
A Multi-leader Approach to
Byzantine Fault Tolerance
Achieving Higher Throughput Using
Concurrent Consensus

MUHAMMAD ZEESHAN ABID

KT H ROYAL INSTIT UTE OF TECH NOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
STOCKHOLM, SWEDEN 2015

!
!

A Multi-leader Approach to
Byzantine Fault Tolerance
Achieving Higher Throughput Using
Concurrent Consensus

Muhammad Zeeshan Abid

2015-07-01

Master’s Thesis

Examiner and Academic adviser
Prof. Dejan Kostić

Advisers at Technische Universität Braunschweig
Prof. Rüdiger Kapitza (Supervisor) and Bijun Li

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

A Multi-leader Approach to Byzantine Fault Tolerance

Achieving Higher Throughput Using Concurrent Consensus

Muhammad Zeeshan Abid

Master of Science Thesis

Software Engineering of Distributed Systems
School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

July 01, 2015

Advisers at TU Braunschweig: Prof. Rüdiger Kapitza, & Bijun Li
Examiner and Academic adviser: Prof. Dejan Kostić

c� Muhammad Zeeshan Abid - July 01, 2015

Abstract

Byzantine Fault Tolerant protocols are complicated and hard to implement.
Today’s software industry is reluctant to adopt these protocols because of the
high overhead of message exchange in the agreement phase and the high resource
consumption necessary to tolerate faults (as 3 f + 1 replicas are required to
tolerate f faults). Moreover, total ordering of messages is needed by most
classical protocols to provide strong consistency in both agreement and execution
phases. Research has improved throughput of the execution phase by introducing
concurrency using modern multicore infrastructures in recent years. However,
improvements to the agreement phase remains an open area.

Byzantine Fault Tolerant systems use State Machine Replication to tolerate a
wide range of faults. The approach uses leader based consensus algorithms for the
deterministic execution of service on all replicas to make sure all correct replicas
reach same state. For this purpose, several algorithms have been proposed to
provide total ordering of messages through an elected leader. Usually, a single
leader is considered to be a bottleneck as it cannot provide the desired throughput
for real-time software services. In order to achieve a higher throughput there is a
need for a solution which can execute multiple consensus rounds concurrently.

We present a solution that enables multiple consensus rounds in parallel by
choosing multiple leaders. By enabling concurrent consensus, our approach can
execute several requests in parallel. In our approach we incorporate application
specific knowledge to split the total order of events into multiple partial orders
which are causally consistent in order to ensure safety. Furthermore, a dependency
check is required for every client request before it is assigned to a particular leader
for agreement. This methodology relies on optimistic prediction of dependencies
to provide higher throughput. We also propose a solution to correct the course of
execution without rollbacking if dependencies were wrongly predicted .

Our evaluation shows that in normal cases this approach can achieve up
to 100% higher throughput than conventional approaches for large numbers of
clients. We also show that this approach has the potential to perform better in
complex scenarios.

Keywords: Byzantine Failures, Fault Tolerance, Performance, Reliability

i

Sammanfattning

Byzantine Fault Tolerant protokoll är komplicerade och samtidigt svåra att
implementera. Dagens mjukvaruindustri är motvillig till att anta dessa protokoll
pågrund av den höga resursanvändningen vid meddelandeutbyte i avtalsfasen
samt den höga resurskonsumtionen som behövs för att tolerera okontrollerbara
fel (fault) (eftersom 3 f +1 replikas måste tolerera f antal fel (faults)). En enhetlig
meddelandeordning behövs av de flesta klassiska protokoll för att tillhandahålla en
stark enhetlighet både när det gäller avtalfasen och genomförandefasen. Forskning
har förbättrat throughput i genomförandefasen genom att införa parallellism med
hjälp av dagens moderna flerkärniga (multicore) infrastruktur. Trots detta finns det
en hel del att göra när det gäller förbättringar i avtalet.

Byzantine Fault Tolerant systemet använder tillståndsmaskinsreplikering (State
Machine Replication) för att kunna tolerera en lång rad av fel (faults).
Ledningsbaserade konsensusalgoritmer är nödvändiga för det deterministiska
tjänstegenomförandet påalla replikas för att säkerställa att alla fungerande replikas
når samma skick. Flera algoritmer har föreslagits för att tillhandahålla en enhetlig
meddelandeordning med hjälp av en vald ledare. Vanligtvis anses en enda ledare
vara en flaskhals eftersom den inte kan tillhandahålla den önskade throughputen
för en mjukvarutjänst med realtidskrav. För att uppnåen högre throughput såbehövs
en lösning som kan utföra flera konsensusomgångar samtidigt.

Vi presenterar en lösning som möjliggör flera konsensusomgångar som utförs
parallellt genom att designera flera ledare bland alla replikas. I vårt
tillvägagångssätt inkorporerar vi applikationsspecifik kunskap och delar upp hela
ordningen av händelser i flera delordningar som är kausalt konsistenta för att
säkerställa safety. En beroendekontroll är nödvändig för varje klientförfrågan
innan den utlämnas till en specific ledare för avtal. Samtidig konsensus leder
till parallell genomföring av förfrågningar, vilket förbättrar throughput. Denna
metodologi förlitar sig påoptimistiska förutsägelser av beroenden för att
tillhandahålla en högre throughput. Vi föreslår ocksåen lösning för att rätta till
sig själv om den var felaktigt förutspådd, utan att börja om.

Vår utvärdering visar att i normala fall såkan detta tillvägagångssätt uppnåupp
till 100% högre throughput än konventionella tillväägagångssätt och har en

iii

iv SAMMANFATTNING

potential att prestera ännu bättre i komplexa scenarion.

Acknowledgements

First of all, thanks to ALLAH, the most merciful and the most beneficent for
giving me strength, courage and wisdom that allowed me to complete this thesis.
Without His blessings it would not be possible to finish this thesis.

I wish to express my sincere gratitude to Prof. Dejan Kostic and Prof.
Gerald Q. Maguire Jr. for their assistance & supervision. Their invaluable
guidance, feedback and suggestions helped me in all the problems I faced during
the progress of this thesis project. I would like to give a special thanks to
my supervisors Prof. Rüdiger Kapitza & Bijun Li (at Technische Universität
Braunschweig) for their continuous support and helping me to develop technical
skills for this thesis.

Last but not least, I would like to acknowledge and thank my family, especially
my parents and my wife, for believing in me. I am grateful for their never ending
support throughout this thesis project.

v

Contents

1 Introduction 1
1.1 Replication . 1
1.2 Faults . 2
1.3 Byzantine faults . 3
1.4 Purpose of this Thesis . 3
1.5 Suggested Approach . 5
1.6 Structure of this Thesis . 6

2 Background 7
2.1 State Machine Replication . 7

2.1.1 Design and Performance 7
2.1.2 Replica Coordination . 8
2.1.3 Execution . 9
2.1.4 Checkpoints . 9
2.1.5 Non-determinism . 10

2.2 Practical Byzantine Fault Tolerance 10
2.2.1 Motivation . 10
2.2.2 Protocol . 11

2.3 Related work . 13
2.3.1 Agreement . 13

2.3.1.1 Parallel state-machine replication 13
2.3.1.2 Spin One’s Wheels? 14
2.3.1.3 Mencius . 15
2.3.1.4 Scalable BFT for Multi-Cores 15

2.3.2 Execution . 15
2.3.2.1 All about Eve 16
2.3.2.2 On-Demand Replica Consistency 16
2.3.2.3 Storyboard . 16

vii

viii CONTENTS

3 MLBFT: A Multi-leader Approach 19
3.1 System Model . 20

3.1.1 Client . 21
3.1.1.1 Client Proxy 21
3.1.1.2 Client Requests 22

3.1.2 Replica . 22
3.1.2.1 Service State 23
3.1.2.2 State Partitioning 23

3.1.3 Assumptions . 24
3.1.3.1 Deadlocks in Application Service 24
3.1.3.2 Programming Model 24
3.1.3.3 Cryptography 25

3.2 Protocol design . 25
3.2.1 Basic Principle . 25
3.2.2 Request Execution . 26
3.2.3 Prediction . 28
3.2.4 Agreement . 29

3.2.4.1 Partial Order 31
3.2.4.2 Total Order . 31

3.2.5 Execution . 32
3.2.6 Handling Cross-Border Requests 35
3.2.7 Handling Mispredictions 35
3.2.8 Deadlocks . 37

3.2.8.1 Before Execution 37
3.2.8.2 After Execution 38
3.2.8.3 Ordered queue 39

3.2.9 Safety and Liveness . 40
3.2.10 Checkpoints . 40
3.2.11 View-Change . 40
3.2.12 Implementation . 40

3.2.12.1 Extension of Conventional BFT protocols . . . 41
3.2.12.2 Re-write MLBFT 41
3.2.12.3 Comparison 41

4 Evaluation 43
4.1 Amdahl’s law . 43
4.2 Implementation . 45
4.3 Microbenchmark . 45

4.3.1 Key-Value Store . 45
4.3.2 Evaluation Setup . 46
4.3.3 Results . 46

CONTENTS ix

4.3.3.1 Payload . 48
4.3.3.2 Response time 58
4.3.3.3 CPU usage . 60
4.3.3.4 Cross-border requests 62
4.3.3.5 Deadlocks . 67
4.3.3.6 Memory usage 67
4.3.3.7 Multicore CPU 70
4.3.3.8 Read requests 70

5 Conclusions 73
5.1 Conclusion . 73

5.1.1 Goals . 73
5.1.2 Insights . 74
5.1.3 Sustainable Development 75
5.1.4 Challenges . 75

5.1.4.1 Deadlocks . 75
5.1.4.2 Mispredictions 76

5.2 Future work . 76
5.2.1 What has been left undone? 76
5.2.2 Next obvious things to be done 77

5.2.2.1 More Case Studies 77
5.2.2.2 Deadlock Resolution 77
5.2.2.3 Fault Handling 77
5.2.2.4 Batching and reply Digests 77
5.2.2.5 Thread pinning 78

5.3 Required Reflections . 78

Bibliography 79

A Java Source Code 85

List of Figures

1.1 A high-level service replication architecture 2
1.2 A Byzantine Fault Tolerant replica ordering requests in parallel . . 4

2.1 Basic architecture of State Machine Replication (SMR) based
Byzantine Fault Tolerant (BFT) service 8

2.2 A normal case PBFT operation 12

3.1 High-level architecture of Multi-leader BFT service replica 20
3.2 MLBFT approach ordering and executing a simple request on BFT-1 27
3.3 Multiple BFT instances . 31
3.4 Splitting total-order into partial-orders 32
3.5 Parallel execution of requests in MLBFT 33
3.6 Execution of cross-border requests in MLBFT 36
3.7 Deadlock detection and resolution before execution in MLBFT . . 38

4.1 Throughput for simple requests 47
4.2 Throughput with different request sizes 50
4.3 Bits per second with different request sizes 52
4.4 Throughput with different reply sizes 54
4.5 Bits per second with different reply sizes 55
4.6 Response time with different request sizes 56
4.7 Response time with different reply sizes 57
4.8 Average response time . 59
4.9 CPU Usage . 61
4.10 Throughput of cross-border requests 63
4.11 Throughput with cross border . 65
4.12 Throughput versus response time 66
4.13 Deadlocks versus cross-border requests 68
4.14 Memory usage . 69
4.15 Throughput on multicore CPU 71
4.16 Throughput of read requests . 72

xi

List of Tables

3.1 Comparison between implementation approaches 41

4.1 Bandwidth usage for different request sizes (Mbps) 51
4.2 Bytes processed per second for different hash algorithms 61

xiii

List of Algorithms

3.1 Prediction Stage on a replica . 29
3.2 Identifying request type and then enqueue them 30
3.3 Execution-stage worker thread 34
3.4 Deadlock detection before execution 39
3.5 Deadlock resolution before execution 39
A.1 Primary selection protocol . 85
A.2 Prefictor interface . 86
A.3 MLBFT request types . 87
A.4 Wait/Notify signal object for partition queue 88
A.5 Execution stage worker thread 89
A.6 Execution stage worker thread (cont 0d) 90
A.7 Execution stage worker thread (cont 0d) 91

xv

List of Acronyms and Abbreviations

This document requires readers to be familiar with the following terms and
concepts. For clarity we provide short description of these terms when first using
them in the thesis.

BFT Byzantine Fault Tolerant

CAP Consistency, Availability and Partition-tolerance

C-Dep Command Dependencies

CFT Crash Fault Tolerant

C-G Command-to-Group

CPU Central Processing Unit

CRC Cyclic Redundancy Ceck

FIFO First-in-First-out

GB Gigabytes

GHz Gigahertz

IP Internet Protocol

KB Kilobytes

LAN Local Area Network

MB Megabytes

Mbps Megabits per second

MLBFT Multi Leader Byzantine Fault Tolerance

MTU Maximum Transmission Unit

xvii

xviii LIST OF ACRONYMS AND ABBREVIATIONS

ODRC On-Demand Replica Consistency

PBFT Practical Byzantine Fault Tolerance

RAF Request Analysis Function

Rrn
c Request by client c with request-number rn

REFIT Resource-efficient Fault and Intrusion Tolerance

rn Request number

SMR State Machine Replication

TCP Transmission Control Protocol

UDP User Datagram Protocol

WAN Wide Area Network

Chapter 1

Introduction

The client-server architecture has been one of the most important technologies
developed to deliver software services. It has served well for a long time, but
it cannot meet all the needs of today’s software industry. With increasingly
large numbers of customers using online software services (e.g., e-commerce,
banking, and social networks), the client-sever architecture is unable to handle
large numbers of requests from clients located all over the world. Today, clients
experience problems such as slow responses and service failures. As a result there
was a need for a paradigm which better handles common faults, while enabling
the service to be fast and reliable for all the clients, even when geographically
distributed.

1.1 Replication

Replication is widely used to improve the availability and reliability of services
by mirroring the data from a server on multiple machines. If the primary server
goes down the data is not lost because it is available on one of the other machines.
A question arises as to how many mirror copies should be made as backups?
The answer depends upon the nature of the service and how many faults the
service is willing to tolerate. Each extra machine requires resources (e.g., money
and bandwidth) and adding these additional resources is not always feasible.
Furthermore, a faulty primary can either be fixed or can be replaced with backup
server by replication system. However, whether a replication system must decide
to act upon a failure by automatic or manual measures is outside the focus of this
thesis and will not be discussed further. Figure 1.1 shows a high-level architecture
of a service in which replication is transparent to clients. The vertical line in the
figure represents a proxy which maps requests from clients to one of the replicas.

1

2 CHAPTER 1. INTRODUCTION

Clients

Service

Replica 1

Replica 2

Replica 3

…

Figure 1.1: A high-level service replication architecture

1.2 Faults

In a replicated service a “ f ault” can be anything which might lead to a system
failure. Faults are bound to happen naturally and cannot be avoided. A replicated
system can be designed in a way that even if certain types of fault occurs, these
faults will not affect the ability of the system to function correctly. However, in
such a system these faults must first be detected and then measures taken to correct
them. Generally, two types of faults are addressed in a replicated service. These
faults are:

Omission faults
Omission faults occur when a node does not send a message which would
have been sent by a correctly operating node. Omission faults are common
and most systems today address these kind of faults.

Commission faults
Commission faults occur when a node sends a message which would not
have been sent by a correctly operating node. Commission faults are
generally not addressed by systems today because they are less common
and quite difficult to resolve.

1.3. BYZANTINE FAULTS 3

1.3 Byzantine faults
Byzantine faults are arbitrary faults that can occur in a system and make the
system either un-reliable or un-responsive to any client requests. As a result
the service can behave arbitrarily, i.e., it can lie, delay messages, send erroneous
messages, or not respond at all. In general, Byzantine faults can happen anywhere
and anytime in a distributed service, thus making them difficult to resolve. These
faults were first addressed by Lamport in his paper “The Byzantine Generals
Problem” [1] hence the name Byzantine f aults.

Over the last decade Byzantine faults have become the focus of researchers as
more and more services have moved to web platforms. New protocols have been
developed over the last three decades to enable services to remain up and running
despite the presence of arbitrary faults in the system, while still providing good
performance. Unfortunately, these algorithms are still not being used in practice
in today’s distributed systems [2, 3, 4].

1.4 Purpose of this Thesis
One of the reasons Byzantine Fault Tolerant protocols have not yet been adopted
by industry is that they lack the performance of Crash Fault Tolerant (CFT)
systems [3, 4]. This is mainly because of the high overhead of the agreement
phase to order the requests in Byzantine Fault Tolerant protocols. In Byzantine
Fault Tolerant protocols all replicas must agree on a total ordering of the incoming
requests in order to provide consistency. A lot of work has been done to improve
the performance of the execution phase [5, 6, 7, 8]. However, little work has been
done to improve the agreement phase.

This thesis will introduce concurrency in both the agreement and execution
phase to improve the throughput of a protocol, such that it is comparable to
the throughput of CFT, while still tolerating arbitrary faults occurring within the
system. The hope is that Byzantine Fault Tolerant systems can be used in services
which cannot tolerate even a single fault without compromising the throughput.

Our approach uses application specific knowledge to enable the total order
of the messages to be achieved by dividing the messages into multiple partially
ordered set of messages. We maintain the casualty of these partial orders so
that two or more events which are casually related will always be executed
in order. The application specific knowledge is used to predict dependencies
between the messages. These multiple partially ordered set of messages are
executed in parallel boosting performance by utilizing the full power of modern
multicore servers. Figure 1.2 shows how a replica divides requests into multiple
partially ordered queues and then executes these requests in parallel. However,

4 CHAPTER 1. INTRODUCTION

there is a possibility that the prediction is wrong and we find out there was a
dependency missing in the prediction; hence when this occurs we stop executing
the request and re-predict the dependencies given the new information. Now that
this dependency is included in the prediction we resume execution. This cycle is
repeated until the original request is completed.

Our hypothesis is that this approach can enable a Byzantine Fault Tolerant
system to deliver better throughput. We also hypothesize that our approach
can handle simple as well as cross-border (see Section 3.1.1.2) requests in an
effective manner.

Replica

T0 T1 T2 T3

R1 R2

R1

R2

Incoming request Ordered Request

Figure 1.2: A Byzantine Fault Tolerant replica ordering requests in parallel

1.5. SUGGESTED APPROACH 5

1.5 Suggested Approach
In Section 2.2 we explain the classical single-leader Practical Byzantine Fault
Tolerance (PBFT) protocol [9]. In this protocol requests (by clients) are totally
ordered by one leader and then they are passed to the execution stage. If a large
number of requests are received, then they must wait for their turn to be ordered
by the leader -making it a point of congestion. In practice, not all the requests
are dependent upon each other and only dependent requests should be ordered.
By exploiting this idea, we propose to address this problem through splitting
total-order into multiple partial-orders using multiple leaders in a Byzantine
Fault Tolerant service. The idea is to split the independent requests in multiple
agreement rounds. If the requests are dependent on each other then they will
be ordered by same leader to maintain the consistency of the service. Ideally
every replica should have two identities: leader of a particular ordering stage and
follower of the other ordering stages.

Introducing multiple Byzantine Fault Tolerant ordering instances brings up
the challenge of separating dependent requests from independent requests. To
address this issue we need to understand the application service in detail. As a
solution a prediction stage is added to the replica before forwarding the request
to the ordering stage. The prediction stage utilizes application knowledge and
forecasts the set of objects relevant for each request. These objects are divided
into partitions. We rely on prediction knowledge to pick the relevant partitions for
a given request. Furthermore, each partition operate its own ordering instance with
a dedicated queue for each instance. These predicted partitions are then translated
to their respective ordering instances. In case of multiple partitions, all of the
ordering instances must order this request to ensure partial-order. This ordered
request is then added to the tail of respective queue in the ordering instance. In the
execution stage each queue is operated by a dedicated worker thread. This enables
multiple requests to be executed at the same time, hence improving throughput.
Moreover, all the queues are shared between worker threads and care must be
taken while modifying these queues. If a request has been ordered in more than
one queue, then it must be synchronized with all the relevant worker threads
operating on those queues. In this case a worker thread is deterministically picked
to execute the request and other relevant threads will wait until the request has
finished its execution. We discuss this approach in detail in Chapter 3.

Deploying multiple leaders will utilize more computing power of each
machine, as the replica has more than one identity now. Each identity will
be represented by at least one thread on a physical machine. The overhead of
thread scheduling depends on the specifications of the machine and the software
(operating system and the application service). Multiple threads perform better
on a multi-core machine due to the decreased overhead of scheduling. On the

6 CHAPTER 1. INTRODUCTION

other hand, if the machine is not multi-core (or the cores are less than replica
identities) then the overhead might increase leading to lower throughput. Given
this reasoning, this approach is ideal for applications with high workload and
multi-core replicas.

In this approach it is very difficult for a client to know where to send its
request, as any replica could be the leader for this particular request. There
are two solutions to resolve this issue. Either client sends its request to all the
replicas (thus increasing the number of messages) or a proxy on the client sends
the request to only the relevant replicas. The latter approach is an optimization
that will reduce the number of messages sent between clients and replicas.

1.6 Structure of this Thesis
Chapter 2 introduces the background knowledge needed to understand this

thesis. The chapter starts by explaining the building blocks of a Byzantine
Fault Tolerant service. Then it explains the classical PBFT protocol. In
addition, the chapter discusses related work that has been done to improve
throughput.

Chapter 3 presents Multi Leader Byzantine Fault Tolerance (MLBFT), a
multi-leader approach to Byzantine Fault Tolerant system. It explains
the system model, proposed approach, assumptions, and implementation
strategies of the protocol.

Chapter 4 provides an analysis of the proposed protocol. In addition, it
presents some benchmarking results and a comparison with conventional
approaches.

Chapter 5 concludes the thesis by giving some insights and challenges faced in
the proposed solution. Furthermore, it suggests some future work that may
be of interest in order to continue this work.

Chapter 2

Background

Some background knowledge is required to understand the research that was
conducted. This chapter introduces state machine replication, then briefly explains
the Practical Byzantine Fault Tolerance (PBFT) protocol. Finally, related research
is discussed in Section 2.3.

2.1 State Machine Replication
State Machine Replication (SMR) [10, 11] is a widely used means to implement
fault tolerant systems, because it is effective and works. Almost every modern
service uses this technique to tolerate faults. Although, state machines can be
non-deterministic (see Section 2.1.5 for non-deterministic applications of SMR),
this thesis will only target deterministic state machines. That implies, that given
any initial state and sequence of requests, all service processes will produce the
same response and reach the state. All messages should be received in the same
order by every state machine so that a common response can be produced. This
property is crucial for replicated services and Byzantine Fault Tolerant (BFT)
systems highly rely on determinism. In order to realize this, all messages are
broadcasted atomically [12] to all replicas and all correctly executing nodes will
deliver their messages in same order. In order to tolerate arbitrary faults, a BFT
system implements replication through SMR. From now on the term BFT means
Byzantine Fault Tolerant State Machine Replication protocol in this thesis, unless
stated otherwise.

2.1.1 Design and Performance
The concept of SMR was proposed to improve the availability of the service, not
its per f ormance. It is possible in some cases that a single-server implementation

7

8 CHAPTER 2. BACKGROUND

of a service might outperform a replicated service. This is because a replicated
service must order the requests sequentially in order to provide linearizability
while a single-server can benefit from other improvements (e.g., concurrently
executing requests).

The architecture of a BFT service which uses SMR can be divided into
two stages: agreement and execution [13]. Figure 2.1 shows basic architecture
of replicated BFT service with separate agreement and execution stages. This
separation reduces the replication cost and provides a privacy firewall [13]
architecture to preserve confidentiality through replication. However, details of
a privacy firewall architecture are outside the scope of this research and will not
be discussed further in this thesis.

Service

Clients

Agreement Execution

Replica

Agreement
Protocol

Replica

ReplicaReplica

Replica

Replica

Replica

Replica

Ordered
Requests

Replies

Requests

Replies

Figure 2.1: Basic architecture of SMR based BFT service

2.1.2 Replica Coordination
As mentioned in the previous section, all correctly operating replicas in SMR must
execute the same sequence of requests in order to ensure determinism. Replicas
coordinate with each other by sending asynchronous messages (in the case of the
BFT model) to each other. This can expressed in the following two requirements
of the state machine [10]:
Agreement

Agreement is sometimes also known as consensus. An agreement

2.1. STATE MACHINE REPLICATION 9

requirement is satisfied by running the agreement protocol on every replica.
This protocol ensures two properties:

• All non-faulty replicas agree on the same value.
• If the sender is non-faulty, then all non-faulty replicas use its proposed

value as the agreed value.

Order
The order requirement satisfies the property that all non-faulty replicas
process the request it receives in the same relative order. Schneider [10]
propose “total-ordering” of requests using logical clocks [11]. Total-ordering
is also known as “linearizability”.

Together these two requirements will be referred as the “agreement” phase in this
thesis. Figure 2.1 shows the agreement stage which runs an agreement protocol
to order the requests. Although the classical BFT protocol [9] and some of its
decedents require linearizability, we will relax this requirement in this thesis.
Section 3.2.4 explains the agreement stage of our approach in detail and explains
how total-order can be split into partial orders.

2.1.3 Execution
The request is handed over to execution phase after it has been ordered by
agreement phase (see Figure 2.1). The execution of the client request takes place
in this stage. The application state objects are accessed (read) or modified (write)
and a result is returned to the client. The execution phase can utilize features of the
programming model, the system model, and the application knowledge to serve
the client request. In fact, some of the BFT protocols [5, 6, 7, 8] are specifically
designed to improve throughput in execution phase.

2.1.4 Checkpoints
Checkpoint stores the state objects of a state machine to ensure that a replica has
executed all of the requests up to a certain point in the state machine. SMR must
keep a log of executed requests for future use in case of faults. If this log is left
unbounded it will grow until it exhausts all available storage. Checkpoints are
created as a means to limit the log entries by forgetting old requests that have
contributed to the checkpoint. A checkpoint usually contains all the state objects
of the replica. Furthermore, a checkpoint is also useful when a new replica wants
to join the system, as this replica can ask for the latest checkpoint from an existing
replica and then start to participate a f ter processing all of the messages sent that
did not contribute to the checkpoint.

10 CHAPTER 2. BACKGROUND

2.1.5 Non-determinism
If the service using SMR is non-deterministic, then all the replicas will diverge
and there will be no way to find out which one is the correct replica. For
example, a service might execute the seed() function to initiate a generator
for (pseudo-)random numbers. Or a service might request the time o f the day
which may be different for each replica. Fortunately, there are ways to handle
non-deterministic parts of a service which must produce the same outcome on all
replicas. One method to do this is to have the client pass all the non-deterministic
data as a part of the request. In this case all replicas receive the request and
accompanying data, hence there will not be any divergence. Another method is
to have all replicas agree upon same non-deterministic values. In this approach
a replica (leader) decides upon a value and sends it to other replicas. The other
replicas accept this value after voting. Given that there are these two methods to
address non-determinism, non-determinism will not be addressed further in this
thesis.

2.2 Practical Byzantine Fault Tolerance
Section 1.3 introduced Byzantine faults and why they are important to tolerate.
This section describes the classical PBFT protocol which was first proposed in
1999 by M. Castro and B. Liskov [9, 14]. This protocol is considered to be
a baseline for BFT protocols because many subsequent protocols are either an
extension to or some how based on PBFT.

2.2.1 Motivation
As mentioned earlier a lot of research over the last few years has been done to
implement and deploy services which can tolerate these faults [2]. Unfortunately,
industry is still reluctant to adopt these protocols. Byzantine faults are the most
general kind of problems that a service can have. This makes them very interesting
and at the same time very difficult to solve. A service which implements BFT
can withstand any arbitrary error, such as a small software bug (which occurs
independently on different replicas), physical failure of a machine, even the
service being compromised by an external attacker.

A question arises as to why these protocols are not being implemented in
practice if they can handle any arbitrary fault? The main reason for this is that BFT
protocols are very resource hungry protocols with 3 f + 1 nodes required to tolerate
f faults [15]. This scaling seems to be impractical when f is large. Additionally,
throughput of BFT protocols are not comparable to their CFT counterpart as BFT

2.2. PRACTICAL BYZANTINE FAULT TOLERANCE 11

protocols require a lot of messages to communicate internally (three rounds of
message exchange) each of which encounters network delays, hence slowing the
system’s responses to the clients. A lot of work [5, 6, 7, 8, 16, 17, 18, 19, 20, 21]
has been done to highlight different aspects of BFT protocols for practical
deployment.

It is observed that the agreement phase is a bottleneck, as it requires all
of the requests to be totally ordered by a single leader. Additionally, PBFT
provides strong consistency by using linearizability through the agreement phase.
However, little has been done in this area to improve the agreement phase in BFT.
This thesis project attempts to improve the throughput of BFT by parallelising the
agreement phase.

2.2.2 Protocol
This section briefly describes the PBFT protocol. As stated earlier 3 f + 1 replicas
are required to tolerate f faults in a BFT system [15]. Therefore, a minimum
of four replicas are required to tolerate a single fault. Moreover, three additional
replicas are required to increase the system’s fault-tolerance by one. Furthermore,
increasing the number of replicas also increases the number of messages, hence
slowing down the system.

In order to tolerate byzantine faults, PBFT protocol implements replication
through SMR. A replica (called a leader) with some special responsibilities is
selected among the replicas. The leaders responsibilities include ordering the
client requests and sending these requests to all of other replicas. The remaindered
of the replicas act as followers and execute the request in same the order as
determined by the leader. In the normal case a client sends the request to a leader,
then followers execute this request and send their response directly to the client.
Figure 2.2 shows the message sequence in the normal case. The leader (replica
0) receives a request from client C and starts the ordering phase. The remaining
replicas are followers, hence they receive requests from the leader and execute
them. Messages shown in red will not affect the result. A view-change protocol is
initiated and a new leader is chosen if the current leader is detected to be faulty.

The agreement phase starts when a request is received by the leader. There can
be multiple requests in the consensus, but we assume that there is only one request
per consensus. The leader starts the process to reach an agreement by sending a
pre-prepare message to all replicas. Upon receiving a pre-prepare message, each
replica sends a prepare message to all other replicas. The predicate prepared() is
true if and only if the replica has inserted the request, the matching pre-prepare
message, and 2 f prepare messages from different replicas into its log. The leader
does not have to send a pre-prepare message to itself and advances itself to the
prepare stage directly.

12 CHAPTER 2. BACKGROUND

C

0

1

2

3

request pre-prepare prepare commit reply

X

Figure 2.2: A normal case PBFT operation

When prepared() is true, each replica sends a commit message to all other
replicas. Upon receiving 2 f + 1 commit messages (possibly including its own) the
actual execution of the requested message is started. After successful execution
of the requested operation the replica sends its response directly to the client. The
client waits for f + 1 similar responses from different replicas. It is proven [14]
that at least f + 1 non-fault replicas will send their response to the client. If
the client does not receive f + 1 similar responses from different replicas within
a certain amount of time, it is assumed that leader is faulty and the client re-
transmits the request to all replicas. A view-change protocol is triggered when
replicas receive a request from a client which they have not seen previously
suspecting that the leader is faulty.

PBFT proposes three optimizations to reduce the communication between
replicas and clients. The first optimization uses single a replica to send the actual
result, other replicas send the digest of the result to be verified by client. The
second optimization reduces the number of messages by executing the request
as soon as prepared() becomes true for the request. The third optimization
multicasts the read-only request to all replicas and the request is executed
immediately.

Replicas and clients communicate with each other through message passing.

2.3. RELATED WORK 13

The algorithm uses User Datagram Protocol (UDP) [22] for point-to-point
communication between replicas. That implies message communication is
unreliable, thus messages may be duplicated, lost, or delivered out of order.

The PBFT algorithm has been proven by Castro and Liskov [14] to provide
safety and liveness when no more than one third of the replicas are faulty. The
algorithm does not depend on synchrony (i.e., that an upper bound on message
delivery time is known) to ensure safety, but must depend on synchrony to ensure
liveness [23].

2.3 Related work
As mentioned earlier BFT systems are expensive to deploy in real applications.
The classical PBFT protocol requires a single leader and all-to-all message
exchanges for total ordering in both the agreement and execution stages. This
introduces a high latency in the response time for any particular request by client.
Moreover, the requirement for total ordering of messages in both phases makes the
leader a bottleneck in the protocol. A lot of work has targeted the execution stage
and introduced concurrency in order to improve the throughput of the protocol.
This section categorises related studies into two groups. The first group of related
work concerns the agreement phase and the second group of related work concerns
the execution phase.

2.3.1 Agreement
Today agreement in BFT systems remains a bottleneck. As of this time, no
version of the protocol has completely eliminated the single leader problem in
the protocol. However, we discuss some attempts to improve the performance of
the agreement phase in the following paragraphs.

2.3.1.1 Parallel state-machine replication

Marandi, Bezerra, and Pedone [24, 25] have contributed some work that is closest
to eliminating the single leader. However, their work only applies to the CFT
model. In this thesis project we will use some of their ideas by adapting them to
BFT systems.

This protocol assumes a crash failure model and that the application state
can be divided into state-objects. These state objects are divided into groups
and each group is operated on by a dedicated thread. The number of groups
is a system parameter and this parameter can be modified depending on the
number of processing units in the server. A client must multicast its request to

14 CHAPTER 2. BACKGROUND

all servers. The client and server uses proxies based on command dependencies
(C-Dep), to indicate which commands depend on each other. Each command
must indicate the group or multiple groups, in the case of dependent commands,
that this command will affect during its execution. C-Dep is used to compute
a function called Command-to-Group (C-G). Each worker thread uses the C-G
function to determine whether it should run in parallel or synchronous mode. If
the command accesses only a single group, then the command runs in parallel
mode, otherwise the command must be synchronized with other threads.

The amount of concurrency depends directly on C-Dep. A highly application
aware C-Dep function can utilize its knowledge to maximize concurrency. Their
system model relies on atomic multicast [12, 24, 26]. Threads deliver messages
in deterministic order across all replicas. The ordered delivery of messages is
sufficient to make it a deadlock free algorithm. Being deadlock free is very
useful because the server does not have to run any deadlock detection or recovery
algorithm.

2.3.1.2 Spin One’s Wheels?

BFT with a spinning primary, introduced by Veronese, et al in “Spin One’s
Wheels?”. [27], is another attempt to modify the agreement phase. Because
the performance of BFT systems degrades in the presence of faults, a spinning
primary tries to improve the performance of the agreement phase even when
faults occur. The idea is that after every round of pending requests the primary
automatically changes in a round robin fashion. They claim this offers two
main advantages over other BFT systems. First, performance attacks by a
faulty primary can be avoided by always changing the primary after each round.
Secondly, the throughput is improved in the absence of faults by load balancing
the requests over all of the correct replicas. View changes are expensive in the
classical PBFT protocol, but this does not happen in Spinning primary, rather they
introduce the concept of view-merge. Whenever the next in line view is faulty they
merge the view and put the replica in a blacklist to avoid it being selected again
as the primary.

It has been observed from their experimental evaluations that the throughput
performance does improve, especially in the case of faulty replicas. However,
they do not completely eliminate the primary replica which still does more work
than the other replicas, thus it can be a bottleneck when the number of clients and
requests increases.

2.3. RELATED WORK 15

2.3.1.3 Mencius

Mencius [28] is very similar to Spin One’s Wheels [27]. Mencius is based on CFT
systems and requires a perfect failure detector. Just as for Spin One’s Wheels?,
leaders are rotated in a round robin fashion to improve throughput. Each client is
connected to a leader within a Local Area Network (LAN) to minimize latency on
all sites. The main idea behind this algorithm is to minimize latency and improve
throughput over multiple sites connected via a Wide Area Network (WAN).

This work is worth mentioning because the protocol is based on classical
Paxos consensus [29]. Although we cannot use this protocol in a BFT system,
it provides high throughput for real-time services under high client load and low
latency under a low client load. As Mencius is designed for WANs, it provides
low latency even when the network is changing (due to network or node failures).

2.3.1.4 Scalable BFT for Multi-Cores

Scalable BFT for Multi-Cores proposed by Behl, et al. [30] is a recent contribution
for multi-core systems. The main idea is to introduce parallelism for complete
instances of BFT protocols instead of only for certain tasks. They propose
the concept by binding messages and tasks within a specific agreement round
to a particular processor core, hence lowering the data dependencies between
consensus rounds. Agreement rounds are still initiated by single leader, but now
leader can initiate multiple rounds binding each one to its particular processor
core. Leaders for agreement rounds are chosen in a round robin fashion. Early
evaluation shows over 200% increased throughput than PBFT on a twelve cores
machine which is a desirable improvement.

2.3.2 Execution

Modern (multicore) servers can execute multiple requests in parallel. The
resources of these servers are under-utilized if we run a traditional SMR services
on them. This suggests that we should parallelize the execution phase. Both
BFT and CFT systems have been exploring this area for a long time in order to
introduce concurrency in SMR. There are a lot of options and ideas to explore
with regard to parallel execution. Most of the time the amount of parallelization
depends on application specific knowledge and the programming model used by
the application. In this section we will only discuss parallel execution in the case
of BFT systems.

16 CHAPTER 2. BACKGROUND

2.3.2.1 All about Eve

All about Eve [8] is a very non-traditional protocol when compared with other
SMR systems. Instead of a traditional agree-execute architecture All about Eve
uses an execute-verify model. All about Eve uses application knowledge to
partition requests in to different groups, each of these groups can be executed
concurrently. All replicas execute the groups and then they veri f y whether they
can reach an agreement. Morover, divergence is minimized by using application
knowledge. In case of divergence, if there is a stage where no agreement can be
achieved, then the execution is rollbacked and the request is executed sequentially.
This means the programming model used for the applications must either support
transactional memory or it must provide a rollback function for every request.
This requirement limits the set of applications and programming models which
can implement this protocol.

2.3.2.2 On-Demand Replica Consistency

On-Demand Replica Consistency (ODRC) [7] improves performance by executing
a request on only a subset of replicas. It uses application knowledge to split the
state objects between the replicas. These objects are called maintained objects.
A Request Analysis Function (RAF) analyzes incoming requests and outputs a
set of objects to every replica. If any of these objects is maintained by some
replica, then the request will be executed on that replica. Otherwise the request
will not be executed and will simply be stored for later use. This causes the
replicas to diverge, hence they will have an inconsistent set of objects. If a request
is received that requires a consistent value of an object which is not maintained on
some replica, then this replica needs to bring the relevant state objects up to date.
This is done by updating the objects from the latest stable checkpoint and then
selecting those requests from stored requests that affects the objects accessed by
new request. Other objects remain unmaintained and inconsistent until a request
is received that requires access to those objects. In a normal case scenario only
f + 1 replicas execute the request, rather than all 3 f + 1 replicas. In the case of
faults additional replicas are required to execute the request until f + 1 replies are
received by the client.

2.3.2.3 Storyboard

Deterministic execution is crucial for SMR, but today’s concurrent execution of
programs can produce non-deterministic results. Storyboard [5] is an attempt to
deterministically execute multi-threaded programs. Storyboard uses application
knowledge to forecast which execution path is most likely to be followed. An
ordered sequence of locks is generated and all threads are monitored to ensure

2.3. RELATED WORK 17

that they follow the generated sequence. If the forecast is correct, then threads
can execute in parallel without any problems. Otherwise, the execution path is
corrected when the forecast is detected to be incorrect.

Storyboard is applicable to both CFT and BFT models. In BFT the forecast
is detected to be incorrect when at least f + 1 replicas indicate the forecast was
incorrect. As the protocol is very expensive, due to a large number of message
exchanges, each forecast should be as precise as possible. We use some of the
ideas from Storyboard to predict likely execution path of requests in our own
work.

Chapter 3

MLBFT: A Multi-leader Approach

BFT services usually have a performance penalty. Therefore, a service which can
tolerate arbitrary faults performs worse than its un-replicated non-fault tolerant
counterpart [9]. This performance degradation occurs because a BFT service
must order the requests before execution to achieve determinism (see Section 2.1)
and consistency. Both determinism and consistency are essential requirements to
provide a reliable BFT service. Increasing the performance of BFT systems has
been widely researched in recent years. Traditionally a leader is chosen among all
replicas whose responsibility is to produce a total-order of the incoming requests.
Usually, the leader has no knowledge about the requests and it considers all the
requests dependent of each other. In practice, not all of the requests are dependent
on each other. Furthermore, BFT services are not equipped to scale on modern
multi-core systems. In some scenarios BFT systems can utilize concurrency only
in the execution stage (see Section 2.3.2).

To address this problem we propose a new scheme to deploy multiple leaders
in the system. This gives two benefits. First, multiple consensus can be started
concurrently, hence eliminating the single leader as a bottleneck. Second, service
can utilize the power of multi-core systems by executing multiple requests in
parallel. Preliminary evaluation shows (see Chapter 4) that multi-leader approach
can achieve higher throughput than classical PBFT algorithm by more than a
factor of two for large number of clients.

Our approach uses application knowledge to distinguish between dependent
and independent requests. Furthermore, independent requests are ordered
concurrently by different leaders and executed in parallel by worker threads
on each replica. This approach provides concurrency in both agreement and
execution phases, hence considerably improving the throughput. Additionally,
it should be noticed that this approach does not decrease the total number of
protocol messages. Figure 3.1 shows the high-level architecture of the proposed
multi-leader approach.

19

20 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

Service

ExecutionExecutionExecution

AgreementAgreementAgreement

Client

Predictor

Execution

Forecast

re
-p

re
di

ct
io

n predicted objects

O
rdered

Requests
Requests

Predicted
Instance

Agreement
ReplicaReplica

ReplicaReplica

Agreement Protocol

Deadlock resolver

Resolved
Requests

Replies

Client Proxy

Figure 3.1: High-level architecture of Multi-leader BFT service replica

3.1 System Model

This section explains the basic architecture in which the proposed multi-leader
approach can be applied. We assume this architecture in the context of this thesis.

Our system model comprises a distributed client-server architecture. We
assume the standard system model used for BFT SMR [6, 9, 13, 31]. There
may be an arbitrary number of clients and a fixed number of servers. The server
side involves a group of replicas which are also referred to as nodes. Replicas
maybe located geographically distant, may operate at different speeds, and usually
run on different physical machines. Clients and replicas interact with each other

3.1. SYSTEM MODEL 21

through an overlay network. They communicate solely by message passing and
reliable transmission of the messages is not guaranteed. Therefore, messages can
be corrupted, delayed, delivered out of order, or may not be delivered at all.

3.1.1 Client

The client side component which directly interacts with server side is referred to
as a “client”. This client can be implemented as a library which interacts with
the server side on behalf of a user. We assume that the client is aware of the
replication and can send messages to any replica. Implementing the client as a
library is usually a good design decision because the application does not have
to be replication-aware. On the other hand, this approach increases the size of
the client library and creates coupling with the replicas. Each client is identified
by a system-wide unique id. In addition to this client-id, each client maintains
local counter called request number (rn) that is incremented each time a request
is issued. The client-id and request-number, together, are called a request-id
and must be included in every issued request. The request-id can be used to
uniquely identify a request by system components and to ensure that the request is
processed only once (in the case of faults). The client also maintains information
about the leaders of all BFT instances and updates the state information whenever
a new leader is elected [9, 14].

Furthermore, we assume that client is synchronous. Therefore, a client can
only send one request at a time and it must wait for the reply before sending
another request. Applications that need to send asynchronous requests (more than
one request at a time) can use multiple instances of the client.

Any number of clients can behave arbitrarily and may fail without informing
the server. PBFT [14] handles faulty clients by adding them to a blacklist in
order to prevent them from further using the service. Furthermore, Aardvark [21]
proposes some important ideas to handle malicious clients. However, we do not
address the problem of faulty clients in this thesis.

3.1.1.1 Client Proxy

The client proxy is a small component in a client library that intercepts all requests
issued by a client and predicts which partitions are going to be accessed. The
client proxy forwards the request only to the BFT instances that are responsible to
order and execute the request (see Section 3.2.3). The approach is an optimization
to reduce the number of messages between a client and replicas, otherwise the
client must send its request to all BFT instances. Furthermore, we assume that a
client proxy is implemented on the client side.

22 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

3.1.1.2 Client Requests

A client c can send one request at a time with request number rn uniquely
identified by request-id (Rrn

c). The client waits for a reply before sending another
request. Each client request may: read state objects, modify state objects, or
produce a response. The request can access state objects divided into one or more
partitions (see Section 3.1.2.1). We classify client requests into two categories:

Simple Requests
A request that reads or modifies one or more state objects belonging to same
the partition.

Cross-Border Requests
A request that reads or modifies one or more state objects belonging to more
than one partition.

Furthermore, there can be a dependent or independent relationship between
any two requests. Two requests are said to be independent if they either read/write
different state-objects or only read common state objects. Conversely, two
requests are dependent if they access common state objects and at least one of
the requests modifies them. In Section 3.2 we explain in detail how agreement
and execution stages behave differently for different types of requests.

We assume that a simple request cannot be further split into smaller parts. This
means that a simple request must be ordered in a serialized manner. Furthermore,
in practice, it is possible to split a request into smaller parts (e.g., cryptography
and message authentication) and execute those parts concurrently. However,
parallelizing smaller parts of the request is outside the scope of this thesis and
will not be discussed further.

3.1.2 Replica
Replicas are server side components of the service. These replicas are sometimes
referred to as servers or nodes. The number of replicas (denoted by n) must
be equal to 3 f + 1, as we are implementing a BFT protocol, where no more
than f byzantine faults can occur at the same time. However, a BFT protocol
can tolerate arbitrary number of faults after reconfiguration as long as no more
than f faults occur simultaneously. Replicas are usually deployed on different
physical machines. We assume that these machines are multi-core (i.e., multiple
instructions can be executed in parallel). Ideally replicas should run on machine
with o number of cores as the algorithm instantiates o number of BFT ordering
instances and e number of worker threads for execution stage. We assume that o
and e are the same and each ordering stage has a corresponding worker thread.

3.1. SYSTEM MODEL 23

As mentioned earlier replicas interact with each other solely by message
passing. Transmission Control Protocol (TCP) [32] can be used to avoid
temporary network failures, provide ordered delivery, and provide congestion
control. UDP [22], on the other hand, is a better choice when network failures
and congestion control are not problem (e.g. if all replicas are connected with a
LAN).

Yin, et al. [13] proposed a solution to separate agreement and execution stages
in order to reduce the replication cost. Our system model does not force any
restriction on this separation, but for simplicity we assumed that all replicas
participate in both agreement and execution stages. Moreover, our approach
can be implemented with agreement and execution stages on different replicas.
Furthermore, we introduce another stage called “prediction” (see Section 3.2.3)
before passing the request to the agreement stage. In addition to the prediction
stage, we also introduce a component “Deadlock resolver” as a part of execution
stage. Figure 3.1 shows these stages and the flow of messages between these them.

3.1.2.1 Service State

The service is defined by a state machine [10, 11] and consists of state objects
[31] that encode the state-machine’s state. Our system model requires that all
non-faulty replicas maintain the same state. State can be modified by a set of client
requests (see Section 3.1.1.2). Moreover, we divide the state S to state ob jects in
each replica [31]. These objects may have different sizes, but altogether they
cover ([Oi = S) the whole state S. It is also assumed that these objects are
disjoint (Oi \O j = /0). However, overlapping state objects may be used for this
approach, but we will not discuss it further in this thesis.

We further divide these state objects into disjoint partitions (Pi \Pj = /0 and
[Pi = S). These partitions should be balanced, such that all partitions serve equal
number of client requests on average, for optimal performance; but this load may
vary in practice. The number of partitions may depend on the implementation,
but for simplicity we assume that number of partitions |P| directly corresponds to
the number of ordering instances o (see Section 3.2.4). As a result, for simplicity
we assume that each partition corresponds to a dedicated ordering stage and a
dedicated execution stage (see Section 3.2.4 and Section 3.2.5).

3.1.2.2 State Partitioning

As mentioned in previous section, the state objects are divided into partitions.
MLBFT utilizes application knowledge to partition these state objects. This
division of the state objects into partition is important to deliver a better
performance of the service. Ideally, each partition should handle equal number

24 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

of the client requests. The performance of the service will be improved if the
client requests are uniformly distributed to all partitions. On the other hand the
performance will be negatively affected if the client requests are skewed towards
a particular partition. This is because the BFT instance responsible for that
particular partition will order more requests than other BFT instances.

In Chapter 4 we consider a Key-Value store as a case study. We assume that
client requests are uniformly distributed over the key space. We use a simple hash
function (modulo operation) to distribute the keys over 4 partitions. It is possible
that a particular object is accessed very often by the clients for an application.
In this case it is better to place the object, that is accessed very often, to one
partition and rest of the objects to other partitions instead of evenly distributing
the objects. This allows the service to order the client requests accessing that
particular object by one BFT instance and order rest of the client requests by
other BFT instances. This approach will attempt to distribute the client requests
uniformly to all partitions which is the desired behaviour of MLBFT. However,
this approach will fail to uniformly distribute the client requests if more than 25%
(as there are 4 partitions) of the client requests access those popular objects.

3.1.3 Assumptions
In addition to the properties described above, this section explains additional
assumptions about our system model.

3.1.3.1 Deadlocks in Application Service

We do not force any restriction on concurrent programming, hence an application
service may or may not execute client requests concurrently. However, if an
application service decides to use a concurrent programming model, then it is
assumed that this application is deadlock free. It is also assumed that all the rules
to prevent or avoid deadlocks will be implemented by the application service. This
means that the state objects will be guarded by appropriate locks and only one
thread modifies state objects. (Do not confuse application threads with worker
threads in execution stage. See Section 3.2.5). Concurrent execution might
lead to non-determinism which violates the essential requirement for SMR (see
Section 2.1), hence it is assumed that service will be deterministic and replicas
will not diverge when successfully executing client requests.

3.1.3.2 Programming Model

The multi-leader approach can be implemented using any general programming
model. We assume that the programming model used provides constructs to

3.2. PROTOCOL DESIGN 25

implement concurrent execution (e.g. threads, locks, and monitors). However,
it is possible to use a programming model without these constructs, but such
a programming model will not be optimal because application may or may not
implement the agreement and execution stages as separate processes.

The suggested approach does not require any functionality to rollback partially
executed client requests; therefore, any kind of memory (transactional or
non-transactional) maybe used to store state objects.

Furthermore, N-version programming can be applied to provide diversity
among system components of different replicas. N-version programming can
improve the fault tolerance of individual components in practice [9]. However,
N-version programming is outside the scope of this thesis and will not be
discussed further.

3.1.3.3 Cryptography

Clients and replicas use public-key signatures, message authentication codes, and
message digests to detect spoofing and corrupted messages. Replicas and clients
are able to verify messages. It is assumed that all cryptographic techniques
used to sign or authenticate messages cannot be broken [9, 21]. Furthermore,
collision-resistant hashing must be used to produce message digests.

3.2 Protocol design
MLBFT is designed to perform multiple consensus rounds in parallel. We propose
to realize this approach by deploying multiple BFT ordering instances on replicas.
This allows MLBFT to run complete consensus instances concurrently. These
instances run independent of each other sharing no intermediate state, requests,
or data. Multiple instances enables the protocol to execute the ordered requests
concurrently, hence improving throughput.

3.2.1 Basic Principle
The client proxy intercepts all the requests sent by the client (see Figure 3.1).
Each request is analyzed by this client proxy and a set of partitions is predicted.
This set contains all the partitions that will be accessed by the request. After
prediction the request is forwarded to those BFT ordering instances responsible
for the predicted partitions (see Section 3.2.4). The request is ordered by all the
responsible BFT instances and then placed in the ordered queue. Each partition
has a separate ordered queue, thus requests can be executed in parallel. A worker
thread takes the first available request from the ordered queue, executes it, and

26 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

returns a response to the client who issued the request. If it is a simple request,
then the request is executed without any synchronization (see Section 3.1.1.2). If
the request is a cross-border request then the worker thread waits until this request
is available at the head of ordered queues for all relevant partitions. The worker
thread moves on to next available request after current request has been executed.

3.2.2 Request Execution
This section explains how a request is ordered and executed in MLBFT. Figure 3.2
shows this process by generating and executing a request on BFT-1 which is
responsible of partition-1. A request is generated by a client to access the state
objects residing in the partition-1. The client proxy, which is implemented as an
optimization (see Section 3.1.1.1), intercepts this request from client and performs
the prediction of partitions. The client proxy maintains the information about all
BFT instances and their leaders. The prediction function discovers that BFT-1 is
responsible for partition-1 and replica-1 is the leader of this BFT instance. The
client proxy sends this request to replica-1 only as it is the responsible leader of
BFT-1. All the replicas participates in all BFT instances. Each replica has multiple
threads and each of these threads participates in a different BFT instance. For
example, thread-1 at replica-1 participates only in BFT-1. Furthermore, thread-1
at replica-1 is the leader of BFT-1 and thread-1 is follower of BFT-1 on rest of
the replicas. The prediction stage at replica-1 receives the incoming request from
the client and performs the prediction. The server side prediction is performed
to verify that the incoming request in fact belongs to this replica. The request is
forwarded to the relevant thread which is responsible for the partition accessed by
incoming request. The request is forwarded to thread-1 in this case. Thread-1 will
start the consensus by initiating a PBFT protocol (see Section 2.2) as thread-1 is
the leader of the BFT instance responsible for the request. BFT-1 is represented
by red color in the Figure 3.2, hence all threads communicating over BFT-1 are
represented in red. Furthermore, execution stages on all the relevant threads are
represented by red gradient to show that the request was ordered by BFT-1. Only
the thread-1 on all replicas will participate in this consensus round. Each replica
learns about the request and inserts the request into the relevant queue after an
agreement has been reached. The request is forwarded to the execution stage after
the agreement round. The exec-1 (represented by red gradient) is the responsible
execution stage on all replicas for this request. Each replica executes the given
request in a worker thread and send the replies to the client. The client waits for
f + 1 similar replies. As soon as the client collects f + 1 similar replies it becomes
ready to send the next request (as client is synchronous, see Section 3.1.1).

3.2. PROTOCOL DESIGN 27

C
lie

nt

C
lie

nt
 P

ro
xy

BF
T

0
PB

FT
 P

ro
to

co
l

BF
T

1
PB

FT
 P

ro
to

co
l

BF
T

2
PB

FT
 P

ro
to

co
l

R
ep

lic
a

0

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Pr
ed

ic
tio

n

Le
ad

er

BF
T

0

Ex
ec

 0

Fo
llo

w
er

BF
T

1

Ex
ec

 1

Fo
llo

w
er

BF
T

2

Ex
ec

 2

Fo
llo

w
er

BF
T

3

Ex
ec

 3

Pa
rti

tio
n

0
Pa

rti
tio

n
1

Pa
rti

tio
n

2
Pa

rti
tio

n
3

R
ep

lic
a

1

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Pr
ed

ic
tio

n

Fo
llo

w
er

BF
T

0

Ex
ec

 0

Le
ad

er

BF
T

1

Ex
ec

 1

Fo
llo

w
er

BF
T

2

Ex
ec

 2

Fo
llo

w
er

BF
T

3

Ex
ec

 3

Pa
rti

tio
n

0
Pa

rti
tio

n
1

Pa
rti

tio
n

2
Pa

rti
tio

n
3

R
ep

lic
a

2

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Pr
ed

ic
tio

n

Fo
llo

w
er

BF
T

0

Ex
ec

 0

Fo
llo

w
er

BF
T

1

Ex
ec

 1

Le
ad

er

BF
T

2

Ex
ec

 2

Fo
llo

w
er

BF
T

3

Ex
ec

 3

Pa
rti

tio
n

0
Pa

rti
tio

n
1

Pa
rti

tio
n

2
Pa

rti
tio

n
3

R
ep

lic
a

3

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Pr
ed

ic
tio

n

Fo
llo

w
er

BF
T

0

Ex
ec

 0

Fo
llo

w
er

BF
T

1

Ex
ec

 1

Fo
llo

w
er

BF
T

2

Ex
ec

 2

Le
ad

er

BF
T

3

Ex
ec

 3

Pa
rti

tio
n

0
Pa

rti
tio

n
1

Pa
rti

tio
n

2
Pa

rti
tio

n
3

BF
T

3
PB

FT
 P

ro
to

co
l

Fi
gu

re
3.

2:
M

L
B

FT
ap

pr
oa

ch
or

de
rin

g
an

d
ex

ec
ut

in
g

a
si

m
pl

e
re

qu
es

to
n

B
FT

-1

28 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

3.2.3 Prediction
All requests are processed by the prediction stage before they are forwarded to
agreement stage (see Figure 3.1). The prediction stage implements a PREDICT()
function to analyse the incoming request. PREDICT() takes client a request as
input and returns a set of partitions:

Set < partitions > PREDICT(Request req)

This function uses application knowledge to inspect the client request and
discovers which state objects might be accessed during the execution of the
request. The PREDICT() function maps these state objects to their corresponding
partitions and a set of partitions is returned. The PREDICT() function is executed
on both the client (by the client proxy) and on the server side. A client proxy
executes this function to forward the request to only relevant BFT ordering
instances. A replica executes this function to verify that a correct BFT ordering
instance has received the request. The replica starts the agreement round after
successful verification of the request (see Section 3.2.4). A client is considered
malicious if the verification fails (see Section 3.1.1).

The PREDICT() function is designed such that it maximizes the number of
simple requests and minimizes the number of cross-border requests. A simple
request does not need any synchronization, thus they can be executed in parallel.
However, cross-border requests needs to wait for all the relevant partitions until
the same cross-border request becomes available at the head of the queue. Our
approach uses application specific knowledge to analyze the request so that a
better PREDICT() function can be implemented in order to maximize the number
of simple requests.

The PREDICT() function should be optimized such that it predicts the
partitions perfectly and distributes the request uniformly to all partitions (see
Section 3.1.2.2). Please note that the perfect prediction does not mean that the
function will not predict any cross-border requests. A perfect prediction means
that all of the partitions and state objects that are going to be accessed by the
request will be returned by the function. However, performance will be negatively
affected if requests are biased towards a particular partition. Furthermore, the
PREDICT() function should itself utilize minimum CPU resources. However, if
the function utilizes a lot of CPU resources just to analyze the request, then this
PREDICT() function will decrease throughput. We assume that the PREDICT()
function perfectly predicts the set of partitions accessed by each request. We will
relax this assumption in Section 3.2.7.

Algorithm 3.1 shows the prediction stage of a replica participating in a BFT
ordering instance. The prediction stage calls the PREDICT() function (see line 6)

3.2. PROTOCOL DESIGN 29

to verify the prediction. The request is forwarded to the agreement stage after
verification (see line 11).

1 initialize:
2 b f t id as BFT agreement instance
3 Pmi as set of predicted partitions
4 par as single partition
5 upon receiving hREQUEST, m, ii at replica i do
6 Pmi := PREDICT(m) // predict partitions
7 for each par in Pmi
8 b f t id := instance(par)
9 // get responsible instance

10 if i equals leader(b f t id)
11 start agreement stage of hREQUEST, m, ii
12 end if
13 end for

Algorithm 3.1: Prediction Stage on a replica

3.2.4 Agreement
Like conventional SMR services, MLBFT orders client requests through an
agreement stage. The protocol differs from PBFT by running multiple ordering
instances. We define number of ordering instances o as a system parameter. We
assume that o is equal to the number of replicas n in the system (see Section 3.1.2).

We consider each BFT instance as a black box and do not alter the protocol.
Thus, any conventional BFT protocol can be used with this approach. We assume
that each ordering instance runs the classical PBFT (see Section 2.2) protocol. The
input to the protocol is set of client request and the output is ordered set of client
requests agreed to by all other replicas in the BFT instance. Algorithm 3.2 shows
that request is categorized by analyzing the predicted number of partitions. After
a request has been categorized as simple or cross-border request, it is enqueued
into corresponding relevant partition. The request type is marked as EXECUTE if
the request is a simple request. However, if a request is a cross-border request,
then a partition is deterministically picked from the relevant partitions and we
mark the request type as CROSS-BORDER-EXEC in the corresponding queue. All
other relevant partitions mark the request type as CROSS-BORDER-SYNC in their
corresponding queues.

As mentioned earlier the number of BFT ordering instances is equal to the
number of replicas n. Each replica participates in all BFT ordering instances
running in the agreement stage. Thus a replica has two identities: leader and

30 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

1 initialize:
2 no o f partitions as total number of BFT instances
3 b f t id as current BFT agreement instance
4 worker as the BFT execution instance
5 PartitionQueues := Queue[no o f partitions]
6 before execute hREQUEST, m, ii at instance b f t id do
7 if count(m.partitions) = 1
8 // this is a simple request
9 m.type := EXECUTE

10 else // this is a cross�border request
11 // pick a BFT instance deterministically
12 worker := exec instance(m.partitions)
13 if worker equals b f t id
14 // request m should be executed
15 m.type = CROSS-BORDER-EXEC
16 else
17 // request m should be synchronised
18 m.type = CROSS-BORDER-SYNC
19 end if
20 end if
21 PartitionQueues[b f t id].enqueue(m)

Algorithm 3.2: Identifying request type and then enqueue them

f ollower. We assume that each replica is leader of a particular BFT ordering
instance and a follower of all other instances. A replica may be selected as a leader
of multiple BFT ordering instances in case of faults. Furthermore, all the BFT
ordering instances are independent of each other. This means that BFT ordering
instances do not communicate with each other. The communication within a
particular BFT ordering instance is done over the network (see Section 2.2).
Figure 3.3 shows that each replica is leader of a particular BFT instances as well
as follower of other instances.

Typically, each identity of the replica is implemented by a system thread.
Each replica has 4 identities when there are 4 replicas in the system (n = 4).
This introduces at least 8 threads per replica (4 threads for ordering stage and
4 worker threads for execution stage). The scheduling cost will be higher if the
replica machine is not a multi-core machine and throughput will be less than its
single leader counterpart. However, if the machine has a multi-core CPU, then
scheduling cost would be less than for a single core (as multiple threads can
execute at a time) and throughput will be improved.

We have already established that there is one-to-one mapping between BFT
ordering instances and partitions (see Section 3.1.2.1). A partition is assigned
to a particular BFT ordering instance and only that instance is allowed to order

3.2. PROTOCOL DESIGN 31

requests in the corresponding queue. This enables requests to access different
partitions to be ordered in parallel by their respective BFT ordering instances.
Section 3.2.4.1 and 3.2.4.2 explains ordering of client requests in detail.

Replica 0 Replica 1 Replica 2 Replica 3

L
L

L
L

BFT 0
BFT 1
BFT 2
BFT 3

Figure 3.3: Multiple BFT instances

3.2.4.1 Partial Order

SMR requires total-ordering of requests to provide strong consistency and safety
(see Section 2.1). MLBFT splits the total ordering of messages into multiple
causally consistent partial orders. In particular, total-order is divided into o partial
orders (o is number of BFT ordering instances. See Section 3.2.4). All requests the
accessing same partition are considered to be dependent (see Section 3.1.1.2), thus
they must be causally ordered in order to provide consistency. As we treat each
BFT ordering instance as a black box, each ordering instance is perfectly capable
of providing a causal order. A BFT ordering instance orders these dependent
requests and adds them in the ordered queue of the corresponding partition. Only
the corresponding BFT ordering instance is allowed to enqueue the request for the
corresponding partition.

3.2.4.2 Total Order

Splitting total-order into multiple partial orders does not violate strong consistency,
as all the partitions are disjoint (see Section 3.1.2.1) and only one BFT ordering
instance orders the request accessing that partition. MLBFT provides safety and
consistency by utilizing the safety and consistency properties of an underlying
BFT ordering instance. Combining all partial orders will reflect the same state as

32 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

a single leader counterpart. Hence, safety is provided in all cases and the state
objects will be consistent among all replicas.

Figure 3.4 shows how the total-order of requests ordered by a single leader L is
translated by MLBFT (multiple leaders) into multiple partial orders. Requests with
the same color are dependent requests and they must maintain the causal order
to provide safety. Note that Req 3 and Req 6 maintain the causal order in both
total-ordering and partial-ordering (as ordered by leader L3) of requests.

Total Order
L Req 1 Req 2 Req 3 Req 4 Req 5 Req 6 Req 7

Partial Order
L0

L1

L2

L3

Req 1 Req 5

Req 2 Req 4

Req 3 Req 6

Req 7

⇐

Figure 3.4: Splitting total-order into partial-orders

3.2.5 Execution
An ordered request is added to the ordered queue of the corresponding partition.
Each queue is handled by a separate worker thread in the execution stage. A
partition is assigned to a dedicated worker thread and only that worker thread
operates on the assigned partition. A worker thread waits for the first available
ordered request in the queue. In this discussion we assume that request is a simple
request (see Section 3.2.6 for cross-border requests). A request is removed from
the queue and becomes ready to execute. We call this operation EXECUTE if the
request accesses single partition. An EXECUTE operation is executed and state
objects are read or modified. Furthermore, a response is created and returned
directly to the client. After the client receives a stable response (see Section 2.2),
it sends its next request. Figure 3.5 shows a snapshot of a replica where requests

3.2. PROTOCOL DESIGN 33

are executing in parallel. The requests R0, R1, R2, and R3 access different
partitions so they are ordered in different queues. The worker threads T 0, T 1,
T 2, and T 3 execute the corresponding requests in parallel. Each partition Pi (see
Section 3.1.2.1) directly maps to a separate worker thread Ti. Algorithm 3.3 shows
the idea of how a request is typically executed in a worker thread.

Replica

T0 T1 T2 T3

R0 R1 R2 R3

Figure 3.5: Parallel execution of requests in MLBFT

34 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

1 initialize:
2 req as a request
3 while executing at instance b f t id do
4 req := PartitionQueues[b f t id].peek()
5 if req.type is EXECUTE
6 execute(req)
7 else if req.type is CROSS-BORDER-EXEC
8 if detect request deadlock()
9 resolve request deadlock()

10 end if
11 wait for corresponding CROSS-BORDER-SYNC
12 executeCrossBorderRequest(req)
13 else if req.type is CROSS-BORDER-SYNC
14 wait for corresponding CROSS-BORDER-EXECUTE to execute request
15 end if
16 PartitionQueues[b f t id].dequeue()

Algorithm 3.3: Execution-stage worker thread

3.2. PROTOCOL DESIGN 35

3.2.6 Handling Cross-Border Requests
In the previous section we assumed that requests will always be simple requests.
This section addresses how cross-border requests (see Section 3.1.1.2) are handled
by MLBFT. A cross-border request accesses objects that belong to more than one
partition. Furthermore, a request can access an arbitrary number of objects and
partitions. We established in Section 3.2.4 that a request can only be ordered by
the corresponding BFT ordering instance. We extend this rule for cross-border
requests. A cross-border request will be ordered by all relevant BFT ordering
instances. The prediction stage will forward a cross-border request to the relevant
BFT ordering instances and the request will be placed in ordered queues for all
relevant partitions.

When the request has been ordered by each of the relevant BFT agreement
instances and placed in the queues, then the request is retrieved by worker threads
in the execution stage. Multiple worker threads will see the request as it has been
placed in the queue by more than one BFT agreement instances.

When a CROSS-BORDER-EXECUTE request is available for execution it
must wait for other threads. A CROSS-BORDER-EXECUTE request will only
be executed when its corresponding CROSS-BORDER-SYNC request is available
at all of the relevant partitions. The worker thread for a request marked as
CROSS-BORDER-EXECUTE is the thread that will execute the request. All worker
threads for requests marked with CROSS-BORDER-SYNC will be blocked until
the request has been executed. This wait decreases the overall throughput of the
system and this is why PREDICT() function must be implemented to minimize
the number of cross-border requests. After the cross-border request has been
executed, the worker threads of all relevant partitions move on to the next available
request.

Figure 3.6 shows that both R1 and R2 are cross border requests. R1 is ordered
in partitions 2, 3 (with worker threads T 2 and T 3) and R2 is ordered in partitions
0, 1 (with worker threads T 0 and T 1). Square notation for requests in queues
1 and 3 denotes that it is marked as CROSS-BORDER-SYNC. Requests R1 and
R2 will be executed concurrently as both of them are available and independent
of each other. Threads T 1 and T 3 will be blocked until the execution of their
respective request is finished.

3.2.7 Handling Mispredictions
In this section we drop the assumption that prediction must be perfect for all
requests, MLBFT does not assume perfect prediction. However, perfect prediction
will improve throughput. Misredictions introduce an extra step in execution that
should be avoided as much as possible.

36 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

Replica

T0 T1 T2 T3

R2 R1

R1

R2

R2 R1

Cross-Border-Exec Cross-Border-Sync

Figure 3.6: Execution of cross-border requests in MLBFT

The prediction stage passes the set of partitions for each request to the
execution stage (see Figure 3.1). A part of the prediction stage maintains forecasts
about all of the predicted requests. When a request is scheduled to execute at a
worker thread in the execution stage, then this worker thread carefully monitors
the execution and only grants access to the objects which were predicted in the
forecast. If a request tries to access an object that is not in the forecast, then
execution is halted immediately. The predictor component implements another
function called RE-PREDICT(). This function takes the request as input and the set
of objects which were not predicted before and produces a new set of partitions:

Set < partitions > RE-PREDICT(Request req , Set < ob jects > new)

3.2. PROTOCOL DESIGN 37

If the re-predicted partitions do not contain any new partition, then the
execution is resumed as normal. Otherwise, the request should be ordered by
the BFT instance of a new partition. The request goes through the agreement
stage and is placed in the queue of a new partition. Execution continues when the
request is available at the head of the queue of this new partition.

3.2.8 Deadlocks

Atomic multicast ensures ordered delivery of messages for all replicas. MLBFT does
not rely on atomic multicast [12, 24, 26] of messages, thus messages can be
received in different order by replicas. This causes MLBFT to be vulnerable to
deadlocks.

A deadlock is possible if two or more cross-border requests accessing at least
one common partition arrive in different orders at replicas. We classify deadlocks
into two categories and explain how deadlocks are resolved in both cases.

3.2.8.1 Before Execution

In the execution stage when a worker thread encounters a
CROSS-BORDER-EXECUTE request, it must wait for its corresponding
CROSS-BORDER-SYNC on all of the relevant partitions. However, it is possible
that the relevant partition is also in the waiting state. A cycle of requests
waiting for each other will create a deadlock. At this point one of the relevant
worker threads runs a deadlock detection algorithm and resolves any deadlocks
encountered in finite time. This is called deadlock be f ore execution because two
or more requests are blocked and can not start execution.

All deadlocks are seen in exactly the same way by all replicas. It is impossible
that these deadlocks look different a viewed by all of the different replicas.
A deterministic resolution algorithm resolves all deadlocks when a deadlock is
detected. The detection algorithm is only triggered when two or more requests
cannot proceed to the execution stage because of synchronization. A resolution
algorithm carefully looks at the partitions which are waiting for each other and
detects possible cycles. If a deadlock is detected a CROSS-BORDER-SYNC
request is deterministically picked and moved to the head of relevant partition
to resolve the deadlock. The algorithm is optimised to move only the minimum
number of requests required to resolve all of the deadlocks. As all of the relevant
replicas run the same deadlock algorithm the result will be same on all of these
replicas, hence the state will not diverge. A resolution algorithm may resolve
multiple deadlocks at the same time. After a deadlock has been resolved at least
one request will continue and starts its execution phase.

38 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

Figure 3.1 on page 20 showed the deadlock resolver component in the
architecture. Figure 3.7 shows snapshots of two replicas in a deadlock situation.
This deadlock is resolved by moving R2 on T 1 to the head on both replicas.
Algorithms 3.4 and 3.5 shows how to detect and resolve a deadlock before
execution.

Replica 0

T0 T1 T2 T3

R2

R1

R1

R2

R2

R1

Replica 1

T0 T1 T2 T3

R2

R1

R2

R1 R2

R1

Replica 0

T0 T1 T2 T3

R2

R1 R1

R2

Replica 1

T0 T1 T2 T3

R2

R1 R1

R2

⇐

Cross-Border-Exec Cross-Border-Sync

Figure 3.7: Deadlock detection and resolution before execution in MLBFT

3.2.8.2 After Execution

It is also possible that the execution stage encounters a deadlock a f ter execution
has already started by two or more cross-border requests. This is called deadlock
a f ter execution. If two ore more cross-border requests were wrongly predicted,

3.2. PROTOCOL DESIGN 39

1 detect request deadlock() do
2 for all queue in PartitionQueues do
3 req := queue.peek()
4 if req.type is not EXECUTE
5 for all par in req.partitions do
6 // detect cycle for cross�border requests in relevant partitions
7 detected := detect cycle(par)
8 end
9 end

10 end
11 return detected

Algorithm 3.4: Deadlock detection before execution

1 resolve request deadlock(Request req) do
2 for all par in req.partitions do
3 PartitionQueues[partition].move to head(req)
4 end

Algorithm 3.5: Deadlock resolution before execution

then they already have started the execution. In the middle of execution they
try to access a common partition which was not predicted, thus execution must
be halted. All new partitions will order these requests and assuming they are
waiting for each other, then deadlock has occurred. This situation is very difficult
to resolve. In this case the resolution algorithm will simply pick a request
deterministically and put this request before the other partially executed request.
Now the first request will be able to finish and control hands over to the second
partially executed request which was halted. Now the second thread can continue
and finish (without roll-backing) its execution as well. Execution continues
normally when all deadlocks has been resolved.

3.2.8.3 Ordered queue

In order to resolve deadlocks our approach looks at the ordered requests in a
queue. Usually, queues provide a First-in-First-out (FIFO) functionality with
put() and take() methods. However, our implementation cannot rely on this
interface as we may need to re-order events in the queue to resolve deadlocks.
While resolving a deadlock it should be possible to re-order the requests inside a
queue, while keeping rest of the order same. This ordered queue must provide
an interface to find and move a particular request to the head of the queue.
Additionally, all the queues must be thread-safe. A thread safe queue will

40 CHAPTER 3. MLBFT: A MULTI-LEADER APPROACH

guarantee that only one thread (an ordering thread or a worker thread) performs
an operation on the queue. Selection of appropriate data structures and locks are
necessary to implement this functionality.

3.2.9 Safety and Liveness
The section discuss safety and liveness properties of the approach. The protocol
uses an existing agreement stage (see Section 3.2.4 and Section 3.2.12.1) which
guarantees safety [9, 14] and liveness when the bounded fair links [9, 14, 13]
assumption holds. Furthermore, Section 3.2.8 explained deadlocks do get
resolved deterministically within a finite time. Thus, even if there is a deadlock
replicas will not diverge. Liveness is provided because at least one deadlock is
resolved at a time and eventually all deadlocks will be resolved.

Section 3.2.4 explains that splitting total-order into multiple partial orders is
equivalent to a totally ordered single leader approach. Partial order of requests
ensures that causal relationship is not violated, hence the replicas are consistent in
our approach.

3.2.10 Checkpoints
Checkpoints are useful in case of faults or when a new replica joins the system
(see Section 2.1.4). In MLBFT there are two ways to create checkpoints. Either
we can create a new checkpoint with all the state objects from all partitions or we
can create checkpoints for individual partitions. The latter approach is useful if a
particular partition is faulty. We will adopt the second approach in this thesis.

3.2.11 View-Change
In case of a faulty leader MLBFT utilizes the view-change protocol of the
underlying BFT instance. When a new view is selected all replicas leave their
current view and move to the next view [9, 14].

3.2.12 Implementation
This section explains some implementation details of the protocol. We explain two
ways in which the protocol can be implemented regardless of any programming
model. Both have advantages and disadvantages and tradeoffs have to be made by
selecting one approach over the other. In Section 3.2.12.3 a comparison is made
between these two approaches.

3.2. PROTOCOL DESIGN 41

3.2.12.1 Extension of Conventional BFT protocols

As mentioned before we treat the existing agreement stage as a black box and
simply utilize multiple BFT instances. We built MLBFT on top of an underlying
agreement layer (of PBFT) and extended it for our purpose. This provides us the
advantage that we can utilize any PBFT based single leader BFT agreement layer.
However, this approach gives limited control over agreement stage.

3.2.12.2 Re-write MLBFT

Another approach is to re-write all the components of BFT. This approach gives
us control over both the agreement and execution stages. Additionally, a large
number of optimisations could be made to improve performance. For example,
it is possible to reduce the memory footprint of MLBFT, hence utilizing less
resources. The downside is that such a new implementation requires a lot more
development time and resources than the first approach.

3.2.12.3 Comparison

Table 3.1 shows a comparison between the two implementation approaches
discussed before.

Table 3.1: Comparison between implementation approaches

Extension of BFT protocols Re-write MLBFT

Can utilize any existing PBFT
agreement layer

Cannot utilize any existing PBFT
agreement layer

Underlying agreement layers are
encapsulated

Agreement layers are not
encapsulated

Requires less development time and
resources

Requires more development time and
resources

Larger memory footprint because
similar objects are created more than
once between agreement layers

Smaller memory footprint because
common objects between agreement
layers have to be created only once

Opportunity for less improvements
and optimizations

Opportunity for more improvements
and optimizations

Ideal for prototyping Ideal for deployment

Chapter 4

Evaluation

This chapter evaluates the impact of the MLBFT approach on throughput and
compares it with a common single-leader approach. This chapter also provides
implementation details, a selected case study, and benchmarking results.

4.1 Amdahl’s law
In 1967, a computer architect named Gene Amdahl established a relationship
between the number of processors and performance [33]. This relationship
is known as “Amdahl’s law”. Amdahl’s law is used to predict the maximum
improvement to a system using multiple processors. We use Amdahl’s law to
predict the theoretical maximum performance that can be achieved by implementing
our approach. Please note that the original paper did not contribute any
mathematical equations to establish Amdahl’s law, however others derived an
equation from what he said in the fourth paragraph of his paper.

In this analysis we assume a system that can tolerate one faulty replica (f = 1),
with n = 4 replicas. Let us assume a workload of 4 independent client requests as
Amdahl’s law can only predict improvement over fixed workloads. Furthermore,
we assume that these 4 requests are simple requests and these requests are
independent of each other. Let us denote the time to execute these requests on
a single-leader approach by T (1). By applying Amdahl’s law we can predict
the time to execute these requests using a multi-leader approach by following
equation:

T (N) = T (1)(Sser +
Spar

N
)

Where N corresponds to number of BFT instances (N = n = o) and
Sser + Spar = 1. Furthermore, Sser denotes the fraction of strictly serialized

43

44 CHAPTER 4. EVALUATION

execution and Spar (= 1 - Sser) denotes the fraction of execution that can utilize
multiple cores of a CPU. The theoretical performance improvement (denoted by
S(N)) of MLBFT can be calculated by following equation:

S(N) =
T (1)
T (N)

=
T (1)

T (1)(Sser +
Spar
N)

=
1

Sser +
Spar
N

=
1

Sser +
(1�Sser)

N

We assumed 4 simple requests can be executed in parallel. Amdahl’s law
assumes that the parallel part of the execution can be infinitely parallelized,
which is not true in our case. Parallelization is bounded by the number of
BFT instances in our case, hence no more than 4 requests (1  N  4) can be
executing in parallel at a time. We also assume that a single request cannot
be further parallelized. This means that exactly one agreement layer can order
a single request. As there are 4 independent requests, we can assign them to
different partitions to maximize concurrency. An agreement instance will order
each request in a separate partition. As a result we can order a single request
in the serialized portion of the code (Sser =

1
4). We can calculate the maximum

improvement by putting the values N = 4 and Sser =
1
4 (for 4 BFT instances) into

above equation.

S(4) =
1

1
4 +

(1� 1
4)

4
= 2.285 ⇡ 2.3

We can also compute the performance when number of cores are less than the
total number of BFT instances (2  N < 4):

S(2) =
1

1
4 +

(1� 1
4)

2

= 1.6

S(3) =
1

1
4 +

(1� 1
4)

3

= 2

4.2. IMPLEMENTATION 45

The above calculations shows that MLBFT has potential to achieve over 100%
higher throughput than single-leader approach in ideal cases. This model only
predicts the maximum performance that can be achieved. However, in practice,
the actual throughput improvement is usually less than theoretical performance.
Section 4.3.3 uses the above model to compare to the performance improvements
achieved by a microbenchmark.

4.2 Implementation
The prototype of MLBFT was implemented as an extension of Resource-efficient
Fault and Intrusion Tolerance (REFIT) [34], a BFT library, written in Oracle
Java 7. REFIT follows the common single-leader design based on the ideas of
PBFT [9, 14] to implement the agreement stage. As mentioned in Section 3.2.12.1,
we treat the agreement stage as a black box. This gives us the advantage that we
can avoid the need to make complicated modifications to the agreement stage. We
configured the system to instantiate single (in case of a single-leader) or multiple
(in case of MLBFT) agreement protocols for later use in our evaluation. As a
result a clean and well organized BFT library was developed which is capable of
running either single or multiple leader protocols depending on its configuration.
Moreover, both agreement and execution stages were implemented in separate
threads (not processes) to maximize concurrency.

4.3 Microbenchmark
We evaluate the performance of MLBFT by implementing a simple Key-Value
store for our micro benchmark. A Key-Value store is a good application to
evaluate because of its simple design and limited number of operations. In
addition to the Key-Value store, our application also implements a prediction
function that can perfectly predict the state objects accessed in a request. These
state objects are partitioned evenly across all BFT instances by the prediction
function. In this case study we measure the performance for both simple and
cross-border requests in terms of throughput and resources used by the replicas.

4.3.1 Key-Value Store
We implement the Key-Value store as a standard Java MAPhK,Vi interface in the
java.util package. Our implementation provides a basic HASHMAPhK,Vi
functionality with Integer keys and String datatypes as values. Moreover,
the implementation provides three basic operations from the Map interface:

46 CHAPTER 4. EVALUATION

get() & put() as simple requests and putall() as a cross-border request.
Additionally, this implementation also provides a Predictor object (see
Appendix A.2). This predictor is capable of perfectly predicting state objects
by parsing the client request. Furthermore, this predictor evenly distributes state
objects to partitions based on the key which is generated by a client using Java’s
pseudorandom number generator (java.util.Random). We provide some of
the source code for this implementation in Appendix A

4.3.2 Evaluation Setup
The evaluation setup consists of a small cluster of four physical machines
representing four replicated state machines. This setup enables the service to
tolerate a single faulty replica (f = 1 and n = 4). In addition to replicas, a separate
physical machine was used as a client. This client machine is capable of running
multiple client threads. Each thread is synchronous and can only send one
request at a time. (see Section 3.1.1). Each physical machine is a Dell Optiplex
7010 machine equipped with Intel i7-3770 CPU (quad-core with hyper-threading
enabled) clocked at 3.40 GHz and with 8 MB of L3 cache. Each of these machines
is running Ubuntu Linux Server 14.04 64-bit and has 16 GB of physical memory
installed. Furthermore, all of the machines are connected via a Gigabit Ethernet
switch (Nortel BayStack 5520). Each of these machines is using the built-in
network interface (Intel R� 82579LM Ethernet LAN 10/100/1000) to communicate
with and the interface is set to operate at 1 Gbps. All of these network interfaces
are set to full-duplex mode.

4.3.3 Results
Figure 4.1 shows the performance results of MLBFT compared with the
single-leader approach for simple requests. For a very small number of clients
(less than 5 clients), throughput of MLBFT is roughly comparable to the throughput
of a single-leader. A special case occurs for a single client when MLBFT performs
a little worse than the single-leader. This happens because of the higher overhead
of the multi-leader approach. However, when number of clients increases, it is
observed that throughput of MLBFT increases up to a factor of two greater than the
single-leader. Furthermore, the throughput of the single-leader starts to saturate
at approximately 50 clients. This saturation point is seen at a much higher load
(around 110 clients) in case of MLBFT.

In Section 4.1 we predicted that MLBFT can achieve up to 100% higher
throughput than for the single-leader approach. Figure 4.1 shows a plot of this
theoretical throughput (denoted by Max-ML). It is observed that the experimental
performance achieved by MLBFT is nearly equal to the expected theoretical

4.3. MICROBENCHMARK 47

throughput. In practice, the throughput is usually less than maximum achievable
performance due to miscellaneous overheads. The maximum throughput that can
be achieved is around 50 K requests/second in this configuration. MLBFT achieves
slightly less throughput than the predicted model whereas the single-leader was
only able to achieve around 20 K requests/second.

The increasing trend of the throughput can be estimated by a third order
logarithmic equation. This model fits the experimental data very well. The first
order logarithm will not be a better fit to the experimental data as first order
logarithm always tend to increase (or decrease). These estimated equations and
R2 of the curves in Figure 4.1 are given below the figure.

1 25 50 75 100 125 150 175 200

0

10,000

20,000

30,000

40,000

50,000

Number of clients

R
eq

ue
st

s
pe

rs
ec

on
d

Single-leader
MLBFT
Max-ML

Figure 4.1: Throughput for simple requests

single-leader

y = 1413.68�1162.55 ln(x)+2675.51 ln2(x)�323.57 ln3(x)

R2 = 0.998

48 CHAPTER 4. EVALUATION

MLBFT

y = 1118.69�6998.35 ln(x)+8057.96 ln2(x)�966.80 ln3(x)

R2 = 0.998

Max-ML

y = 3230.27�2656.44 ln(x)+6113.54 ln2(x)�739.37 ln3(x)

R2 = 0.998

4.3.3.1 Payload

Figures 4.2 to 4.5 illustrate the relationship between payload size and throughput.
As mentioned earlier, each machine uses a built-in network interface. The
Maximum Transmission Unit (MTU) size was set to 1500 B and Jumbo Frames
were not enabled (because the MTU was fixed to 1500 B). Unfortunately, we were
not able to modify these settings because of restricted rights over the machines.
The number of clients was set to 100, while the payload sizes vary from 50 B to
8 KB in this benchmark. The payload consists of application data. We separately
measure both request and reply payloads.

Fragmentation overhead
Our approach does not introduce any additional dependencies on payload
sizes. However, we briefly analyze the underlying network layer to show
how it affects the throughput when we increase the payload size. The
network messages are fragmented when they are larger than MTU, hence
increasing the latency of protocol messages. All the messages greater than
1500 B were fragmented in our tests. The header size of a TCP/IP packet
over Ethernet is 40 B (20 B for TCP and 20 B for IP). This means we can
effectively use 1460 B (1500 B - 40 B) for the protocol messages without
any fragmentation. For larger payload sizes e.g., 8 KB, we can calculate the
overhead of fragmentation as follows:

no. o f packets =
⇠

payload size
e f f ective f rame size

⇡

=

⇠
8192
1460

⇡

= 6 packets

4.3. MICROBENCHMARK 49

This means that 6 packets must be sent for a payload size of 8 KB. This
fragmentation (and re-assembling) of packets will happen for each protocol
message greater than MTU size. The overhead to transfer 1 message of size
8 KB at Transport layer will be 6 ⇥ 40 = 240 Bytes. Furthermore, there is
additional overhead of Ethernet frames (4 Bytes CRC + 8 Bytes Preamble
+ 18 Bytes Ethernet header). The latency of transferring 1 packet can be
calculated as:

latency =
MTU

Network speed

=
1530 ⇥ 8 bits

1,000,000,000 bits per second
= 0.01224 ms

The latency (ignoring the latency of the switch) to transfer a 8 KB packet
will be 0.14688 ms (6 packets ⇥ 0.01224ms ⇥ 2 (switch hops)). Due to
the increased overhead and latency per packet, it takes more time to deliver
large messages.

Figure 4.2 shows that MLBFT outperforms single-leader by a factor of two
(as expected, see Section 4.1) for all request sizes. Although, it is observed that
throughput decreased with increasing request size. We have already explained that
it takes longer to deliver large messages because of fragmentation for request sizes
greater than 1500 B (i.e., 2 KB, 4 KB, and 8 KB in Figure 4.2). Furthermore, the
increase in latency also increases the time to reach a consensus for each request,
hence decreasing the throughput. The curves show a logarithmic trend that can be
estimated by the following set of equations:

single-leader
y = 37735.59�3728.14 ln(x)

R2 = 0.969

MLBFT

y = 76876.19�7592.09 ln(x)

R2 = 0.967

50 CHAPTER 4. EVALUATION

Max-ML
y = 86791.86�8574.73 ln(x)

R2 = 0.969

From the equations of MLBFT and single-leader we observe that the ratio
between constants and coefficients of logarithmic terms is roughly 2⇥. This shows
that MLBFT outperforms single-leader by a factor of 2 for all request sizes. This
is also consistent with the theoretical model we established in Section 4.1.

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00
7,0

00
8,0

00

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000
IP fragmentation

(1500 B)

Request size (Bytes)

R
eq

ue
st

s
pe

rs
ec

on
d

Single-leader
MLBFT
Max-ML

Figure 4.2: Throughput with different request sizes

4.3. MICROBENCHMARK 51

Figure 4.3 shows the relationship between request size and bits per second.
Table 4.1 shows the same results in the form of bandwidth used by each approach.
The numbers represents Megabits per second for different request sizes in the
table. The trends of Figure 4.3 can be estimated by following equations on log
scale:

single-leader
y =�4194606470.31+1024367199.42 ln(x)

R2 = 0.956

MLBFT

y =�8284210070.05+2044367082.9 ln(x)

R2 = 0.953

Max-ML
y =�9647594881.45+2356044558.63 ln(x)

R2 = 0.956

Table 4.1: Bandwidth usage for different request sizes (Mbps)

Approach
Payload 50 B 500 B 1 KB 2 KB 4 KB 8 KB

Max-ML 57.5 425.2 703.4 1031.6 1270.8 1410

MLBFT 50.8 374 633.3 918.9 1138.7 1197

Single-leader 25 184.8 305.8 448.5 552.5 613

We observe the ratio between constants and coefficients of equations for
MLBFT and single-leader is approximately 2⇥. This ratio also fits our theoretical
model. At a message size of around 8 KB we observe a saturation in both
approaches. MLBFT and single-leader attain their maximum throughput at this
point. Both approaches rely on the agreement layer to reach a consensus for
each request. The agreement layer consists of three rounds of messages (see
Section 2.2.2). It takes a minimum of 18 messages to reach a consensus. The

52 CHAPTER 4. EVALUATION

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00
7,0

00
8,0

00
0

2

4

6

8

10

12
IP fragmentation

(1500 B)

Request size (Bytes)

B
its

pe
rs

ec
on

d
(1

09)

Single-leader
MLBFT
Max-ML

Figure 4.3: Bits per second with different request sizes

detailed measurements of the overhead to reach a consensus is outside the scope
of this thesis because we consider the agreement layer as a black box (see Section
3.2.4). However, we have shown a rough calculation of overhead and latency of
the messages in this section.

Form the Figure 4.3 and Table 4.1 it is clear that bandwidth can become the
bottleneck for larger request sizes. In our configuration we use Gigabit Ethernet as
mentioned before. It is observed that Ethernet bandwidth becomes the bottleneck
for request size of more than 2 KB. This is because PBFT (see Section 2.2)
generates 24 internal protocol messages for a single incoming client-request.
As the number of clients (and requests) increases, protocol messages saturate
the available bandwidth hence limiting the throughput. The bandwidth can
be increased (if required) by switching to 10 Gigabit Ethernet or by installing
additional network interfaces.

4.3. MICROBENCHMARK 53

Figure 4.4 shows the measurements for different reply sizes. The multi-leader
approach outperforms the single-leader approach again for all reply sizes.
Measurements show a gradual decrease in throughput for smaller reply sizes (less
than 2 KB). The performance decreases with the increase in reply size. This
happens because of network fragmentation for messages explained earlier. A
reply is generated in the last round of messages and only f + 1 similar replies
are required to verify that the reply is stable. These messages are 6 times less than
the internal communication messages of the protocol (see Section 2.2.2). This is
why performance is decreased a lot by increasing the request size as compared to
the effect on performance by increasing the reply size. The trend can be estimated
by following linear equations:

single-leader
y = 21155.17�1.615 x

R2 = 0.943

MLBFT

y = 43908.62�3.89 x

R2 = 0.980

Max-ML
y = 48656.89�3.71 x

R2 = 0.943

The ratio of coefficients and constants between the equations of MLBFT and
single-leader is roughly 2 as expected (theoretically). It is also observed that
MLBFT cannot match the throughput of the predicted model because of the
fragmentation for larger reply sizes. Similar results can be observed in Figure 4.5.
It is shown that performance of both approaches is degraded for larger reply sizes
(larger than MTU). Following logarithmic equations of order two estimates the
curves in Figure 4.5.

single-leader

y = 599364178.87�265464191.99 ln(x)+29289334.79 ln2(x)

R2 = 0.999

54 CHAPTER 4. EVALUATION

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00
7,0

00
8,0

00
5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

IP fragmentation
(1500 B)

Reply size (Bytes)

R
eq

ue
st

s
pe

rs
ec

on
d

Single-leader
MLBFT
Max-ML

Figure 4.4: Throughput with different reply sizes

MLBFT

y = 389968679.72�223892341.58 ln(x)+31802917.18 ln2(x)

R2 = 0.965

Max-ML

y = 1378537611.40�610567641.59 ln(x)+67365470.02 ln2(x)

R2 = 0.999

4.3. MICROBENCHMARK 55

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00
7,0

00
8,0

00
0

0.2

0.4

0.6

0.8

1

1.2

1.4

IP fragmentation
(1500 B)

Reply size (Bytes)

B
its

pe
rs

ec
on

d
(1

09)

Single-leader
MLBFT
Max-ML

Figure 4.5: Bits per second with different reply sizes

56 CHAPTER 4. EVALUATION

We also measure the effect of response times while varying payload (request
and reply) sizes. In all cases MLBFT performs better than the single-leader
setup (see Figures 4.6 and 4.7) with respect to the measured response time.
MLBFT performs up to twice as fast as the single-leader approach for smaller
payload sizes. Both of these benchmarks show that performance is bounded by the
payload sizes which can become a bottleneck for networks with lower MTU. This
is because messages are fragmented when the payload size is greater than MTU. It
is recommended to use larger MTU values and enable Jumbo frames (if available)
for larger payloads (request and reply). Figure 4.6 and 4.7 shows that response
time is not greatly affected by payload size when there is no IP fragmentation.
The response time increases linearly for all payloads larger than MTU because
of fragmentation. Furthermore, it takes longer to deliver large messages, hence
increasing the response time.

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00
7,0

00
8,0

00
0

5

10

15

20

25

30

35

40

45

IP fragmentation
(1500 B)

Request size (Bytes)

R
es

po
ns

e
tim

e
(m

s)

Single-leader
MLBFT

4.28 · x+9,471.3
2.24 · x+2,892.72

Figure 4.6: Response time with different request sizes

4.3. MICROBENCHMARK 57

0
1,0

00
2,0

00
3,0

00
4,0

00
5,0

00
6,0

00
7,0

00
8,0

00

2

4

6

8

10

12

14

16

18

20

22

24

IP fragmentation
(1500 B)

Reply size (Bytes)

R
es

po
ns

e
tim

e
(m

s)

Single-leader
MLBFT

1.65 · x+8,759.3
1.47 · x+2,431.75

Figure 4.7: Response time with different reply sizes

58 CHAPTER 4. EVALUATION

4.3.3.2 Response time

Figure 4.8 shows the average response time of a request with different numbers
of clients. It is shown that in nearly all cases single-leader approach has higher
response time as expected than MLBFT. This happens because single-leader
provides a total-order of messages. However, MLBFT can perform multiple
consensus at the same time exploiting a partial-order of messages. Benchmarks
show that MLBFT can perform up to twice as fast as single-leader. For a
special case when there is a single client, we observe nearly 11% decrease in
the performance of the MLBFT approach than a common single-leader approach.
This decrease in performance is because of higher overhead of MLBFT, while
performing prediction at both client and server side to decide upon the partition,
hence BFT agreement will order the request. The regression lines show a linear
trend in increase of response time for both approaches. We observe that the slope
of MLBFT (13.57) is lower than single-leader (42.98). This means that increase in
response time for MLBFT approach is much lower than increase in response time
for the single-leader approach, when there is an increase in number of clients.
This ratio shows that MLBFT can serve roughly 3⇥ more clients than single-leader
approach for a given response time.

4.3. MICROBENCHMARK 59

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

Number of clients

R
es

po
ns

e
tim

e
(m

s)

Single-leader
MLBFT

42.98 · x+464.1
13.57 · x+477.87

Figure 4.8: Average response time

60 CHAPTER 4. EVALUATION

4.3.3.3 CPU usage

A benchmark was designed to measure individual CPU usage for each replica.
CPU usage is compared between MLBFT and single-leader approach in Figure 4.9.
As expected, the leader (Replica 0) of single-leader approach consumes 11%
more CPU than other replicas. This increase in CPU usage is a limitation of
single-leader approach. On the other hand, MLBFT distributes work load to all
replicas, hence CPU usage is similar on all machines. We can observe that
the 11% more CPU usage of single-leader is evenly distributed in multi-leader
approach (⇠ 11%

4 = 2.75%). Hence, a slight increase in CPU usage (45% +
2.75% = 47.75% ⇡ 47% usage for all replicas in MLBFT) can be seen in the
Figure 4.9.

In a single-leader approach every request has to go through the leader and there
is no parallel part in the execution (Sser = 1). However, in the case of MLBFT the
workload is distributed among all replicas equally (in ideal case). This means that
for a given workload, a single replica will order 1

4 of total requests (as there are 4
replicas). This further explains that why Sser = 1

4 in Section 4.1.
In our benchmarks we used 8 core (4 physical cores with hyper-threading)

machines for replicas. Our configuration uses 4 BFT instances as there are 4
replicas. This means that we are essentially using only 4 cores of each replica
as one core of each replica participates in a dedicated BFT instance. Each core
handles 1

4 of total workload. The operating system reports that system is using
almost 50% of CPU usage in the benchmarks. This is because only 4 cores which
are participating in BFT instances are busy to handle the workload. The rest of the
cores are idle and there is no more work to do. Even if more client requests comes
MLBFT will schedule those requests on 4 cores that are already busy. This is why
we can only utilize 50% of the CPU usage on the 8 core machine. To utilize full
CPU power either number of BFT instances should be increased or the system
must be configured for f > 1. This is why the number of cores should be equal
to number of BFT instances (ideally).

The CPU time is spend on calculating and verifying signatures for protocol
messages, calculating request digests and executing client requests. Furthermore,
there is additional CPU overhead of prediction, partitioning and deadlock detection
& resolution. It is observed that most of the CPU time is spent on the calculation of
signatures and message digests. Our implementation uses SHA-1 [35] algorithm
as HMAC to verify protocol messages. Moreover, our implementation uses MD5
[36] algorithm to calculate request digests. Table 4.2 shows the speed of these
hash algorithms on the CPU used for our benchmarks. The numbers represents
1000s of Bytes processed per second for each algorithm on the given CPU. It is
observed that SHA-1 performs faster than MD5 in all scenarios.

4.3. MICROBENCHMARK 61

Table 4.2: Bytes processed per second for different hash algorithms

Algorithm
Block Size 16 B 64 B 256 B 1024 B 8192 B

MD5 69166 K 203310 K 452872 K 656342 K 752943 K

SHA-1 80329 K 227637 K 491785 K 700090 K 815169 K

Single-leader MLBFT
0

5

10

15

20

25

30

35

40

45

50

Replicas

C
PU

us
ag

e
(%

)

Replica 0 Replica 1 Replica 2 Replica 3

Figure 4.9: CPU Usage

62 CHAPTER 4. EVALUATION

4.3.3.4 Cross-border requests

Performance of cross-border requests is also a focus of MLBFT. We compare the
throughput of cross-border requests with single-leader approach in Figure 4.10.
The benchmark generates cross-border requests accessing 2 partitions in different
proportions. It is observed that MLBFT outperforms the single-leader solution
in most cases. Furthermore, it is observed that throughput is decreased with an
increase in the proportion of cross-border requests increases. The performance
is similar to single-leader when all of the requests are cross-border requests. In
addition, un-even changes in throughput are also marked in the figure. These
changes happened because of greater number of deadlocks that occurred while
running the benchmark. It should be noted that the prediction function must be
designed in a way that it minimizes the proportion of the cross-border requests
as well as number of partitions that are accessed in each request. A slightly
modified version of the prediction function was used in this benchmark to control
the proportion of cross-border requests from the configuration. Please note that
perfect prediction does not mean there are no cross-border requests. A perfect
prediction means that all of the state objects (and partitions) that are going to
be accessed by the request will be returned by the PREDICT() function (see
Section 3.2.3).

Each cross-border request is ordered by more than one BFT instances. This
means that parallelization will decrease, hence Sser will increase, when proportion
of cross-border requests increases. We observe a speedup of nearly a factor of 1.8
with 1% cross-border requests in Figure 4.10. If we solve the equation discussed
in Section 4.1 for a speedup of 1.8 (neglecting the overhead), we get Sser ⇡ 0.41.
Furthermore, if the proportion of cross-border requests is increased to 100%, we
get Sser ⇡ 1. This means that MLBFT will behave similar to the single-leader
approach when all of the requests are cross-border requests. The increase in
proportion of Sser is observed as exponential as we see an exponential decrease
in throughput while increasing the proportion of cross-border requests and from
the equation we know that Sser is inversely proportional to speedup. Additionally,
the decrease in throughput in case of cross-border requests can be estimated by
following equation:

y = 29453.26 (1+ x)�0.133

R2 = 0.967

This equation shows an inverse relationship between throughput and cross-border
requests (0  x  100). The equation also shows that MLBFT approach cannot
perform worse than single-leader approach even when all of the requests (x= 100)

4.3. MICROBENCHMARK 63

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

14,000

16,000

18,000

20,000

22,000

24,000

26,000

28,000

30,000

14K deadlocks
35K deadlocks

87K deadlocks

Proportion of cross-border requests

R
eq

ue
st

s
pe

rs
ec

on
d

Single-leader
MLBFT

Figure 4.10: Throughput of cross-border requests

are cross-border requests (with 2 partitions). MLBFT performs 2 times better than
the single-leader approach in ideal case (x = 0).

64 CHAPTER 4. EVALUATION

Figure 4.11 shows the relationship between throughput and number of clients.
We compare throughput of single-leader (SL) with 0%, 1%, 15%, and 50%
(denoted by ML, ML-1, ML-15, and ML-50 in the figure respectively) cross-border
requests. It is shown that MLBFT with cross-border requests performs better
than single-leader solution for larger number of clients. As the proportion of
cross-border requests increases, we observe that the curve becomes closer to the
curve of single-leader approach. These curves and there R2 can be estimated by
following logarithmic equations of order three:

single-leader

y = 1083.97+483.30 ln(x)+1505.38 ln2(x)�190.99 ln3(x)

R2 = 0.997

ML-50

y = 893.57+763.34 ln(x)+1621.16 ln2(x)�193.71 ln3(x)

R2 = 0.996

ML-15

y = 893.4�425.82 ln(x)+2415.95 ln2(x)�249.5 ln3(x)

R2 = 0.997

ML-1

y = 899.16+356.26 ln(x)+1569.71 ln2(x)�13.86 ln3(x)

R2 = 0.998

MLBFT

y = 978.35+97.27 ln(x)+1871.35 ln2(x)�11.53 ln3(x)

R2 = 0.998

Comparison of throughput of cross-border requests and response time is
shown in Figure 4.12. It is observed that throughput of single-leader is saturated

4.3. MICROBENCHMARK 65

1 5 10 20 30 40 50

0

5,000

10,000

15,000

20,000

25,000

30,000

Number of clients

R
eq

ue
st

s
pe

rs
ec

on
d

SL
ML-50
ML-15
ML-1

MLBFT

Figure 4.11: Throughput with cross border

at 20,000 requests per second while the response times increases with the increase
in number of clients. On the other hand, when the proportion of cross-border
requests is low (0% and 1%), the response time of MLBFT approach is much lower
than for the single-leader approach. The response time increases with an increase
in the proportion of cross-border requests to 15% or 50%. All approaches are
bounded by an upper limit of the throughput. The response times becomes a
vertical line when that upper limit of throughput is reached by both approaches.
The curves can be estimated by following equations:

single-leader

y =
1

2.376�1.37⇥10�04 x+1.62⇥10�09 x2

R2 = 0.904

66 CHAPTER 4. EVALUATION

0 10,000 20,000 30,000 40,000 50,000 60,000

0

2

4

6

8

10

Requests per second

R
es

po
ns

e
tim

e
(m

s)
SL

MLBFT
ML-1

ML-15
ML-50

Figure 4.12: Throughput versus response time

ML-50

y =
1

1.182+2.78⇥10�05 x�7.146⇥10�10 x2

R2 = 0.993

ML-15

y =
1

1.176+3.16⇥10�05 x�8.57⇥10�10 x2

R2 = 0.99

4.3. MICROBENCHMARK 67

ML-1

y =
1

1.14+3.07⇥10�05 x�1.07⇥10�09 x2

R2 = 0.982

MLBFT

y =
1

1.27+3.85⇥10�06 x�7.489⇥10�10 x2

R2 = 0.99

4.3.3.5 Deadlocks

Deadlocks cannot be avoided when there are large number of cross-border
requests. Figure 4.13 shows the increase in the number of deadlocks when
there is an increase in cross-border requests. The number of deadlocks increase
exponentially when proportion of the cross-border requests is less than 50%. The
number of deadlocks increase almost linearly when more than 50% cross-border
requests are encountered. Eventually these deadlocks decrease the throughput of
the MLBFT which can be observed in Section 4.3.3.4.

The increase in deadlocks can be estimated by the following equation for the
curve in Figure 4.13:

y = 103.13+18.14 x2 �8.27⇥10�02 x3

R2 = 0.999

4.3.3.6 Memory usage

MLBFT uses more memory than traditional approaches. This overhead is because
of prediction, deadlock detection, state partitioning, and an increase in number of
threads. This overhead also depends on the configuration and implementation
level details. In practice memory overhead should be fixed when there are a
constant number of clients. Unfortunately, it is difficult to measure memory
usage due to Java’s memory management policy. However, we present a rough
comparison of memory usage between single-leader and MLBFT in Figure 4.14.
This figure shows that memory usage is increased when we run MLBFT and
single-leader approach with the same system configuration. It is possible to
improve the implementation of the Key-Value store so that it uses less memory

68 CHAPTER 4. EVALUATION

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

0

20,000

40,000

60,000

80,000

100,000

Proportion cross-border requests

N
o.

of
de

ad
lo

ck
s

Figure 4.13: Deadlocks versus cross-border requests

than shown in the figure. For example, instead of using Java’s HASHMAPhK,Vi, an
application can use Trove’s1 HashMap which uses less memory. Furthermore, the
memory overhead can be reduced by implementing the components of MLBFT as
described in Section 3.2.12.2.

1Trove, http://trove.starlight-systems.com (Last accessed: 2015-06-09)

http://trove.starlight-systems.com

4.3. MICROBENCHMARK 69

1 5 10 20 30 40 50
0

100

200

300

400

500

600

700

800

Number of clients

M
em

or
y

us
ag

e
(M

B
)

MLBFT
Single-leader

Figure 4.14: Memory usage

70 CHAPTER 4. EVALUATION

4.3.3.7 Multicore CPU

Figure 4.15 measures throughput of MLBFT and the single-leader solution on
a multicore CPU. As expected both solutions performs best when the number
of BFT instances is equal to number of cores of the CPU. It is shown that
single-leader performs best on a single core machine because there is only
one BFT instance running on the replicas. The single-leader approach even
outperforms MLBFT on a single-core configuration. On the other hand,
MLBFT performs best at 4 cores CPU because in this setting we use 4 BFT
instances. The throughput is decreased a little if number of cores are more than
BFT instances. This happens because the threads are going to be schedule on
virtual cores of the CPU after all physical cores are busy. Furthermore, only
4 cores are busy in handling the workload (see Section 4.3.3.3). There is no
more work that can be scheduled on rest of the 4 cores and we do not see any
improvement in throughput when scheduling the replica threads on all 8 cores.
This is why MLBFT utilizes only 50% of the CPU. On the other hand, if number
of cores are less than number of BFT instances then throughput is decreased a lot.
This is because there is at least one thread which is waiting to be scheduled on
CPU. The results from the figure match the predicted model of MLBFT analyzed in
Section 4.1. MLBFT performs worse on single core than the single-leader approach
because of the overhead mentioned before. For 2 cores we see an improvement
of 150% which matches the theoretical speedup S(2) = 1.6. Similarly, for 3 cores
(S(3) = 2) we see an improvement of 180% as expected.

4.3.3.8 Read requests

Figure 4.16 shows the relationship between throughput and proportion of read-only
requests. It is observed that throughput is not affected much by a read-heavy or
write-heavy clients. However, throughput is increased a little if all of the requests
perform read operations on the state objects in both approaches. This happens
because state objects must be created (if they don’t exists) in a write request.
Creating state objects adds a little overhead in overall throughput. In all cases
MLBFT (with no cross-border requests) outperforms single-leader approach up to
a factor of two.

4.3. MICROBENCHMARK 71

1 2 3 4 5 6 7 8

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

28,000

30,000

32,000

Number of cores

R
eq

ue
st

s
pe

rs
ec

on
d

Single-leader
MLBFT

Figure 4.15: Throughput on multicore CPU

72 CHAPTER 4. EVALUATION

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

14,000

16,000

18,000

20,000

22,000

24,000

26,000

28,000

Proportion of read requests

R
eq

ue
st

s
pe

rs
ec

on
d

Single-leader
MLBFT

Figure 4.16: Throughput of read requests

Chapter 5

Conclusions

In this thesis, we have presented MLBFT, a multi-leader approach to improve the
throughput of BFT systems. This chapter summarizes the findings presented in
previous chapters and proposes a number of improvements and extensions that
may be of interest in order to continue this work.

5.1 Conclusion
High resource consumption and overhead is one of the most important reasons
why BFT systems have not yet been adopted by industry [3, 4]. So far research
has improved the performance by introducing concurrency in the execution stage.
However, the agreement stage remains an open area to be explored. This thesis
introduces some improvements to the agreement stage and shows that throughput
can be improved up to a factor of two in ideal cases.

5.1.1 Goals
We have presented the following approach to introduce concurrency in the
agreement stage. Following this description of our by basic approach, we
summarize the main research questions in this thesis.

Basic Approach
Traditionally, the single-leader approach assumes that all requests are
dependent on each other and must provide a total-order of requests to ensure
consistency. In practice, not all the requests are dependent on each other and
only dependent requests should be ordered (partial-order). MLBFT exploits
this idea by using application knowledge to split the state objects into
partitions. Each partition is managed by an independent BFT agreement

73

74 CHAPTER 5. CONCLUSIONS

instance establishing a partial-order on dependent requests. Furthermore,
MLBFT provides a way to handle requests which need to access multiple
partitions.

Research Questions
Given the basic idea of splitting state objects into partitions, this thesis has
followed two main research questions:

• Can the suggested approach enable a Byzantine Fault Tolerant system
to deliver better throughput?

• Can the suggested approach enable a Byzantine Fault Tolerant system
to handle simple as well as cross-border requests?

With regard to first research question, we have shown (in Chapter 4) that
MLBFT can achieve better throughput as compared to the common single-leader
approach. In ideal cases it is possible to increase the throughput up to a factor
of two by implementing this approach. However, it is observed that multicore
machines are required to gain higher performance. Furthermore, evaluation shows
that this approach can produce increased overhead on a single-core machine,
hence decreasing overall throughput.

Regarding the second research question, evaluation shows that MLBFT can
handle both simple and cross-border requests. In the case of simple requests
we have seen improved throughput. However, to achieve better throughput in
the case of cross-border requests, predictor should be configured to minimize
the proportion of cross-border requests. Although, results have shown that
MLBFT produces slightly better throughput than single-leader approach even
with 90% of cross-border requests (accessing two partitions), it is recommended
to keep the proportion of cross-border requests as minimal (ideally 0%) as
possible. Furthermore, partitioning the state objects also plays an important role
in improving the performance of MLBFT.

5.1.2 Insights
We have observed from our evaluation that the single-leader approach cannot fully
utilize resources like CPU and network bandwidth. The single-leader approach
can only utilize single core on a multi-core CPU. Furthermore, the single-leader
approach nearly utilizes 60% of the network bandwidth (for 8 KB request) on
a Gigabit Ethernet. MLBFT, on the other hand, can utilize more resources
than the single-leader approach. MLBFT can take advantage of multiple cores
(4 cores in our configuration) on a multi-core CPU. Furthermore, MLBFT can
utilize 100% of the network bandwidth (for large request sizes) on a Gigabit

5.1. CONCLUSION 75

Ethernet. It is also observed that MLBFT approach is bounded by both CPU and
network bandwidth. In our experimental setup, the CPU becomes a bottleneck by
executing cryptographic functions (to verify signatures and to calculate request
digests) and bandwidth becomes a bottleneck for large requests (larger than
2 KB). The CPU and network usage give some insights about the limitations of
multi-leader approach.

5.1.3 Sustainable Development
The traditional BFT systems lack the performance which is desired by modern
software industry. The single-leader approach is not able to provide the desired
throughput because the single-leader approach under-utilize the available resources.
We have shown that MLBFT can achieve over 100% higher throughput (in
ideal cases) by properly utilizing the available resources. In fact, MLBFT
outperforms single-leader approach in most scenarios when both approaches
run on the same infrastructure (multi-core machines and network). Although,
MLBFT utilizes more resources than single-leader approach, it can sustain the life
of existing BFT services without incurring any additional costs. Furthermore,
MLBFT can execute client requests in less time than traditional approaches.
This performance improvement not only provides a better user experience, but
it also saves time and energy. These improvements bring both economic and
environmental benefits to our society and support sustainable development for
the future.

5.1.4 Challenges
We encountered a few challenges in the context of implementing the proposed
MLBFT approach. This section highlights two of the most important challenges
we faced in this research.

5.1.4.1 Deadlocks

As we have already established that we do not rely on atomic multicast in
Section 3.2.8, hence deadlocks cannot be avoided. Traditional deadlock prevention
schemes cannot be applied because of their limitations. For example, a circular
wait cannot be avoided because requests can be received by replicas in any order.
Another approach is not to schedule a cross-border request in a queue which
might cause a deadlock. In this case we have to scan all ordered requests in the
relevant partition queues and compare it with the incoming request. This is not
a good approach because it will be extremely expensive to compare each request
with already ordered requests. Additionally, we want to implement a deadlock

76 CHAPTER 5. CONCLUSIONS

resolution scheme which is free of rollbacks. For instance, while executing a
request if we encounter that a lock is required which is already acquired by another
thread, then we might have to rollback a partial execution. Furthermore, we can
avoid rollbacks by executing the request on a copy of data. This is not an ideal
solution because sometimes it is impossible (or impractical) to copy state objects
(e.g., large state objects or if the state objects are located remotely) and then
operate on it. Given these constraints it is a challenge to come up with a solution
which can resolve deadlocks deterministically.

5.1.4.2 Mispredictions

In Section 3.2.7 we established that a request can be mispredicted by prediction
layer. We have also established that the system can encounter a deadlock
in the case of two or more mispredictions when execution has already been
started (see Section 3.2.8.2). In this scenario it is a challenge to resolve a
deadlock. To solve this case all partially executed requests (in a deadlock)
must be halted immediately. An algorithm must be designed that produces a
sequence of requests after analyzing dependencies between these requests such
that sequential execution of these requests does not violate linearizability. Solving
this problem deterministically can be a challenge given the constraints mentioned
in the previous section.

5.2 Future work
This section mentions some of the work which might be of interest in order to
continue and improve this research.

5.2.1 What has been left undone?
We have provided a solution to handle mispredictions in Section 3.2.7.
Unfortunately, due to time constraints this solution was not implemented and
evaluated. Therefore, it is highly recommended that the proposed solution be
implemented and its performance evaluated. It can be guessed that mispredictions
will decrease the throughput. This decrease will happen because the request must
be ordered in all the new partitions before the request can continue its execution.
However, it would be interesting to observe whether the performance degrades
slightly or quite a lot.

Furthermore, the prediction layer can be designed to keep a record of
all the previous mispredictions and then learn from them to improve its rate
of correct predictions. It would be interesting to make the prediction layer

5.2. FUTURE WORK 77

dynamic rather than statically predicting requests. However, care should be taken
when implementing this functionality as the prediction function must produce a
deterministic response on all machines (including clients see Section 3.1.1) which
can be a challenge.

5.2.2 Next obvious things to be done
There is a lot of room for improvements and future development in this research.
We propose some obvious improvements that can be applied to this approach.

5.2.2.1 More Case Studies

We explored key-value store as a case study, but there is a need to evaluate
other case studies. Evaluating other case studies will give more insights into this
approach which can then be used to improve the protocol. Exploring other case
studies will also give a better idea of possible applications of this approach in the
software industry.

5.2.2.2 Deadlock Resolution

We spend quite some time developing the deadlock resolution algorithm. Despite
this effort, there is still room for improvements to develop a faster deterministic
deadlock resolution algorithm. Moreover, this research lacks an implementation
of deadlock after execution (see Section 3.2.8.2) algorithm which can be researched
further.

5.2.2.3 Fault Handling

Another improvement would be to evaluate the throughput in case of a faulty
replica. Our guess is that the throughput of this approach would still be better
than its single-leader counterpart. This is because leadership of only one BFT
agreement instance would be transferred to next replica. All other BFT agreement
instances will continue to work normally.

5.2.2.4 Batching and reply Digests

One of the common ways to improve performance is to introduce batching. As a
result multiple requests can be batched together and passed on to the agreement
stage for ordering. This enables the service to run only one consensus round
per batch, hence improving performance. It is recommended to enable batching
and then evaluate it to see how it affects performance. Furthermore, another
optimization is to return a digest of replies [9] instead of a full result. The digest

78 CHAPTER 5. CONCLUSIONS

enables the client to verify the result while reducing network bandwidth for large
replies.

5.2.2.5 Thread pinning

In Section 4.3.3.7 we evaluate the performance of MLBFT on multicore CPUs.
We observed that maximum performance is achieved when the number of cores
is equal to number of BFT ordering instances. However, in that evaluation we did
not pin any of the threads to specific CPU cores, hence thread scheduling overhead
was not affected. Another approach would be to pin ordering and worker threads
to a specific core of the CPU. For example, the ordering thread for BFT-0 can be
pinned to the first core of CPU. This will help reduce the scheduling cost as this
thread will always be scheduled only on a specified CPU core (the first core). It
would be interesting to observe whether this approach can help achieve improved
performance or not.

5.3 Required Reflections
Our proposed approach targets network-based software services that require
strong availability and reliability. The research presented in this thesis serves
as a vital effort towards achieving improved performance in the aforementioned
services. For example, implementing this research in banking and e-commerce
services, where unavailability can cause economic losses, would not only increase
the quality of service, but it will also improve the performance. Additionally, this
research also targets applications whose reliability is crucial for other services
(e.g., Key-Value stores or Network File Systems). Taking advantage of this
research leads to lower response time for these services, hence improved client
satisfaction. These two applications reflects positive social and economic effects
of this research.

Furthermore, BFT systems are an excellent candidate for services where a
single fault can lead to life-threatening disasters (e.g., Railway dispatch and
control systems). This research can improve the availability and reliability of such
services if implemented correctly, where software vendors are hesitant to use BFT
systems because of their poor performance. These applications of BFT services
reflects desirable ethical effects of this thesis. Furthermore, for ethical reasons,
this research does not disclose any kind of confidential information of the lab at
Technische Universität Braunschweig (where the research was conducted).

Bibliography

[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.
382–401, Jul. 1982. doi: 10.1145/357172.357176. [Online]. Available:
http://doi.acm.org/10.1145/357172.357176

[2] A. Shoker and J.-P. Bahsoun, “BFT for three decades, yet not
enough!” 2009. [Online]. Available: http://haslab.uminho.pt/ashoker/files/
shokerbft3decadestr.pdf

[3] C. Ho, “Reducing costs of Byzantine fault tolerant distributed applications,”
2011-08-31. [Online]. Available: http://ecommons.library.cornell.edu/
handle/1813/30754

[4] P. Kuznetsov and R. Rodrigues, “BFTW3: Why? When? Where? workshop
on the theory and practice of byzantine fault tolerance,” vol. 40, no. 4,
pp. 82–86, 2010-01. doi: 10.1145/1711475.1711494. [Online]. Available:
http://doi.acm.org/10.1145/1711475.1711494

[5] R. Kapitza, M. Schunter, C. Cachin, K. Stengel, and T. Distler,
“Storyboard: optimistic deterministic multithreading,” in Proceedings of the
Sixth international conference on Hot topics in system dependability.
USENIX Association, 2010, pp. 1–8. [Online]. Available: http:
//static.usenix.org/events/hotdep/tech/full papers/Kapitza.pdf

[6] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,” in
2004 International Conference on Dependable Systems and Networks, Jun.
2004. doi: 10.1109/DSN.2004.1311928 pp. 575–584.

[7] T. Distler and R. Kapitza, “Increasing performance in byzantine fault-
tolerant systems with on-demand replica consistency,” in Proceedings of
the Sixth Conference on Computer Systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011. doi: 10.1145/1966445.1966455. ISBN
978-1-4503-0634-8 pp. 91–106. [Online]. Available: http://doi.acm.org/10.
1145/1966445.1966455

79

http://doi.acm.org/10.1145/357172.357176
http://haslab.uminho.pt/ashoker/files/shokerbft3decadestr.pdf
http://haslab.uminho.pt/ashoker/files/shokerbft3decadestr.pdf
http://ecommons.library.cornell.edu/handle/1813/30754
http://ecommons.library.cornell.edu/handle/1813/30754
http://doi.acm.org/10.1145/1711475.1711494
http://static.usenix.org/events/hotdep/tech/full_papers/Kapitza.pdf
http://static.usenix.org/events/hotdep/tech/full_papers/Kapitza.pdf
http://doi.acm.org/10.1145/1966445.1966455
http://doi.acm.org/10.1145/1966445.1966455

80 BIBLIOGRAPHY

[8] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, M. Dahlin,
and others, “All about eve: Execute-verify replication for multi-core
servers.” in OSDI, vol. 12, 2012, pp. 237–250. [Online]. Available: https:
//www.usenix.org/system/files/conference/osdi12/osdi12-final-190.pdf

[9] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, ser. OSDI ’99. Berkeley, CA, USA: USENIX
Association, 1999. ISBN 1-880446-39-1 pp. 173–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=296806.296824

[10] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4,
pp. 299–319, Dec. 1990. doi: 10.1145/98163.98167. [Online]. Available:
http://doi.acm.org/10.1145/98163.98167

[11] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978. doi:
10.1145/359545.359563. [Online]. Available: http://doi.acm.org/10.1145/
359545.359563

[12] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” 2003. [Online]. Available:
http://infoscience.epfl.ch/record/49913

[13] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating agreement from execution for byzantine fault tolerant services,”
in Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles, ser. SOSP ’03. New York, NY, USA: ACM, 2003. doi:
10.1145/945445.945470. ISBN 1-58113-757-5 pp. 253–267. [Online].
Available: http://doi.acm.org/10.1145/945445.945470

[14] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp.
398–461, Nov. 2002. doi: 10.1145/571637.571640. [Online]. Available:
http://doi.acm.org/10.1145/571637.571640

[15] G. Bracha and S. Toueg, “Asynchronous consensus and broadcast protocols,”
J. ACM, vol. 32, no. 4, pp. 824–840, Oct. 1985. doi: 10.1145/4221.214134.
[Online]. Available: http://doi.acm.org/10.1145/4221.214134

[16] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “CheapBFT: Resource-efficient

https://www.usenix.org/system/files/conference/osdi12/osdi12-final-190.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-190.pdf
http://dl.acm.org/citation.cfm?id=296806.296824
http://doi.acm.org/10.1145/98163.98167
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://infoscience.epfl.ch/record/49913
http://doi.acm.org/10.1145/945445.945470
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/4221.214134

BIBLIOGRAPHY 81

byzantine fault tolerance,” in Proceedings of the 7th ACM European
Conference on Computer Systems, ser. EuroSys ’12. New York, NY, USA:
ACM, 2012. doi: 10.1145/2168836.2168866. ISBN 978-1-4503-1223-3 pp.
295–308. [Online]. Available: http://doi.acm.org/10.1145/2168836.2168866

[17] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, P. Maniatis,
and others, “Zeno: Eventually consistent byzantine-fault tolerance.”
in NSDI, vol. 9, 2009, pp. 169–184. [Online]. Available: https:
//www.usenix.org/event/nsdi09/tech/full papers/singh/singh html/

[18] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative byzantine fault tolerance,” ACM Trans. Comput. Syst., vol. 27,
no. 4, pp. 7:1–7:39, Jan. 2010. doi: 10.1145/1658357.1658358. [Online].
Available: http://doi.acm.org/10.1145/1658357.1658358

[19] A. Bessani, J. Sousa, and E. Alchieri, “State machine replication
for the masses with BFT-SMaRt,” Department of Computer Science,
University of Lisbon, Tech. Rep, 2013. [Online]. Available: http:
//www.di.fc.ul.pt/⇠bessani/publications/dsn14-bftsmart.pdf

[20] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “Upright cluster services,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 2009, pp.
277–290. [Online]. Available: http://dl.acm.org/citation.cfm?id=1629602

[21] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making Byzantine Fault Tolerant Systems Tolerate Byzantine Faults,”
in Proceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 153–168. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1558977.1558988

[22] J. B. Postel, “User datagram protocol,” Internet Engineering Task Force,
RFC 768, Aug. 1980, published: Internet RFC 768. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc768.txt

[23] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985. doi: 10.1145/3149.214121. [Online]. Available:
http://doi.acm.org/10.1145/3149.214121

[24] P. J. Marandi, C. E. Bezerra, and F. Pedone, “Rethinking state-machine
replication for parallelism,” arXiv preprint arXiv:1311.6183, 2013. [Online].
Available: http://arxiv.org/abs/1311.6183

http://doi.acm.org/10.1145/2168836.2168866
https://www.usenix.org/event/nsdi09/tech/full_papers/singh/singh_html/
https://www.usenix.org/event/nsdi09/tech/full_papers/singh/singh_html/
http://doi.acm.org/10.1145/1658357.1658358
http://www.di.fc.ul.pt/~bessani/publications/dsn14-bftsmart.pdf
http://www.di.fc.ul.pt/~bessani/publications/dsn14-bftsmart.pdf
http://dl.acm.org/citation.cfm?id=1629602
http://dl.acm.org/citation.cfm?id=1558977.1558988
http://dl.acm.org/citation.cfm?id=1558977.1558988
http://www.rfc-editor.org/rfc/rfc768.txt
http://doi.acm.org/10.1145/3149.214121
http://arxiv.org/abs/1311.6183

82 BIBLIOGRAPHY

[25] P. J. Marandi and F. Pedone, “Optimistic parallel state-machine replication,”
arXiv preprint arXiv:1404.6721, 2014. [Online]. Available: http://arxiv.org/
abs/1404.6721

[26] P. J. Marandi, M. Primi, and F. Pedone, “Multi-ring paxos,” in
Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP
International Conference on. IEEE, 2012, pp. 1–12. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6263916

[27] G. Santos Veronese, M. Correia, A. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in 28th IEEE
International Symposium on Reliable Distributed Systems, 2009. SRDS ’09,
Sep. 2009. doi: 10.1109/SRDS.2009.36 pp. 135–144.

[28] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building efficient
replicated state machines for WANs,” in OSDI, vol. 8, 2008, pp. 369–384.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855741.1855767

[29] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16,
no. 2, pp. 133–169, May 1998. doi: 10.1145/279227.279229. [Online].
Available: http://doi.acm.org/10.1145/279227.279229

[30] J. Behl, T. Distler, and R. Kapitza, “Scalable BFT for multi-cores:
Actor-based decomposition and consensus-oriented parallelization,” in 10th
Workshop on Hot Topics in System Dependability (HotDep 14). Broomfield,
CO: USENIX Association, Oct. 2014. [Online]. Available: http://blogs.
usenix.org/conference/hotdep14/workshop-program/presentation/behl

[31] R. Rodrigues, M. Castro, and B. Liskov, “BASE: Using abstraction to
improve fault tolerance,” in Proceedings of the Eighteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’01. New York, NY, USA:
ACM, 2001. doi: 10.1145/502034.502037. ISBN 1-58113-389-8 pp. 15–28.
[Online]. Available: http://doi.acm.org/10.1145/502034.502037

[32] J. B. Postel, “Transmission control protocol,” Internet Engineering Task
Force, RFC 793, Sep. 1981, published: Internet RFC 793. [Online].
Available: http://www.rfc-editor.org/rfc/rfc793.txt

[33] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring). New
York, NY, USA: ACM, 1967. doi: 10.1145/1465482.1465560 pp. 483–485.
[Online]. Available: http://doi.acm.org/10.1145/1465482.1465560

http://arxiv.org/abs/1404.6721
http://arxiv.org/abs/1404.6721
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6263916
http://dl.acm.org/citation.cfm?id=1855741.1855767
http://doi.acm.org/10.1145/279227.279229
http://blogs.usenix.org/conference/hotdep14/workshop-program/presentation/behl
http://blogs.usenix.org/conference/hotdep14/workshop-program/presentation/behl
http://doi.acm.org/10.1145/502034.502037
http://www.rfc-editor.org/rfc/rfc793.txt
http://doi.acm.org/10.1145/1465482.1465560

BIBLIOGRAPHY 83

[34] T. Distler, “Resource-efficient fault and intrusion tolerance,” Ph.D.
dissertation, Friedrich-Alexander-Universität Erlangen-Nuremberg, 2014.

[35] D. Eastlake, 3rd and P. Jones, “US Secure Hash Algorithm 1 (SHA1),”
United States, 2001.

[36] R. Rivest, “The MD5 Message-Digest Algorithm,” United States, 1992.

Appendix A

Java Source Code

package refit.agreement.multileader;

import refit.agreement.primary.PrimaryProtocol;
import refit.config.REFITConfig;

/**
* A class that implements primary protocol. This class is used
* to select the primary replica given a view id and BFT instance id.
* Initially all BFT instances will start with view id = 0. This
* implementation will select replica-0 as a leader of BFT-0,
* replica-1 as a leader of BFT-1 and so on.
*
* BFT will move to the next view id if the primary replica fails.
* This will select the next replica as the leader of BFT.
*
* Created by Zeeshan
*/
public class MLPrimaryProtocol implements PrimaryProtocol {

private final int viewID;
private final short bftInstanceId;

public MLPrimaryProtocol(int viewID, short bftInstanceId) {
this.viewID = viewID;
this.bftInstanceId = bftInstanceId;

}

@Override
public short getPrimary() {

return (short) (
(viewID + bftInstanceId) % REFITConfig.TOTAL_NR_OF_REPLICAS

);
}

}

Code A.1: Primary selection protocol

85

86 APPENDIX A. JAVA SOURCE CODE

package refit.replica.multileader;

import java.util.Set;

/**
* Predictor interface.
* All predictor implementations must implement this interface as the base.
* Predictor must provide the implement of given methods using the application
* specific knowledge. For example, an implementation for key-value store
* can look at the given request, parse it and find the key and then use that
* key to return the set of partions the request will access.
*
* Created by Zeeshan
*/
public interface Predictor {

/**
* parse the given request using application knowledge and return set
* of objects
*/
public Set<Object> predictObjects (byte[] request);
/**
* for given set of objects find the set of partitions containing
* given objects
*/
public Set<Short> getPartitions (Set<Object> objects);
/**
* for given set of partions find a BFT instance that will actually
* execute the request through a deterministic rule
*/
public short execBFTInstance (Set<Short> partitions);
/** a mapping function which returns the partition id of given object **/
public short objectToPartition (Object object);

}

Code A.2: Prefictor interface

87

package refit.replica.execution.multileader;

/**
* An enumeration to distinguish different request types. Each ordered request
* in queue will have this property to identify whether the request is a
* simple-request or a cross-border request. If it is a cross-border request
* then identify whetherit is cross-border exec or a cross-border-sync
* request.
*
* Created by Zeeshan
*/
public enum MLOperationType {

/** simple request **/
EXECUTE,

/** cross-border request that will be executed **/
CROSS_BORDER_EXECUTE,

/**
* cross-border request that will be synchronised with corresponding
* cross-border-execute request
*/
CROSS_BORDER_SYNC;

public static MLOperationType fromOrdinal(int ordinal) {
return values()[ordinal];

}
}

Code A.3: MLBFT request types

88 APPENDIX A. JAVA SOURCE CODE

package refit.replica.multileader.concurrent;

/**
* A wait/notify signal class to capture missed signals. If
* a thread goes into waiting state after it has received
* a notify signal then the notify signal will be missed.
* Java monitors do not keep method calls to wait/notify.
* This class avoid objects to keep waiting forever because
* notify signal was missed.
*
* Created by Zeeshan
*/
public class WaitNotifySignal {

private Object monitor;
private boolean signaled;

public WaitNotifySignal() {
this.monitor = new Object();
this.signaled = false;

}

public void doWait() {
synchronized (this.monitor) {

while (!this.signaled) {
try {

this.monitor.wait();
} catch (InterruptedException e) {}

}
this.signaled = false;

}
}

public void doNotify() {
synchronized (this.monitor) {

this.signaled = true;
this.monitor.notifyAll();

}
}

}

Code A.4: Wait/Notify signal object for partition queue

89

package refit.replica.execution.multileader;

import refit.config.REFITConfig;
import refit.config.REFITLogger;
import refit.message.REFITRequest;
import refit.replica.execution.REFITExecutor;
import refit.scheduler.REFITScheduling;

import java.util.HashSet;
import java.util.Set;

/**
* A worker thread that will pick the request at head ordered in the queue and
* execute it. It will distinguish between different types of request.
* For example, simple-request does not need any synchronization so it will
* just execute normally. In case of cross-border request it must synchronise
* all the relevant partitions and worker thread operating on them.
* After synchronization the request will be executed and worker will move on
* to next request. If there is a deadlock then worker thread will delegate
* the responsibility to deadlock-resolver and wait until the deadlock has
* been resolved.
*
* Created by Zeeshan
*/
public class MLExecWorker extends Thread {

private final short bftInstanceId;
private final MLOperationQueue queue;
private final REFITExecutor executor;

public MLExecWorker(short bftInstanceId, MLOperationQueue queue,
REFITExecutor executor) {

this.bftInstanceId = bftInstanceId;
this.queue = queue;
this.executor = executor;
this.setName("MLExec-" + this.bftInstanceId);

}

private void executeRequest(MLOperation request) {
if (this.queue.lockIfAtHead(this.bftInstanceId,

request.getRequest())) {
this.executor.processRequest(request.getRequest(),

request.getAgreementSeqNr());
this.queue.unlockAndRemoveHead(this.bftInstanceId,

request.getRequest());
}
this.queue.notifyOtherPartitions(this.bftInstanceId);

}

Code A.5: Execution stage worker thread

90 APPENDIX A. JAVA SOURCE CODE

private void executeCrossBorderRequest(MLOperation request) {
try {

boolean execute = waitForOtherPartitions(request);
if (!execute) {

return;
}

this.executor.processRequest(request.getRequest(),
request.getAgreementSeqNr());

crossBorderRequestFinished(request);
this.queue.notifyOtherPartitions(bftInstanceId);

} catch (Exception e) {
REFITLogger.logError(this, "Error executing cross-border request:

" + e.getMessage());
}

}

private void executeCrossBorderSync(MLOperation request) {
this.queue.notifyOtherPartitions(bftInstanceId);
queue.waitUntilAtHead(bftInstanceId, request.getRequest());

}

private boolean waitForOtherPartitions(MLOperation request) {
Set<Short> partitions = request.getPartitions();
while (!requestAtHead(partitions, request.getRequest())) {

boolean resolved = this.queue.detectAndResolveDeadlock();
if (resolved) {

this.queue.notifyOtherPartitions(bftInstanceId);
} else {

this.queue.waitUntilSignaled(bftInstanceId);
}

/* after deadlock resolution request might have been re-ordered */
MLOperation operation = queue.peekFirst(bftInstanceId);
if (!operation.getRequest().equals(request.getRequest())) return

false;
}
return true;

}

private void crossBorderRequestFinished(MLOperation request) {
Set<Short> partitions = request.getPartitions();
for (short partition : partitions) {

queue.unlockAndRemoveHead(partition, request.getRequest());
}

}

Code A.6: Execution stage worker thread (cont 0d)

91

private boolean requestAtHead(Set<Short> partitions, REFITRequest
request) {

Set<Short> lockedPartitions = new HashSet<>();
for (Short partition : partitions) {

boolean locked = queue.lockIfAtHead(partition, request);
if (locked) {

lockedPartitions.add(partition);
} else {

unlockPartitons(lockedPartitions);
return false;

}
}
return true;

}

private void unlockPartitons(Set<Short> partitions) {
for (Short partition : partitions) {

queue.unlockPartition(partition);
}

}

@Override
public void run() {

while(true) {
try {

MLOperation request = queue.peekWait(bftInstanceId);

switch (request.getType()) {
case EXECUTE:

executeRequest(request);
break;

case CROSS_BORDER_EXECUTE:
executeCrossBorderRequest(request);
break;

case CROSS_BORDER_SYNC:
executeCrossBorderSync(request);
break;

default:
throw new RuntimeException("Unknown request type: " +

request.getType());
}

} catch (Exception e) {
REFITLogger.logError(this, "Error executing request: " +

e.getMessage());
}

}
}

}

Code A.7: Execution stage worker thread (cont 0d)

!
!

TRITA-ICT-EX-2015:137

www.kth.se

	Introduction
	Replication
	Faults
	Byzantine faults
	Purpose of this Thesis
	Suggested Approach
	Structure of this Thesis

	Background
	State Machine Replication
	Design and Performance
	Replica Coordination
	Execution
	Checkpoints
	Non-determinism

	Practical Byzantine Fault Tolerance
	Motivation
	Protocol

	Related work
	Agreement
	Parallel state-machine replication
	Spin One's Wheels?
	Mencius
	Scalable BFT for Multi-Cores

	Execution
	All about Eve
	On-Demand Replica Consistency
	Storyboard

	mlbft: A Multi-leader Approach
	System Model
	Client
	Client Proxy
	Client Requests

	Replica
	Service State
	State Partitioning

	Assumptions
	Deadlocks in Application Service
	Programming Model
	Cryptography

	Protocol design
	Basic Principle
	Request Execution
	Prediction
	Agreement
	Partial Order
	Total Order

	Execution
	Handling Cross-Border Requests
	Handling Mispredictions
	Deadlocks
	Before Execution
	After Execution
	Ordered queue

	Safety and Liveness
	Checkpoints
	View-Change
	Implementation
	Extension of Conventional BFT protocols
	Re-write mlbft
	Comparison

	Evaluation
	Amdahl's law
	Implementation
	Microbenchmark
	Key-Value Store
	Evaluation Setup
	Results
	Payload
	Response time
	CPU usage
	Cross-border requests
	Deadlocks
	Memory usage
	Multicore CPU
	Read requests

	Conclusions
	Conclusion
	Goals
	Insights
	Sustainable Development
	Challenges
	Deadlocks
	Mispredictions

	Future work
	What has been left undone?
	Next obvious things to be done
	More Case Studies
	Deadlock Resolution
	Fault Handling
	Batching and reply Digests
	Thread pinning

	Required Reflections

	Bibliography
	Java Source Code

