Duality in Multi-Commodity Market Computations

Fredrik Ygge and Hans Akkermans

Overview

- Introduction to electronic commerce.
- A price-oriented any-time algorithm.
- A resource-oriented multi-commodity algorithm.
- Conclusions

Example 1 - Selling a Motor Cycle

\[\begin{align*}
\text{motorcycle} & \succ \text{desk} \quad \text{if} \quad \$1000 \\
\text{motorcycle} & \succ \text{desk} \quad \text{if} \quad \$1000
\end{align*} \]

\(\succ \) means “is preferred over”

Example 2 - Selling Electricity

Thinkable Market Design

- Announce on a server, minimum price $1000.
- Collect bids.
- Select the highest.

Properties of the Design

The market algorithm is simple and easy to implement. Major obstacles for this kind of market are related to secure bids and transactions.
Consumer Preferences

200W \rightarrow 18C \succ 0.1

210W \rightarrow 19C \succ 0.15

240W \rightarrow 20C \succ 0.20

280W \rightarrow 21C \succ 0.15

and everything in between, e.g., 217.3987W, i.e. an infinite number of points.

Consumer Preferences (cont.)

The consumer preferences are modeled as *utility functions*.

\[u(r, m) > u(r', m') \Leftrightarrow \langle r, m \rangle > \langle r', m' \rangle \]

From the utility function one can compute:

- a demand, i.e. how much a consumer is willing to buy at different prices, and
- a price for which the consumer is willing to buy an additional (small) amount of resource at the current allocation.

Producer Preferences

The preferences of the producer are modeled by

\[\max p \cdot r - \text{cost}(r), \]

i.e. it maximizes its profits given the costs for production. From this one can compute both the supply and the price as in the case of a consumer.

Market Design

- Consumers
- Producers

? A Price-Oriented Approach

- Consumers
- Price
- Supply
- Auctioneer

Update price until supply meets demand (WALRAS, Newton methods). With many consumers and producers, they will typically reveal their true preferences (Sandholm and Ygge, IJCAI, 1997).

Problem

The resource can not be reallocated as long as there is a mismatch between supply and demand, and there might be time constraints.
Contribution 1 of the paper

An algorithm that produces feasible allocations from intermediate prices, also for the case of multi-commodity markets. (This presentation has, for simplicity, only been on two commodities, electricity and money.)

PROPORTION - Basic Principles

Excess demand: 6.
Total demand: 16.
Total supply: 10.

Allocate what is demanded to all agents holding a negative demand, and allocate 10/16 times their demands to all agents having a positive demand.

PROPORTION - Outcome Quality

For obtaining a good approximation of the equilibrium in the analyzed examples, 85 iterations are typically required. After applying PROPORTION after 5 iterations and 99.47% of the average utility improvement is obtained. For 10 iterations the number is 99.96%. The total excess demand is smaller after having applied PROPORTION after 5 iterations than after 85 iterations without PROPORTION.

Suggestion 2 - A Resource-Oriented Approach

Price
Allocation
Consumers
Producers

Advantages of the Resource-Oriented Algorithm

- At each step of the algorithm, feasible allocations are obtained.
- The computation of the price functions is significantly easier than the computation of the demand from the utility functions etc. presented above.
- The algorithm has excellent convergence properties.

Contribution 2 - A Resource-Oriented Algorithm for the Multi-Commodity Case

\[c_\alpha = -\sum \left(x_i \nabla \alpha \right) \times x_i \cdot \nabla \alpha \cdot \left(\sum x_i \mathbb{V} \nabla \alpha \cdot x_i \mathbb{V} \right) \]

This is not as bad as it looks! It is actually quite easy to implement and a C++ implementation is available on the web. Furthermore, for a wide class of problems the above formula can be reduced to:

\[c_\alpha = -\sum \left(x_i \nabla \alpha \right) \times x_i \cdot \nabla \alpha \cdot \left(\sum x_i \mathbb{V} \nabla \alpha \cdot x_i \mathbb{V} \right) \]

(The latter result is not part of the presented paper, but is contained in a submitted paper.)
Conclusions

- In computational markets with continuous resources, price-oriented and resource-oriented approaches are conceivable.
- We argued for the duality between price-oriented and resource-oriented and introduced:
 - a novel algorithm to produce feasible allocations from intermediate prices, and
 - a novel resource-oriented algorithm suitable also for the multi-commodity case.