
Research Report 19/97

How to make Sense of Software -
Interpretability as an Issue for Design

by

Yvonne Dittrich

Department of
Computer Science and Business Administration
University of Karlskrona/Ronneby
S-372 25 Ronneby
Sweden

ISSN 1103-1581
ISRN HK/R-RES—98/19—SE

How to make Sense of Software. Interpretability as an Issue for Design

by Yvonne Dittrich

ISSN 1103-1581
ISRN HK/R-RES—98/19—SE

Copyright © 1998 by Yvonne Dittrich
All rights reserved
Printed by Psilander Grafiska, Karlskrona 1998

1

How to make Sense of Software
Interpretability as an Issue for Design

Yvonne Dittrich
Department of Computer Science and Business Administration

University of Karlskrona/Ronneby
S 37225 Ronneby

+46 457 78783
yvonne.dittrich@ide.hk-r.se

ABSTRACT
In the context of CSCW Ð especially through ethnometh-
odological work place studies Ð the stability of particular
work practices and therefore the ability to design software
that fits with continually evolving work practices is ques-
tioned. This challenge for software development has been
called Ôdesign for unanticipated useÕ. Using the concept
of interpretability, I attempt to answer this challenge.

A semiotic perspective on computer applications as for-
mal symbol manipulation systems is introduced. A case
study involving three alternative ways of using a com-
puter application shows how users make sense of such
symbolic machines. WittgensteinÕs concept of language
games is used as a Ôfigure of thoughtÕ to relate practice,
language, and the use of symbolic machines. The devel-
opment of an interpretation, fitting the implemented
symbol manipulation and supporting the specific under-
standing of the task, remains crucial for competent use.
Interpretability is introduced as a quality of computer
applications. In order how to support the user in develop-
ing her own interpretation, a concept for help systems is
described.

Keywords
computer supported cooperative work, interpretation,
language games, usability, software development.

INTRODUCTION
Questions about the design of usable software for groups
is at the heart of CSCW discourse. As Grudin states the
problems often are not the lack of technical means but
their interaction with cooperative activities in the use
context. [9] Here we have to face the ÔDesignerÕs
DilemmaÕ [2]: Through the implementations of technol-
ogy to support a task we change the network of commu-
nication and activity by which this task is achieved.
These arguments point to a fundamental challenge for the
design of software: How to refer to the relation between
computer application and the task at hand? How to de-
sign software for a specific use situation.

In the context of HCI a number of concepts have been
developed to describe and reason about that relationship:
For example the task adequacy of a computer application
describes how far a computer application supports the
fulfillment of a given task and transparency summarizes
the qualities which allow the user to understand the rela-
tionship between the computer application and the task at
hand.

In the context of CSCW and through ethnomethodologi-
cal studies, which focus on use of computers, these con-
cepts are questioned: For example people do not use
computer applications the way they are designed. [21]
The task is not fulfilled in a uniform anticipatable way.
People adapt their plans and their typical way of doing
things to the contingencies of the situation at hand. Plans
are resources for situated action. [24] What is perceived as
a task changes and requires an ongoing Ôarticulation
workÕ to maintain an understanding of what is to be done
under what circumstances. [7]1

The relationship between the computer application and
the task becomes problematic as the task is not fixed.
Task adequacy, transparency, and similar concepts can no
longer be regarded as qualities of the computer applica-
tion, but have to be regarded as attributes of a special use
situation. (See e.g. [16]) The designer is left in a prob-
lematic situation: She can not be sure about the usability
of her product even if some hints, such as using design
metaphors or guide lines for consistent interface design
could be followed.2

The discussion about consistency as a design quality
demonstrates this dilemma: Jonathan Grudin put forward
a case against consistency and argued that consistency has
to be subordinated to the task adequacy of the software.
[8] For the use of metaphors the same can be claimed.
However, as task adequacy can not be regarded as an at-
tribute of a computer application, no other criteria than
the evaluation of the specific use situations can be used as
guidance for design. This is one of the major arguments
for an evolutionary development that regards the use of
preliminary versions as part of the codevelopment of work
situation and computer application. [6] The application of

1 It is not surprising that these phenomenon show up in

the context of CSCW: The variation of interpretation
and use is not a problem when I am using my PC alone
in my office. It just becomes visible and an issue when
a group is using the program together. Then an at least
compatible interpretation and use has to be developed.

2 Some Authors distinguish between usability, describ-
ing use oriented qualities of software that are inde-
pendent of a specific use situation and the usefulness of
a computer application in such a situation. (E.g. [1].)
However, it sounds a bit strange for me to talk about
usability independent of an at least imagined use con-
text. It is like talking about hammers without knowing
about nails. So I do not use that distinction here.

2

design possibilities such as the use of metaphors, consis-
tency, its purposeful neglection, depend on the concrete
project and must be evaluated in relation the use situa-
tion.

However, even with an evolutionary approach the further
development of the use context, or the use in another
context is not considered. The challenge of the require-
ment for ÔDesign for Unanticipated UseÕ [21] reaches
deeper. Just as we can not anticipate the specific use
situation we can not design software that fits completely
with the work situation. Nonetheless, people manage to
use programs and make sense of software. How can we
support them in bridging the gap between the application
and their use situation?

This article tries to answer this challenge by referring to
the observation of unanticipated use. It argues for a per-
spective on computer applications as symbolic machines
that have to be interpreted to be used (section 2). How
then is such an interpretation developed? How do users
relate the symbolic machine to their task at hand? A case
study shows that such an interpretation depends not only
on the computer application but also on the usersÕ per-
ception of their task (section 3). Three student groups
used the same computer application for the same assign-
ment in different and unanticipated ways. The interpreta-
tion and the usage developed by each group can be related
to their corresponding understanding of their task.
WittgensteinÕs concept of language games is used as a
figure of thought, in order to deepen the understanding of
what has been observed (section 4). The symbolic
perspective introduced in section 2 allows me to make
use of the observations regarding the design of computer
applications (section 5). Making use of the concept of
interpretability, design possibilities that support the
usersÕ development of their own interpretations are
discussed (section 6). As an example, a new concept for
help systems allows users not only to understand the
software but to discuss and capture their own
interpretation. The article concludes by putting forward
some related research questions.

As the reader might have recognized, I am writing this
article as a computer scientist. Even though I use
qualitative social science methods and base my argu-
ments in philosophy of language the purpose is to im-
prove the development of computer applications, techni-
cal artifacts that constrain certain ways of use and open up
others. To achieve that I have to relate different scientific
perspectives. Where I recognized the need I explicate the
necessary changes in perspective.

COMPUTER APPLICATIONS AS SYMBOLIC
MACHINES
Consideration about the interpretability of software bene-
fits from a perspective on computer applications as signs
or sign systems. From a computer science perspective
this is nothing special. Computer applications can be
regarded as the implementation of formal symbol manipu-
lation, i.e. mathematical calculus on a technical device.3

3 Winograd and Flores give a comprehensible description

of the hierarchy of abstract machines where each level
can be regarded as an implementation of the next higher
and an abstraction of the next lower one. The lowest is
the actual hardware, the highest the application as per-

From a theoretical computer science point of view this
means that every computer application can, in principle,
be described in a mathematical notation. Focusing on the
use of computer applications, other qualities of mathe-
matical calculus become relevant: A calculus consists of
finite sets of signs and rules which can be used to form
and transform an infinite number of patterns of signs. In
her book about the development of the idea of mathemati-
cal calculus Sybille Kr�mer points out, that symbols in a
formal calculus only relate to other signs or to the rules of
transformation. The application of the calculus relies
solely on this internal meaning.4 Additionally, the appli-
cation of such symbolic machines depends on typo-
graphic symbols that are manipulated in a schematic way:
Typographic symbols are unambiguously distinguishable
so that the rules can relate to their attributes and their
arrangement. [11] From the use point of view, the signs
become independent of the temporal context. The mani-
pulation of the typographic symbols follow a schema.
They are only meaningful for producing the result. The
manipulation of numbers in typographical multiplication
are meaningless if taken out of this specific context. How-
ever, the implementation of a schema is independent of
who or what is implementing it. It does not matter if it is
a man, a woman, or a computer. Using formal language
we distinguish between the manipulation of the symbols
according to the rules and their interpretation. As long as
we are manipulating the symbols according to the sym-
bolic machines we do not have to refer to their possible
interpretation. The laws of multiplication are applied to
numbers, but are independent of what the figures stand
for. For example, for calculating the price of groceries or
developing some new weapon.

Using such a symbolic machine or its implementation on
a computer depends on developing of an interpretation of
the symbols and their manipulation regarding the situa-
tion at hand. Although the calculus rigorously defines the
relations between the signs, it does not imply how they
are interpreted. The recontextualisation of the decontex-
tualised manipulation of symbols is, as I will argue, a
creative achievement by the users. The following section
describes a case study that highlights the development of
such interpretations.

THE TALES OF THE THREE STUDENT GROUPS
To establish a concrete example of the use and interpreta-
tion of a symbolic system, three student groups using the
same computer application were observed and
interviewed. They were asked to perform a requirements
analysis for the same fictional example in the context of
their software development course.5 As a method they

ceived by the user. They also discuss the limits of that
perspective. [27]

4 Therefore applying a formal calculus the signs are
transformed in a regularity, that otherwise is the prop-
erty of machines. Regarding that history, the develop-
ment of the mathematical model of a computer before
any real computer existed is not surprising. [25]

5 The case study took place in the winter term 94/95 at
the University Hamburg, in the context of the course
ÔEinf�hrung in die Software TechnikÕ. The students
had to work in groups on all the assignments. For more
information about the case study see [4].

3

used task nets, a graphical notation to describe the
relationship between functional roles, tasks, and accessed
objects, that could also be used to design the embedding
of the future computer application. They began to work
on their assignment by using only pen, paper, and
boards. After two weeks they began to use the task net
editor, a graphical editor that allowed them to draw the
objects used for the modeling. Additionally it
implemented some functionality related to the rules of
how to apply the task nets.

The case study was carried out according to [12]: The
students were observed and taped three times: during
their first work meeting for the task net assignment, the
first time they used the computer tool and one of the last
meetings working on their task nets. They were inter-
viewed just before they started to use the editor and a
second time in connection with the last observation. The
tapes of the observations and the interviews were tran-
scribed. The detailed evaluation in [4] is based on the
transcriptions, additional documents concerning the edi-
tor, and the handouts for the software engineering course
related to the assignment.

During their learning phase all groups recognized the
computer application as a sign system to be interpreted:
They asked for the meaning of symbols at the interface
and answered them correspondingly. ÔThe dotted line
(representation) means you have to put something in
there.Õ6 They reasoned about how to ÔrepresentÕ the con-
nection between various nets.

For computer scientists the most striking result of the
study was that all three groups used the computer tool in
a completely different way and none of the groups used it
as intended by the developer. The analysis of the tapes
showed that this was due to different ways the task nets
were developed by the groups.

Due to the lack of space I will only give one example.
Using a special ÔcopyÕ-function of the task net editor one
could create various representations of the same task net
object. This functionality was meant to help keep consis-
tency in a set of drawings describing an interrelated set of
tasks on different levels of refinement. The same task net
object appeared in different drawings. The name Ð and
other attributes Ð of such objects were frequently changed.
Using the special ÔcopyÕ-function and other related func-
tionality these changes could be performed once for all
representations. Changing the name of a task in one of its
representation would change the inscriptions in all others
as well.

One of the groups talked about the task nets as ordered in
levels; the task nets could be organized in a way so that
each level describing a further refinement of a high level
representation of interrelated tasks. Additionally, they
thought about the different representations in a hierarchi-
cal order. The most abstract representation was the defin-
ing one. The other ÔlevelsÕ depended on this one. When
they found out about the special Ôcopy-functionÕ, they
interpreted Ð and used it Ð as if designed to keep consis-
tency across their various levels of refinement. During the
last session using the editor, they recognized that their

6 The original German was, ÔWenn das gestrichelt ist,

das hei§t dann, da§ da noch was reinkommt.Õ

hierarchical relation between the different representations
of one object was not supported by the system: They
tried to delete one object with all its representations by
deleting the representation on the highest level. However,
that was not possible. They finished their work a bit dis-
appointed by the editor.

A second group did not use the possibility of distributing
the various refinements on different drawings. Everything
was represented in one drawing. For aesthetic reasons
they were looking for the possibility of producing sym-
bols of a similar size. They found the ÔcopyÕ-function and
tried it out. Recognizing the dependency between the
resulting symbols, they regarded the function as error-
prone. A bit later they found out about another function
that was designed to disconnect representations of the
same object and used that to get independent objects of
equal size. Nonetheless, they regarded the whole idea as
bad design.

A third group used the special copy function without
problems after some initial difficulties. However they
were not satisfied with it: They perceived a special ar-
rangement of objects as a unit and wanted to refine them
together. However, that was not supported by the editor.
One had to copy and paste the objects one by one. They
regarded that as an unnecessary effort.

Each of the groups used the task nets in a specific way;
each of them developed additional notions and guidelines
Ð for example the different levels of refinement, the similar
granularity of tasks to be modeled on each level Ð, or
changed the meaning of existing terms. However, all of
these different ways of using task nets were consistent
with the definition of the method, even though each of
them resulted in a different interpretation and use of the
task net editor. The editor constrained its interpretations.
Interpretations that did not fit the implemented function-
ality were falsified by unexpected states of the application.
But it did not force one interpretation either. The compe-
tence usage was bound to the ability to develop an inter-
pretation that fitted the functionality of the computer ap-
plication and was suitable for the particular way of using
the task nets.

It is not surprising that methods Ð even related to com-
puter science Ð are interpreted and used in a way that
takes into account the situation at hand. (See e.g. [17],
[6], [3]) The point of this case study is that the groups
related the same computer application to their different
interpretation of notions and guidelines. They interpreted
and used the computer application to support their
groupÕs specific understanding of the task. Each of the
groups made sense of the computer application in a
different way.

Interpretation can be seen as a means to bridge the gap
between the actual design Ð that implements the devel-
opersÕ understanding of the use possibilities Ð and the
usersÕ understanding of the task at hand. Support for in-
terpretation would therefore mean support for unantici-
pated use. The following section introduces Wittgen-
steinÕs concept of language games as a figure of thought
in order to understand more about the interaction between
the userÕs language and practice, and the symbolic ma-
chine in the use situation.

4

LANGUAGE GAMES AND THE USE O F
COMPUTERS
The possibility of big variation in interpretation indicates
that the computer application does not have the main
influence in its use. The case study showed further that
the interpretation could be related to the usersÕ under-
standing of the task, to their conceptualization and their
practice. But how can that relation be understood? How
can we understand more about the role of the computer in
order to create a better design?

Using WittgensteinÕs concept of language games as a
Ôfigure of thoughtÕ, the different ways to apply task nets
and to talk about them can be described as different lan-
guage games. The usage of the computer application can
be described as causing a change in already existing lan-
guage games. The computer application itself can be re-
garded as constraining this language game. To explain
this step let me briefly introduce WittgensteinÕs concept
of language games.7

In his Philosophical Investigations, Wittgenstein argues
for a different perspective on language. Using metaphors,
examples, and pictures, he invites the reader to look at
the ordinary language as it occurs in everyday situations.
He emphasizes the idea that language is intertwined with
pragmatic action and both are relying on a common way
of life, a common established practice. Terms, and utter-
ances do not carry a meaning around with them, but be-
come meaningful through their use in a special situation,
related to a specific context. Wittgenstein uses games,
like chess, as a metaphor to describe the relation between
language and practice [28, PI 31]8: Words, like chess
pieces, become meaningful through their role in the
game. Each move follows a certain goal, relying on the
rules of the game as a means to define and achieve that
goal. Utterances do the same regarding the rules of lan-
guage use in a specific situation.

Games as a metaphor does not apply in every respect;
there is no predefined goal, and language does not have a
fixed set of rules. Language games change. ÔThere are
countless kinds: countless different kinds of use of what
we call ÔsymbolsÕ, ÔwordsÕ, ÔsentencesÕ. And this
multiplicity is not something fixed, given once for all;
but new types of language, new language games [É]
come into existence, and others become obsolete and get
forgotten.Õ [28, PI 23] Wittgenstein does not write about
the reasons for change of language games. He is not
interested in the ÔwhyÕ. We change the rules while we are
playing the games. ÔAnd is there not also the case where
we play and Ð make up the rules as we go along? And
there is even one where we alter them Ð as we go along.Õ
[28, PI 83] However in [28, PI 142] he clarifies his per-
spective of the relation between language and the world:
Language games correspond to a successful way of acting
in the material world. So if we change the material world
or our way of interacting with it Ð e.g. through the
development of technology Ð, our language changes too.

7 To assure that my interpretation is not pure fantasy I

relied on [23], the German commentary on Wittgen-
steinÕs Philosophical Investigations.

8The first part of the Philosophical Investigations is cited
by their numbers (PI Nr), the second is cited using the
page numbering of [28]

As I argued in the first section computer applications can
be regarded as technical implementations of formal sym-
bol manipulation. Wittgenstein describes logic and ma-
thematics as special language games. They differ regard-
ing the way rules are used and the role of meaning. In
order to relate them to normal language games, let us
have a closer look at rules and meaning related to lan-
guage games.

In the context of normal language games rules enable
mutual meaningful action of the ÔplayersÕ. In a social
setting we develop a special but common way of practice
and language. This enables us to communicate and coor-
dinate our action. Even Ôbreaking the rulesÕ of language
and action, acting and talking not to the established prac-
tice, becomes a means of communication. The rules of
language are based in a regularity developed by a com-
munity. Following rules or ÔbreakingÕ them meaning-
fully becomes an elaborated practice in itself.

The meaning of a term is not independent of itÕs use; it
is defined by it. As every term might be used in different
language games, it has different but related meanings.
Wittgenstein uses his metaphor of family resemblance
here: ÔÉfor the various resemblances between members of
a family: build, features, colour of eyes, gait, tempera-
ment, etc. etc. overlap and criss-cross in the same way. Ð
And I shall say: ÔgamesÕ form a family.Õ [28, Pi 67, see
also Pi 66]

As Wittgenstein used language games as a metaphor
there is no clear definition what is to be regarded as a
language game. He gives examples of different granularity
[28, PI 23]. Therefore, to apply the concept on a concrete
stituation means to describe language use and practice in
a consistent way as a language game.

The three student groups, trying to understand task nets
and using the graphical notation on their example, can be
described as the developing three different language
games. They tried to make sense of the method, inter-
preting the symbols and the rules for applying them,
adding additional concepts and rules Ð e.g. one group
invented different levels of refinement that should com-
prise tasks or subtasks of comparable complexity. This
development of language and practice was necessary to
apply the method in a for them meaningful way. But how
does the use of the task net editor, their specific symbolic
machine relate to that?

Wittgenstein writes as well about logic. Formal logic
and mathematics are a special kind of language game and
not an ideal for normal language use. They are unambi-
guously encircled by explicit rules. [28, PI 100-101]
They use symbols that have rigorously defined meanings.
Wittgenstein explains in an argument with a fictious op-
ponent the relation between strictly defined concepts, and
their normal language siblings: ÔThe kinship is that of
two pictures, one of which consists of colour patches with
vague contours, and the other of patches similar shaped
and distributed, but with clear contours. The kinship is
just as undeniable as the difference.Õ [28, PI 76]

So why apply that kind of language game that is so dif-
ferent from our ordinary language use. An explanation
might be found from the second part of the Philosophical
Investigations, although the text does not explicitly point
to formal language games: ÔWhat does man think for?
What use is it? Ð Why does he make boilers according to

5

calculations and not leave the thickness of their walls to
chance? After all it is only a fact of experience that boilers
do not explode so often if made according to these calcu-
lations. But just as having once been burnt he would do
anything rather than put his hand into a fire, so he would
do anything rather than not calculate for a boiler.Õ [28, PI
466] We use formal calculi Ð arithmetic Ð because expe-
rience showed that they are useful in specific situations.
They allow a more sound construction of technical arti-
facts like in WittgensteinÕs example, a more rigorous
coordination, better control over nature, technology or
even over social relations.

How do we use them then? How do we embed them in
our everydayÕs life. An example might be the use of
typographic multiplication on a market: Through various
action Ð measurement of the goods, copying of the price
per unit Ð the conditions for the application of that spe-
cific formal language game are constructed. Then the for-
mal language game is applied. Symbols are transformed
according to the rules of that context independent sym-
bolic machine. The result is then again used in the nor-
mal language game of selling and buying goods. It might
for example be rounded to do the customer a favor. The
formal language game of typographical multiplication
ÔconstrainsÕ the normal language game in so far as it
requires a certain input to be applied and its output has to
be interpreted regarding the actual situation. However, it
does not define the embedding language game. 9

The use of computer applications is not always as simple
as the market place example: There is not only an input
and an output, but often a modeling structure and its
manipulation, that has to be mapped to the situation at
hand. And as users normally do not implement the sym-
bol manipulations they do not know that much about it.
Not only did the three student groups have to develop a
fitting interpretation, they had to find out about the for-
mal symbol manipulation as well. The signs at the
interface and the algorithmic relations between the signs
had to be understood and put into relation to their pre-
vious perspective on task nets. Together with the inter-
pretation the language game of Ôapplying task nets to
model a work situationÕ developed into the language
game of Ôapplying task nets using the computer applica-
tionÕ. The difference in language games before implied
different language games while using the computer appli-
cation. The task net editor constrained the language
game: It required a special kind of interaction, e.g. one
can not refine a group of objects at once.10 Users had to
make sense of the special qualities of the model that was

9 For a wonderful example for the creative and purposeful

ÔbreakingÕ of rules imposed by a computer application
see [26]. In that special context the ÔbreakingÕ of the
rules in special situations becomes a rule itself. Here the
restriction of the software allows to communication of
specific circumstances by not following them, enabling
a special language game.

10 It influenced as well the cooperative aspect of the lan-
guage games: One group explicitly complained about
the mouse-monopoly. They had a very democratic way
of communication. That was not supported by a
computer application allowing only one of them to
interact with the application.

built up through that interaction, e.g. the connection
between different representations of the same object.
Nonetheless the task net editor did not define the interpre-
tation the groups developed, nor the evolving embedding
language games.

The development of a language game is not predictable.
It has to be regarded as a creative achievement by the
users. Additionally, an existing and working language
game, with a computer application embedded would
change. What does that mean regarding the design of
computer applications for single users as well as for
groups?

THE FREEDOM IN SIGNS
Before we go on to discuss design issues and a specific
example motivated by the case study and its evaluation
let us reflect on what we have achieved so far. I intro-
duced a perspective on computer applications as symbolic
machines, as decontextualised symbol manipulation
mechanisms. To apply a symbolic machine in a concrete
situation, it has to be interpreted by its users. The case
study showed that this recontextualisation is constrained
but not completely defined by the application. To under-
stand how the three student groups made sense of the
software, I used WittgensteinÕs concept of language
games and showed how different interpretations and, by
implication, different usage patterns, related to usersÕ task
specific language and practice.

The great variation in the observed ways of interpreting
and using the computer application could be related to
their former language games about using task nets. From
the design perspective it is interesting that none of the
groups used the tool as the developer intended. 11 So how
then are design and use of software related?

The idea that technology is influencing but not defining
its use is not new. Orlikowski, for example, argues from
a sociological point of view for an Ôinterpretive flexibility
of technologyÕ12:ÔI will use the term interpretive flexibil-
ity [É] to refer to the degree to which users of a technol-
ogy are engaged in its constitution (physically and/or
socially) during development or use. Interpretive flexibil-
ity is an attribute of the relationship between humans and
technology and hence it is influenced by characteristics of
the material artifact (e.g., the specific hardware and soft-
ware comprising the technology), characteristics of the
human agents (e.g., experience, motivation), and charac-
teristics of the context (e.g., social relations, task assign-
ments, resource allocations).Õ [19, p. 409] However this
Ôinterpretive flexibilityÕ is not infinite. It is constrained
by the organizational context as well as by the material
character of the technical artifact itself.

11Dirk Riehle who designed the tool as an illustration for

his development of a pattern framework for the design
and implementation according to the Tools&Materials
Metaphor [20] was still in Hamburg during the case
study.

12 [19] Orlikowski uses the concept of interpretation to
describe a more general phenomenon: the meaning as-
signed to a technology or technical artifact as a whole,
the images that influence the imagination about its em-
bedding and use. [19, p. 410]. For a philosophical ver-
sion see [22].

6

Whether computer based technology has a higher inter-
pretive flexibility because of its symbolic character Ð as
Orlikowski hinted at [19, p. 421] Ð is still an open ques-
tion. According to my argumentation, at least for socially
embedded computer applications, I support the notion
that the symbolic character is responsible for a special
kind of interpretive flexibility: The hardware is not used
to transform part of its environment in a material way but
to implement a symbolic machine, a mathematical calcu-
lus. The result of the application is not a material effect
that has to be anticipated, but a symbolic structure that
requires interpretation.

So the development of an interpretation is necessary to
use a computer application. On the other hand, a sym-
bolic relation can not be determined by the design in the
same way as a material relation: The relation between a
symbol and its meaning is dependent on creative inter-
pretation by humans. Using it in a different way only
requires a reinterpretation Ð not also a physical re-
arrangement. The case study is an example of this special
kind of interpretive flexibility. It demonstrated in detail
how the students, their understanding of the assignment,
and their interpretation of the method influenced their
interpretation of the symbolic machine and vice versa.

The symbolic and not materially implicated relation
between a computer application and its use context, offers
a great freedom in design. Which aspect of the area of
interest is modeled in which way is up to the developer.
She can even provide symbols and manipulation about
the symbolic machine itself, in order to provide informa-
tion about what is going on [5] or even to adapt the pre-
defined ways to act to the situation at hand [10].

On the other hand, even if one can anticipate the use dur-
ing design, there is no way to enforce the anticipation
through the design. One can not design away the neces-
sity of interpretation and with it the usersÕ freedom of
creative interpretation. We can not define the meaning of
our signs in real world situations in the same way as we
can control their manipulation inside the computer.

That implies that the question for design has to change.
Even as the orientation at the future use is still recom-
mended, total task adequacy, striving for a design that fits
perfectly for a specific work place becomes doubtful. In
his article ÔDesign for unanticipated useÕ Robinson
discussed certain design aspects that support more flex-
ible use of applications. He mentions several examples;
minimizing enforced sequentiality, providing overviews
and supporting peripheral awareness for quick orientation
after doing something else, supporting implicit
communication through the computer application as well
as an explicit discussion about its usage in order to sup-
port double level language.

On a more abstract level the question about the relation
between task specific support and flexibility of use be-
comes an issue: What kind and how much support to
provide and what to leave to the user? I will take up
these questions in the conclusion again.

However, as the case study showed, competent use de-
pends on an interpretation which enables the user to make
sense of the defined(!) and hence fixed symbol manipula-
tion. The next section introduces the concept of interpret-
ability to explore how to support the development of a
fitting interpretation.

INTERPRETABILITY AS AN ISSUE FOR
DESIGN
So far, the case study and its discussion has led to a from
a software development perspective somehow pessimistic
view. There is no longer a goal, a perfect solution to be
reached. Instead of a rule to follow and measurements
about deviation from the optimum we have to accept that
there is no one best way. According to the case study the
relation between the computer application and a specific
use situation is a creative achievement of the users. One
must anticipate the trade off between usability regarding a
specific situation and flexibility to support change and
unanticipated use.

The question is: How can we support the user in embed-
ding our (hopefully) good solution according to her
needs? How can we support her in developing an inter-
pretation and language games around the computer appli-
cation? As we can not control the usersÕ perspective on
the task or their way of relating the computer application
to what they want to achieve, we can only tell about the
software itself. As the design is based in anticipation of a
use situation, we have as well to explain this anticipation
in order to help the users understand not only what is
there, but also why it is like it is.

To make that point, I use the concept of Ôtheory build-
ingÕ in software development introduced by Peter Naur
[18]: To develop a program software developers built up
a theory, that allows them to explain and reason about
the design. This kind of theory is necessary to develop
and change the program in a consistent and defensible
way. Part of this theory is about how the program should
be used in an anticipation of the use situation. [18, p.
256] That means every computer application is ÔtunedÕ
for an anticipated use situation, and for a special interpre-
tation. The idea is to explicate the anticipated use so the
user can asses how far her situation, her perspective
matches. However, mismatches can not be avoided. Ex-
plicating the anticipated use also assists the user in inter-
preting the symbolic machine so that she can use it none-
theless.

Relating these ideas to SuchmanÕs ÔPlans and Situated
ActionÕ [24] sheds more light on the idea. The anticipa-
tion of the use situation can be regarded as a plan which
informs the software development. The development
results in a technical artifact that introduces a specific
arrangement of support and resources as well as
constraints into a use situation. The information about
the relation between the anticipation of use and the design
provides a necessary resource for the situated use of this
constraining support.

This explication can be done implicitly providing
ÔmapsÕ13 about the application and about the anticipated
use possibilities. There are existing techniques that can
be used this way: Paul Dourish proposed to use object
oriented technology to let the computer application give
ÔaccountsÕ about its operation. [5] He used copy machine

13 [John Hughes, personal communication] In a discussion

about the topic of the article John Hughes used the
metaphor of rough maps provided in tunnels and trains
of a subway system to enable the commuters to identify
their location and to relate it to their knowledge about
the city.

7

interfaces as an example. In case of an error, the machine
should display its actual state in order to enable the user
to reorder his copy job. From a computer science perspec-
tive this remains a simple example. Nonetheless, it was
subject to discussion, on which level of abstraction the
machine should be represented.14 Regarding the task net
editor this question would be even more difficult. There
is no guideline, what aspect of a computer application
should be accounted for, and on what level of abstraction.

Another possibility for such maps are representations on a
meta level telling about the operation of the system and
making parts of it available for change. An example is
Guido Gryczan process patterns that change the character
of workflow systems in a fundamental way; the process
descriptions that control the transport of documents be-
tween users are made available for the one working at a
task. She is able to look at the history of a process and
can change the description for the future work at it.

ÔAccountsÕ of computer applications as well as the usersÕ
control over the process descriptions of a workflow sys-
tem are design ideas using technical possibilities to pro-
vide the user with information about the operation of a
computer application. However, there is still a lot to dis-
cuss about it. Another approach is to provide explicit
explanations, e.g. in a help system focusing on explai-
ning the computer application and its intended relation to
the anticipated use context.

In the context of the case study a help system for the task
net editor was developed using the observations of the
case study to explore the requirements:15 It does not in
the first place focus on the anticipated tasks of the user,
but on explaining the objects one can manipulate and the
functionality provided in the menus. The help texts are
organized as a hypertext. As the task net editor was de-
signed according to the Tools&Materials approach [20]
we decided on texts about the implemented model of task
nets and texts about the manipulating functions. Texts,
describing complex task net related concepts like refine-
ment and relating them to the model and its manipula-
tion were added. The symbols of the symbolic machine
and their transformations are related to the language game
they are developed for.

To support the development of oneÕs own interpretation,
the users can add bookmarks and their own text in form
of user defined hypertext knots. These texts can be shared
among users. The feature allows to present and capture
deviating usage and interpretation.

One might argue that this approach would impose the
developerÕs anticipation of use on the users. This argu-
ment does not hold for the users we observed in the case

14Technical embedded systems have the special problem

that they are connected Ð in a very material way Ð to a
machine or a set of machines. So the argumentation in
this article would have to be rethought in some aspects
to be applied here. However, technical embedded sys-
tems are not the subject of this article. Here I use only
the idea of accounts about the state of an application.

15The following description of the help system is rather
short due to the special focus of the article. It is de-
scribed in [15] focusing on its Ôunanticipated useÕ in
the context of participatory design.

study. They formulated design proposals for further de-
velopment of the task net editor Ð oriented of course to
their own way of developing task nets. In other contexts
writing texts that express respect towards the judgment of
the users, and the obvious where there is the possibility
of changing the hypertext would probably encourage the
usersÕ deviating use and interpretation.

The proposed help system points forwards in a new direc-
tion. It does not claim to know what tasks the user will
perform with the help of the software, nor how he will or
should use it. It is designed to support the unanticipated
use by explaining the computer application and its rela-
tion to the anticipated use, and through this explanation
providing a sound base for the usersÕ own interpretation.

SUMMING UP
The major result of the article is a change in perspective
on the goal of use oriented software development. Instead
of striving for a better and better fit between the software
and the changing use context, the point I argue for is to
accept a gap between the formal language model of the
computer application and the situation at hand. The issue
then is to support the user in bridging the gap.

The case study showed that users develop an interpreta-
tion of the computer application in order to use it as sup-
port for what they perceive as their task. Using Wittgen-
steinÕs language games as a Ôfigure of thoughtÕ this can
be described as the development of an embedding ordi-
nary language game based on the previous language and
practice of the users.

The focus on interpretation as a precondition for compe-
tent use is supported by a semiotic perspective on com-
puter applications; they can be seen as formal symbol
manipulation implemented by a machine. This symbolic
machine is independent of the use context. To apply it in
a specific situation it has to be recontextualized by the
user; it has to be interpreted.

From a software development point of view this leads
back to the contradiction of Ôdesign for unanticipated
useÕ. How can the developer take something into consid-
eration, that she is not anticipating? The symbolic per-
spective opens up new possibilities; the connection
between the implemented formal symbol manipulation
and the anticipated use can be provided as a resource for
the user to develop her own interpretation. Techniques
from literature and an innovative concept for help systems
has been discussed as examples how to improve the in-
terpretability of a computer application.

This change in perspective points to a new set of research
questions as well:

How to handle the trade off between specific support and
flexibility for change? This raises new questions for soft-
ware development as well as for work place studies. What
is relatively fixed, and where should the user be able to
put forward her interpretation? How to model for flexible
use? Perhaps results from the field of domain specific
software development can be used here.

The second set of questions is related to explicit and im-
plicit ways to represent information about a computer
application to the user. What aspects are important? On
what level of abstraction? How to represent that informa-
tion? Work place studies about how users conceptualize

8

software would be helpful as well as ideas regarding ori-
entation and overviews in hypertext.

In the context of development of CSCWÐapplications
supporting unanticipated use would include supporting
for a group of users in developing a compatible interpreta-
tion of the common application. Features that allow dis-
cussing and capturing of interpretations are crucial regard-
ing this issue. The article contributed in pointing out the
need and in giving an example how such a support can
look like.

ACKNOWLEDGMENTS
I would like to thank the different persons who encour-
aged me and helped me to formulate the argumentation of
this article. John Hughes proposed to write an article after
discussing some aspects of the case study and the
ÔstrangeÕ application of WittgensteinÕs investigations. He
read a short draft of it and gave helpful comments. Ralf
Klischewski, from my former department at the Univer-
sity of Hamburg, and Olle Lindeberg, computer scientists
here in Ronneby, read and commented early versions of
the paper.

Jeanette Blomberg and Bo Helgesson made it possible for
me to participate in their post graduate course Work Prac-
tice and Technology last term in Ronneby without being
a student here. They as well as the other participants of
the course gave helpful comments.

REFERENCES
1. Blomberg, J., Suchman, L., and Trigg, R.H. Reflec-

tions on a Work-Oriented Design Project. Human
Computer Interaction 11 (1996), 237-265.

2. Button, G., and Dourish, P. Technomethodology:
Paradoxes and Possibilities. in Proceedings of the
ACM Conference on Human Factors in Computing,
CHI Ô96, (Vancouver BC Canada Ô96), ACM Press,
19-26.

3. Button, G., and Sharrock, W. Occasioned practice in
the work of software engineers. in Jirotka, M., and
Goguen, J. Requirements Engineering. Social and
Technical Issues. London 1994

4. Dittrich, Y. Computeranwendungen und sprachlicher
Context Ð Zu den Wechselwirkungen zwischen nor-
maler und formaler Sprache bei Einsatz und Entwick-
lung von Software. Frankfurt 1997.

5. Dourish, P. Accounting for Systems Behaviour: Rep-
resentation, Reflection and Resourceful Action. in
Proceedings of the Conference ÔComputers in Con-
text: Joining Forces in Design, Aarhus, Denmark
1995.

6. Floyd, C. Software development as reality construc-
tion. in: Floyd, C. et al. (eds.): Software Develop-
ment and Reality Construction. Springer Verlag:
Berlin 1992.

7. Gerson, E.M., and Star, S.L. Analyzing Due Process
in the Workplace. ACM Transactions on Office
Information Systems 4 (1986), 257-270.

8. Grudin, J. The Case Against User Interface
Consistency. Communications of the ACM 32 (1989),
1164-1173.

9. Grudin, J. Computer Supported Co-operative Work:
History and Focus. IEEE Computer, 2, (1994) 5, 19-
26.

10. Gryczan, G. Proze§muster zur Unterst�tzung koope-
rativer T�tigkeit. Wiesbaden 1996.

11. Kr�mer, S. Symbolische Maschinen. Frankfurt am
Main 1988.

12. Lamnek, S. Qualitative Sozialforschung. 2 Volumes,
3rd Edition, M�nchen 1995.

13. Lehmann, M.M. Programs, Life Cycles, and Laws of
Software Evolution. in Proceedings of the IEEE 68
(1980), 1060-1076.

14. Lilienthal, C. Konzeption und Realisierung eines an
der Anwendungssprache orientierten Hilfesystems
nach der Werkzeug-Material Metapher. Diplomarbeit
am Fachbereich Informatik der Universit�t Hamburg,
Juni 1995.

15. Lilienthal, C., and Z�llighoven, H. Techniques and
Tools for Continuous User Participation. in
Blomberg, J., Kensing, F., and Dijkstra-Erickson, E.
(eds.) Proceedings of the Participatory Design Con-
ference, 13.-15. Nov. Cambridge, MA 1996, 153-160.

16. Maa§, S. Transparenz Ð Eine zentrale Software-
ergonomische Forderung. Bericht des Fachbereichs
Informatik der Universit�t Hamburg, FBI-HH-B-
170/94.

17. Mathiassen, L. Systems Development and Systems
Development Methods. PhD Thesis, Computer
Science Department, Aarhus University (in Dennish),
1981.

18. Naur, P. Programming as Theory Building. Micro-
processing and Microprogramming 15 (1985), 253-
261.

19. Orlikowski, W. The Duality of Technology:
Rethinking the Concept of Technology in
Organizations. Organization Science 1 (1992), 398ff.

20. Riehle, D., and Z�llighoven, H. A Pattern Language
for Tool Construction and Integration Based on the
Tools&Materials Metaphor. in: Proceedings of the
First Conference on Pattern Languages of Programs
(PLOP '94), Monticello, Illinois, August 4-6, 1994,
Paper B.

21. Robinson, M. Design for Unanticipated Use. in
DeMichaelis, G., Simone, C., and Schmidt, K.: Pro-
ceedings of the Third European Conference on Com-
puter Supported Co-operative Work, Milan, 1993.

22. Rohbek, J. Technologische Urteilskraft. Zu einer
Ethik technischen Handelns Frankfurt am Main 1993.

23. Savigny, E. von Wittgensteins ãPhilosophische
UntersuchungenÒ, Kommentar f�r Leser. 2nd edi-
tion, 2 Volumes, Frankfurt am Main 1994.

24. Suchman, L. Plans and situated actions. The
problem of human-machine communication Cam-
bridge: Cambridge University Press 1987.

25. Turing, A. On Computable Numbers with an Appli-
cation to the Entwcheidungsproblem. Proceedings of
the London Mathematic Society, Ser. 2, Vol. 42
(1936-1937), 230-265, corrections: ibid, Vol. 43
(1937), 544-546. Repr. in: Davis, M. (ed.): The

9

Undecidable. Basic Papers on Undecidable Proposi-
tions, Unsolvable Problems and Computable
Functions. New York 1965, 289-291.

26. Whalen, J. Making Standardization Visible. ?

27. Winograd, T., and Flores, F. Understanding Lan-
guage and Cognition. Ablex Publishing Corporation
1986.

28. Wittgenstein, L. Philosophical Investigations, New
Yorck 1958. Cited by the author numbering, if not
marked otherwise.

