&SRO ’
‘C F
5 Z
Research Report 18/98 e, ol
KARLSKRONA
RONNEBY

Developing a Language for
Participation -

Project Language as a Meeting Place for
Users and Developers in Participatory
Software Development

by

Yvonne Dittrich

Department of ISSN 1103-1581

Computer Science and Business Administration ISRN HK/R-RES—98/18—SE
University of Karlskrona/Ronneby

S-372 25 Ronneby

Sweden

Developing a Language for Participation - Project Language as a Meeting Place for Users
and Developers in Participatory Software Development

by Yvonne Dittrich

ISSN 1103-1581
ISRN HK/R-RES—98/18—SE

Copyright © 1998 by Yvonne Dittrich
Allrights reserved
Printed by Psilander Grafiska, Karlskrona 1998

Developing a Language for Participation

Project Language as a Meeting Place for Users and Developers in
Participatory Software Development

Yvonne Dittrich
Department of Computer Science and Business Administration
University of Karlskrona/Ronneby
Soft Centre 37225 Ronneby
+46 457 78783
Yvonne.Dittrich@ide.hk-r.se

ABSTRACT

During participatory development different professional
groups with different professional languages meet. They
have to communicate about the future software in a
profound way. To enable that, a common way to talk
about the future software has to be developed, relating
concepts of the use context and concepts of software
development. An example of the development of such a
project language is given and the relevance of this for
design is argued for. To support the development of a
project language a toolkit is provided in which methods
are compiled that respects the creative side of ordinary
language.

Keywords
Ordinary language,
communication.

INTRODUCTION

In participatory software development, different professio-
nal groups meet in order to design, develop, and finally
use software. Usually, these groups come from different
professions with different practices and skills. To really
participate in development the users somehow have to
understand about technical possibilities and the design
alternatives. To be able to develop software that is
supporting the users, developers have to be able to
discuss about the embedding of the software in the work
practice. The issue to support users to participate in
design and means like mock-ups, rich pictures, or
prototyping is widely discussed in the participatory
design community. (See for example [10], and [23])
However many of the methods focus implicitly or
explicitly [20] on the early phases of development. The
outcomes of the participatory design phases are handed
over to software developers working in a more or less
traditional way. The problem then is, if and how the
results of such a process can be communicated to the
developers.

participatory development,

Based on an example of a student project at the Hamburg
University I argue for the importance of the development
of a common language as a framework of reference for the
articulation of the future users as well as the design of the
software. This common language allows to express the
(designed) relation between the future software and the
work practice developed. The development of a project
language is argued to be part of the design and

development work. The participation of the developers in
the participatory design process therefore is as important
as the user’s.

Already in traditional software development a project
specific language evolves over time; specific terms for
example about details of design are coined, a special way
to anticipate the use context and its relation to the
software is developed. For participatory development
equal opportunities for all participants to contribute have
to be cared for in order to prevent a domination of one
perspective, which is in most cases the developers’. A
project language that is developed through and provides
the means for communication and crossing of the different
perspectives can serve as a meeting place for users and
developers.

In order to support equal opportunities of contribution a
‘project language toolkit’ is provided that compiles
methods to support the language side of software
development while respecting the creative aspects of
ordinary language.

This project language toolkit is introduced in the last
section. To provide a background, in the next section the
language side of software development is discussed. After
a first clarification, of what is meant by language, an
example for a project language is provided. Already in a
small scale student project the development of project
specific terms and concepts can be observed. The
development of a project language goes hand in hand
with a corresponding design. After this, the following
section discusses different approaches to address the
language side of development and communication. The
specific approach in this article is argued. It is argued that
language itself can not be subject to design. Therefore the
toolkit focuses on the facilitation of the communication
that is necessary for language development and methods
to mirror and capture the language under development.
The article concludes with a summary and shows future
issues in research about language and software
development.

Throughout the article the argumentation builds on the
design perspective of software development. [11] The
development of software which is embedded in work
practice can not just be regarded as the construction of a
technical artifact. Together with the computer application

the use and the embedding work practice is developed.
Software development for socially embedded systems has
to take that into account.

The contribution of the future users as specialists of their
work practice is required as much as the computer science
competence of the developers. As the use context is
changed through the introduction of computer
applications, the co-development of work practice and
technology requires an evolutionary approach. The
construction of prototypical versions and their evaluation
in use have to be intertwined. [11]

In Christiane Floyd’s context in Berlin and Hamburg
methods and tools have been developed, to allow for
participation also on a level of architectural design and
data modeling. [29, 30] Therefore a close cooperation
between software developers and users is required. This
cooperation consists to some extent of a joined
anticipation of the future computer application and the
changed work practice. It relies heavily on
communication and therefore on language and other
symbolic means, the more as the product itself can be
regarded as a symbolic artifact.

However, even speaking the same basic language —
English or German or any other — work languages and
professional languages differ as do the professional
backgrounds. During the common development process
the different perspectives have to be related. A common
language has to be developed in order to achieve a mutual
understanding.

LANGUAGE, PRACTICE, AND DESIGN

As I hinted at in the last section, the communicational
problem can not be solved through just translating the
differing concepts. Our language is part of a special
practice, a special way of relating to and of acting in
situations. It is inseparably related to that practice. The
meaning of terms and utterances depends on their use in a
specific pragmatic context. It can not be separated from
that context.

Both users and developers have their own professional
language that is closely related to the different work
practices. Already telling about the work is another
practice and requires different concepts, a different
language.” To really understand the other’s language it
would require to take part in the other’s work practice.

If users and developers speak different languages, how
then can they understand each other? Pelle Ehn, who also
uses the Wittgenstein’s language games to conceptualize
the difficulties in understanding between users and
designers, emphasizes the necessity of tangible design
artifacts like mock-ups and prototypes providing hands

" This understanding of language can be related to

Ludwig Wittgenstein’s concept of language games. For
detailed argumentation see [8] or [9].

? See [16] for more details. The new way of talking
about the work may result in a change in the work
practice even before the software is developed. [21, pp.
99]

on experience for the users and allowing them to
articulate concrete proposals and feed back. [10] These
artifacts serve as ‘boundary objects’ bridging the gap
between the language games of the use context and the
language games of design. In the example described in
the next section, it becomes visible that not only
common design artifacts are used, but a common
language is developed.

Language itself is not only a fixed set of vocabularies and
a set of rules. It is means and product of human
interaction with the surrounding. We encounter in our
everyday life a lot of situations that challenge us to
express new aspects of life or new perspectives on well
known areas of discourse. To communicate about that,
we search for words, try out terms, express ourselves in
odd ways and we ask the people we are talking with to
contribute their understanding” In the ongoing
communication new expressions are tried out, and
evaluated regarding to their contribution to a mutual
understanding. With this development of language the
pragmatic context develops as well.

Software design and development is a special kind of
practice, a design practice. A not yet existing computer
application has to be anticipated, represented, and finally
implemented. Therefore software development relies
heavily on language and other symbolic means like
graphical notation, programming languages, or mock
ups. To anticipate the relation between a future work
place and the software under development the cooperation
between developers and future users is necessary part of
that practice. A project specific form of design practice
and a corresponding project language has to be developed
in order to co-develop the computer application and the
embedding work practice. This development is
depending on communication. Users and developers have
to ‘talk themselves together’. The result can be regarded
as a project language based on a common practice and
common design artifacts.

To illustrate what such a project language might look
like and how it relates to the evolving software the
following section gives an example.

* This understanding of language is based on Wilhelm
von Humboldt’s language philosophy. [17]. He describes
language as having two aspects: It can be described as
‘ergon’, a set of rules an a vocabulary, a dead mass that
we encounter, when we want to express ourselves. And it
can be regarded as ‘energeia’, as the perpetual work of
using oral and written signs to express our thoughts and
perspective. Both aspects depend on each other. We use
the already developed system as a base for everyday
communication, but contribute to its ‘maintenance’
through using it in new ways, developing it according to
actual needs. This way it is kept ‘alive’ as an up to date
means of communication in a changing world.

However, it is also possible to relate that perspective on
language to Wittgenstein’s ideas. (See [8, pp. 172ff].)

Interview

| Subject Intelw&ﬁx'— [..
[
Subject 1: < _ \

| Interview VI:

XXX

1| o] m| v T~ Subject 1

Subject 2

Evaluation: ... =

/'><><._

1wl v Interview I:

X Subject 1: ...

X subject 2: ...
\\ / |

Figure 1: Subject-Interview-Matrix

DEVELOPING A LANGUAGE FOR DESIGN
During the winter term of 95/96 Christiane Floyd and I
taught together a course on software development in the
computer science department at the University of
Hamburg. Part of the course involved the development of
a ‘project environment’ to support the planning, design
and evaluation of qualitative interviews. The students
used a Web server, developed a structure to categorize the
documents in an appropriate way, designed pattern
documents, and used common gateway interface (CGI)
scripts to implement support for the evaluation of
qualitative interviews according to [24].

Semistructured qualitative interviews were used for
another assignment during the course. Their evaluation is
based on the extensive development and use of
documents derived from the transcriptions of the
interviews: In each transcript relevant subjects are
identified. The sections of the interview where a subject
showed up are put together. The thematic index of the
transcript is the base of an evaluation of the corresponding
interview regarding the single subjects. As there are often
more than one interview, in a second step the subject
related evaluations of each interview are related to each
other. These connecting and comparing evaluation are the
foundation for the final report of the case study. To allow
for orientation, which subject showed up in which
interview is marked in a subject-interview-matrix.
Reviews are necessary throughout the evaluation process
to compensate for individual biases.

We decided to develop some support for the document
handling and development during the evaluation process
as part of the project environment.

The subgroup responsible for this small scale software
development project took part in the other assignments as
well. The development was organized in a participatory
way. Halfway through the course we planned some
reflection on our own language. We collected terms that
were new for the participants.” We identified different
groups of terms:

' The analysis focussed on the concepts. However, the

concepts are to be regarded related to their usage, their

The concepts, the students contributed with came on one
hand from the area of technical implementation, the Web
infrastructure and tools: WWW, pages, links, pointers,
HTML-constructs, URL, Browser are just a few
examples. These concepts were new for some students as
not all of them studied computer science as a major, the
others had to acquire them on another level.

Another set of concepts originated in the social science
methods to be supported through the project
environment: interview evaluation, protocols, to
transcribe, subject-interview-matrix, interview guidelines
among others were related to the use context.

A third set of concepts the students were to my surprise
totally unaware of. Nonetheless I found them in the
documents they produced themselves. These concepts
were specific interpretations of terms from the technical
implementation context as well as the use context:
‘document’ referred to the project specific documents
made available on the project server, ‘document types’
related to a project specific categorization of documents
like ‘protocols’, ‘background material’, or ‘interview

guidelines’. ‘evaluation documents’, and ‘pattern
documents’ described the specific support already
developed.

During the second part of the project additional concepts
from the area of technical implementation — Pearl, CGI-
scripts, references — and from the use context — subject
areas, thematic index, interpretation of an interview,
subject related evaluation, comparing evaluation -
showed up.

Meanwhile the project specific concepts developed as
well. Especially the ‘subject-interview-matrix’ changed
meaning and became relevant. As mentioned above, this
matrix is a table relating subjects to the interviews in
which they showed up. It is used in ‘paper based’
evaluation as well. In the project environment the web
based implementation of the subject-interview matrix
(Fig. 1, center) became a central navigation tool. The
headings of the interview dimension were realized as

pragmatic context. We understood them as pointers to
the broader language-practice context.

links to the subject oriented evaluations of each interview
(Fig. 1, right); behind the marks identifying a specific
subject appearing in an interview were links to the related
part thereof; the headings of the subject dimension were
realized as pointers to dynamic documents which
extracted parts from the different interview specific
evaluations and compiled them into one document
leaving room for a connecting and comparing evaluation
regarding one subject (Fig. 1, left). The term ‘subject-
interview-matrix’ was used for the document as well as
the navigational means it provided.” The change of
meaning for this term and the design and implementation
of the corresponding functionality can not be
distinguished. The development of language has to be
regarded as part of design.

Even during such a small project a special project
language had thus developed. This language consisted of
project specific interpretations of concepts from the area of
technical implementation as well as concepts originating
in the use context. The term ‘document type’ for
example was used for the categorization of the project
specific documents. The term ‘subject-interview-matrix’
is an example of a special interpretation of a concept from
the use context and its implementation using a different
technology.

Surprisingly the participants were not aware of these
concepts. As they took part in their creation, they were
not ‘problematic’ for them at all. The terms they
recognized as new were the already established terms from
the various domains which they had to acquire during the
project.

The even participation in design and development was
probably due to the small size of the group, a quite
common background, and a very intense cooperation; it
was not necessary to discuss the usage of terms as a base
for the development. In this specific case the development
of a common language was unproblematic. This is not
always the case. In bigger groups with a more
pronounced division of labor, it becomes a problem.

In our project the developers and the users worked close
together, both took part in doing and evaluating
interviews as well. This way developers had experience
from the use context as well. That is a quite unusual
situation. How can the development of a project language
in a more ‘normal’ situation be supported?

SUPPORTING THE CREATIVE SIDE OF LANGUAGE

The relevance of the users’ professional language for
software development has been recognized for a long
time, even outside the participatory design community: It
is in most cases regarded as an important source for
requirements engineering. Stamper and his group for
example developed based their method of software
development on the analysis of semantic and discourse
structure of the language of the use context. (See for

> The subject-interview-matrix had been evaluated
regarding the support for software development as group
work. [7]

example [32].) Other approaches try to support the
communication with the users about the requirements
specification by using a subset of natural language that
can be analyzed by a program. The resulting formal
representation can be subject to proofs of completeness
and ambiguity. (See [15] for an especially elaborated
example.)

Both ways address the communication and language
problem between users and developers with an emphasis
on control and formalization. Formalization of language
categories have thoroughly discussed in coordinator
debate. Winograd [33, p. 193] and Grudin [COOD, p.58]
pointed out, that software always formalizes categories,
explicitly or implicitly. But as ‘categories have politics’
(Suchman, [33, p. 177], it is important not to control or
formalize the language that serves as a means to decide on
these formal categories. Even the formalization of ordinary
language concepts of the use context implements an
implicit design decision.

Ordinary language is a highly optimized means to
communicate about and adapt to a changing environment.
Its ambiguity, its vagueness, its openness for change
allow for creative interaction and anticipation. To
constrain its creative side by control or formalization
would interfere with the creativity necessary for design.

The above described project language is a good example
in this respect. Even as we expected the development of
language to take place, we could neither anticipate what
that language would look like nor with in what kind of
computer support the project would result: Of course the
professional terminology of the use context as well as the
concepts and notations of methods and technologies from
the developers side is known. However, already the work
language of users and developers is related to local
contingencies, personal background and so on. Moreover
as I mentioned above, language is both medium and
product of interaction between individuals and their
surrounding. The development of a project specific
language and project specific concepts is to be regarded as
a creative achievement in situ.

This creative side of language is — as the example of the
‘subject-interview-matrix’ showed — part of the design
and development of software. From that point of view,
the development of a language to talk about the future use
and the implementation can be regarded as creating the
means of development. Design of the future software and
development of a project language go hand in hand. The
project language provides a common framework of
interpretation for the different symbolic and non symbolic
design artifacts [19] in the context of this specific project.
Without such a framework the communication and
common theory building [26] would be impossible.

The problem then is, how to support the creative side of
language, without controlling its outcome. One approach
focuses on facilitating the communication and allowing

the handling of communicational obstacles.” Another way
makes use of and supports the reflective aspect of
language. The developing concepts and terms are
represented in written or graphical form in order to feed
them back into the process. The development and
reflection of the common language and its relation to
design becomes a subject of the process itself.

In the context of Christiane Floyd’s group, quite a few
methods have been developed addressing specific aspects
related to communication an project language. However
there is not one right way to handle communicational
obstacles or to represent and mirror the developing
concepts. Compiling different methods into a project
language toolkit allows for a project specific answer to the
problems at hand.

A PROJECT LANGUAGE TOOLKIT

The reason for providing a toolkit is to support a flexible
situated way to care for the language side of software
development. The means and methods provided each
relate to a specific area of problems. However it is up to
the specific project to identify the actual problem and to
decide how, when, and in which combination to apply
the proposed means and how to adapt them if necessary.
Moreover, I do not claim completeness. There might be
other methods fitting for specific contexts. The structure
of the toolkit then might help to relate them to the
problems at hand.

The toolkit consists of two parts: The first is meant to
support handling obstacles in communication. The
second compiles methods and notations that support the
explicate (re)construction of concepts, both from the
application domain as well as regarding the invention of
new concepts for the future software. Communication —
talking listening, reflecting, arguing, and so on — is the
medium through which language develops. Whereas the
(re)construction of concepts refers to a special aspect of
language and other use of symbols. There oral or
typographical representation allows to make an
expression subject to reflection. To represent the language
side of the development process supports a more reflected

* Such means can be regarded as contributing to caring
for a communicative culture’ (german ‘Gestaltbildende
Projekttechniken’, [12]), a set of organizational,
communicational, and planning means developed by
Christiane Floyd as part of her methodological framework
for evolutionary and participatory software development,
STEPS. [13] Guidelines to support of the
communicational side of development are provided as
well as means to provide a organizational frame building
a sound base for the cooperation: Taking advantage of the
different perspectives involved by communicating and
crossing them; what organizational issues are important
as a fundament for cooperation; how to build and
maintain a network of mutual information and
integration; about the importance of a common project
language; defining roles and enacting them; practicing
constructive criticism.

and conscious
determining it.

development of language without

Part I: Communicational Obstacles

The precondition for the development of a common
language between developers and users is a working
communication between them. That means: both sides
are able to contribute their practices and their concepts;
there is a mutual acknowledgment of the different skills;
developers and users have to feel free to try out concepts
they are unfamiliar with and make errors doing so. But
reality is not necessary so.

Using concepts and methods from group therapy to
improve communicational competence

Poor communicational abilities are often a problem even
if the participants are willing to communicate. That
influences the development and use of software. Only if
all participants understand and agree on the solution, they
can contribute to the whole in a consistent way. Therefore
it is necessary to recognize design conflicts and solve
them through symmetrical communication. In our
societies we do not necessarily acquire those skills in a
normal upbringing. Jirgen Pasch showed in his Ph.D.
thesis, that even in pure computer scientist development
groups, the ability to communicate and solve conflicts
improves the quality of the solution considerably. [28]
For the interdisciplinary development groups in
participatory projects this applies even more. Pasch
proposes methods from family therapy and supervision to
help developing a symmetrical communication within the
development group. [28, p. 167 ff]

Qualification of participating users regarding technical
possibilities

Users often lack knowledge about technical possibilities.
The result is, that they can not take them into account
regarding the development at hand. The have to rely on
the computer scientists’ knowledge and biases. Specific,
custom tailored qualification can help to develop the
necessary competence. Such workshops should not focus
on the teaching of computer science methods and
notations, but on the technological possibilities and their
integration into the work context There have been a lot of
experiences around such workshops recorded in the
context of participatory design. (See for example [14,
22].) An important issue is that the qualification has to
be coordinated with the needs of the project and focus on
practical, relevant aspects. The teachers should come from
outside to support the development of an independent and
critical competence. If there is a strong hierarchy between
the different users, putting together status homogenous
groups for the qualification sessions should be
considered.

Ordinary language documents for design

Concepts and notation of the software development
methods used by the software developers tend to
dominate in the communication. This leads to a model
monopoly of the developers. [4] The users are forced to
express their contributions using categories that are not
their own. To counter that situation development
documents that are meant for discussion with the users

should be written in ordinary language, using the
concepts from professional language and work language of
the users. [5] gives an example of a set of documents
related to a specific development method. This relation
allows an easy ‘translation’ of use scenarios into class
design. Other approaches are presented in [6]. A detailed
glossary has to be developed together with these
documents to allow feed back, if the developers are to
understand not only the work practice but also the
relevant concepts. Design related terms and the
developing project language should be captured as well.
An author-critique-cycle during the development of these
documents helps ensure the mutual understanding.

Situation profile and discursive opening

Differences in status and power between the participants
can bias the communication. Users whose perspectives
are important for the development might not dare to
speak up. In his Ph.D. Thesis about discursive
requirements determination [1], Urs Andelfinger proposes
based on Habermas® ‘Theory of Communicative Action’
a ‘discursive opening’ of the situation: A situation profile
is developed presenting the participating actors, their
roles, interests, values, and criteria of success, the
interaction and communication culture and perhaps
relevant aspects of methods, notations, and tools used for
development. Related to this situation profile problems
that might bias the communication and the implication
on the project and its outcome are pointed out. The
discursive opening is achieved through presenting the
situation profile to the project group and discussing it.
The group itself has to decide upon measures to change
the situation.

Part Il: (Re)Construction of concepts

This second part compiles methods that support the
development of a project language by making the
concepts and their development explicit for the group
itself. From a language perspective, analysis and design
methods that include a special notation can be regarded as
providing a framework for the reconstruction and
construction of concepts in a way that is fitting for their
computer based modeling.* These methods do not reflect
the biases they impose on what can be described and how
it can be described. They are normally not fitting for a
participatory process. Formal or semi formal notations
require a training in mathematics or computer science to
be applied. The methods compiled here try to avoid both
disadvantages. Instead of biasing the language already in
an early stage, the objective is to make it explicit and
provide it as a resource for the further process. They start
from the professional language and work language of the
users. Of course these methods can be complemented
with more technical or formal notations, or by other
means of representation like rich pictures, mock ups, or
prototypes.

* For a linguistic describing a knowledge engineering
process as such a construction see [34]. Related to data
modeling the subject is discussed in [22].

Reconstruction of concepts

Methods for reconstructing concepts allow the explication
of individual or group specific concepts as a basis for a
discursive development of more intersubjective and
conventional concepts. These conventional concepts are
not to be mixed up with results of analysis. They can be
regarded as a background for the design and development
of software. Especially important for participatory design
is the possibility to represent more then one perspective,
more then one interpretation and use of concepts. Even if
the implementation of software requires one interpretation
that can be modeled in a formal language, this should be
designed considering the variety of meanings that might
exist in the use context.

Kelly-Repertory-Grids are proposed by Piepenburg to
visualize personal interpretations of concepts as a base for
further development [29, pp. 218ff] This method is
especially useful for vague, varying and perhaps
contradictory individual interpretations. Other
visualization techniques he adapts from moderation
techniques to mirror the actual stage of the discussion of
what interpretation should be the base for the further
development. [21, pp. 224ff]

Mathematical lattices can be used to visualize differences
and connections between concepts. ([1, 35]) Thereby the
relevant categories are introduced by the domain experts,
i.e. the users. The lattices can be applied by a single
person or by a group discussing the important
differentiation. These reconstructions can be used for the
design of a databases or the classification of big amount of
data on the interface. However, this method might be
most suitable for users who are familiar with
mathematical or formal thinking.

A ‘reference theory’ about the interpretation and usage of
relevant concepts represented through a special kind of
glossary is recommended by Reisin. [30] That reference
theory should be expanded and maintained throughout
the development process. It should not only capture the
concepts of the work context but also their formal
representation if they are to be modeled in the software.
For the latter Reisin recommends a semi formal abstract
data type like notation.

As Reisin emphasizes, the very representation of the
concepts from the work language might change their
interpretation: Representing them, making concepts
explicit, makes them accessible to reflection as well. As
all of the methods are developed to provide a foundation
for further design discussions, all of them more or less
provide a bridge to the construction of concepts that can
be modeled in the computer application. However, as
there is no straight forward relation between analysis and
design, the construction of computer based concepts can
be informed and supported by, but not derived through,
the reconstruction of language.

Construction of concepts

The construction of concepts to be modeled in the
computer application is often based on the usage of
metaphorical concepts that have an ordinary interpretation
as well as a formal one that can be implemented on a

computer. ‘Metaphorical descriptions can be used to
emphasize some chosen aspects of a phenomenon or
object while neglecting others, but never to explain the
whole.” [26, pp. 234] Design metaphors mediate between
the concepts in ordinary language and their formal
language model for the computer application. Aspects of
the use context are described as objects, methods, and
classes, or as entity and relationships. If one is able to
understand their computer based implementation, this
kind of metaphors allow for the control of whether a
concept is adequately modeled. They do not allow for the
estimation of how the future software will effect the work
practice.

Using fixed set of metaphors to guide analysis and design
Metaphors capturing the use perspective on a computer
application have often more or less unconsciously
informed the design. Maall and Oberquelle identified a
whole history of interface metaphors, putting the user in a
related role: machines, like compilers, need a ‘servant’ to
provide input and take care of the output, under a system
perspective computer and users are more or less
comparable components with different roles, and so on.
[25]

In user centered software development, metaphors are
used that describe the use aspects of the software in a way
that regards the user as a competent actor. Ziillighoven’s
software development according to the Tools&Material-
Metaphor provides a framework for analysis, design, and
implementation focusing on the user as a competent
expert. [31] Together with the proposed documents this
metaphor allows the discussion of the future design in a
way that is meaningful from a use perspective.

Nonetheless, it provides a fixed pattern of recognition in
analysis and a fixed set of categories for the construction
of the design concepts which imposes a specific
perspective on the use situation. This perspective is
limited, it focuses on a single user with identifiable tasks
allowing a flexible organization of work. Tasks requiring
intense cooperation or process control can not easily be
supported using this design metaphor. Even if the tasks
to be supported allow for the application of such a given
set of metaphors, the perception of the work practice as
well as the creative side of design is constrained.

Developing design metaphors during the process

In [27] Laura Neumann and Leigh Star shared their
experience and reflection in the context of their
participation in a large distributed project aiming to build
up the infrastructure for an integrated digital library.
Metaphors are used to communicate professional
backgrounds, interests and anticipations of different
professional groups participating in that project. They
call this net of metaphors a ‘meta-language’ [27, p. 232]
and a ‘boundary Infrastructure’ [27, p.237], that allows
for communication and cooperation throughout the
project. In the same way, as this usage of metaphors
helps to design the process [11], metaphors can be used
to design the product.

Instead of using a fixed set of metaphors like in the above
described approaches, metaphors for the display of the

tasks and the interaction with the computer are part of the
design process itself. Such in situ developed metaphors
might fit the specific task better If the developed
metaphors are used to guide the design, they can support
the conceptualization of the software by its users. Project
specific architecture patterns and implementation
frameworks would can rationalize the implementation.
The construction of the concepts to be modeled in the
computer application would then be guided by the project
specific metaphors. Metaphors and concepts are both part
of the project language. Making them explicit allow for a
consistent design fitting the requirements of the use
situation.

CONCLUSIONS

The concrete result of the work described in this article is
the project language toolkit, compiling a selection of
different methods dealing with communicational obstacles
and providing support for the development of a project
language. It is based on an empirical example underlining
the development of a common project language
development as foundation for participatory design, and a
theoretic discussion about language pointing to its
creative aspects. The background for both is an
understanding of software development that focuses on the
co-development of technology and work practice.

Perhaps because the user’s participation had been the
most missing aspect in design, the discussion in the
participatory design focuses mostly on the user’s
problems. However, if participatory development is only
claimed to be better, but not also easier for the
developers, it will not be applied in everyday
development. Participatory design and development have
to take the software engineer’s work into account. In the
observed development of a project language the
importance of the merge between development related
concepts and use related concepts became very visible. In
the toolkit I tried to consider the needs of the developers
as well as the users’. However, often much more seem to
be known about the work of the users where the software
should be embedded than about the work of the
developers were the participatory design methods are to
be embedded.

Software development is itself a skillful practice.
Methods, notations, computer aided software engineering
are the tools used in this work practice. Seldom the
mainstream software engineering discussion or the
alternative approaches consider the actual work practice of
software developers. (See [2, 3] for exceptions.) More
work in this area is necessary to develop methods that
support participation of users and development by
software engineers.

REFERENCES

1. Andelfinger, U. Diskursive Anforderungsanalyse und
Validierung — ein Beitrag zum Reduktionsproblem bei
der Systementwicklung. Dissertation am Fachbereich
Informatik der TH Darmstadt, Darmstidter
Dissertationen D17, 1995.

2. Button, G., and Sherrock, W. The Mundane Work of
Writing and Reading Computer Programs. ???

3. Button, G., and Sharrock, W. Occasioned practice in
the work of software engineers. in Jirotka, M., and
Goguen, J. Requirements Engineering. Social and
Technical Issues. London 1994

4. Braten, S. Model Monopoly and Communication.
Acta Sociologica 16 (2), 1973.

5. Biirkle, U., Gryczan, G., and Ziillighoven, H. Object-
Oriented System Development in a Banking Project:
Methodology, Experiences, and Conclusions. Human
Computer Interaction 10 (1995), 2&3, pp. 293-336.

6. Carroll, J. M. Scenario-Based Design. Envisioning
Work and Techynology in System Development. John
wiley & Sons, Inc 1995.

7. Dittrich, Y. , Heilbrock, J., Knickel, S., Loffler, A.,
and Savigny, P. v. Einsatz des World Wide Web zu
Unterstiitzung asynchroner Zusammenarbeit in
Softwareentwicklungsprojekten. in Kremar, H., Lewe,
H., and Schwabe, G. (eds.) Herausforderung
Telekooperation. Berlin 1996.

8. Dittrich, Y. Computeranwendungen und sprachlicher
Context — Zu den Wechselwirkungen zwischen nor-
maler und formaler Sprache bei Einsatz und Entwick-
lung von Software. Frankfurt 1997.

9. Dittrich, Y. How to make Sense of Software.
Interpretability as an Issue for Design. Submitted to
the CSCW98.

10.Ehn, P. Scandinavian desgin: On participation and
skill in:Schuler, D., and Namioka, A. Participatory
Design. Principles and practices Hillsdale, N.J.
1993.

11.Floyd, C. Software development as reality construc-
tion. in: Floyd, C. et al. (eds.): Software Develop-
ment and Reality Construction. Springer Verlag:
Berlin 1992.

12.Floyd, C. STEPS-Projekthandbuch. Universitét
Hamburg 1992, and Arbeitsunterlagen zur
Lehrveranstaltung ‘Einfiihrung in die

Softwaretechnik.” Universitdit Hamburg 1994.

13.Floyd, C., Reisin, F.-M., and Schmidt, G. STEPS
to Software Development with Users. in: Ghezzi, G.,
McDermid, J.A. (eds.) ESEC ’89. Berlin 1989.

14.Floyd, C., Mehl, W.-M., Reisin, F.-M., and Wollf,
G. Projekt PEtS: Partizipative Entwicklung trans-
parenzschaffender ~ Software fir ~ EDV-gestiitzte
Arbeitspliatze. Endbericht an das Ministerium Afiir
Arbeit, Gesundheit und Soziales des Landes
Nordrhein-Westfalen, Technische Universitdt Berlin
1990.

15.Fuchs, N. E., Schwittner, R. Attempo Controlled
English (ACE), The First International Workshop on
Controlled Language Applications, Katholieke
Universiteit Leuven, 26-27 March 1996.

16. Holmgqvist, B. Work and Perspective in: Andersen,
P. B., and Bratteteig, T. (eds.) Computers and
Language at Work — The relevance of language and
language use in development and use of computer
systems. Oslo Institute of Informatics, Research
Report no. 126, ISBN 82-7368-030-4.

17. Humboldt, W. v. Gesammelte Werke in fiinf Bdnden.
Edited by Flitner, A., and Giel, K., reprint of the 3.
edition, Stuttgart 1995.

18.Jansen, K. D., Schwitalla, U., Wicke, W.
Beteiligungsorientierte Systementwicklung. West-
deutscher Verlag, Opladen 1989

19.Keil-Slawik, R. Artifacts in Software Design. in:
Floyd, C. et al. (eds.): Software Development and
Reality Construction. Springer Verlag: Berlin 1992.

20.Kensing, F., Simonsen, J., and Bedker, K. MUST -
a method for participatory design. in: Blomberg, J.,
Kensing, F., and Dykstra-Erickson, E. Proceedings of
the participatory design conference 1996 Cambridge
Ma.

21.Kilberth, K., Gryczan, G., and Ziillighoven, H.
Objektorientierte Anwendungsentwicklung —
Konzepte, Strategien, Erfahrungen. 2. Edition,
Braunschweig/Wiesbaden 1994.

22.Klein, H. K., and Lyytinen, K. Towards New
Foundations of Data Modeling. in: Floyd, C. et al.
(eds.): Software Development and Reality
Construction. Springer Verlag: Berlin 1992.

23.Krabbel, A., Wetzel, 1., and Ratutski, S.
Participation of heterogeneous user groups: Providing
an integrated hospital information system. in: :
Blomberg, J., Kensing, F., and Dykstra-Erickson, E.
Proceedings of the participatory design conference
1996 Cambridge Ma.

24.Lamnek, S. Qualitative Sozialforschung. 2 Volumes,
3rd Edition, Miinchen 1995.

25.MaaB}, S., and Oberquelle, H. Perspectives and
Metaphors for Human-Computer Interaction in:
Floyd, C. et al. (eds.): Software Development and
Reality Construction. Springer Verlag: Berlin 1992.

26.Naur, P. Programming as Theory Building.
Microprocessing and Microprogramming 15(1985),
253-261.

27.Neuman, L.J., and Star, S.L. Making infrastructure:
The dream of a common language. in: : Blomberg, J.,
Kensing, F., and Dykstra-Erickson, E. Proceedings of
the participatory design conference 1996 Cambridge
Ma.

28.Pasch, J. Software Entwicklung im Team — Mehr
Qualitdt durch das dialogische Prinzip bei der
Projectarbeit. Berlin Heidelberg 1994

29. Piepenburg, U. Semantikerstellung in der Software-
entwicklung- Qualitdtszirkel bei der

Anwendungsentwicklung. Dissertation. Fachbereich
Informatik, Universitdt Hamburg 1994.

30.Reisin, F.-M. Kooperative Gestaltung in partizipa-
tiven Softwareprojekten. Frankfurt am Main 1992.

31.Riehle, D., and Ziillighoven, H. A Pattern Language
for Tool Construction and Integration Based on the
Tools&Materials Metaphor. in: Proceedings of the
First Conference on Pattern Languages of Programs
(PLOP '94), Monticello, Illinois, August 4-6, 1994,
Paper B.

32.Stamper, R. K. Social Norms in System Specification
— an outline of MEASUR. In: Jirotka, M., Goguen, J.

1st of October, 1998

Requirements Engineering: Social and Technical
Aspects. Academic Press 1994.

33.Suchman, L., Winograd, T., and others The
coordinator debate, Computer Supported Cooperative
Work 2(1994), pp. 177-190, and 3 (1995) pp. 31-95.

34. Weingarten, R. Die Konstruktion von Sprache im
technischen Medium. Habilitationsschrift Fakultét fiir
Linguistik und Literaturwissenschaften, Universitt
Bielefeld, Mai 1991.

35.Wille, R. Concepts Lattices and Conceptual
Knowledge Systems. Computers & Mathematics
with Applications 23 (1992), pp. 493-515.

