and slight di�erences in the
front.

Figure 7.7: Screen comparison of simple scene every 50 frame with 43 000 �uid particles. This
is frame 50 � 150. Top row: sequential. Middle row: OpenMP. Bottom row: PSNR di�erence
between top and middle. No di�erence was measured between the two. The fading of the bottom
row is a result from the tool used and does not imply anything.

37

Figure 7.8: Screen comparison of simple scene every 50 frame with 43 000 �uid particles. This
is frame 50 � 150. Top row: sequential. Middle row: CUDA. Bottom row: PSNR di�erence
between top and middle, note that red indicates di�erence, however, not how much it di�ers.
The fading of the bottom row is a result from the tool used and does not imply anything.

7.4 Shared memory

The numbers in Table 7.2 are from an early development stage where a shared
memory approach was explored for the �rst section of advection prediction. The
di�erence between approaches is the kernel structure and how much preparations
is needed. For the global approach an additional 94.6 ms is required for prepa-
rations once each frame, for such as �nding neighbors. This is not needed in the
shared memory approach. However similar di�erences between the other kernels
was observed.

Dimension
Approach Grid Block Duration (ms) Occupancy (%) Block limit reason

Global {817,1,1} {256,1,1} 14.1 75 Registers
Shared {17251,1,1} {27,1,1} 129.8 25 Blocks

Table 7.2: Performance for �rst part of advection prediction with 220 000 particles. Nsight's
pro�ler was used for the numbers for the di�erent approaches. The global approach is the
proposed implementation and shared is the alternative approach.

38

Chapter 8

Analysis and Discussion

Based on the results certain conclusions can be made regarding the performance
of the proposed implementation as well as the qualitative result.

8.1 Time usage

By averaging the measured time results, the usage of an average scene for a certain
amount of particles can be compiled. For setup 1 this can be seen in Table 8.1
and for setup 2 in Table 8.2. Setup 1 achieved a speed-up of the parallel GPU-
solution compared to the parallel CPU-version with a factor of ∼6. In setup 2
the speed-up was lower than that of setup 2 with a speed-up factor of ∼2.

Setup 1 Physics - GPU Physics - CPU
(OpenMP)

Particles Time (ms) FPS Time (ms) FPS Speedup
7 600 2.58 388 6.89 146 2.67
20 000 4.06 247 22.18 45 5.47
54 000 10.21 100 64.20 16 6.29
103 000 21.07 49 126.80 8 6.02
175 000 39.18 28 221.16 5 5.64

Table 8.1: The average time measured on computer setup 1 for each scene with a calculated
speed-up between the GPU and CPU, OpenMP was activated.

Tables 8.1 and 8.2 show that depending on hardware setup the CUDA solution
can compute 54 000 � 103 000 particles while maintaining ∼45 FPS. While the
OpenMP solution on the CPU can only handle 20 000 � 37 000 particles.

Calculations from Tables 8.1 and 8.2 show that real-time performance was
achieved with CUDA for almost 154 000 particles with 30 FPS on setup 1.
The corresponding values for OpenMP on setup 2 (which had a better CPU)
was approximately 39 000 particles. The proposed solution can support up to
about 4 times the amount of particles while running in real-time compared to the
OpenMP-solution.

39

Setup 2 Physics - GPU Physics - CPU
(OpenMP)

Particles Time (ms) FPS Time (ms) FPS Speedup
7 600 4.58 219 5.34 188 1.17
20 000 9.45 106 16.23 62 1.72
54 000 23.18 43 46.23 22 1.99
103 000 47.82 21 92.29 11 1.93
175 000 83.06 12 161.06 6 1.94

Table 8.2: The average time measured on computer setup 2 for each scene with a calculated
speed-up between the GPU and CPU, OpenMP was activated.

Sequential CPU Setup 1 Setup 2
Particles Time (ms) FPS Time (ms) FPS

7 600 25.46 39 28.29 35
20 000 72.91 14 86.24 12
54 000 206.43 5 242.17 4
103 000 409.60 2 478.97 2
175 000 711.90 1 830.92 1

Table 8.3: The average time measured on both computer setups for the sequential CPU imple-
mentation.

As can be seen by comparing Tables 8.3 and 8.1 the performance is improved
by a magnitude with CUDA compared to the sequential CPU-version. For real-
time with 30 FPS the sequential CPU could at best handle approximately 9 400
particles (calculated from Table 8.3 with setup 1). This is fewer than the CUDA-
implementation with a factor of ∼19.

The CPU time di�erences for OpenMP between the computer setups are prob-
ably mostly due to the CPU in setup 2 has two more cores than the CPU in setup
1, but also the additional 50% available cache memory. However, times measured
on sequential CPU are faster on setup 1 because of the higher CPU frequency,
even though it has fewer cores. This is because without parallelism (OpenMP),
the program runs on one core which makes extra cores unnecessary. The di�er-
ences between the GPUs however depend on numerous properties. For example
the GPU in setup 1 can support twice the amount of CUDA blocks per multipro-
cessor which increases the possible parallelism accordingly.

The complexity of the scene had a marginal impact on the time measurements.
While there exist minor deviations of computational time between scenes, though
the particle count is identical, this can be caused by several factors. It may be that
the allocated resources from the OS varied during the experiment. It is possible
that the gallery-scene (which is more complex than the breaking dam) measured
lower computation time due to it being constructed with a higher amount of
static boundary particles. While these particles are still included in computing

40

the advection and pressure, they are being ignored in the integration process
which results in fewer computations.

To get better times it is assumed that by excluding inactive boundary particles
(boundary particles without an active �uid particle within its global support
radius) from the computations the execution time is also reduced. It would not
require any signi�cant restructuring of the code-base to add the extra code needed.
The saved time would most likely be more or less equal for each implementation
which would not a�ect the overall speed-up gotten from the experiments.

With an increase of the particle count, it is the physics-kernels (Displacement-
Factor, PredictDensity, Pressure, AdvectionFactor and SumPressureMovement
in Figure 7.5) that are a�ected the most in terms of execution time. A trend
is established for approximately more than 30 000 particles where these kernels
become dominant in execution time. This can be expected due to these kernels
being heavily in�uenced of looping the neighbors of each particle and thus, adding
a particle to the simulation will cause these kernels to increase their execution
time.

There are two interesting paths to explore to increase the performance even
more. First a shared memory approach which is capable of reaching 100% occu-
pancy if the memory access to global memory turns out to be the major bottle-
neck. Secondly, to improve the proposed solution the number of registers used
must be decreased as seen in Table 7.2 to reach a higher occupancy. Alterna-
tively, if it is not a memory problem nor a register problem, a di�erent algorithm
structure or approach which includes the advection prediction and pressure solve
procedures would be desired. This due to they are the procedures which takes up
the majority of the execution time, as seen in Figure 7.5.

Compared with the numbers in Tables 8.1 and 8.2 it is obvious that there is a
signi�cant cost that comes with incompressibility, SPH runs on average 3.18 times
as fast as compared with IISPH for setup 1 and 3.33 times for setup 2. However,
since SPH would require smaller time-steps it would (for a given time-span) also
need to process more frames than IISPH. IISPH can support a time-step up to
0.02 ms [3] while SPH can support to 0.0015 ms [20], which is a factor of up
to approximately 13 time more frames required to simulate any given time-span.
This would yield with e.g. 20 000 particles a total execution time that would be
3.78 times as long for SPH than IISPH.

8.2 Memory usage

There are distinct similarities in the linear growth of the memory allocated be-
tween scenes in the CPU- and CUDA-versions respectively seen in Figure 7.6.
This was expected due to allocations only depending on the amount of particles
and the partitioning of the simulation domain into a uniform grid. An average
memory usage for a scene depending on the number of particles can be compiled

41

and seen in Table 8.4.

Particles GPU (MB) CPU (MB)
7 600 2.7 5.7
20 000 7.3 15.6
54 000 19.8 43.9
103 000 38.1 86.2
175 000 65.8 149.4

Table 8.4: Average memory usage for each scene depending on the total number of particles.
In the test cases the CPU-versions utilized a little more than twice the amount of memory than
that of the GPU-version.

As can be seen the CPU-versions utilize approximately twice the amount
of memory than that of the CUDA-version. This can be explained by speci�c
di�erences in how and what data is stored in the implementations.

In the CPU-versions padding occurs on the particle struct with 3 bytes per
instance, which yields an additional usage of 0.5 MB for 175 000 particles due
to using AoS. This padding does not occur on the CUDA-version because of it
following SoA. However it is only a fraction of the di�erence in memory usage
between the implementations. Further, the CUDA-version allocates unused mem-
ory because of the need to use float4 instead of float3 to utilize the CUDA
texture loads from global memory. While it was possible to merge certain vari-
ables to be stored in the same array to eliminate these empty allocations in the
CUDA-version, some padding of this type could not be avoided.

The major variety however is caused by another di�erence in the implemen-
tations. The CPU-versions store certain neighbor data (such as distance between
particle and neighbor, as well as kernel values) for each particle to reduce unneces-
sary repeated calculations. This data accounts for an additional 24 bytes of usage
per neighbor of a particle. In the CUDA-implementation it was however consid-
ered that adding some extra computations in order to reduce memory bandwidth
usage would be preferable. Averaging a particle to have 23 neighbors at any time
this yields a decreased memory usage of 92.1 MB for 175 000 particles.

It is assumed that the implementations would have similar memory usage if
this neighbor data was not stored in the CPU-versions, however they would be re-
quired to perform more computations which would a�ect performance negatively.
Further analysis would be necessary to con�rm this however.

8.3 Physical precision

As can be seen in Figure 7.8 and in Table 8.5 the CUDA-solution deviate con-
siderably from the sequential implementation while OpenMP does not deviate at
all, see Figure 7.7. Note that the PSNR does not tell how large the total physical

42

PSNR (dB)
Frame Bottom, Figure 7.7 Bottom, Figure 7.8

50 ∞ ∞
100 ∞ 35.2
150 ∞ 20.5

Table 8.5: The PSNR values from the comparisons between top and middle rows of Figures 7.7
and 7.8. In frame 100 the CUDA solution is still within the acceptable range. In frame 150 the
value is below the threshold, this di�erence is visible when comparing the middle rows of Fig-
ures 7.7 and 7.8 for frame 150.

error is, rather it conveys if there is a di�erence in the particles' positions relative
to the camera.

The reason to the images being identical in the �rst 50 frames is because the
particles are falling due to gravity. Since they are evenly spaced out when created
they in�uence each other equally resulting in a standstill until the �rst particles
hit the ground.

It is arguable if PSNR was a useful metric for the precision. As it tells if a
pixel in an image di�ers from the original image but not to what extent, it only
indicates if a deviation has occurred. Thus no conclusions can be made whether
the error is within an acceptable range or not. It is also deemed to be subjective
whether the di�erences seen between the middle rows of Figures 7.7 and 7.8 are
acceptable or not.

8.4 Shared memory

There is a large di�erence in duration between the global and shared memory
approach, approximately 9.2 times as much. Although there is a more expensive
preparation stage for the global approach than the shared memory approach, the
signi�cant increase in duration between each kernel makes it less important for
the overall time. As seen in Table 7.2 the occupancy for the kernel is 3 times
as much for the global approach and the limiting factor is the registers used,
whereas the shared memory approach implemented only had an occupancy of
25% and was limited by the number of blocks. The reason for the slower times
could very well be because of mistakes in the implementation, however, it could
also be that the shared memory described by Goswami et al. [13] no longer is a
feasible solution for newer hardware where it seems to be worth more to run more
particles in parallel than utilize memory e�ciently for few particles at a time.

43

Chapter 9

Conclusions and Future Work

In summation, this thesis con�rms that IISPH can be implemented as a paral-
lel solution on the GPU using CUDA. As a proof-of-concept a global memory
approach using SoA for data storage was proposed and implemented. An exper-
imental approach using shared memory was investigated but the result from it
was inferior to the global memory approach.

The proposed implementation achieved a positive speed-up compared to the
sequential CPU-version as well as the parallel one. By using CUDA, a real-time
performance was achieved for approximately 175 000 particles. This was up to 4
times the amount of particles than that of using OpenMP and 19 times that of
the sequential CPU-implementation.

We can conclude that the pressure solve procedure is the most time consuming
section of the three procedures in the algorithm. The three most computational
expensive kernels were the computeDisplacementFactor, predictDensity and
computePressure, the latter two are found in the pressure solve procedure.

While the proposed solution did achieve a speed-up it however did alter the
physical accuracy according to the PSNR. Why the visual outcome of the GPU-
version was di�ering from the CPU-versions is not known. Even though the
individual movements of the particles have been altered in the CUDA-solution,
the overall behavior of the �uid is maintained. Due to this, the proposed solution
is believed to maintain the nature of IISPH.

The memory usage di�ers, however, if the extra memory used to store pre-
computed values in the CPU-implementation is neglected, the deviation is min-
imal. As such our hypothesis stating that the memory usage is similar between
implementations is supported.

We believe that the implementation can be seen as a stepping stone for future
GPGPU-implementations, such as a shared memory implementation. We do not
believe that the proposed implementation is su�cient to be fully utilized in video
games and virtual reality applications which demand real-time computations.
However, with improved implementations and hardware, we believe there could
be potential for GPGPU-implementations of IISPH in these types of real-time
applications.

44

9.1 Future work

While the proposed solution did achieve a positive improvement of performance,
it accesses spatially closely located particles' data from global memory multiple
times. Investigations on an approach to store this data in shared memory with
only a single access from global memory would be worthwhile and probably the
most viable step to improve the performance.

Further analysis is required to identify to why the CUDA-implementation dif-
fers in physical accuracy from the sequential CPU-version, whereas the OpenMP-
implementation does not. A data comparison method could be utilized to verify
if the di�erence of the computed values is within an acceptable range. Alterna-
tively, it may be viable to investigate whether the di�erences are acceptable or
not. If the deviation is deemed to be acceptable then it may not be necessary to
make any further investigations.

The implementation was limited to compute capability 3.0. A viable step
would be to improve by taking advantage of latest feature-sets to allow for better
kernel launches and optimizations. This is however likely to be easy modi�cations
which would only yield minor performance improvements.

It would also be viable to exclude the inactive boundary particles from the
computations. Since there is no need to compute pressure values for boundary
particles which will not a�ect �uid particles in a given frame, it would be viable
to exclude them completely from the simulation of that frame.

45

Bibliography

Books and Journals

[1] J. J. Monaghan, Smoothed particle hydrodynamics, English, 2005.

[2] K. T. Claypool and M. Claypool, �On frame rate and player performance
in �rst person shooter games,� English, Multimedia Systems, vol. 13, no. 1,
pp. 3�17, 2007.

[3] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner, �Im-
plicit incompressible SPH,� English, IEEE Transactions on Visualization
and Computer Graphics, vol. 20, no. 3, p. 435, 2014.

[4] S. Premoºe, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker, �Particle-
Based Simulation of Fluids,� English, Computer Graphics Forum, vol. 22,
no. 3, p. 410, 2003.

[5] F. Losasso, J. O. Talton, N. Kwatra, and R. Fedkiw, �Two-Way Coupled
SPH and Particle Level Set Fluid Simulation,� English, IEEE Transactions
on Visualization and Computer Graphics, vol. 13, no. 4, p. 804, 2008.

[6] B. Solenthaler and R. Pajarola, �Predictive-corrective incompressible SPH,�
English, ACM Transactions on Graphics, vol. 28, no. 3, p. 6, 2009.

[7] M. Becker and M. Teschner, �Weakly compressible SPH for free surface
�ows,� English, ser. SCA '07, Eurographics Association, 2007, p. 217.

[8] D. Enright, S. Marschner, and R. Fedkiw, �Animation and rendering of
complex water surfaces,� English, ser. SIGGRAPH '02, vol. 21, ACM, 2002,
ch. 3, pp. 736�744, isbn: 0730-0301.

[9] S. J. Cummins and M. Rudman, �An SPH Projection Method,� English,
Journal of Computational Physics, vol. 152, no. 2, pp. 584�607, 1999.

[10] S. Shao, �Incompressible SPH simulation of wave breaking and overtopping
with turbulence modelling,� English, International Journal for Numerical
Methods in Fluids, vol. 50, no. 5, pp. 597�621, 2006.

[11] X. He, N. Liu, S. Li, H. Wang, and G. Wang, �Local Poisson SPH For
Viscous Incompressible Fluids,� English, Computer Graphics Forum, vol.
31, no. 6, pp. 1948�1958, 2012.

46

[12] J. M. Domínguez, A. J. Crespo, and M. Gómez-Gesteira, �Optimization
strategies for CPU and GPU implementations of a smoothed particle hy-
drodynamics method,� Computer Physics Communications, vol. 184, no. 3,
pp. 617�627, 2013, issn: 0010-4655. doi: http://dx.doi.org/10.1016/
j.cpc.2012.10.015.

[13] P. Goswami, P. Schlegel, B. Solenthaler, and R. Pajarola, �Interactive SPH
Simulation and Rendering on the GPU,� in Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA
'10, Madrid, Spain: Eurographics Association, 2010, pp. 55�64.

[14] F. Thaler, B. Solenthaler, and M. Gross, �A Parallel Architecture for IISPH
Fluids,� in Workshop on Virtual Reality Interaction and Physical Simula-
tion, J. Bender, C. Duriez, F. Jaillet, and G. Zachmann, Eds., The Euro-
graphics Association, 2014, isbn: 978-3-905674-71-2. doi: 10.2312/vriph
ys.20141230.

[15] X. Nie, L. Chen, and T. Xiang, �Real-Time Incompressible Fluid Simu-
lation on the GPU,� English, International Journal of Computer Games
Technology, vol. 2015, pp. 1�12, 2015.

[16] D. A. Fulk and D. W. Quinn, �An Analysis of 1-D Smoothed Particle Hy-
drodynamics Kernels,� English, Journal of Computational Physics, vol. 126,
no. 1, pp. 165�180, 1996.

[17] H. Anton and C. Rorres, Elementary Linear Algebra with Supplemental
Applications. Wiley, 2011, isbn: 9780470561577.

[18] A. Horé and D. Ziou, �Is there a relationship between peak-signal-to-noise
ratio and structural similarity index measure?� English, IET Image Pro-
cessing, vol. 7, no. 1, pp. 12�24, 2013.

[19] R. Dosselmann and X. D. Yang, �A comprehensive assessment of the struc-
tural similarity index,� English, Signal, Image and Video Processing, vol. 5,
no. 1, pp. 81�91, 2011.

[20] P. Goswami and R. Pajarola, �Time adaptive approximate sph,� English,
in. 2011, pp. 19�28, isbn: 3905673878; 9783905673876.

Web Resources

[21] Parallel Programming and Computing Platform, NVIDIA® Corporation,
[Online]. Available: http://www.nvidia.com/object/cuda_home_new.
html (visited on Apr. 14, 2015).

[22] J. Hoberock and N. Bell. Thrust, [Online]. Available: https://github.
com/thrust/thrust (visited on Apr. 14, 2015).

47

http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.10.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2012.10.015
http://dx.doi.org/10.2312/vriphys.20141230
http://dx.doi.org/10.2312/vriphys.20141230
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://github.com/thrust/thrust
https://github.com/thrust/thrust

[23] Compute capabilities, NVIDIA® Corporation, [Online]. Available: http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#

compute-capabilities (visited on Apr. 14, 2015).

[24] Particle demo, NVIDIA® Corporation, [Online]. Available: http://docs.
nvidia.com/cuda/cuda-samples/#particles (visited on Jun. 4, 2015).

[25] Thread hierarchy, NVIDIA® Corporation, [Online]. Available: http://
docs.nvidia.com/cuda/cuda- c- programming- guide/index.html#

thread-hierarchy (visited on Apr. 14, 2015).

[26] CUDA Library Graphics Interoperability, NVIDIA® Corporation, [Online].
Available: http://developer.download.nvidia.com/compute/cuda/4_
1/rel/toolkit/docs/online/group__CUDART__INTEROP.html (visited
on Apr. 14, 2015).

[27] Acquiring high-resolution time stamps, Microsoft®, [Online]. Available: h
ttps : / / msdn . microsoft . com / en - us / library / windows / desktop /

dn553408(v=vs.85).aspx (visited on Apr. 14, 2015).

[28] CUDA Library cudaEventElapsedTime, NVIDIA® Corporation, [Online].
Available: http://developer.download.nvidia.com/compute/cuda/4_
1/rel/toolkit/docs/online/group__CUDART__EVENT_g14c387cc57ce2e

328f6669854e6020a5.html (visited on Apr. 14, 2015).

[29] ID3D11Query interface (windows), Microsoft®, [Online]. Available: https:
//msdn.microsoft.com/en-us/library/windows/desktop/ff476578(v

=vs.85).aspx (visited on Apr. 14, 2015).

[30] D3D11_QUERY enumeration (windows), Microsoft®, [Online]. Available:
https://msdn.microsoft.com/en- us/library/windows/desktop/

ff476191(v=vs.85).aspx (visited on Apr. 14, 2015).

48

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
http://docs.nvidia.com/cuda/cuda-samples/#particles
http://docs.nvidia.com/cuda/cuda-samples/#particles
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__INTEROP.html
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__INTEROP.html
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__EVENT_g14c387cc57ce2e328f6669854e6020a5.html
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__EVENT_g14c387cc57ce2e328f6669854e6020a5.html
http://developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/group__CUDART__EVENT_g14c387cc57ce2e328f6669854e6020a5.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476578(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476578(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476578(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476191(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476191(v=vs.85).aspx

Appendix A

Additional Experiments Data

Following is the partial relevant data that was gathered during the experiments.
Table A1 (Setup 1 [CUDA & OpenMP]) contains data of execution times on

computer setup 1 for physics and rendering using the proposed CUDA-solution
and OpenMP.

Table A2 (Setup 2 [CUDA & OpenMP]) contains data of execution times on
computer setup 2 for physics and rendering using the proposed CUDA-solution
and OpenMP.

Table A3 (Setup 1 & 2 [single-thread CPU]) contains data of execution times
on computer setups 1 and 2 for physics and rendering using the sequential CPU-
implementation.

Table A4 (Memory usage [VRAM & RAM]) contains data of memory usage
on computer setup 1 for physics and rendering using the proposed CUDA-solution
and the CPU-implementations.

49

Scene Frames Particles Spacing Time-step

SIMPLE 300 4288 0.09 0.0035 2.248935 13.469247 4.268302 12.184612

SIMPLE 300 5650 0.09 0.0035 2.472281 13.179368 5.780956 10.669256

SIMPLE 300 7948 0.09 0.0035 2.593857 13.063757 9.214053 7.375593

SIMPLE 300 9776 0.09 0.0035 2.523607 13.182771 11.220481 5.857633

SIMPLE 300 15554 0.09 0.0035 3.344905 12.248573 17.094330 2.300213

SIMPLE 300 20972 0.09 0.0035 4.198549 11.455010 25.037664 3.386557

SIMPLE 300 32568 0.09 0.0035 6.276952 9.340478 39.546911 5.170774

SIMPLE 300 43825 0.09 0.0035 8.004032 7.670774 54.568949 7.689797

SIMPLE 300 57362 0.09 0.0035 10.264237 5.764541 64.831025 11.989330

SIMPLE 300 71890 0.09 0.0035 12.850800 3.763618 91.233588 13.812187

SIMPLE 300 89723 0.09 0.0035 17.900671 1.806938 116.450923 18.156967

SIMPLE 300 110754 0.09 0.0035 21.177983 2.177495 147.114191 23.174895

SIMPLE 300 132478 0.09 0.0035 28.837132 1.714149 175.204491 28.679991

SIMPLE 300 159523 0.09 0.0035 29.745489 1.306056 207.868697 35.992826

SIMPLE 300 189042 0.09 0.0035 36.415105 0.150745 249.727931 44.783583

SIMPLE 1000 4288 0.09 0.0035 2.242683 14.163314 17.889968 10.578171

SIMPLE 1000 5650 0.09 0.0035 2.341580 13.416295 18.269835 10.220225

SIMPLE 1000 7948 0.09 0.0035 2.483381 13.259445 7.986275 8.677942

SIMPLE 1000 9776 0.09 0.0035 2.570378 13.163953 16.954982 6.653696

SIMPLE 1000 15554 0.09 0.0035 3.276622 12.437155 17.662175 2.195612

SIMPLE 1000 20972 0.09 0.0035 4.287971 11.423180 25.764662 3.378650

SIMPLE 1000 32568 0.09 0.0035 6.204666 9.505436 42.499844 5.213715

SIMPLE 1000 43825 0.09 0.0035 7.509002 8.230111 54.358247 7.637247

SIMPLE 1000 57362 0.09 0.0035 11.551832 8.258636 51.805731 14.263311

SIMPLE 1000 71890 0.09 0.0035 17.656177 7.340355 89.420650 13.410000

SIMPLE 1000 89723 0.09 0.0035 23.635443 5.345737 111.417195 17.794919

SIMPLE 1000 110754 0.09 0.0035 31.996238 5.541827 139.359253 22.875106

SIMPLE 1000 132478 0.09 0.0035 31.418370 3.348619 167.868256 28.186616

SIMPLE 1000 159523 0.09 0.0035 40.680696 1.777909 203.634635 35.487840

SIMPLE 1000 189042 0.09 0.0035 48.974512 0.154148 244.242066 43.716657

BREAKING_DAM 300 3965 0.09 0.0035 2.201143 17.238369 3.454120 12.961759

BREAKING_DAM 300 5225 0.09 0.0035 2.341406 13.357940 4.623344 11.816158

BREAKING_DAM 300 7173 0.09 0.0035 2.438271 13.251337 6.425576 10.019831

BREAKING_DAM 300 9055 0.09 0.0035 2.548236 13.126017 8.365140 8.141726

BREAKING_DAM 300 14089 0.09 0.0035 3.051888 12.614225 14.487726 2.544145

BREAKING_DAM 300 19487 0.09 0.0035 3.967958 11.678625 21.993941 2.827219

BREAKING_DAM 300 31054 0.09 0.0035 5.944228 9.734457 37.289243 4.882897

BREAKING_DAM 300 41259 0.09 0.0035 7.389714 8.295574 50.292241 6.931067

BREAKING_DAM 300 53539 0.09 0.0035 9.471145 6.488437 65.908352 9.329675

BREAKING_DAM 300 68416 0.09 0.0035 12.837727 4.020064 84.932637 12.495220

BREAKING_DAM 300 83822 0.09 0.0035 15.575995 1.244797 105.082205 16.127214

BREAKING_DAM 300 103463 0.09 0.0035 20.223377 0.194287 131.268777 20.987790

BREAKING_DAM 300 125836 0.09 0.0035 22.630269 0.142737 160.728293 26.476872

BREAKING_DAM 300 149168 0.09 0.0035 29.653967 0.730201 192.511343 32.838191

BREAKING_DAM 300 176699 0.09 0.0035 32.961099 0.153147 231.291419 39.692685

BREAKING_DAM 1000 3965 0.09 0.0035 2.254822 14.080434 3.519283 12.983380

BREAKING_DAM 1000 5225 0.09 0.0035 2.352432 13.409789 4.853065 11.767811

BREAKING_DAM 1000 7173 0.09 0.0035 2.449202 13.300184 6.371324 10.127535

BREAKING_DAM 1000 9055 0.09 0.0035 2.562108 13.182371 8.318996 8.210492

BREAKING_DAM 1000 14089 0.09 0.0035 3.059666 12.670379 14.459799 2.520923

BREAKING_DAM 1000 19487 0.09 0.0035 3.987563 11.722968 21.949598 2.817410

BREAKING_DAM 1000 31054 0.09 0.0035 6.044994 9.671596 37.011075 4.737858

BREAKING_DAM 1000 41259 0.09 0.0035 7.679974 8.098284 49.870636 6.861600

BREAKING_DAM 1000 53539 0.09 0.0035 16.728078 10.981454 58.012977 10.930911

BREAKING_DAM 1000 68416 0.09 0.0035 15.875887 10.716800 84.366994 12.476402

BREAKING_DAM 1000 83822 0.09 0.0035 14.543119 2.880770 103.688565 16.059449

BREAKING_DAM 1000 103463 0.09 0.0035 33.800248 4.346278 129.807072 20.716530

BREAKING_DAM 1000 125836 0.09 0.0035 44.351176 3.840591 158.790029 26.317518

BREAKING_DAM 1000 149168 0.09 0.0035 28.351539 1.042401 191.421595 31.887577

BREAKING_DAM 1000 176699 0.09 0.0035 33.355676 0.254645 228.588220 39.077294

TWO_BLOCKS 300 4162 0.09 0.0035 2.230546 15.062879 3.686343 12.730236

TWO_BLOCKS 300 5418 0.09 0.0035 2.383969 13.295379 4.870081 11.641590

TWO_BLOCKS 300 7498 0.09 0.0035 2.462652 13.202590 6.692833 9.728651

TWO_BLOCKS 300 9456 0.09 0.0035 2.759705 12.894594 8.622288 7.812309

TWO_BLOCKS 300 14666 0.09 0.0035 3.133483 12.504219 14.657088 2.505509

Setup 1 (CUDA & OpenMP)
Time: physics

[GPU] (ms)

Time: rendering

[GPU] (ms)

Time: physics

[CPU] (ms)

Time: rendering

[CPU] (ms)

TWO_BLOCKS 300 20272 0.09 0.0035 4.120137 11.507461 22.418148 3.061745

TWO_BLOCKS 300 31922 0.09 0.0035 6.024593 9.589918 37.091853 4.900414

TWO_BLOCKS 300 42704 0.09 0.0035 8.201786 7.629633 50.539779 7.160187

TWO_BLOCKS 300 55304 0.09 0.0035 13.969603 11.345505 65.918661 9.835862

TWO_BLOCKS 300 70004 0.09 0.0035 18.661212 14.277523 83.877223 12.630450

TWO_BLOCKS 300 85698 0.09 0.0035 15.121357 8.600767 103.232327 16.302583

TWO_BLOCKS 300 106380 0.09 0.0035 18.145589 0.140635 130.130482 21.161258

TWO_BLOCKS 300 128360 0.09 0.0035 33.812315 3.479748 157.958730 26.807490

TWO_BLOCKS 300 152052 0.09 0.0035 36.209479 3.109489 189.378329 32.483950

TWO_BLOCKS 300 181056 0.09 0.0035 56.472420 0.471453 227.167754 40.070950

TWO_BLOCKS 1000 4162 0.09 0.0035 3.355358 13.683052 3.795848 12.727834

TWO_BLOCKS 1000 5418 0.09 0.0035 2.395146 13.343426 4.940949 11.598348

TWO_BLOCKS 1000 7498 0.09 0.0035 2.487922 13.243630 6.990219 9.645171

TWO_BLOCKS 1000 9456 0.09 0.0035 2.608105 13.116808 8.848005 7.694396

TWO_BLOCKS 1000 14666 0.09 0.0035 3.167942 12.546159 15.061477 2.348658

TWO_BLOCKS 1000 20272 0.09 0.0035 4.186237 11.513967 22.909420 3.087069

TWO_BLOCKS 1000 31922 0.09 0.0035 6.209261 9.493725 37.559602 4.949861

TWO_BLOCKS 1000 42704 0.09 0.0035 8.626104 7.318134 51.148864 7.283706

TWO_BLOCKS 1000 55304 0.09 0.0035 13.069616 11.173338 66.035673 9.788416

TWO_BLOCKS 1000 70004 0.09 0.0035 21.177088 10.779363 84.567887 12.844857

TWO_BLOCKS 1000 85698 0.09 0.0035 22.782838 9.022175 104.078841 16.449924

TWO_BLOCKS 1000 106380 0.09 0.0035 31.129338 8.721983 131.176487 21.667845

TWO_BLOCKS 1000 128360 0.09 0.0035 42.003998 3.551714 158.621367 26.786769

TWO_BLOCKS 1000 152052 0.09 0.0035 58.951295 2.833925 189.778515 32.612674

TWO_BLOCKS 1000 181056 0.09 0.0035 32.476677 0.354641 228.138787 40.482345

GALLERY 300 4450 0.09 0.0035 3.190760 15.052569 3.922270 12.522937

GALLERY 300 5626 0.09 0.0035 2.398090 13.294379 4.846358 11.611861

GALLERY 300 7802 0.09 0.0035 3.205151 12.481297 6.857592 9.594022

GALLERY 300 9592 0.09 0.0035 2.605574 13.067560 8.572540 7.973664

GALLERY 300 14598 0.09 0.0035 3.129832 12.534748 14.188038 2.589689

GALLERY 300 19376 0.09 0.0035 3.882021 11.768512 20.312624 2.427435

GALLERY 300 29170 0.09 0.0035 5.364282 10.316116 32.689521 3.752810

GALLERY 300 38416 0.09 0.0035 6.675506 8.977029 43.945540 5.161565

GALLERY 300 49410 0.09 0.0035 8.308464 7.505314 56.819815 7.147275

GALLERY 300 61388 0.09 0.0035 11.924198 7.673377 70.931680 8.821386

GALLERY 300 74385 0.09 0.0035 13.199854 5.118321 87.070392 11.517479

GALLERY 300 91618 0.09 0.0035 19.848427 3.764120 108.530720 14.783822

GALLERY 300 108848 0.09 0.0035 18.541126 2.280794 129.645316 18.108120

GALLERY 300 128099 0.09 0.0035 39.742483 4.216252 153.990116 22.286539

GALLERY 300 151586 0.09 0.0035 25.749033 2.771464 184.459802 27.649299

GALLERY 1000 4450 0.09 0.0035 3.350924 12.418036 4.004549 12.497312

GALLERY 1000 5626 0.09 0.0035 2.418512 13.334817 5.311905 11.457813

GALLERY 1000 7802 0.09 0.0035 3.303592 12.442659 7.037364 9.583311

GALLERY 1000 9592 0.09 0.0035 2.629064 13.105397 8.605672 7.958850

GALLERY 1000 14598 0.09 0.0035 3.140309 12.585597 14.391533 2.465570

GALLERY 1000 19376 0.09 0.0035 3.943328 11.771815 20.784378 2.314927

GALLERY 1000 29170 0.09 0.0035 5.460632 10.266568 32.760790 3.558623

GALLERY 1000 38416 0.09 0.0035 6.684185 9.070218 43.859358 5.002512

GALLERY 1000 49410 0.09 0.0035 13.673903 7.258576 56.677478 6.847186

GALLERY 1000 61388 0.09 0.0035 12.176595 6.633175 71.022267 8.706575

GALLERY 1000 74385 0.09 0.0035 26.266393 9.161805 86.401850 11.259331

GALLERY 1000 91618 0.09 0.0035 23.890609 8.039227 107.876491 14.612156

GALLERY 1000 108848 0.09 0.0035 29.158459 6.739578 128.798301 17.872693

GALLERY 1000 128099 0.09 0.0035 44.064187 5.161362 153.058320 22.214370

GALLERY 1000 151586 0.09 0.0035 25.406326 1.101259 183.138934 27.225391

Scene Frames Particles Spacing Time-step

SIMPLE 300 4288 0.09 0.0035 3.357967 12.05651 3.026798 13.099016

SIMPLE 300 5650 0.09 0.0035 3.621356 11.791873 3.990074 12.288427

SIMPLE 300 7948 0.09 0.0035 4.662431 10.572622 5.751108 10.554658

SIMPLE 300 9776 0.09 0.0035 5.634961 9.739258 7.204202 9.136849

SIMPLE 300 15554 0.09 0.0035 7.111207 8.319203 12.411283 3.931052

SIMPLE 300 20972 0.09 0.0035 9.106135 6.458088 17.441939 5.107641

SIMPLE 300 32568 0.09 0.0035 13.50496 2.042992 27.863477 8.521931

SIMPLE 300 43825 0.09 0.0035 18.672306 0.328791 38.249731 12.513929

SIMPLE 300 57362 0.09 0.0035 24.312019 0.389096 50.023962 17.401201

SIMPLE 300 71890 0.09 0.0035 33.483269 0.475704 63.999325 22.328248

SIMPLE 300 89723 0.09 0.0035 40.686855 0.520612 80.91167 29.820824

SIMPLE 300 110754 0.09 0.0035 52.713871 0.550123 101.234777 38.091911

SIMPLE 300 132478 0.09 0.0035 60.075089 0.523178 122.227333 46.754661

SIMPLE 300 159523 0.09 0.0035 73.461044 0.88565 149.104439 58.666823

SIMPLE 300 189042 0.09 0.0035 94.957253 1.001127 177.580268 71.636569

SIMPLE 1000 4288 0.09 0.0035 3.311753 12.188667 3.098009 12.997973

SIMPLE 1000 5650 0.09 0.0035 3.728399 11.7614 4.074437 12.294201

SIMPLE 1000 7948 0.09 0.0035 4.651156 10.816087 5.811413 10.554979

SIMPLE 1000 9776 0.09 0.0035 5.800931 9.688897 7.314227 9.061789

SIMPLE 1000 15554 0.09 0.0035 7.147046 8.412227 12.656993 3.625357

SIMPLE 1000 20972 0.09 0.0035 9.159836 6.337478 17.893264 5.090961

SIMPLE 1000 32568 0.09 0.0035 13.316824 2.285175 27.752811 8.35513

SIMPLE 1000 43825 0.09 0.0035 18.580275 0.340338 38.233051 12.432774

SIMPLE 1000 57362 0.09 0.0035 24.739269 0.390699 49.980657 17.488451

SIMPLE 1000 71890 0.09 0.0035 34.157181 0.425343 64.081122 22.157277

SIMPLE 1000 89723 0.09 0.0035 40.550907 0.50746 81.104454 29.435898

SIMPLE 1000 110754 0.09 0.0035 48.952339 0.535367 101.724916 37.814765

SIMPLE 1000 132478 0.09 0.0035 58.485191 0.556217 122.308809 46.285693

SIMPLE 1000 159523 0.09 0.0035 71.10099 0.961352 149.214784 58.184383

SIMPLE 1000 189042 0.09 0.0035 85.640785 0.98573 177.775939 71.30874

BREAKING_DAM 300 3965 0.09 0.0035 3.313157 12.217216 2.845883 13.226363

BREAKING_DAM 300 5225 0.09 0.0035 3.648968 11.810157 3.725117 12.542478

BREAKING_DAM 300 7173 0.09 0.0035 4.251536 11.215127 4.945652 11.399891

BREAKING_DAM 300 9055 0.09 0.0035 5.042572 10.361233 6.531545 9.850245

BREAKING_DAM 300 14089 0.09 0.0035 6.521958 8.944066 10.986417 5.337634

BREAKING_DAM 300 19487 0.09 0.0035 10.128682 6.536677 16.129022 4.418624

BREAKING_DAM 300 31054 0.09 0.0035 12.904405 2.676836 26.561787 8.395226

BREAKING_DAM 300 41259 0.09 0.0035 17.486607 0.338414 36.245552 11.335737

BREAKING_DAM 300 53539 0.09 0.0035 25.360052 0.397115 47.30318 15.363662

BREAKING_DAM 300 68416 0.09 0.0035 29.985325 0.400964 61.416795 20.633934

BREAKING_DAM 300 83822 0.09 0.0035 36.886059 0.506498 76.400985 26.813593

BREAKING_DAM 300 103463 0.09 0.0035 52.243568 0.546915 95.240524 34.395664

BREAKING_DAM 300 125836 0.09 0.0035 59.358273 0.567444 117.161713 43.31086

BREAKING_DAM 300 149168 0.09 0.0035 70.370201 0.962314 140.224848 53.171049

BREAKING_DAM 300 176699 0.09 0.0035 92.228828 1.003693 168.025454 65.092834

BREAKING_DAM 1000 3965 0.09 0.0035 3.307386 12.253784 2.79905 13.326122

BREAKING_DAM 1000 5225 0.09 0.0035 3.603721 11.909596 3.698172 12.689391

BREAKING_DAM 1000 7173 0.09 0.0035 4.309541 11.242071 4.937632 11.473989

BREAKING_DAM 1000 9055 0.09 0.0035 5.075775 10.463559 6.508449 9.903814

BREAKING_DAM 1000 14089 0.09 0.0035 6.49544 9.100923 10.881845 5.475887

BREAKING_DAM 1000 19487 0.09 0.0035 11.00409 6.370839 16.110417 4.39168

BREAKING_DAM 1000 31054 0.09 0.0035 12.8311 2.795522 26.351682 7.715191

BREAKING_DAM 1000 41259 0.09 0.0035 17.307695 0.327828 35.78717 11.201013

BREAKING_DAM 1000 53539 0.09 0.0035 25.41254 0.384284 46.938783 15.174407

BREAKING_DAM 1000 68416 0.09 0.0035 29.218731 0.397756 60.802198 20.402979

BREAKING_DAM 1000 83822 0.09 0.0035 35.877808 0.51163 76.21173 26.463952

BREAKING_DAM 1000 103463 0.09 0.0035 45.702606 0.54467 94.351025 33.917714

BREAKING_DAM 1000 125836 0.09 0.0035 56.870388 0.543066 116.323538 42.793777

BREAKING_DAM 1000 149168 0.09 0.0035 65.036209 0.693828 139.409768 52.423652

BREAKING_DAM 1000 176699 0.09 0.0035 80.91629 0.881479 167.42497 64.2383

TWO_BLOCKS 300 4162 0.09 0.0035 3.370628 12.104946 2.94853 13.107677

TWO_BLOCKS 300 5418 0.09 0.0035 3.697771 11.724511 3.779969 12.486985

TWO_BLOCKS 300 7498 0.09 0.0035 4.65298 10.792671 5.156398 11.152576

TWO_BLOCKS 300 9456 0.09 0.0035 5.419012 10.043991 6.776935 9.563796

TWO_BLOCKS 300 14666 0.09 0.0035 6.924841 8.637088 11.144557 5.124321

Setup 2 (CUDA & OpenMP)
Time: physics

[GPU] (ms)

Time: rendering

[GPU] (ms)

Time: physics

[CPU] (ms)

Time: rendering

[CPU] (ms)

TWO_BLOCKS 300 20272 0.09 0.0035 8.846799 6.653117 16.337202 4.672996

TWO_BLOCKS 300 31922 0.09 0.0035 12.969267 2.564566 26.296189 8.013508

TWO_BLOCKS 300 42704 0.09 0.0035 19.464207 0.326545 35.902006 11.696925

TWO_BLOCKS 300 55304 0.09 0.0035 22.398964 0.387812 47.07447 15.693415

TWO_BLOCKS 300 70004 0.09 0.0035 33.236233 0.397756 60.299549 20.820302

TWO_BLOCKS 300 85698 0.09 0.0035 38.129269 0.505215 74.569701 26.803649

TWO_BLOCKS 300 106380 0.09 0.0035 48.756798 0.536971 94.241963 34.76423

TWO_BLOCKS 300 128360 0.09 0.0035 54.971565 0.559425 114.619921 43.125134

TWO_BLOCKS 300 152052 0.09 0.0035 67.040535 0.895914 137.482895 53.168162

TWO_BLOCKS 300 181056 0.09 0.0035 80.524124 0.993749 165.434584 65.285297

TWO_BLOCKS 1000 4162 0.09 0.0035 3.604253 11.881689 2.97772 13.136867

TWO_BLOCKS 1000 5418 0.09 0.0035 3.750336 11.76974 3.83867 12.540874

TWO_BLOCKS 1000 7498 0.09 0.0035 8.640626 6.961058 5.320313 11.076553

TWO_BLOCKS 1000 9456 0.09 0.0035 5.755675 9.751768 6.899149 9.844792

TWO_BLOCKS 1000 14666 0.09 0.0035 6.968998 8.615596 11.567333 4.764416

TWO_BLOCKS 1000 20272 0.09 0.0035 9.169113 6.463541 16.654445 4.729452

TWO_BLOCKS 1000 31922 0.09 0.0035 13.066149 2.539867 26.663793 8.10589

TWO_BLOCKS 1000 42704 0.09 0.0035 20.338459 0.345471 36.454053 11.819139

TWO_BLOCKS 1000 55304 0.09 0.0035 23.398626 0.400964 47.457791 15.929181

TWO_BLOCKS 1000 70004 0.09 0.0035 31.196497 0.406096 60.917675 21.072749

TWO_BLOCKS 1000 85698 0.09 0.0035 38.008766 0.510668 75.099295 27.123137

TWO_BLOCKS 1000 106380 0.09 0.0035 48.919518 0.542424 94.657683 35.16359

TWO_BLOCKS 1000 128360 0.09 0.0035 55.035233 0.558463 115.345185 43.730429

TWO_BLOCKS 1000 152052 0.09 0.0035 65.253983 0.826628 138.05066 53.491178

TWO_BLOCKS 1000 181056 0.09 0.0035 84.76133 0.99407 166.550868 66.093962

GALLERY 300 4450 0.09 0.0035 3.60334 11.948089 3.103783 12.990916

GALLERY 300 5626 0.09 0.0035 3.758291 11.756909 3.809159 12.473192

GALLERY 300 7802 0.09 0.0035 4.736365 10.699647 5.493208 10.876713

GALLERY 300 9592 0.09 0.0035 5.418283 10.01031 6.617191 9.749202

GALLERY 300 14598 0.09 0.0035 7.054163 8.705412 10.853297 5.49385

GALLERY 300 19376 0.09 0.0035 9.724667 6.971964 15.003435 3.491916

GALLERY 300 29170 0.09 0.0035 11.584375 3.956393 23.052549 5.67701

GALLERY 300 38416 0.09 0.0035 15.101686 0.522216 31.196612 8.14727

GALLERY 300 49410 0.09 0.0035 20.64867 0.349961 40.515338 11.084252

GALLERY 300 61388 0.09 0.0035 26.868971 0.416361 50.959972 14.364138

GALLERY 300 74385 0.09 0.0035 30.046797 0.408983 62.452566 18.517485

GALLERY 300 91618 0.09 0.0035 37.557682 0.508743 78.457129 24.18006

GALLERY 300 108848 0.09 0.0035 49.207813 0.553972 93.47147 29.471824

GALLERY 300 128099 0.09 0.0035 53.260437 0.556538 111.110042 36.285969

GALLERY 300 151586 0.09 0.0035 64.533104 0.763756 133.219203 44.943586

GALLERY 1000 4450 0.09 0.0035 3.651572 11.97343 3.090311 13.070788

GALLERY 1000 5626 0.09 0.0035 3.784943 11.743437 3.813329 12.60984

GALLERY 1000 7802 0.09 0.0035 5.264343 10.295154 5.366183 11.074629

GALLERY 1000 9592 0.09 0.0035 5.628757 9.945835 6.711498 9.728352

GALLERY 1000 14598 0.09 0.0035 7.14989 8.709261 10.910073 5.487755

GALLERY 1000 19376 0.09 0.0035 9.30679 6.922244 15.079779 3.470104

GALLERY 1000 29170 0.09 0.0035 11.426493 4.064814 23.105156 5.644612

GALLERY 1000 38416 0.09 0.0035 15.123842 0.584766 31.115136 8.063869

GALLERY 1000 49410 0.09 0.0035 21.011576 0.347075 40.325442 10.993474

GALLERY 1000 61388 0.09 0.0035 26.650871 0.401606 50.705921 14.120994

GALLERY 1000 74385 0.09 0.0035 29.755447 0.40353 61.942219 18.311229

GALLERY 1000 91618 0.09 0.0035 36.924942 0.511309 77.976934 23.868271

GALLERY 1000 108848 0.09 0.0035 50.434681 0.546915 92.99288 29.046482

GALLERY 1000 128099 0.09 0.0035 51.35955 0.55301 110.741155 35.754451

GALLERY 1000 151586 0.09 0.0035 61.874756 0.654373 132.908055 44.353688

Scene Frames Particles Spacing Time-step

SIMPLE 300 4288 0.09 0.0035 13.421374 2.979458 15.032616 1.308425

SIMPLE 300 5650 0.09 0.0035 18.467714 0.848914 20.470007 1.145794

SIMPLE 300 7948 0.09 0.0035 26.844249 1.145899 30.990657 1.572741

SIMPLE 300 9776 0.09 0.0035 33.444580 1.455196 39.038161 2.005461

SIMPLE 300 15554 0.09 0.0035 55.441580 2.204715 66.621267 3.491593

SIMPLE 300 20972 0.09 0.0035 77.390233 3.203172 92.171646 4.736185

SIMPLE 300 32568 0.09 0.0035 123.553212 5.164654 145.830553 6.831141

SIMPLE 300 43825 0.09 0.0035 169.728504 7.564556 200.180402 9.580470

SIMPLE 300 57362 0.09 0.0035 223.950013 10.440414 265.578248 12.914885

SIMPLE 300 71890 0.09 0.0035 286.233956 13.410864 335.268331 16.215620

SIMPLE 300 89723 0.09 0.0035 362.147972 17.786661 424.643174 21.276104

SIMPLE 300 110754 0.09 0.0035 451.788155 22.797868 528.956006 27.170915

SIMPLE 300 132478 0.09 0.0035 543.700918 28.045401 638.646243 32.965003

SIMPLE 300 159523 0.09 0.0035 663.541069 35.481434 778.285594 41.332958

SIMPLE 300 189042 0.09 0.0035 793.472399 43.150490 928.716325 50.135879

SIMPLE 1000 4288 0.09 0.0035 13.779317 2.677969 15.468865 0.963917

SIMPLE 1000 5650 0.09 0.0035 19.018743 0.846512 21.106096 1.158946

SIMPLE 1000 7948 0.09 0.0035 27.592867 1.143797 31.067321 1.622139

SIMPLE 1000 9776 0.09 0.0035 34.315115 1.389433 39.622286 1.994555

SIMPLE 1000 15554 0.09 0.0035 56.173382 2.180091 67.508199 3.410117

SIMPLE 1000 20972 0.09 0.0035 78.546942 3.273740 93.281193 4.657917

SIMPLE 1000 32568 0.09 0.0035 123.668523 5.059853 145.912671 6.792969

SIMPLE 1000 43825 0.09 0.0035 170.643481 7.503297 200.097963 9.476540

SIMPLE 1000 57362 0.09 0.0035 223.583061 10.451525 262.206944 12.893394

SIMPLE 1000 71890 0.09 0.0035 286.182306 13.269128 334.519010 16.048177

SIMPLE 1000 89723 0.09 0.0035 361.078046 17.568051 422.498820 21.001845

SIMPLE 1000 110754 0.09 0.0035 450.547065 22.673548 526.265057 26.755516

SIMPLE 1000 132478 0.09 0.0035 540.431982 27.674846 630.921755 32.556661

SIMPLE 1000 159523 0.09 0.0035 660.158624 34.747530 769.646908 40.861104

SIMPLE 1000 189042 0.09 0.0035 788.554882 42.677236 919.122062 49.484072

BREAKING_DAM 300 3965 0.09 0.0035 12.034343 4.354177 13.591712 2.728158

BREAKING_DAM 300 5225 0.09 0.0035 16.638660 0.748918 18.490849 0.976427

BREAKING_DAM 300 7173 0.09 0.0035 23.436881 0.990350 25.887830 1.310350

BREAKING_DAM 300 9055 0.09 0.0035 30.397858 1.214365 34.890912 1.803375

BREAKING_DAM 300 14089 0.09 0.0035 48.972474 1.849174 58.442567 2.538262

BREAKING_DAM 300 19487 0.09 0.0035 71.196792 2.829014 84.928314 4.122550

BREAKING_DAM 300 31054 0.09 0.0035 118.092174 4.737344 138.752098 6.378212

BREAKING_DAM 300 41259 0.09 0.0035 160.305465 6.842663 188.691985 8.727219

BREAKING_DAM 300 53539 0.09 0.0035 210.057187 9.247670 246.538238 11.497398

BREAKING_DAM 300 68416 0.09 0.0035 273.574413 12.389284 320.311417 15.015294

BREAKING_DAM 300 83822 0.09 0.0035 338.122527 15.937487 396.485247 19.134957

BREAKING_DAM 300 103463 0.09 0.0035 422.917863 20.525588 495.162451 24.509477

BREAKING_DAM 300 125836 0.09 0.0035 518.772206 25.914858 606.823186 30.590334

BREAKING_DAM 300 149168 0.09 0.0035 620.897465 31.885184 725.726931 37.489479

BREAKING_DAM 300 176699 0.09 0.0035 743.496662 39.019427 868.640072 45.434337

BREAKING_DAM 1000 3965 0.09 0.0035 12.130736 4.322947 13.633092 2.739064

BREAKING_DAM 1000 5225 0.09 0.0035 16.778894 0.748318 18.611780 0.964559

BREAKING_DAM 1000 7173 0.09 0.0035 23.583121 0.974735 26.163052 1.297519

BREAKING_DAM 1000 9055 0.09 0.0035 30.522477 1.210761 35.143680 1.786695

BREAKING_DAM 1000 14089 0.09 0.0035 49.107304 1.839565 58.457001 2.534412

BREAKING_DAM 1000 19487 0.09 0.0035 71.346636 2.802588 84.812195 4.107794

BREAKING_DAM 1000 31054 0.09 0.0035 117.226744 4.667677 137.935415 6.297378

BREAKING_DAM 1000 41259 0.09 0.0035 158.982396 6.767291 187.900964 8.639328

BREAKING_DAM 1000 53539 0.09 0.0035 208.205911 9.147074 244.409281 11.367806

BREAKING_DAM 1000 68416 0.09 0.0035 270.840891 12.203105 316.887507 14.834700

BREAKING_DAM 1000 83822 0.09 0.0035 334.127195 15.692152 390.771352 18.840490

BREAKING_DAM 1000 103463 0.09 0.0035 418.001247 20.200376 488.557775 24.073870

BREAKING_DAM 1000 125836 0.09 0.0035 512.669753 25.463525 598.562047 30.118480

BREAKING_DAM 1000 149168 0.09 0.0035 615.374868 31.309232 718.014953 36.773197

BREAKING_DAM 1000 176699 0.09 0.0035 736.086754 38.460591 859.836509 44.752378

TWO_BLOCKS 300 4162 0.09 0.0035 12.709391 3.692642 14.275275 1.951571

TWO_BLOCKS 300 5418 0.09 0.0035 17.123325 0.784352 19.061822 1.028713

TWO_BLOCKS 300 7498 0.09 0.0035 24.355161 1.024583 27.013416 1.398883

TWO_BLOCKS 300 9456 0.09 0.0035 31.401420 1.299647 36.445369 1.895757

TWO_BLOCKS 300 14666 0.09 0.0035 50.047506 1.973193 59.726613 2.657909

Time: physics

[Setup 1] (ms)

Time: rendering

[Setup 1] (ms)

Time: physics

[Setup 2] (ms)

Time: rendering

[Setup 2] (ms)

Setup 1 & 2 (single-thread CPU)

TWO_BLOCKS 300 20272 0.09 0.0035 72.303053 2.971650 86.360878 4.298974

TWO_BLOCKS 300 31922 0.09 0.0035 117.936625 4.873375 138.114726 6.511974

TWO_BLOCKS 300 42704 0.09 0.0035 160.552602 7.048661 189.107063 8.957212

TWO_BLOCKS 300 55304 0.09 0.0035 209.975208 9.479192 246.304717 11.756902

TWO_BLOCKS 300 70004 0.09 0.0035 270.231006 12.447840 316.672590 15.112167

TWO_BLOCKS 300 85698 0.09 0.0035 334.038910 15.977726 390.776163 19.230547

TWO_BLOCKS 300 106380 0.09 0.0035 420.793025 20.697653 491.905021 24.710600

TWO_BLOCKS 300 128360 0.09 0.0035 511.516947 25.736486 597.620905 30.403966

TWO_BLOCKS 300 152052 0.09 0.0035 612.311029 31.656665 715.265303 37.141121

TWO_BLOCKS 300 181056 0.09 0.0035 737.142567 39.192393 860.644853 45.465452

TWO_BLOCKS 1000 4162 0.09 0.0035 13.104570 3.348212 14.682976 1.662236

TWO_BLOCKS 1000 5418 0.09 0.0035 17.702881 0.792760 19.573451 1.024543

TWO_BLOCKS 1000 7498 0.09 0.0035 25.171645 1.033892 27.987598 1.404015

TWO_BLOCKS 1000 9456 0.09 0.0035 32.529302 1.294542 37.598541 1.917249

TWO_BLOCKS 1000 14666 0.09 0.0035 51.741130 1.983402 61.738169 2.884694

TWO_BLOCKS 1000 20272 0.09 0.0035 74.629385 2.999277 88.709564 4.318862

TWO_BLOCKS 1000 31922 0.09 0.0035 121.695030 4.952951 141.708003 6.570675

TWO_BLOCKS 1000 42704 0.09 0.0035 164.208309 7.115025 192.939957 9.037084

TWO_BLOCKS 1000 55304 0.09 0.0035 214.218879 9.574384 250.888536 11.864360

TWO_BLOCKS 1000 70004 0.09 0.0035 275.241612 12.570658 321.986805 15.279289

TWO_BLOCKS 1000 85698 0.09 0.0035 339.034202 16.150992 396.563194 19.362705

TWO_BLOCKS 1000 106380 0.09 0.0035 425.905128 20.942388 497.783151 24.935782

TWO_BLOCKS 1000 128360 0.09 0.0035 515.648010 26.032570 603.170245 30.790816

TWO_BLOCKS 1000 152052 0.09 0.0035 616.671511 31.901400 720.014961 37.416343

TWO_BLOCKS 1000 181056 0.09 0.0035 740.340334 39.544631 864.818726 45.988629

GALLERY 300 4450 0.09 0.0035 13.777215 2.639532 15.379690 0.946595

GALLERY 300 5626 0.09 0.0035 17.540725 0.707178 19.450596 0.923500

GALLERY 300 7802 0.09 0.0035 25.045524 0.910774 27.960332 1.256460

GALLERY 300 9592 0.09 0.0035 30.990926 1.123678 35.972552 1.661273

GALLERY 300 14598 0.09 0.0035 48.341569 1.638672 57.921314 2.257266

GALLERY 300 19376 0.09 0.0035 66.193993 2.303810 79.107602 3.511481

GALLERY 300 29170 0.09 0.0035 102.751659 3.616069 121.161332 4.981575

GALLERY 300 38416 0.09 0.0035 138.336693 4.998595 162.519310 6.634829

GALLERY 300 49410 0.09 0.0035 179.777943 6.774798 212.041233 8.670763

GALLERY 300 61388 0.09 0.0035 225.516916 8.662409 266.094368 10.835006

GALLERY 300 74385 0.09 0.0035 276.957458 11.186030 325.040225 13.668377

GALLERY 300 91618 0.09 0.0035 345.975059 14.505113 406.007016 17.465665

GALLERY 300 108848 0.09 0.0035 413.530258 17.698977 484.957119 21.284444

GALLERY 300 128099 0.09 0.0035 492.360072 21.830039 577.376400 25.949418

GALLERY 300 151586 0.09 0.0035 589.539887 26.987486 692.038590 31.839417

GALLERY 1000 4450 0.09 0.0035 14.045072 2.425126 15.622193 0.851647

GALLERY 1000 5626 0.09 0.0035 17.877048 0.706578 19.792859 0.919651

GALLERY 1000 7802 0.09 0.0035 25.506766 0.899062 28.641008 1.254536

GALLERY 1000 9592 0.09 0.0035 31.530244 1.108063 36.592282 1.668010

GALLERY 1000 14598 0.09 0.0035 49.149945 1.637471 58.507362 2.233208

GALLERY 1000 19376 0.09 0.0035 67.099662 2.288495 80.225168 3.494801

GALLERY 1000 29170 0.09 0.0035 103.685255 3.573428 121.392288 4.950460

GALLERY 1000 38416 0.09 0.0035 138.412065 4.907307 164.520922 6.572279

GALLERY 1000 49410 0.09 0.0035 179.722089 6.679907 212.038346 8.547266

GALLERY 1000 61388 0.09 0.0035 225.184797 8.557008 266.687474 10.682960

GALLERY 1000 74385 0.09 0.0035 275.318786 11.023874 323.044387 13.486179

GALLERY 1000 91618 0.09 0.0035 343.955022 14.308124 403.547664 17.229577

GALLERY 1000 108848 0.09 0.0035 409.642429 17.454242 479.304171 20.927747

GALLERY 1000 128099 0.09 0.0035 487.594801 21.507230 571.025133 25.558719

GALLERY 1000 151586 0.09 0.0035 582.602032 26.600415 681.756915 31.397074

Scene Frames Particles Spacing Time-step

SIMPLE 300 4288 0.09 0.0035 1.477272 0.147217 3.163944 0.114502

SIMPLE 300 5650 0.09 0.0035 1.997223 0.193977 4.242290 0.150871

SIMPLE 300 7948 0.09 0.0035 2.769882 0.272873 5.988449 0.212234

SIMPLE 300 9776 0.09 0.0035 3.489441 0.335632 7.482788 0.261047

SIMPLE 300 15554 0.09 0.0035 5.473457 0.534004 12.027813 0.415337

SIMPLE 300 20972 0.09 0.0035 7.539986 0.720016 16.529243 0.560013

SIMPLE 300 32568 0.09 0.0035 11.645233 1.118134 26.009525 0.869659

SIMPLE 300 43825 0.09 0.0035 15.794048 1.504612 35.627861 1.170254

SIMPLE 300 57362 0.09 0.0035 20.814217 1.969368 46.955414 1.531731

SIMPLE 300 71890 0.09 0.0035 26.325989 2.468147 59.716366 1.919670

SIMPLE 300 89723 0.09 0.0035 33.062908 3.080395 75.415771 2.395863

SIMPLE 300 110754 0.09 0.0035 40.501534 3.802437 93.352249 2.957451

SIMPLE 300 132478 0.09 0.0035 48.821823 4.548271 112.362701 3.537544

SIMPLE 300 159523 0.09 0.0035 59.039623 5.476788 136.379303 4.259724

SIMPLE 300 189042 0.09 0.0035 70.293777 6.490242 162.654770 5.047966

SIMPLE 1000 4288 0.09 0.0035 1.477272 0.147217 3.244560 0.114502

SIMPLE 1000 5650 0.09 0.0035 1.997223 0.193977 4.345043 0.150871

SIMPLE 1000 7948 0.09 0.0035 2.769882 0.272873 6.127918 0.212234

SIMPLE 1000 9776 0.09 0.0035 3.489441 0.335632 7.645008 0.261047

SIMPLE 1000 15554 0.09 0.0035 5.473457 0.534004 12.235241 0.415337

SIMPLE 1000 20972 0.09 0.0035 7.539986 0.720016 16.776646 0.560013

SIMPLE 1000 32568 0.09 0.0035 11.645233 1.118134 26.260185 0.869659

SIMPLE 1000 43825 0.09 0.0035 15.794048 1.504612 35.885357 1.170254

SIMPLE 1000 57362 0.09 0.0035 20.814217 1.969368 46.955414 1.531731

SIMPLE 1000 71890 0.09 0.0035 26.325989 2.468147 59.859921 1.919670

SIMPLE 1000 89723 0.09 0.0035 33.062908 3.080395 75.511337 2.395863

SIMPLE 1000 110754 0.09 0.0035 40.501534 3.802437 93.377914 2.957451

SIMPLE 1000 132478 0.09 0.0035 48.821823 4.548271 112.232925 3.537544

SIMPLE 1000 159523 0.09 0.0035 59.039623 5.476788 136.192047 4.259724

SIMPLE 1000 189042 0.09 0.0035 70.293777 6.490242 162.492172 5.047966

BREAKING_DAM 300 3965 0.09 0.0035 1.377468 0.136127 2.917358 0.105877

BREAKING_DAM 300 5225 0.09 0.0035 1.865902 0.179386 3.923534 0.139523

BREAKING_DAM 300 7173 0.09 0.0035 2.530415 0.246265 5.374973 0.191540

BREAKING_DAM 300 9055 0.09 0.0035 3.266659 0.310879 6.959625 0.241795

BREAKING_DAM 300 14089 0.09 0.0035 5.020786 0.483707 10.881569 0.376217

BREAKING_DAM 300 19487 0.09 0.0035 7.081135 0.669033 15.476978 0.520359

BREAKING_DAM 300 31054 0.09 0.0035 11.177422 1.066154 25.109829 0.829231

BREAKING_DAM 300 41259 0.09 0.0035 15.001179 1.416515 34.042011 1.101734

BREAKING_DAM 300 53539 0.09 0.0035 19.632946 1.838116 44.563118 1.429646

BREAKING_DAM 300 68416 0.09 0.0035 25.252556 2.348877 57.635815 1.826904

BREAKING_DAM 300 83822 0.09 0.0035 31.239555 2.877800 71.256691 2.238289

BREAKING_DAM 300 103463 0.09 0.0035 38.248684 3.552120 88.254761 2.762760

BREAKING_DAM 300 125836 0.09 0.0035 46.769508 4.320236 108.197334 3.360184

BREAKING_DAM 300 149168 0.09 0.0035 55.840027 5.121277 128.911102 3.983215

BREAKING_DAM 300 176699 0.09 0.0035 66.479904 6.066479 153.878418 4.718372

BREAKING_DAM 1000 3965 0.09 0.0035 1.377468 0.136127 2.947292 0.105877

BREAKING_DAM 1000 5225 0.09 0.0035 1.865902 0.179386 3.960438 0.139523

BREAKING_DAM 1000 7173 0.09 0.0035 2.530415 0.246265 5.416817 0.191540

BREAKING_DAM 1000 9055 0.09 0.0035 3.266659 0.310879 7.000561 0.241795

BREAKING_DAM 1000 14089 0.09 0.0035 5.020786 0.483707 10.918152 0.376217

BREAKING_DAM 1000 19487 0.09 0.0035 7.081135 0.669033 15.495964 0.520359

BREAKING_DAM 1000 31054 0.09 0.0035 11.177422 1.066154 25.048519 0.829231

BREAKING_DAM 1000 41259 0.09 0.0035 15.001179 1.416515 33.815331 1.101734

BREAKING_DAM 1000 53539 0.09 0.0035 19.632946 1.838116 44.420872 1.429646

BREAKING_DAM 1000 68416 0.09 0.0035 25.252556 2.348877 57.176338 1.826904

BREAKING_DAM 1000 83822 0.09 0.0035 31.239555 2.877800 70.748245 2.238289

BREAKING_DAM 1000 103463 0.09 0.0035 38.248684 3.552120 87.573914 2.762760

BREAKING_DAM 1000 125836 0.09 0.0035 46.769508 4.320236 107.426582 3.360184

BREAKING_DAM 1000 149168 0.09 0.0035 55.840027 5.121277 128.325485 3.983215

BREAKING_DAM 1000 176699 0.09 0.0035 66.479904 6.066479 153.346039 4.718372

TWO_BLOCKS 300 4162 0.09 0.0035 1.438339 0.142891 3.055344 0.111137

TWO_BLOCKS 300 5418 0.09 0.0035 1.925537 0.186012 4.026253 0.144676

TWO_BLOCKS 300 7498 0.09 0.0035 2.630836 0.257423 5.554531 0.200218

TWO_BLOCKS 300 9456 0.09 0.0035 3.390564 0.324646 7.149052 0.252502

TWO_BLOCKS 300 14666 0.09 0.0035 5.199074 0.503517 11.103291 0.391624

Memory usage (VRAM & RAM)
VRAM: physics

[GPU] (MB)

VRAM:

rendering

[GPU] (MB)

RAM: physics

[CPU] (MB)

VRAM:

rendering

[CPU] (MB)

TWO_BLOCKS 300 20272 0.09 0.0035 7.323692 0.695984 15.704231 0.541321

TWO_BLOCKS 300 31922 0.09 0.0035 11.445625 1.095955 25.057598 0.852409

TWO_BLOCKS 300 42704 0.09 0.0035 15.447670 1.466125 34.101059 1.140320

TWO_BLOCKS 300 55304 0.09 0.0035 20.178314 1.898712 44.658298 1.476776

TWO_BLOCKS 300 70004 0.09 0.0035 25.743233 2.403397 57.135658 1.869308

TWO_BLOCKS 300 85698 0.09 0.0035 31.819221 2.942207 70.733582 2.288383

TWO_BLOCKS 300 106380 0.09 0.0035 39.150009 3.652267 88.243362 2.840652

TWO_BLOCKS 300 128360 0.09 0.0035 47.549400 4.406891 107.312767 3.427582

TWO_BLOCKS 300 152052 0.09 0.0035 56.731155 5.220291 128.165131 4.060226

TWO_BLOCKS 300 181056 0.09 0.0035 67.826180 6.216064 153.904114 4.834717

TWO_BLOCKS 1000 4162 0.09 0.0035 1.438339 0.142891 3.128616 0.111137

TWO_BLOCKS 1000 5418 0.09 0.0035 1.925537 0.186012 4.127617 0.144676

TWO_BLOCKS 1000 7498 0.09 0.0035 2.630836 0.257423 5.700142 0.200218

TWO_BLOCKS 1000 9456 0.09 0.0035 3.390564 0.324646 7.347347 0.252502

TWO_BLOCKS 1000 14666 0.09 0.0035 5.199074 0.503517 11.400040 0.391624

TWO_BLOCKS 1000 20272 0.09 0.0035 7.323692 0.695984 16.115936 0.541321

TWO_BLOCKS 1000 31922 0.09 0.0035 11.445625 1.095955 25.648907 0.852409

TWO_BLOCKS 1000 42704 0.09 0.0035 15.447670 1.466125 34.829514 1.140320

TWO_BLOCKS 1000 55304 0.09 0.0035 20.178314 1.898712 45.482456 1.476776

TWO_BLOCKS 1000 70004 0.09 0.0035 25.743233 2.403397 58.008976 1.869308

TWO_BLOCKS 1000 85698 0.09 0.0035 31.819221 2.942207 71.651093 2.288383

TWO_BLOCKS 1000 106380 0.09 0.0035 39.150009 3.652267 89.116806 2.840652

TWO_BLOCKS 1000 128360 0.09 0.0035 47.549400 4.406891 108.051849 3.427582

TWO_BLOCKS 1000 152052 0.09 0.0035 56.731155 5.220291 128.819916 4.060226

TWO_BLOCKS 1000 181056 0.09 0.0035 67.826180 6.216064 154.365829 4.834717

GALLERY 300 4450 0.09 0.0035 1.527328 0.152779 3.235279 0.118828

GALLERY 300 5626 0.09 0.0035 1.989807 0.193153 4.088100 0.150230

GALLERY 300 7802 0.09 0.0035 2.724770 0.267860 5.685009 0.208336

GALLERY 300 9592 0.09 0.0035 3.432587 0.329315 7.098858 0.256134

GALLERY 300 14598 0.09 0.0035 5.178062 0.501183 10.817299 0.389809

GALLERY 300 19376 0.09 0.0035 7.046837 0.665222 14.650669 0.517395

GALLERY 300 29170 0.09 0.0035 10.595284 1.001472 22.365108 0.778923

GALLERY 300 38416 0.09 0.0035 14.122719 1.318909 30.079132 1.025818

GALLERY 300 49410 0.09 0.0035 18.357124 1.696358 39.215424 1.319389

GALLERY 300 61388 0.09 0.0035 23.080971 2.107590 49.252178 1.639236

GALLERY 300 74385 0.09 0.0035 28.323612 2.553806 60.487488 1.986294

GALLERY 300 91618 0.09 0.0035 34.588692 3.145454 74.845917 2.446465

GALLERY 300 108848 0.09 0.0035 41.520378 3.737000 89.591202 2.906555

GALLERY 300 128099 0.09 0.0035 49.329906 4.397930 106.517624 3.420612

GALLERY 300 151586 0.09 0.0035 58.720230 5.204292 127.191910 4.047783

GALLERY 1000 4450 0.09 0.0035 1.527328 0.152779 3.305641 0.118828

GALLERY 1000 5626 0.09 0.0035 1.989807 0.193153 4.176140 0.150230

GALLERY 1000 7802 0.09 0.0035 2.724770 0.267860 5.798283 0.208336

GALLERY 1000 9592 0.09 0.0035 3.432587 0.329315 7.235817 0.256134

GALLERY 1000 14598 0.09 0.0035 5.178062 0.501183 10.992577 0.389809

GALLERY 1000 19376 0.09 0.0035 7.046837 0.665222 14.855721 0.517395

GALLERY 1000 29170 0.09 0.0035 10.595284 1.001472 22.549973 0.778923

GALLERY 1000 38416 0.09 0.0035 14.122719 1.318909 30.231258 1.025818

GALLERY 1000 49410 0.09 0.0035 18.357124 1.696358 39.282608 1.319389

GALLERY 1000 61388 0.09 0.0035 23.080971 2.107590 49.190067 1.639236

GALLERY 1000 74385 0.09 0.0035 28.323612 2.553806 60.244865 1.986294

GALLERY 1000 91618 0.09 0.0035 34.588692 3.145454 74.410103 2.446465

GALLERY 1000 108848 0.09 0.0035 41.520378 3.737000 88.891457 2.906555

GALLERY 1000 128099 0.09 0.0035 49.329906 4.397930 105.511383 3.420612

GALLERY 1000 151586 0.09 0.0035 58.720230 5.204292 125.914871 4.047783

	Abstract
	Preface
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	SPH based methods
	Smoothed Particle Hydrodynamics
	Weakly Compressible SPH
	Incompressible SPH
	Predictive-Corrective Incompressible SPH
	Local Poisson SPH
	Implicit Incompressible SPH

	Problem
	GPGPU and CUDA
	Thesis Outline

	Aims, Objectives and Research Question
	Objectives
	Research questions

	Related Work
	IISPH
	Terminology
	Kernel functions
	Advection prediction
	Pressure solve
	Integration

	Implementation
	CPU
	Neighbors
	Advection prediction
	Pressure solve
	Integration

	GPU
	Initialization
	Neighbors
	Advection prediction
	Pressure solve
	Integration
	DirectX interoperability

	Alternative approaches
	Shared memory
	Compute Capability 5.X

	Experimental Method
	Time measurement functions
	Test scenes
	Memory usage
	Physical precision comparison

	Results
	Time usage
	Memory usage
	Physical precision
	Shared memory

	Analysis and Discussion
	Time usage
	Memory usage
	Physical precision
	Shared memory

	Conclusions and Future Work
	Future work

	References
	Additional Experiments Data

