
ISSN 1653-2090

ISBN 978-91-7295-130-3

In most business areas today, competition is hard
and it is a matter of company survival to inter-
pret and follow up changes within the business
market. The margin between success and failure is
small. Possessing suitable, sustainable information
systems is an advantage when attempting to stay
in the front line of the business area. In order to
be and remain competitive, these information sys-
tems must be up-to-date, and adapt to changes in
the business environment. Keeping business sys-
tems up-to-date in a business environment that
changes rapidly and continuously, is a huge chal-
lenge.
This thesis is concerned with end-user tailorable
software. Tailorable software makes it possible for
end users to evolve an application better to fit
altered business requirements and tasks. In the
view of tailorable software taken in this thesis, the
users should be seen as co-designers, as they take
over the design of the software when it is in use.
In this work, it is important that the users are
aware of the possibilities and limitations of the
software.
However, tailoring is not enough, because the tai-
loring capabilities are always limited, meaning that
tailoring cannot support completely unanticipated
changes. The tailoring capabilities must therefore
be extended, and tailoring activities must be coor-
dinated with software evolution activities perfor-
med by professional developers. This allows the
system to adapt continuously to a rapidly chang-
ing business environment and thereby live up to

the intention of the system. Studies so far have
tended to look at evolution from either a user
perspective or a system perspective, resulting in
a gap between development and use. This thesis
takes an overall stand and states that it is possible
to benefit from both the user and system per-
spectives, through collaboration between users,
tailors and developers.
This thesis also presents a set of tools to sup-
port collaboration on equal terms between users
and developers, in the technical design process of
evolving the tailorable software and extending the
tailoring capabilities. The toolkit aims at building
a common understanding of tailoring, supporting
democratic agreements and a common under-
standing of what kind of tailoring to implement.
It makes it possible for the users to take part in
technical design decisions and have a better un-
derstanding of trade-offs and system boundaries.
All of the research is based on field studies in-
cluding participatory observations, interviews and
workshops with users and developers. These stu-
dies led to the creation of prototypes and tools
that act as mediating artefacts when exploring the
research questions.
The contribution of the thesis is twofold. Firstly,
the thesis elucidates the need for a cooperative
design process to ensure that end-user tailorable
software remains useful and sustainable. Secondly,
the thesis suggests a toolkit with four different
tools to support such a cooperative design pro-
cess.

ABSTRACT

2008:03

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2008:03
School of Engineering

SuppoRTing The CoopeRATive DeSign
pRoCeSS of enD-uSeR TAiloRing

Jeanette Eriksson

S
u

p
p

o
R

T
in

g
 T

h
e

 C
o

o
p

e
R

A
T

iv
e

D

e
S

ig
n

 p
R

o
C

e
S

S
 o

f
 e

n
D

-u
S

e
R

 T
A

il
o

R
in

g
Jeanette Eriksson

2008:03

Supporting the cooperative

design process of end-user tailoring

Jeanette Eriksson

Supporting the cooperative

design process of end-user tailoring

Jeanette Eriksson

Blekinge Institute of Technology Doctoral Dissertation Series
No 2008:03

ISSN 1653-2090
ISBN 978-91-7295-130-3

Department of Interaction and System Design
School of Engineering

Blekinge Institute of Technology
SWEDEN

© 2008 Jeanette Eriksson
Department of Interaction and System Design
School of Engineering
Publisher: Blekinge Institute of Technology
Printed by Printfabriken, Karlskrona, Sweden 2008
ISBN 978-91-7295-130-3

To my family…

i

Abstract

In most business areas today, competition is hard and it is a matter of company survival
to interpret and follow up changes within the business market. The margin between
success and failure is small. Possessing suitable, sustainable information systems is an
advantage when attempting to stay in the front line of the business area. In order to be
and remain competitive, these information systems must be up-to-date, and adapt to
changes in the business environment. Keeping business systems up-to-date in a business
environment such as this one, the telecom business, that changes rapidly and
continuously, is a huge challenge. One way to approach this challenge is through
flexibility in systems. The power of flexibility is that it keeps the system usable and
relevant and allows it to evolve.
This thesis is concerned with end-user tailorable software. Tailorable software makes it
possible for end users to evolve an application better to fit altered business requirements
and tasks. In the view of tailorable software taken in this thesis, the users should be seen
as co-designers, as they take over the design of the software when it is in use. In this
work, it is important that the users are aware of the possibilities and limitations of the
software.
However, tailoring is not enough, because the tailoring capabilities are always limited,
meaning that tailoring cannot support completely unanticipated changes. The tailoring
capabilities must therefore be extended, and tailoring activities must be coordinated
with software evolution activities performed by professional developers. This allows the
system to adapt continuously to a rapidly changing business environment and thereby
live up to the intention of the system. Studies so far have tended to look at evolution
from either a user perspective or a system perspective, resulting in a gap between
development and use. This thesis takes an overall stand and states that it is possible to
benefit from both the user and system perspectives, through collaboration between
users, tailors and developers. It is necessary for users and developers to collaborate
closely in order to make tailorable information systems both durable and adaptable to
rapid changes in the business environment. In this way, the development of useful,
sustainable software, which adapts easily to changes in an evolving environment, can be
achieved.
This thesis also presents a set of tools to support collaboration on equal terms between
users and developers, in the technical design process of evolving the tailorable software
and extending the tailoring capabilities. The toolkit aims at building a common
understanding of tailoring, supporting democratic agreements and a common
understanding of what kind of tailoring to implement. It makes it possible for the users
to take part in technical design decisions and have a better understanding of trade-offs
and system boundaries. These are key factors for the successful future evolution of a
tailorable system, as it is the users who are the designers of the software during its
future use.
All of the research is based on field studies including participatory observations,
interviews and workshops with users and developers. These studies led to the creation

Abstract

ii

of prototypes and tools that act as mediating artefacts when exploring the research
questions.
The contribution of the thesis is twofold. Firstly, the thesis elucidates the need for a
cooperative design process to ensure that end-user tailorable software remains useful
and sustainable. Secondly, the thesis suggests a toolkit with four different tools to
support such a cooperative design process.

iii

Acknowledgements

First of all I want to express my gratitude to my research group. Without the good
fellowship in U-ODD this thesis would not have been possible. Thanks to Kari, Olle,
Christina and Jeff for illuminating discussions, feedback and support.
I want to thank the people at Telenor Sverige AB in Karlskrona, my industrial research
partner, who have participated in my studies, or otherwise supported my research in
various ways.
I also want to take the opportunity to thank…

… Professor Lars Lundberg and Professor Claes Wohlin for valuable feedback on
my thesis.

… Jeff Winter for helping me improve my written English.
… Associate Professor Yvonne Dittrich for her everlasting, ‘borderless’ support. I

also want to thank Yvonne for giving me the opportunity to do research in the first
place.

… Dr. Annelie Ekelin for participation and valuable feedback in evaluation sessions.
… Peter Warren for fruitful cooperation during my time at the Space and Virtuality

Studio (Interactive Institute AB) in Malmö.
I am also tremendously grateful to my family for putting up with me during the most
intensive periods of work and for supporting me whenever I needed it. Last but not
least, I also want to thank my parents who always support me with practical things,
making everyday life easier.
This work was partly funded by The Knowledge Foundation in Sweden under a
research grant for the project "Blekinge - Engineering Software Qualities (BESQ)"
(http://www.bth.se/besq).

iv

v

Papers Included in the Thesis

Paper I (Chapter 2): Olle Lindeberg, Jeanette Eriksson & Yvonne Dittrich, Using
Metaobject Protocol to Implement Tailoring; Possibilities and Problems, the 6th World
Conference on Integrated Design & Process Technology (IDPT 2002), June 2002.
Paper II (Chapter 3): Jeanette Eriksson, Olle Lindeberg & Peter Warren, An
Adaptable Architecture for Continuous Development; User Perspectives Reflected in
the Architecture, the 26th Information Systems Research Seminar (IRIS’26), Finland,
August 2003.
Paper III (Chapter 4): Jeanette Eriksson, Can End Users Manage System
Infrastructure? - User-Adaptable Inter-Application Communication in a Changing
Business Environment, the 4th WSEAS International Conference on Applied Informatics
and Communications, Spain and WSEAS Transactions on Computers, 6(3), December
2004.
Paper IV (Chapter 5): Jeanette Eriksson & Yvonne Dittrich, Combining Tailoring and
Evolutionary Software Development for Rapidly Changing Business Systems - What is
required to make it work? Journal of Organizational and End-User Computing, 19(2),
2007.
Paper V (Chapter 6): Jeanette Eriksson, Olle Lindeberg, Yvonne Dittrich, Four
Categories of Tailoring as a Means of Communication, submitted to the Journal of
Information Technology, February 2008.
Paper VI (Chapter 7): Jeanette Eriksson, Support of Cooperative Design of End-user
Tailorable Software, the 2nd IFIP Central and East European Conference on Software
Engineering Techniques CEE-SET 2007, October 2007. The title of the chapter is
Characteristics of End-User Tailorable Software.
Paper VII (Chapter 8): Jeanette Eriksson, Usability Patterns in Design of End-user
Tailorable Software , the 7th Conference on Software Engineering Research and
Practice in Sweden, SERPS’07, October 2007.
Paper VIII (Chapter 8): Jeanette Eriksson, Design Patterns in Design of End-User
Tailorable Software, submitted to the 10th biennial Participatory Design Conference
(PDC 08).

vi

Related Papers

Paper IX: Jeanette Eriksson, Olle Lindeberg & Yvonne Dittrich, Leaving Variability
Management to the End User; a Comparison between Different Tailoring
Approaches, Extended abstract in the Proceedings of the Software Variability
Management Workshop, Gronningen, February 2003.
Paper X: Jeanette Eriksson, Olle Lindeberg & Yvonne Dittrich, Leaving Variability
Management to the End User; a Comparison between Different Tailoring
Approaches, Technical Report 2003:10, Blekinge Institute of Technology.
Paper XI: Yvonne Dittrich, Kari Rönkkö, Olle Lindeberg, Jeanette Eriksson, Christina
Hansson, Co-operative Method Development Revisited, Workshop on Human and
Social Factors of Software Engineering (HSSE) at the 2005 International Conference on
Software Engineering (ICSE 2005) May 2005.
Paper XII: Yvonne Dittrich, Kari Rönkkö, Jeanette Eriksson, Olle Lindeberg, Christina
Hansson, Co-operative Method Development – Combining Qualitative Empirical
Research with Process Improvement, accepted for the Empirical Software Engineering
Journal, published online December 2007, <http://www.springerlink.com/
content/712m872162v41l86/?p=5f045b7d307f4f379423ac3e07a4af64&pi=0>
Paper XIII: Jeanette Eriksson, Prioritizing Requirements – Planning Game vs. Kano
Model, not published.

vii

Contents
Chapter One

Introduction………………………………………………….………………....3
1.1 RESEARCH QUESTIONS AND PROJECTS ... 4
1.2 FOCUS ... 5
1.3 OUTLINE OF CHAPTER ... 6
1.4 RELATED WORK ... 7
1.5 RESEARCH APPROACH .. 20
1.6 OUTLINE AND PROJECT OUTCOMES ... 33
1.7 CONTRIBUTIONS TO TAILORING, SOFTWARE EVOLUTION AND PD 44
1.8 CONCLUSION .. 50
1.9 FUTURE WORK ... 51

Part I - Cooperation
Chapter Two

Using Metaobject Protocol to Implement Tailoring……………………….59
2.1 THE METAOBJECT PROTOCOL ... 61
2.2 TAILORING AND META MODELING... 61
2.3 REFLECTION IN JAVA .. …………………………………………………62
2.4 THE SYSTEM ARCHITECTURE .. 63
2.5 THE PROTOTYPE .. 66
2.6 DISCUSSION ... 70
2.7 CONCLUDING REMARKS .. 72

Chapter Three
An Adaptable Architecture for Continous Development………………..75

3.1 ACTIONBLOCKS .. 78
3.2 THE ARCHITECTURE .. 79
3.3 DISCUSSION ... 88
3.4 CONCLUSION .. 91

Chapter Four
Can End-Users Manage System Infrastructure?………………………...95

4.1 BACKGROUND... 96
4.2 THE PROTOTYPE - EDIT ... 98
4.3 DISCUSSION ... 103
4.4 CONCLUSION .. 104

Chapter Five
Combining Tailoring and Evolutionary Software Development for Rapidly
Changing Business Systems……………………………………………...107

5.1 HISTORY AND BACKGROUND ... 108
5.2 RELATED WORK ... 109
5.3 THE CASE STUDY ... 110
5.4 DISCUSSION ... 120
5.5 CONCLUSION .. 121

viii

Part II - Support
Chapter Six

Four Categories of Tailoring as a Means of Communication…………127
6.1 CATEGORIZATION OF END-USER TAILORING 129
6.2 THE CATEGORIZATION APPLIED ON THREE RESEARCH CASES ……135
6.3 THE CATEGORIZATION APPLIED IN INDUSTRY 145
6.4 DISCUSSION ... 147
6.5 SUMMARY... 149

Chapter Seven
 Caracteristics of End-User Tailorable Software …………………..……153

7.1 CATEGORIZATION OF END-USER TAILORING 156
7.2 RESEARCH METHOD ... 155
7.3 RESULT .. ……161
7.4 DISCUSSION ... 163
7.5 CONCLUSION .. 164

Chapter Eight
Patterns in Design of End-User Tailorable Software……………………169

8.1 CATEGORIZATION OF END-USER TAILORING 172
8.2 USABILITY PATTERNS .. 173
8.3 DESIGN PATTERNS ... 178
8.4 PATTERN STRUCTURE ... 185
8.5 DISCUSSION ... 190
8.6 SUMMARY... 191

Chapter Nine
Tools to Support the Cooperative Design Process ……………………195

9.1 OURLINES OF THE TOOLS .. 198
9.2 TEORETICAL BACKGROUND OF THE CREATION OF THE TOOLS 209
9.3 DISCUSSION ... ……213
9.4 SUMMARY... 215

Chapter Ten
 Evaluation of Toolkit ………………………………………………………219

10.1 FRAMEWORK OF COLLABORATIVE CAPACITY 220
10.2 DEFINING THE SCOPE OF EVALUATION .. 223
10.3 APPLYING THE FCC ON THE TOOLKIT ……224
10.4 RESULT .. 230
10.5 SUMMARY AND FUTURE WORK ... 238

References………………………………………………………………….... 241

List of Figures ……………….………..…………………………………….. 253

List of Tables ………………...………………………................................. 257

Appendixes A-E

Chapter One

3

Chapter One

Introduction
Everything that can be counted does not necessarily count;

everything that counts cannot necessarily be counted.

Albert Einstein

In most business areas today, competition is hard. It is a matter of company
survival to interpret and follow up changes within the business market. The
margin between success and failure is small. Possessing suitable, sustainable
information systems is an advantage when attempting to stay in the front line of
the business area. In order to be and remain competitive, these information
systems must adapt to changes in the business environment. This thesis is
concerned with just such information systems, e.g. adaptable special purpose
software used in a continuously and rapidly changing environment.
Keeping business systems up to date in a rapidly and continuously changing
business environment such as, in this case, the telecom business, takes a lot of
effort. Owing to the fast pace of change, flexibility in software is necessary to
prevent software obsolescence and to keep the software useful. This inevitably
means that the system has to evolve (Lehman, 1980). One way to provide the
necessary kind of flexibility is end-user tailoring. End-user tailoring enables the
end user to modify the software while it is being used, as opposed to modifying
it during the initial development process (Henderson and Kyng, 1991). Software
development, which is mostly done by professional software developers,
involves transferring some domain knowledge from users to developers
(Bennett and Rajlich, 2000) which may take some time and effort. End users,
however, already possess the domain knowledge, so by providing support for
end-user tailoring, enabling end users to make task related changes, alterations
can be made immediately, as needed. Since time is money, a company can gain
advantageous competitiveness if the business software can be at the forefront of
the market changes. Thus, there is a strong motive to ensure that tailorable
software is sustainable and lives up to the intention of the system.
So, the intention of tailorable systems is to make it possible for end users to
evolve an application better to fit altered requirements and tasks, and to make
the system more sustainable. The focus of this thesis is to explore how
tailorable systems can continue to live up to the initial intention of the system in
a rapidly changing environment and how this process can be supported.
If a software system is expected to adapt to changes in the environment, as
tailorable systems are, the question is how to adapt to changes in a way that
ensures that business and software systems can keep up with expanded
requirements in a rapidly changing environment to ensure competitiveness and

Chapter One
Introduction

4

for users to experience quality in use. The software system will be expected to
deal with a range of changes that can be either anticipated or unanticipated.
There are two ways of adapting software to changing requirements:

• letting the end user adapt the system through tailoring or
• letting professional developers make the changes.

Changes made by users take place quickly and thus quickly satisfy the users’
extended requirements, whereas software evolution performed by professional
developers has the advantage of providing more far-reaching solutions.
The contribution of the thesis is to combine and coordinate tailoring with
software evolution activities, to support the evolution of tailorability. A set of
tools to support collaboration on equal terms between users and developers in
the technical design process of evolving the tailorable software and extending
the tailoring capabilities is also suggested.

1.1 Research Questions and Projects
The objective for the thesis is to explore how to support tailorability in a rapidly
changing environment. By implementing tailorability, a tailorable system can
continuously adapt to expanding requirements and thereby remain the
competitive tool it was designed to be.
The main research questions for the thesis are:

RQ1: How can tailorability be supported to ensure that end-user tailorable
software systems remain useful and sustainable and work as intended in
a rapidly changing environment where requirements continuously
expand?

The first question led to the main conclusion that allowing the tailorable
software to evolve continuously requires a cooperative design process.
Consequently, the second research question arose.

RQ2: How can the cooperative design process of end-user tailoring be
supported?

The two research questions correspond to Part I and Part II of the thesis. The
result of investigating the initial research question, how to ensure that end-user
tailorable systems remain useful, sustainable and work as intended in a rapidly
changing environment where requirements continuously expand, was the
knowledge that a cooperative design process is needed, where both end-users
and developers are together regarded as designers.
Exploring the second research question, dealing with how to support such a
cooperative design process, resulted in a toolkit that can be used to make it
possible for end-users to engage in the technical design process.

Chapter One
Introduction

5

The thesis is based on four projects. Projects 1, 2 and 3 elaborated the first
research question (RQ1) and the second research question (RQ2) drove Project
4.
The next section presents central themes in the thesis, which are relevant when
exploring the research questions.

1.2 Focus
Cook et al. state “Programs that depend on or interact with the real
world…must, in practice, be continually adapted to remain faithful to its
application domain” (Cook et al., 2006, p. 9). Sommerville (2001) states that
instead of developing systems and then maintaining them until the system has to
be replaced, we should instead create evolutionary systems. Evolutionary
systems are designed to change in reaction to changed requirements
(Sommerville, 2001). Tailorable software is certainly in line with this and
without doubt can be regarded as evolutionary systems. However, even though
tailorable software is prepared for change, there will unavoidably come a time
when unanticipated changes are needed that cannot be handled by the tailors.
End-user tailoring differs from other types of interactive software in the fact
that the software is under-designed (Fischer et al., 2004) and that the tailors
continue to design the software during use. The tailors are co-designers. These
issues form the foundation of the reasoning in this thesis and are shown in
Figure 1 : 1

Figure 1 : 1 Central themes in the thesis

To keep the software sustainable and due to the fact that unanticipated change
will occur there is a need for development of tailoring capabilities. This has
been observed in Projects 1, 3 and 4. In Projects 2, 3 and 4 it was observed that
tailoring requires collaboration with the developer. Furthermore, since the
tailors are co-designers, there is a need for the users and tailors to participate in
decision making to understand the possibilities and limitations of the software.
This was also observed in Projects 2, 3 and 4. This thesis is about how to

Sustainable software

End-user tailoring

Users/Tailors are
co-designers

Development of
tailoring capabilities

Unanticipated
changes

Developer is needed in
collaboration to do tailoring

Users and tailors needed to
participate in decision making

Chapter One
Introduction

6

involve the developer in the tailoring process, how to develop new tailoring
capabilities and how to involve users and tailors in the design process.
The central themes from Figure 1 : 1 can be related to three areas: end-user
tailoring, software evolution and Participatory Design. The collaboration
between different roles involved when tailoring occurs is related to the area of
tailoring itself, and how tailoring can take place. The development of tailoring
capabilities is software evolution, and the need for user participation in design
decisions is related to democratic decision making, which is central to
Participatory Design.
The next section outlines the rest of the Chapter One.

1.3 Outline of Chapter
The rest of this chapter is organized as follows in Figure 1 : 2.

Figure 1 : 2 Overview of Chapter One

Section 1.4
Related Work

Section 1.6
Outline and project contributions

Section 1.6.2 Part II: Toolkit Section 1.6.1 Part I: Cooperation

Section 1.8 Conclusion

Section 1.9 Future work

Section 1.7
Contribution to tailoring, software evolution and PD

Section 1.7.4 Cooperative design process of end-user tailoring

Section 1.5
Research approach

Section 1.4.4
End-user tailoring, software evolution and PD crossover

Section 1.4.1
End-user tailoring

Section 1.4.2
Software Evolution

Section 1.4.3
Participatory Design

Section 1.7.1
End-user tailoring

Section 1.7.2
Software Evolution

Section 1.7.3
Participatory Design

Chapter One
Introduction

7

First, related work is presented. In Section 1.5 the Research Approach is
described. The thesis is based on four projects which are presented in Section
1.6, which also describes the contribution of each of the following chapters
(Chapters Two to Ten). Thereafter the contribution is related to the areas of
end-user tailoring, software evolution and Participatory Design (Section 1.7).
The section ends with a description of what in this thesis is called the
cooperative design process of end-user tailoring. The contribution section is
followed by the conclusions in Section 1.8. Finally, future research is presented
in Section 1.9.

1.4 Related Work
Tailoring can be said to be “further development of an application during use to
adapt it to complex work situations” (Kahler et al., 2000, p. 1) or “the activity of
modifying a computer application within the context of its use” (Kahler et al.,
2000, p. 1), hence tailoring is situated somewhere between development and
use. End-user tailoring means that the tailor takes decisions about the design
when he or she tailors the software.

1.4.1 End-User Tailoring
The research approaches can be divided into two principal areas:

• How tailorable systems and interfaces should be designed.
• How the end users work with tailoring.

The two categories do not have a clear boundary; most researchers discuss both
categories simultaneously.

How tailorable systems and tailoring should be designed
When it comes to the design of tailorable systems, the prevalence of
component-based solutions is noticeable. In (Mørch et al., 2004) the authors
suggest new metaphors and techniques for choosing and bringing together
components to facilitate end-user development. Stiemerling (2000) and
Hummes and Merialdo (2000) also propose a component based architecture.
Hummes and Merialdo also advocate dividing tailoring activities, as well as the
application itself, into two parts: customization of new components and
insertion of components into the application. The customization tool does not
have to be a part of the application at all. This approach corresponds to
Stiemerling’s (2000) discussion of ‘the gentle slope’ where users can either just
put together a few predefined components or, if more skilled, customize the
components for more complex tasks.
In his doctoral dissertation, Paul Dourish (1996) proposes another approach, to
make use of open implementation techniques to open up CSCW1 toolkits,

1 Computer Supported Cooperative Work

Chapter One
Introduction

8

making it possible to manipulate the application to match the actual need.
Dourish also states that there are basic connections between usage and system
issues.
Fischer and Girgensohn (1990) take up another side of tailorable systems. They
state that even if the goal of tailorable systems is to make it possible for users to
modify systems, it does not automatically mean that the users are responsible
for the evolved design of the system. There will be a need for modifications of
the users’ design environment and Fisher and Girgensohn provide a rationale
and techniques for handling this type of change.
An area that is also interesting is the mapping between the adaptable system and
the users; which interfaces to provide. Mørch (1995) introduces three levels of
tailoring, customization, integration and extension, which provide the users with
increasing possibilities to tailor the system. Customization provides only
opportunities to make small changes, whereas extension is when code is added,
which means that more comprehensive changes can be made. Together with
Mehandjiev, Mørch (2000) also presents how to support the three different
types of tailoring by providing different graphical interfaces for each of the
tailoring types.
Costabile et al. (2006) works with a methodology they call the software
workshop approach. The software shaping workshop (SSW) makes it possible
for users to develop software artefacts without using traditional programming
languages. SSW means that the software is organized to fit various
environments. The software is specific for different sub-communities. When a
user (called domain-expert) wants to develop an artefact only the required tools
are available. The users experience that they just manipulate objects as they do
in the real world (Costabile et al., 2006).
Letondal (2006) is exploring how to “provide access to programming for non-
professional programmers” (Letondal, 2006, p. 207). She makes it possible for
users to do general programming at use time. Her approach also involves the
possibility to modify the tool used.

How the end users work with tailoring.
In (Mørch et al., 2004, p. 62) the authors state that an area for future research is
“How to support cooperation among different users who have different
qualifications, skills, interests, and resources to carry out tailoring activities.”
The area addressed is how the users work with tailoring. This area is well
represented in the CSCW community. In the following, some research in the
category is presented.
MacLean et al. stated in 1990 (MacLean et al., 1990) that it is impossible to
design systems that suit all users in all situations and they continue by
expressing the need for tailorable systems. However, it is not enough to provide
the users with a tailorable system. To be able to achieve flexibility there is a

Chapter One
Introduction

9

need for a tailoring culture, where it is possible for the users to have power and
control over the changes. It also requires an environment where tailoring is the
norm.
Wendy Mackay (1991) describes how she finds that although the users have
tailorable software they do not customize the software, because it takes time
from the ordinary work. There is a trade-off between how much time the
tailoring takes to learn and how beneficial the change may be. To encourage
users to customize the software, the customization has to allow users to work as
before, and the customization must also increase productivity by just one single
click of a button.
In another paper Mackay (1990) observes that customization of software is not
mainly individuals changing the software for personal needs, but is a
collaborative activity where users with similar or different skills share their files
with each other. One group that has received attention is a group called
‘translators’. Translators are users who are not as technically skilled as
members of the highly technical group, but are people who are much more
interested in making work easier for their colleagues. Mackay says that the
translator role should be supported in organizations with tailorable systems. She
also claims that not all sharing is good and that opportunities for sharing files
have to be provided in the organization.
Gantt and Nardi (1992) find a role similar to the translator in a CAD (Computer
Aided Design) environment. They identify gardeners and gurus. Gardeners and
gurus are domain experts, not professional developers, who have the role of
local developers providing support for other users. Gardeners and gurus differ
from other local developers in that they receive recognition for their task of
helping fellow employees.
As exemplified above, tailoring activities are often carried out in cooperation.
This is also pointed out by Kahler (2001) who states that there is a lack of
support for collaborative tailoring activities. Kahler therefore makes eight
suggestions for how collaboration can be supported. The suggestions range
from software issues to social-technical concerns. For example, Kahler suggests
that a tailoring culture should be supported and that an awareness of the
tailoring activities should be provided.
Susanne Bødker (1999) discusses computers as mediators between design and
use. She provides an understanding of computer artefacts and how they
transform in design, but also in use. Bødker states that designing software is a
design embracing all environments of use.
Costabile et al. classifies different user (domain-expert) activities. They group
the activities into two classes. Class 1 means that the user chooses from
predefined options. Class 1 contains the activities of parameterization and
annotation. Parameterization means hat the user specifies some constraints in
the data. Annotation is when users write comments next to the data to clarify

Chapter One
Introduction

10

what they mean. Class 2 contains several types of activities, All activities in
Class 2 involves altering the artefact in some way (Costabile et al., 2006).
Changes in the environment or the organization influence software systems, and
this phenomenon is recognized in tailoring literature. To manage organizational
and technical changes Wulf and Rohdein (1995) provide a framework where
both issues can be dealt with in an evolutionary and participatory fashion.
Pipek and Kahler (2006) describe four different scenarios for collaborative
activities: Shared Use, Shared Context, Shared Tool and Shared Infrastructure.
Shared Use means the users share knowledge of how to individually tailor the
software. Shared Context occurs when the users collaborate to perform, for
example, a shared task. When a groupware tool is used for collaboration
(Shared Tool) the users get more dependent of each other, but they still have
some possibilities to have individual configurations of their software instance.
The fourth scenario, Shared Infrastructure, brings about severe dependencies
which can cause problems (Pipek and Kahler, 2006).
There is a growing need for tailorable systems (Stiemerling et al., 1997)
because of the variety of requirements on groupware. Stiemerling et al. (1997)
suggest using participatory and evolutionary design approaches such as
interviews, workshops, user advocacy, thinking aloud, mock-ups and
prototyping when designing tailorable systems. This is in line with what is
presented in this thesis, even though the application type is not groupware.

Summing Up
To sum up, it can be said that most researchers in the tailoring community
approach tailoring and tailorable systems from a user perspective, irrespective
of whether the main focus is on the design of tailorable systems or on how users
use tailorable systems. To facilitate the developers’ work is not considered,
except as a side effect of trying to improve the interface (Stiemerling, 2000).
The developer is not considered a member of the team in terms of changing the
system (Figure 1 : 3), only as an assistance resource when the users’ skills are
not sufficient to allow them to tailor the system on their own (Henderson and
Kyng, 1991). Mørch and Mehandjiev (2000) address the collaboration between
users and professional developers by introducing ‘multiple representations’ of
software entities. However, their approach means an indirect collaboration
between users and developers. As shown in the figure the tailor only deals with
the visible part of the software and the developer and the tailor only meet in the
work of the developer when he or she has modified the software so that the
tailor can do tailoring again. Consequently there is a gap between users and
developers.

Chapter One
Introduction

11

D T

Tailorable
software

Environm
ent

Figure 1 : 3 Tailoring

1.4.2 Software Evolution
Since there is no standard definition of software evolution; many researchers
use it as a substitute for maintenance (Bennett and Rajlich, 2000). However,
evolution expresses something more positive than maintenance, it means a
lifelong positive change (Lehman, 1980).
A paper cited whenever software evolution is discussed is Lehman’s paper
‘Programs, Life Cycles, and Laws of Software Evolution’ (Lehman, 1980). In
the paper Lehman divides programs into three groups: S-programs, which can
be derived directly from a specification, P-programs that are programs that
model and solve problems, such as for example chess, and a third group, E-
programs (E for evolving), which are embedded in the world they model. In
practice P-programs complied with the definition of either S-programs or E-
programs according to Lehman’s taxonomy (1980). Cook et al. (2006) have
revised the definition of P-programs. P- and S-type programs are both programs
where the stakeholders have made explicit policy decisions of what kind of
evolution can happen in the system. A P-program is consistent with this strategy
or paradigm throughout its lifetime. The kind of tailorable systems discussed in
this thesis might be considered E-programs.
Lehman also states that questions about correctness, suitability and satisfaction
will arise as soon as the application is used, and this leads to a need for
changing the application (Lehman, 1994). In other words, Lehman states that
the environment pressures the application to change and software evolution is
inevitable.
Software evolution, in the same manner as software engineering, can be divided
into efforts of software process and software product. The software process
consists of four activities (Sommerville, 2001):

1. Software specification
2. Software development
3. Software validation
4. Software evolution

Chapter One
Introduction

12

The initial development process involves specification, design and
implementation activities, and testing, e.g. specification, implementation,
validation. Then the software is finished, delivered and taken into operation.
After a while the software is no longer satisfactory, and it inevitably has to
evolve to meet new demands. Then a new phase begins, to define new
specifications. The specification is implemented and validated and the evolved
software is taken into operation, and then has to change and so on.
Since evolution (or maintenance) is a continuation of the development process it
should be represented by a spiral model of development and evolution
(Sommerville, 2001) (Figure 1 : 4) where the first round represent the initial
development. Then the development process continues in the form of evolution.

Figure 1 : 4 Spiral model of development and evolution

To meet the threat of decreased software quality as the software evolves, it is
essential that change and evolution is placed in the centre of the development
process (Mens et al., 2005). This is what Bennett and Rajlich (2000) do. From
the product point of view, Bennett and Rajlich model the software life cycle in
the ‘stage model’, consisting of five stages:

1. Initial development
2. Evolution
3. Servicing
4. Phase-out
5. Close-down

The initial development results in a first running version, and as soon as the
software is deployed the evolution stage takes over. The software will undergo
many changes until the ability to evolve is lost. Then the software enters the
service stage. The software has become a legacy system and only small changes
or services are made to the software. Eventually, no further servicing is
possible, and the software will arrive at the phase-out stage where no changes
are made to the software. Finally the software will cease to exist. Tailorable
systems aim to stay in the evolution stage as long as possible.
To put the process and product approaches together, the first stages in the
product life cycle (initial development and evolution and to some extent also

Validation

ImplementationSpecification

Operation

Start

Chapter One
Introduction

13

D
U

Software Environm
ent

servicing) are embraced by the spiral model, whereas the stages phase-out and
close-down occur when the spiral has ceased to spin.
Software evolution activities can be anticipatory or reactive (Bennett and
Rajlich, 2001). Anticipatory evolution is based on the idea that it is possible
predict, plan and prepare for changes before the need for evolution occurs.
Tailoring and software variability (Svahnberg, 2003) and the product line
approach (Bosch, 2000) belong to this approach. Reactive evolution means that
changes are too unpredictable to be planned and changes have to be made when
the need arises. This thesis emphasises the need to combine anticipatory and
reactive (unanticipated) evolution.

Summing up
In summary it can be said that when discussing software evolution in software
engineering, the main focus is on activities performed by professional
developers. Figure 1 : 5 shows how the developer is outside the environment
where the user belongs. The developer evolves the system from the outside to
deal with the user’s changing requests and changes in the environment. In
software evolution, the intention of the developer is to evolve the system to
meet the user’s needs. As shown in Figure 1 : 5 the user deals with the visible
part of the software in use and the developer evolves both the invisible and
visible parts of the software. Consequently there is a gap between use and
development, and users and developers.

 Figure 1 : 5 Software evolution performed by professional developers

1.4.3 Participatory Design
There is no single understanding of Participation Design (PD), but the core
principles of PD are that (Sanoff, 2007)

• every participant is an expert in their own field,
• all participants’ voices must be heard,
• good design solutions come from the collaboration of diversity

composed groups,

Chapter One
Introduction

14

• participatory democracy in decision making and
• engaging people in changing their own environment.

In summary, those individuals that have to adapt to the introduced change
should be a part of the decision making (Kensing and Blomberg, 1998). Shapiro
(2005) claims that if Participatory Design would be used when developing large
scale systems in the public sector the failures would be less.
Two concepts that are essential to the successful outcome of PD projects are
(Sanoff, 2007):

• The solution is informed by users’ tacit knowledge.
• Collective intelligence.

Collective intelligence can be defined as the shared insight of an interacting
group where the insight is more insightful and significant than the collective
sum of the participants’ individual understanding of the problem (Kensing and
Blomberg, 1998).
The research concerning PD can be divided into three areas (Kensing and
Blomberg, 1998):

• the politics of design
• the nature of participation
• methods, tools and techniques of participation

The politics of design is related to sharing power in the workspace, and the
introduction of computer systems (Kensing and Blomberg, 1998). Initially there
were two trends in PD originating from the politics of design: the Scandinavian
(with the UK variation) and the American. The Scandinavian approach evolved
out of power sharing or democracy within the workspace while the American
line evolved from the fact that the computer-based systems tend to increase
management control and therefore there was a need for strategies to facilitate
direct worker participation in decisions.
In the area of the nature of participation a central concept is that there should be
“room for the skills, experiences, and interests of workers in system design..”
and that such a setting will “…increase the likelihood that the systems will be
useful and well integrated into the work practices of the organization” (Kensing
and Blomberg, 1998, p. 172). It is important that there is mutual learning and an
understanding between the participants, both users and developers. In
Participatory Design the participants alters between being experts or novices in
a cycle dependent of what discussions and tasks is going on in the group
(Farooq et al., 2005). The mutual learning process is good, but at the same time
it is essential that the user representatives preserves their vocabulary and
professional identity (Olsson, 2004).

Chapter One
Introduction

15

The basic requirements for participation are (Clement and Besselar, 1993):
• access to relevant information,
• the possibility to hold individual opinions and views of the problem,
• participation in making decisions,
• access to suitable participatory development methods and
• alternative technical and organizational arrangements.

The extent of the participation can range from the users being limited to
supplying designers with access to the users’ skills and experience, to the users
being considered valuable since their interest in the design solution is
recognized. In this type of setting the users take part in the analysis of the
requirements, the evaluation and selection of technological components, the
design and prototyping as well as the organizational deployment (Kensing and
Blomberg, 1998). The challenge is to find a balance of commitment and useful
result (Letondal and Mackay, 2004). If the participating users experience the
involvement to be hard it affects the result. However, if there is low-
responsibility to participate in for example workshops it will affect the result as
well.
Tools and the development of tools are an essential part of PD projects. The
techniques utilize informal ways of exposing the relationship between the work
and the technology. There are many tools and techniques to be used in a PD
project ranging from techniques for analysing the work to tools for use in
system design (Kensing and Blomberg, 1998). The tools and techniques can be
used in different phases of the development cycle or iteration. Examples of tools
and techniques are (Muller et al., 1993):

• Ethnographic Methods (Kensing, 2003)
o Purpose: understanding users’ work activities
o Visiting the workplace to understand “the members’ point of

view”.
• Contextual Inquiry (Kuniacsky, 2003)

o Purpose: understand the users’ work through inquiry, helps the
users articulate their work practice.

o Interviews where users are experts, the control is shared during
the inquiry, shared meaning is created and reflection and
engagement are important.

• Card Games (Muller et al., 1994)
o Purpose: analysis of task and critique of design.
o Cards represent events within the system, a workplace event or a

user action.

Chapter One
Introduction

16

• Future Workshops (Löwgren and Stolterman, 2004)
o Purpose: users elucidate problems and create a vision of the

future.
o Three phases: critique, fantasy and implementation.

• Mock-ups (Ehn and Kyng, 1991)
o Purpose: give the users possibilities to imagine the future by

experimenting with new design proposals.
o Inexpensive representations of the systems.

• Prototyping
o Purpose: achieve a familiarity with the tool.
o Cooperative activity involving both users and developers.
Types:

Collaborative (Bødker et al., 1993)
Cooperative (Muller et al., 1994)
Storyboard (Muller et al., 1998)
Video (Bauersfeld et al., 1992)

Participatory Design is not a method but an approach, but PD embraces several
methods that take a comprehensive view of PD. Some examples are (Kensing
and Blomberg, 1998):

• MUST - a conceptual framework of the design process (Kensing et al.,
1998)

• Contextual Design – with focus on early design activities (Beyer and
Holtzblatt, 1997).

• Cooperative Experimental Systems Development (CESD) – user
participation through the whole development process (Grønbæk et al.,
1997).

• Work-oriented Design – field studies in combination with case-based
prototypes (Blomberg et al., 1996).

Summing Up
In short, Participatory Design (PD) means that the users who will be affected by
the new or changed IT-system have to participate in the decision making
concerning the design of the software. Figure 1 : 6 shows how the developer is
partly inside the user’s environment. This is symbolic. PD ranges from
designers participating in the users’ world (e.g. ethnographic methods) to users
participating in the design activities (for example the use of Mock-ups). As
shown in the pictures both roles are equally visible, which means that they are
equally important. PD activities deal with the work process and visible parts of

Chapter One
Introduction

17

the software, such as the user interface. Consequently the gap between use and
development, and users and developers, is partly bridged through collaboration.

Figure 1 : 6 Participatory Design

1.4.4 End-User Tailoring, Software Evolution and PD Crossover
The division of the evolution process into specification, implementation,
validation and operation is valid for tailoring too, but perhaps in a more
informal way, as it is the end user who makes the change, alone or in
cooperation with colleagues. The tailoring process can also be represented by a
spiral model. The spiral model of tailoring starts after the initial round, which
means immediately after the system is deployed. For each tailoring attempt
there is a new rotation in the spiral. The tailoring process can continue until all
tailoring capabilities are exhausted. Then the evolution through tailoring ceases
temporarily.
Some researchers in the tailoring community have already related tailoring to
software evolution. For example, Anders Mørch describes how end users can
evolve a general tool, Basic Draw, into a domain-oriented design tool (Mørch,
1997). Even though the main focus is on how such a tool can be achieved,
Mørch talks about evolution, and states that tailoring “supports application
evolution by a set of tools that are integrated into a generic application” (Mørch,
1997, p.1). In another paper Mørch (2002) puts tailoring in the perspective of
natural evolution and he introduces new concepts and techniques for software
evolution.
Fischer also combines software evolution with tailoring, or as he calls it
modifiable software or under designed software (Fischer, 2003). He calls this
type of approach meta-design as the software is designed to be designed. The
conceptual framework seeding, evolutionary growth, and reseeding (SER)
(Figure 1 : 7) process model (Fischer et al., 2005) supports meta-design. SER
encourages designers to conceptualize design activities as meta-design so that
users can be active participants. After a period when tailoring has taken place,
the software will have deviated from what can be regarded as good design and
the software will need to be restructured or reseeded (Fischer et al., 1994)

D

U

Visible part
of software

Invisible
part of

software

Environment

Chapter One
Introduction

18

As pointed out on page 4, there are two ways of adapting software to changing
requirements: the end user adapts the software or the software engineer adapts
it. Accordingly there are two ways for the users to influence the design of the
tailorable software: directly or indirectly.

• The users directly shape the design while performing some tailoring
activity (a). In other words. the participation takes place at use time and

• indirectly when participating in the cooperative design process to
develop new tailoring capabilities (b). In other words, the participation
takes place at design time.

Both ways can be regarded as Participatory Design. The first way of influencing
the design (a) can be seen as a PD practice, while the second one (b) does not
differ from common ways of regarding PD, during design time. The second
approach makes use of the different PD tools and techniques.

Figure 1 : 7 Seeding, evolutionary growth and reseeding (Fischer et al., 2005)

Muller et al. (1993) have proposed a taxonomy of PD practices and placed them
in a two dimensional diagram. The x-axis represents the position of the activity
in the development cycle or iteration (e.g. early or late in the iteration) and the
y-axis represents who participates with whom in what (e.g. if the designers
participate in the users’ world or the users participate in design activities). If we
position the two types of participations (a and b) in the diagram, (a) implies that
the tailoring activity is put in the upper, right corner of the diagram, since it
occurs late in the development cycle, in fact after the software has been
deployed. The indirect influence of the design (b) means that all the different
activities shown in the diagram can be used in the collaboration (except for the
tailoring activity). Muller et al. do have a tailoring activity in the diagram called
customization, but as tailoring in the context of this thesis is so much more than
customization, the customization activity is replaced with simply ‘tailoring
activity’ (Figure 1 : 8).

Evolutionary Growth

DU

U

U

U

D

Seeding
ReSeeding

U

Chapter One
Introduction

19

Figure 1 : 8 Participatory Design Activities (freely from (Muller et al., 1993))

Summing Up
End-user tailoring, software evolution and Participatory Design are interweaved
(Figure 1 : 9), and when carrying out tailoring activities in this context,
combinations of the areas result in different kinds of activities. For example:

• Refactoring to restore the tailorable software. (Fischer et al., 1994)
(tailoring + software evolution) (AB in Figure 1 : 9)

• Collaborative tailoring activities between users and tailors (tailoring +
Participatory Design) (AC in Figure 1 : 9)

• User participation in software evolution projects (software evolution +
Participatory Design) (BC in Figure 1 : 9)

The intersection between all three areas (ABC in Figure 1 : 9) involves a
combination of tailoring activities, collaboration between participants and
software evolution activities performed by professional developers. It is this
combination that is discussed in the thesis, in terms of the development of
tailoring capabilities to extend the life of the tailorable software.

Card Games (b)

Contextural Inquiry (b)

Future Workshop (b)

Ethnographic methods (b)

Mock-ups (b)

Cooperative Prototyping (b)

Collaborative Prototyping (b)

Storyboard Prototyping (b)

Video Prototyping (b)

Early

Tailoring
activity (a)

Collaborative Prototyping (b)

Late

D
es

ig
ne

rs
 p

ar
tic

ip
at

e
in

 u
se

rs
’ w

or
ld

U
se

rs
 p

ar
tic

ip
at

e
in

de

si
gn

 a
ct

iv
ity

Position of activity in the development cycle or iteration

W
ho

 p
ar

ti
ci

pa
te

w

it
h

w
ho

m
 in

 w
ha

t

Chapter One
Introduction

20

Figure 1 : 9 Intersections between the areas discussed in the thesis

1.5 Research Approach
This chapter starts by introducing Cooperative Method Development (CMD),
which is the overall research approach used. Within the CMD approach, Design
Research is applied, which is presented in Section 1.5.2. Since fieldwork, the
creation of prototypes and evaluation are essential parts in the design research
applied, the research within these areas is described in Sections 1.5.3, 1.5.4 and
1.5.5. This section ends with a discussion of the validity of the research (Section
1.5.6)

1.5.1 Cooperative Method Development
Software development is a social activity and thereby influenced by social
aspects. This thesis is based on the belief that in order to improve software, it is
essential to understand social and cooperative aspects of the work practice. It is
also important to start from the practitioners’ point of view, as their work
situation has an impact on the company’s success. Therefore the Cooperative
Method Development (CMD) approach is applied as it combines qualitative
social science fieldwork, with problem-oriented improvements. CMD is
developed within the UODDS2 research group.

2 UODDS (Use Oriented Design and Development of Software). The group changed name to
U-ODD (Use-Oriented Design and Development) in 2005.

ABC

A

CB

ACAB

BC

A = End-user tailoring

B = Software evolution

C= Participatory Design

AB = Refactoring

AC = Collaborative
tailoring activities

BC = User participation in
software evolution
activities

ABC = Development of
tailoring capabilities

Chapter One
Introduction

21

In this section a brief description of CMD is given. For a complete explanation
see (Dittrich et al., 2007). CMD addresses two main questions (Dittrich et al.,
2007):

• How do software development practitioners tackle their everyday work,
especially the cooperation with users around the design of software?

• How can methods, processes, and tools be improved to address the
problems experienced by practitioners?

The CMD research process is modelled as evolutionary cycles divided into
three phases:
Phase 1 - Understanding Practice: The research begins with empirical
investigations whose aim is understanding practices and designs from a
practitioner’s point of view, based on their historical and situational context,
and to identify aspects that are problematic from the involved practitioners’
point of view (Figure 1 : 10).
Phase 2 - Deliberate Improvements: The results of the first phase are then used
in the deliberation phase, as an input for the design of possible improvements.
Suggestions for improvements are based on a combination of existing research
in the discourse and domain knowledge in the company (Figure 1 : 10). This
phase can be implemented in different ways. In the research presented in this
thesis a Design Research approach has been chosen (Section 1.5.2). This phase
also contains initial evaluations of created artefacts.

Figure 1 : 10 Cooperative Method Development

researcher

practitioners

CONTEXT

Research discourse

Cooperation

Improvement

Implementation

Evaluation

Understanding

Problem

1

3
2

Chapter One
Introduction

22

Phase 3 - Implement and Observe Improvements: The improvements are
implemented. The researchers follow these method improvements as
participatory observers. The results are evaluated together with the practitioners
involved. This phase is also partly based on the knowledge in the research
community (Figure 1 : 10)
The CMD approach also involves some guidelines (Dittrich et al., 2007) for
performing research. The guidelines are:

• Focussing on shop floor software development practices.
• Use of ethnomethodological and ethnographical inspired empirical

methods complemented with other methods when appropriate.
• Taking the practitioners’ perspective when evaluating the empirical

research and improvements.
• Improvements involving the practitioners.

These guidelines permeate the research presented in this thesis.
The thesis is based on four projects presented in Section 1.6. Table 1 : 1
summarizes how the CMD approach is applied in the different projects.

CMD Project 1 Project 2 Project 3 Project 4

Phase 1 x X x x

Phase 2 x X x x

Phase 3 (x) x future work

 (x)= in another project

Table 1 : 1 Implemented phases of the Cooperative Method Development approach.

1.5.2 Design Research Applied
The research methodology adopted within phase 2 of the CMD approach may
be termed a design research approach, as the projects started out by defining the
research question based on business needs and unexplored issues in the research
discourse. Design research has been discussed in several papers, among others
Nunamaker et al. (1991), March and Smith (1995) and more recently Hevner et
al. (2004). Design research in general can be divided into five process steps:

1. Awareness of problem that can come from various sources, such as from
industry or from other disciplines, but the findings must add knowledge
to the research field.

2. Suggestion is closely connected to step one. In this phase a tentative
design is achieved.

3. Development means that the tentative design is implemented.

Chapter One
Introduction

23

4. Evaluation of the prototype according to implicit and explicit criteria in
step one.

5. Conclusions are drawn and if the prototype is not good enough the
process continues with step one once again.

Figure 1 : 11 relates the five steps of design research to CMD.

Figure 1 : 11 The five process step of design research

The design approach applied in the studies differs from the general view of
design research, in that the goal for the evaluation was not limited to evaluating
the quality of the prototype as a technical prototype, e.g. the aim was not to
evaluate a comprehensive set of functional and qualitative requirements to be
able to improve a specific prototype. The general view is that design research is
concerned with how well a prototype works, but the output that design research
should produce differs from community to community (Association of

1.
Awareness of problem

1

3.
Development

5. Conclusions

4.
Evaluation

2

2.
Suggestion

Chapter One
Introduction

24

Information Systems, <http://www.isworld.org>). In the projects presented here
both ‘how’ and ‘why’ the prototype works is important. In other words, issues
such as user knowledge, collaboration, and organizational aspects are also
considered in the evaluation.
Hevner et al. (2004) emphasize the need for combining design research and
behavioural science to “….ultimately inform researchers and practitioners of the
interaction among people, technology, and organizations that must be managed
if an information system is to achieve its stated purpose, …” (Hevner et al.,
2004, p. 76). Cross-fertilization between design and behavioural research is
applied in the projects presented in this thesis.
The chart in Figure 1 : 12 visualizes the applied design research. The chart is
inspired by a diagram from Hevner et al. (2004). The notation in Figure 1 : 12
relates the applied approach to CMD. The approach follows the five steps in the
general view of design research shown in Figure 1 : 11.
The numbers in what follows refer to Figure 1 : 12. The project starts with
establishing the research question in terms of the industrial partner’s needs (1b)
in consensus with what is interesting from point of view of the research
discourse (1a). Field studies and document studies (I) are applied, to elicit the
needs generated by the research question (2a) together with the business needs
(2b). Based on the outcome of the field studies, a prototype is built. To build the
prototype, applicable knowledge (2c) is used. The prototype is designed
together with users (II). To be able to evaluate the prototype it is assessed (3)
either by researchers or by experiments in a setting close to the real world
where users try out the prototype. The method used is close to field studies and
the outcome is in the form of verbal protocols (III). The evaluation can be of
three types: evaluation against requirements (A) (e.g. if the prototype satisfies
the different requirements), evaluation of technical issues in the prototype (B)
(e.g. how the prototype is implemented and what are the advantages and
disadvantages compared to other implementations) and evaluation of
environmental effects of the prototype (C) (e.g why the prototype works as it
does, or in other words, what social impact the prototype implies). The
evaluation design is based on established methods from the research discourse
(4). The outcome from the evaluation generates new knowledge that is added to
the knowledge base of the discourse (5a). In addition, the evaluation provides
the industrial partner with findings that can be of use when designing similar
systems (5b). The cycle is then complete and a new project taking advantage of
the knowledge generated (5a), can begin.

Chapter One
Introduction

25

Figure 1 : 12 The research process

Additions to
discourse (5a)

Business
Needs

Build
Prototype

Research
Needs

Assess

Applicable
Knowledge
(2c)

Additions to knowledge
when designing similar

systems (5b)

Research discourse
• Theories • Models • Constructs

• Frameworks • Methods • Concepts

• Instruments • Instantiations

(1a)

(4)

(2b)

(2a)

 (3)

Research
Question

Industrial Partner
Environment:
People,
Organization
Technology

(1b)

• Field Studies/
experiments

• Predictive
evaluation

• Verbal protocol • User tests

Field Study

Document analysis

User Participation

(I) (II) (III)

Research techniques

Evaluation

Evaluation against
requirements (A)

Evaluation of
technical issues of

the artefact (B)

Evaluation of
environmental
effects of the
artefact (C)

2

Chapter One
Introduction

26

Table 1 : 2 shows how Design Research is employed in the different projects.

Project 1 Project 2 Project 3 Project 4

Field work - Research Studio Telecom
Operator

Telecom
Operator

Prototype Contract Handler ActionBlock
System

EDIT Toolkit

Evaluation A A, B A,B,C A

 Chapter Two Chapter Three Chapters Four &
Five

Chapters Six to
Ten

Table 1 : 2 Applied research approach in Phase 2

As the table shows there was no field work in Project 1. The reason for this is
that the requirements elicitation had been done in a previous project modelling
the same system.

1.5.3 Field Work
The projects begin with field work that is inspired by ethnography, which
means that researchers enter the work environment with a probing and
explorative attitude, instead of trying to find quick answers to predefined,
detailed questions (Löwgren and Stolterman, 2004). The field work aimed at
investigating the work practice and investigating which requirements there were
for an identified problem. The main activities during this phase were participant
observations and interviews of users and developers, since thorough field work
requires both observations and interviewing (Gerson and Horowitz, 2002).
Gerson and Horowitz (2002), elegantly express the possibilities of interviews
and observations: “Whether the method is interviewing or observation, direct
engagement in the social world focuses the sociological eye on the interaction
between structure and action – in how people are embedded in larger social and
cultural contexts and how, in turn, they actively participate in shaping the
worlds they inhabit.”
There are different kinds of observations, from participant observation to
structured observation. Participant observation means that the observer tries to
be a member of the observed group, whereas the observer in structured
observations takes the position of the ”pure observer” to be able to quantify the
behaviour. The observations performed during the projects presented here are
participant observations. One advantage of observations is that they are direct. It
is possible to get to know people’s views, feelings and attitudes by watching
what they do and how they do it and by listening to what they say. It is,
however, time consuming (Robson, 2002).

Chapter One
Introduction

27

This initial phase also included interviews of users and developers. Interviews
can be fully structured, semi-structured or unstructured (Robson, 2002). Fully
structured interviews use predefined questions, often in a predefined order. In
unstructured interviews the researcher has an area of interest, and the
conversation is allowed to develop during the interview and take any direction
within that area. Semi-structured interviews are in-between structured and
unstructured interviews. Predefined questions are used in semi-structured
interviews, but the wording and the order may be changed, and questions can be
omitted or added (Robson, 2002). All three types of interviews have been used
in this research approach. The advantage of interviews is that they are flexible
and provide quick answers to research questions, but interviews are also time
consuming, even though they are faster than observations. The preparation and
the supplementary work take time (Robson, 2002).
The danger of participant-observation is that the observations may be
influenced by the interaction between the observer and the observed (Sánchez-
Jankowski, 2002). Observations are also filtered by the researcher’s
experiences, expectations and interests. One way of confirming that the
researcher has perceived the work practice in a correct manner, that the result of
the observations is reliable, is to go back to the field and let the participants read
the notes from the observations (Ely et al., 1993). This was done in the projects.
The field studies also involved document studies of specifications and manuals
of existing systems.

1.5.4 Prototype
When a rich picture of the problem is assembled, a prototype or artefact is built
that is an approach to solving the problem. The prototype is designed to fit
together with existing technology and systems at the workplace. The prototype
is designed in cooperation with end users and developers, in workshops at the
workplace. The preliminary design of the prototype is presented there. This may
result in changes in the design.
The prototypes presented in this thesis make use of different techniques and
implement different solutions. Two of the prototypes (Chapter Two and Chapter
Tree) are more or less proof-of-concept prototypes whereas the third prototype
(Chapter Four) can be called a case-based prototype, a prototype containing real
domain-specific data, addressing the work of a particular set of practitioners in a
specific environment (Blomberg et al., 1996). The artefacts presented in
Chapters Six to Eight are paper based PD tools.

1.5.5 Evaluation
As mentioned above, the research approach embraces the idea of cross-
fertilization between design and behavioural research. Therefore, in the
evaluation, we chose to use the prototype as a mediating artefact to discuss not
only technical issues but also cultural and social factors in the organization that

Chapter One
Introduction

28

influence the experienced quality. Using the prototype as a mediating artefact is
also something that differentiates the research approach from other design
research approaches.
Evaluation is done on both a system level (evaluation type A and B in Figure
1:7) and a use level (evaluation type B and C in Figure 1:7).
Quinn Patton describes two pure types of evaluation designs consisting of
different evaluation methods (Patton, 1987):

• Pure hypothetical-deductive approach to evaluation:
• Experimental design, quantitative data, and statistical analysis
• Pure qualitative strategy:
• Naturalistic inquiry, qualitative data and content analysis

The different methods of evaluation can be combined to produce mixed forms
of evaluations. Experimental design, qualitative data collection and statistical
analysis can for example be combined (Patton, 1987). Which evaluation design
to choose depends on what the stakeholders want to know, the purpose of the
evaluation, the funds available and the interests of the researchers (Patton,
1987).
The evaluation design applied in the research approach presented here can be
said to be a mixed form: experimental design, qualitative data collection and
content analysis.

Evaluation against requirements (A)
Most software is based on comprehensive, preferably well-defined
requirements. Building a prototype in a research project narrows down the set of
implemented requirements to those that are most important to allow exploration
of the research question. In a research project, evaluating the prototype against
predefined requirements means ensuring, from a technical point of view, that
the prototype really has the potential to conform to the rapidly changing
business needs. By evaluating against requirements, the evaluators determine
whether the prototype implements a possible solution for the stated problem.
This is done through group discussions between the researchers involved. In
addition, stakeholders at the workplace can also perform evaluation against
requirements. In order to get a broader view of how well the prototype
implements the requirements, it is preferable to perform both evaluations.

Evaluation of technical issues of the prototype (B)
Evaluation of technical issues can be done at two levels: how the prototype is
implemented and which technical features the prototype provides for the end
users.
How the prototype is implemented involves issues such as the
understandability, performance and complexity of the prototype’s construction

Chapter One
Introduction

29

in comparison with other related implementations. This type of evaluation is
performed by researchers. Which technical features the prototype provides is an
issue for both researchers and other stakeholders. The researchers can decide
whether the prototype is intended to implement a feature e.g. the researcher has
implemented the feature. The other stakeholders, above all the end users, can
decide whether they feel the feature is implemented in a satisfactory way. End
users can carry out user tests in order to decide whether the feature is
implemented satisfactorily. The difference between this type of evaluation in
comparison to evaluation against requirements is that issues outside the
requirements are considered.

Evaluation of environmental effects of the prototype (C)
A goal for the evaluation is also to find out what is required to realize quality in
use when employing tailorable systems in a rapidly changing environment. It is
only the users of the system who can decide if quality in use is achieved and it
is not only dependent on the prototype itself but also on social factors. This type
of evaluation is done through user tests. An evaluation paradigm that can
provide rich and nuanced data is used in a specific setting to achieve a rich
picture of the obstacles and possibilities of the prototype. Observation and
verbal protocols in a setting close to the real world are employed. The ideal
situation is to test the prototype in a real world setting, but most often it is
impossible to perform user tests in the real environment. Factors such as open-
plan offices that make it impossible to video tape the evaluations, or work
processes involving money make it inconvenient or impossible to test the
prototype in the real environment. The evaluations often have to be done in an
environment as close as possible to the real environment, which means that user
tests can be seen as experiments.
The prototype implements a process at the workplace and during the evaluation
the users use the prototype as a replacement in the work process. In this way it
is possible to discuss obstacles and possibilities, with the case-based prototype
as a mediating object. Accordingly, the users try out the prototype in a setting
close to the real-world environment with real-world data, whilst they ‘talk
aloud’ (Ericsson and Simon, 1993, Robson, 2002) to express how they
comprehend, perceive and understand the prototype. The ‘talk aloud’ technique
is utilized if two users sit together and discuss with one other (Preece et al.,
2002). In this way the conversation becomes smoother and the material
becomes richer. When the number of end users participating in the project is
small, a researcher can act as a ‘sparring partner’ for the end user. The
researcher acts as a participating observer, prompting the end users to talk about
what they experience. In this way it is possible to compensate for the fact that
the users evaluate the prototype individually and not together. In addition, it is
possible to penetrate issues of interest that otherwise may remain undiscovered.

Chapter One
Introduction

30

The evaluations are recorded on video and audio tape, and after the evaluation
sessions the tapes are transcribed, coded, categorized and analyzed.

1.5.6 Validity
Validity and reliability of qualitative research is connected to how the research
is performed. Robson (2002) lists some criteria showing what is required of
good research. We believe that the research approach described in this thesis
fulfils these criteria.

• The data are collected through multiple data collection techniques
(observations, interviews, workshops, discussions and document
studies).

• The research has focused on the participant’s view and the researcher
has been the data collector in relation to the participants.

• Participant observations, semi-structured interviews and workshops are
established methods in ethnographical studies, e.g. are part of an existing
tradition of enquiry.

• The research started with an aim of understanding how tailorable
systems can be used and can stay sustainable in rapidly changing
environments.

• Good quality research should also reflect the complexity of real life to be
believable. The methods used are employed because of their ability to
provide a nuanced, complex set of data. The nuanced data are then used
as a basis for prototype/tool construction.

• A rigorous approach to data collection and analysis is taken. All field
work is documented either by notes or recordings. How the analyses are
made is documented and a research diary is kept, containing thoughts
and records of actions.

Even if the criteria for good qualitative research can be said to be fulfilled, there
are threats to validity that have to be addressed. Robson (2002) describes
actions to make to reduce the threats.

• By peer debriefing and support, researcher biases can be avoided.
Peer debriefing and support has been used in several constellations, mainly
together with members from the U-ODD3 research group.

• By negative case analysis (looking for instances that disconfirm the
theory) research biases can be reduced.

3 Use-Oriented Design and Development

Chapter One
Introduction

31

During peer debriefing and support one of the researchers often acted as the
‘devil’s advocate’ posing questions like ‘What is this good for?’, ‘Can it be
done another way?’ etc.

• By prolonged involvement, reactivity and respondent biases can be
avoided.

In the projects done in collaboration with partners outside the university, the
research has involved being stationed at the studied workplace. The
involvement with the partners has lasted between six months and one and a half
years. Prolonged involvement can also be a source of research bias as the
researcher may identify himself as being a part of the studied company. This
threat has to be dealt with by for example negative case analysis or peer
debriefing and support.

• Triangulation can be used to increase the rigour of the research.
Data triangulation has been used in the form of participant observations,
interviews, workshops and studies of different kinds of documentation.

• By member checking, the obtained data can be verified.
The results of the analysis are verified by confirming the results with the
participants. The verification was done either by presenting the results to the
participants or letting the participants read the material. The same procedure
was used to verify observations. Additionally, sub-results were presented at
meetings together with representatives from the research partners.

• Through an audit trail (keeping full record of the research activities) the
results become traceable.

Interviews and workshops are audio recorded. Notes were taken during
observations, due to the restrictions on audio recordings in the open-plan office.
The end user evaluations are video and audio taped and after the evaluation
sessions the tapes were transcribed, coded, categorized and analyzed. Tape
recording has three advantages compared with other qualitative data
(Silverman, 2001), for example tapes can be replayed and they are also public
records, which improves the reliability of the study. To video-record the
evaluation adds another dimension to the audio tapes, as it is possible to see
how the user acted as well as hearing what was said in a specific situation. By
transcribing the tapes it is possible to illustrate the conversation in a way that
makes it possible to recall not only what was said but also, for example, pauses,
overlaps, hesitations and enthusiasm. To determine which initial categories to
use, two or more researchers read through the material to discover interesting
issues. The preliminary categories were established and the researchers coded
the material individually. The material was colour coded, which means that the
observations or responses are collected into groups of similar topics, and the
groups are given a symbol or a code (Robson, 2002), in this case a colour. The

Chapter One
Introduction

32

different coding sets are checked for correspondences and eventually the
categories are brought together and the coded material is further analyzed.
Generalization of research results is always an issue. Qualitative research is
often performed in a specific setting with a rather restricted number of
participants who express their own points of view. However, this does not rule
out qualitative research from possessing some kind of generalizability. A study
can provide some degree of theoretical insights that can be transferred to other
areas. This type of generalization is called analytic or theoretical generalization
(Robson, 2002) as opposed to statistical generalization.
The fact that the same results can be observed in several projects (see Table 1 :
3 and Table 1 : 4) speaks in favour of the possibility of generalizing the result of
this thesis beyond the specific settings of the projects. It is probable that the
result is valid for companies other than telecom operators, if the company has
support systems or business systems that have to adapt quickly or temporarily
to comply with changes in the environment to remain competitive.
It is likely that the result is valid for different kinds of data intensive systems, as
well as reflective systems with tailoring qualities, that is systems that depend on
surrounding systems that change. In data intensive systems it is likely that
tailorability is needed and it is essential to consider users, tailors and developers
as equally important as it is probable that the amount of data will lead to new
demands on the tailoring capabilities. In reflective systems, collaboration
between all three roles is also essential because it is impossible to anticipate all
changes in surrounding systems and the tailoring capabilities must therefore be
extended.
It can also be expected that companies where there are layered business related
changes may gain advantages from applying the results of this thesis. That is,
companies where changes in business related tasks affect other tasks that in
their turn depend on sufficient software support.
Even developers of embedded systems may find it helpful to consider
cooperation as an issue when designing new systems. For example, an
embedded system where the results are applicable is the Billing Gateway
(Dittrich et al., 2006). The Billing Gateway is a system that sorts data records of
phone calls and distributes the records to billing, statistics and fraud detection
systems. The Billing Gateway makes it possible to tailor the sorting algorithms
in accordance to, for example, new fraud indicators (Dittrich et al., 2006). How
useful the result is for other tailorable embedded systems depends on the
frequency and type of changes.
In companies in an environment with less frequent needs for change,
cooperation between users, tailors and developers might not be that important.
Tailoring activities individualizing the systems to better fit the way individual
employees use the software, or cosmetic tailoring, such as changing the
appearance of the desktop, is not an area that is included in the results.

Chapter One
Introduction

33

RQ 1: How can tailorability be supported to ensure that end-user tailorable
systems remain useful, sustainable and work as intended in a rapidly changing
environment where requirements continuously expand?

• Three distinct roles; users, tailors and developers
• Users, tailors and developers equally important
• Support of developers’, users’ and tailors’ work in the structure of tailorable systems.
• Well-defined developer “interface”
• Cooperation between tailors and developers to evolve the system in an unanticipated

way
• Combining tailoring and software evolution activities to extend tailoring capabilities
• Coordinating tailoring and software evolution activities

Outcome

Part I

Project 1

Chapter Two

Project 2 Project 3

Chapter Three Chapter Four Chapter Five

Need for a cooperative design process

Individualization does not directly affect the company’s competitiveness and
therefore it is less important if the employee has to wait for changes.
Another case that may not be embraced by the result is when the need for
change is so comprehensive that large parts of the system have to be
reconstructed, but it is not likely that such major changes are as frequent as
minor adaptations.

1.6 Outline and Project Outcomes
This section outlines the rest of the thesis and relates the different chapters to
the different projects. The projects were driven by the research questions and
each project generated new questions that drove the next project and so on.
Some of the questions that were generated are left for future work.
This section elucidates the outcomes and contributions from the projects while
the next section, Section 1.7, discusses the overall contributions of the thesis.
The thesis is based on four projects and eight papers, presented in seven
chapters (Chapters Two to Eight). The thesis is divided into two parts. Parts I
and II contain four papers each. Part II also contains two additional chapters
that bring together the rest of the chapters in the second part. Figure 1 : 13 and
Figure 1 : 14 show how the chapters are related.

Figure 1 : 13 Overview of research questions and chapters in Part I

Chapter One
Introduction

34

Future Work- Implementation of Toolkit

Outcome 2

RQ 1: How can the cooperative design process of end-user tailoring be
supported?

Evaluation
(Chapter Ten)

Toolkit
 (Chapter Nine)

Part II

Project 4

Chapter Eight Chapter Seven Chapter Six

• Need to support common understanding of tailoring
• Need to support exploration of what type of tailoring to implement
• Need to support shared responsibility for product
• Need to support end-users’ learning of technical issues concerning tailoring
• Need to support good architectural solutions

Outcome

Figure 1 : 14 Overview of research questions and chapters in Part II

The initial research question (RQ1) initiated and drove the first three projects of
the research, while Project 4 was driven by RQ2.

1.6.1 Part I – Cooperation
The first part consists of four chapters based on three projects elaborating
research question one (RQ1: How can tailorability be supported to ensure that
end-user tailorable software systems remain useful and sustainable and work as
intended in a rapidly changing environment where requirements continuously
expand?). The question generated several sub-questions during the research:

RQ1-a: Is tailoring enough to deal with expanded requirements?
RQ1-b: Is it possible to observe empirically the need for

combining tailoring and software evolution, and the need
for supporting developers’ interaction with tailorable
systems?

RQ1-c: From a technical point of view, how can cooperation
between users, tailors and developers be supported?

Chapter One
Introduction

35

RQ1-d: Is there a need for cooperation between users, tailors and
developers in business environments?

The relation between the projects, chapters and research questions is shown in
Figure 1 : 15.

Figure 1 : 15 Relationship between the chapters in Part I

Project 1
The origin of the project was a student project. The goal of the student project
was to build a flexible prototype intended for handling payments for a telecom
operator. The aim was to explore how the payment system could make use of a
very flexible database created during a previous research project (Diestelkamp,
2002). The result was a rather complex prototype that was difficult to manage.
The complex prototype raised the question of how to make a similar application
according to the same requirements but with an architecture that was clearer and
more apparent. It is on these premises that Project 1 started in cooperation with
U-ODDS4 research group at Blekinge Institute of Technology. The aim of
Project 1 was to explore if the metaobject protocol idea could be used for
tailorable systems whilst at the same time making the structure of the
application clearer. The project resulted in a prototype called ContractHandler.
The project lasted from January to September 2001.
Chapter Two (page 57) describes a tailorable prototype, and how it was used to

test the possibility of using the Java reflection API as a means of
implementing tailoring. Tailorability was achieved by using the metaobject
protocol idea. This means providing two interfaces to the application (base
level and meta level interfaces) allowing the manipulation of the base level
through the meta level interface (Kiczales, 1992).

Answers
The project answers the question “RQ1-a: Is tailoring enough to deal with
expanded requirements?” The answer to the question is no, since it was clear
that changes will eventually be needed that are not facilitated by the tailorable
system. Tailorable systems are by nature designed to support use and tailoring,
and since it was possible to anticipate unanticipated changes the prototype was

4 UODDS (Use Oriented Design and Development of Software). The group changed name to
U-ODD (Use-Oriented Design and Development) in 2005.

Project 1

Project 2 Project 1

Chapter Two
Chapter Five

Chapter Four

Chapter Three
RQ1-a

RQ1-d

RQ1-c
RQ1-b

Chapter One
Introduction

36

designed to facilitate such changes too. It had to be easy for the developer to
add new java classes and thereby expand the tailoring capabilities.

Question
Finally, the project brought up a question:

• Is it possible to observe empirically the need for combining tailoring and
software evolution, and the need for supporting developers’ interaction
with tailorable systems? (RQ1-b)

Project 2
Project 2 was performed in cooperation with a research centre in Malmö
(Interactive Institute AB, The Space and Virtuality Studio5). The research team
at the studio consisted of artists, engineers, industrial designers, software
developers, hardware designers, etc. who worked in an open-plan office. The
research team was, among other things, exploring the area of ubiquitous
computing in terms of design processes. They were developing a system of
ubiquitous and intelligent building blocks or physical interfaces, such as tag
readers, digital cameras, loudspeakers, lamps, buttons etc (jointly called
ActionBlocks). What was needed was a way to connect the different devices
into different kinds of configurations dependent on the situation and on specific
requirements. This is the starting point for Project 2. The author was stationed at
the studio two to three days a week from January to June 2002. The aim of the
project was to make a prototype that made it possible to easily connect physical
devices together in different configurations. The work resulted in a prototype of
an ActionBlock system.
Chapter Three (page 73) presents how different architectural paradigms were

combined in a ubiquitous computing environment. The system was required
to be able to deal with extremely unpredictable use scenarios. Different user
roles and their usage of and perspectives on the system were used as a
starting point for architecture design, in order to provide different levels of
flexibility. By explicitly discerning and equalizing the importance of the
three roles and by analyzing their use, interaction and perspectives on the
system, it was possible to support the different roles by different approaches
towards architecture.

Answers
The project provided an answer to the question “RQ1-b: Is it possible to observe
empirically the need for combining tailoring and software evolution, and the
need for supporting developers’ interaction with tailorable systems?” and the
answer is yes. Throughout the project the persons involved could clearly be

5 Interactive Institute AB, The Space and Virtuality Studio ceased to exist in December 2003

Chapter One
Introduction

37

observed to be divided into three roles: users, tailors and developers. What
could also be observed was the close cooperation between users, tailors and
developers. When observing the cooperation between the roles it also became
apparent that it was necessary to regard the roles as equally important, to avoid
the negotiations becoming biased.

Questions
The project raised two obvious questions:

• From a technical point of view, how can cooperation between users, tailors
and developers be supported? (RQ1-c)

• Is there a need for cooperation between users, tailors and developers in
business environments? (RQ1-d)

Project 3
Project 3 was done in cooperation with the same telecom operator that was
indirectly involved in Project 1. The project started in October 2002 and ended
in Mars 2004. Periodically, the author was stationed at the company two to
three days a week. During the time between Project 1 and Project 3, the telecom
company had invested in making the payment system tailorable by the end user.
The system handling the data was however inflexible and could only handle
specific data sets. This limited the flexibility and revealed the need to tailor the
communication paths and data flow between different systems as well. What
was needed was a tool for end users to make it possible for them to tailor
communications between different distributed heterogeneous data sources.
Therefore, the goal for Project 3 was to explore the possibilities and obstacles of
providing the end users with such a tool. The physical result of the project was a
prototype modelling the process of handling unpredicted extra payments. The
prototype was called EDIT (Event Definer for Infrastructure Tailorability).
Chapter Four (page 93) presents a tool that allows end users to manage system

infrastructure. The prototype provided an interface for the system
infrastructure. It was shown that it is possible, through small means, to
provide end users with opportunities to manage system infrastructure. This
could be achieved by structuring the application in a way that clearly
separated use, tailoring and further development of the tailoring capabilities.

Chapter Five (page 105) describes how the prototype was populated by real
business data and used as a mediating artefact in the evaluation. The users
tried out the prototype by carrying out one of their ordinary business tasks
whilst they ‘talked aloud’ to express their experience of the situation. The
outcome of the evaluation covered the areas of technical support, user
knowledge, and organizational and cooperative issues.

Chapter One
Introduction

38

Answers
Since Project 2 took place in a rather experimental environment it was
interesting to see if the findings from the project were valid for business
systems used on a daily basis. Since the task performed in the project in the
telecom company is dependent on data from several surrounding systems that in
their turn are dependent on one another, there is a need to coordinate tailoring
activities and evolution activities that are performed in surrounding systems.
This coordination inevitably requires collaboration between users, tailors and
developers. The cost of the workload for the developers must not exceed the
benefit for the users and tailors, because then the profit gained from tailorable
systems would be lost. This suggests that users, tailors and developers should be
viewed as equally important to satisfy when designing tailorable systems.
The answer to the question “RQ1-c: From a technical point of view, how can
cooperation between users, tailors and developers be supported?” is: by
providing a distinct way for developers (as well as users and tailors) to interact
with the system and by structuring the tailorable systems so that the concerns of
the different roles are distinctly separated. The prototype also implements a
graphical interface for developers.
The answer to the question “RQ1-d: Is there a need for cooperation between
users, tailors and developers in business environments too?” is yes.

Questions
The project raised many interesting questions that are out of the scope of this
thesis, but which will act as input for future research.

• How should a tailorable system be structured to support users, tailors and
developers and the cooperation between them?

• Can the separation of concerns and a division into three parts be regarded
as a guideline for how to structure tailorable systems?

• Do the different types of tailoring require different system structures?
• How should the different interfaces be designed?

There was one question generated by Project 3 that was more distinct than
others:

• How can the cooperative design process of end-user tailoring be
supported? (RQ2)

The question was explored in Project 4 and the focus developed in the direction
of how to support the cooperative design process when developing new
tailoring features.

Chapter One
Introduction

39

1.6.2 Part II – Support
During Project 4, when exploring the question “RQ2: How can the cooperative
design process of end-user tailoring be supported?” four sub questions were
developed:

RQ2-a: How can the communication that allows end-users, tailors and
developers to reach a common understanding of tailoring be
supported?

RQ2-b: How can the discussion and exploration of what type of tailoring
to implement be supported?

RQ2-c: How can the learning of end-users in the technical design process
be supported?

RQ2-d: How can the selection of good architectural solutions for tailorable
software be supported?

These questions resulted in four different artefacts aiming at supporting the
design process. In Chapter Nine the artefacts are put into context and the tools
in the toolkit are given shape. In Chapter Ten the tools are evaluated in an initial
expert evaluation. The relationship is shown in Figure 1 : 16

Figure 1 : 16 Relationship between the chapters in Part II

Project 4
Project 4 was done in cooperation with the same telecom operator as in Project
3. The project started in November 2004 and ended in February 2007. Once or
twice a week during this period, the author performed participant observations
during different types of project meetings, actively participated in design
meetings and took part in discussions with users. A couple of months after the
deployment of the new system a workshop was held to get an overview of
factors that have influenced the creation of the system and to explore how the
final system worked. The project also contained a set of interviews with users
and developers. The interviews were based on the observations made during the
development project. The aim of Project 4 was to explore the possibilities to
support the cooperative design process of end-user tailoring and to construct
tools that could assist the participants in development projects when end-user

Project 4
Chapter Six

Chapter Ten Chapter Seven

RQ2-a

RQ2-b
Chapter Nine

Chapter Eight
RQ2-d

RQ2-c

Chapter One
Introduction

40

tailorable software had to be modified to provide for extended tailoring
capacities. The concrete result of the project was a toolkit that can act as a base
for discussion, facilitate mutual understanding and make it possible to make
informed design decisions.
Chapter Six (page 125) presents a categorization of end-user tailoring that

considers both a user and a system perspective. When cooperating with
industry we have experienced a need to systemize tailorability to be able to
understand and discuss the phenomenon better. To be able to make informed
decisions of what kind of flexibility to implement it is important that users
and developers have a mutual understanding of what tailorability is. The
categorization is intended as a support for discussions to reach such an
understanding.

Chapter Seven (page 151) presents a matrix to support discussions between users
and developers concerning what kind of tailorability to build into the software. The
matrix contains attributes representing different types of tailoring as attribute
values. The attributes represent organizational, business and technical issues
to consider and can be used in a dialectic process to balance the human-
centeredness and the technical solution.

Chapter Eight (page 162) presents a selection of usability patterns that are of
vital importance for the success of end-user tailorable software, that also
have architectural impact, and therefore should be addressed early in the
design process. A subset of software design patterns suitable for end-user
tailorable software was also selected. These patterns are aimed at providing
support for technical design discussions when the group is more mature in
terms of using patterns. The chapter also describes a pattern structure for
patterns of end-user tailoring design.

Chapter Nine (page 193) is aimed at making the four artefacts from Chapters
Six to Eight useful. All of the artefacts aim to be a means of communication,
but to be useful they have to be made available for participants in a
development project. The fact that they have to be packaged in a form that
makes them available resulted in a toolkit which is described in the chapter.

Chapter Ten (page 217) presents the evaluation of the toolkit. The toolkit is
intended to go through three design loops and three separate evaluations. The
toolkit is currently in a prototypical state, but is intended for development
and improvement in the two forthcoming design loops. It is the first
evaluation, where the toolkit was evaluated by an expert team, which is
presented in this chapter.

Answers
The answer to the question “RQ2-a: How can the communication that allows
end-users, tailors and developers to reach a common understanding of tailoring

Chapter One
Introduction

41

be supported?” is that a categorization is a good start to begin to discuss and
come to a mutual understanding of a phenomenon such as end-user tailoring.
The answer to the question “RQ2-b: How can the discussion and exploration of
what type of tailoring to implement be supported?” is to base the discussion in
some attributes that are associated with tailorable software and try to pinpoint
which factors in the environment and in the system influence what is required
for the tailoring capability. A matrix populated with values of the attributes can
help in that discussion by guiding the team towards what tailorability to
consider.
The answers to the two questions “RQ2-c: How can the learning of end-users in
the technical design process be supported? and “RQ2-d: How can the selection
of good architectural solutions for tailorable software be supported?” is by
making it possible to combine a pattern approach with user participation.

Questions
Two of the tools presented in Part II involve patterns and when working with
patterns in the context of end-user tailoring some additional questions appear
that must be left for future research:

• Can other specific patterns for end-user tailoring be distinguished in
existing software?

• Which relationships exist between usability patterns and software patterns
for end-user tailoring?

Furthermore, another question to ask is
• How does the toolkit work in practice?

The full answer will not be stated in this thesis, but the toolkit has been
evaluated by an expert panel (Chapter Ten). An evaluation in a real setting will
be left for future work.
But additional questions also arise:

• Is there a need for other types of tools in the cooperative design process?
• Should the toolkit be supported by software?
• Which alternative implementations of the toolkit are there and in which

situations should they be used?

1.6.3 Summing Up
In Part I the need to combine tailoring and software evolution activities is
confirmed in all cases. The first three first projects verify a need for
collaboration between users, tailors and developers to provide for both
anticipated and unanticipated evolution.
To summarize, the projects contributed the following:

Chapter One
Introduction

42

• Three distinct roles, users, tailors and developers, were observed. (A)
• When designing tailorable systems, it is necessary to consider users, tailors

and developers as being equally important to satisfy. (B)
• There is a need to support developers’ work with tailorable systems in use.

(Understood that tailors and users can be expected to be supported by the
system.) (C)

• The need was observed for a well-defined developer interface or a well-
defined way for the developer to evolve the system. (D)

• A need for cooperation between tailors and developers to evolve the
system in an unanticipated way was confirmed. (E)

• There is a need to combine tailoring with software evolution activities
performed by professional developers. (F)

• A need for coordinating tailoring and software evolution activities was
observed. (G)

Table 1 : 3 summarizes the results from Part I. The table shows in which project
the results occur.

Part I:
Support of tailorability in Software Evolution

Project 1 Project 2 Project 3

Three distinct roles: users, tailors and developers (A) x x

Users, tailors and developers equally important (B) x x

Support of developers’ as well as users’ and tailors’
work in the structure of tailorable systems. (C)

x x x

Well-defined developer “interface” (D) x x x

Cooperation between tailors and developers to evolve
the system in an unanticipated way (E)

 x x

Combining tailoring and software evolution activities
to extend tailoring capabilities (F)

x x x

Coordinating tailoring and software evolution activities
(G)

 x

Table 1 : 3 Outcomes from Project 1,2 and 3

The fourth empirical project (Part II) confirmed the need for a collaborative
design process and revealed a need for tools that could support the process. The
project also acted as a basis for inspiration for the construction of the toolkit to
support user participation in the design process.
The contribution of the project is four artefacts intended to:

• Support a common understanding of tailoring (G),

Chapter One
Introduction

43

• support shared responsibility for the product (H),
• support exploration of which type of tailoring to implement (I),
• support end-users’ learning of technical issues concerning tailoring (J) and
• support good architectural solutions (K).

The support is achieved by
• a categorization of end-user tailoring in a way that may be a useful means

of communications in industry (Chapter Six),
• a matrix capturing characteristics for the different categories of tailoring

and that can be used to elucidate different dilemmas concerning the
implementation of new tailoring capabilities (Chapter Seven),

• a selection of vital usability patterns with architectural impact that can act
as a gateway to using other types of patterns (Chapter Eight),

• a selection of design patterns suitable for end-user tailoring (Chapter
Eight) and

• a pattern structure that supports both users and developers, since it
provides for the possibility to enhance both a level of overview and
details. (Chapter Eight).

The intention of the artefacts or tools presented in Part II is that they should act
as a foundation for a comprehensive understanding of tailoring, stretching from
what is needed, to how the requirements can be employed to engage users in the
software system. At the same time the architectural structure of the software
must not be jeopardised. This is done by providing

• a concrete toolkit that can be used in different phases of the cooperative
design process of end-user tailoring to encourage user participation.

Table 1 : 4 summarizes the results from the three chapters. The table shows in
which chapters the results occur.
Part II:
Support of the Cooperative Design Process

Chapter
Six

Chapter
Seven

Chapter
Eight

Support of common understanding of tailoring (G) x x x

Support of exploration of what type of tailoring to
implement (H)

 x x

Support of shared responsibility for product (I) x x x

Support of end-users’ learning of technical issues
concerning tailoring (J)

 x

Support of good architectural solutions (K) x

Table 1 : 4 Outcomes from Project 4

Chapter One
Introduction

44

In the next section the contributions from the projects are translated into the
areas of end-user tailoring, software evolution and Participatory Design.

1.7 Contributions to Tailoring, Software Evolution and PD
End-user tailoring brings together the areas of software evolution and
Participatory Design. In this section the overall contribution in all three areas
will be presented and the cooperative design process of end-user tailoring will
be delineated.

1.7.1 End-User Tailoring
When tailoring is discussed in literature, the focus is mainly on how end users
perform tailoring or how tailorable systems should be designed. The
developer’s role is only briefly touched upon. For example Stiemerling (2002)
states that Human Computer Interaction efforts often focus on optimizing
interfaces for non-programmers and that this effort often has “the nice side-
effect of making life easier for programmers as well” (Stiemerling, 2000, p. 33).
This thesis states that professional developers are as essential as users and
tailors for tailorable systems in a rapidly changing business environment, and
to make the tailorable system work as intended, the activities of the three roles
have to be coordinated.
The user and system perspectives are fundamentally different but this is a
positive factor, presupposing that there is collaboration between end users and
developers, because collaboration between different competences widens the
boundaries for what is possible to do with a tailorable system. Nardi (1993)
points out that end users with different skills cooperate when tailoring and she
states that “…software design should incorporate the notion of communities of
cooperative users…” which “…makes the range of things end users can do with
computers much greater” (Nardi, 1993, p. 122). By extending the cooperation to
involve professional developers, ‘things the end user can do with computers’
may even increase.
The contribution here is to include the developer in tailoring activities by
supplying new tailoring capabilities. To achieve this, the tailoring capabilities
can be extended in two ways:

• By providing a developer’s interface where the developer can easily create
a new tailoring capability (prepared development of tailoring capabilities
(Figure 1 : 17)).

• By extending the tailoring capabilities without the assistance of an
interface (unprepared development of tailoring capabilities (Figure 1 :
17)).

Chapter One
Introduction

45

Figure 1 : 17 Two types of development of tailoring capabilities

1.7.2 Software Evolution
Software evolution performed by professional developers is more suitable for
unanticipated changes. The projects show that it is easy to imagine situations
where the need for unanticipated changes arises. The tailoring capabilities will
eventually reach their limit and the capabilities will have to be extended to
make it possible for the tailors to continue to tailor the software. The more
rapidly the business environment changes, the sooner the limit could be
expected to be reached.
Both tailors and developers evolve a tailorable system but they have different
objectives for the evolution. Tailors evolve the system to be able to perform a
task. The tailors perform ‘task driven evolution’. Developers, however, evolve a
system to make it possible for the system to be a useful tool for the end users.
The developer performs ‘system driven evolution’. For ordinary software
systems that do not have any tailoring capabilities, both task driven and system
driven evolution are the responsibility of the professional developer. For task
driven evolution to be outsourced to the end users, the evolution has to be
supported by the system, which means that the boundaries of what can be
achieved are narrower than for software evolution performed by professional
developers. Accordingly, tailorable systems in a rapidly changing business
environment have to be combined with software evolution performed by
professional developers. The continuous evolution of tailorable systems in
combination with software evolution can be represented by the spiral model in
Figure 1 : 18.

tailoring

unanticipated change

Software Evolution
unprepared

development of
tailoring capabilities

prepared
development of

tailoring capabilities

Chapter One
Introduction

46

Figure 1 : 18 Spiral model of evolution of tailorable business systems

The similarities between Fischer’s approach presented in Section 1.4.4 (seeding
evolutionary growth and reseeding) and the one taken in this thesis is that users
and developers collaborate in seeding, the users (tailors) evolve the software,
and there will naturally come a time when there is a need to reseed the software,
when it has deviated too much from what could be regarded as good design.
The standpoint in this thesis is that there will also be need for extending the
tailoring capabilities when new requirements arise (Figure 1 : 19) which is not
considered in Fischer et al.’s approach..

Figure 1 : 19 The approach in the thesis in terms of SER.

The contribution here is to embrace the users and tailors in the development of
the tailoring capabilities and thereby state that software evolution in the context
of end-user tailoring is performed in two steps: firstly, develop the tailoring
capabilities and secondly, the tailor evolves the software by adjusting it to the
task in hand. Since the users and tailors carry out the second step of software
evolution it is essential that they also are a part of the first step so that they
understand the underlying design decisions that set the boundaries of the
software flexibility.

dashed line: activity performed by
professional developers

continuous line: activity performed by
end users

ImplementationSpecification

ValidationOperation

Evolutionary Growth

DU

T

T

T

D U

Seeding
ReSeeding

UD Extending
tailoring
capabilities

Chapter One
Introduction

47

As both of the evolutionary activities are dependent on one another, it is
necessary to coordinate the tailoring with the systems evolution that is
performed by professional software developers.

1.7.3 Participatory Design
End users mainly see computers as tools that facilitate their work (Nardi, 1993).
Nardi states that what motivates end users to make changes to the system is the
need to change the system to be able to perform a specific task. End users want
to make changes to systems as long as the changes are motivated by the task to
be done. The end users have the ability to change the system, as they possess
the domain knowledge needed for creating the applications they want, as well as
the motivation to get their work done quickly and accurately (Nardi, 1993). But
the users are also motivated to participate in development projects as this makes
it possible for them to make their voice heard in the decision making regarding
how the future software must work, which is essential for the users’ work task.
As pointed out in Section 1.4.3, Participatory Design activities often deal only
with the visible parts of the software. This thesis extends the notion of
Participatory Design to include even activities concerned with invisible parts of
the software (e.g. architecture). The reason for this is that the tailors are also
designers, and to be able to make good design decisions during tailoring it is
essential that the tailor knows the boundaries of the software. For the tailor to
experience quality in use it is also important that the tailors know which design
decisions underlie the boundaries. In the light of this reasoning the invisible side
of the software shrinks and the visible parts expand.
Unanticipated change has to involve the developer, and unanticipated change
can be dealt with in two ways (Figure 1 : 20), either by

• extending the tailoring capabilities through a prepared interface, or by
• extending the tailoring capabilities without support, in other words from

scratch.
In both cases the tailor takes over the evolution after the new tailoring capability
is in place and the tailor and the user already collaborate (Mackay, 1990).
Therefore it is essential to involve all three roles in the evolution of the tailoring
capabilities of the software. Such involvement embraces technical design
decisions, and to make it possible for the users and tailors to participate in the
technical design process a toolkit is proposed (Figure 1 : 20) in the second part
of the thesis.
The contribution here is to involve the users and tailors in the technical design
process by introducing tools that support the mutual understanding and learning
that make it possible for the users and tailors to actively take part in technical
design decisions and thereby influence the decisions that affect the boundaries
of the tailorable software. The tools can be regarded as PD techniques aiming
for the technical design process of end-user tailorable software. The tools are

Chapter One
Introduction

48

structured in a systematic but yet flexible way that should facilitate reproducing
successful collaborations.

Figure 1 : 20 Two types of development of tailoring capabilities and PD

1.7.4 The Cooperative Design Process of End-User Tailoring
End-user tailorable software embraces two types of activities: use and
evolution. Evolution can in turn be divided into sub activities: end-user
tailoring, prepared development of tailoring capabilities and unprepared
development of tailoring capabilities (Figure 1 : 21). These three evolution
activities are included in the cooperative design process of end-user tailoring.
The activities add to the previous levels as shown in Figure 1 : 21. When the
software does not fulfil the needs the next level is used, if that it not sufficient
the next level has to be considered.

Figure 1 : 21 Components contained in the cooperative design process of end-user tailoring

End-user tailoring is implemented by the tailor and the software is equipped
with the tailoring capabilities needed. The tailor is supported by an interface to
facilitate the changes. The evolution is done in collaboration with users.

tailoring

unanticipated change

Software Evolution
unprepared

development of
tailoring capabilities

Participatory Design

prepared
development of

tailoring capabilities

Tools

cooperative design of
end-user tailoring

unprepared development of
tailoring capabilities

prepared development of tailoring
capabilities

end-user tailoring

use

Chapter One
Introduction

49

Tailorable
Software

T D

UEn
vi

ro
nm

en
t

Prepared development of tailoring capabilities is implemented by the developer
in response to unanticipated changes. The software is prepared so that the
tailoring capabilities can be extended quickly. The developer is supported by an
interface to facilitate the addition of tailoring capabilities. The evolution is done
in collaboration with users and tailors.
Unprepared development of tailoring capabilities is also implemented by the
developer. The difference from the above is that the software is not prepared for
the activity. The evolution is done in collaboration with users and tailors and the
toolkit presented in Part II can be seen as a substitute for an interface, as the
toolkit supports the process to facilitate collaboration between users, tailors and
developers.
Figure 1 : 22 visualizes the three interfaces, one for each role (user, tailor and
developer) together with the tailoring activity that is not supported by an
interface namely the unprepared development of tailoring capabilities. As
shown by the spiral over the participants heads they all cooperate to evolve the
software.

 Figure 1 : 22 Cooperative Design of end-user tailoring

1.7.5 Summing Up
In summary the contributions of each of the three areas, tailoring, software
evolution and Participatory Design, are:
End-user tailoring: The developer belongs to the collaborative team of end-

user tailoring and the developer’s contribution to the
collaboration is to extend the tailoring capabilities to meet
unanticipated needs.

Software Evolution: Software evolution is accomplished in two steps in the
context of end-user tailorable software. In the first step
the developer extends the tailoring capabilities and in the
second step the tailors modify the software to give the
user the ability to perform the desired task.

Chapter One
Introduction

50

Participatory Design: Tools to support the cooperative design process are
introduced to make it possible for the Participatory
Design activities to embrace technical design decisions
regarding for example the structure and architecture of the
new tailoring capabilities.

The overall contribution of the thesis is to merge elements from the three
different areas and to describe how all of the areas belong in a cooperative
design process of end-user tailoring to keep the software sustainable. In addition
the contribution is to propose a toolkit that can support the process.

1.8 Conclusion
Software evolution can take place through tailoring. The different projects
showed that tailoring alone is not always enough to deal with expanded
requirements. Tailoring has to be combined and coordinated with software
evolution activities performed by professional software developers when
tailoring capabilities have to be extended. To coordinate end-user tailoring and
software evolution activities requires continuous cooperation between users,
tailors and developers to bring together different competences to make a joint
effort to evolve the system in the desired direction.
Some common results were more or less visible in the different projects.

• Three roles could be clearly distinguished: user, tailor and developer.
Tailors are often also end users, but are more skilled in handling the system and
are thereby able to tailor the system to fit new or altered tasks better.

• The task related evolution done by tailoring could be anticipated to a
certain degree, but in a rapidly changing business environment the
tailoring capabilities will rather soon reach their limits.

Then system related software evolution has to be done to extend the tailoring
capabilities so that the tailor can continue to evolve the system. Tailoring should
be combined with software evolution performed by professional developers.

• Collaboration between users, tailors and developers was observed, as
was a need for coordinating tailoring and software evolution activities

• In the empirical studies, there was an awareness of the competencies of
colleagues, and the differences were used for collaboration.

• The design of useful, sustainable, tailorable system should support use,
tailoring, and ordinary software evolution.

The prototypes showed how it is possible to facilitate all three roles’ relation to,
and interaction with, the system.

• User participation should be supported in all phases of the development
process.

Chapter One
Introduction

51

• The toolkit explores how to support the cooperative design process by
involving the end-users in the technical design process.

The empirical studies also revealed a need to support:
• the creation of a common base of understanding
• a learning environment to make it possible for the users to understand

technical decisions and their consequences for use
• a learning environment that makes it possible for users to participate in

the development project on equal terms
• shared mental models
• agreements of trade-offs
• that all parties in the development project participate in the decision

making
Accordingly, tailoring activities performed by end users and software evolution
activities involving professional developers have to be coordinated for users to
be able to experience lasting quality in use and to keep the business
competitive. This concerns end-user tailorable systems in a rapidly changing
business environment. It follows that an answer to the initial research question
(RQ1) “How can tailorability be supported to ensure that end-user tailorable
software systems remain useful and sustainable and work as intended in a
rapidly changing environment where requirements continuously expand?” is
that there is need for a continuous, close cooperation between the parties for the
software to adapt to expanding requirements irrespective of whether the
tailoring capabilities are sufficient for the required changes, or need to be
extended.
In conclusion, the thesis merges elements from three different areas, tailoring,
software evolution and Participatory Design, and states that the areas all belong
in a cooperative design process of end-user tailoring to keep the software
sustainable. The answer to the second research question (RQ2) “How can the
cooperative design process of end-user tailoring be supported?” is to provide for
appropriate PD techniques or tools that encourage learning and promote a
democratic decision process.
The overall contribution of the thesis is to describe the cooperative design
process of end-user tailoring and to suggest a toolkit to support it.

1.9 Future Work
This thesis emphasizes the importance of supporting tailorability in software
evolution to achieve sustainable systems that adapt to extended requirements.
The support is made possible by collaboration between end users and software
developers. The collaboration is enriched by the fact that end users and
developers have different perspectives on evolution, but the collaboration also

Chapter One
Introduction

52

has to be supported by the design and implementation of the tailorable system.
In Part I (Section 1.6.1) some questions arose that should be answered in future
research.
How should a tailorable system be structured to support users, tailors and
developers and the cooperation between them?
The three prototypes show that it is possible to support users, tailors and
developers, but is it possible to finds some general principles of how tailorable
system should be structured to support users, tailors and developers and the
cooperation between them?
How should the different interfaces be designed?
The evaluations of the prototypes built in the different projects also resulted in
technical findings concerning interfaces or interaction points for the different
actors (user, tailor, developer). How these interfaces should be designed to
support different actors, and in extension the collaboration between the roles,
might also be an issue for further research.
Can the separation of concerns and a division into three parts be regarded as a
guideline for how to structure tailorable systems?
All three prototypes explicitly implement separation of concerns for the three
roles. It is a question for further research whether this type of architecture can
be regarded as a guideline for how to structure tailorable systems for a rapidly
changing environment.
Also in Part II there are some loose ends to follow in future research. The most
noticeable thing is that the toolkit must go through additional evaluations and
improvements. The question is:
How does the toolkit work in practice?
The toolkit should be evaluated in an experiment close to a real world setting
and then be tried out in two or three real projects with different maturity in
terms of user participation, so that the results can be compared and
improvements can be made with different target groups in mind. The question
to answer is:
Which alternative implementations of the toolkit are there and in which
situations should they be used?
And of course
Is there a need for other types of tools in the cooperative design process?
There is also an open question of how to implement the tools in the
organization.
Should the toolkit be supported by software?
Should the toolkit remain low tech, or should the tools be encapsulated in a
cooperative IT-system, or should the toolkit be both physically and digitally

Chapter One
Introduction

53

represented, so that the participants work with physical objects but reflections
and decisions are collected and stored digitally, similar to the experimental
setting in Chapter Three?
Another track to follow is to investigate different instances of tailorable
software to explore possible architectural patterns specific to end-user tailoring.
The question is:
Can we distinguish specific patterns for end-user tailoring by studying existing
software systems?
Another pattern related issue that would be interesting to explore further is the
relationship between usability patterns and software architecture patterns.
Research efforts in this direction have been made (Bass and John, 2001, Bass
and John, 2003, Folmer and Bosch, 2003., John et al., 2004, Juristo et al., 2003),
but not in terms of end-user tailoring. The question is:
Which relationships exist between usability patterns and software patterns for
end-user tailoring?
Accordingly there are many questions left to answer, and that is of course what
research is all about, to pose questions.

Part I

Chapter Two

59

Chapter Two

Using Metaobject Protocol to Implement Tailoring
 Possibilities and Problems

The 6th World Conference on Integrated Design & Process Technology, 2002

Olle Lindeberg, Jeanette Eriksson, Yvonne Dittrich

This article is based on an experiment in using the Java reflection API1 as a
means of implementing a tailorable system. The background and idea behind
the experiment was a research project in which we and two industrial partners
collaborated. The goal of the project was to investigate a means of developing
flexible, adaptable and modifiable software systems. The system that the
prototype was modelled on is an application used by one of the research
partners that is a telecommunication operator. It was possible to anticipate the
type and structure of some of the changing requirements and for them tailoring
(Henderson and Kyng, 1991) is a possible way to make the system modifiable.
To read more about the project see (Dittrich and Lindeberg, 2002). The other
partner had developed a meta-model database system. During the research
project we developed several prototypes to test how to make a tailorable system
using this database. At the same time a normal system development was carried
out at the company. The resulting system has only limited tailoring capabilities.
The need to make the software adaptable was instead satisfied by making the
software easy to modify. This was achieved by making the software in
components, which with only a little programming effort can be assembled in
new configurations.
There were several reasons why the meta-modelling database tested in the
prototypes were not used in the system. Here we will take up only one of these:
the system seemed to become too complicated when tailoring was added to all
other requirements. This is an example of a general problem; when you add
tailoring capabilities to a system this often makes the system more complicated:
not only do you have to construct the tailoring interface but the basic program
may also become more complicated. To avoid this we constructed the prototype
using ideas based on the metaobject protocol (MOP) approach (Kiczales et al.,
1993). The prototype described here is a combination of the MOP approach and
the components used in the system development mentioned earlier. This
combination results in the meta-programming approach; this prototype is less
complex than those implemented earlier on in the project

1 <www.sun.com/j2se/1.3/docs/api>

Chapter Two
Using Metaobject Protocol to Implement Tailoring

60

The rest of the chapter is structured as follows (Figure 2 : 1).We start by giving
a sketch of what a metaobject protocol is, and more particularly, what it is in
Java. We then give a description of the software architecture of the complete
system (Section 2.4). The prototype implements only part of the system.
Following the software architecture are the design and implementation of the
prototype (Section 2.5). Finally, some conclusions from the prototype are
drawn.

Figure 2 : 1 Overview of Chapter Two

Section 2.7
Concluding Remarks

Section 2.6
Discussion

Section 2.1
The Metaobject Protocol

Section 2.2
Tailoring and Meta-

Modelling

Section 2.4
The System Architecture

Section 2.3
Reflection in Java

Section 2.5
The Prototype

Section 2.5.1
The Base-Level of

the Prototype

Section 2.5.2
The Meta-Level of

the Prototype

Chapter Two
Using Metaobject Protocol to Implement Tailoring

61

2.1 The Metaobject Protocol
The metaobject protocol approach originates from the CLOS programming
language in which it is possible to change program behaviour by interacting
with the runtime system through a metaobject protocol (Kiczales, 1991).
The metaobject protocol is based on the idea that one can and must open up
programming languages so that the developer is able to adjust the language
implementation to fit his or her needs. This idea has subsequently been
generalized to systems other than compilers and programming language.
Kiczales (1992) argues that the metaobject protocol concept can be used as a
general principle for abstraction in computer science. The idea is that any
system that is constructed as a service to be used of client application (as for
example an operating system or a database server) should have two interfaces: a
base-level interface and a meta-level interface (Kiczales, 1992). The base-level
interface gives access to the functionality of the underlying system and through
the meta-level interface it is possible to alter special aspects of the underlying
implementation of the system so that it suits the needs of the client application.
The meta-level interface is called the metaobject protocol (MOP). Simply put, a
MOP is a set of rules by which to manipulate and communicate with
metaobjects.

• A MOP shall consequently:
o Provide extended control over the behaviour of the system.
o Have a clear division between the base-level and meta-level

interface.

2.2 Tailoring and Meta Modelling
We have adopted a different approach towards the metaobject protocol. The
idea of the metaobject protocol approach has inspired us to transfer the concept
to end-user tailorable software. In most systems the end user has no access to
the implementation of the program; in our approach the end user is given the
opportunity to alter or tailor the software should the need arise. Our aim is to
give the user the opportunity to add components to the program in a controlled
way which does not require any programming. To do this we use a dual-
interface: a traditional base-level program and a meta-level program that
provides tailoring for the base-level program.
The distinction between a computational base level and a tailoring meta level is
a useful one in a tailorable system. In the same way as in a metaobject protocol,
the base-level implements what the system normally does. At the meta level you
can change what the base level does. The two levels are also often separated in
the user interface with a separate tailoring interface. The same separation may
exist in the internal design.

Chapter Two
Using Metaobject Protocol to Implement Tailoring

62

Perhaps the obvious way to do this is to let the base-level program be controlled
by meta-data which stores the choices the user has made when tailoring. If the
tailoring possibilities affect a large part of the program, the base-level program
may become littered with tests for the value of the meta-data. If the tailoring is
complicated the result may be that the base-level program looks more like an
interpreter of the meta-data than a straightforward program. We call this method
of implementing tailoring the meta-data approach.
The alternative way to implement a tailorable system, the meta-programming
approach, is closely linked to the metaobject protocol approach. With the meta-
programming approach the base-level program is a normal program which
performs the normal computation only. When the system is tailored by the
meta-level this is implemented by changing the base-level program. To be able
to do this we must be able to change (or at least add to) the program during
execution. In Java this is possible since new class libraries may be loaded and
linked during runtime. Another question is, “where is the meta-level description
of the current configuration of the system stored?” In the meta-data approach
the meta-level can inspect the meta-data to see how the program is configured;
it is the meta-data that will be changed during tailoring. In the meta-
programming approach the base-level does not need any meta-data. The radical
solution is to take away the meta-data from the meta-level too. This means that
it is the base-level program itself that is the meta description of the current
configuration. This is the method we have chosen in the prototype.
We have used Java to implement the meta-programming approach. When
tailoring activities changes the program the changes are implemented by
compiling new class libraries (this is done by the compiler in JDK). The new
class libraries are loaded and linked in during runtime. To obtain information of
the program we have used the - rather weak - reflection abilities in Java
reflection API.

2.3 Reflection in Java
Tailoring will change the program; the latter does not know in advance what the
changes will look like. To discover what a new class contains, we need
reflection capabilities. In a computational system reflection is the capability of
an object to, for example, “reason about and act upon itself” (Maes, 1987).
There are two types of reflection: introspection and intercession (Rivard, 1996).
The purpose of introspection is to acquire information about the program itself
and to use that information within the program. Intercession goes further. It
allows the program to alter its own behaviour. Different programming
languages have different reflection capabilities. Languages such as Lisp or
Smalltalk have both introspection and intercession, while Java is basically
introspective only. Java's meta-model is shown in Figure 2 : 2. In Java, every
class has a meta description which is represented by an object; an instance of
the class “Class.” This object is a metaobject. While ordinary objects describe

Chapter Two
Using Metaobject Protocol to Implement Tailoring

63

the world, metaobjects describe the ordinary objects. In other words, the
metaobject is an object that contains information about the ordinary object (base
object) (Golm, 1997). The metaobject may control the execution of the base
object (Zimmerman, 1996). The metaobjects together with the ordinary objects
are part of a meta-model.
The reflection API in Java provides information about modifiers, methods,
instance variables, constructors and the super classes of a particular class. It
allows you to create an instance of a class although you do not know the name
of the class until runtime. It is also possible to invoke a method on an object
without knowing the name of the method during coding.

Figure 2 : 2 A part of the Java meta-model

Accordingly, it is java.lang.reflect which makes it possible to inspect the
content of the class. However, in Java 1.3, the Dynamic Proxy API was
introduced making it possible to alter the behaviour of an object in runtime. We
have not used the proxy concept but instead alter the program by adding new
classes using the compiler in JDK.

2.4 The System Architecture
The prototype was produced to test the use of MOP in implementing tailoring.
The prototype is a partial implementation of a system described in this section.
It is necessary to have some understanding of the whole system to understand
the design of the prototype. The system is used for computing certain
payments2; these payments are triggered by certain events. The receiver of

2 To protect the business interests of our industrial partner we can only give an abstract
description of the system: it is our opinion that this does not affect the conclusions we draw.

Method

Classobject

Class

Methodobject

Person

Thomas

Emma

Java meta-model

Instance of

Reference

Correspond to

Class

Object

Meta-
class

Meta-
object

Chapter Two
Using Metaobject Protocol to Implement Tailoring

64

money and how much should be paid are decided by what contract(s) are valid
for the event.
The system architecture is described in Figure 2 : 3. The system can be regarded
as two loosely connected parts: the transaction handler and the contract handler.
The transaction handler application manages the actual payments and also
produces reports while its database stores data about the triggering events,
payments and historical data about past payments. (1)3 The data describing the
triggering events is periodically imported from another system. (2) To compute
the payments, the transaction handler calls a stored procedure in the contract
handler’s database. (3) The event is matched with the contracts; several hits
may occur. Some of the contracts cancel others; others are paid out in parallel.
We call the process of deciding which contracts to pay ‘prioritization’. (4) The
result is returned to the transaction handler. (5) The actual payments are made
by sending a file to the administrative system.

Figure 2 : 3 The system architecture

An important complication in the data model is the categorization of the values
on which some of the conditions are based. The categorization is dependent on
other systems, making interaction with the latter essential both when the
transaction handler matches events with contracts and when a user wants to use
categories in a contract.
The contract handler administrates contracts, or rather formal descriptions of
contracts, in a relational database. The interface enables the user to enter new
contracts and search for old ones. When entering new contracts, the input is
checked to ensure the integrity of the data. The main parts of the contracts are:

• Identification of the contract and version control.
• Some flags controlling who receives the money.

3 The numbers refer to figure 2.

Compute
payment

Transaction
handler

Contract
handler

Events

Other
systems

Payments

4

3
2

1
5

Users

Chapter Two
Using Metaobject Protocol to Implement Tailoring

65

• Conditions determining if the contract is valid for an event or not.
• A payment table deciding the amount to be paid.

The first two parts are common to all contracts; it is the conditions and the
payment table that differ.
In order to make the system adaptable to future changes a conceptual model that
facilitates a meta-model description of the system is needed. The purpose of the
system is to compute payments according to the stored contracts. Each event
that triggers a payment has a set of parameters. Today there are only two kinds
of events, though several other types of events are under consideration for the
future. In the contracts a condition is meaningful only if the transaction handler
can evaluate it when payment is due. This leads to the concept of event types: a
payment is triggered by an event, and all contracts belong to a particular event
type. Each event type has a set of attributes associated with it that limits what
conditions a contract belonging to it can have. In the existing system there are a
number of contract types that are used for different purposes. From the system’s
point of view these contract types differ in two significant ways: which
conditions you can add to the contract and how the contracts influence each
other (if several contracts match the same event one may inhibit the others, or
all may be paid out).
Already during the design discussions we constructed a conceptual model with
four levels of abstraction (see Figure 2 : 4). The actual data that is stored
describes the contracts the payments are based on. The contracts are of several
contract types which form the base level of the abstraction hierarchy. Some
contract types has nearly the same parameters but are used for different purpose
in the use of the system; this gives the next level, contract_groups. At the top
level of the abstraction hierarchy are the event_types where we group together
contract and payments related to the particular event which triggers them.

Figure 2 : 4 Type hierarchy

ContractTypeBAAContractTypeAABContractTypeAAA

Event

EventA EventB

ContractGroupBAContractGroupABContractGroupAA

ContractTypeABA

Chapter Two
Using Metaobject Protocol to Implement Tailoring

66

In an object-oriented implementation the actual contracts would be objects
belonging to the concrete classes in the bottom line. The remainder of the
classes would be abstract.

2.5 The Prototype
The reason for producing the prototype construction was to investigate the
feasibility of using Java's meta-programming possibilities to construct a
tailorable system. This can be seen as an example of an explorative prototype
(Floyd, 1984). We wanted to gain an understanding of the complexities related
to this approach. The prototype does not implement the whole system but only
the contract handler application. Functionality is reduced, especially the
parameters using categorization of values are simplified to simple values, the
primary reason for this being that it allowed us to build a prototype without any
communication to other systems; in this way development of the prototype was
greatly simplified.
The prototype is divided into two levels, the meta-level and the base-level. Two
catalogues, one storing contract type and the other parameter classes implement
the connection between the two levels. In the meta-level of the prototype, the
new contract types are created and stored in the contract type catalogue. In the
base-level the same classes are used as part of the program. The parameter class
catalogue is used by the meta-level to know which parameters exist and by the
base-level as part of the program.
Inheritance, together with the meta representation and the inner structure of the
contract types, is essential to the prototype. A simplified model, similar to the
conceptual model described in the section about the system architecture – but
leaving out the group level – is the basis for the prototype implementation. It
resulted in the class hierarchy presented in Figure 2 : 5. The events are super
classes to the contract types. In the conceptual model an Event has a set of
parameters and the contract type is made up of a subset of these parameters.
This is not possible in Java; instead there is a specification that defines the set of
parameters for the contract types in the Event classes. Some parameters are
compulsory for all contract types belonging to an Event; they are put in the
Event so that by inheritance they are present in all the contracts, e.g. all
contracts must have a contract id.
One problem is that the contracts should be stored for a long time; all contracts
ever entered into the system are kept to preserve its history and ensure that old
payments are traceable. This is a problem when a change is made in a contract
type as the system must still be able to store and display old contracts according
to the old type. For this reason, all contract types from the beginning are defined
as both an abstract class (e.g. ContractAB) and a concrete subclass
(ContractAB_1). When a minor change is made to a contract type this may then
be done by making a new concrete class, as ContractAB_2 in Figure 2 : 5.

Chapter Two
Using Metaobject Protocol to Implement Tailoring

67

Figure 2 : 5 Inheritance hierarchy for the contract types

2.5.1 The Base-Level of the Prototype
A contract is essentially a collection of parameters. In the system in use some of
the parameters are very complex and some even collect values from other
systems. This makes it natural to represent every parameter by an object. Most
of the methods in the contracts are implemented using delegation to the
parameters. For the contracts’ three main methods - checking, storing and
displaying themselves - there are corresponding methods in the parameter
classes. This is a vertical design where one class takes care of one type of
parameter through the whole program instead of the more normal three-layer
architecture (interface, logic and storing). This design makes it very easy to add
new parameter classes to the system.
When the end user wants to create a new contract, i.e. create an object from a
contract type, all of the concrete classes are fetched from the contract type
catalogue, their names are presented and the end user chooses which contract
type to create a contract from. Then a contract is created which has parameter
objects without values. The object displays itself by delegating to the
parameters. The same principle is used for storing and checking errors. When
the user has put values in all slots and wants to store the contract, the error
check is delegated to every parameter object. The parameter object checks that
the value has the right format and is within the given limits. When a value is
incorrect, the slot is marked and the user has to put in a new value. Not until all
values are correct, are the values set in the empty contract. The primary problem
with the delegation principle is that it is inadequate where parameters are in
some way dependent on each other. It is possible for a parameter to access
another parameter within the same contract by using a parent reference that all
parameters have.

ContractBAContractABContractAA

= abstract

= concrete

ContractABA

Event

ContractAB 2
ContractABA 1

ContractAB 1

EventA EventB

Chapter Two
Using Metaobject Protocol to Implement Tailoring

68

Following is a summary of how to create a new contract:
• The prototype collects the contract types from the contract type

catalogue.
• The end user selects a contract type to make a contract from.
• An empty contract is created from the contract type, the display method

of the object is called and the parameters display themselves to the user.
• The user puts in values for the parameters.
• The prototype checks the values; when these are correct they are set in

the empty contract. A contract is created.
• The contract is stored in a similar way.

2.5.2 The Meta-Level of the Prototype
The contract types are created in the meta part of the program. When a user
wants to create a new contract type all existing contract types are displayed.
This is done by collecting all the class files from the contract type catalogue in
which they are stored. The end user chooses what contract type he wants to
have as super class for the new contract type. To make it easier for the user to
make a decision as to what contract type is the most suitable, the parameters and
the methods of the contract type are also displayed. Java reflection API provides
the necessary methods for this.
The next step is to collect all possible parameters for the new contract type. To
find the set of all possible parameters the program collect all classes in the
catalogue dedicated for parameter classes. All parameters may not be used for
all Events. This is achieved by putting a filter in the class describing the Event.
For example, if a parameter 'xyz' is not valid for Event type B a method that acts
as a filter is placed in the abstract class EventB (Figure 2 : 5).
Thereafter all possible parameters for this Event type are shown to the end user
for him to select from. The parameters that are inherited are automatically
selected and cannot be deselected. To find which parameters are already present
in the selected contract type the program looks into the class of the contract type
and its super classes with help from java.lang.reflect.
The meta-level of the program is constructed as a meta-model which is
implemented as classes. The contract types correspond to objects of the class
Metaobject. Our metaobject is in a way the same thing as the classobject in
Java. We constructed our own version because a classobject cannot exist
without a corresponding class. This means that it is not possible to create a new
class from a classobject; as a result we could not use the classobject alone for
our purposes. Another factor is that it is important to be able to handle the
metamethods in a special way. The relationship between Java's meta-model and
our extended meta-model is shown in Figure 2 : 6.

Chapter Two
Using Metaobject Protocol to Implement Tailoring

69

Figure 2 : 6 Meta representation

In our extended meta-model a metaobject is an ordinary Java object, but it
contains a description of a contract type and thus corresponds to a specific
contract type. The MetaobjectClass is the class of metaobjects. The
MetaobjectClass is a description of a general class. When the MetaobjectClass
is instantiated the fields acquire values. The fields are references to metamethod
objects, metafield objects and metaconstructor objects, e.g. the MetaobjectClass
has a field of the Metafield type (the metamethods and the metaconstructors are
excluded to simplify the example). The MetafieldClass has the field’s name and
type. When the MetaobjectClass is instantiated a metaobject and a metafield
object are created and the fields in Metafield acquire their values. The
metaobject has a reference to the metafield object and the latter has a reference
to a parameter. If the contract type is to have a parameter named aCustomer, the
metaobject has a metafield object with an instance variable name with value
“aCustomer” and an instance variable type with the value of "Customer".
(Figure 2 : 7).
When the user has made his or her choices as to which parameters the contract
type is to contain, the class ContractHandlerMOP creates the metaobject
according to the input values. From the metaobject the source code for the new
class is generated. The java source code is then compiled and a class file is
produced. The file is stored in the contract type catalogue.
The ContractHandlerMOP is a class that handles the metaobject. All access to
the metaobject goes via the ContractHandlerMOP. The class also restricts what
can be done to the metaobject. This can be used to implement business logic
controlling what contract types can be created.

Metaobject Meta-
method

Meta
-class

Meta-
object

compiling

Method

Class

Object

Classobject

ClassMeta-
class

Meta-
object

Method
-object

ContractType

aContract

bContrac

Java meta-model Extended meta-model

MetamethodClass

Instance of

Reference

Correspond to

MetaobjectClass

Chapter Two
Using Metaobject Protocol to Implement Tailoring

70

Figure 2 : 7 An example

Following is a summary of how to create a new contract type:
• The prototype collects the contract types from the contract type

catalogue and displays the names of the contract types and their
parameters and methods to the end user.

• The end user selects a contract type on which the new one is to be built.
• The contract type is inspected and the parameters of the contract type are

displayed. All the parameter classes are collected from the parameter
catalogue and filtered by the Event type; the result is displayed for the
user.

• The user chooses the parameters for the new contract type.
• The program constructs a corresponding metaobject with its metafield,

metamethod and metaconstructor objects.
• The metaobject is translated into Java source code.
• The Java source code is compiled and the resulting class file is stored in

the contract type catalogue.
• The contract type can be used by the base-level of the prototype.

2.6 Discussion
During the project three prototypes were implemented along with the system
that is in operation today. The last prototype is the one that is described in this
article. The other two prototypes were for the contract handler (with essentially
the some functionality as in the prototype described) and for the "compute
payment" function respectively. These two prototypes were constructed with the
help of the meta-model database that was the starting point of the project. They

Metaobject
f=Metafield
c
m

Class ContractType
Customer aCustomer

MetafieldClass
name
type

MetaobjectClass
Metafield f;
Metaconstructor c;
Metamethod m;

Metafield
name=aCustomer
type= Customer

Transformed to java source
code and then compiled.

Instance of
Instance of

Reference

Reference

Chapter Two
Using Metaobject Protocol to Implement Tailoring

71

are examples of the meta-data approach mentioned in the Section 2.2 above, for
a description of these prototypes see (Lindeberg and Diestelkamp, 2001). There
are parallels between using a meta-model database and the MOP prototype. In
the meta-level of the program the meta database structure and the object
structure of the program are inspected respectively. The difference comes in the
base-level part: the meta database prototypes were both complicated and slow
since it had to inspect the database to establish the structure of a contract type; it
also had to inspect the database to see how a parameter looked.
When we compare the earlier prototypes with the one described in this article
the latter is less complex (it has taken less time to develop it). The interesting
question is why this is the case and it is important to see if we can draw any
general conclusions from this.
One of the reasons why meta-programming was so convenient in the example
described here is that it is not the functionality of the program which is changed
by the tailoring interface but the model of the data in the program. The base-
level program has the same functionality in spite of the alterations. If the
tailoring had aimed at extending functionality, for instance, with the aid of
macro capabilities, the task would have been complicated in the meta-
programming approach. An interesting question is if there is a complementary
principle here: when tailoring changes functionality use meta-data approach and
when tailoring changes the data model uses the meta-programming approach.
Our results seem to point in this direction.
Another advantage of the MOP prototype is the loose coupling between the
meta and the base part of the program and between the contract types, the
parameters and the base-level. This makes the base-level part simpler. By
separating the meta- from the base-level we were able to use standard software,
which means that at least the base-level is maintainable without any special
competence in MOP.
Jet another advantage of the MOP approach is the opportunity it presents to
handle unanticipated changes by hand-coding objects. There is always a limit to
how far we can get with tailoring since the latter only takes care of anticipated
types of changes and there will always be changes in the requirements which
cannot be anticipated. In the MOP prototype, hand-coding contracts or new
parameter classes can handle some such changes. This goes beyond normal
tailoring activity and is part of the evolution and maintenance of the system.
The advantage of the MOP approach described here is that it is easy to mix
hand-coded and automatically constructed objects.
A new contract type can be coded by hand and put in the contract type
catalogue. It will be used in the same way as contract types constructed within
the program. Such a hand-coded contract type can be modified later by regular
tailoring.

Chapter Two
Using Metaobject Protocol to Implement Tailoring

72

One example of this could be a contract type where two parameters depend on
each other; if one parameter has a value the other must also have one. We can
implement such an example by first using tailoring to let the system construct
the contract type without any check between the parameters. Then a
programmer can modify the code by adding the constraint between the
parameters to the checking method in the contract type. Should we subsequently
wish to make a small modification in the contract type, by adding a parameter,
for example, this can be done using the normal tailoring interface.
In the same way it is possible to add new parameter objects by simply placing
the compiled parameter class in the parameter catalogue. The parameter class is
then ready to be used in the usual way by the program; no other code in the
system needs to be changed but the new parameter class must obviously be
hand-coded by a programmer. The new hand-coded contract type or parameter
class must follow the pattern for how a contract type or a parameter class has to
be structured. We believe this possibility of mixing hand-coded and
automatically generated objects is a general advantage of the meta-
programming approach.
One of the reasons that tailoring was not implemented in the real system
development that was part of our research project was that the automatically
generated user interfaces would not have been of an acceptable quality. This is a
problem that occurs whenever tailoring is used to generate user interfaces. The
meta-programming approach enables the user to alleviate the problem by
making hand-coded interfaces for the contract types that are in the system right
from the beginning so that they have good user interfaces. When new contract
types are subsequently added by tailoring, less user-friendly interfaces will
result; this may be acceptable, and in our case study it would have been an
option since the alternative is to handle payments by hand.

2.7 Concluding Remarks
It has been interesting to try out the possibilities in Java for carrying out meta-
programming. Our overall conclusion is that the metaobject possibilities
available in Java are a convenient way for implementing tailoring in special-
purpose applications.
A question we have only touched on in this paper is if it is worth the trouble to
make an application tailorable as opposed to being merely “easy to change”.
The answer to this question lies in the future: what types of requirement
changes will arise? Would the prototype have been able to handle them? After
all, the efforts to make software adaptable only pay off if they are used.

Chapter Three

75

Chapter Three

An Adaptable Architecture for Continuous Development
User Perspectives Reflected in the Architecture

The 26th Information Systems Research Seminar, IRIS 2003

Jeanette Eriksson, Peter Warren, Olle Lindeberg

In this article we report from a design study that was performed at the Space
and Virtuality studio at the Interactive Institute AB1 in Malmö. The research
team at the Space and Virtuality studio is exploring how information technology
can support different design processes, such for example art projects. In a
design process the end users can experiment with different material, media,
situations, interactions etc. The intention with the design process may be to
explore different possibilities to interact with media or it can be purely artistic.
For example discover what artistic expressions you can get by combining
different sounds or learn how to combine light and digital projections to create a
desired effect in a room. The requirements for computer support change
dependent of the design task but also during the process itself.
The persons engaged in the research team have different kind of competences
and they cooperate intimately to achieve new design settings. The research team
at the Space and Virtuality studio is also exploring the area of ubiquitous
computing (Weiser, 1991) in the context of design processes. They are
developing a system of ubiquitous and intelligent building blocks, called
ActionBlocks (ActionBlocks are comparable with Phidgets (Greenberg and
Fitchett, 2001), but ActionBlocks is more of an interaction metaphor.
ActionBlocks is used to structure the interaction, which makes it possible to
build functional prototypes fast. ActionBlocks are input and output devices (tag
readers, digital cameras, loudspeakers, lamps, buttons etc.) that can be used in
different projects exploring the interaction between the end user and digital
media.
To be able to understand the complex functionality and quality requirements for
the upcoming ActionBlock system we have worked closely together with the
future users. We have participated in workshops, in different projects and
discussions concerning the use and functionality of the future ActionBlocks
system. The work made us aware of the close cooperation within the project
groups. When some new kind of IT-support is needed in a project the
participants discuss and negotiate the functionality, the quality, the look and the

1 http://www.interactiveinstitute.se

Chapter Three
An Adaptable Architecture for Continuous Development

76

delivery time and a solution is finally reached. The frequency of this type of
work makes it desirable to have a ‘library’ of different ActionBlocks that can be
assembled easily and quickly into different applications with different
functionality. This brings about a need for some kind of flexible architecture
that supports this kind of dynamic use.
During the work it became visible that different persons interested in the future
system have different views of ActionBlocks and how they ought to work. The
views were connected to what intentions the person has with ActionBlocks and
what activity the person focus on. The intention could be to use a system that
facilitates the interaction with digital media or it could be to design different
situations or possibilities to interact with the system, in other words, to set up
different environments for interaction. But it also turned out that the activity to
design or develop the ActionBlock was a main concern for some persons. From
the discussions and workshops it is possible to distinguish three different roles,
the end user, the interaction designer and the ActionBlock designer. The three
roles use the system in different ways.
A flexible system is important for all the roles, but it has different meaning.
Flexibility for the end user is that he can change the use. To the interaction
designer flexibility is to be able to assemble the system he desire on his
conditions. While the ActionBlock designer regard flexibility as a way of
changing or develop the software in a convenient way. All three roles contribute
and use the flexibility and in this way they all play a role in the evolution of the
system. The development takes place continuously and the maintenance will be
a part of the development. All three roles are part of the development process
and thereby they are all equally important. Thereby all situations of use are
important to consider when designing the system.
In conversation, an interaction between humans, context, assumptions and other
things has to be taken for granted to be able to concentrate on some particular
aspect, action, topic or objective (Robinson, 1999). This can be said to be true
for the interaction between humans and computers too. Different aspects are
important for the user depending on the situation of use. This means that a user
disregard some aspects of the system because they are of minor importance for
his specific use of the system. This is what makes different kinds of users have
different perspectives on a system. Apparently, the three roles have different
requirements of and perspectives on the system and this raised the question if it
is possible to construct an architecture that reflect these different user
perspectives and fulfil the user requirements that go beyond the user interface,
for example how the ActionBlocks communicate. The adaptable architecture we
present in this article accomplishes this.
Many research groups experiment with different kinds of sensors and
environments concerning ubiquitous computing and they suggest various
approaches towards the infrastructure. We have studied several related systems
that are concerned with making everyday life easier by adding computational

Chapter Three
An Adaptable Architecture for Continuous Development

77

support in the background and/or bringing the physical world into the virtual.
We have studied Multiple trivialities that is a project performed at the Space
and Virtuality Studio2 Web presence (Kindberg et al., 2000), Appliance Data
Service (Huang et al., 2001), Interaction spaces (Winograd, 2000), The Weather
Alarm System (Jacobsen and Johansen, 1999), RFID Chef (Langheinrich et al.,
2000), Informative things (Barret and Maglio, 1998), Invisible interfaces (Want
et al., 1999), Hive (Minar et al., 1999) and JINI (Waldo, 1999). When studying
the different systems we have looked for implications that different kinds of
usage is taken care of in the architecture. The studied systems has architectures
that are suitable for one or two of our user roles, none fits all three roles. In the
descriptions of the systems we have not found any discussion about how to
make an architecture that fits different user perspectives and roles. Our own
work was driven by the question if it was possible to construct a system
architecture that fit the requirements of all three roles. We wanted to show that
it is possible to reflect user roles in system architecture and use it as a platform
for system design.
Throughout the work we have used scenario-based design that is a well-known
and accepted design representation (Carroll, 1995). We have used scenarios to
envision different situations of use and just like in (Caroll, 1998) we see
requirements as statements of situations of use. The use of scenarios makes it
possible to visualize even cognitive aspects like expectations, goals and former
experiences. In this article we also use scenarios to extend the comprehension.
We let the opening scenario in the ActionBlock section extend into the further
sections to clarify how the different roles are supported by the architecture.

Figure 3 : 1 Overview of Chapter Three

2 < http://w3.tii.se/project.asp?project=104>,

Section 3.3
Discussion

Section 3.4
Conclusion

Section 3.1
ActionBlocks

Section 3.2
The Architecture

Section 3.2.1
Use

Section 3.2.2
Configuration

Section 3.2.3
Design of

ActionBlocks

Section 3.2.4
The Whole System

Chapter Three
An Adaptable Architecture for Continuous Development

78

The rest of the chapter is structures as follows (Figure 3:1). We first start with a
scenario that visualizes what ActionBlocks are. After that we present the
architecture and how it reflects the three user roles. We also exemplify the
architecture by parts of the proof of concept prototype that implements the
architecture. Then we discuss our result and present some arguments for why
the architecture is appropriate for all three users. Finally we make a conclusion
of the work.

3.1 ActionBlocks
The primary idea with ActionBlocks is to be able to make experimental designs
fast, primarily the ActionBlock concepts is for making it possible for the
interaction designer to experiment with different designs. Basically an
ActionBlock is a physical device that interacts with its environment and
function as an input and/or output device for the rest of the system. An
ActionBlock may be almost any electrical device: a tag reader, a digital camera,
a video camera, a projector, a button, a lamp, a loudspeaker etc. An
ActionBlock can be regarded as a part of physical interface to a ubiquitous
computer system. An end user can by manipulating a physical thing (that is part
of an input ActionBlock) make the system react and the system can cause an
action in the real world, the action is done by an output ActionBlock. The
intention is that systems of different ActionBlocks may easily be constructed to
support interaction with digital media. When this work was performed only a
few ActionBlocks were constructed, but the intention is that the ActionBlock
family will expand. To clarify the use of ActionBlocks let us take an example.
Suppose we have the following simplified scenario:
Carl is a teacher at the Interaction Design program at Malmö University. Every
year the master students have an exhibition to expose what they have done
during their studies. This year Carl that works part time at the Interactive
Institute AB wants to enrich the visitors’ experiences of the exhibition by
making them a part of it. His idea is that every exhibitor provides the visitors
with items that are associated to a film, an image or a sound that have some
relation to the exhibitors work. When a visitor, let us call him Jan, visits an
exhibitor he chooses an item that appeal to him. He can collect several items
from different exhibitors. At a central place in the exhibition hall Jan can make
his own multimedia show by putting his items on a table with a tag reader
hidden beneath it. When an item representing a film or an image is put on the
table the film is shown on a big screen and when an item associated to a sound
is put on the table the sound is exposed for everybody to hear. This is possible
because the items are tagged with small electronically tags.
To realize his idea Carl need several ActionBlocks: one tag reader for the
central table, one tag reader for each exhibitor, one projector and a loudspeaker
set. Carl also needs some software to support the application. He needs a piece
of software that takes care of the exposure of the different media. Carl then asks
Minna, the ActionBlock designer (the programmer) at the studio, to construct

Chapter Three
An Adaptable Architecture for Continuous Development

79

that software. When the software is ready Carl can configure his system by
fetching all the needed ActionBlocks and connect them to the network. The
ActionBlocks is then shown in an interface along with the available software.
He draws lines between the different unites to put them together. When he is
finished he saves the configuration and when it is time to use the system he
activates the system. The necessary software is downloaded to the different
parts of the system and the system is ready to be used.
In the scenario three different persons interact with the ActionBlocks system,
Jan, the end user, Carl, the interaction designer and Minna the ActionBlock
designer that supply the technical solutions. The three has different concerns
about the system. Jan wants the system to be easy to use and understand, but it
also has to be interesting to use it. It shall enrich his experience. Carl wants the
system to be flexible so that he easily may alter it if he wants to change the
interaction with the system. Minna wants the system to be easy to maintain and
develop further. The different roles also have different perspectives on the
system. Even if one person can act in all three roles, they can be regarded as
distinct ways to interact with the system. In many other scenarios the
ActionBlock designer has no role at all; if the interaction designer can construct
the needed system by assembling and connect ActionBlocks that already exists.
As implicated in the scenario above the participation in the work with
ActionBlocks lead to an identification of three different roles (end user,
interaction designer and ActionBlock designer) that are stakeholders in the
future ActionBlocks system. The roles have emerged from discussions with
people at the Space and Virtuality Studio. People that mainly work with
software development, interaction designers and people that represent the user
view were involved in these discussions. The persons that shared the user’s
view stated there has to be a correlation between the user role and the
functionality and appearance of the ActionBlocks.

3.2 The Architecture
By analyzing the different perspectives on the system the basic concept of
ActionBlocks was refined into a more structured concept which is represented
by the puzzle in Figure 3 : 2. At a conceptual level an ActionBlock is an artefact
that exists in both the physical and the digital world. ActionBlocks consist of a
computational (intelligent) part and a physical part (Figure 3 : 2). The physical
part contains a physical item and an action. The action is what happens when
the physical item is manipulated. The physical item is the part of the
ActionBlock that the user can touch and see. The computational part contains
both hardware and software. The computational part consists of a symbolic
representation of the physical item, a logic that makes the computation and a
digital representation of the action, an event. The physical item and the action
have its place in the real world, but to achieve an action the computational part
is needed.

Chapter Three
An Adaptable Architecture for Continuous Development

80

Figure 3 : 2 Conceptual model for ActionBlocks

When an action is made on a physical item the computational part comes in use.
The symbolic representation contains basic functionality dependent of the type
of ActionBlock and translates the signals from the physical item and transfers
the data to the logic. The logic work on the data and then the event is activated.
An ActionBlock that is creating an action react in the reverse order. The
different roles focus on different parts of the ActionBlock depending of their
perspective.
A proof of concept prototype3 that simulates different ActionBlocks assemblies
was made to test the validity of the concept. The implementation resulted in a
loose coupling between the three perspectives in the architecture as shown in
Figure 3 : 10. The prototype is built in Java. XML and JXTA (a set of peer-to-
peer protocols (Mason, 1996) are used for descriptive documents and
communication. Bellow some parts of the prototype are presented to exemplify
how the architecture can be implemented. The description of the prototype is
disregarding the specific JXTA dependent issues. This is done to be able to keep
the description quite simple to highlight the main issues. The prototype worked
well but it does not contain a physical interface. The prototype showed us that it
was possible to adapt the architecture to different user roles and still get a
complete comprehendible system.

3.2.1 Use
When Jan arrives to the exhibition hall he moves around the exhibition and at
one place he picks up a smooth stone that he puts on a tag reader nearby and
suddenly he can hear the sound of children’s laughter when they are throwing
stones in the water. It remembers him of the summers in his childhood. He put
the stone in his pocket and moves along. At another place he picks up a sample
of seaweed that seams to go well with the stone. Eventually he arrives to the

3 For an extended description of the prototype see Jeanette Eriksson, Interaction Views in
Architectures for ActionBlocks, Master theses in Computer Science, 2002, Blekinge Institute
of Technology (http://www5.bth.se/fou/cuppsats.nsf/1d345136c12b9a52c1256608004f0519/
4ac2f2585884b670c1256c1a00433023/$FILE/ ToEachHisOwn.pdf)

Physical item

 Action
Event

Logic

Symbolic
representation

Physical
part

Computational
part

Chapter Three
An Adaptable Architecture for Continuous Development

81

central table and he puts the seaweed on the table. The projector immediately
shows a film of a man fishing at a calm lake. The only sound that can be heard
is some birds singing. Jan then puts his stone at the table and the children’s
laughter is heard and the film clip gets a totally new expression.
For the end user the power of ubiquitous computing lays in direct and simple
interaction. It is essential that there is a direct coupling between his
manipulation of the physical object and the system’s response. The physical part
of ActionBlocks is in focus (Figure 3 : 2). The system should also be robust, if
one part is missing or defect only that part of the system should stop working.
This perspective and requirement can be supported by a pure peer-to-peer
structure (Figure 3 : 3).

Figure 3 : 3 Pure peer-to-peer architecture

In use there are some ActionBlocks that the user interacts with and some
ActionBlocks that produce actions. Cheap web servers, called TINI4 integrate
the ActionBlocks. The ActionBlocks may be combined in various combinations
and it is the logic that makes the combination possible.
Every type of ActionBlock has a specific functionality. To be able to speak of
ActionBlocks in a more general way we introduce transmitters and receivers. A
transmitter is an ActionBlock that has as a task to send tag id or other types of
translated signals to a receiver that performs an action. An ActionBlock may act
as both a transmitter and a receiver at the same time if such a circumstance
occurs. A camera might be such an ActionBlock. The camera can be controlled
from for example a tag reader and then it may send the pictures to a projector.
The gist of the example is that the ActionBlocks know by themselves what to
do. They do not have to take help from some central server that holds all the
information.
When Jan, the end user in the scenario interacts with the system the
constellation of ActionBlocks may look like in Figure 3 : 4. The projector in the
example might not be able to store the films because of lack of memory space.
It has to make a request to some type of database. Several ActionBlocks might
share this database. This database is not really regarded as an ActionBlock due
to the definition of ActionBlocks as a unit that contains an intelligent and a
physical part. At least it does not have a physical part that the end user comes in

4 http://www.maxim-ic.com/products/microcontrollers/tini/

Chapter Three
An Adaptable Architecture for Continuous Development

82

contact with. But this type of unit has to exist and to be able to speak of this
type in a general way it goes under the name of responder.

Figure 3 : 4 ActionBlocks in the exhibition hall

What happens within the ActionBlock when it is used can be exemplified by
how it is done in the prototype. When Jan puts a tagged object at the central tag
reader the signal from the tag reader is translated by the symbolic representation
(that also contains basic functionality of the tag reader). The data is transferred
to the logic in a XML file. In this case the logic adds the tag readers name to the
data and transfers it to the event module that handles the communication and it
sends a JXTA message, containing the XML file, to the loudspeaker set. The
event module takes care of the message and forwards the data to the logic. The
logic works on the data and dependent of the tag id and the tag reader name a
decision is made of what sound and sound level to expose. This information is
added to the XML-file. The result is sent to the symbolic representation that
transforms the data to signals that the physical loudspeaker understands and the
sound is exposed.

3.2.2 Configuration
To be able to use the system, the use has to be proceeded by a configuration.
The participant in this phase is the interaction designer. The interaction designer
is the person that set up the connection between the physical item, the
computational part and the action. He connects physical objects with software
units. He configures the system. For him all three components in the
ActionBlock have the same dignity (Figure 3 : 2). He sees the parts as
components that can be combined into ActionBlocks that fulfil his requests. He
thinks of software and physical item as one unit, an ActionBlock. The
interaction designer also designs the interaction between the ActionBlocks and
between the system and the end user. The system should make it easy to design
system with direct coupling between the manipulation of the physical item and
the action. It is practical to think that the interaction designer configures the
system by a drag-and-drop interface (Figure 3 : 5).
When the interaction designer configures the system he chooses what logic to
use for which ActionBlock and when he saves the configuration it registers
what logic and ActionBlocks the configuration require. The file is then used
when the system is activated.

Tag reader

Projector

Loudspeak

The dots refer to what
the user focuses on.

Chapter Three
An Adaptable Architecture for Continuous Development

83

Logic units

 Transmitters Responders

Responder 1

Loud-speaker

Projector

Logic 1 Logic 2

Responder 1

Logic 2

Logic 1

Receivers

Tag
reader

To the interaction designer it is also appealing that the assigned logic really
resides in the intended ActionBlock, because it corresponds to how he handles
the ActionBlocks while configuring the system. Peer-to-peer architecture also
has the advantage that the system is scalable and it is easy to join the network. It
is just to start a peer (Minar et al., 1999) and then the peer itself takes care of the
communication with other peers. These things are important from the
configuration perspective.
To be able to set up a system it is important to the interaction designer to be
able to easily obtain a complete list of existing and connected ActionBlocks to
be able to configure the system and assign logic to the ActionBlocks. Such a list
can be obtained by a distributed service that may request the ActionBlocks in
the network for a description of them, and in this way be able to show them as
icons in the interface.

Figure 3 : 5 Schematic interface to configure a system.

It is possible to configure the system even if the ActionBlocks are not connected
to the network. This can be done by the fact that all the ActionBlocks are
tagged. To make it possible to show the ActionBlocks in the interface, tag id
together with a description or image of the ActionBlocks has to be obtained in a
database. If the tag is known, the icon is shown. Then the system can be
configured in the same way as before. If the ActionBlocks are disconnected
while configuring the system the architecture may be regarded as client-server5

5 The distinction between a server and a distributed service might seem a little bit unclear. The
main issue is that the distributed service may be located on several places and isn’t exclusively
serving a set of dependent clients. But at some time slot a computer that answers a request acts
as a server to the computer that sends the request despite which functionality the computers has
in the network.

Chapter Three
An Adaptable Architecture for Continuous Development

84

Distributed service

 Service

Application
Storage

Active
ActionBlocks

Logic
Storage

Active
applications

End user

 ActionBlock
designer

Interaction designer

2.

1.

3.

4.

6.

7.

8.

9.
10.

5.
4.

architecture while the application requires information about the different
ActionBlocks and logics, which can be requested from a computer that supplies
that service. But the computer with the service may also be a peer in the system
while the architecture may be regarded as a peer-to-peer architecture with
distributed service (Figure 3 : 6). The interaction designer is gained by a peer-
to-peer architecture with distributed service.

Figure 3 : 6 Peer-to-peer architecture with distributed services

The prototype does not implement the graphical interface that the interaction
designer uses to assemble the ActionBlocks into a system. The intention is that
when the interaction designer creates an application the ActionBlocks, logic etc
that it is going to consist of is saved in a XML file (1) (The numbers refer to the
numbers in Figure 3 : 7. In the prototype this file is written manually for the
different assemblies.

Figure 3 : 7 Functionality of the prototype

But the setup is also a part of the configuration. At setup the system gets ready
to be used by the end user. When the interaction designer makes his intention to

Chapter Three
An Adaptable Architecture for Continuous Development

85

start an application known to the system (4) a start message is sent to the
distributed service. The distributed service continuously discovers which
ActionBlocks that are active (5) so when the start message arrives the
distributed service can examine the XML document that contains the
application description to explore if there is a match between the required
ActionBlocks and the active ones. If so and there also is another application
running the use of ActionBlocks is coordinated (6). An application may allocate
an ActionBlock, but it is also possible for two applications to share
ActionBlocks. This is defined in the XML file describing the application. When
everything is checked and it is possible to start the application, a message is sent
to the ActionBlocks that are going to be a part of the application. The message
is an XML document containing information about who to communicate with
(7). The symbolic representation (Figure 3 : 2) contains an XML document that
defines the name, type, functionality etc. for the ActionBlock. In this way the
ActionBlock already knows if it is a transmitter or a receiver. The next step is to
upload the required logic to the intended ActionBlock (8). The system is now
ready for the end user to use the application (10).

3.2.3 Design of ActionBlocks
The ActionBlock designer is the person that develops the software to support
for basic functionality for new or altered ActionBlocks. The ActionBlock
designer therefore focuses on the software and what actions it can generate. He
focuses on the computational part. To him the physical item and the action are
represented in the computational part. It is the ActionBlock designer that has the
control over what actions that can be associated to a physical item because it is
he who constructs the software. The ActionBlock designer designs
ActionBlocks. The ActionBlock designer also handles the evolution and
maintenance. From his point of view an ActionBlock may consist of only the
intelligent part and the action. The ActionBlock designer is aware of how the
software shall be used but for him the physical appearance is of minor
importance. For the ActionBlock designer it is of importance that the
development and the maintenance are easy to perform. It has to be easy to
update and administrate new software versions. It also has to be easy to
overview available software. With this approach it is convenient to make all
substantial computation at one place, at a server. From the ActionBlock
designer’s point of view the clients are input devices that make requests to the
server that is a computer that serves the client with the required service (Capron,
2004). For example, supply different ActionBlocks with information about
which to communicate with or required logic. It is also much more easy to
maintain and update a system with client-server architecture (Huang et al.,
2001) where many of the resources are kept at one place. It is also easy to keep
a list over existing clients (Minar et al., 1999). From the ActionBlock designers
perspective a centralized architecture, client-server, may be preferable as
architecture for ActionBlocks (Figure 3 : 8).

Chapter Three
An Adaptable Architecture for Continuous Development

86

Server

Figure 3 : 8 Client-Server architecture

Let us take a look at Minna's task in the scenario. When Carl asks Minna to
make some new logic for the exhibition she has to construct two pieces of
software: one for the loudspeaker set and one for the projector. The projector
has never been used in an ActionBlocks system before and therefore there is a
need for some general software in it.
What Minna has to do is to equip the projector with an event module and a
symbolic representation. The architecture for the ActionBlocks define that the
part called Event (Figure 3 : 2) handles the event generated by the user and the
events from the network. That part is the same for all ActionBlocks, so that
piece is just to upload to the projector. The symbolic representation has to be
constructed. This representation is divided into two parts. It contains the
software that handles the basic functionality for an ActionBlock, for examples
signals from tags has to be translated to a form that the logic can understand.
This part is specific for each kind of ActionBlock (tag reader, button, projector
etc.). The other part is a description of the ActionBlock, what type it is
(receiver, transmitter), what sort it is (tag reader, projector), name, id etc. When
this is done Minna turns to constructing the logic for the projector and the
loudspeaker set. Minna has to make her new software adapt to a predefined
interface to the event module that handles the communication. The use of
ActionBlocks differs during time and no project is similar to another therefore it
has to be easy to put different logics together. They will be software
components. All the components have to adapt to a general interface. Let us
take a closer look at the projector logic. What is needed? The projector is going
to show images and films. One component for displaying images and one for
displaying films are required. But to be able to make the decision what type of
media to display a third logic unit is needed, a part that holds the information
about which tag is associated to which file (Figure 3 : 9), the direction guide
(this part might get assistance from a responder, but we disregard that
possibility for now). The same principles go for the loudspeaker and the
spotlight switch. While reusing the logic in another combination the direction
guide will be different.
If there is a need for new software the ActionBlock designer makes and test the
required software and saves it in the “logic storage” (2). If basic software (for
example symbolic representation) is required in an ActionBlock the
ActionBlock designer uploads that too (3).

Chapter Three
An Adaptable Architecture for Continuous Development

87

Figure 3 : 9 Logic for the projector

3.2.4 The Whole System
We have seen that different architectures are preferred dependent of the user
role. From the discussion above a concept for the system architecture combining
different architecture paradigms, to support all three roles, is derived. The
architecture can on one hand be seen as an example of requirement driven
design where we first analyze the three roles different requirements on the
system and then construct an architecture that fits the requirements. On the
other hand the architecture starts from the concept of ActionBlocks which
essentially is taken as an on forehand given starting point for the whole design.
The concept of the architecture is on a rather high level because its flexibility on
different levels. The details in the architecture are determined by the specific
use situations and the implementation. The architecture is a manifest of the
design decisions that equalizing the different roles and to focus on one role at a
time and then combine them. To keep the concerns separated sub concepts are
developed for each user role. The different sub concepts fit well together and
form a merged concept for an architecture (Figure 3 : 10) that will adapt to the
different roles when interacting with the system.
When the user use the system the ActionBlocks communicates directly. The
ActionBlocks can be of different kinds and numbers. The interaction designer
uses the system by putting tagged ActionBlocks on a tag reader and trough a
configuration interface. The manager manages these units and the data is
collected in databases. When the ActionBlock designer uses the system he
constructs new software (logic) and uploads it to the logic storage. As shown in
Figure 3 : 10 the three roles interact with different parts of the system and it is
only at setup, performed just before the end user is going to use the system that
the different parts are connected. This accomplishes a low coupling between the
parts.

 Logic 1:1
 Direction

guide Logic 3:1
 Display films

Logic 2:1
Display images

Chapter Three
An Adaptable Architecture for Continuous Development

88

Figure 3 : 10 The whole system

3.3 Discussion
Our goal was to construct an architecture that will support the three roles in an
adequate way. We have achieved this by combining several architectures that
correspond to different interactions with the system.
The abstraction into three roles is done to be able to focus on three different
interaction perspectives or relations to a computer system. In this case
especially the ActionBlocks system. The advantage with this approach is that it
is easier to grasp the most important issues for each role. This makes it possible
to treat all interaction perspectives equal and to give the roles what they want
and need.

ActionBlock
(receiver)

Responder

Application
Storage

Active
ActionBlocks

Logic
Storage

Active
applications

Service

Tag Type ActionBlocks

Manager

Interface

Tag

ActionBlock
designer

Interaction
designer

Service provider

Setup

ActionBlock
(receiver)

 end user

ActionBlock
(receiver)

ActionBlock
(transmitter)

Chapter Three
An Adaptable Architecture for Continuous Development

89

The end user wants a system were there is a direct coupling between the
manipulation of a physical item and the system’s response. He also wants the
system to be robust. When one ActionBlock ceases to function the system
continues to work. A pure peer-to-peer architecture will fit the end user. An
advantage with pure peer-to-peer is its robustness because if a peer breaks the
network may continue to exist. This together with the fact that the
computational part of the ActionBlock really is within the ActionBlock
corresponds to the end-user perspective. When an ActionBlock cease to
function it is due to visible items, either the tag reader itself or the connection is
broken. But there are also some disadvantages with peer-to-peer. It is hard to
keep a list over existing peers in the network because all peers hold their own
lists and they may not be complete. It may also be a problem to administrate
different versions of software components (Minar et al., 1999). The
disadvantages concern the configuration and ActionBlocks design. The
interaction designer is also interested in having the ActionBlocks doing their
own computation because it corresponds to how he handles the configuration,
but he is also interested in obtaining a list over all active ActionBlocks. The
peer-to-peer architecture has to be extended by a distributed service to meet his
needs. The approach opens up for customized solutions were some services can
be more or less centralized but the communication between the ActionBlocks is
direct.
The distributed service is essential when the interaction designer has a need for
trying out and test the functionality of the system while configuring it. A
distributed testing service for example can help to trace all communication or
can collect testing information from all the peers.
The ActionBlock designer wants the system to be easy to maintain and develop.
He also wants to have control over the system. To him it is preferable with a
client-server architecture. The ActionBlock designer needs to have total control
over the system performance while testing and evaluating the functionality of
the developed software. Client-server architecture would supply the
ActionBlock designer with this capability. The disadvantages with client-server
architecture concern the end-user perspective. When the server breaks, the
network ceases to function and there is no personal control over the server.
Another disadvantage is that the end user's apprehension of ActionBlock does
not correspond to a client-server architecture where the ActionBlocks just are
dumb devices that rely on the server.
The testing is an essential part of the ActionBlock designers work and it is in
this phase of the development that the ActionBlock designer interacts with or
use the system. The initial testing of the software might be done on the
ActionBlock designers computer, but the software also has to be tested at the
right hardware environment, e.g. at an ActionBlock that ActionBlocks to do
their own computation because it corresponds to how he handles the
configuration, but he is going to possess the logic. When Minna has developed a
piece of new logic and she regards the software as completed she uploads the

Chapter Three
An Adaptable Architecture for Continuous Development

90

new logic to an appropriate ActionBlock. She simulates a receiver or a
transmitter on her computer and all communication goes via a server on her
computer. In this way Minna controls the communication and may focus on the
performance of the new logic. In this situation the architecture is client-server
architecture. When the testing is finished she saves the logic at the computer
with the distributed service. This line of action provides the ActionBlock
designer with some important advantages of a client-server architecture.
By making the architecture adaptable to different situations of use it is possible
to support all three roles. You can also say that the architecture changes focus
depending on the use. When the end user interacts with the system it acts as a
peer-to-peer application. When the interaction designer uses the system it acts
as a peer-to-peer application with a distributed service and when the
ActionBlock designer interacts with the system it can be regarded as client-
server.
The user roles are founded in different kinds of requirements. It is harder to
catch and implement cognitive requirements because they are not accountable,
but we regard it essential to capture all types of requirements to make the
system suit the user roles which makes it possible for the users to disregard
some aspects and focus on other more vital tasks. This makes it easier for the
users to survey the system. You may question if this approach is applicable in
other situations. We advocate that a consistent development process and a
flexible system that develops all the time require an approach that takes care of
all participants’ requirements both task related and softer ones. This approach
might be useful in other similar settings were the system continuously evolve,
like in tailoring and end-user development.
A disadvantage with the separation of different perspectives is that the
architectures may stay separate in the implementation. This approach may lead
to separate systems. That is not the intention. There also might be a gap between
the user roles, if one is not aware of the fact that the roles can slip into each
other. This may lead to a less adaptable system. Another disadvantage is that the
system might be more complex if the system designer is not aware of the risk
and has not as a goal to make the architecture as simple as possible without
giving up the concept.
The scenario sketches a rather limited picture of how flexible the system might
be. Let us consider another scenario: When Jan arrives to the exhibition hall he
can choose an item that appeal to him from a basket, a nice stone, a ball etc.
Then when he sees something he especially likes in the exhibition, an image, a
film, a noise, a piece of music he can associate the chosen item to that object. A
representation of several objects is kept in the exhibitioner's computer and when
Jan finds something he wants to store, an association may be done by putting
the item at a tag reader and by choosing the representation in a simple computer
interface. Jan associate his stone to his favourite sound by assistance of a
Graphical User Interface (GUI). When Jan puts his tagged stone at the tag

Chapter Three
An Adaptable Architecture for Continuous Development

91

reader a message is sent to the computer that gets knowledge of the tag id. A
picture on the tag reader representation indicates when a tag is put on the
physical tag reader. The available files are shown in the explorer and Jan click
on the file he wants to associate to his stone and drag it to the tag reader
representation in the GUI. The stone is now associated to the sound of laughing
children. If Jan is not satisfied by the result he may do the procedure again.
When the end user on his own associates tags to digital media he in a way alters
the configuration of the system. He makes a connection between the tag and a
file just like the interaction designer associates different ActionBlocks to each
other. The border between the end user’s task and the interaction designer’s task
is not so evident any more. The distinction between the user and the interaction
designer get blurred.
The interaction designer already assigns logic to the ActionBlocks. Let us
picture that the interaction designer might program the logic by himself in the
same interface as he associates the ActionBlocks in. For example by using
programming by demonstration and visual before-after rules it is possible for
non-programmer to program computers (Canfield Smith et al., 2000). Applying
such a method even blur the distinction between the interaction designer and the
ActionBlock designer. We have to remember that the roles may be contained in
one person. The roles may slide into each other.

3.4 Conclusion
Construction of flexible systems is an effort to extend the usability of the
systems. In a flexible system the end user tends to perform tasks that earlier was
dedicated for professionals. The development of the software becomes a
continuous process that does not end when the end user take the system in use.
This is especially apparent in the system described in this article where the end
user, the interaction designer and the ActionBlock designer continuously
cooperate to evolve the system. The three roles perceive and use the system in
different ways. The user designs in use of ActionBlock and he sees the physical
part of the system, and he regards it as a working tool. The interaction designer
designs the interaction between the ActionBlocks and the user. He sees the
system as a building kit that can be used to build tools for the user. The
ActionBlock designer designs ActionBlocks and he thinks of the system as
software components that can be assembled to make various actions. The
differences in how the roles use and perceive the system makes them have
different perspectives and requirements on the system. The usability of the
system is dependent of how well the systems support the different situations of
use and thereby the requirements.
In this chapter we have shown that by explicitly discerning the three roles and
analyze their use, interaction and perspectives of the system it is possible for us
to focus on the roles one by one and support the different roles by different
architectures. This approach means that we equalize the three roles’ importance

Chapter Three
An Adaptable Architecture for Continuous Development

92

for the continuous evolution of the system. The different architectures can then
be combined into an architecture that satisfy all the roles and that adapt to the
different kinds of use. The architecture acts as a foundation for the continuous
development of the system.
The prototype implements the concept described in this article and we have
thereby shown that it is possible to cater for different user roles even if they go
beyond the limit for the user interface and into the underlying architectures. But
there is still research left to do to explore how to reflect user roles in
architectures in other settings.

Chapter Four

95

Chapter Four

Can End-Users Manage System Infrastructure?
User-Adaptable Inter-Application Communication

WSEAS Transactions on Computers, December 2004

Jeanette Eriksson

The study presented in this article was carried out in cooperation with a
telecommunication operator in Sweden. Since this line of business is
characterized by fast change the company’s information systems must also
change rapidly. In such a fast-changing world flexibility is needed in software
to prevent the software becoming obsolete. One way to provide this kind of
flexibility is End-User Development (EUD). EUD “can be a strategic solution to
bridge the productivity gap by allowing end users to directly implement some
additional features important to accomplish their tasks” (Paterno et al., 2002).
One way of conducting EUD is end-user tailoring. End-user tailoring enables
the end user to modify the software while it is being used as opposed to
modifying it during the development process (Henderson and Kyng, 1991).
Tailoring is also a way to reduce the efforts keeping the system up to date
through further development. EUD and tailoring are used in stand-alone
applications or in the case of distributed systems with predefined homogenous
data sources. Example of such tailorable applications can be found in (Mørch
and Mehandjiev, 2000, Stiemerling et al., 1998).
Our industrial partner has some tailorable business systems that communicate
with other systems in the infrastructure. As flexible connections are needed in
an infrastructure for flexible systems it is a natural progress to provide the end
user with the possibility to tailor the communication paths and data flow
between different systems; a possibility to manage system infrastructure;
whenever necessary in the system tailoring process.
Various functionality needed to manage the infrastructure exists in tools for
system integration (EAI; Enterprise Application Integration (Lee et al., 2003)),
For example Microsoft BizTalk Server1, Microsoft Host Integration Server2,
Sun ONE Integration Server3 and WebMethods Integration Server4, network
management (monitoring the infrastructure) (Subramanian, 1999), component

1 <www.microsoft.com/biztalk/default.mspx>, accessed January 27, 2008
2 www.microsoft.com/hiserver/default.mspx, accessed January 27, 2008
3 <sun.com/software/products/integration_srvr_eai/home_int_eai.html>, accessed January 27,
2008
4 http://www.webmethods.com/Products/B2B, accessed January 27, 2008

Chapter Four
Can End Users Manage System Infrastructure?

96

management (if you choose to regard the different systems as components; how
the data is structured) (Szyperski, 2002) and report generation (assembling data)
(Chan, 1998). Except for report generation; that sometimes supports end users
but often need support from developers to fit new data sources; these tools are
exclusively designed for system experts not for end users.
Accordingly (I) tools for managing infrastructures are designed for system
experts and (II) tailoring is used in stand-alone applications or in the case of
distributed systems together with predefined homogeneous data sources. In our
case an end-user tool for tailoring communications between different distributed
heterogeneous data sources is needed. We therefore performed a design study to
explore the possibilities of providing the end users with such a tool using
existing standard techniques available at the company. The result was a
prototype called EDIT (Event Definer for Infrastructure Tailorability). This
paper describes the structure of EDIT and analyses the lessons learned.
The structure of the chapter is visualized in Figure 4 : 1. In the following section
we present the problem. In the section thereafter the structure of the prototype is
described from the user’s, tailor’s and developer’s perspective. We then discuss
the findings and alternative uses of EDIT. Finally we conclude that it is possible
to enable the end user to tailor communication between different heterogeneous
data sources in a large infrastructure. By the construction of the prototype we
show that it is possible to provide a simple solution that take advantage of
existing standard technology and that facilitates both use and tailoring and also
makes it easy to extend the tailoring capabilities to ensure the system evolves
along with the business tasks.

Figure 4 : 1 Overview of Chapter Four

4.1 Background
In the telecommunication business the business environment changes very fast
and competition is hard. Telecommunication operators compete by among other
things introducing new types of services to the customers and by improving
business systems that take care of the business side of the services. But because
changes are very fast, it takes a lot of effort to keep business systems up-to-date.
To come to terms with this problem, our industrial partner has invested in

Section 4.3
Discussion

Section 4.4
Conclusion

Section 4.1
Background

Section 4.1.1
Problem to be

Solved

Section 4.2
The Prototype - EDIT

Section 4.2.1
Middleware

Section 4.2.2
EDIT Design

Chapter Four
Can End Users Manage System Infrastructure?

97

making some systems tailorable by the end user (Dittrich and Lindeberg, 2002,
Dittrich et al., 2006).
In a previous project (Dittrich and Lindeberg, 2002), a system handling
contracts for payments was made adaptable; however, the system communicates
with several other systems that are not adaptable, e.g. the system managing
payment data is not tailorable. When creating new contracts or types of
payments, adaptability is restricted by the fact that the system handling the data
can only handle specific data sets. This limits the flexibility and reveals the need
to tailor the communication paths and data flow between different systems as
well.
In our study the subset of the infrastructure that deals with payments served as
an example of system infrastructure. From now on we will refer to this subset as
‘the payment system’.

4.1.1 Problem to be Solved
The payment system is used for computing certain payments5 determined by
what contracts are valid; these payments are triggered by specific events. Each
event that triggers a payment has a set of parameters (data set). Each event type
has a set of attributes associated with it that limits what conditions a contract
belonging to it can have. This means that a payment is triggered by an event,
and all contracts belong to one of the two existing event types. The data
describing the triggering events is periodically imported from another system
once a month. The actual payments are made by sending a file to the
administrative system.
To make new types of payments, new types of contracts must be implemented;
this is done by the end users.
We have just noted that there are only two types of events today, but this is not
entirely true. Several payments based on events cannot be handled
automatically by the regular payment system. We call this kind of payment
‘extra payments’. Extra payments are handled and computed manually but run
through the payment system in order to send a file to the administrative system.
Extra payments are also made once a month, like the regular payments.
The manual procedure to compute extra payments has until recently worked
well but took a lot of time. But the competitive telecom business is forcing the
company to come up on a continuous basis with new services; ultimately, other
types of extra payments are needed. These extra payments are based on new
types of events, which means that new types of data sets are needed. This
revealed the need for a tool to define and handle the new events.
To make the event definer/handler as flexible as possible, it must be able to
assemble data from different kinds of systems. Experience suggests that it is

5 To protect the business interests of our industrial partner we can only give an abstract description of the
system.

Chapter Four
Can End Users Manage System Infrastructure?

98

impossible to anticipate how future extra payments will look and which details
are needed. As a result, the event definer/handler must be able to communicate
with any system in the infrastructure. What is needed is a tool for inter-
application communication which can be adapted by the user. It is also essential
that the tool allows expansion of the tailoring capabilities so that new data
sources can be added.
The main research question in this article is how to structure a tool that makes it
possible for end users to manage a large infrastructure and at the same time
facilitate both use, tailoring and further development of the tailoring
capabilities.

4.2 The Prototype - EDIT
To explore how to solve the problem stated above we developed a prototype
called EDIT (Event Definer for Infrastructure Tailorability). EDIT is designed
to highlight such issues as how to make it possible for end users to:

• assemble data from different sources
• set up rules and algorithms that will be performed during computation
• map data sets to receiving sources.

It is important that the design is kept as simple as possible to make EDIT as
easy as possible to understand and survey. If the design is kept simple, it will
also be easier to visualize new ranges of uses and to extend tailoring
capabilities. The principle of simplicity also includes use of existing, well
known standard techniques.
The users tried out the prototype in a setting close to the real-world environment
with real-world data, while the users ‘talked aloud’ (Robson, 2002) to express
their apprehension, perception and understanding of the prototype. One
developer working with maintenance of the regular system also evaluated the
prototype and gave her opinions on it. Advantages and drawbacks concerning
use, tailoring and expansion of the tailoring capabilities were discussed. All
employees concerned with the payments participated in the evaluation process.
The reactions of the prototype were positive.
The prototype has also been successfully tested to fit in a technical sense into
the infrastructure of the company.

4.2.1 Middleware
The company has recently bought a platform which supports integration. A little
simplified, the platform consists of integration servers, brokers and workflow
servers.
The integration server is the platform’s central component at run time and it
connects internal and external resources to the platform. The integration server
works as the entrance for the systems and applications to be integrated. The

Chapter Four
Can End Users Manage System Infrastructure?

99

services running on the integration server consist of integration logic that
retrieves data from one resource and delivers it to another. The idea is that by
subscribing to a service the subscribers shall obtain the information needed
whenever new information appears. We had a somewhat different intention
when using the platform: We wanted to collect the information when we need it.
Instead of passively waiting for the data and then sort out a subset of interesting
data, EDIT actively gathers the information when needed. The platform
provides EDIT with information about how to get in touch with desired
resources and what data is accessible at these resources.
The integration server could not inform us about which resources are available
in the infrastructure; we thus had to create a service that makes it possible for
developers to publish information about their system. To do so, the developers
set up a database view containing data that can be shared with tailorable
systems such as EDIT, and then with the aid of a service on the integration
server, they publish how to connect to the system and what view to use. We call
this service ‘publishResource’. The service produces an XML file containing
connection data for all published resources. When EDIT wants to know what
resources are available, the XML file is fetched from the integration server by
means of a service called ‘getAvailableResources’. The third service, called
‘getMetaData’, provides EDIT with meta data from selected resources, e.g.
what fields (attributes) can be accessed in a specific database, and what types
the fields are.
An advantage of using the integration server on the platform rather than any
other server is that the integration server already contains services that can be
combined and extended to fit specific requirements as opposed to making the
services from scratch. Furthermore, the platform provides a graphical interface
to the services, which makes it fairly easy for developers to tailor services.

4.2.2 EDIT Design
EDIT is divided into two parts. In one part the end user can tailor
communication and data interchange between systems, i.e. the end user defines
the event types. The other part handles the execution of extra payments or
events. We can call the parts Event Definer (handles tailoring) and Event
Handler (handles use) respectively. The Event Handler is used once a month to
run the different extra payments, while Event Definer is only used when
someone comes up with a new type of extra payment.
Inevitable there will be a point in time when the tailoring capabilities in the
system are not enough to perform a new task. To make durable tailorable
systems it is essential that the further development of the tailoring capabilities is
made easy.
Figure 4 : 2 shows a simplified picture of EDIT and its connections to other
systems. When Event Definer starts, the XML file (‘AvailableDB.xml’)
containing all the published systems is fetched from the integration server. It is

Chapter Four
Can End Users Manage System Infrastructure?

100

possible for the end user to select some of the published resources to avoid
cluttering the interface with uninteresting information (‘Publications’). The
collection can be altered at any time. This selection is done separately and is
only altered when new resources are needed to define a new extra payment.

Figure 4 : 2 EDIT

Tailoring
The graphical tailoring interface of the Event Definer has been constructed
using different steps. These guide the end user through the process, but can also
be used in arbitrary order as the end user chooses. Some steps must be
completed once, before the end user can alternate between the steps. The steps
are revealed one by one and united consecutively. There are seven steps in the
graphical interface:
Step 1: Naming the extra payment
Step 2: Choosing what databases to connect to
Step 3: Choosing what fields to use from the selected databases
Step 4: Setting up criteria for what data to collect from the databases
Step 5: Shows the specified criteria from Step 4 as SQL queries
Step 6: Setting up algorithms of what to do with the collected data

ED
IT

/
Ev

en
t

ha
nd

le
r

ED
IT

/E
ve

nt
 d

ef
in

er

Data retrieval

AvailableDB.xml
(xml)

Export

MetaData.xml
(xml)

Algorithms

Publications

SystemX

View

SystemY Transaction
handler

ImportView

paymentX.extra
(xml)

In
te

gr
at

io
n

se
rv

er

Run

Chapter Four
Can End Users Manage System Infrastructure?

101

Step 7: Mapping the input table structure with the output table structure
Step 1 simply means that the end user names the extra payment to distinguish
between different extra payments. As already noted, when EDIT starts the XML
file ‘AvailableDB.xml’ is fetched from the integration server. In this way, EDIT
is always up-to-date with whichever systems are available. The end user has
already sorted out which of the published systems that are normally of interest
and only these are shown in Step 2.
In Step 2, the end user chooses which databases to use for the present extra
payment.
The next step (Step 3) is to choose what fields to use from the different
databases; to make this possible for the end user, EDIT has to know what fields
there are in the ‘views’ in the different databases. To determine the structure of
the ‘views’, EDIT calls the service ‘getMetaData’ at the integration server; the
service then calls the system in question and discovers the structure of the view.
The information is then collected in an XML file called
MetaDataSystemName.xml (MetaData.xml). This procedure takes place for all
the selected databases in Step 2. The structures of the views are then shown in
the graphical interface, and the end user can make his or her choices. Even if the
steps can to a great extent be carried out in an arbitrary order, for obvious
reasons Steps 2 and 3 must be performed once before Step 4 etc. can be
performed.
Step 4 is the most advanced step and requires quite a lot of knowledge of the
business task and data required. In Step 4, the end user must choose what field
is to be the base for the period selection, e.g. there is likely to be more than one
field containing dates in the whole collection. The end user must select which
date field to compare with when executing an extra payment for a specific
month. In Step 4, the end user must also specify how the different ‘views’ are
related to each other, how they are linked together, e.g. SystemX is linked to
SystemY by saying that fieldX in SystemX must be equal to fieldY in SystemY.
These two tasks in Step 4 are mandatory but setting up selection criteria for
what data to collect is optional. The graphical interface makes it possible for the
end user to drag and drop the field names in slots and set up conditions for
them, e.g. fieldX must be equal to ‘HI00’ etc.
Step 5 is somewhat similar to Step 4 as it shows the SQL queries representing
the criteria the end user has set up for data retrieval. This step exists because it
should be possible for the end user to set up more complicated (and unusual)
conditions for data retrieval than those which the graphical interface can
accommodate.
Step 6 makes it possible for the end user to specify what algorithms are to be
used on the collected data. Up to this step, the different displayed systems have
been kept separate but now the structure from the different ‘views’ is assembled
to make it possible to combine fields from different databases in the same
algorithm. We have chosen to focus on how the end users would prefer to write

Chapter Four
Can End Users Manage System Infrastructure?

102

the algorithms rather than implementing the algorithms. Therefore how the
algorithms are performed will not be discussed here.
Step 7 enables the end user to map the assembled and computed data to a
receiving system. This is done by showing the structure of the assembled data
views to the left and the structure of the receiving table to the right in the
graphical interface; it is then possible for the end user to drag different fields
from the left table to the right and in this way map the different sources together
(Figure 4 : 3).

Step 7: Export to Database

 Event table Export table

Figure 4 : 3 Step 7

All these choices, criteria, algorithms, mapping etc. are finally brought together
and arranged into an XML file named according to the name of the payment
stated in Step 1. An event type is created. The XML file has the same structure
as the interface of Event Definer: specification of data retrieval, algorithms and
export.

Use
The XML file produced by tailoring is then used whenever the end user decides
to execute the extra payment. The execution of extra payments is carried out by
Event Handler in EDIT. The XML file specifies which systems to connect to
and what data to collect. The business decision stating the integration server
only to house services facilitating integration and not regular data transfer result
in that the XML file must specify how to connect to the different systems
directly. When an extra payment is executed, EDIT contacts the chosen systems
one by one and data is collected from each of these. It is here that the
relationship or link between the systems the end user specified in Step 4 comes
into use because the collected data from one system acts as input for the data to
be collected in the following system, e.g. if there is a link between SystemX and
SystemY that says that fieldX in SystemX must equal fieldY in SystemY, and if
the data collected from fieldX has the values ‘H001’, ‘H002’ and ‘K666’, only
records containing those values in fieldY will be collected from SystemY, and

Datafield Type Import Datafield Type

Code_DB1 VARCHAR ID VARCHAR

Month_DB1 INTEGER Code_DB1 CodeNr VARCHAR

Date_DB1 DATE Month_DB1 CallMonth INTEGER

SUM_DB2 INTEGER Date_DB1 Date DATE

Name_DB3 VARCHAR SUM_DB2 SUM INTEGER

SubSum INTEGER

Name_DB3 Name VARCHAR

PayDate DATE

Chapter Four
Can End Users Manage System Infrastructure?

103

so on. The collected data is stored in a temporary database and assembled in one
table. When the data is collected and assembled in a single table, the events are
created, and the actual payment procedure can take place. The algorithms are
then applied to the data and the result is displayed to make it possible for the
end user to check and correct the result where necessary. By clicking on a
button, the end user eventually exports the result to the system handling the
payment in accordance with the mapping specification in the XML file. The
data in the temporary database is erased when the execution of the extra
payment is finished.

Expansion of Tailoring Capabilities
There will always come a time when the end user wants to retrieve data that is
not published in an available view. Collaboration between the end user and the
developer in question must in such cases work adequately because the
developer must update the view, create a new view or publish a new resource to
meet the end-user requirements.
We have described how the middleware provides EDIT with information about
the surrounding systems; EDIT is not, however, dependent on the middleware
because XML files, provided by the integration server, could be produced
manually by the developers. The integration platform makes the integration
between systems easier because EDIT can easily obtain adequate information
about the surrounding systems. One of the great advantages of XML is that both
computers and humans can read it easily if it is kept in a simple form. We have
tried out this course of action too and even though the middleware greatly
facilitates the administration of the system and keeps it up-to-date in relation to
surrounding systems, EDIT work smoothly without middleware.

4.3 Discussion
To be able to tailor something the end user must have a general view of what
can be achieved. This is one of the reasons why we have chosen a simple design
for EDIT. We believe the overview benefits from an understanding of the
structure of the application. A simple design facilitates understanding of the
structure and is it easy to understand then it is easy to use. This has been
confirmed by the user tests.
We have in EDIT focused on a design that makes the tool easy to interact with
for both users, tailors and developers which has led to separations of concerns
that was reflected in the structure of the application. If we look at the structure
of EDIT we can se that providing support for both use, tailoring and further
development of the tailoring capabilities is done by distinctly dedicate different
building blocks in the system for a specific interaction and by keeping the parts
clearly separated. The building blocks are encapsulated in a general shell that is
not affected if the building blocks are changed. For example when developing
the tailoring capabilities further the XML-file ‘MetaData.xml’ is produced as a
result of the developer publishing a new view. When doing tailoring

Chapter Four
Can End Users Manage System Infrastructure?

104

‘MetaData.xml acts as input, but the activity produces a new XML-file
‘paymentX.extra’ and this file then acts as input for using the system. In other
words the different activities only produce output to one part of the system
(Figure 4 : 4).

Figure 4 : 4 Division into three parts

This division into three parts can be observed in other tailorable applications too
(Chapter Two). The phenomenon occur when it is required to facilitate not only
use and tailoring but also further development of the tailoring capabilities. If the
division into three parts can be regarded as a guideline of how to structure such
a system will be explored in the future.
The division of EDIT into three parts makes it uncomplicated to use EDIT in
settings other than those aimed at computing extra payments. As long as the
developer directly or indirectly; by assistance of a integration server; provides
EDIT with information of how to connect to the data sources any setting
involving collecting and manipulating data from different sources is supported.

4.4 Conclusion
The preconditions that have to be fulfilled to be able to answer ‘yes’ to the
question “Can users manage system infrastructure?” are that the end users have
solid knowledge of the nature of the task and what data is required to perform
the latter, but also a working collaboration between developers and end users
when the possibilities for end users to manage the infrastructure must be
extended.
We have shown in the example of EDIT that it is possible to enable the end user
to manage and tailor communication between different heterogeneous data
sources in a large infrastructure. It is even possible to do this in a simple way
with small means and at the same time facilitate not only use and tailoring but
also further development of the tailoring capabilities.

Tailorable system

Use Tailoring
Further
development

output

Input to
activity

Chapter Five

107

Chapter Five

Combining Tailoring and Evolutionary Software
Development for Rapidly Changing Business Systems

 What is required to make it work?

Journal for Organizational and End-User Computing 19(2) 2007

Jeanette Eriksson, Yvonne Dittrich

End-user development (EUD) is one way to provide a flexibility that allows
companies to compete in rapidly changing business environments.
Telecommunication provision is one such example of a rapidly changing
business area. Telecommunication providers compete by, among other things,
providing their customers with new types of services, and as the business
changes, the business systems supporting it must also change. One way of
conducting EUD is end-user tailoring. End-user tailoring is an activity allowing
end-users to modify the software while it is already in use, as opposed to
modifying it during the development process (Henderson and Kyng, 1991).
End-user tailoring ranges from setting the values of parameters to adding code
to the software. Since evolution of software is inevitable (Lehman, 1980) and
since tailoring is recognized as a way of reducing the efforts when keeping the
system up to date through further development (Mørch, 2002), tailoring could
be an alternative to increase the sustainability of software in a rapidly changing
business environment.
Tailoring research so far has focused on flexible stand-alone systems. In earlier
projects, we too focused on the design of flexible and end-user tailorable
applications (Chapter Two). However, interaction with other systems turned out
to be a bottleneck, since business systems in telecommunication are part of an
IT-infrastructure consisting of heterogeneous data sources. Other research also
indicates that software and IT-infrastructures pose new challenges for software
engineering (Bleek, 2004). Normally, the data exchange between different
systems is the realm of the software developers, but in this article we use the
evaluation of a prototype to answer the question: What is necessary to allow
end-users to tailor the interaction between flexible applications in an evolving
IT-infrastructure? Our results support the claim that end-users can even tailor
the interaction between business applications. The analysis of a user evaluation
of a case-based prototype results in a number of issues to be addressed
regarding the technical design, the know-how demanded of the users, and the
organizational setting, particularly the cooperation between users and

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

108

developers. These issues both confirm and extend existing research on end-user
development and tailoring.
The structure of the chapter is visualized in Figure 5 : 1. We start by briefly
describing the relevant work practices and business systems of our industrial
partner. We then present how our research relates to others’ work. In the
following section, we describe our research approach in detail and the design of
the prototype is presented to provide a basis for the evaluations and discussions.
Thereafter, we present the outcome of the evaluation, which points out three
different categories of issues that are important when providing end-users with
the possibility to manage interactions between applications in an evolving IT-
infrastructure. The discussion relates these results to the state of the art.

Figure 5 : 1 Overview of Chapter Five

5.1 History and Background
The research reported here is part of a long-term cooperation between the
university and a major Swedish telecommunication provider, exploring the
applicability of end-user tailoring in industrial contexts (Dittrich and Lindeberg,

Section 5.4
Discussion

Section 5.5
Conclusion

Section 5.3
The Case Study

Section 5.3.1
The Prototype

Section 5.3.2
Outcome of Evaluation

Section 5.2
Related Work

Section 5.1
History and Background

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

109

2002). The subject of the prototype is part of the telecommunication provider’s
back office support infrastructure for administering a set of contracts and
computing payments according to these contracts. To compute payments, the
system must be supplied with data from other parts of the IT-infrastructure.
When creating new contract types based on different data, flexibility is
constrained by the hard-coded interface to other systems. As a work-around,
ASCII files can be created providing the necessary data sets – or events – to
compute the payments. The data for these extra payments is handled and
computed manually. To compute the data for an extra payment, members of the
administrative department first run one or more SQL queries against the data
warehouse. The result is stored in ASCII files. Next, the user copies the data
from the ASCII files and pastes it into a prepared spreadsheet. When the user
has thus accumulated the data, the user works through the spreadsheet in order
to remove irregularities. The contents of the sheet are eventually converted
again to an ASCII file that is imported into the payment management system.
The manual procedure to compute the data for the extra payments has worked
well until recently, although it is time consuming. The competitiveness of the
telecom business is however continually forcing the company to come up with
new services; more and more types of extra payments will be needed. This
situation necessitates a tool to define and handle the new data sets or events. To
make such event tool as flexible as possible, it must allow the collection and
assembly of data from different kinds of systems. Experience suggests that it is
impossible to anticipate the structure of future extra payments or which details
will be needed. As a result, the tool must be able to communicate with any
system in the IT-infrastructure. It is also essential that the tool allow for
expansion of the tailoring capabilities, meaning that new data sources can be
added. The addition of a new source should be as seamless as possible. Since
different system owners and developers are responsible for these systems, it is
their responsibility to make new data sources available. Such changes are part
of the maintenance of the other systems, and here the limits of end-user
tailoring are reached.

5.2 Related Work
The research on end-user tailoring addresses mainly the design of tailorable
applications, tailoring as a work practice, and cooperation between users and
tailors. Examples of research on the design of tailorable systems are (Mørch,
1997, Stiemerling, 2000, Stiemerling et al., 1998) and Chapter Two and Three.
Of these, only two address tailoring in the context of distributed systems. In
Chapter Three a prototype that dynamically connects different physical devices
(video cameras, monitors, tag readers, etc.) is presented. The tool can be
regarded as tailoring the interaction between different intelligent devices.
Stiemerling (2000) and his colleague (Stiemerling et al., 1998) show how to
build a search tool by using customized Java Beans. The users customize search
and visualization criteria. The tailorable search tool is used within a distributed

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

110

environment provided by a groupware system. Neither of the distributed
tailoring approaches is evaluated by users to explore beyond technical issues of
how end-users can manage interaction between applications.
Several researchers have studied how tailoring activities are carried out in work
practice, for example (Gantt and Nardi, 1992, Stevens et al., 2006, Trigg and
Bødker, 1994). In a study involving tailoring spreadsheets, Nardi and Miller
(Nardi and Miller, 1991) identify collaboration between three kinds of users of
CAD (Computer Aided Design) systems (1) users who do not program (2) users
who acquired the skill to program small macros, and (3) local developers: users
having a more or less formalized responsibility for supporting other users and
maintaining the macro selection of a group or department.
Carter and Henderson (Carter and Henderson, 1999) invented the expression
tailoring culture to express the need for organizational support for tailoring.
Kahler (Kahler, 2001) also points out that, in order to make tailoring successful,
an organizational culture must evolve that supports the development and
sharing of tailoring knowledge. Kahler also emphasizes three often coexisting
levels of tailoring culture, identified and addressed by different researchers.
First there is a level with equal users; people help each other to tailor the
software (Gantt and Nardi, 1992) or there is a network of whom to ask when
encountering trouble when tailoring the software (Trigg and Bødker, 1994).
Second, there is a level with different competencies (Gantt and Nardi, 1992).
The third level is a level of organizational embedment of tailoring efforts and
official recognition of tailoring activities (MacLean et al., 1990). We will return
to this classification in the discussion of our results, as our findings propose the
consideration of a fourth level of tailoring culture when implementing and
deploying tailoring possibilities in an IT-infrastructure environment.

5.3 The Case Study
Our research approach can be described as a single case study (Yin, 2003)
following a design research paradigm (Nunamaker et al., 1991). The question
“What is necessary to allow end-users to tailor the interaction between flexible
applications in an evolving IT-infrastructure?”, addresses the design and
deployment of a previously inexistent functionality. In design research, the
design and development of a (prototypical) information system can be used both
to answer technical questions and as a probe to explore requirements posed by
the deployment of the technical possibilities. Hevner et al. (2004) especially
emphasize the need for combining design research and behavioural science. The
technical design of the prototype is discussed in Chapter Four.
The practical work was conducted during a period of slightly more than one and
a half years. Prior research indicates that the collection of data to process the so-
called extra payments was a bottleneck both for the users’ work as well as for
deploying the flexibility implemented in the existing systems. During the initial
field studies focusing on the work practice of the business department, we

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

111

visited our industrial partner once or twice a week to observe and interview both
users and developers. These field studies informed the development of the
overall research question and also the design of the prototype.
In the beginning of the design phase, workshops were arranged involving
researchers, users and developers. When designing the prototype, one of the
researchers was stationed at the company two or three days a week to ensure
that the prototype conformed to existing company systems. Field notes were
taken, and meetings and interviews were audio taped, during all phases of the
case study.
The prototype was evaluated by all three employees involved in the collection
of data and computation of the extra payments and by one developer involved in
the maintenance of the payment system. These evaluations were video taped.
The analysis in the section of this article entitled “Outcome of Evaluation” is
mainly based on the latter tapes, but uses the other field material as a
background. For secrecy reasons, videotaping is not allowed on the tele-
communication provider’s premises. We therefore installed the system on a
stand-alone computer outside the actual work place. To allow the users to evalu-
ate the prototype realistically, we reconstructed part of the IT-infrastructure in a
local environment and populated it with business data, developing our prototype
into a case-based prototype (Blomberg et al., 1996). The users were given two
tasks. One task was to construct the collection and assembly of data for an extra
payment that they implemented regularly (in the manual fashion described
above) as part of their normal work. For the second task they had to construct a
totally new but realistic payment. The users were asked to talk-aloud while
performing the task. This method is common when evaluating software in a use
context (Ericsson and Simon, 1993, Robson, 2002). The researcher performing
the evaluation observed and asked exploratory and open-ended questions to
provoke reactions that differed from our expectations. The developer who
worked with maintenance of the regular system evaluated the prototype in a
workshop, and discussed advantages and drawbacks concerning use, tailoring,
and expansion of the tailoring capabilities.
We analyzed the data in a manner that was inspired by grounded theory. A
coding scheme was developed with its starting point in the transcripts of the
evaluation sessions. The researchers coded the interviews independently from
one other and then compared their results. The resulting categories were finally
merged into three core categories, that is, design issues, user knowledge, and
organizational and cooperative issues. The categorization can be found in the
evaluation section.

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

112

5.3.1 The Prototype
The prototype is divided into two parts, the Event Definer and the Event
Handler (Figure 5 : 2). By using the Event Definer, the end-user can tailor
communication and data interchange between systems, that is, the end-user
defines the event types for the computation of the above-described extra
payments. It allows the user to: define the assembly of data from different
sources (Figure 5 : 2a), set up rules for aggregation and algorithms that will be
performed on the data when aggregating the data (Figure 5 : 2b) and define how
to map data sets to the format required by the receiving application. (Figure 5 :
2c). The Event Definer needs to be used only when defining new types of extra
payments. The Event Handler handles the execution of extra payments or events
and is to be used once a month to run the different extra payments.

Figure 5 : 2 The connection between the prototype and the surrounding systems

Various solutions exist that provide the functionality needed to manage the
connections between applications. These are found in tools for system
integration that connect systems, in network management for monitoring the IT-
infrastructure, in component management (if you choose to regard the different
systems as components) and in report generation for assembling data. These
tools are designed exclusively for system experts, not for end-users. A possible

Event Handler

Integration
Platform

Publication
service (d)

Connection
data (xml)

Meta Data
service (e)

Run

Meta data
(xml)

Event Definer

Extra payment (xml)

Meta data
(xml)

Connection
data (xml) Algorithms

(b)

Export

(c)

Data
retrieval

(a)

DB of
SystemX

View

DB of
SystemY

View

Payment
System

Export

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

113

exception is report generation, which sometimes supports end-users but often
needs support from developers to adapt it to fit new data sources. We found that
none of these approaches was suitable for fulfilling the requirements for a tool
for interapplication communication that can be adapted by users. Neither were
the approaches suitable for the purpose of exploring what is necessary to allow
end-users to tailor the interaction between flexible applications in an evolving
IT-infrastructure. For our prototype we used an existing platform that supports
integration between the telecommunication provider’s back office applications.
The integration platform makes it possible to publish events that other
applications can subscribe to. We had a somewhat different intention when
using the platform. We wanted to collect the information when needed, and we
used the platform to provide the prototype with information about how to get in
touch with desired resources and what data were accessible at these resources.
We created a service (Figure 5 : 2d) on the integration platform that allowed the
developers of the different systems to publish information about available data
and showed how to connect to the respective database. To do so, the developers
must set up a database view containing data that could be accessible to other
systems (such as the prototype). The service produced an XML file containing
connection data for all published data sources. When the Event Definer starts,
the XML file is fetched from the integration platform. Yet another service
(Figure 5 : 2e) provided the prototype with metadata from the data sources, for
example, which fields (attributes) could be accessed in a specific database, and
the types of the fields.

Tailoring
The graphical tailoring interface of the Event Definer was constructed to consist
of seven different steps. These steps are intended to guide the user through the
process, but could also be used in an arbitrary order as the end-user chooses.
Step 1: Naming the extra payment.
Step 2: Choosing which databases to connect to.
Step 3: Choosing which fields to use from the selected databases.
Step 4: Setting up criteria for what data to collect from the different databases,
that is, by drag and drop, the end-user chooses which field should be used and
the end-user can also specify how the different views should be linked together,
for example, fieldX in SystemX must be equal to fieldY in SystemY.
Step 5: Showing the specified criteria from Step 4 as SQL queries, that is, here
the user can edit the SQL queries to set up more complicated (and unusual)
conditions for data retrieval than can be accommodated by the graphical
interface.
Step 6: Setting up algorithms for what to do with the collected data. (partially
implemented.)

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

114

Step 7: Mapping the input table structure to the output table structure, that is,
the end-user can map the assembled and computed data to a receiving system by
dragging the fields from the assembled data table and dropping them in a table
representing the receiving database.
All these choices, criteria, algorithms, mapping and so forth, were finally
brought together and arranged into an XML file (extra payment in Figure 5 : 2).

Use
The XML files produced by the Event Definer are then used whenever the end-
user decides to execute the extra payment. The Event Handler contacts the
chosen systems one by one and collects the data specified in the XML file.
When the data is collected and assembled in a single table it is displayed to the
user to allow for checking and correcting the result where necessary. By
clicking on a button, it is possible for the end-user to export the result to the
system handling the payment data, in accordance with the mapping speci-
fication (Step 7).

Expansion of Tailoring Capabilities
There will inevitably be situations where end-users wish to define extra
payments based on data that is currently unavailable. If the data and metadata
are unavailable, the end-users are unable to perform new tasks. They have
neither the authority nor the ability to alter or add views in surrounding systems.
In this case the surrounding systems, as well as the tailorable system, have to
evolve to meet the additional requirements from the end-users. The developer
responsible for the respective system must then (a) alter the system by creating
a new view or changing an existing view, so that it contains the required data,
and (b) make the changes available through the integration platform. To support
the latter, the publication of a new source was supported by a web interface
where the developer (also system owner) could fill in the necessary data.

5.3.2 Outcome of Evaluation
The evaluation presented here focuses on issues beyond the technical design
and the appearance of the graphical interface of this specific application. It
addresses overall design issues for this kind of application, the end-user knowl-
edge necessary to handle such complex tailoring tasks, and organizational issues
to deploy such systems in a sustainable way. We have also evaluated the pro-
totype against functional requirements, but the results are not reported here.
Individual opinions held by only one or two of the subjects are disregarded in
the following presentation.

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

115

Design Issues
In terms of technical support we focused on the different interfaces provided by
the prototype: the tailoring interface, the deployment interface and the
development interface.

The Tailoring Interface
Functionality for Controlling and Testing
All users appreciated the freedom to alternate between the seven steps. They
found that the steps provided not only guidance and an overview but also the
freedom to alter something performed in previous steps, without losing the
overall view. To be able to overview all choices and trace them backwards was
one way of providing control. But there was also a need for error control and
limitation. The users, especially the beginners, wanted some kind of guidance in
order to feel secure.
It became very obvious that the design must enable the end-user to test and
control the correctness of the specification of extra payments. Control facilities
must be provided to ensure security for the users in their work. Although
control and test functionality was important for all users, the attitude towards
test and control varied between the users. The better the knowledge of the task,
the surrounding systems and possible errors, the less important explicit test and
control seemed to be. Following statements exemplifies different attitudes
towards control and test functionality:

When you make an extra payment for the first time you would probably like to
make a test run to see that it really works correctly. (user comment,
evaluation session, February 24, 2004)

and

there isn’t the same protection as in SystemZ … but to make a more flexible
solution, then you can’t expect it to be strictly user friendly (user comment,
evaluation session, February 24, 2004).

Clear Division between Definition, Execution and the Tailoring Process
When tailoring, the user rises from one level of abstraction to another, higher
level. From thinking only in terms of the execution of an extra payment the user
had to think in more general terms of what characterizes this extra payment,
what kind of data were fetched, what variables there were, and so forth. The
users had to think in terms of levels, which is not an easy step to take. We found
that a clear separation between execution and the tailoring process helped the
users to make this step successfully.
The users also started to discuss the division of labour enabled by a system
resembling the prototype. For example, one of the users said:

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

116

I think it is very good because then someone is very familiar with how to make
a new extra payment and then all employees in the group can run the extra
payment. (user comment, evaluation session, February 24, 2004)

Unanticipated use Revealed to the Tailor
Systems that continuously evolve through tailoring aim to support unanticipated
use. The possibilities for unexpected use are inevitably limited by the technical
design. To support unanticipated ways of tailoring, the system has to provide
additional information of what is possible to do and what the limitations are. In
the prototype this was achieved by providing data for the user that is not
directly applicable to the type of extra payments that exist today. As one of the
users expressed it when seeing the opportunity for one of the export systems to
also act as input source:

This is interesting! It opens up new opportunities. It might be like one extra
payment uses another payment as a base (user comment, evaluation
session, February 24, 2004).

Complexity
We found that the users preferred more information, rather than a less complex
tailoring interface, resulting in more tailoring possibilities. Their opinion was
that, as tailoring is not routine work, performed several times a day, it is
allowed to take extra time. Then it is better to have a more complex interface
providing more opportunities to tailor the system.

The Deployment Interface
Simplicity
One thing that was revealed and worth mentioning is that it seems that the
deployment interface should be even simpler than an ordinary user interface.
The users expressed the opinion that the tailoring interface and the tailoring
process may be rather wide-ranging if that allows for a simpler deployment
interface.

One Point of Interaction
The development interface in the prototype was a graphical Web interface
where the developer could fill in the data that was to be published about the
respective source system. During the evaluation of the development interface,
the software engineer emphasized the importance of having one point where
changes to the data sources are published. The developer should not be forced
to make changes in several places in the application in order to extend the
tailoring capabilities.

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

117

End-User Knowledge Required for Tailoring
Even previous to the evaluation session we had experienced the high expertise
of the users not only regarding their tasks but also regarding the data available
in the different databases that are part of the IT-infrastructure. The users
acquired the knowledge in order to perform the assembly manually. The
communication between different systems is normally hidden from the user in a
data communication layer for the separate systems. Our prototype is designed to
make exactly this communication tailorable. Its deployment depends on the
respective expertise of the users.

Task Knowledge
Business knowledge about contracts and payments provides the base on which
the users decided what data to collect. Extensive business knowledge was a
prominent feature of the results of the evaluation. The users’ reflections on
which data to collect always concerned different aspects of the business tasks.

System Knowledge
To map requirements regarding the task at hand and the available data, demands
expertise regarding the available data in the different systems. And the users
knew where to find the data needed for defining a specific extra payment. The
prototype just helped with the exact location of the data, for example it guided
the user to which fields to use, by listing the fields with examples of the data
they contained. However, the user had to understand the sometimes quite
cryptic names and know where to look for specific data.

Error Knowledge
All users were extremely aware of which errors could occur, that is, errors
concerning the use of the prototype, the IT-infrastructure and the task. Task-
specific errors are particularly important for the end-user to overview since they
may cause serious consequences for the company if the errors are not prevented.
On several occasions during the user tests the users expressed concern about
making errors. They made statements like:

when you work as we do you must know a little about database management,
you have to understand how the tables are constructed and how to find the
information. And also in some way understand the consequences of or the
value of the payment. In other words how you can formulate conditions and
what that leads to. (user comment, evaluation session, February 24,
2004)

Organizational and Cooperative Issues
The system for which the prototype was a test would depend on data published
by many different surrounding programs. Each one of these systems is itself the
subject of both tailoring and evolution. Both the users, and the software

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

118

engineer who evaluated the prototype, addressed the necessary interaction with
other system owners and the assignment of responsibilities regarding the
publication and updating of the connection information and the kinds of data
available.

Publication and Update Responsibilities
During the workshops it became apparent that there is already friction in the
coordination between the payment system and the changes in the surrounding
systems. When one system in the IT-infrastructure is changed, the changes are
orally communicated to the owners of other systems that may or may not be
affected by the change. For the prototype to function as designed, it was
important that the systems that the prototype was expected to communicate with
were visible and accessible. The design of the prototype solved this problem by
requiring every change relevant to the prototype to be reflected in the published
information. In other words, it was designed so that the respective system
owners were responsible for keeping their system visible and showing its
current status. As the prototype was dependent on accurate just-in-time
information, the evaluation revealed a need for coordination concerning
publication and updates of surrounding systems and tailoring activities in the
prototype.

Collaboration between Developer and End Users
The fieldwork revealed, and the evaluation confirmed, that it is impossible to
know what future contracts will look like. Therefore there will always come a
time when the end-user wants to retrieve data that is not published in any
available view. In this case the system that can provide the data has to be
identified and the respective system owner or developer has to be persuaded to
implement a new view of the system or update existing ones, and publish the
relevant information.
Another issue related to communication and cooperation between users and
developers concerned the decision of how much information to make available
for the users to do a good job of tailoring. The users wanted to see as much
information as possible, provided it was within reasonable limits. In order to
have better control over the execution of the system and to decouple
maintenance that would not necessarily impact the communication with the
payment system, the developers would rather prefer to restrict the user’s op-
tions. These two perspectives have to be negotiated.
In this company, cooperation between business units and the IT unit works very
well. The users evaluating the system were quite aware of the limit of their own
competences and knew when to consult the responsible developers. All users
frequently referred to developers when they experienced that something was
beyond them. None of them considered the necessary coordination and
cooperation to be a serious problem.

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

119

Summary of Outcome of Evaluation
The evaluation revealed many issues to consider when making a system that
continuously evolves through tailoring work in a rapidly changing business
environment. The issues could be divided into three categories regarding design
issues, user knowledge, and organizational and cooperative issues. Below, the
issues are summarized and listed under the respective category.

Design Issues
1. Functionality for controlling and testing changes has to be integrated into

the tailoring interface and there must be sufficient technical support for the
end-user to estimate and check the correctness of the computation.

2. A tailorable system has to define a mental model that makes a clear division
between definition, execution and tailoring. This mental model must be
adopted in the tailoring interface and be shared by users, tailors and
developers.

3. The tailoring interface also has to reveal potential for unanticipated use to
the tailor. This means, that the information flow must, to a certain extent,
exceed what is currently necessary.

4. The tailoring interface can be more complex, provided the tailoring process
makes the deployment easier. The tailoring interface is not used as often as
the deployment interface and additionally the tailoring itself often involves
careful thought.

5. The deployment interface should be simpler than ordinary user interfaces.
6. The developer expanding the tailoring capability should only interact with

one clearly defined point in the tailorable system, that is, changes are made
at one point in the system.

End-User Knowledge
7. End-users must have sufficient knowledge of how the systems are

structured and what the systems can contribute.
8. End-users must have solid knowledge of the nature of the task and what

data is required to perform it.
9. End-users must have knowledge of which errors can occur and what the

consequences of these may be.

Organizational and Cooperative Issues
10. System owners or developers must be responsible for making their systems

publicly available within the company. System owners or developers must
also be responsible for updating the systems according to external
requirements.

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

120

11. The necessity to extend the possibilities for end-users to manage the
interaction in an evolving IT-infrastructure requires effective collaboration
between the developer and end-users.

5.4 Discussion
Our results are applicable in other areas that are similar to telecommunications,
and that depend on an IT-infrastructure for a major part of their business and
where the development of new products requires changes in this IT-
infrastructure. On one hand, our results confirm existing research: Users ask for
additional functionality to guide the tailoring and test the outcome (Burnett et
al., 2003). We found that users wished to incorporate control of the tailoring
process in the form of an outline, preferably in a step-by-step fashion. They also
asked for visualization and test facilities in order to check the impact of the
separate steps on the end results. The evaluation of the interface allowing
software engineers to expand the tailoring possibilities confirms and expands
previous research results addressing the developer responsible for the evolution
of tailorable systems as an additional stakeholder whose requirements also have
to be considered (Chapter Two, Chapter Three).
On the other hand, the results indicate that tailoring in an IT-infrastructure of
networked applications provides additional challenges for the design of the
software, the competence of the users and tailors, and the cooperation between
users and developers. Changes – independently of whether they are
implemented by tailoring or by evolving the software – can depend on and
affect changes in other applications of the IT-infrastructure and the interaction
between applications. This requires coordination between tailoring and
development, and cooperation between the persons responsible for tailoring and
developing the different applications. And this, in turn, requires a different set
of competences from users and developers. The use of an application such as
the prototype discussed here, for example, required knowledge of the
surrounding systems and their data structures. Developers as well as users have
to understand not only the system they are responsible for but also the
dependencies between different systems and tasks. Several researchers have
discussed collaboration between users and tailors, but not between users, tailors,
and professional developers. For example Nardi and Miller’s approach (Nardi
and Miller, 1991) differs from ours in that they see local developers and
programmers as being skilled users, while we take the concepts a step further
and state that there is also a need for collaboration between users and
professional developers who can perform programming tasks to extend the
tailorable software beyond the script level.
What we claim is that in order to make tailoring really successful, it must be
made possible for the tailorable system to evolve beyond the initial intention
when building the tailorable system. Kahler’s three levels (Kahler, 2001) of
tailoring culture – cooperation between tailoring end-users, cooperation

Chapter Five

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

121

between tailors and users, and the organizational recognition and coordination
of tailoring efforts - have to be extended with a fourth level, of organizational
support for coordinating tailoring and development activities involving the
cooperation not only between users and tailors but also between tailors and
software developers.

5.5 Conclusion
Allowing end-users to tailor the interaction between flexible applications in an
evolving IT-infrastructure requires that the tailoring activities are supported by
the design of the system, for example by providing a clear division between
execution and tailoring, by revealing potential for unanticipated use, and by
supporting single interfaces for changes to the software. It is also essential that
the competence of the end-users is sufficient in terms of knowledge of how the
systems are structured and what the systems can contribute. End-users must also
have substantial knowledge of the task and which errors can occur and what the
consequences of these may be. To allow end-users to tailor the interaction
between applications in an evolving IT-infrastructure, the organization has to
allow for cooperation between users and developers.
The main conclusion of the research described here is that it is possible to
provide end-users with the possibility to tailor not only the applications, but if
necessary also the interaction between different applications that are part of an
IT-infrastructure. The evaluation clearly showed the dependencies between tai-
loring and the further development of the tailoring capabilities. The evaluation
also made it apparent how the different actors were aware of their colleagues’
skills and of what each individual could contribute. To ensure a sustainable
tailorable system when deploying a system intended to evolve continuously
through tailoring, it is necessary to take into account resources concerning
various skills and collaboration between users and developers. Without smooth
collaboration between the parties an extended fourth level of tailoring culture
will not be provided for, and therefore the system will soon become partially
obsolete and the competitive advantages provided by the system will decrease
dramatically. The results challenge the clear division between software use and
evolution on one side and software development on the other side, when
developing and maintaining an IT-infrastructure. Collaboration between the
end-user and the developer must work satisfactorily in order to achieve
tailorable, sustainable software. In other words, in a rapidly changing business
environment with continuously changing requirements, such as the one
presented in this paper, the tailoring activities have to be coordinated with the
software evolution activities.

Part II

Chapter Six

127

Chapter Six

Four Categories of Tailoring as a
Means of Communication

Submitted to the Journal of Information Technology, February 2008

Jeanette Eriksson, Olle Lindeberg, Yvonne Dittrich

In a fast changing world, software needs to be increasingly flexible, to support
higher reusability and prevent it from expiring too soon. One way to provide
this kind of flexibility is end-user tailoring. A tailorable software is modified
while it is being used, as opposed to being changed during the development
process. Tailoring a system is “continuing designing in use” Henderson and
Kyng, 1991, p. 223). It is possible for the user to change a tailorable software by
the means of some kind of interface. This means that some design decisions are
postponed until the software is up and running. It is the end user who will adjust
the program to fit altered requirements through, for example, run-time
configuration. Anders Mørch (1995) discusses tailoring in terms of the
adaptation of generic software, but tailoring is also applicable to special purpose
software. Tailoring is especially well suited for applications used in a rapidly
changing business environment. Tailoring can be regarded as a form of End-
User Development. In the new paradigm of End-User Development the need for
more flexible systems is recognized and the goal is to “empower end users to
adapt IT-systems themselves as much as possible, thus letting them become the
initiators of a fast, cheap and tight co-evolution between themselves and the
systems they are using.” (Klann, 2003, p. 5). This is exactly what tailoring
enables.
There are several aspects concerning user knowledge, technical issues and
business organization that have to be satisfied to make a tailorable system work
in the long run (Chapter Five). Among other things, the tailorable software must
be supported by a collaboration between developers and users (Chapter Five),
since users in the context of tailorable software are to be regarded as co-
designers (Fischer, 2003, Fisher and Ostwald, 2002). Tailoring should therefore
be looked at from two perspectives, both the user perspective and the system
perspective (Stiemerling, 2000), as the user perspective reflects how users work
with tailoring and the system perspective elucidates important issues from the
developers’ point of view.
In our research, we have cooperated closely for several years with a telecom
company, and during this industrial cooperation, it has been found that there is a
need to look systematically at tailoring, in order to understand the phenomenon

Chapter Six
Four Categories of Tailoring as a Means of Communication

128

better and to be able to make better informed decisions of the kind of tailoring
to adopt in new software. We have found that there is a degree of uncertainty
surrounding flexibility and tailoring. This uncertainty is revealed in the
discussions of which flexibility is needed and how to implement the flexibility
when building tailorable software. The participants in the discussions have
different viewpoints and individual experiences of flexibility. This is the case
when developers discuss with users, and even when developers discuss with
other developers. They do not have a common ground from which to start the
discussion. To make software successful it is important that there is a consensus
between users and developers on how the software should work. This is
especially important when the users will continue the development or evolution
of the software at use time. Users and developers must speak the same
language. To put it another way, the parties must have a common understanding
of the phenomenon to come to an valid agreement (Preece et al., 2002).
With this chapter we want to contribute to putting design for tailorability on the
agenda and to systemize tailoring in a way that facilitates design decisions by
providing a common base for discussions. What we want to achieve is a
categorisation of tailoring that can be useful in communication between users
and developers in industry, during the requirements phase of a development
project. The result is a categorization that maps the user perspective on tailoring
to the system perspective. The resulting categorization consists of four
categories of tailoring: customization, composition, expansion and extension.
The categorization is found to be applicable in three research cases and the
categories are also recognized in industry.
Some categorizations of tailoring already exist (Fischer and Girgensohn, 1990,
Mørch, 1995) but they are not explicitly intended for communication between
users and developers in the requirement phase. A comparison between our
approach and the pre-existing approaches is discussed in Section 6.4.
The rest of the chapter is organized as follows (Figure 6 : 1). We start by
discussing how change is perceived from a user perspective (Section 6.1.1) and
how tailoring can be accomplished from a system perspective (Section 6.1.2).
We continue by presenting a new possible categorization for systemizing and
classifying tailoring (Section 6.1.3). Then we present three different tailoring
approaches to see if the categorization can be applied to them (Section 6.2). We
present an overview of three approaches concerning the kind of flexibility
provided, from the users’ point of view (user perspective) and regarding
techniques for implementing tailoring (system perspective). We look at one of
our own examples (ContractHandler, Section 6.2.1) and two other approaches
within the area of tailoring and End-User Development, namely Anders
Mørch’s work with application units (Mørch, 2002, Mørch and Mehandjiev,
2000) (BasicDraw, Section 6.2.2) and the research done within a project
concerning the tailorability of CSCW (Computer Supported Cooperative Work)
systems (Stiemerling, 2000, Stiemerling et al., 1998) (Search Tool, Section

Chapter Six
Four Categories of Tailoring as a Means of Communication

129

6.2.3). We have chosen these approaches because they are published and well
known and provide a description of both use and design. Additionally, they
represent different types of applications. Other relevant approaches exist, of
course, for example CHIPS (Wang and Haake, 2000), Oval (Malone et al.,
1995) and Click (Rode et al., 2006). After the cases are presented, some
interviews performed at a major telecommunication operator in Sweden are
introduced (Section 6.3). Both developers and users were interviewed to
determine if they could distinguish the four categories of tailoring. The paper
ends with a discussion of the results (Section 6.4) and we make a comparison
with related work. Finally we draw some conclusions in the Summary (Section
6.5).

Figure 6 : 1 Overview of Chapter Six

6.1 Categorization of End-User Tailoring
When discussing with people in industry what we here call tailorability, they
seldom think of or talk about this kind of software in terms of tailoring; instead
they simply call it flexibility. When observing work with tailorable software, or
interviewing or discussing tailorable software with people in industry, it
emerged that there was confusion in the discussions between participants when

Section 6.1
Categorization of End-User Tailoring

Section 6.2
Categorization Applied to Three Research Cases

Section 6.2.1 ContractHandler

Section 6.2.2 BasicDraw

Section 6.2.3 Search Tool

Section 6.2.4 Summing Up

Section 6.1.1
User Perspective Section 6.1.3

Categorization
Section 6.1.2

System Perspective

Section 6.3 Categorization Applied in Industry

Section 6.5 Summary

Section 6.4 Related Work and Discussion

Chapter Six
Four Categories of Tailoring as a Means of Communication

130

discussing flexibility. The reason for this is that they view flexibility from
different perspectives. Flexible software is one thing when using it and a totally
different thing when building the software. There were even misunderstandings
between the developers themselves. The reason was found to be that the
perspective on the software changes seamlessly between a user and system
perspective. The developers especially make this shift without thinking about it.
The reason is of course that they must take both perspectives into account in
order to make good software. The fact that the differences between the two
perspectives are considerable, and that the shift in perspectives is unconscious,
makes discussions about flexibility very complex. Under such circumstances it
is hard to reach a consensus about which flexibility to implement and still be
convinced that the chosen type of flexibility is best for the situation. These
difficulties motivate a categorization of tailorability that takes into account both
a user perspective and a system perspective. The user perspective represents
which changes can be made, or the intention of the activity, whilst the system
perspective corresponds to how the change is achieved in the system (on a high
level).

6.1.1 User Perspective
Tailoring is all about change. From our empirical studies at the telecom
company we have observed that it is natural for the user to think of four kinds
of change:

1. adjust
2. combine
3. create
4. add

Set Parameter Values
To adjust software means small changes such as setting parameter values. Let
us take a simple example. Imagine a flexible, text based calculator program
with the main purpose of calculating the four fundamental rules of arithmetic.
The predefined way to write decimal numbers is with a point e.g. 1.2. If the user
prefers writing decimal numbers with a comma the user can adjust the program.
The program allows the user to write “ ‘.’ replace with ‘,’” and the program will
interpret a comma as a point in the future, e.g. 1,2 is translated to 1.2. The
software is customized.

Link Different Existing Components
The second type of change means to combine different components to achieve
the right functionality. For example, imagine the same calculator application as
above. Say that there are four components, each of which handles one of the
four rules of arithmetic. When the user writes 35 ‘+’ 5 ‘-‘ 5 two components are

Chapter Six
Four Categories of Tailoring as a Means of Communication

131

activated one by one. Say that the user wants to calculate a sequence as, for
example, 35 ‘+’ 5 ‘-‘ 14 ‘/’ 2 ‘-‘ 14 six times with the difference that the
numbers varies each time. Then the user can temporarily store the pattern of the
sequence to avoid writing the signs every time. The user writes “pattern on ‘+’
’-’ ’/’ ‘-’ ” and the command make it possible for the user to write 35 5 14 2 14
and get the result 19. In this way the components (+, - and /) are connected
together temporarily. A composition is made.

Creating a New Component
The third way to change the software is to create a new component out of pre-
existing components. We continue with the example of the calculator program.
This type of change means that the user combines several rules of arithmetic
and names the combination, so that it can be used by giving the name as a
command. For example, say that the user wants to use the combination + then –
often, for example 35 + 5 - 5. Then it is useful to save the combination under
the name c1. The user can then use it by writing c1 35 5 5 and thereby get the
answer 30. By linking components the software is expanded by a new
component. It is also possible for the user to use the new component as a
springboard for other calculations, for example write c1 35 5 5 ‘/’ 5 and get the
result 7.

Insertion of Code
To change by adding is to make a component by adding code to the software.
For example, the user wants to do something new in the calculator program.
The user wants to compute the factorial of 5, e.g. 5!. The calculator does not
have this functionality and the user must therefore write her or his own
component. This can be done by using the multiplication component recursively
and saving and naming it ‘!’. When the user writes 5 ! the new component first
calculates 5*4 by calling the multiplication component. The answer, 20 and (5-
2) is then sent to the multiplication component which calculates 20*3 (=60).
The component is called once again and this time it calculates 60*2 and the
calculation ends and the result of 5! is 120. By inserting code the software is
extended.
We end up with a classification of change with four types, named:
customization, composition, expansion and extension (Table 6 : 1).

Tailoring from a user perspective

Customization A Set parameter values

Composition B Link different existing components

Expansion C Creation of a new component.

Extension D Insertion of code.

Table 6 : 1 Tailoring from a user perspective

Chapter Six
Four Categories of Tailoring as a Means of Communication

132

6.1.2 System Perspective
When we look at change from a system perspective the question is “What
happens in the system when tailoring is performed?”
For the users to be able to make changes to the software the software has to be
flexible enough to adapt to the changes. Typical ways of achieving flexibility
are parameterization, configuration, inheritance, generation and extension
(Jacobson et al., 1997). The five ways of achieving flexibility can be
conceptualized into five ways of accomplishing tailoring from a system
perspective. The only difference from Jacobson’s et al. description (1997) is
that the involvement of the developer is removed, i.e. the flexibility will be
handled by the software itself as a reaction to actions taken by the user.
Parameterization means to set a parameter, whereby the application behaves in
a specific way based on the value of the parameter. Rephrased, the parameter is
interpreted by existing code to achieve the change.
Configuration means that components are connected to each other. In other
words the relationship between the components is redefined by the application.
Inheritance, in terms of tailoring, means to use a component as a starting point
and then specialize it to suit the altered requirements. In this case it means that
all predefined components, as well as newly specified components, are treated
uniformly and can thereby be a base for further tailoring in the future.
Generation can be used to create derived components or relationships between
components, which means that code is generated to form those entities.
Extension means adding small attachments to other components. In the context
of tailoring it means that the user in some way writes code that is added to the
software, thereby changing its behaviour.
Table 6 : 2 summarizes the discussion.

Tailoring from a system perspective

Parameterization I Interpretation by existing code

Configuration II Definition of relationships between components.

Inheritance III New and predefined components are treated uniformly

Generation IV Code generation (optional)

Extension V New code is added.

Table 6 : 2 Ways of achieving tailorability from a system perspective

In the next section the user and system perspectives are combined to form
categories that take both perspectives into account.

Chapter Six
Four Categories of Tailoring as a Means of Communication

133

6.1.3 Categorization
The end users have four different ways to manipulate the tailorable software;
customization (A), composition (B), expansion (C) and extension (D) (Table 6 :
1), and we have five different ways to achieve adaptability (I, II, III, IV and V)
(Table 6 : 2). To be able to form a categorization that takes both the user and the
system perspective into account, the two approaches must be unified. Since it is
the end users that perform the tailoring we begin with the terminology
originating from the user perspective, and we pose a question to be able to
match the user perspective to the system perspective:
What happens in the system in the respective cases, when…
…customization,
…composition,
…expansion and
…extension is carried out?
As shown in Table 6 : 3, customization (A) does not pose any problem. There is
a 1:1 relationship between the user and system perspective.

• The change is interpreted by existing code
But when composition (B) is performed, it means that

• a connection between components is achieved and this connection can
either be predefined (II), or it may be necessary

• to generate some code (IV).
This corresponds to two ways of doing tailoring from a system perspective (II
and IV in Table 6 : 3).
When expansion (C) is carried out three different things may happen in the
software, which can be a source of confusion. When performing expansion (C),

• different components are related to each other (II), but the same thing is
done when doing composition (B). The difference is that expansion (C)
means that

• a new component is created and that the component is treated in the
same way as other components in the software (III). Accordingly the
new component can act as a base for new composition or expansion.

• It is also possible that some code is generated (IV) to accomplish this
new component.

The same confusion can arise when talking about extension (D) even if the
system response is limited to involve two different ways of achieving
adaptability. Expansion (D) means that new code is added, but

• the code can be generated by the software (IV) or
• written by the user (V).

Chapter Six
Four Categories of Tailoring as a Means of Communication

134

System categories

I II III IV V

U
se

r
ca

te
go

ri
es

 A x

B x x

C x x x

D x X

Table 6 : 3 User and system perspective in combination

By combining the user and system perspectives we end up with a new
categorisation (Four-to-Five categorization) which is summarized in Table 6 : 4.

User Perspective System Perspective

Customization Set parameter values Interpretation of existing code

Composition Link different existing components Definition of relationships between
components.

Code generation (optional)

Expansion Creation of a new component. Definition of relationships between
components.

New and predefined components are
treated uniformly

Code generation (optional)

Extension Insertion of code. New code is added.

Code generation (optional)

Table 6 : 4 The four-to-five categorization of tailorable software

Customization is the simplest way of doing tailoring. It means that the user sets
some values for one or more parameters and those parameters manage the
functionality that is used. The existing code interprets the parameters and the
corresponding functionality is put in operation.
Composition means that the user has a set of components to choose from and he
or she can connect them in specific ways to reach the desired functionality. The
software can represent the connection in different ways. It is possible to
implement possible connections in advance and when a specific combination is
chosen, a particular interface relates the components. But it is also possible for
components to be connected by generated code.
Expansion also means that the user chooses components out of a set, but the
difference is that the users’ combination of components is built into the system
as an integrated part. The new component is treated in the same fashion as the

Chapter Six
Four Categories of Tailoring as a Means of Communication

135

predefined components and will be accessible in the set to choose from next
time the software is tailored.
Extension is the category which provides for the highest flexibility. It means
that the user writes code that is integrated into the system, either by wrapping
up the new code in system generated code or, if written in a predefined way,
just adding it to the code mass of the software. The user can either write the
code in a high level language or in a visual programming language.
The four-to-five categorization makes it possible to categorize tailorable
software by starting to consider what the intention of the user action is. Is it to
set some parameters to make the software behave in a specific way? Or is it to
combine different components to reach the goal? Or is it that the user needs to
make a new component? Can the component be created by assembling pre-
existing components or does the user have to write some code? These questions
act as an entrance to the categorization. Thereafter we can continue to ask what
happens in the system. When a mach is found, the categorization is completed.
The strength of the four-to-five categorization is that a match is required. It
forces the users and developers to look at the system from both a user and a
system perspective at the same time, which makes the discussion of flexibility
more distinct.

6.2 The Categorization Applied on Three Research Cases
In this section three research cases are presented and then the new
categorization is applied to them one by one to see if the applications can be
described by the categories. We examine three research cases; one case of our
own (ContractHandler, Section 6.2.1), one from Anders Mørch,
(BasicDraw/KitchenDesign, Section 6.2.2) and one case performed by
Stiemerling and his colleagues (Search Tool, Section 6.2.3). The overall
differences between the approaches are shown in Table 6 : 5.

Type of software Stand-alone application Distributed application

Special purpose software ContractHandler Search Tool

Generic software BasicDraw

Table 6 : 5 Differences between the three research approaches

6.2.1 ContractHandler
The prototype presented in this section is an experiment that uses the Java
reflection API as a means to implement a tailorable system. The background to
and idea behind the experiment was a research project in which we collaborated
with two industrial partners. The goal of the project was to investigate means of
developing flexible, adaptable and modifiable software systems (see (Dittrich
and Lindeberg, 2002)). The system the prototype was modelled on is an

Chapter Six
Four Categories of Tailoring as a Means of Communication

136

application used by one of the research partners, a telecommunication operator.
It was possible to anticipate the type and structure of some of the changing
requirements, and tailoring was a possible way to make the system modifiable.
The system is used for computing certain payments1 which are triggered by
certain physical events. The receiver of the money and how much should be
paid are determined by what contract(s) are valid for the event. A contract
consists of a set of parameters that determines what data the contract has to
contain. To make new types of payments, new types of contracts have to be
implemented and that is what the prototype allows end users to do.
The prototype, also called ContractHandler, can be seen as an example of an
explorative prototype (Dittrich and Lindeberg, 2002). We wanted to gain an
understanding of the complexities related to this approach. Our aim is to give
the user the opportunity to add components, or building blocks, to the program
in a controlled way which does not require any programming. To do this we use
a dual-interface: a traditional base-level program and a meta-level program that
provides tailoring for the base-level program. (Dittrich and Lindeberg, 2002)
The prototype is divided into two levels; the meta-level and the base-level. A
new contract is created in the base-level of the program by instantiating a
contract type and the contract types are created in the meta-level of the
program. Two catalogues, one storing contract types and the other parameter
classes, implement the connection between the two levels. In the meta-level of
the prototype, the new contract types are created and stored in the contract type
catalogue. In the base-level the same classes are used as part of the program.
The parameter class catalogue is used by the meta-level to identify which
parameters exist and by the base-level as part of the program. By doing it this
way, we isolate the meta-representation to the meta-level and when running the
base-level it acts as a non tailorable system. This means that in the base-level
we can provide for performance that is good enough, despite reflection
overhead.

User Perspective
The contract types are created in the meta-part of the program. The prototype
contains two tailoring interfaces: one that does not require any programming
skill and another more advanced interface requiring basic knowledge of Java.
Here, we will first describe the simple interface and then come back to the
advanced interface.
Tailoring activity (a): When a user wants to create a new contract type, all
existing contract types are displayed. This is done by collecting all the class
files from the contract type catalogue in which they are stored. The end user

1 To protect the business interests of our industrial partner we can only give an abstract
description of the system.

Chapter Six
Four Categories of Tailoring as a Means of Communication

137

chooses what contract type she or he wants to have as super class for the new
contract type. To make it easier for the user to make a decision as to what
contract type is the most suitable, the parameters and the methods of the
contract type are also displayed. Java reflection API provides the necessary
methods for this.
The next step is to collect all possible parameters for the new contract type. To
find the set of all possible parameters, the program collects all classes in the
catalogue dedicated to parameter classes.
Thereafter all possible parameters for this Event type are shown to the end user,
who selects which ones to include in the contract type. A contract type is a
composition of parameters. The parameters that are inherited are automatically
selected and cannot be deselected.
In conclusion, from a user perspective tailoring activity(a) can be seen as either
customization, composition (since the user links different parameters) or
expansion (since a new contract type is created).
Tailoring activity (b): In the more advanced interface the end user or a software
developer can also add and change methods within the new contract type. Since
the system will already have constructed a working implementation, some
modifications may be done even by end users having only rudimentary
knowledge of programming. However, the user has full access to Java, which
means that the end user can make unanticipated changes. With this interface it
is possible for the end user to extend the capabilities of the system. In practice it
means that the end-user can add methods or implement method bodies that
differ from the generated ones, to achieve the intended functionality.
In conclusion, from a user perspective tailoring activity(b) can be seen as
extension (since the user writes some code).
Use: When the end user wants to create a new contract, i.e. create an object
from a contract type, all of the concrete classes are fetched from the contract
type catalogue, their names are presented and the end user chooses which
contract type to create a contract from. A contract is then created which has
parameter objects without values. The object displays itself by forwarding all
requests to the parameters. The same principle is used for storing and checking
errors. When the user has put values in all slots the error check is forwarded to
every parameter object. The parameter object checks that the value has the right
format and is within the given limits. When a value is incorrect, the slot is
marked and the user has to insert a new value. The new contract is not stored
until all values are correct.

System Perspective
Tailoring activity (a): Inheritance, together with the meta representation and the
inner structure of the contract types, is essential to the prototype. The Events are
super classes of the contract types. An Event has a set of parameters and the

Chapter Six
Four Categories of Tailoring as a Means of Communication

138

contract type is made up of a set of these parameters. Some parameters are
compulsory for all contract types belonging to an Event; they are put in the
Event so that they are present, thanks to the inheritance principle, in all the
contracts. For example all contracts must have a contract id. Adding
functionality by use of inheritance has its shortcomings since inconsistency
occurs when a contract type in the hierarchy above is removed. In this case the
history of the change has to be preserved for business reasons, which means that
no contract type can be removed.
The meta-level of the program is constructed as a meta-model implemented
with classes. The contract types correspond to objects of the class Metaobject.
The source code for the new class is generated from the meta object. The java
source code is then compiled and a class file is produced. The file is stored in
the contract type catalogue.
In conclusion, from a system perspective tailoring activity(a) can be seen as
either configuration (since a relationship is created between the parameters),
inheritance (since new contract types inherit from Event) or generation (since
code is generated to create a contract type).
Tailoring activity (b): The user can modify the generated contract type in the
advanced interface. The user writes code and the code sequence replaces the
equivalent generated code and new code is generated. The contract type is
recompiled automatically.
In conclusion, from a system perspective tailoring activity(b) can be seen as
either generation or extension.
Use: A contract is essentially a collection of parameters. In the existing system
in use some of the parameters are very complex and some even collect values
from other systems. This makes it natural to represent every parameter by an
object. Most of the methods in the contracts are implemented using delegation
to the parameters. For the three main methods in the contracts - checking,
storing and displaying themselves - there are corresponding methods in the
parameter classes. This is a vertical design where one class takes care of one
type of parameter through the whole program instead of the more normal three-
layer architecture (interface, logic and storing). This design makes it very easy
to add new parameter classes to the system.

Conformance to Categorization
According to the four-to-five categorization, ContractHandler implements

• expansion by allowing the users to relate components to create a new
composed component. The assembled parameter-components are
incorporated into the software to be managed in the same way as the
predefined components and by allowing previously added components to be
a base for new contract types (Tailoring activity(a)), and

Chapter Six
Four Categories of Tailoring as a Means of Communication

139

• extension by letting the user write code that is incorporated into the existing
code. This is done by the software, through generating new code and
compiling it. (Tailoring activity (b))

6.2.2 BasicDraw/KitchenDesign
The work presented in this section is work done by Anders Mørch. Mørch
works with tailoring issues using components called application units, where
tailoring is an option. (Mørch, 1997, Mørch, 2002, Mørch and Mehandjiev,
2000) It addresses the problem of software reuse by creating new software from
existing systems. The example differs from our own approach in that it uses
generic software as a base for tailoring, whilst the ContractHandler is designed
for a special purpose from the beginning. The software system focused on is a
generic application called BasicDraw, a graphical editor with the normal
functionality found in, for example, McDraw or Paint. The varying levels of
user experience, and different ways to accomplish tasks in an organization,
make it likely that tasks change as the generic application is being used. Mørch
sees the transition between use and tailoring as being identified by a breakdown.
Breakdowns happen e.g. when an application is no longer sufficient for a task.
The breakdown should leave the user, however, with a handle into the
application. The handle can be used to access the parts of the application that
have to be dealt with to repair the breakdown. The handle may be a button, a
menu item or a window. The sequence of commands required to repair a
breakdown is not totally smooth. (Mørch, 1997, Mørch, 2002, Mørch and
Mehandjiev, 2000)
The graphical user interface of a generic application is composed of graphical
presentation objects such as buttons, windows, toolbars etc. The user interface
of BasicDraw is composed of application units, cognitive building blocks
integrating multiple representations. Application units are reusable software
components implemented as GUI widgets extended with event handlers that
take over when the user wants to tailor. Application units consist of three parts:
presentation objects or user interface, rationale, and implementation code.
(Mørch, 1997, Mørch, 2002, Mørch and Mehandjiev, 2000)
The application units are to a large extent independent and can be tailored
separately from other aspects; some application unit aspects are, however, also
dependent on others. Changing one aspect (presentation, rational or
implementation) may therefore require an update of other aspects or interfaces.
(Mørch, 1997)
Presentation objects reflect the structure of tasks in the domain while rationale
components describe the structure of implementation code. But rationale
components are not interpreted or executed by the computer. The rationale
captures the application’s requirements for design and use. A rationale fills in
the gap between the user interface and the implementation code, making a
gradual transition from use to tailoring possible. Rationale components can

Chapter Six
Four Categories of Tailoring as a Means of Communication

140

include representations from, for example, the kitchen design domain, modular
arithmetic and programming code. The representations are presented in
rationale viewers. (Mørch, 1997)
When moving from use to tailoring, all three parts of the application unit have
to be reached from the user interface. The presentation object part serves as a
handle. A handle accepts input from the user and forwards it to the application.
Event handlers make this possible. An application unit has four event handlers.
One event handler is for normal use, while the other three are for tailoring
activities. An end user may select between the different event handlers by
pressing different keys.(Mørch, 1997)

User Perspective
Through the tailoring capabilities BasicDraw can be transformed into a
specialized drawing program for a specific domain. Anders Mørch gives the
example of kitchen design. To be used for kitchen design, BasicDraw needs to
be extended to make it possible to draw graphical symbols representing a sink,
stove, refrigerator, standard sizes of appliances and cabinets etc.
Tailoring activity (a): At the first tailoring level it is possible for the end-user to
edit attribute values in the application. Attributes that can be edited are, for
example, height and width for shapes, or titles of menus or menu items (Mørch,
1997) i.e. we can make a special “kitchen menu” where we can place special
objects (sink, stove, refrigerator etc.) and set the height and width to 60 cm, as
well as colour the refrigerator square white.
In conclusion, from a user perspective tailoring activity(a) can be seen as
customization.
Tailoring activity (b): From the user interface it is possible to access the
existing graphical shapes and make new shapes by first copying and then
modifying. A graphical shape is a class in the underlying system. Here the end
user has access to all the methods defined in the class. The end user renames the
class, calling it, for example, KitchenCabinet, and writes the extension code he
or she needs. The user can, for example, specify that the shape cannot be bigger
than 60 cm. (Mørch, 1997)
The extension editor makes it possible to tailor the application by changing the
program code during runtime. The software components are encapsulated as a
glass box. This exposes program code. The code cannot, however, be modified.
(Mørch, 1997) The new code is built on top of the existing code for safety
reasons: none of the old code in BasicDraw may be removed. The end user is
not allowed to delete generic implementation code but can delete his or her own
extensions.
In conclusion, from a user perspective tailoring activity(b) can be seen as
extension (since the user adds code).

Chapter Six
Four Categories of Tailoring as a Means of Communication

141

Use: In use the normal functionality connected to the presentation object is
executed. The user can draw, move and arrange graphical elements.

System Perspective
Tailoring activity (a): An application unit has a presentation object. These
presentation objects represent real world objects. The user edits the attribute
values of the application unit to change the appearance. The new attribute
values are saved and later used by the software to present the object in the
desired way.
In conclusion, from a system perspective tailoring activity(a) can be seen as
parameterization.
Tailoring activity (b): The language used in the application is the object-
oriented programming language Beta. The Beta language provides for
inheritance and virtual binding. This makes extensions with no overriding
possible. Extensions can be made to other extensions if necessary. The
extension code is saved in an extension file. The new code is compiled and must
be linked to the existing code before the application can be re-executed.
(Mørch, 1997)
In conclusion, from a system perspective tailoring activity(b) can be seen as
either extension (since code is added) or inheritance (since extension can be
made on other extensions).
Use: What happens in the application when using the tailored software is not
revealed in the papers, but it is likely that the system acts in the same way as the
generic version.

Conformance to Categorization
According to the four-to-five categorization, BasicDraw/KitchenDesigner
implements

• customization as parameters are set to choose functionality and the software
exposes the presentation object according to the parameters by interpretation
in existing code. (Tailoring activity(a))

• extension is provided for as the user can add code to the application and the
new code is saved in an extension file and compiled before the software can
run again. (Tailoring activity (b))

6.2.3 Search Tool
In the following section a search tool is presented. This differs from the
previous approaches in that it makes use of a predefined component model,
namely JavaBeans. This system is also distributed, while the ContractHandler
prototype and BasicDraw/KitchenDesigner are stand-alone applications.

Chapter Six
Four Categories of Tailoring as a Means of Communication

142

A research team at Bonn University is working with tailoring CSCW-systems.
They have constructed a search tool that makes it possible for different users to
tailor the presentation of search results (documents), the handling of search
results, and the search space. The search tool is intended as a part of the
POLITeam-system, which provides electronic support for the work of the
German government in Bonn and Berlin (Stiemerling et al., 1998). The
POLITeam-system provides for asynchronous document-based cooperation and
shared workspaces in a virtual desktop setting. The project had a participatory
approach and a number of requirements were materialized that could not be
addressed by the tailoring mechanisms in the commercial groupware platform
that was intended to be used from the beginning. Some of these requirements
concerned the search tool that was used in the groupware platform to search for
documents. Moreover, the requirements appeared to alter over time and the
change was quite short-lived and task-dependent. This resulted in the
construction of a component-based tailorable search tool that could meet the
end users’ requirements.
To construct the tailorable search tool a set of components was designed. There
are attribute components, invisible components (search engine, result switches),
button components and output components (result lists). The search tool is
implemented using the JavaBeans component model. JavaBeans interacts via
events. The components depend on three kinds of events. Click events are used
to transmit user commands from the graphical user interface, from button
components to the search engine or to an output component. Attribute events
transmit altered search attributes to the search engine. Result events are used to
exchange search results, from search engine to result switch or result list, or
from result switch to result list. (Stiemerling, 2000)

User Perspective
The action the user makes to configure a search tool involves choosing among
the predefined components in the tailoring mode. The graphical representation
of the chosen components is presented in the interface. In the graphical interface
for the tailoring mode the user can connect different components. For example,
the user can choose to use two attribute components, namely document type and
document name. Naturally, the user wants a search button and an output
window. But the user also wants to be able to make a copy of a specific selected
document that has been found during the search. Accordingly, the user needs
another button component, a copy button, which makes it possible to make a
copy of a selected document (Stiemerling, 2000).
Tailoring activity (a): The components have a graphical representation that the
user can combine in different ways. The components are equipped with circles
in different colours and fillings representing output or input ports. By
connecting different ports with lines the components are assembled into a new
configuration. The graphical representations are used in a compositional

Chapter Six
Four Categories of Tailoring as a Means of Communication

143

technique that allows the user to instantiate new components, link the different
components together, disconnect ports or remove instances.
In conclusion, from a user perspective tailoring activity(a) can be seen as either
composition (since the user relates different components to each other) or
expansion (since a new component is created).
Tailoring activity (b): Component instances can be grouped into a composite
component instance. Accordingly, it is possible to use old compositions as a
starting point for tailoring. This means that it is possible to view and manipulate
a composition on different levels of complexity and abstraction which in many
cases results in a reduction of the number of components to combine.
Alternative search tool compositions can be selected from a menu. This makes
it possible for the end user to tailor the tool very rapidly.(Stiemerling, 2000)
In conclusion, from a user perspective tailoring activity(b) can also be seen as
composition or expansion since a new component is created.
Use: The configurations from the tailoring activities can be used in use mode.

System Perspective
Tailoring activity (a): To be able to manipulate the internal representation and
the connection to the actual application, a simple runtime tailoring environment
based on BeanBox was used; this is the IDE (Integrated Development
Environment) supplied by JavaSoft together with the JavaBean component
model. The user interface and the mechanism for putting together the different
components were, however, radically modified. The new BeanBox interface
shows those connections between components and ports which can be
manipulated by the user. The modified BeanBox preserves the composition
using a composition language; it depends on direct connections between
components, unlike the ordinary BeanBox that uses generation of code and
compilation. (Stiemerling, 2000) The modified BeanBox also connects the
representation of the composition to the actual search tool. This is done by
reading a file describing the search tool at start-up. Proxy objects or “wrappers”
are then created which manage a specific instance of a component.
In conclusion, from a system perspective tailoring activity(a) can be seen as
configuration since a relationship between the components is defined by the
composition language.
Tailoring activity (b): As component instances can be grouped into a composite
component instance and the descriptions files are saved in a shared dictionary,
the configuration files can be selected as menu items in both the use and
tailoring mode (Stiemerling, 2000), the existing compositions are regarded as
equal to the elementary components, as the components are used in the same
way by the system. The configuration file of the composition is integrated into a
new composition file containing the expanded composition.

Chapter Six
Four Categories of Tailoring as a Means of Communication

144

In conclusion, from a system perspective tailoring activity(b) can be seen as
either configuration or inheritance in the sense that the new search tool is used
as a complex component and can thereby be used as a base for building new
tools.
Use: Somewhat simplified, the search tool has the following functionality: The
control button triggers the search engine and the search results are transported
to a switch. This switch has been customized to channel all documents that
correspond to certain criteria, e.g. those found on the user’s own desktop, to one
specific result list. Other documents that correspond to another criterion, found
elsewhere, for example, are displayed in another result list. (Stiemerling et al.,
1998).

Conformance to Categorization
According to the four-to-five categorization the Search Tool implements

• When the end user chooses, connects, withdraws and reconnects components
and the component instances are wrapped into a proxy object, this would be
regarded as composition. (Tailoring activity (a))

• It is also possible to use a search tool that someone else has tailored and
make some changes to it so that it suits the end user’s needs better. This is
achieved in the search tool by a list of available components and previously
configured search tools. The components are described and have a clear
graphical representation that makes the configuration of a search tool similar
to solving a puzzle where it is possible to combine the various pieces in a
variety of ways. Due to the fact that old compositions are wrapped up in a
proxy object and can be used as a base for new compositions, expansion is
provided for. (Tailoring activity (b))

6.2.4 Summing Up
As shown in Table 6 : 6 and Table 6 : 7 the research cases can be classified in
several different ways if only one of the two (user and system) perspectives are
considered.

User perspective ContractHandler BasicDraw SearchTool

customization (a) (a)

composition (a) (a) (b)

expansion (a) (a) (b)

extension (b) (b)

Table 6 : 6 The three research cases from a user perspective (a and b refer to the tailoring
activities presented in Sections 6.2.1-3)

Chapter Six
Four Categories of Tailoring as a Means of Communication

145

System perspective ContractHandler BasicDraw SearchTool

parameterization (a)

configuration (a) (a) (b)

inheritance (a) (b) (b)

generation (a) (b)

extension (b) (b)

Table 6 : 7 The three research cases from a system perspective (a and b refer to the tailoring
activities presented in Sections 6.2.1-3)

The Four-to-five classification of tailorable software was shown to be
applicable to all three research cases and as summarized in Table 6 : 8 the
categorization makes it possible to classify different tailoring activities
unambiguously.

category ContractHandler BasicDraw SearchTool

customization (a)

composition (a)

expansion (a) (b)

extension (b) (b)

Table 6 : 8 Summary of the classification of the research cases (a and b refer to the tailoring
activities presented in Sections 6.2.1-3)

6.3 The Categorization Applied in Industry
To be able to determine if the four categories in Table 6 : 4 are recognized in
industry by the participants in software projects, we interviewed developers and
users at a telecom company in Sweden. The telecom business is characterized
by fast changes. For example, new services continuously evolve and
consequently the supporting business systems have to adapt to the altered
requirements. The telecom company is dependent on flexible software where
the user can alter the software when the need arises. Accordingly they have a lot
of tailorable systems running, which means that this type of business is well
suited for investigating whether the four-to-five categorization is recognized in
the industry.
We interviewed six developers and four users. The developers represented
various systems and positions, which means that they worked with different
systems and had different tasks. The developers are programmers, system
owners and technical project leaders. The users all work with several different
systems, but their main tasks are with the same system. The users also represent
different work roles. They are a system coordinator, work manager, users with

Chapter Six
Four Categories of Tailoring as a Means of Communication

146

responsibilities for working with new requirements, and users helping out with
further development of the system.
We performed ten interviews, each lasting approximately one hour to one and a
half hours. The interviews were semi-structured (Robson, 2002) which means
that all the respondents were asked the same questions in the same order, but
follow-up questions were asked and explanations to the questions were given.
To be able to discuss the four categories on equal terms with both developers
and users, the categories were translated into four written examples representing
the categories. The examples were at a rather high level, free from unnecessary
details, but concrete enough to make it possible for the respondents to discuss
the examples. The examples were written from a general point of view and were
not limited to the tasks in the telecom company. The examples can be found in
Appendix A.
The respondents had to answer in which kinds of situations they thought the
different examples would be suitable, and if they could recognize the different
examples in software they worked with or had knowledge of. They were also
asked to name the systems corresponding to the different examples and to
describe what it was in the systems that resembled the example in question.
The interviews were conducted according to a specific order. The respondents
first read all four examples and then they answered the questions.
All developers except one (the technical project leader) only recognized the
examples of customization, composition and expansion. Some of them
expressed certain scepticism about the fourth category, extension, where the
users are allowed to write some code on their own. They considered this to be
too risky. The technical project leader, however, knew about a system that
implemented extension. It was a small system handled by the department of
sales and no developer was involved in making the changes. The salesperson
responsible for the system writes code to make changes requested by the other
salespersons at the department. The reason for the technical project leader being
aware of the system was that there was a discussion about whether the IT-
department should handle the system instead, despite the fact that changes to the
system would not take place as quickly as the salespersons were used to.
It was a similar situation when it came to the users. Only one of the users (the
system coordinator) recognized the small system that implements extension.
This is due to the fact that the system coordinator is the only one of the users
who has a good overview of which systems are used in departments other than
their own. Three users were familiar with an administration tool that could be
categorized as extension. The users did not think that extension was too risky
for a user to perform. They expressed the opinion that if a user was to make
such changes, he or she must certainly know what he or she was doing. As
mentioned, all the users had one system in common that they all worked with.

Chapter Six
Four Categories of Tailoring as a Means of Communication

147

All of them recognized the other three categories in that system, but they also
recognized the examples in other systems they worked with.
In conclusion it can be said that the categorization made it possible for the
respondents to reflect over differences in system infrastructure when it comes to
tailorability.

6.4 Related Work and Discussion
Some classifications of end-user tailoring already exist. Mørch, for example,
has identified three different levels of tailoring (Mørch, 1995). The higher the
level, the more radical the changes that can be carried out and the more expert
knowledge one must have. The three levels are:

• Customization

• Integration

• Extension

Customization is defined as:
“Modifying the appearance of presentation objects, or editing their attribute
values by selecting among a set of predefined configuration options.” (Mørch,
1995, p. 44).
Integration means:
“Creating or recording a sequence of program executions that results in new
functionality which is stored within the application as a named command or
component.” (Mørch, 1995, p. 45).
Extension is the most deep-going level of tailoring and it:
“…is an approach to tailoring where the functionality of an application
is improved by adding new code.” (Mørch, 1995, p. 47)

The categorization is done in respect to generic software. The purpose of the
tailoring levels is to bridge the gap between the user and the implementation
code.
Fischer and Girgensohn (Fischer and Girgensohn, 1990) discuss four
characteristics of what they call end-user modifiable software. End-user
modifiable software supports the following activities:

• setting parameters

• adding functionality to existing objects

• creating new objects by modifying existing objects

• defining new objects from scratch

Fischer’s and Girgensohn’s taxonomy of end-user modifiability is intended to
systemize which kinds of changes can be supported from a user perspective.

Chapter Six
Four Categories of Tailoring as a Means of Communication

148

There is a resemblance between Mørch’s categorization and Fisher’s and
Girgensohn’s. Customization correspond to ‘setting parameters’ and extension
is comparable with ‘creating new objects by modifying existing objects’
(Mørch, 1995). You can say that ‘adding functionality to existing objects’ and
‘defining new objects from scratch’ is closer to the implementation code and
thereby closer to the system perspective. The same issue remains; that the
different characteristics do not implement both the user and the system
perspective for each category.
The resemblance between the different categorizations is that they are all
designed to facilitate the understanding and design of tailorable systems. The
differences between them are that they are used in different stages in the
development process. The four-to-five categorization is intended for the
requirement phase while the other two are intended for the design phase.
Anders Mørch sees tailoring as a way of bridging the gap between presentation
objects and implementation code and this is reflected in the categorization,
since the three levels, customization, integration and extension, are different
techniques to bridge the gap (Mørch, 1995). The categorization serves as a tool
for understanding the importance of tailoring, and as guidelines for how to
design tailorable software so that users get the desired functionality in the
generic software. Mørch’s categorization differs from the four-to-five
categorization as his categorization aims more towards getting the users to
understand the software whilst the four-to-five categorization is designed to
help users and developers understand each other.
Fischer’s and Girgensohn’s categorization or taxonomy (Fischer and
Girgensohn, 1990) for end-user modifiable systems focuses more on how we
can achieve modifiability. They claim that their taxonomy has to be extended
with illustrations of the consequences of different modifiability methods. They
also say that modifications must be classified as to whether they are local or
global, e.g. if the modification serves only one user or if the changes are
intended for the whole user community. They also state that modifiability must
be classified in terms of whether it leads to temporary or permanent changes.
The intention is that the categorization should act as an instrument for
developers when designing modifiable systems. The difference between
Fischer’s and Girgensohn’s approach and the four-to-five categorization is that
our categorization aims at being a tool for use earlier in the process, when users
and developers negotiate requirements. The four-to-five categorization might be
used in similar situations by taking into account the system view of the
categories, but the developers are only given a hint of how to implement the
new software. No concrete advice is given, apart from by relating the categories
to a taxonomy of variability realization techniques (Irving and Eichmann, 1996,
Jacobson et al., 1997, Svahnberg, 2005) which provide tangible design patterns
and examples of different realization techniques that can be put into practice
(Chapter Eight). However the taxonomy is not suitable for elucidating

Chapter Six
Four Categories of Tailoring as a Means of Communication

149

requirements and communicating with users, since it is not designed for such
use. The details and language are beyond the skills of the majority of users.
The four-to-five categorization fulfils the aim of providing a sufficient amount
of clearly-defined categories to support communication in software projects
dealing with tailorable software. The categorization can be used in initial
discussions of what kind of flexibility the users need and how the changes have
to be performed to be satisfactory from a user perspective. What is special with
the four-to-five categorization is that it does not reveal any details. The
definitions are at a rather conceptual level. The wording of the categories aims
at raising the awareness that there are different types of tailoring and that this is
reflected in the system in different ways. Since the categories are defined in
general terms the discussions can be on a conceptual level that makes
differences more obvious and makes it easier to focus on advantages and
disadvantages without getting bogged down in unnecessary details at this time.
The four-to-five categorization is designed to be a common base for
communication between users and developers.

6.5 Summary
When cooperating with industry we have experienced the need to systemize
tailorability in order to be able to understand and discuss the phenomenon more
clearly. It is important that users and developers have a mutual understanding of
what tailorability is to enable them to take informed decisions of what kind of
flexibility to implement. In this paper we have made a suggestion of how to
categorize tailoring in a way that may be a useful means of communication in
industry. There is a big difference between the user and the system perspective,
since the user perspective describes the flexible software from the point of view
of which changes the user can make, whilst the system perspective focuses on
what happens inside the software when a change is made. By exploring the two
perspectives it was evident that confusion in discussions results from the lack of
one-to-one relations between how users make a change and how the system
performs the change. The investigation resulted in a new categorisation
consisting of four categories of tailoring, i.e. customization, composition,
expansion and extension, where we have taken into account both the user and
the system perspective.
To determine the potential of the new categorization we have applied it to three
research cases. It was found that the categorization was applicable to all cases
and it was also found that the categorization could describe the cases without
ambivalence.
We also interviewed developers and users at a telecommunication company in
Sweden, in order to be able to establish that the categories were recognized in
industry. We found that all respondents recognized the categories of
customization, composition and expansion, while one developer and three users
also recognized the fourth category, extension. The interviews also revealed that

Chapter Six
Four Categories of Tailoring as a Means of Communication

150

the categorization made it possible for the respondent to pinpoint differences in
the systems within the company’s infrastructure. The categorization also
facilitated communication of which tailorability was implemented in the
different systems, which will be a useful asset in future software projects that
implement tailorable software. The conclusion is that the four-to-five
categorization is potentially useful and facilitates design discussions, and
thereby decisions, when implementing tailorable software.

Chapter Seven

153

Chapter Seven

Characteristics of End-user Tailorable Software

The 2nd IFIP Central and East European Conference on
Software Engineering Techniques, CEE-SET 2007

Jeanette Eriksson

In a fast changing world more and more flexibility is needed in software to
supply support for higher reusability and prevent the software from expiring too
fast. One way to provide this kind of flexibility is end-user tailoring. A
tailorable system is modified while it is being used as opposed to changed
during the development process. To tailor a system is to “continuing designing
in use” (Henderson and Kyng, 1991, p. 223). It is possible for the user to change
a tailorable system by support of some kind of interface.
Tailorable software is needed when the environment is characterized by fast and
continuous change. As Stevens and his colleagues put it “The situatedness of
the use and the dynamics of the environment make it necessary to build
tailorable systems. However, at the same time these facts make it so difficult to
provide the right dimensions of tailorability.” (Stevens et al., 2006). The study
presented in this paper aims for providing a tool that can support the work of
finding the right dimension of tailoring when designing end-user tailorable
software.
When discussing what we here call tailorability with people in industry they
seldom think of or talk about this kind of software in terms of tailoring, instead
they simply call it flexibility. When observing the work with tailorable software
or interviewing or discussing tailorable software with people in industry it
emerged that there were confusion in the discussions between users and
developers when discussing flexibility. The reason is that they view flexibility
from different perspectives. Flexible software is one thing when using it and a
totally different thing when building the software. Accordingly, we have to look
at tailoring from both system and user perspective (Stiemerling, 2000) as the
user perspective reflects how users work with tailoring and the system
perspective elucidates important issues from the developers’ point of view.
Even between the developers themselves there were misunderstandings. It was
revealed that the reason was that the perspective of the software seamlessly
alters between a system and user perspective. Especially the developers make
this shift without thinking of it. The reason is of cause that they have to consider
both perspectives to make good software. The fact that the differences between
the two perspectives are considerate and the shift in perspectives is unconscious

Chapter Seven
Characteristics of End-User Tailorable Software

154

makes discussions about flexibility very complex. Under such circumstances it
is hard to reach a consensus about what flexibility to implement and at the same
time be convinced that the chosen type of flexibility is the best for the situation.
To make software successful it is important that there is a consensus between
users and developers of how the system must work. Users and developers must
have a common understanding of the phenomenon to come to an valid
agreement (Preece et al., 2002). If both developers and users understand
tailoring and its differences it is easier to discuss design issues and to make
informed design decisions.
From an industrial perspective we end up with two issues to be dealt with:

• It is hard to know what dimensions of tailoring to implement.
• It is hard to discuss tailoring, as users and developers have different

understanding of the phenomenon.
There is several aspects concerning user knowledge, technical issues and
business organization that has to be fulfilled to make a tailorable system work in
the long run and the tailorable software has to be supported by a collaboration
between developers and users (Chapter Five). The development of tailorable
software is an ongoing process where users are co-designers (Fischer, 2003) as
it is users that evolve the software in use time. This kind of ongoing design can
be called Meta Design (Fischer, 2003). Meta-Design is a development process
where stakeholders are co-designers. Participatory Design (PD) (Schuler and
Namioka, 1993) is another paradigm that includes stakeholders in the design
process. PD has historically focused on involving users in the design process
during design time, but the Participatory Design focus can be broaden to user
design involvement during use time too (Fisher and Ostwald, 2002). Informed
participation (Brown and Duguid, 2000) is related to PD as informed
participation also involves others than developers in collaborate design efforts.
Informed participation addresses open-ended design issues and tries to obtain an
ownership of the problems among participants and to make the participants
actively contribute to the design activities. The tool presented in this paper is
intended as support for informed participation in a development project. Often
users’ participation in development projects is mainly concerned with the user
interface. We agree with (Ilvari and Iivari, 2006) that the users’ view of the
system is not only the interface. Task related needs are what motivate end users
to make changes to the system (Nardi, 1993).
As the users are co-designers human-centered design are required when
designing tailorable software. The users bring profound knowledge of the
business process and organizational issues into the development project, that
should be made use of in the design of the technical solution (Gasson, 2003).
Gasson (2003) also argue that there is a need for a dialectic process between
organizational problems, implementation of changes in the business process and
technical solutions to achieve a balance between human-centeredness and the

Chapter Seven
Characteristics of End-User Tailorable Software

155

design of technical solutions. The study presented in this paper aims for
providing an application of Gasson’s statements in the context of tailorable
software. The application, or tool, is targeted to deal with the issues of deciding
what dimension of tailoring to implement, by supporting the common
understanding of end-user tailoring among user and developers.
A classification is a useful tool to understand a phenomenon as tailoring. A
classification of tailoring consisting of four categorises of tailoring is presented
in Chapter Six. The categorization is designed to take both user and system
perspective into account so that the categorization can act as a base for
communication between developers and user when designing tailorable
software. The categorization was found promising for use in industry. The
categorization of end-user tailorable software is intended as a means of
communications to involve the users more in the design process and therefore
suitable as a base for a tool supporting cooperative design of end-user tailorable
software.
The categorization is presented in Section 7.1. The formulation of the categories
is at a rather abstract level and to make it more precise and easier to use in
practice, the categories should be assigned tangible attributes or characteristics.
The idea is that after pinpointing what type of business environment the
software will be a part of, the skill and knowledge of the users and how much
the developers are able to contribute to the tailoring process after the software
has come in use, the attributes of the categories can guide you to the most
appropriate type of tailoring for the specific situation.
In summary we have two research questions to answer to be able to deal with
the industrial problems discussed above:

1. What attributes characterizes end-user tailorable software?
2. How can different dimensions of end-user tailoring be

distinguished?
To answer the questions, a study was performed in cooperation with a major
telecom company in Sweden. Both developers and users were interviewed to
elucidate what attributes are relevant to describe tailoring and how they
perceive different kinds of end-user tailoring.
The rest of the paper is structured as follows (Figure 7 : 1). The next section
will present the categorization of tailoring that act as a base of the study.
Section 7.2 describes the research method applied. In Section 7.3 the results
from the study are presented. The section consists of two parts, each answering
one of the research questions. The first research question result in ten attributes
characterizing end-user tailorable software and the second research question
result in a matrix summarizing the values of each attributes for the four different
categories of tailoring. The matrix can be used as a tool to support the

Chapter Seven
Characteristics of End-User Tailorable Software

156

cooperative design process when designing tailorable software. Furthermore the
paper ends with a discussion and conclusions.

Figure 7 : 1 Overview of Chapter Seven

7.1 Categorization of End-User Tailoring
The categorization (Chapter Six) is intended as a means of communication
between developers and users in situations when deciding what kind of
tailorability to implement. The categorization takes into account both a user
perspective and a system perspective. The user perspective represent what
changes can be done or the intention with the activity, while the system
perspective corresponds to how the change is achieved in the system (on a high
level). The categorization is shown in Figure 7 : 1.
Customization is the simplest way of doing tailoring. It means that the user sets
some values on one or more parameters and those parameters manage what
functionality that is used. Composition means that the user has a set of
components to choose from and he or she can connect them in specific ways to
reach the desired functionality. Expansion also mean that the user chooses
components out of a set, but the difference is that the users’ combination of

Section 7.3
Result

Section 7.5
Conclusion

Section 7.4
Discussion

Section 7.1
Categorization of End-User Tailoring

Section 7.2
Research Method

Section 7.2.1
Design of
Interviews

Section 7.2.2
Analysis

Chapter Seven
Characteristics of End-User Tailorable Software

157

components are build into the system to be an integrated part. The new
component is treated as the predefined components and will be accessible in the
set to choose from next time the software is tailored. Expansion is the category
which provides for the highest flexibility. It means that the user writes code that
are integrated into the system either by wrapping up the new code into system
generated code or , if written in a predefined way, just adding it to the code
mass of the software. The user can either write the code in some high level
language or some visual programming language.

User Perspective System Perspective

Customization Set parameter values Interpretation of existing code

Composition Link different existing
components

Definition of relationships between
components.

Expansion Creation of a new component. Definition of relationships between
components.

New and predefined components are
treated uniformly

Code generation (optional)

Extension Insertion of code. New code is added.

Code generation (optional)

Table 7 : 1 Categorization of tailorable software

7.2 Research Method
Tailoring is especially well suited for applications used in a business
environment that change very fast. The telecom business is characterized by fast
changes. For example, new services continuously evolve and consequently the
supporting business systems have to adapt to the altered requirements. The
study was performed in cooperation with a telecom operator in Sweden. The
telecom company is dependent on flexible software where the user can alter the
software when needs occur. Accordingly they have a lot of tailorable systems
running. The study aimed for elucidating (1) what attributes can be ascribed
tailorable software and (2) how different types of tailoring can be distinguished
from each other. To do so interviews were conducted and the categorization was
used as a base for the interviews.
We interviewed six developers and four users at the company. The developers
were programmers, system owners and technical projects leaders. The users all
worked with several different systems, but their main tasks were with the same
system. The users were system coordinator, work manager, users with
responsibilities to work with new requirements and users helping out with
further development of the system.

Chapter Seven
Characteristics of End-User Tailorable Software

158

The interviews lasted for approximately one hour to one and a half hour. A pilot
study made it clear that clarification of the questions could be needed, why we
performed semi-structured interviews (Robson, 2002) which means that the
same questions in the same order were asked to all the respondents, but follow-
up questions were asked and explanations were given.
To be able to discuss the four categories on equal terms with both developers
and users the categories was translated into four examples representing the
categories (Appendix A). The examples was at a rather high level free from
unnecessary details, but concrete enough to make it possible for the respondents
to discuss the examples. The examples were not bounded to the tasks in the
telecom company.
The interviews were audio taped and transcribed in full to provide for
traceability. The transcriptions were then joined group wise. In that way it
became easy to survey and compare the different opinions and reactions to the
different attributes. The individual transcriptions and the analysis of the material
were sent back to the respondents for verifications.

7.2.1 Design of Interviews
The researcher interviewed one respondent at a time. The developers were
interviewed first and then the users were interviewed. The interviews were
conducted according to a specific order. First the respondents read the examples
of the different categories and thereafter they were asked if they spontaneously
could assign attributes and qualities to the first example representing
customization. Thereafter they had to answer some statements about the
example and at the end they were asked if they could find any resemblances
with the example and systems they work with or know about at the company.
The procedure was the same for all four examples representing customization,
composition, expansion and extension respectively.
After reading the examples and spontaneously expressed their view of the
categories’ characteristics the respondents had to take a standpoint to eleven
attributes. The proposed attributes originate from the cooperation with the
telecom company. The attributes have emerged through participant
observations, discussions and interviews.
The interviews made it clear that changes can be required because of changes in
the business environment, because of need of better usability or because of
internal issues in the system itself. The attributes can be divided into
corresponding groups. One group concerned with the category’s suitability for
different types of business changes. Another group with attributes related to
usability and a third group involving software attributes. The attributes are
listed below.

Chapter Seven
Characteristics of End-User Tailorable Software

159

Business Changes
Attribute 1: Frequency of change – how often the business changes

occur, often or seldom.
Attribute 2: Anticipation of change – in what extent it is possible to

anticipate the business changes.
Attribute 3: Durability of change – for how long the business changes

last.
Attribute 4: System support of change – how well the software support

business changes
Attribute 5: Consequences if handled wrong – how extended

consequences it would have for the company if the
changes are handled wrongly.

Usability Issues
Attribute 6: Simplicity – how easy it is to realize the changes in the

software
Attribute 7: User control – how much control the users have of what

happens in the software
Attribute 8: Transparency – how easy it is for the users to know if the

result is correct.
Attribute 9: Realization speed – how fast it is to realize the changes in

the software.

Software Attributes
Attribute 10: Fault tolerance– to which degree the software prevents

mistakes.
Attribute 11: Complexity– how complex the software is

7.2.2 Analysis
The analysis has been done in a systematical way, according to a specific, pre-
defined schema. The materials from the interviews consist of attributes
spontaneously stated, predefined attributes, comments and feedback from
respondents. The four components have been considered in the analysis and
constitute the result.
The analysis of the interviews consists of two parts corresponding to the two
research questions respectively.
Analysis 1: Analysis to determine what attributes characterizes end-

user tailorable software.

Chapter Seven
Characteristics of End-User Tailorable Software

160

Analysis 2: The objective of Analysis 2 is to determine how the
respondents perceive the different types of tailoring and
put a value on each attribute to be able to distinguish
different dimensions of tailoring.

Analysis 1. The first step in Analysis 1 is to compare each attribute to see if
they are perceived the same for all four categories. If they are the same for all
the categories they do not add any information that could be used to distinguish
the categories from each other. Each attribute are compared and if they are not
the same for all categories they are added to the pile of remaining attributes. If
the attribute is the same for all four categories the respondents’ comments are
consulted to determine if the attributes really were perceived as the same.
Perhaps the respondents had made a statement based on different interpretations
of the proposed attributes. If the attributes are found to be the same they are
removed otherwise they are added to the pile of remaining attributes. To
facilitate to determine if the attributes were perceived as the same all statements
were assigned a value. A positive statement of an attribute generated a score of
300 and a negative statement was assigned 100 points. Accordingly a statement
in the middle generated 200 point. Initially to see if the attributes were the same
for all categories, the value of the attribute were summarized. For example if all
the users think that Example 1 has high fault tolerance the sum is 1200 points (4
users x 300 points) and if all the users think that Example 4 has low fault
tolerance it generated totally 400 points (4 users x 100 points). The sums are
compared and if they are the same they have to be examined further and each
comment has to be checked.
The second step in Analysis 1 is an examination of how the respondent’s
answers relate to the other answers in the group. The coefficient of variance has
also been used as a measure of the disagreements between respondents (Regnell
et al., 2000). If the respondents’ view of the attributes of the examples varied a
lot the attributes should be removed as it does not tell anything about the
category. The remaining attributes from the first step were examined. If there is
a deviation in opinions within the group the respondents’ comments were
checked. Based on the comments the relevance of the attributes was questioned.
If the attributes was found relevant it was added to the pile of remaining
statements otherwise it was removed.
In step three of Analysis 1, the respondents’ spontaneously assigned attributes
were listed and compared with the pre-defined attributes. If they were the same
the attributes were added to the comments, otherwise they were considered as
attributes of the intended category.
Analysis 2. The remaining attributes from the Analysis 1 were analysed to
explore how the user group relates to the developers group per attributes. The
median value for each attributes was used for guidance. If the users and
developers agree upon the attributes the attributes were collected into one pile,

Chapter Seven
Characteristics of End-User Tailorable Software

161

while if there is a deviation in opinions the respondents’ comments are
considered and the user specific and developer specific statements are
accumulated into separate piles.

7.3 Result
When examining the totals in the first step of Analysis 1 there were some
attributes that had the same total, but as the individual scores and the comments
were inspected it was revealed that it was not the case. The result from the
analysis is that neither of the attributes was perceived as the same for all four
categories and therefore none of the attributes should be excluded at this stage.
The second step in Analysis 1 resulted in removal of three attributes (3, 5 and
6), e.g. attributes concerning durability of changes, consequences if handled
wrongly and simplicity, as there were strong disagreement among the
respondents. Durability of change and simplicity were regarded rather
unimportant to the respondents and their answers were therefore kind of
random. The consequences if the change is handled wrongly were too difficult
to state as it is highly intervened by the situation.
The users thought it were difficult to spontaneously come up with attributes
describing the four examples. They considered it difficult to move from the
concrete example to a more abstract level. They sensed it to be easier to
associate the example with a system they work with. The developer found it
much easier to come up with attributes of the four examples and each developer
came up with a couple of attributes each.
When comparing the developers’ attributes with the pre-defined it was revealed
that most of the attributes were the same. The attributes that differed from the
pre-defined related to usability issues and were mentioned by several of the
developers. The attributes were of two kind and concerned:
Frequency of use: how often the end users uses the software and thereby how
used to the software the users are and
User competence: how skilled the users are that uses the software.
Analysis resulted thereby in ten relevant attributes that can be used to describe
end-user tailorable software (see Table 7 : 2).
The result from Analysis 2 showed that the users and developers had the same
perception of Example 1 (customization).
For Example 2 (composition) the users and developers had slightly different
perception of user control, transparency, fault tolerance and complexity,. When
it comes to user control and transparency the users judge the transparency and
control to be medium high, while the developers think it is somewhat higher;
somewhere between medium and high. In other words, the developers thought
that Example 2 contains slightly more transparency and user control that the
users. For fault tolerance and complexity there was also some small differences.

Chapter Seven
Characteristics of End-User Tailorable Software

162

The users considered the fault tolerance and complexity for Example 2 to be
medium high, but the developers though the fault tolerance should be
somewhere between medium high and low and the complexity between medium
high and low.. (see Table 7 : 2)
Also for Example 3 (expansion) there were some differences in views. One
thing is that the developers had a united view of that Example 3 is well suited
when there is a need for high support of changes, but the users are not that sure.
They believe that such software provides for quite a lot of flexibility, but they
are not certain that Example 3 really supports change so well that it should be
stated “high support of change”. There also exists a small variation in judgment
of how much user control and transparency Example 3 provides for. The
developers consider Example 3 to provide for medium high user control and
transparency while the users believe it to be somewhere between medium high
and high. But the differences in opinions in this case were very small. A more
significant difference was found when it came to anticipation of change. Here
the users and developers had diametrical opinions. The users thought that
Example 3 was suitable for situations characterized by a high degree of
anticipated changes. The developers thought to a higher degree that Example 3
was well suited for unanticipated changes too. (see Table 7 : 2)

Characteristics

Cu
st

om
iz

at
io

n

Co
m

po
si

tio
n

Ex
pa

ns
io

n

Ex
te

ns
io

n
Business Changes Frequency of change M M H H
 Anticipation of change H M L-H1 L

 System support of change L M M-H H

Usability Issues User control H M-H M-H ?

Transparency H M-H M-H ?

 Realization speed H H M M-H

 Frequency of use L H -2 -

 User competence -3 - M-H H

Software Attributes Fault tolerance H M-H M L

Complexity L L- M M H

Table 7 : 2 Matrix of the attribute values of the four categories of end-user tailoring. (L=Low,
M=Medium, H=High, ?= Uncertainty of how to use the attribute)

1 Users thought the example was highly suitability for anticipated changes, developers thought
the example was not that suitable for such situations.
2 The spontaneously given attributes were not stated for Example 3 and 4.
3 The spontaneously given attributes were not stated for Example 1 and 2.

Chapter Seven
Characteristics of End-User Tailorable Software

163

The issue of user control and transparency for Example 4 (extension) resulted in
some discussions of what knowledge is build into the system and what should
be controlled by the user. Both users and developers agreed on that it is possible
to view Example 4 as supporting either high control and transparency or low
control and transparency. There is very little user control and transparency built
into Example 4, but on the other hand the user handling the software should be
skilled and know what he or she is doing. Thereby you could say that the
software leaves the control to the users. The user control and transparency
should therefore be regarded as high. The uncertainty is represented by question
marks in Table 7 : .
Note that there are two pairs of attributes that show a dependency (Table 7 : 2).
User control and transparency have corresponding values for all categories.
When user control is perceived as high also transparency has a high value. Fault
tolerance and complexity seams also related. If the fault tolerance is high the
complexity is low and vice versa.
When it came to the spontaneously stated attributes, example 1 was considered
suitable when there are many end users that use the software only occasionally
and Example 2 was regarded as fitting when the end users are few and uses the
software frequently. Example 3 and 4 was believed to be feasible when the end
users are skilled and used to computer work, but Example 4 was judged to be
appropriate only for a few users that are extremely skilled super users.
The matrix should be seen as a guiding tool not a tool providing the absolute
truth. When designing a tailorable system the matrix could be used as a base for
discussions of the needs and requirements of the specific situation. What can be
expected from different types of tailorable software is listed in the matrix, but it
is the participants in the project that have to make the tradeoffs between the
attributes.

7.4 Discussion
The matrix is intended for design environment where the users are informed
participants where users and developers claim a common ownership of the
software product developed. The purpose of the matrix is to act as a base for
design discussions where the users and developers discuss the requirements of
the tailorable software to better understand the domain and design problems.
The matrix can help the design team to pinpoint issues to discuss and to reach a
consensus to be able to decide what dimensions of tailoring is needed in the
given context. By consulting the matrix and comparing the values of the
attributes with what is needed in a specific context, it is possible to get an
indication of what kind of tailoring to implement and to be able to make
informed design decisions.
There is a resemblance between assigning quality attributes to software and
assigning attributes to tailoring categories. Both aim for describing a

Chapter Seven
Characteristics of End-User Tailorable Software

164

phenomenon by assigning it characteristics. There are several software quality
models, for example (Boehm et al., 1978, ISO/IEC 9126, McCall et al., 1977),
and their common effort is to manage quality issues in software development.
There is a resemblance between these quality models and the software attributes
extracted from our study. Some of the attributes in the matrix can also be found
in some quality models. But the intention with the matrix is not to give a general
overview of different quality attributes. The matrix is aiming for distinguish
different types of tailoring from each other and to be a tool to support design
decisions when designing tailorable software. But there are some similarities,
for example McCall’s model is an effort to bridge the gap between the users’
view and the developers’ view (McCall et al., 1977). The matrix also aims for
bridging the gap between users and developers by providing a means of
communication, but we do not claim it to be complete as McCall’s model, but
the study gives us a good indication of what characteristics can be assigned the
different types of tailoring.
Bosch (2000) advocates to assess the quality attributes during architectural
design. The attributes are used for evaluating the architecture to determine if the
architecture has to be transformed or not. The attributes in the matrix is not used
for evaluation. The intended use of the matrix could be said to be a bottom up
approach in comparison with Bosch’s method. The four categories could be
seen as a kind of “design pattern light” for tailorable software. Instead of
imposing a design pattern after the architecture has failed to provide for the
required quality attributes, the matrix starts out from the categories that have
assigned attributes and trade offs are made. The architecture is then built based
on the selected category. Another difference between Bosch’s approach and
ours is that Bosch presumes that it is possible to put an exact, measurable value
of the quality attribute, but we only assume that the participants can grade the
attributes from low to high.

7.5 Conclusion
The study made ten attributes visible of end-user tailoring. In the interviews
with users and developers at a telecom company the respondents were asked to
give their opinions of what characterizes four categories of end-user tailoring.
Their perceptions of the categories were analysed and it was possible to process
their views into a matrix representing four types of tailoring in form of attribute
values. The attributes represent organizational, business and technical issues to
consider and can be used in a dialectic process to balance the human-
centeredness and the technical solution as Gasson (2003) requires.
The matrix can be used as guidance and base for design decisions when
implementing end-user tailorable software. The attributes are at a level that can
be understood by both users and developers and, as shown, the opinions of users
and developers are quite similar even though differences exist. The matrix
makes it possible to distinguish between different dimensions or types of

Chapter Seven
Characteristics of End-User Tailorable Software

165

tailoring by providing values of the attributes that characterizes end-user
tailorable software.
The categories and attributes of the categories together with the matrix and
examples facilitate the understanding of different types of tailoring and it should
make it easier for developers and users to discuss tailorability and the
requirements associated to such systems.

Chapter Eight

169

Chapter Eight

Patterns in Design of End-User Tailorable Software
Usability and Design Patterns

The 7th Information Conference on Software Engineering Research and Practice in Sweden,
SERPS’08 (Paper VII)

Submitted to the 10th biennial Participatory Design Conference (PDC 08). (Paper VIII)
Jeanette Eriksson

In a fast changing world more and more flexibility is needed in software to
supply support for higher reusability and prevent the software from expiring too
fast. “Real-world systems must change or they die” (Johnson et al., 2005). One
way to provide this kind of flexibility is end-user tailoring. A tailorable system
is modified while it is being used as opposed to being changed during the
development process. To tailor a system is “continuing designing in use”
(Henderson and Kyng, 1991, p. 223) It is possible for the user to change a
tailorable system with the support of some kind of interface.
Tailorable software is needed when the environment is characterized by fast and
continuous change. As Stevens and his colleagues put it “The situatedness of
the use and the dynamics of the environment make it necessary to build
tailorable systems. However, at the same time these facts make it so difficult to
provide the right dimensions of tailorability.” (Stevens, et al., 2006, p.273). This
paper is aimed at providing support for the process of designing end-user
tailorable software through introducing patterns as a mediating artefact between
users and developers.
The development of tailorable software is an ongoing process where users are
co-designers (Fischer, 2003), since it is users who evolve the software at use
time. The absence of end-user participation can result in low acceptance of the
software (Schümmer and Slagter, 2004), and in end-user tailoring, user
acceptance is especially important since it is the users that carry out the
intention with the software, to be evolved. We agree with (Ilvari and Iivari,
2006) that the users’ view of the system is not only concerned with the
interface. Task related needs are what motivate end users to make changes to
the system (Nardi, 1993).
Since users are co-designers, human-centered design is required when designing
tailorable software. The users bring profound knowledge of the business process
and organizational issues into the development project, which should be made
use of in the design of the technical solution (Gasson, 2003). But it is difficult to
actively involve the end-users in the development process (Schümmer and
Slagter, 2004). This is confirmed by our own interviews with users and

Chapter Eight
Patterns in Design of End-User Tailoring

170

developers in a Swedish telecom company. Both users and developers express a
desire and an interest in achieving an environment where users and developers
take an active part and equal responsibility for the software developed, but they
also agree that this is difficult to achieve. A precondition to make such a
cooperative process work is that users and developers share the same language
(Schümmer et al., 2005). Or in other words they share a base of mutual
understanding of the phenomenon.
A classification can be a useful tool to understand a phenomenon such as
tailoring. A classification of tailoring consisting of four categories of tailoring is
presented in Chapter Six. The categorization is designed to take both the user
and the system perspective into account so that the categorization can act as a
base for communication between developers and the users when designing
tailorable software. The categorization is intended as a means of
communications to involve the users more in the design process and was found
promising for use in industry. The categorization is briefly presented in Section
8.1.
Another obstacle to overcome is the transfer of knowledge of technical issues
from developers to users. This is a difficult matter, but patterns have been found
to be a useful instrument (Lukosch and Schümmer, 2006, Schümmer et al.,
2005, Schümmer and Slagter, 2004) for knowledge transfer. Patterns facilitate
understanding and communication, increase confidence in decisions, make it
easier to consider different solutions and provide for control (Buschmann et al.,
2007).
What is required to enable the use of a pattern approach in end-user tailoring
design is a selection of suitable patterns. To be able to narrow down the number
of patterns to consider for each type of tailoring, this selection of patterns
should be connected to the categorization of tailoring. Since we believe that
end-user participation in the design process is essential to gain quality in end-
user tailorable software, it is important to neutralize possible obstacles.
Especially for beginners it is hard if there are too many patterns to consider
(Gamma et al., 1995).
There are two ways to introduce patterns in the cooperative design process,
either by starting with architectural design patterns that transfer good practice
when it comes to software design or patterns that expresses design issues of
human interactions (usability patterns). The content of usability patterns is
closely related to the task and to the users’ domain, and usability patterns may
provide a gentle slope towards patterns for software architectures. Usability
patterns do not only deal with issues that are put on top of the basic software
architecture. In fact separation of concern is not enough to achieve usability
(John et al., 2004). Usability features that are recognized late in the design
process are often expensive to attend to. Usability issues obviously have
architectural impact beyond the detailed design of graphical interfaces and
several usability scenarios are identified to influence software architecture (Bass
and John, 2003). This chapter focuses on usability patterns with architectural

Chapter Eight
Patterns in Design of End-User Tailoring

171

impact, which are of vital importance to end-user tailoring together with a
subset of software design patterns suitable to start with when developing end-
user tailoring.
To summarise, there are two objectives of this chapter:

1. To compile usability and design pattern collections to small subsets by
relating the patterns to the categorization of end-user tailoring.

2. To determine what a pattern should consist of to be supportive in the
cooperative design process involving both user and developers.

The result is a classification of patterns that can act as a mediating object
between users and developers, as well as a concrete base for the technical
solution when designing end-user tailorable software.
In the end-user tailoring community patterns are infrequently discussed. It is
likely that the researchers and practitioners within the area of end-user tailoring
use patterns, but there is no explicit discussion of the topic in the research
community. We therefore argue that there is interesting to classify patterns
suitable for end-user tailorable software, not only from an industrial perspective
but also from an academic point of view. We do not claim that the collection of
patterns presented in this article is exhaustive. Indeed, we hope that the
collection will be extended with more dedicated patterns.

Figure 8 : 1 Overview of Chapter Eight

Section 8.1
Categorization of end-user tailoring

Section 8.2
Usability Patterns

Section 8.2.1
Usability Patterns for

Tailoring

Section 8.3
Design Patterns

Section 8.3.1
Design Patterns for

Tailoring

Section 8.4
Pattern Structure

Section 8.6
Summary

Section 8.5
Discussion

Chapter Eight
Patterns in Design of End-User Tailoring

172

The rest of the paper is structured as follows (Figure 8 : 1). The next section
will present the categorization of tailoring. Section 8.2 describes two
approaches to identifying the usability patterns that have to be introduced early
in the development. In Section 8.2.1 the usability patterns of vital importance to
end-user tailoring are explored and related to the categories of end-user
tailoring. In the next section, Section 8.3 design pattern introduced and in
Section 8.3.1 design patterns are explored to find small subsets of design
patterns to use in the cooperative design process of end-user tailoring. Section
8.4 contains a description of how the patterns for end-user tailoring can be
presented, in form of a pattern template. Thereafter follows a discussion of how
the results relate to other work and how the results can be used. The paper ends
with a summary of the results.

8.1. Categorization of End-User Tailoring
The categorization proposed in Chapter Six is intended as a means of
communication between developers and users in situations when deciding
which kind of tailorability to implement. The categorization takes into account
both a user perspective and a system perspective. The user perspective
represents which changes can be made, or the intention of the activity, while the
system perspective corresponds to how the change is achieved in the system (on
a high level). The categorization is shown in Table 8 : 1.

User Perspective System Perspective

Customization Set parameter values Interpretation of existing code

Composition Link different existing
components

Definition of relationships between
components.

Expansion Creation of a new component. Definition of relationships between
components.

New and predefined components are
treated uniformly

Code generation (optional)

Extension Insertion of code. New code is added.

Code generation (optional)

Table 8 : 1 Categorization of tailorable software

Customization is the simplest way of doing tailoring. It means that the user sets
some values on one or more parameters and those parameters manage what
functionality is used. Composition means that the user has a set of components
to choose from and he or she can connect them in specific ways to achieve the
desired functionality. Expansion also means that the user chooses components
out of a set, but the difference is that the users’ combination of components is
build into the system as an integrated part. The new component is treated in the
same way as the predefined components and will be accessible in the set to

Chapter Eight
Patterns in Design of End-User Tailoring

173

choose from next time the software is tailored. Extension is the category which
provides for the highest flexibility. It means that the user writes code that is
integrated into the system, either by wrapping up the new code in system
generated code or, if written in a predefined way, just adding it to the code mass
of the software. The user can either write the code in a high level language or a
visual programming language.
This categorization can be used as a gateway leading to which patterns to
consider. By defining both a user and a system perspective, the intention is to
make it easier to discuss tailoring in a consistent way.
The next section will discuss what usability patterns to use in tailorable software
and later on we will also discuss software design patterns.

8.2 Usability Patterns
Usability patterns or HCI (Human Computer Interaction) design patterns are
useful tools when designing user interfaces (Wesson and Cowley, 2003). A
number of different collections of patterns exists, for example a comprehensive
pattern language for user interfaces by Tidwell1 (Tidwell, 2006).Traditionally
HCI (interface design) and software architectures have been kept separate by
the notion of separation of concerns, but separation of concerns is not suitable if
we want to design software with good usability, acceptable to users. Usability
issues discovered late in the process can be expensive to recover (John et al.,
2004) which indicates that usability issues have an impact at an architectural
level of software design. There are two recent approaches (presented below)
that deal with usability issues that should be considered early in the design
process.
Based on experience, Bass and John (2003) have identified 27 usability
scenarios that must be considered during the architectural design. For each
scenario they created an architectural pattern as a solution to the scenario. The
27 scenarios are in short:

1. Aggregating data

2. Aggregating commands

3. Cancelling commands

4. Using applications concurrently

5. Checking for correctness

6. Maintaining device independence

7. Evaluating the system

8. Recovering from failure

1 See also http://www.mit.edu/~jtidwell/common_ground.html and
http://designinginterfaces.com/, accessed September 13, 2007

Chapter Eight
Patterns in Design of End-User Tailoring

174

9. Retrieving forgotten passwords

10. Providing good help

11. Reusing information

12. Supporting international use

13. Leveraging human knowledge

14. Modifying interfaces

15. Supporting multiple activities

16. Navigating within a single view

17. Observing system state

18. Working at the users’ pace

19. Predicting task duration

20. Supporting comprehensive searching

21. Supporting undo

22. Working in an unfamiliar context

23. Verifying recourses

24. Operating consistently across views

25. Making views accessible

26. Supporting visualization

27. Supporting personalization

A similar attempt to introduce usability aspects early in the development
process was done within a European Union project (STATUS) (Ferre et al.,
2003, Folmer and Bosch, 2003., Juristo et al., 2003). But compared to Bass and
John they started from a different angle. The STATUS project started out with a
set of usability attributes (satisfaction, learnability, efficiency and reliability)
and then mapped the attributes to usability properties that in their turn were
related to usability patterns. A usability property is specified in terms of the
solution space and can be regarded as usability requirements expressed in a
more concrete form. For example the quality attribute efficiency has a relation to
the usability property error prevention, since error prevention has a positive
effect on efficiency. Error prevention in turn has a relation to, for example, the
usability patterns form or field validation and workflow model (Juristo et al.,
2003) as the patterns fulfil the requirement.
The results from the two approaches overlap and consist of a set of usability
pattern that have an impact on software architecture and thereby must be
considered early in the development process. The relationship between the
usability patterns from the STATUS project and the general usability scenarios
provided by Bass and John is presented in (Juristo et al., 2003).

Chapter Eight
Patterns in Design of End-User Tailoring

175

8.2.1 Usability Patterns for Tailoring
Our goal is to match the categories of end-user tailoring to a set of usability
patterns that are especially important to provide for user satisfaction and
confidence in the tailoring process. To achieve this we have made use of both
approaches above.
We relate usability patterns to the categorization of end-user tailoring in three
steps:
Step 1: We start the exploration from empirical results from our cooperation

with a telecom operator in Sweden concerning usability issues essential
to consider in the tailoring interface of the software.

Step 2: We match usability issues with usability properties (Ferre et al., 2003,
Folmer and Bosch, 2003, Juristo et al., 2003) and usability scenarios
(Bass and John, 2003).

Step 3: We match usability scenarios (Bass and John, 2003) with the categories
of end user tailoring. The categories will automatically be related to
usability patterns since Juristo et al. (2003) already have matched
usability scenarios with usability patterns.

We start by discussing the usability issues in Step 1.
Step 1
During a project performed in corporation with our industrial partner, a major
telecom operator, we explored how end-users could manage system
infrastructure. We built a prototype that was evaluated by users and developers
by “talking aloud” when using the prototype. In the same project we explored
which technical issues are most important to consider in order to make end-user
tailoring work. Four usability issues or overall requirements were revealed
concerning the tailoring interface (Chapter Five):

1. Functionality for controlling and testing
2. Clear split between definition, execution and the tailoring process.
3. Unanticipated use revealed to the tailor.
4. Complexity

Functionality for controlling and testing is self-explanatory. It is essential that
the user can control the tailoring process and test the changes. It was also
important for the users to have a clear split between use and tailoring. One
reason for this was that it was easier to focus on one abstraction level at a time.
Another reason was that a clear split makes it possible to assign different people
to the different tasks. In other words it is easier to separate the role ‘tailor’ from
the role ‘user’ and thereby delegate the tailoring process to a few people. It was
also evident that it was important that the different possibilities to change the
software were revealed to the tailors even though it might not be what the
designers had in mind when designing the tailoring feature. The software should
be prepared for creative use. The last issue concerning complexity is somewhat
connected to unanticipated use and it was shown that the users preferred a more
complex tailoring interface with superfluous information in favour of just in

Chapter Eight
Patterns in Design of End-User Tailoring

176

time information to minimize cognitive load, which is advocated as a pattern to
support usability. The motivation was that a tailoring activity is not performed
on a regular basis and is therefore allowed to take time. It is therefore preferable
to have a complex interface that allows creative use. But to compensate, a
complex tailoring interface requires a very simple user interface. As the
complexity issue is the opposite of what is recommended in usability literature,
we will not discuss complexity further. We do not need a pattern to decrease the
complexity. However, there are patterns to handle complex data in user
interfaces2 (Tidwell, 2006).
Step 2
The second step towards a match between usability patterns and the tailoring
categories is to match the usability issues presented above (unanticipated use
revealed to the tailor, explicit user control, error correction and error
prevention) with usability properties. The usability issues are requirements for
end-user tailorable software and correspond well to usability properties, as the
properties are also a form of requirements. Then the usability issues are mapped
to the general usability scenarios. For example, if an end-user tailorable system
provides for unanticipated use revealed to the tailor it also has to provide for
the usability properties explicit user control, error correction and error
prevention (Folmer and Bosch, 2003.). Then we examine the general usability
scenarios. If you fulfil the requirement for error prevention it is easier to work
in an unfamiliar context. Likewise to fulfil the requirement for guidance you
have to provide for good help. The summary of the correspondences is shown in
Table 8 : 2.

Usability issue Usability property (Folmer
and Bosch, 2003.)

Usability scenario (Bass
and John, 2003)

Functionality for controlling
and testing

Explicit user control

Error management

• Error correction
• Error prevention

Checking for correctness

Observing system state

Supporting undo

Working in an unfamiliar
context

Verifying resources

Clear split between definition,
execution and the tailoring
process.

Adaptability

• Matching user
 preferences
• Matching user
 expertise

(no match to usability
scenarios but the usability
pattern “User profile” will
satisfy the requirement)

Unanticipated use revealed to
the tailor.

Guidance

Provide feedback

Providing good help

Table 8 : 2 Relations between usability issues and properties.

2 http://www.mit.edu/~jtidwell/common_ground.html and http://designinginterfaces.com/,
accessed September 13, 2007

Chapter Eight
Patterns in Design of End-User Tailoring

177

Step 3
Table 8 : 2 results in a subset of scenarios that are of vital importance to end-
user tailoring. Step 3 means matching the categories of end-user tailoring with
usability patterns. The match is presented in Table 8 : 3 and explained below.

Category Usability Scenario Pattern (Juristo et al., 2003)

Customization Checking for correctness

Supporting undo

Providing good help

Form/Field validation

Undo

Wizard, Context-sensitive help, Standard
Help, Tour

User profile

Composition Checking for correctness

Supporting undo

Providing good help

Working in an
unfamiliar context

Form/Field validation

Undo

Wizard, Context-sensitive help,

Standard Help, Tour

User profile

Workflow model

Expansion Checking for correctness

Supporting undo

Providing good help

Working in an
unfamiliar context

Observing system state

Form/Field validation

Undo

Wizard, Context-sensitive help,

Standard Help, Tour

User profile

Workflow model

Status indication

Extension Checking for correctness

Supporting undo

Providing good help

Working in an unfamiliar
context

Observing system state

Verifying resources

Form/Field validation

Undo

Wizard, Context-sensitive help,

Standard Help, Tour

User profile

Workflow model

Status indication

Alert

Table 8 : 3 Tailoring categories and corresponding scenarios and pattern.

Chapter Eight
Patterns in Design of End-User Tailoring

178

Scenarios corresponds to activities and so do the categories of tailoring,
therefore we match the subset of scenarios to the categories. It is therefore easy
to imagine which scenarios should be relevant for the different categories. For
example, independently of which kind of tailoring activity you perform you
would like to be able to check for correctness, support of undo and good help.
But if you do a composition, combining different component with each other, it
involves doing things you are not doing on a regular basis. What you are doing
is equivalent to the scenario of working in an unfamiliar context. The
relationships between the categories reveal themselves automatically by
matching the scenarios with usability patterns, according to (Juristo et al., 2003)
(Table 8 : 3).
The result is a selection of usability patterns that have an architectural impact.
By choosing a type of tailoring to implement we are given some examples of
usability patterns we should consider using. We do not claim that the selection
is complete. Actually there may be other usability patterns that match the
scenarios and should be considered for use. Note that we have made a selection
of usability scenarios that we state are of vital importance; we do not thereby
say that the rest are unimportant for end-user tailoring. On the contrary, those
scenarios with corresponding usability patterns are as important to tailorable
software as to any other software concerned with user interaction. The rest of
the scenarios can be used as a checklist to determine if important usability
issues have been considered during architectural design. What we say is that the
selected scenarios are not negotiable if the end-user tailorable software is to be a
success. For example, providing for good help is not negotiable and one of the
patterns “Wizard”, “Context-sensitive help”, “Standard Help” or “Tour” should
therefore be considered.
In the next section we will discuss how to select a collection of software design
patterns to consider when building tailoring capabilities into software

8.3 Design Patterns
Gamma et al. defines a design patterns as “...descriptions of communicating
objects and classes that are customized to solve a general design problem in a
particular context.” (Gamma et al. 1995, p. 3). Patterns catches previous
successful experiences (Gamma et al., 1995) and can guide practitioners to
build good software without standardizing the solution. Or as, Christopher
Alexander et al. put it: “Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to
that problem, in such a way that you can use this solution a million times over,
without ever doing it the same way twice” (Alexander et al., 1977, preface p. x).
There are three main concepts in architectural design: architectural style,
architectural pattern and design pattern. An architectural style is predominant,
while an architectural pattern can be merged with an architectural style and it
affects the whole architecture (Bosch, 2000). Design patterns on the other hand
are local. In our exploration of how to select patterns that can support the design

Chapter Eight
Patterns in Design of End-User Tailoring

179

of end-user tailorable software we have chosen not to make any distinction
between the different concepts. We will use the unifying term design pattern. In
the process of building the software it may be important, but at this stage we
leave it to the design team to decide what should be used.
There is a lot of collection of software design patterns but the most referred
books about design patterns are those by Gamma et al. (1995) and Buschmann
et al. (Buschmann et al., 2007, Buschmann et al., 1996). In Table 8 : 4 all
patterns from Gamma et al. are listed together with a short description of the
patterns.

Table 8 : 4 Design Patterns from Gamma et al. (1995)

Cr
ea

tio
na

l P
at

te
rn

s

Design Pattern Description (Gamma et al., 1995)

Abstract Factory Families of product can vary by not specifying their concrete classes

Builder The same construction process can create different representations of
complex composite objects.

Factory Method Defers instances to subclasses although defining an interface for creating
an object.

Prototype Creates new objects by copying a prototypical instance.

Singleton The number of objects only existing

St
ru

ct
ur

al
 P

at
te

rn
s

Adapter By changing the interface of a class into another interface to make
components work together.

Bridge By separating the abstraction from its implementation they can vary
independent of each other.

Composite Makes it possible for clients to treat individual objects and compositions
of objects the same way.

Decorator Without subclassing dynamically attach additional responsibilities to an
object.

Façade Defines a unified interface to other interfaces in a subsystem.

Flyweight Used for efficient object storage.

Proxy Used to supply a surrogate for other object.

Be
ha

vi
ou

ra
l P

at
te

rn
s

Chain of
responsibility

Delegates the request to a chain of object that may handle the request.
Any of the object can choose to handle the request.

Command Possible to parameterize clients with different requests by encapsulate
the requests as objects.

Interpreter Defines a representation for a language’s grammar and an interpreter
interpret sentences.

Iterator Used to traverse a collection of objects without exposing the underlying
representation.

Mediator Defines how and which objects interact with each other.

Memento Defines what and when private information is stored outside an object.

Observer Define a one-to-many dependency between objects so that the objects
stay up to date

State Makes it possible for an object to change behaviour when the internal
state changes.

Strategy Makes it possible for algorithms to vary independently from clients

Template
Method

Makes it possible to redefine steps of an algorithm in subclasses without
changing the structure of the algorithm.

Visitor Make it possible to define a new operation without changing the classes
on which it operates.

Chapter Eight
Patterns in Design of End-User Tailoring

180

We have chosen to use Gamma et al.’s pattern collection since the patterns do
not form a pattern language which suits our purposes to provide for a gentle
slope into learning about patterns. Gamma et al. classifies the patterns in
creational, structural and behavioural patterns. Creational patterns have to do
with creating objects, structural patterns concern the organization of classes and
objects and behavioural patterns deals with how objects interact.

8.3.1 Design Patterns for Tailoring
If we remove the end-user tailoring part of end-user tailorable software we end
up with an adaptable system or rephrased, a system embracing software
variability. In the process of selecting a subset of design patterns to introduce to
users, we can make use of classification in the area of software variability and
adaptability.
We relate design patterns to the categorization of end-user tailoring in three
steps:
Step 1: We start by relating the categories of end-user tailoring to variability

realization mechanisms and hotspots. This is done by exploring the
meaning of change in relation to the categories and the type of change
provided for by the mechanisms.

Step 2: We continue to match the type of change to different design patterns. In
this way we get a relationship between the mechanisms and the patterns.

Step 3: This step means that the categories are related to a set of design patterns
via type of change.

We start by discussing variability realization mechanisms and hotspots in Step
1.
Step 1
Svahnberg et al. (2005) have an approach to classifying variability. They
provide a taxonomy for variability realization techniques. The authors
differentiate different types of variability among other things by how the
variation point is populated (explicit or implicit) and how the binding of the
variant should be done (internal or external). If a variation point is populated
explicitly the set of variants is manage within the system, while implicitly
populated variation points are managed by an application engineer outside the
system. Internal binding means that the system contains the functionality to bind
the variants while external binding require a person or a tool external to the
system to perform the binding.
The notion of explicit and implicit population and external and internal binding
is interesting to end-user tailoring to be able to determine what realization
mechanism that are suitable for implementing end-user tailorable features. As
the intention with tailorable software is to provide a set of possibilities to
change the software the set of variants is managed within the system that is; the
population is explicit. The binding is also preferably handled by the software
itself which means that the binding is internal. Additionally the binding time is

Chapter Eight
Patterns in Design of End-User Tailoring

181

in runtime for end-user tailorable software. When consulting the taxonomy
containing 16 different realization mechanism (Svahnberg et al., 2005) the
subset of realization techniques for end-user tailorable software is narrowed
down to four, namely:

• Runtime variant component specialization (a number of alternative
executions) – that is: Choosing specialisation within a component.

• Condition on variable (functionality to change variable) – that is:
Choosing between different operations

• Variant component implementation (dynamically determine what
component to use) – that is: Choosing components

• Infrastructure-centered architecture (the components are first class
entities connected by connectors) – that is: Providing for an interface

Irwing and Eichmann (1996) have another approach and they define four
different types of adaptability or hot spots for adaptable software:

• Composition (instances can be composed to greater whole) – that is:
Creating a new component by connecting several components

• Semantics (the semantics of a class is changed by for example sub
classing) – that is: Creating a new component by subclassing

• Type compatibility (the interfaces between the classes is changed),
protocol (the protocol between the classes is changed) – that is:
Providing for an interface

Type compatibility and protocol are tightly related and as the most common
programming languages today are typed it is not relevant to distinguish between
type compatibility and protocol change. Accordingly we have three types of hot
spots.
Svahnberg’s et al. (2005) approach (the four realization mechanism discussed
above) deals with how to achieve variability in the software or rephrased how to
facilitate flexibility by choosing appropriate functionality. In terms of hotspots
Svahnberg’s et al. approach is about providing for the hotspots while Irving’s
and Eichmann’s approach is about how to create new functionality in specified
places, the hotspots.
Changing an application by end-user tailoring means choosing among
predefined entities or adding new entities. Of course it is possible to allow end-
users to change an entity, but it is seldom the case, as functionality is lost when
making a change to an existing component. If new functionality is required that
are similar to existing it is better to make a new entity that embrace old
functionality together with some new features.
If we look closer at the categorization of tailoring (Section 8.1) we can see that
two of the categories, namely customization and composition, comprise
choosing among predefined options. Customization means that the user chooses
what shall happen in the application by setting parameters and the parameter

Chapter Eight
Patterns in Design of End-User Tailoring

182

determine what happens in the application. Composition means that the user
chooses components and relates them to each other.
On the other hand, the two other categories, expansion and extension lead to
that new entities are created. When it comes to expansion the tailoring activity
bring about a new component that can be incorporated into the application.
Indeed the user relates different component, but the result is that a new
component is created. Also extension means that a new component is added as
the user, in some way (through a graphical user interface or by coding), add new
code. A new component can be created from scratch or by adding some lines of
code to a general shell. Additionally it is likely that there is a need for an
interface between the created components and the application.
The variability realization mechanisms and hotspots presented above also focus
on making changes by choosing between a set of options and creating new
components respectively. Both approaches also consider interface change
(Infrastructure-centered architecture and type compatibility/protocol) that is,
two concepts representing two sides of the same coin.
The meaning of the change (choosing or creating a component or adding an
interface) can be used to match the categories of tailoring to the different
variability realization mechanisms and hot spots (Figure 8 : 2). The relationship is
shown in Table 8 : 5.

Figure 8 : 2 Matching categories and variability realization mechanisms/hotspots

Meaning of
Change

Categorization
of tailoring

Type of change
Variability realization
techniques / hotspots

Changing by
choosing

Customization

1.Choosing specialisation
within a component

Runtime variant
component specialization

2.Choosing between different
operations

Condition on variable

Composition 3.Choosing components
Variant component
implementation

Changing by
creating new
components

Expansion
4.Creating a new component

by connecting several
components

Composition

Extension
5.Creating a new component

by subclassing
Semantics

Changing by
adding a new
interface/
connector.

Expansion/
Extension

6. Providing for an interface
(optional)

Infrastructure-centered
architecture

Type
compatibility/protocol

Table 8 : 5 Change in relation to the categorization of end-user tailoring, variability realization techniques
and hotspots

Categories of
tailoring

Meaning of
change

Type of
change

Variability Realization
Mechanisms/hotspots

match

Chapter Eight
Patterns in Design of End-User Tailoring

183

Step 2
What we want to achieve is a match between the end-user categories and design
patterns. The variability realization techniques/hotspots have to be matched to
design patterns to further on match the design patterns with categories of end-
user tailoring.
We limit the exploration to design patterns presented by Gamma et al. We
believe this limited scope is a good start as Gamma et al.’s patterns are well
known and widely used. The different patterns are investigated in terms of type
of change the patterns supply (Figure 8 : 3) (Table 8 : 6).

Figure 8 :3. Matching design patterns

Design Pattern Type of change

Strategy
1.Choosing specialisation within a component

Template Method

2.Choosing between different operations Command

State

Chain of Responsibilities

3.Choosing components Mediator

Decorator

Composite
4.Creating a new component by connecting several components

Builder

Abstract Factory
5.Creating a new component by subclassing

Prototype

Adapter

6. Providing for an interface Bridge

Facade

Proxy

Table 8 : 6 Matching patterns with type of change

Step 3
As well as the meaning of change can guide us to what kind of tailoring the type
of change is representing it can also lead us to what design patterns that can
support the different categories of tailoring.

Type of
change

Design Patterns

Chapter Eight
Patterns in Design of End-User Tailoring

184

By mapping type of change from design pattern to categories of tailoring we get
a subset of design patterns that are related to the different categories of tailoring
(Figure 8 :4)

Figure 8 :4. Matching categories to patterns

Eight patterns were found having very little appliance to features for end-user
tailoring. The patterns were Factory Method, Singleton, Flyweight, Interpreter,
Iterator, Memento, Observer and Visitor. Of cause these patterns can be
combined with other patterns and used for flexible software as shown by
Hummes and Merialdo (2000), but the patterns do not provide for tailorability
by themselves. The rest of the patterns are matched with the tailoring categories
in Table 8 : 7.
Pattern type Design Pattern Type of

change
Tailoring category

Behavioural patterns

Strategy 1

customization
Template Method 1,2

Command 2

State 2

Chain of Responsibilities 3

compositionMediator 3

Structural patterns
Decorator 3

Composite 4
expansion

Creational patterns

Builder 4

Abstract Factory 5
extension

Prototype 5

Structural patterns

Adapter 6

expansion and
extension

Bridge 6

Facade 6

Proxy 6

Table 8 : 7 Design patterns matched tailoring categories (the numbers refer to the numbers in
Table 8 . 6)

The selection is by no means complete. We have chosen to categorize some of
the most well known If a development team come up with a pattern they
experience being relevant for end-user tailoring the pattern can be categorized
as we have done here. The categorization narrow down the number of patterns
that is important to consider in the design process. And as we consider users

Categories
of tailoring

Meaning of
change

Type of
change

Design Patterns

match

Chapter Eight
Patterns in Design of End-User Tailoring

185

being important participants in the design process it is vital that the numbers of
patterns is kept on a reasonable level to avoid overwhelming the participants. At
the same time, time is saved as the categories can guide the team to consider
specific patterns without go through a lot of irrelevant patterns. The pattern
collection is intended as a start to learn about and use patterns and the pattern
collection should be customized to suit the specific situation.
We have related the categorization of end-user tailoring to a subset of usability
patterns as well as a subset of design patterns. In the next section we will
discuss what a pattern (both usability and design pattern) should consist of.

8.4 Pattern Structure
It is important that the different patterns are not too comprehensive. One
objective of the patterns is that both users and developers should get an
overview of the different design possibilities. To make the patterns easy for the
end-users to understand, it is essential that they are written in a more prosaic
style than if the patterns are solely intended for use by developers (Schümmer
and Slagter, 2004). The patterns should provide the participants with an
understanding of the pattern almost at a glance, whilst at the same time it is
essential that the patterns provide the participants, both users and developers,
with enough information to be able to transform the pattern into the software
architecture without having to re-invent the wheel. In other words the patterns
should not only be a base for discussion but should at the same time be an
effective instrument for the developers.
There are many different pattern forms (Buschmann et al., 2007). We have
chosen to compare four different approaches, to evaluate the suitability of using
one of the approaches for the patterns intended for end-user tailoring and to
determine if we should compile our own pattern template. The four approaches
are chosen because they fulfil at least one of the requirements for a pattern
template for end-user tailoring. Borchers’s pattern structure (2001) is uniform
and supports application domain patterns, HCI patterns and software patterns.
Schümmer et al. (Lukosch and Schümmer, 2006, Schümmer and Slagter, 2004)
supports both users and developers and is constructed as a means of
communication, which is exactly what we also want to do. John et al. (2004)
explicitly manifests the importance of considering different types of forces
influencing the design, which we consider important, and the last approach is
Gamma et al. (1995) which is the most widely known pattern collection. This
collection is written for developers and since an end-user tailoring pattern
should also be useful and effective for developers when implementing the
software, it is relevant to compare the other approaches to this.
Borchers (2001) extends the notion of pattern languages to Human-Computer
Interaction, since patterns is a suitable instrument to capture experiences of user
interface design. Borchers also extends the pattern language approach to the
area of the application domain, and has worked a lot with interactive exhibitions
in, for example, music. Borchers has constructed an interdisciplinary pattern

Chapter Eight
Patterns in Design of End-User Tailoring

186

language framework to be able to collect design experiences from both HCI,
software engineering and the application domain. The pattern structure is
uniform and is intended to be suitable for all three areas. Table 8 : 8, left
column, lists the different subsections in the pattern structure.
Schümmer and colleagues (Lukosch and Schümmer, 2006, Schümmer and
Slagter, 2004) outline a pattern structure of design patterns that are constructed
to meet both users’ and developers’ requirements for detailed description and
visualization. This structure was tried out in two projects and found useful in the
context of educational groupware. The patterns acted as metaphors and made it
possible for the participants to talk about the software system and also helped
the participants to focus on one feature at a time (Schümmer and Slagter, 2004).
The pattern structure is used for a pattern language and is constructed to
facilitate communication and learning. The pattern template consists of three
main sections. The first section is to help decide if the patterns seem to fit the
situations, the second section contains solutions and the final part presents the
solution in more detail. Table 8 : 8, second column, lists the different
subsections in the pattern structure.
Most patterns, both design and usability patterns, are constructed so that the
pattern should be independent of external forces (John et al., 2004) (e.g. not
influenced by, for example prior design decisions), but John et al. (2004) have
constructed a structure for usability-supporting patterns that have a section
dedicated to a ‘Specific Solution’. John et al. have identified different types of
forces that influence the implementation of the patterns and have incorporated
them in their usability-supporting patterns. This makes the pattern dependent on
the actual situation it would be used in. The forces identified are:

• Forces exerted by the environment and the task
• Forces exerted by human desires and capabilities
• Forces exerted by the state of the software
• Forces that come from prior design decisions

These identified forces correspond well to our own experiences from prolonged
observations of a project developing an end-user tailorable subsystem to one of
the telecom operator’s business systems. Also Buschmann et al. (2007) claim
that forces are the heart of every pattern. Table 8 : 8, third column, lists the
different subsections in the pattern structure.
The fourth column in Table 8 : 8 lists the structure of Gamma et al.’s patterns
(1995) This approach is well known amongst developers and it is also
developers that are the target group for the patterns. The patterns “help
designers reuse successful designs by basing new designs on prior experience.”
(Gamma et al., 1995, p. 1). The patterns structure consists of not only graphical
diagrams but also relationships between classes and objects, alternative
solutions and trade-offs. Examples are also important as it shows how the
pattern can be applied.

Chapter Eight
Patterns in Design of End-User Tailoring

187

Pa
tt

er
n

by
 G

am
m

a
et

 a
l.

Pa
tt

er
n

N
am

e

•
Pa

tt
er

n
na

m
e

 P
ro

bl
em

•
A

ls
o

kn
ow

n
as

•

In
te

nt

•
M

ot
iv

at
io

n
•

A
pp

lic
ab

ili
ty

 S

ol
ut

io
n

•
St

ru
ct

ur
e

•
Pa

rt
ic

ip
an

ts

•
Co

lla
bo

ra
tio

ns

 C
on

se
qu

en
ce

s

•
Co

ns
eq

ue
nc

es

•
Im

pl
em

en
ta

tio
n

 E
xt

ra
s

•
Sa

m
pl

e
co

de

•
Kn

ow
n

us
es

•

Re
la

te
d

pa
tt

er
ns

U
sa

bi
lit

y-
su

pp
or

ti
ng

 p
at

te
rn

•
N

am
e

 U
sa

bi
lit

y
Co

nt
ex

t
•

Si
tu

at
io

n:
 (u

se
fu

ln
es

s
fr

om
 th

e
en

d-
us

er
s’

 p
er

sp
ec

tiv
e)

•

Co
nd

iti
on

s
on

 th
e

Si
tu

at
io

n
(c

on
di

tio
ns

 o
f u

se
fu

ln
es

s)

•
Po

te
nt

ia
l U

sa
bi

lit
y

Be
ne

fit
s

 P
ro

bl
em

•

Fo
rc

es
 e

xe
rt

ed
 b

y
th

e
en

vi
ro

nm
en

t a
nd

 th
e

ta
sk

•

Fo
rc

es
 e

xe
rt

ed
 b

y
hu

m
an

 d
es

ir
es

 a
nd

 c
ap

ab
ili

tie
s

•
Fo

rc
es

 e
xe

rt
ed

 b
y

th
e

st
at

e
of

 th
e

so
ft

w
ar

e

 G
en

er
al

 s
ol

ut
io

n:

•
Re

sp
on

si
bi

lit
ie

s
of

 th
e

ge
ne

ra
l s

ol
ut

io
n

th
at

 re
so

lv
e

th
e

fo
rc

es

 S
pe

ci
fic

 s
ol

ut
io

n
•

Fo
rc

es
 th

at
 c

om
e

fr
om

 p
ri

or
 d

es
ig

n
de

ci
si

on
s

•
A

llo
ca

tio
n

of
 re

sp
on

si
bi

lit
ie

s
to

 s
pe

ci
fic

 c
om

po
ne

nt
s

•
Ra

tio
na

le
 g

iv
es

 re
as

on
 fo

r h
ow

 th
e

re
sp

on
si

bi
lit

ie
s

ha
ve

 b
ee

n
as

si
gn

ed
 to

 th
e

co
m

po
ne

nt
s.

•
Co

m
po

ne
nt

 d
ia

gr
am

 o
f s

pe
ci

fic
 s

ol
ut

io
n

•
Se

qu
en

ce
 d

ia
gr

am
 o

f s
pe

ci
fic

 s
ol

ut
io

n
•

D
ep

lo
ym

en
t d

ia
gr

am
 o

f s
pe

ci
fic

 s
ol

ut
io

n

Pa
tt

er
n

fo
r

us
er

 p
ar

ti
ci

pa
ti

on

•
Pa

tt
er

n
na

m
e

•
In

te
nt

•
Co

nt
ex

t

•
Pr

ob
le

m

•
Sc

en
ar

io

•
Sy

m
pt

om
s

(id
en

tif
y

th
e

ne
ed

)

•
So

lu
tio

n

•
Co

lla
bo

ra
tio

n

•
Ra

tio
na

le

•
D

an
ge

r s
po

ts
 (t

he
 r

is
e

of
 n

ew

un
ba

la
nc

ed
 fo

rc
es

)

•
Kn

ow
n

us
es

•

Re
la

te
d

pa
tt

er
ns

Pa
tt

er
n

fo
r

an
 in

te
rd

is
ci

pl
in

ar
y

fr
am

ew
or

k

•
N

am
e

•
Ra

nk
in

g
•

Ill
us

tr
at

io
n

•
Co

nt
ex

t
(r

el
at

es
 to

 o
th

er
 p

at
te

rn
s)

 a
nd

re

fe
re

nc
es

•
Pr

ob
le

m
s

an
d

fo
rc

es

•
Ill

us
tr

at
io

n
•

Ill
us

tr
at

io
n

•
So

lu
tio

n

•
D

ia
gr

am

•
Ex

am
pl

es

•
Co

nt
ex

t (
ab

ov
e)

Table 8 : 8 Comparison of four different pattern structures

Chapter Eight
Patterns in Design of End-User Tailoring

188

The question is which of the approaches is most suitable for a pattern for end-
user tailoring. We must list the requirements for a pattern for end-user tailoring:

• The pattern structure should also be practicable for both usability and
software design patterns.

• The patterns should start generally and gradually be more detailed to
facilitate learning.

• The patterns should be easy to overview, grasp and understand.
The pattern structure should be an effective instrument for both users and
developers, together and individually.
If we compare how well the different approaches comply with the requirements
(Table 8 : 9) we can see that Borchers’s and Schümmer’s et al. approaches are
equally favourable. Borchers’s pattern structure is better than Schümmer’s et al.
when it comes to how practical it is for software design patterns, but this is
compensated for by the fact that Borchers’s patterns are less detailed. It is easy
to take care of the lack of details by adopting the parts from John’s and Bass’
approach, where the different forces are described in detail. John and Bass also
recommend diagrams on a detailed level.

Requirement Pattern for an
interdisciplinary
framework

Pattern for
user
participation

Usability-
supporting
pattern

Pattern by
Gamma et al.

Practical for design
patterns

+ - ++ ++

Gradually more
detailed

- + ++ +

Easy to overview
and understand

++ + -- --

Instrument for both
developers and
users

+ + -- user

++developer

-- user

++developer

Table 8 : 9 Compliance of requirements
(Legend: ++ = very good, + = good, - = not that good, -- = bad)

It seems to be a good idea to begin with Borchers’s pattern structure and fill in
with good features from the other approaches. Borchers’s patterns start out in a
general way and there are few headings, which makes it easier to grasp and
overview. The headings are general and easy to understand. The details should
not appear until later on, in the solution part. The solution should first be
introduced generally and then become more detailed. This is attended to by
adding the sections general solution and specific solution from John and Bass’s
pattern structure. But compared to patterns for user participation and Gamma’s
et al. pattern there are more details that should be added to better support the
developers. These are: consequences, danger spots, sample code and related

Chapter Eight
Patterns in Design of End-User Tailoring

189

patterns. In Borchers’s approach, related patterns are incorporated in the context
section. We however find it better to explicitly point out the related patterns, in
favour of ease of use.
The resulting pattern structure (Table 8 : 10) is intended solely for end-user
tailorable software and the tailoring categories act as a gateway to the patterns,
therefore it is of course important to relate each pattern to the type of
tailorability it is suitable for.

Design Pattern for End-user tailorable software

Introductory description

• Name

• Ranking The author’s confidence in the pattern

• Tailoring Categories Which categories of tailoring the pattern is suitable
for

• Illustration

Overall description of problem and solution

• Problem

• Forces • Environment and task Forces from environment and task that influence
the choice of solution.

• Human desires and
capabilities

Forces from human desires and capabilities that
have an impact on the choice of solution.

• State of the software Forces generated by the system state, for example
software is sometimes unresponsive (John et al.,
2004)

• General Solution

Detailed description of solution

• Specific Solution Example of prior design decisions that influence the
choice of solution. The forces are specific for the
situation.

• Prior design decisions

• Diagrams

• Consequences

• Danger spots

• Sample code A short example of how to implement the
pattern. Written in the language used at the
company or in C++ since this is well known.

• Examples Examples of features in applications where
the pattern is used

• Related patterns

Table 8 : 10 Template of design pattern for use in the cooperative design process of end-user
tailoring.

Chapter Eight
Patterns in Design of End-User Tailoring

190

The template is constructed so that it begins in a general way and becomes more
detailed and specialized further on. It is essential to remember that the
descriptions in the pattern template have to be written in a way that complies
with the needs of different types of stakeholders.

8.5 Discussion
That design patterns are useful when designing software has been proven over
and over again during the past decades. In 1997 when the design pattern concept
in software engineering was intensely discussed, Pree and Sikora (1997)
expressed their concern about design patterns being a hype, but now ten years
later we are beyond the hype (Buschmann et al., 2007) and we can see that
design patterns are here to stay. We have made an attempt to adjust a part of the
concept of patterns to end-user tailoring. Apart from the previously discussed
benefits from using patterns, the use of patterns can also decrease development
time (Bass et al., 1998). Since there are constant discussions regarding the
trade-off between the benefits of tailoring and the possibly increased
development time for a tailorable system, decreased development time is
advantageous.
We believe that the selection of usability patterns presented in Section 8.2 can
act as a gateway to a wider use of patterns in cooperative design projects
developing end-user tailorable software. It is our hope that users as well as
developers may find the patterns beneficial and be encouraged to gradually
incorporate more patterns. As the patterns are kept separate and not related in a
comprehensive pattern language, the patterns can be used in any type of
development process, independently of other tools used in the process. It is also
possible to simply be inspired by the patterns to be used for a specific type of
tailoring and then use whatever pattern structure you prefer. But the intended
use is that a team consisting of different types of stakeholders can discuss
tailoring, using the categorization as a base. As the categorization explicitly
defines both a user perspective and a system perspective it is easier to reach a
consensus of the tailoring that is needed. When the participants have agreed
upon which type of tailoring is needed they can continue the design process and
then go further and look for which patterns should be considered for the chosen
category of tailoring. The other usability scenarios that also have an
architectural impact, but are not vital to tailoring can be used as a checklist to
find out if all essential usability issues are taken into account. If the participants
find patterns to be useful, they can use the corresponding usability patterns for
the usability scenarios that were found to be important for the software.
How does our approach differ from the other approaches discussed? Borchers’s
approach (2001) involves a pattern language that guides the team members to
the next pattern. He, as we also do, advocates patterns as a lingua franca, but
there is a difference. When Borchers assumes collaboration between the users
and the usability experts and other cooperation between usability experts and
developers, we advocate a direct cooperation between all the different

Chapter Eight
Patterns in Design of End-User Tailoring

191

stakeholders. We have previously not discussed usability experts at all, but we
believe that usability experts are closer to the software than to the task and we
have therefore incorporated usability experts in the term developer. The
intention of having the same pattern structure for all types of patterns dealt with
within the project is advocated by us as well as Borchers.
Schümmer and colleagues (Lukosch and Schümmer, 2006, Schümmer and
Slagter, 2004) have, in the same fashion as Borscher, constructed a whole
process that is based on a pattern language. We have started in the small by
introducing a small selection of vital unrelated patterns. Schümmer et al.
support an iterative process and so do we. One of the advantages of patterns is
that you can and may focus on one feature at a time and in an iterative way fill
up with new features and patterns. Also Schümmer et al. use patterns as means
of communication and learning and their pattern structure becomes more
detailed further on, in the same way as ours does.
It is John and Bass (Bass and John, 2003, John et al., 2004) who have taken the
most unusual approach, by explicitly naming the different forces influencing the
design decisions. We find their work with forces very insightful and as their
findings are mirrored in our experience from industry, we felt it was essential to
incorporate the forces in the pattern structure for end-user tailoring. Unlike us,
John and Bass have built in a sort of process in the pattern structure. For
example the responsibilities of the general solution are transferred to the section
of specific solutions to get a better overview of what the specific solution
should look like.
The last approach, but the most well known, is the approach of the Gang of
Four, Gamma et al. (1995). Gamma et al. also have patterns that are not related
in a pattern language. The main difference between Gamma’s et al. approach
and ours is that the patterns are mainly intended for developers and are
described thereafter. But the patterns are intended as a base for communication
even though it is within the developers’ group.

8.6 Summary
The study has resulted in a subset of usability patterns with architectural impact
and suitable software design patterns for end-user tailorable software. The
subset is matched with a corresponding tailoring category to make it possible to
focus on a few patterns. The selection of vital, not negotiable, usability patterns
is intended as a sample of how useful patterns can be in a cooperative design
process. By allowing for designing with this kind of building blocks the
cognitive load of the participants decreases (Bass et al., 1998) and the patterns
can be a mediating artefact in the design discussions and decisions. The study
also resulted in a pattern structure for patterns of end-user tailoring design. The
pattern structure is a merge between several different approaches to be able to
satisfy the needs of both users and developers. The patterns have to be easy to
grasp and understand as well as detailed enough to be useful when

Chapter Eight
Patterns in Design of End-User Tailoring

192

implementing the software. This is achieved by starting with a prosaic
description of problems and a general solution and then a more detailed
description of the solution is presented along with detailed diagrams and so on.
This latter part aims more at the developer, but it is also our belief that
interested users become more and more familiar with the pattern structure and
gradually learn the meaning of, not only the beginning of the patterns, but also
the more detailed and developer adjusted part.

Chapter Nine

195

Chapter Nine

Tools to Support the Cooperative Design Process

As discussed in Part I, a cooperative design process that includes users and
developers is needed in order to make durable end-user tailorable software. The
benefit of collaboration is that the decisions made in cooperation potentially
find greater acceptance. But the basic prerequisite for achieving this benefit is
that the people affected by the decisions (or their representatives) participate in
collaboration, and that there is productive communication between the
participants.
This chapter presents four tools that can be used as a base of communication in
the cooperative design process of end-user tailoring. The tools are at this stage
paper based and can be found in Appendices B to E. Each tool consists of four
components:

• An artefact that is the core of the tool.
• Documents supporting the use activities.
• A BoundLet1. The instructions for how to use the tool are contained in a

document called BoundLet. The BoundLet also contains information
about, for example, in which situations use of the tool is appropriate, and
which rules should guide the use of the tool.

• Additionally, the BoundLet is accompanied by a document giving an
overview of the workflow, showing in which step of the instruction the
different documents are used.

The creation of the tools was guided by the findings from Project 4, where a
development project was observed and an interview study with both users and
developers was performed. During the studies some collaboration issues were
revealed:

• There were misunderstandings concerning flexibility.
• There was no common ground regarding what tailorable software

means.
• In interviews the users expressed a desire to gain a better understanding

of the technology and learn more about the decisions behind the
software.

• The respondents also expressed a desire to achieve a shared
responsibility for the developed software product, ensuring that both
users and developers feel they own the software.

1 The origin of the name of the document is discussed in Section 9.2

Chapter Nine
Tools to Support the Cooperative Design Process

196

• It was also revealed during observation of the development project that
there were concerns about creating a good architectural design for the
situation.

The empirical findings in Project 4 lead to following conclusions:
• Misunderstandings concerning tailorable software indicate a need for a

common base for discussion and communication. A concrete action to
take is to implement some kind of classification (Figure 9 : 1 (a)).

• Users want to understand the technology of tailorable software better,
which shows the need for a learning environment that makes it possible
for the user to understand technical decisions and their consequences for
use. In practice, it means that the tools to support the cooperative design
process should enable the users to gradually learn more. The tools
should be on different levels (Figure 9 : 1 (b)).

• The request to share the responsibility for the software product points to
the need for both users and developers to take part in design decisions to
come to an agreement about trade-offs. The parties must share an
understanding of the decisions and how they influence the software
construction. It means that users and developers must explicitly discuss
the context and the environment, bring individual thoughts to the
surface, and not take anything for granted or let anything be unspoken.
The tools should promote shared decisions (Figure 9 : 1 (c)).

• Uncertainty concerning whether the software constructed is the most
suitable solution for the situation indicates that there is a need for
support in the architectural design of the software. Design patterns have
been found to help in achieving the right design faster, and patterns are
grounded in successful experiences (Gamma et al., 1995). By discussing
patterns for the software the parties can also share a mental model of the
software (Figure 9 : 1 (d)).

•

Figure 9 : 1 Relationship between cooperation issues and the developed tools

The issues or requirements concerning collaboration led to the creation of four
artefacts: Categorization, Matrix, Usability Patterns and Design Patterns. The
artefacts are at the core of four different tools:

• Categorization tool to get a common understanding of tailoring.
• Matrix tool to discuss which tailorability to implement.

shared
responsibility

(c)

learning
(b)

right design
(d)

communication
(a)

shared decisions
(c)

levels
(b)

patterns
(d)

classification
(a)

TOOLKIT

Chapter Nine
Tools to Support the Cooperative Design Process

197

• Usability Pattern tool to implement the needed usability patterns and to
discuss the impact on the architecture and the trade-offs this entails.

• Design Pattern tool to reach a consensus about design decisions and
initial trade-offs.

There were two factors which guided the creation of the artefacts from the start,
since these two factors are the basis of the collaboration: that they should act as
a basis for discussion and be used in Participatory Design activities. The
correspondence is shown in Table 9 : 1. The artefacts are presented in detail in
Chapters Six to Eight and the corresponding tools are presented in Section 9.1.

COLLABORATION ISSUES IMPLEMENTATIONS TOOLS

Misunderstandings in
communication

Classification

Ba
si

s
fo

r
di

sc
us

si
on

PD
 te

ch
ni

qu
es

Categorization tool

Matrix tool

Users want to learn about
techniques

Levels of tools

Usability Patterns tool

Design Patterns tool Shared responsibility for product Shared design
decision

Good software and architecture Pattern

Table 9 : 1 Relationship between the collaboration issues (requirements) and the created
artefacts

Figure 9 : 2 Overview of Chapter Nine

Section 9.2
Theoretical Background of
the Creation of the Tools

Section 9.2.1
Participatory

Design

Section 9.2.2
Boundary Objects

Section 9.2.3
Collaboration
Engineering

Section 9.2.4
Wrapping Up

Section 9.1
Outlines of the Tools

Section 9.1.6
Overview of

Workflow

Section 9.1.1
Categorization Tool

Section 9.1.2
Matrix Tool

Section 9.1.3
Usability Pattern Tool

Section 9.1.4
Design Pattern Tool

Section 9.1.5
BoundLets

Section 9.3
Discussion

Section 9.4
Summary

Section 9.1.7
When to Use the Tools

Chapter Nine
Tools to Support the Cooperative Design Process

198

The rest of the chapter is structured as shown in Figure 9 : 2. The outlines of the
different tools are presented first (Sections 9.1.1-9.1.6) and in Section 9.1.7 the
use of the tools is described. Thereafter, in Section 9.2 the theoretical
background or underpinning of the creation of the tools is discussed, together
with the related work. The toolkit relates mainly to three areas: Participatory
Design, Boundary Objects and Collaboration Engineering. The chapter ends
with a discussion and a short summary.

9.1 Outlines of the Tools
In this section the four tools (Categorization tool, Matrix tool, Usability Patterns
tool and Design Patterns tool) are presented. Each tool consists of four parts:

• Artefact (Categorization, Matrix, Usability Patterns, Design Patterns)
• Support documents
• BoundLet with instructions
• Workflow overview

Figure 9 : 3 Outline of a tool

The artefact is the core of the tool and the other parts support (Figure 9 : 3) the
use of the artefact in different ways. The instructions are a guide to how to work
with the artefact, and the supporting documents are documents that either clarify
the artefact or facilitate its use by providing lists or additional instructions to
fulfil the task. The BoundLet (Section 9.1.5) packages the instructions together
with, for example, advice on when to use the tool or which rules should guide
the use of the tool. Finally, the workflow overview visualizes the connection
between the different parts. The workflow (Section 9.1.6) relates the
instructions to the other documents.
The next section begins by presenting the tools with their artefacts, instructions
and support documents. The overall structure of the BoundLets and the
workflow are similar for all tools, and these two parts are therefore treated
separately in Sections 9.1.5 and 9.1.6. The section ends with a short discussion
of when to use the toolkit. It is advisable to look at the appendices while reading
the following subsections.

Tool

Workflow overview

Support documents

Artefact

BoundLet

Instructions

Chapter Nine
Tools to Support the Cooperative Design Process

199

9.1.1 Categorization Tool
The tool can be found in Appendix B.
The empirical studies revealed that misunderstandings arose in the
communication when discussing end-user tailoring. Both users’ and developers’
experiences can be made use of by using the categorisation as a starting point to
discuss different kinds of tailoring and thus find a common base for further
work. The purpose of the Categorization tool is to get a common understanding
of tailoring

Artefact
The artefact of the Categorization tool is the categorization of end-user tailoring
(Table 9 : 2). The categorization defines four types of end-user tailoring from
both a user and a system perspective, e.g. how users and developers perceive the
different categories. The categorization is brief, but additional explanation is
provided for in the tool. In addition the categories can be customized to describe
a local situation more specifically. It is also possible to interpret the categories
to suit the specific needs of the group whilst retaining the naming and overall
meaning.

Category User Perspective System Perspective

Customization Set parameter values Interpretation of existing code

Composition Link different existing components

Definition of relationships
between components

Code Generation (optional)

Expansion Creation of new component

Definition of relationships
between components

New and predefined components
are treated uniformly

Code Generation (optional)

Extension Insertion of code
New code is added

Code Generation (optional)

Table 9 : 2 Categorization of end-user tailoring.(For more details see Chapter Six)

Instructions are provided to allow the use of the Categorization in the
collaboration. The instructions are presented in the next section. The support
documents are marked in bold italic text in the instructions and an explanation
of the documents is found below the instructions.

Instructions
The instructions for how to use the tool are as follows:

1. Define what a flexible software system means to you. Write down your
definition.

Chapter Nine
Tools to Support the Cooperative Design Process

200

2. When everyone is finished you must display your definition for
everybody to see.

3. Sort (together) all the definitions into suitable categories by using the
artefact.

4. Use Example 1 to 4 if you need a common example for the participants
to relate to.

5. When sorting takes place, motivate and explain your definition.
a. Why do you think of flexibility in this way?

6. Use BoundLetExtra: CreateAgreement to agree upon a common
definition and to clarify differences in opinions.

7. Specify the descriptions of the categories in the artefact if this is needed
for the categories to work in the specific context or situation.

8. Write down the common definition on a large paper and put it up on the
wall.

Support Documents
Examples 1 to 4 exemplify the categories to make it easier to grasp the
differences between the categories if the group does not have a real world case
to relate to.
BoundLetExtra is a name for some BoundLets that are add-ons to BoundLets
presented here. The BoundLetExtras are general and can be used in different
situations and they do not contain any artefact. In this case a BoundLetExtra
called CreateAgreement is proposed to manage the process of reaching a valid
agreement between the participants.

9.1.2 Matrix Tool
The tool can be found in Appendix C.
Both users and developers are experts in their own field. In the Matrix tool the
participants have the opportunity to discuss different aspects of the specific
context relevant to the implementation of the software, and to reach a common
understanding of what is needed. The core of the Matrix tool is the Matrix,
which is created on the basis of interviews with both users and developers and
should thereby fulfil the information requirements of both users and developers.
The intent with the Matrix tool is to discuss which tailorability to implement

Artefact
The matrix consists of a set of attributes of end-user tailoring divided into three
areas: Business changes, usability issues and software attributes. The attributes
have been assigned values (L (=Low), M (=Medium) or H (=High)). The Matrix
is shown in Table 9 : 3.
As an example of how to read the Matrix; the type of end-user tailoring called
customization is perceived to provide a high degree of user control (bold text in
Table 9 : 3. An explanation of the attributes is presented in Table 9 : 4.

Chapter Nine
Tools to Support the Cooperative Design Process

201

Characteristics

 Custom
ization

 Com
position

 Expansion

 Extension

Business Changes

Frequency of change M M H H

Anticipation of change H M L-H L

System support of change L M M-H H

Usability Issues

User control H M-H M-H ?2

Transparency H M-H M-H ?2

Realization speed H H M M-H

Frequency of use L H - -

User competence - - M-H H

Software Attributes
Fault tolerance H M-H M L

Complexity L L- M M H

Table 9 : 3 The Matrix (For more details see Chapter Seven)

Area Attribute Explanation

Business Changes

Frequency of change how often the business changes occur,
frequently or infrequently

Anticipation of change to what extent it is possible to
anticipate the business changes

System support of change how well the software must support
business changes

Usability Issues

User control how much control do the users have to
have of what happens in the software

Transparency how easy it should be for the users to
know if the result is correct

Realization speed how fast it should be to realize the
changes in the software.

Frequency of use how often the functionality will be
used

User competence how skilled the users are

Software
Attributes

Fault tolerance to which degree the software has to
prevent mistakes.

Complexity how complex the software can be

Table 9 : 4 Meanings of attributes

2 ?= Uncertainty. Is the control obtained by the user or the software? (see Chapter Seven)

Chapter Nine
Tools to Support the Cooperative Design Process

202

The attributes and the attribute values can all be customized to more specifically
suit a particular context.

Instructions
The matrix may be hard to understand at a glance. The instructions should make
it easier and allow the participants to gradually become acquainted with the
content of the matrix. In the next sections, the support documents marked in
bold, italic text are explained.
The instructions for how to use the tool are as follows:

1. On the basis of the questions, define what the context (business market,
organisation, personnel, software infrastructure) is like for the flexible
functionality that shall be implemented.

a. Mark your answer individually. Deal with one question at a time
and judge it as low (L), medium (M) or high (H). Use the
personal form.

2. Discuss in the group how the answers vary and the reason for any
differences in the answers.

3. Mark the joint answer in the group form.
4. When all the questions are dealt with, the group’s judgements are

compared with the Matrix. The number of corresponding answers is
summarised.

5. The result is discussed with the help of the speech bubble questions.
6. BoundLetExtra: CreateAgreement is used to reach an agreement of

what type of flexibility to try to achieve for the functionality.

Support Documents
The questions are based on the explanations of the attributes (see Table 9 : 4) and
guide the participants concerning what to take into account. The process of
defining the context is not limited to these questions or attributes. Additional
questions should be formed to discuss the specific context.
There are two forms (personal and group). In these forms, the participants can
mark their answers and document their opinions. In this way the decisions and
considerations are traceable and it is possible to go back and reconsider the
choices.
The speech bubble questions are questions intended to initiate a deeper, nuanced
discussion of what kind of tailorability is needed. This list of questions should
also be extended to be more specific. The questions are called speech bubble
questions as they are put in a speech bubble to emphasize that a discussion is
encouraged.
The BoundLetExtra CreateAgreement is proposed to manage the process of
reaching a valid agreement between the participants.

Chapter Nine
Tools to Support the Cooperative Design Process

203

9.1.3 Usability Pattern Tool
The tool can be found in Appendix D.
The pattern approach is a way to preserve successful experiences, to impose a
good architectural solution on the software, and to inspire confidence in the
quality of the software.
Patterns are used in both the Usability Pattern tool and in the Design Pattern
Tool. Others have also used usability patterns elsewhere in Participatory
Design. For example, Dearden et al. (2002) report their experiences of
developing and evaluating the use of pattern languages in participatory design
of web-based systems. They state that the users found the patterns helpful once
they were familiar with the patterns.
Since they are close to the user domain, usability patterns are a good
introduction, as they provide a gentle learning slope for how to use patterns.
Since the purpose is to involve the users in the technical design process,
usability patterns with architectural impact are used. In this way the step from
usability patterns to design patterns becomes shorter. These types of usability
patterns should be considered early in the design process just like other design
patterns.
The intention with the Usability Pattern tool is to implement the needed
usability patterns and to discuss the impact on the architecture and the trade-offs
this entails.

Artefact
The artefact of the Usability Pattern tool is a number of usability patterns with
architectural impact to be considered early in the design process. The structure
of how the patterns are presented is shown in Table 9 : 5. The table is not
populated with data. It is only the structure that is defined, as the content should
be adapted to the specific context.
The pattern structure is created to comply with the needs of both users and
developers. The pattern structure starts in a quite general way that should be
easy for any participant to grasp. As they deal with levels that are deeper in the
structure, the patterns become more and more specific, and closer to
architectural solutions. In this way the structure should fulfil the information
requirements of both communities. A pattern has different meanings for users
and developers and what the tool does is coordinate and facilitate the
discussions to reveal differences and to provide a common ground to work
from. The intention of the patterns is that they shall be applicable in different
settings and it is up to the team to make the patterns more specific and concrete.

Chapter Nine
Tools to Support the Cooperative Design Process

204

Table 9 : 5 Structure of usability pattern. (For more details see Chapter Eight)

Instructions
The instructions for how to use the Usability pattern tool are rather complex and
consist of two loops: one loop to work through the vital usability patterns
(mandatory patterns) and one loop to work through other relevant patterns. In
the next section, the support documents marked in bold, italic text are
explained.
The instructions for tool use are as follows:
1 - VITAL PATTERNS

a) Based on the flexibility type chosen, the vital usability patterns are
selected.

b) By using the patterns description, work through the Speech Bubble
Questions together.

c) Work through the parts of the pattern description that have not been
considered. Base the work on the maturity of the group. A more mature

Usability Pattern for end-user tailorable software

Introductory description

Name

Ranking

Tailoring Categories

Illustration

Overall description of problem and solution

Problem

• Forces Environment and task

Human desires and capabilities

State of the software

General Solution

Detailed description of solution

• Specific Solution

• Prior design decisions

Diagrams

Consequences

Danger spots

Sample code

Examples

Related patterns

Chapter Nine
Tools to Support the Cooperative Design Process

205

group can proceed deeper into the pattern description. Does this add
anything to the assessment?

d) Move to the next pattern by returning to b).
2 – OTHER PATTERNS

a) Work through the other usability scenarios and choose those that are
relevant for the situation.

e) Choose the usability patterns corresponding to the usability scenarios
f) Based on the name, make a preliminary prioritization. Mark the result in

the priority list. Which pattern is most important? Start with that pattern.
g) By using the pattern’s description, work through the Speech Bubble

Questions together.
h) Work through the parts of the pattern description that have not been

considered. Base the work on the maturity of the group. A more mature
group can proceed deeper into the pattern description. Does this add
anything to the assessment?

i) Chose the next pattern. Repeat g) to i) until all the patterns are worked
through.

j) When all the selected patterns have been worked through, prioritize the
patterns (together in the group).

k) Write down the prioritizations and comments. Use the priority list.

Support Documents
It is convenient to present a small set of patterns together (Dearden et al., 2002).
Therefore a small selection of vital usability patterns that are a subset of
usability patterns is presented first to the participants. The selection is based on
empirical studies, and the reason for dividing the usability patterns with
architectural impact into sub groups is that it is easier to grasp a small set of
patterns, particularly if the participants are beginners in the area of patterns. To
help the participants probe into the area of patterns the vital usability patterns
are mandatory and no selection must be made.
The usability scenarios are an entrance to the usability patterns. One scenario
can be supported by several patterns. Therefore it is easier to start with the
usability scenarios and reach the patterns from there.
The priority list is a document where the participants can mark their
prioritizations, thereby documenting the prioritizations.

9.1.4 Design Pattern Tool
The tool can be found in Appendix E.
In the empirical studies it was found that there are users who want to learn more
about the techniques and architecture of the software. By introducing the
Usability Pattern and Design Pattern tools it is possible to gradually get used to
working with patterns and gradually learn more about the techniques. Different
levels of learning are introduced, both through the two patterns themselves and

Chapter Nine
Tools to Support the Cooperative Design Process

206

through the pattern structure, as it gradually gets more detailed. As the users
become involved in the technical decisions, the pattern tools provide a potential
foundation of shared responsibility for the software, since all participants are
invited to a democratic process of deciding how to implement the software.
The overall intention with the Design Pattern tool to reach a consensus about
design decisions and initial trade-offs.

Artefact
The artefact of the Design Pattern tool is the design patterns themselves, which
are considered as suitable for end-user tailorable software. The pattern structure
is similar to the structure of usability patterns. The only difference is that the
design patterns also contain a metaphor visualizing the pattern, making it easier
to choose a pattern.

Instructions
The instructions for this tool are rather straightforward since it involves iterating
through a set of selected patterns. In the next section, the support documents
marked in bold, italic text are explained.
The instructions for how to use the tool are as follows:

1. A collection of design patterns are chosen, dependent on the type of
flexibility that is to be implemented. Use Base for selection of Design
Patterns

2. Based on the pattern metaphors, the patterns that best match up to the
idea of the software system are chosen.

3. The participants work through the pattern by using the Design Pattern’s
pattern description. The Speech Bubble Questions may help the work.

4. Continue with the next pattern, in order to gain an overview and
understanding of the different patterns (go to 2)

5. Compare the patterns. Use BoundLetExtra: Evaluation.

Support documents
The Base for selection of Design Patterns is a document describing which
design pattern can be suitable for a specific category of end-user tailoring.
The tool also contain another BoundLetExtra to use; BoundLetExtra:
Evaluation. That is, a general BoundLet providing assistance when evaluating
and comparing different alternatives.
In the next section BoundLets are introduced as a general concept. The specific
BoundLets for the tools can be found in Appendices B to E.

Chapter Nine
Tools to Support the Cooperative Design Process

207

9.1.5 BoundLets
The BoundLets package information on how to use the artefact.
A BoundLet defines the following elements:

• Input and output
o Specifies what is required to use the tool.
o Specifies which result can be expected.

• Choose this tool if…
o Specifies in which situations the tool is suitable

• Overview
o Gives a brief overview of how to use the tool.

• Artefact
o Specifies which artefact is contained in the tool.

• Instructions
o Specifies how to use the tool.

• Rules
o Specifies the overall rules that guide the use of the tool.

• Experiences
o A section where the participants in the group can collect positive

and negative experiences of the use of the tool to guide future
use.

9.1.6 Overview of Workflow
Each tool also contains an overview of the workflow when using the tool. Figure
9 : 4 shows an example of an overview of a workflow, in this case the workflow
for the Categorization tool. The figure visualizes how the BoundLet embraces
instructions, an artefact and support documents. As we can see the tool contains
one BoundLet, one artefact and several support documents (in this case two
documents). The artefact and the support documents are connected to the steps
in the instructions where they are used.
The intention of the overview of the workflow is to increase the tools’
affordance. Also, when the group is used to the tool and knows the different
steps and their meaning, the workflow can act as a reminder of what to do and
in which order.

Chapter Nine
Tools to Support the Cooperative Design Process

208

Figure 9 : 4 Example of overview of workflow

9.1.7 When to Use the Tools
The tools can be used when the tailoring capabilities for an end-user tailorable
system have to be extended. In such situations, the developers, users and tailors
have to work together to achieve a suitable tailoring capability. The
prerequisites for the use of the tools are that there is a need for a basis for
discussion between the different participants and that there is a Participatory
Design setting where developers and users work together in a democratic design
process.
The tools are not intended for use in an intact sequence. They should be used
just like other PD technique, when they are required. This means that it is
important that the tools can adapt to local constraints and requirements, or in
other words be used in different situations, and that they can be used in any
process. This means that it is essential that the tools are freestanding from each
other and from the overall process. The tools are therefore not connected to a
specific type of development process and can be used in different phases and
different processes.

(A) BoundLet:
Common
Understanding

(B) Categorization

(C) Example 1-4

(X1) BoundLetExtra:
Create Agreement

1. Write your definition of a
flexible system

2. Put up your definition

3. Sort in the definitions into the
categorization. Motivate your
definition

4. Agree on a common definition

5. Optional: customize the
categories in the
categorization

6. Put up the common
definition on the wall

BoundLet Support DocumentsInstructions

Chapter Nine
Tools to Support the Cooperative Design Process

209

There is, however, a relationship between the tools in the toolset (Figure 9 : 5).
The four categories of end-user tailoring from the categorization in the
Categorization tool are represented in the three other tools. The values in the
matrix are based on the different categories and the categories are included in
the patterns to imply where the patterns are suitable.

Figure 9 : 5 Relationships between the tools in the toolset

However, if all of the tools are used at different occasions in the cooperative
design process the order of use should be

• Categorization tool to get a common understanding of tailoring.
• Matrix tool to discuss which tailorability to implement.
• Usability Pattern tool to implement the needed usability patterns and to

discuss the impact on the architecture and the trade-offs this entails.
• Design Pattern tool to reach a consensus about design decisions and

initial trade-offs.

9.2 Theoretical Background of the Creation of the Tools
In this section the theoretical background to the creation of the tools is
discussed. The tools were created to support the cooperative design process of
end-user tailoring, since the empirical studies revealed a need for such tools.
The tools are intended to support cooperation between users and developers by
bringing them together in discussions of end-user tailoring that gradually
deepen the participants’ understanding of tailoring, making it possible for the
users to participate in technical design discussions and decisions. It is essential
that the users are able to take part in these discussions since in end-user tailoring
they are co-designers, and it is important that they understand the underlying
decisions about the design, to recognize the possibilities and boundaries
inherent in the software.

Categorization
tool

Matrix tool

Design Pattern
tool

Usability
Pattern tool

Chapter Nine
Tools to Support the Cooperative Design Process

210

Therefore, the two foundations for the creation of the tools were that they
should be able to

• work as Participatory Design techniques, promoting a democratic design
process where all participants take part, and

• act as basis for communication between the different perspectives among
the participants.

These issues lead to three related areas:
• Participatory Design since the tools are intended to support a democratic

process,
• Boundary Objects as the toolkit aims for mediating between diverse

competences in diverse projects consisting of different types of
stakeholders, such as developers and users.

• The area of collaborative engineering (CE) is also relevant since CE deals
with the issue of repeating successful collaboration sessions, which has
been experienced to be a problem in PD (Kensing and Blomberg, 1998).

A short overview of the three related areas is given below.

9.2.1 Participatory Design
The core principles of PD are (Sanoff, 2007)

• that every participant is an expert in their own field,
• that every participant’s voice must be heard,
• that good design solutions come from the collaboration of diversely

composed groups,
• participatory democracy in decision making and
• engaging people in changing their own environment.

In summary, those individuals that have to adapt to the introduced change
should be part of the decision making (Kensing and Blomberg, 1998).
The participation can range from users being limited to supplying designers
with access to the users’ skills and experience, to the users being considered
valuable since their interest in the design solution is recognized. In this last type
of setting the users take part in the analysis of the requirements, the evaluation
and selection of technological components, the design and prototyping as well
as the organizational deployment (Kensing and Blomberg, 1998).
Tools and the development of tools is an essential part of PD projects. The
techniques utilize informal ways of exposing the relationship between the work
and the technology. There are many tools and techniques to be used in a PD
project ranging from techniques for analyzing the work to tools to use in system
design (Kensing and Blomberg, 1998). The tools and techniques can be used in
different phases of the development cycle or iteration.
A more elaborate description of Participatory Design can be found in Chapter
One.

Chapter Nine
Tools to Support the Cooperative Design Process

211

9.2.2 Boundary Objects
Communities of practice (Lave and Wenger, 1991) are a central term in the
context of Boundary Objects. A community of practice cuts across formal
organizations and can be seen as relations between people working together.
Bowker and Star (1999) state that Boundary Objects are a way to handle
different perspectives in communities of practice.
Boundary Objects have the following characteristics (Bowker and Star, 1999)

• They are applicable in several communities.
• They fulfil the requirements of information from each community.
• They have a constant identity across communities.
• They can be tailored to meet the needs of a community.
• They are both ambiguous and constant. (They have common identity

across settings. They are weakly structured in common use and more
strongly structured in specific use.)

• They can be abstract or concrete.
Boundary Objects emerge when there is a stable relationship between different
communities of practice and shared objects are built (Bowker and Star, 1999).
Boundary Objects were first observed in scientific settings where different
participants with different perspectives work together to balance different
categories and meanings (Star and Griesemer, 1989). In other words, the
Boundary Objects arise from practice.
Boundary Objects can also be seen as evolving artefacts that become
meaningful and understandable when they are used (Fischer and Ostwald,
2001). Boundary Objects can act as basis for discussion, initiating relevant
knowledge and shared understanding. Or as Fischer et al. (2005, p.10) put it: “It
is the interaction around a Boundary Object, not the object itself, that creates
and communicates knowledge.”

9.2.3 Collaboration Engineering
The research field of Collaboration Engineering (CE) arose from the trend that
organizations more and more frequently use collaborative teams to produce
increased value for their stakeholders (Kolfschoten et al., 2006). CE aims at
designing and deploying processes that can be used and executed by
practitioners themselves without the involvement of professional facilitators.
Group Support Systems (GSS) can increase the productivity of a team, however
the success of GSS sessions is somewhat unpredictable (de Vreede et al., 2003).
For the potentials of GSS to be realized their use must be guided by experience
(Kolfschoten et al., 2006). Therefore many organizations use facilitators to
benefit from GSS. CE aims to find a way for teams to gain advantages from
GSS and to manage the collaboration process themselves, and still reach a
predictable result (Kolfschoten et al., 2006).

Chapter Nine
Tools to Support the Cooperative Design Process

212

ThinkLets is a key concept of CE. ThinkLets is a technique that produces a
pattern of interaction between people working together to reach a goal.
ThinkLets are building blocks that can be put together to design team processes.
“A ThinkLet is a named, tightly scripted, process for creating a single
repeatable predictable pattern of collaboration among people working together
towards a goal.” (Kolschoten et al., 2004, p. 1). ThinkLets have been around for
a while but it is only recently they have been formalized (Kolfschoten et al.,
2004). ThinkLets are built on known techniques, for example brainstorming.
There are five types of ThinkLets (Briggs et al., 2003):

• Diverge
o you start with a few concepts and end up with more

• Converge
o you have several concepts and end up with a few concepts worth

more attention.
• Organize

o you gain more understanding of the relationship between
concepts

• Evaluate
o you gain more understanding of the consequences of choices

• Build consensus
o you gain more agreement between participants in a group and

you gain more congruence between individual goals and group
goals.

A ThinkLet is defined in terms of (Kolfschoten et al., 2006):
• name,
• pattern of collaboration,
• successor and predecessor,
• capabilities (what is required to take the actions),
• actions (what to do) and.
• rules with constraints (how to do the actions).

9.2.4 Wrapping Up
Participatory Design research has often been criticized for functioning well as
long as the PD facilitator is present, but when the development team must stand
on its own feet it is difficult for them to repeat the successful design effort
(Kensing and Blomberg, 1998). Collaboration Engineering (CE) deals with the
same problem, but in terms of group support systems (GSS). Collaboration
Engineering means “the development of repeatable collaborative processes that
are conducted by practitioners themselves” (Briggs et al., 2003, p. 32). To be
able to repeat successful patterns of collaboration ThinkLets are created.
ThinkLets define a facilitator’s actions and choices of how to use the GSS to
facilitate collaboration. By using ThinkLets facilitators can develop and transfer
successful processes to practitioners themselves (Briggs et al., 2003).

Chapter Nine
Tools to Support the Cooperative Design Process

213

A Boundary Object must have a certain degree of ‘perceived affordance’ (e.g.
“the appearance of the device could provide the critical clues required for its
proper operation.” (Norman, 1999, p. 39) The proposed artefacts do not possess
this. Perceived affordance is built partly on previous experience and the first
time the participants use the artefacts they do not have any previous experience.
The lack of perceived affordance therefore makes it necessary to provide
instructions together with the artefacts.
ThinkLets worked as inspiration to encapsulate the instructions for how to use
the artefacts into BoundLets. In this way the BoundLets add affordance to the
tools as they define how to use the artefact. BoundLets contain elements similar
to those contained in ThinkLets, such as rules and indications of when to use
them, but there are also differences (Section 9.3). The reason for creating a
BoundLet is to make it possible for the participants in development projects to
use the tools without involvement of a facilitator. It is not thereby said that there
should not be any facilitator. There will certainly be a need for one in the initial
stages, but as time passes, and after the participants have used the tools for some
time, it is possible for one of the practitioners to act facilitator since he or she
has support of the tools.

9.3 Discussion
The tools proposed in this chapter can be seen as techniques or tools for use in
Participatory Design. However the tools should not be seen as excluding other
PD techniques. The tools simply aim at building a common understanding of
end-user tailoring in a specific context and involving the users in the technical
design process. Participatory Design should be considered in all stages of the
cooperative design process of end-user tailoring, meaning that techniques such
as mock-ups and future workshops are likely to be used in other phases of the
collaboration.
The facilitator is central to Participatory Design. In the context of using patterns
in PD the facilitator is important to support users by helping them interpret the
patterns and also to interpret users’ statements (Dearden et al., 2002). The tools
presented in this chapter aim at reducing the need for a facilitator. Role
hybridization can be a solution to this, meaning that users act in a hybrid role as
both user and developer. Fleischmann (2006) has observed this phenomenon.
During the cooperation with the telecom company, we have observed the same
thing. We have seen both a developer who changed tasks to become a user and a
user gaining employment in the IT-department of the company due to interest
and involvement in developing one of the software systems.
The tools are intended to act as a Boundary Object between users and
developers in the design process. Bowker and Star (1999) argue against
introducing artificial Boundary Objects (like, for example, standards) as they
“strip away the ambiguity of the objects of learning” (p. 305) which often

Chapter Nine
Tools to Support the Cooperative Design Process

214

means “empowering the self-proclaimed objective voice of purity” (p. 307) and
thereby focusing too narrowly and ruling out relevant information.
The tools should be able to act as proper Boundary Objects in the same way as
Boundary Objects that have arisen from practice, because, even though they are
artificial from the beginning, they preserve the ambiguity and complexity of
design discussions and avoid pointing out what is right or wrong. The tools
should comply with both users’ and developers’ needs and thereby conform to
the definition of a Boundary Object, since the tools:

• are applicable in both the user and developer communities.
• fulfil the requirements of information from both communities.
• have a constant identity across communities.
• can be tailored to meet the needs of a specific context.
• are weakly structured in common use and can be more strongly

structured for specific use.
Others have also considered artificial Boundary Objects. For example one of the
intentions of a workshop at the Conference on Human-Computer Interaction
2004 (CHI 2004) (John et al., 2004) was to propose new Boundary Objects for
the gaps between UI developers and software engineers. Also Fischer et al.
(2005) are exploring how to “create active Boundary Objects that can activate
information relevant to the task at hand” (p. 491).
One of the criteria of Boundary Objects is to be plastic enough to meet different
situations (Bowker and Star, 1999). The content of the proposed artefacts can be
altered to be more specific and therefore meet different situations and needs.
The instructions can also be altered and the affordance of the artefacts will also
increase when the participants become more familiar with the tools. Thereby the
artefact will be more and more rooted in the community and more and more
similar to a Boundary Object arisen from practice. It also means that it becomes
easier to modify the object.
Collaboration Engineering and Boundary Object might seem to be diametrically
opposite. CE deals with extremely formalized concepts like ThinkLets, while
Boundary Objects develop spontaneously from work in communities. However,
on a higher abstraction level there are similarities. Both ThinkLets and
Boundary Objects facilitate collaboration; the ThinkLet by defining the forms of
the collaboration and the Boundary Object by mediating the communication
between different perspectives. The tools proposed here combine the two
concepts by introducing BoundLets.
BoundLets are inspired by ThinkLets and accordingly there are similarities, but
also differences between the concepts. A comparison of the two concepts is
shown in Table 9 : 6. A ThinkLet often has a catchy name, capturing the pattern
of collaboration, such as the LeafHopper, symbolizing how the participants
jump from concept to concept. The BoundLets have names that describe the
theme of the discussion. The BoundLets only define the successor and this is

Chapter Nine
Tools to Support the Cooperative Design Process

215

done inside the instructions. Likewise, the capabilities are also described in the
instructions. For example, if some specific documents are needed in the
discussion, this is defined in the instructions. The actions and the rules in
ThinkLets correspond to the instructions and the rules in the BoundLets.

ThinkLets BoundLets

 Name, Name

 Pattern of collaboration n.a.

 Successor and predecessor Successors are defined in the
instructions

 Capabilities Defined in the instructions

 Actions Instructions

 Rules with constraints Rules

Table 9 : 6 Similarities and differences between ThinkLets and BoundLets

In conclusion, the main similarity between the concepts is that they aim to
facilitate collaboration and reduce the need of facilitators. The overall
difference is that the ThinkLet is related to Group Support Systems while the
BoundLets are related to design artefacts.
Finally, the relations between humans and the constructed artefacts, power
relations, social norms and policies make the outcome of collaborative
techniques difficult to predict (DePaula, 2004). The tools are evaluated in
Chapter Ten by an expert panel; however the tools have to be used in a real
world development project for us to be able to make statements concerning their
usefulness.

9.4 Summary
This chapter has described a toolkit that can be used as a PD technique for
building a common understanding of end-user tailoring in a specific context and
to involve the users in the technical design process. The tools in the toolkit
combine Boundary Objects with the concept of ThinkLets from Collaboration
Engineering.
The four tools in the toolkit are all intended to support cooperation between
users and developers by joining them in discussions of end-user tailoring that
gradually deepen the participants’ understanding of tailoring, to enable the users
to take part in technical design discussions and decisions. The four tools are the
Categorization tool and the Matrix tool, aimed at reducing the
misunderstandings that arise during communication when discussing end-user
tailoring, and the Usability Pattern tool and the Design Pattern tool, which
make it possible for users to learn more about the underlying techniques and are
aimed at supporting shared responsibility for the product.

Chapter Ten

219

Chapter Ten

Evaluation of Toolkit

The first part of this thesis deals with the overall awareness of the problem of
how to make end-user tailorable software sustainable. The result is the
proposition that a continuous cooperative design process is needed. The second
part of the thesis deals with how to make it possible for a cooperative design
process to work, by suggesting a set of artefacts that are intended to facilitate
the communication between end-users and developers. Chapters Six to Nine
describe the suggested and developed tools, and this chapter treats the
evaluation of the tools.
The research in this thesis follows the Design Research paradigm. Design
Research basically consists of two activities: create and evaluate (March and
Smith, 1995). The plan is that the design of the tools should go through three
loops of the design process. The first loop, which is presented in this thesis,
ends with an evaluation by researchers (expert evaluation). The second loop
will be evaluated by practitioners at the company. The third loop will include
implementing the tools in a real world setting, where the tools are tried out in a
real project and evaluated by analyzing how well the tools worked as boundary
objects (Bowker and Star, 1999) between the collaborating participants.
Foster-Fisherman et al. (2001) have created a framework of critical elements of
collaborative capacity, which is useful in understanding which factors influence
collaboration (Section 10.1). The framework of building collaborative capacity
can act as a baseline when considering what to evaluate, and what must be
considered as prerequisites to the evaluation. What we evaluate is the tool’s
potential to influence positively the collaboration between end-users and
developers. Other factors, such as participants’ attitudes towards the
collaboration itself, are beyond the scope of the evaluation (e.g. a positive
attitude towards collaboration is considered a prerequisite). The expert
evaluation resulted in a set of concrete suggestions for improvements and a
conclusion that the tools have the potential to influence the collaboration
between end-users and developers as they e.g. provide for the formation of
common concepts.
The rest of the chapter is structured as follows (Figure 10 : 1). First there will be
an overview of the framework of collaborate capacity (FCC). Thereafter the
scope of the evaluation is defined and presented. The framework of
collaborative capacity acts as a foundation for the evaluation questions, and
how the framework is used to evaluate the toolkit will be discussed in Section
10.3 where the list of evaluation question will be presented. In Section 10.4 the

Chapter Ten
Evaluation of Toolkit

220

result will be mapped out and the chapter will end with a summary and future
work.

Figure 10 : 1 Overview of Chapter Ten

10.1 Framework of Collaborative Capacity
When the number of publications in the area of collaboration increased, Foster-
Fisherman et al. (2001) attempted to develop a framework that captures core
competences and processes that are needed for successful collaboration. Eighty
publications were reviewed, resulting in a framework for building collaborative
capacity. Collaborative capacity means the conditions needed for groups to
establish effective collaboration (Goodman et al., 1998). The framework of
collaborative capacity (FCC) makes it possible for researchers and practitioners
to identify questions to ask and identify critical factors to target (Foster-
Fisherman et al., 2001).
The framework identifies collaborative capacity at four critical levels that are
essential for successful collaboration:

Section 10.5 Summary and Future Work

Section 10.4
Result

Section 10.4.2 Matrix Tool

Section 10.4.1 Categorization Tool

Section 10.4.3 Usability Pattern Tool

Section 10.4.4 Design Pattern Tool

Section 10.4.5 BoundLets

Section 10.3
Applying FCC on the Toolkit

Section 10.3.2 Mapping Tools to Type of Capacity

Section 10.3.3 Resulting Evaluation Questions

Section 10.3.1 The Chain to Find Detailed Evaluation

Section 10.1 Framework of Collaborative Capacity (FCC)

Section 10.2 Defining the Scope of Evaluation

Chapter Ten
Evaluation of Toolkit

221

• Member capacity,
• relational capacity,
• programmatic capacity and
• organizational capacity.

Figure 10 : 2 gives an overview of the framework, showing the four levels and
the main subcategories.

Figure 10 : 2 Critical elements of collaborative capacity (adapted from (Foster-Fisherman et al.,
2001)) (The elements in bold text are used in the evaluation)

• core skills and knowledge
• ability to work collaboratively with others
• ability to create and build effective programs
• ability to build an effective coalition

infrastructure
• core attributes motivation

• holds positive attitudes about collaboration
• committed to target issues or target
• holds positive attitudes about other stakeholders
• holds positive attitudes about self
• access to member capacity
• coalition supports member involvement

Member Capacity

• develops a positive working climate
• develops a shared vision
• promotes power sharing
• values diversity
• develops positive external relationships

Relational Capacity

• clear, focused programmatic objectives
• realistic goals
• unique and innovative
• ecologically valid

Programmatic Capacity

• develops a positive working climate
• develops a shared vision
• promotes power sharing
• values diversity
• develops positive external relationships

Organizational Capacity

Chapter Ten
Evaluation of Toolkit

222

Collaborative work often requires certain types of specialized skills, attitudes
and behaviour from the participants. The collaborative capacity is very much
influenced by the members’ attitudes and capacities, such as existing skills and
knowledge. Members’ skill and knowledge embrace critical elements for
collaboration such as the ability to work collaboratively with others and the
ability to create and build effective programs (Foster-Fisherman et al., 2001).
Relational capacity concerns collaboration, which is about creating social
relationships between members to make it possible to achieve the goal.
Relational capacity means for example the ability to create a positive
environment for the collaborative work (Foster-Fisherman et al., 2001).
Programmatic capacity means that the group must have the capacity to design
and implement meaningful programs that have an impact on the community
(Foster-Fisherman et al., 2001). The framework is developed in a social context
where the term program means, for example, family programs that help families
evolve positively. However, the correspondence to software programs is evident
and the concept can be transferred to software development projects. The
overall meaning is that there is a need for collaborative capacity that makes it
possible to create a good product.
Organisational capacity is essential for the collaboration to survive.
Organizational capacity is about how to organize members in a productive
fashion, and how to engage members in the work tasks. Examples of
organizational capacity are that the group must have sufficient recourses to
complete the task and that there are formalized procedures guiding the work.
The framework also identifies strategies to build the different capacities. For
example, to build member capacity, members should be supported by technical
assistance and training and to access member capacity, member diversity should
actively be supported (Foster-Fisherman et al., 2001). Relational capacity
should be supported by helping the members identify and gather around a
shared vision. Relational capacity must also be supported by creating a
inclusive environment where the decision making is shared and the members’
diverse needs are attended to (Foster-Fisherman et al., 2001). When it comes to
organizational capacity the organization must ensure that good leaders are
fostered, as good leadership is essential to success in collaboration. Another
thing that is required to build organizational capacity is, for example, to have an
efficient communication system (Foster-Fisherman et al., 2001).
The development of the toolkit presented in this thesis is an effort to build
collaborative capacity in some aspects of the framework.
Not all critical elements in the framework are relevant for the evaluation since it
is impossible for an expert group to evaluate for example the members’
attitudes and motivation. The relevant elements in the framework are marked
with bold text in Figure 10 : 2.

Chapter Ten
Evaluation of Toolkit

223

10.2 Defining the Scope of Evaluation
In this first loop of the design process, evaluation will be performed by an
expert group of researchers. The researchers will discuss and judge the tools.
We have four questions that would be interesting to evaluate:

1. Do the tools facilitate collaboration between end-users and developers?
2a. Are the concepts (constructs) of the tools (Categorization, Matrix,

Usability Patterns, Design Patterns) appropriate as boundary objects?
2b. Do the tools have the right content?
3. How do the tools work in an industrial development project?

Expert evaluation puts some constraints on the kind of questions that can be
discussed. Question (1) ‘Do the tools facilitate collaboration between end-users
and developers?’ origins in the evaluation against requirements and what we
can evaluate in an expert evaluation is the tools’ potential to influence positively
the collaboration between end-users and developers.
Question (2a) deals with the concepts of the tools as such. This means that
questions are posed regarding the concepts of, for example, categorization and
patterns. The concept of categorization as means to develop an understanding of
a phenomena is known to be effective (Gershkoff-Stowe and Rakison, 2005)
and therefore there is no need to evaluate the concept as such again. The same
thing applies to patterns. Many authors have given evidence of the usefulness of
patterns as a means of communication (Buschmann et al., 2007, Gamma et al.,
1995) and for the transfer of knowledge (Lukosch and Schümmer, 2006,
Schümmer et al., 2005, Schümmer and Slagter, 2004). The construct of the
Matrix has its origin in cooperation with industry and should thus be regarded
as valid in this first loop of the design process.
The next question (2b) questions the content of the tools, but since a boundary
object by definition should be able to adapt to different settings it is the content
and to some degree the instructions that will adapt to the situation. The
conclusion is that the content is dependent on the situation. To answer this
question and evaluate if the content of the tools is suitable for a specific
situation, requires either an expert group, such as a group of practitioners, who
can judge the tools from a common context, or a real setting or a setting close to
reality. Since this chapter reports only on the first evaluation loop in the design
process it is not possible to evaluate question (2b).
The third question (3) is posed when the artefact is evaluated against the
environmental effects. It means, in terms of the tools presented in this thesis,
that the tools are implemented in a real setting or a setting close to reality. The
outcome is then analyzed and conclusions are drawn. In this case the tools are
not implemented in a context, and this type of evaluation is therefore beyond
the scope of this loop in the design process.

Chapter Ten
Evaluation of Toolkit

224

Accordingly the question left to answer in the evaluation session is:
Do the tools facilitate collaboration between end-users and developers?

To be able to answer this question, sub questions are derived from the
framework of collaborative capacity. The next section will start with an
overview of the evaluation setting and then continue with how the evaluation
questions are obtained.

10.3 Applying the FCC on the Toolkit
Expert evaluation is widely used for usability assessment (Doubleday et al.,
1997, Nielsen and Mack, 1994, Rosenbaum, 1989) especially for evaluating
user interfaces. Expert evaluation is also used in the area of software
architectures (Bosch, 2000). In an expert evaluation, usability specialists carry
out an evaluation that combines analysis of a product’s possibilities to be
applied to a specific task, with in depth knowledge of general rules and norms
in the area (Rosenbaum, 1989). The difference between expert evaluation and
user testing is that while user testing of a product often makes visible the
symptoms of what is wrong, expert evaluation points out the causes (Doubleday
et al., 1997). Because of this, a combination of the two types of evaluation is
preferable and in a future design loop user testing will be performed. Also, since
different people notice different things, it is preferable if several experts
evaluate a product (Nielsen and Mack, 1994).
The evaluation panel consist of four experts in user participation. Each expert
has additional expertise in one or more areas such as, software development,
pedagogy, psychology, usability testing and e-democracy.
The evaluation session lasted for 3.5 hours and was divided into two meetings.
The session started with a presentation of the background to the development of
the tools, and the tools and their intended use were explained. The reason for
the evaluation was also presented to ensure that all evaluators had the same base
for evaluation. The evaluator was given an evaluation kit, with the tools to
evaluate and the questions to discuss. Then the evaluators were given time to
acquaint themselves with the material.
Thereafter the actual evaluation began. The author introduced the first question
and all the evaluators had to present their opinions and were invited to motivate
their standpoint and argue pros and cons. When the evaluators felt that they had
reached the end of the discussion, the author invited the evaluators to make a
quantitative judgment of how well the tools facilitate collaboration, in terms of
the capability it is supposed to support. The evaluator had to pick a number on a
scale from 1 to 5 where 5 is ‘supports the capability very well.
The evaluation session was audio taped and the author also took notes during
the session. After the evaluation the author checked and supplemented the notes
by listening to the recording. The results from the evaluation were summarized

Chapter Ten
Evaluation of Toolkit

225

in a report together with the quantitative evaluation. The report was sent to the
evaluators for members’ check (Robson, 2002).

10.3.1 The Chain to Find Detailed Evaluation Questions
The framework of collaborate capacity can assist in elaborating the implicit
requirements to focus on in the evaluation. The explicit requirements of the
tools are neither precise nor measurable (Table 10 : 1). The requirements are
purely qualitative and to make it possible to evaluate them in depth, the explicit
requirements have to be mapped to the implicit requirements. The framework of
critical elements of collaborative capacity can help guide that work.

requirements

1 Common base for communication

2 Learning environment that makes it possible for the user to understand technical
decisions and their consequences for use

3 Both parties take part in design decision

4 Consensus of trade-offs

5 Learn from experience

6 Shared Mental Models

Table 10 : 1 Requirements

For each explicit requirement we have determined the type of capacity it is
related to and the sub-elements have then been examined, and the
corresponding capacity element has been formulated as a question that can be
discussed in depth in the evaluation. The chain to find the evaluation questions
are visualized in Figure 10 : 3.

Figure 10 : 3 Chain to arrive at detailed evaluation questions

The different requirements resulted in different tools. These tools will be
evaluated on the basis of different capacities and questions. In other words,
explicit requirements resulted in a specific tool, and the requirements also
indicate what type of capacity the tool should support, and in the long run this
leads us to the evaluation questions to ask. The relationship between the explicit
requirements and the tool and the type of capacity respectively are elaborated in
Section 10.3.2.

Explicit
Requirement

Selection of
elements to

achieve
collaborative

capacity

Type of
capacity

Sub-
elements

Evaluation
Questions

Tool

Chapter Ten
Evaluation of Toolkit

226

The first requirement (common base for communication) (Table 10 : 1) is, for
example, concerned with relational capacity. To achieve good relational
capacity it is important to:

• develop a positive working climate,
• develop a shared vision,
• promote power sharing,
• value diversity, and
• develop positive external relationships.

Of these five elements, “develop a shared vision” corresponds to the
requirement “common base for communication”, as the purpose of a common
base of communication is to develop a shared understanding of a phenomenon.
The explicit requirements resulted in the Categorization and Matrix tools which
make it possible to match the tools to evaluation questions (Figure 10 : 4).
The framework of critical elements of collaboration capacity also divides the
different capacity elements into sub-elements. In this case, “develop a shared
vision” is divided into:

• develop superordinate goals,
• develop shared solutions, and
• develop a common understanding of problems

These sub-elements correspond well to what we wanted to achieve with the
tools. Evaluation questions were created from these sub-elements, (Figure 10 :
4).

Figure 10 : 4 Example of mapping between the explicit requirements and the evaluation
questions.

The critical elements that were found to be out of scope for the evaluation will
be regarded as prerequisites and act as a base for the evaluation. For example
we assume there is a positive working climate in the group and that diversity is
valued.

Matrix

Categorization

Common base
for

understanding

Develop a
shared
vision

Relational
capacity

develop
superordinate goals,

develop shared
solutions

develop a common
understanding of
problems

Evaluation
Questions

Chapter Ten
Evaluation of Toolkit

227

10.3.2 Mapping Tools to Type of Capacity
In this section the relationship between the explicit requirements, tools and type
of capacity is mapped out through a set of pictures.
Table 10 : 2 shows the relationship between the requirements and the tools.

requirements Tool

1 Common base for communication Categorization Tool

Matrix Tool

2 Learning environment that makes it possible for the user to
understand technical decisions and their consequences for
use

Usability Patterns Tool

Design Pattern Tool
3 Both parties take part in design decision

4 Consensus of trade-offs

5 Learn from experience

6 Shared Mental Models

Table 10 : 2 Requirements in relation to the tools

Requirement (1) resulted in the Categorization and the Matrix tool. Some
relational capacities can be derived from the explicit requirement and therefore
the Categorization and Matrix tools can be mapped to some critical elements
that they should support. (Figure 10 : 5).

Figure 10 : 5 Overview of the relationship between the Categorization and Matrix tools and the
capacities they should support

Requirements (2)-(6) gave rise to the Usability Pattern and Design Pattern tool
and the tools can thereby be mapped to a set of critical elements of collaborative
capacity (Figure 10 : 6).

Explicit Requirement

common base for communication (1)

Matrix Tool

Categorization Tool

Type of capacity

• develops a shared vision
• superordinate goals
• shared solutions
• common understanding of problems

Relational Capacity

Chapter Ten
Evaluation of Toolkit

228

Figure 10 : 6 Overview of the relationship between the Usability Pattern and Design Pattern
tools and the capacities they should support

In addition to what has been discussed above, there is one type of capacity,
organizational capacity (Figure 10 : 7), that has not yet been included. As the
tools are intended to be freestanding from the overall development process,
organizational capacity is not a major concern in the context.
The process of use is a part of the tool itself and accordingly will be evaluated
along with the tools, but the BoundLets should be evaluated separately too, to
determine if a BoundLet provides the tool with the necessary affordance.

Figure 10 : 7 Overview of the relationship between the BoundLets and the capacities they
should support

Requirement

Possible to perform without external
facilitator (affordance is needed)

BoundLets
Type of capacity

• formalized procedures
• well-developed internal operating

procedures and guidelines
• detailed, focused work plan

Organizational Capacity

Type of capacity

Explicit Requirements

• learning environment that makes
users understand technical
decisions and their consequences
for use (2)

Design Pattern Tool

Usability Pattern Tool

• both parts are informed about
design decisions (3)

• consensus of trade-offs (4)

• learn from experience (5)
• shared mental models (6)

• develops shared vision
• superordinate goals
• shared solutions
• common understanding of problems

• promotes power sharing
• participatory decision-making processes

and shared power
• minimizes member status differences

Relational Capacity

• ability to create and build effective programs
• holds positive attitudes about the self
• coalition builds member capacity

Member Capacity

• ecologically valid
• program driven by community needs
• program culturally competent in design

Programmatic Capacity

Chapter Ten
Evaluation of Toolkit

229

10.3.3 Resulting Evaluation Questions
The subset of critical elements from Figure 10 : 5, Figure 10 : 6 and Figure 10 :
7 is a base for the evaluation questions. There are a couple of complementary
questions in the list below. They are marked in italics. Each of the questions is
accompanied by the follow up question: What can be improved?

Categorization and Matrix Tool
Relational capacity
To what degree does the tool contribute to create a shared vision in terms of…
…superordinate goals
…shared solutions
…a common understanding of problems

Usability pattern and Design Pattern Tool
Member capacity
To what degree does the tool contribute to…
…the ability to create and build good programs?
…an increase in positive attitudes about the self?
…make it possible for a coalition to build member capacity?
Does the pattern structure contain what is needed to support both end-users
and developers? Is there a good balance?
Relational capacity
To what degree does the tool contribute to create a shared vision in terms of…
…superordinate goals
…shared solutions
…a common understanding of problems
To what degree does the tool contribute to promoting power sharing in terms
of…
…participatory decision-making processes and shared power
…minimizing differences in member status
Programmatic capacity
To what degree does the tool contribute to building good software in terms of ...
…a program driven by community needs
…a program culturally competent in design

Chapter Ten
Evaluation of Toolkit

230

BoundLets
Organizational capacity
To what degree do the BoundLets correspond to formalized procedures in terms
of…
…well-developed internal operating procedures and guidelines
…a detailed, focused work plan
Do the BoundLets provide for affordances?

10.4 Result
In this section the outcome of the evaluation is presented. Each sub section
starts with a repetition of the questions discussed for each tool along with the
quantitative judgement. Thereafter the qualitative assessment is presented and
each section ends with a table of suggested improvements. The five level scale
used for the quantitative judgement is translated into plusses (1=’+’, 2=’++’,
3=’+++’, 4=’++++’, 5=’+++++’) for easier visualization.
The overall results are summarized in Section 10.5.

10.4.1 Categorization Tool
In this section the Categorization tool is evaluated.

Relational Capacity

Figure 10 : 8 Relational capacity questions and evaluation of Categorization tool

The evaluation group did not find the tool to be applicable in terms of creating a
subordinate goal or shared solutions, but found that the tool is very good as a
basis for creating a common understanding of a phenomenon such as end-user
tailoring.
The quantitative assessment is shown in Figure 10 : 8.
Summary of expert group’s comments: The evaluators found that the tool is
suitable as a basis for developing common concepts, since the resulting
definition is made visible for all. They also thought it was valuable for the
participants to be forced to motivate their opinions since this advances the
process. The evaluators also expressed the opinion that it is essential to start
with some kind of tool as this allows both immature and more mature groups to
reach a joint explanation through discussion. The evaluators also approved of
the fact that it was clear that the use of the tool must end with an agreement on a

Evaluation
· superordinate goals? n.a
· shared solutions? n.a
· a common understanding of problems? ++++

To what degree does the tool contribute to creating a shared vision
in terms of…

Chapter Ten
Evaluation of Toolkit

231

specific definition to be used by group as a basis for discussions of tailorable
software. However, the discussions also revealed the need to be observant of the
fact that it is impossible to reach a total consensus, since consensus is
something of a utopia. It is important that the problems inherent in the resulting
definition, and disagreements among the participants, are collected and written
down, thereby making them visible. This will increase the usefulness of the
definition, by making all participants aware that the definition might not suit
everyone, but that in order to have a common base, there is an agreement on
which definition to use, and the participants act in accordance with this
decision. Summary of expert group’s comment: Even though it is possible to
discuss end-user tailoring in general terms it was stated that it would be easier
to use the tool if there was a case that could be used as a starting point for the
discussions.

Improvements
The suggested improvements are listed in Table 10 : 3. The proposed
improvements are implemented in the tool presented in Chapter Nine. The part
of the BoundLet where the improvement is made is shown in the right hand
column of the table. Some improvements affect documents outside the
BoundLet and they are marked in italics. All documents are updated and can be
found in Appendix B.
Suggested Improvement attended to in

Clarify that the tool can be used detached from a specific case. “Choose this
BoundLet…”

Clarify when the Categorization is used in the process. “Instructions”

Clarify that if the descriptions of the categories are imprecise for the
situation they can be rephrased to suit the specific circumstances better.

“Instructions”

Point out that it is important to write down differences in opinions
regarding the definition the group has agreed upon.

BoundLetExtra:
CreateAgreement

Table 10 : 3 Suggested improvements to the Categorization tool

10.4.2 Matrix Tool
In this section the Matrix tool is evaluated.

Relational Capacity

Figure 10 : 9 Relational capacity questions and evaluation of the Matrix tool

Evaluation
· superordinate goals? +++
· shared solutions? n.a
· a common understanding of problems? +++

To what degree does the tool contribute to creating a
shared vision in terms of……

Chapter Ten
Evaluation of Toolkit

232

Summary of expert group’s comments: The evaluators agreed that the tool
functions as a guide to get on the track of the types of tailoring to consider for
an application, but the intent is not to state which type should be chosen for a
specific situation. The intention is to make the participants understand which
compromises must be made. The value of the tool as a key to which tailorability
to implement is hard to estimate. The tool can help the participants gain an
understanding of the goal, which can support finding a common view of what to
achieve. The tool cannot be of assistance in finding a solution to a problem, but
the discussion it gives birth to was found to be practical, since the participants
gain an understanding of the case. In other words, the tool promotes an
understanding of the problem, and conflicts in the definition of tailoring are
revealed and tensions are made visible.
The quantitative assessment is shown in Figure 10 : 9.

Improvements
The proposed improvements are listed in Table 10 : 4. These improvements are
implemented in the tool presented in Chapter Nine. The part of the BoundLet
where the improvement is made is shown in the right hand column of the table.
Some improvements affect documents outside the BoundLet and they are
marked in italics. All documents are updated and can be found in Appendix C.

Suggested Improvement attended to in

Point out that the tool must be used in the context of a case. ”Choose this
BoundLet…”

Use questionnaires to note individual, as well as the group’s, opinions
before comparing with the matrix. An empty matrix with only one column
should be used.

New
documents

Sum up the number of correspondences between the group’s matrix and
each category of tailoring. For example, the group’s one column matrix
corresponded in three places with the column for customization in the
matrix, and so on. This makes it easier to consider which type of tailoring to
use in the application.

In the new
documents

The title should mirror the activity and purpose of the tool – Flexibility
Dilemmas

Title of
BoundLet

Table 10 : 4 Suggested improvements to the Matrix tool

10.4.3 Usability Pattern Tool
In this section the Usability Pattern tool is evaluated.
Summary of expert group’s comments: The evaluators agreed that the goal of
this tool is to make the application more usable and that flexibility is of
secondary interest in this tool. The tool invites the participant to a learning
situation concerning patterns and it is important that the tool is understandable,
since it targets untrained users and developers. The tool was perceived as rather

Chapter Ten
Evaluation of Toolkit

233

complex with many different documents to handle and understand. But it was
also stated that it is probably worth the effort, compared to starting to build the
wrong thing. The tool supports discussions with the intention of systematically
discussing relationships between and consequences of different actions. The
evaluators pointed out that this kind of tool is unnecessary in mature groups, but
that groups dissolve, and new members join the group, and unwritten rules and
agendas sink into oblivion. Then it is good to be able to fall back on the kinds of
tools discussed here. One of the rules in the tool is that everyone must listen to
and consider other members’ opinions. The evaluation group pointed out that it
is essential that this process embraces deliberation, where different opinions are
brought together and actively used to advance the process.

Member Capacity

Figure 10 : 10 Member capacity questions and evaluation of Usability Pattern tool

Summary of expert group’s comments: The tool contributes to the ability to
create and build good programs as it supports a systematic walkthrough of the
patterns. The assembled knowledge and information improves the design, but
the choice is of course still open and there is no guarantee that the program will
be better simply because the tool has been used. The tool provides a structured
way of working with a problem. The tool also contributes to the participants
daring talk about these kinds of issues. It is important for the users, especially
untrained users, to grasp the terminology. It is also an advantage that everything
concerning usability patterns is gathered together, and the package can be used
without having to search for scattered information. Regarding whether there is a
good balance in the pattern structure between user and developer support, the
evaluators stated that it does not hinder it, but that it is hard to be specific, since
it depends on how the patterns are formulated and specified.
The quantitative assessment is shown in Figure 10 : 10.

Evaluation Evaluation

• the ability to create and build good programs? +++
• increasing positive attitudes about the self? ++++
• making it possible for the coalition to build member capacity? ++++
• Does the pattern structure contain what is needed to support both n.a

end-users and developers? Is there a good balance?

To what degree does the tool contribute to …

Chapter Ten
Evaluation of Toolkit

234

Relational Capacity

Figure 10 : 11 Relational capacity questions and evaluation of the Usability Pattern tool

Summary of expert group’s comments: Patterns are concrete and goals are so
much larger and more abstract. The tool lets the members of the group learn
about the product from the perspective of relationships and consequences, but
the goal is a good product, and this cannot be verified before the product is
deployed. This is a long chain and there is no explicit course of action. The tool
lets the participants understand what they are doing, but it does not ensure a
good product. However, this should increase the chance of achieving a
satisfactory product. It is difficult to state how well the tool promotes power
sharing, since so many factors influence how power is shared among the
participants. The organization of the company as well as the structure within the
group influence power sharing, but the tool can act as a foundation of power
sharing as it educates users in areas previously reserved for developers, and the
users are invited to discuss and participate in decision making.
The quantitative assessment is shown in Figure 10 : 11.

Programmatic Capacity

Figure 10 : 12 Programmatic capacity questions and evaluation of Usability Pattern tool

Summary of expert group’s comments: It was agreed that the community in this
case was the users. The evaluators expressed the opinion that the users’ needs
are well provided for. And as one of the evaluators put it “If it doesn’t work for
the users, then it’s unprofitable”.
The quantitative assessment is shown in Figure 10 : 12.

 …building a shared vision in terms of… Evaluation
· building superordinate goals? n.a
· building shared solutions? ++++
· building a common understanding of problems? ++++

 …promoting power sharing in terms of…
· participatory decision-making processes and shared power? +++
· minimizing differences in member status? +++

To what degree does the tool contribute to …

Evaluation
· software driven by community needs? ++++
· culturally suitable software? ++++

To what degree does the tool contribute to building
good software in terms of…

Chapter Ten
Evaluation of Toolkit

235

Improvements
The proposed improvements are listed in Table 10 : 5. These improvements are
already implemented in the tool presented in Chapter Nine. The part of the
BoundLet where the improvement is made is shown in the right hand column of
the table. Some improvements affect documents outside the BoundLet and they
are marked in italics. All documents are updated and can be found in Appendix
D.
Suggested Improvement attended to

Clarify that it is a prerequisite that the type of tailoring is chosen
beforehand.

”Choose this
BoundLet…”

“Everyone should make their voice heard” should be exchanged by “take
a turn around the table and collect the participants’ point of view.

”Rules”

The title should mirror the activity and purpose of the tool –Selecting
Usability Pattern

Title of the
BoundLet

Clarify if you should start with usability patterns or usability scenarios. ”Instructions”

The instruction has to be clear that you must handle the vital patterns
first and then choose the scenarios you think are important. There should
be a description of how this is done.

”Instructions”

The patterns should be prioritized. (except for the vital patterns) ”Instructions”

The instructions must be simpler and clearer. ”Instructions”

The table of the vital patterns must be simplified and the categories must
be separated from each other.

Vital Usability
patterns

The vital usability scenarios should be put first in the list of usability
scenarios

Usability
Scenarios

A workflow is required showing how and in which order the different
documents should be used.

“Overview”

Clarify how to access the different parts in the pattern structure, but
there should not be questions in every section in the pattern structure as
this makes the process too controlled.

“Instructions”

Explanations are needed of usability scenarios and corresponding usability
patterns

In the next
evaluation loop.

Table 10 : 5 Suggested improvements to Usability Pattern tool

10.4.4 Design Pattern Tool
In this section the Design Pattern tool is evaluated.
Summary of expert group’s comments: If a group is not sufficiently mature, it
may choose not to use this tool even though it uses the other tools in the toolkit.
This tool is intended for groups that are used to patterns and where the users are
interested in learning about the techniques of the application and participating in
the technical decision making. The BoundLet is named Technical trade-offs
alluding to the intention of the tool, which is to elucidate and discuss trade-offs

Chapter Ten
Evaluation of Toolkit

236

and make informed design decisions. Extending the tailoring capabilities of a
tailorable application leads to many trade offs, as previous design decisions and
other factors in the environment influence what can be done and which choices
can be made. The tool is intended for such situations.

Member Capacity

Figure 10 : 13 Member capacity questions and evaluation of Design Patterns tool

The Usability and Design Pattern tools are quite similar and have similar intent,
but the Design pattern tool is at another maturity level. It requires more specific
interest and dedication to learn about the ‘invisible’ technology in the
application. The evaluation result for member capacity was therefore similar.
The quantitative assessment is shown in Figure 10 : 13.

Relational Capacity

Figure 10 : 14 Relational capacity questions and evaluation of Design Pattern tool

Just as for member capacity, the evaluation of relational capacity provided by
the Design Pattern tool is similar to the evaluation of the Usability Pattern tool.
There was however a difference when it came to shared power. The Design
Pattern tool was to a higher degree perceived as promoting shared power since
it is so obvious that we deal with technical issues here, and the knowledge is
shared by users and developers, and thereby the power is also shared to a
greater extent.
The quantitative assessment is shown in Figure 10 : 14.

Evaluation Evaluation

• the ability to create and build good programs? +++
• increasing positive attitudes about the self? ++++

To what degree does the tool contribute to …

 …building a shared vision in terms of… Evaluation
· building superordinate goals? n.a
· building shared solutions? ++++
· Building common understanding of problems? ++++

 …promoting power sharing in terms of…
· participatory decision-making processes and shared power? ++++
· minimizing member status differences? ++++

To what degree does the tool contribute to …

Chapter Ten
Evaluation of Toolkit

237

Programmatic Capacity

Figure 10 : 15 Programmatic capacity questions and evaluation of Design Patterns tool

Summary of expert group’s comments: in comparison to the Usability Pattern
tool, community needs and culture are less in focus in this tool as this tool is
aimed more at architectural solutions. But the solution is still based on the users.
The expert group thought that fewer users could be expected to participate at
this level.
The quantitative assessment is shown in Figure 10 : 15.

Improvements
The proposed improvements are listed in Table 10 : 6. These improvements are
already implemented in the tool presented in Chapter Nine. Where the
improvement is made in the BoundLet is shown in the right hand column of the
table. Some improvements affect documents outside the BoundLet and they are
marked in italics in the table. All documents are updated and can be found in
Appendix E.

Suggested Improvement attended to in

The patterns should be accompanied by a metaphor so that the
participants can choose patterns via the metaphor.

Instructions and in the
pattern structure

Instead of evaluating one pattern at a time, the participants should
choose some promising patterns, study them and then agree upon
which pattern or patterns to use.

Instructions

Table 10 : 6 Suggested improvements to Design Pattern tool

Instead of coming up with a metaphor as initially suggested in the BoundLet,
the evaluators suggested that the metaphor should be a part of the pattern
structure. It takes time to come up with a metaphor and it is much easier to
choose from a collection. Metaphors are used in XP (eXtreme Programming)
(Beck, 1999) and it has been shown to be difficult to come up with useful
metaphors (Wake, 2002).
The participant must choose some potential patterns based on the metaphor.
Then they work through the patterns to get a feeling for them. Then the selected
patterns are evaluated and a decision is taken about which pattern or patterns to
use.

Evaluation
· software driven by community needs? +++
· culturally suitable software? +++

To what degree does the tool contribute to building
good software in terms of…

Chapter Ten
Evaluation of Toolkit

238

10.4.5 BoundLets
In this section the concept of BoundLets is evaluated in terms of organizational
capacity. The improvements to the BoundLets are presented in Sections 10.4.1-
10.4.4 above.

Organizational Capacity

Figure 10 : 16 Organizational capacity questions and evaluation of BoundLets

Summary of expert group’s comments: The evaluators agreed that the
BoundLets were formalized procedures. It would be overwhelmingly complex
to discuss the issues concerned without the formalization. You would not know
where to start in such a difficult area. The conclusion was that the BoundLets
are well-developed internal operating procedures and guidelines. The
BoundLets have loose coupling to an overall process as they can be used in any
process, which is why they score so low in terms of detailed, focused work
plans. The BoundLets were perceived as providing for good affordance as it
would have been impossible to use the different boundary objects without the
BoundLets, as the tools are complex in the sense that they consist of many
different parts.
The quantitative assessment is shown in Figure 10 : 16.

10.5 Summary and Future Work
The summary (Table 10 : 7) shows that the Usability and Design Pattern tools
are equally good at providing for member capacity, while the Design Pattern
tool is perceived as better at promoting power sharing. The Usability Pattern
tool is superior when it comes to providing adequate software for the
community, which might be regarded as a somewhat surprising result.
The table shows that the toolkit supported all of the critical elements of
collaborative capacity that were the subject for evaluation. There were some
elements that were found not to be applicable in the context of the
Categorization and Matrix tool, but in those cases the Usability pattern and
Design Pattern tools have the capability, and vice versa. Additionally the
Categorization tool and the Matrix tool together supported a shared vision,
although they do not do this separately.

Evaluation
· well developed internal operating procedures and guidelines? ++++
· detailed, focused work plan? ++

• Do the BoundLets provide for affordance? +++++

To what degree does the BoundLet correspond to
formalized procedures in terms of…

Chapter Ten
Evaluation of Toolkit

239

To what degree does the tool contribute to..

Ca
te

go
ri

za
ti

on
to

ol

M
at

ri
x

to
ol

U
sa

bi
lit

y
Pa

tt
er

n
to

ol

D
es

ig
n

Pa
tt

er
n

to
ol

..creating a shared vision in terms of superordinate
goals?

n.a ++++ n.a n.a

..creating a shared vision in terms of shared solutions? n.a n.a ++++ ++++

..creating a shared vision in terms of a common
understanding of a problem?

++++ +++ ++++ ++++

…the ability to create and build good programs? +++ +++

…increasing positive attributes about the self? ++++ ++++

…making it possible for a coalition to build member
capacity?

++++ ++++

…promoting power sharing in terms of participatory
decision making processes and shared power?

+++ ++++

…promoting power sharing in terms of minimizing
member status differences?

+++ ++++

…building good software in terms of software driven
by community needs?

++++ +++

…building good software in terms of culturally suitable
software?

++++ +++

Table 10 : 7 Summary of the quantitative assessment

The expert evaluation resulted in a set of concrete proposals for improvements
that should be made to the tools. The evaluation also concluded that the tools
have the potential to influence positively the collaboration between end-users
and developers since they for example provide a common base for discussions
and shared terminology.
The toolkit must go through additional evaluations and improvements. For
example the toolkit should be evaluated by practitioners in an experiment close
to a real world setting and then be tested in two or three real projects with
different maturity levels in terms of user participations, so that the results can be
compared and improvements can be made with different target groups in mind.
There is also an open question of how to implement the tools in the
organization. Perhaps the toolkit should remain low tech, but it is also possible
that the tools could be encapsulated in a cooperative IT-system. Another
interesting alternative to look into in future research would be to represent the
toolkit both physically and digitally so that the participants work with physical
objects but reflections and decisions are collected and stored digitally with
minimal cognitive overhead.

241

References

Alexander, C., Ishikawa, S., Silverstein, M., et al. (1977): A Pattern Language, 1st edition,
Oxford University Press, New York, USA.

Association of Information Systems, IS World, V. Vaishnavi, V., and B. Kuechler (Eds.):
‘Design Research in Information Systems’, <http://www.isworld.org /Researchdesign
/drisISworld.htm)>, (17 November, 2007).

Barret, R. and Maglio, P. P. (1998): Informatic Things - how to attach information to the real
world, in Proceedings of the Symposium on User Interface Software and Technology
(UIST'98), San Francisco, CA, USA, pp. 81-88.

Bass, L. and John, B. E. (2001): Achieving Usability through Software Architecture,
Technical Report. CMU/SEI-2001-TR-005, Carnegie Mellon, Software Engineering
Institute, Pittsburgh, PA, USA, March 2001.

Bass, L. and John, B. E. (2003): Linking usability to software architecture patterns through
scenarios, Journal of Systems and Software, 66(2003), pp. 187-197.

Bass, L., Clements, P. and Kazman, R. (1998): Software Architecture in Practice, 1st edition,
Addison Wesley, Chichester, UK.

Bauersfeld, P., Bennet, J. and Lynch, G. (1992): Striking a balance, in Proceedings of the
Conference on Human Computer Interaction (CHI'92), Monterey, CA, USA.

Beck, K. (2005): Extreme Programming Explained, 2nd edition, Addison-Wesley,
Massachusetts, MA, USA.

Bennett, K. and Rajlich, V. (2001): Software evolution, in Proceedings of IEEE International
Conference on Software Maintenance (ICSM'01), position paper for panel discussion,
Florence, Italy, pp. 4.

Bennett, K. H. and Rajlich, V. T. (2000): Software maintenance and evolution - a roadmap,
in Proceedings of the Conference on the Future of Software Engineering, Limerick,
Ireland, pp. 73-87.

Beyer, H. and Holtzblatt, K. (1997): Contextual Design - Defining Customer-Centered
Systems, 1st edition, Morgan Kaufmann Publishers, Inc., San Fransisco, USA.

Bleek, W. G. (2004): Software-Infrastruktur: Von Analytischer Perspektive zu Konstruktiver
Orientierung, 1st edition, Hamburg University Press, Hamburg, Germany.

Blomberg, J. and Giacomi, J. (1993): Ethnographic field methods and their relation to design,
in Participatory Design; Principles and Practices, D. Schuler and A. Namioka (Ed.), 1st

edition, Lawrence Erlbaum Associates, Hillsdale, New Jersey; USA, pp. 123-156.
Blomberg, J., Suchman, L. and Trigg, R. H. (1996): Reflections on a work-oriented design

project, Human-Computer Interaction, 11(3), pp. 237-265.

Boehm, B. W., Brown, J. R. and Lipov, M. (1978): Characteristics of Software Quality, 1st

edition, Elsevier North-Holland Publishing Company Inc., Amsterdam, Netherlands.

References

242

Borchers, J. (2001): A Pattern Approach to Interaction Design, 1st edition, John Wiley &
Sons Ltd, Chichester, UK.

Bosch, J. (2000): Design and Use of Software Architectures - Adopting and Evolving a
Product Line Approach, 1st edition, Pearson Education (Addison-Wesley and ACM
Press), Reading, MA, USA.

Bowker, G. C. and Star, S. L. (1999): Sorting Things Out - Classification and its
Consequences, 1st edition, MIT Press, Cambridge, MA, USA.

Briggs, R. O., de Vreede, G.-J. and Nunamaker, J. F. (2003): Collaborating Engineering with
ThinkLets to pursue sustained success with Group Support Systems, Journal of
Management Information Systems, 19(4), pp. 31-64.

Brown, J. S. and Duguid, P. (2000): The Social Life of Information, 1st edition, Harward
Business School Press, Boston, MA, USA.

Burnett, M., Rothermel, G. and Cook, C. (2003): Software Engineering for end-user
programmers, in Proceedings of the Conference on Human Factors in Computing Systems
(CHI’03), Fort Lauderdale, Florida, USA, pp. 12-15.

Buschmann, F., Henney, K. and Schmidt, D. C. (2007): Pattern-Oriented Software
Architecture - On Patterns and Pattern Language, 1st edition, John Wiley & Sons Ltd,
Chichester, UK.

Buschmann, F., Meunier, R., Rohnert, H., et al. (1996): Pattern-Oriented Software
Architecture - A System of Patterns., 1st edition, John Wiley & Sons Ltd, Chichester, UK.

Bødker, S. (1999): Computer Applications as Mediators of Design and Use - a
Developmental Perspective, Doctoral Dissertation, DAIMI PB-542, Computer Science
Department, Aarhus University, Aarhus, Denmark.

Bødker, S., Grønbæk, K. and Kyng, M. (1993): Cooperative design: techniques and
experiences from the Scandinavian scene, in Participatory Design; Principles and
Practices, D. Schuler and A. Namioka (Ed.), 1st edition, Lawrence Erlbaum Associates,
Hillsdale, New Jersey; USA, pp. 157-176.

Canfield Smith, D., Cypher, A. and Tesler, L. (2000): Novice programming comes of age,
Communication of ACM, 43(3), pp. 75-81.

Capron, H. L. (2004): Computers - Tools for an Information Age, 8th edition, Addison-
Wesley, Reading, MA, USA.

Carroll J.M., Rosson, M. B., Chin G., et al. (1998): Requirements development in scenario-
based design, IEEE Transactions on Software Engineering, 24(12), pp. 1156-1170.

Carroll, J. M. (1995): Scenario-Based Design - Envision Work and Technology in System
Development, 1st edition, John Wiley & Sons Ltd., New York, USA.

Carter, K. and Henderson, A. (1999): Tailoring culture, in Proceedings of the 13th

Information Systems Research Seminars (IRIS'13), Åbo Akademi University, Finland, pp.
103-116.

Chan, D. K. C. (1998): A document-driven approach to database report generation, in
Proceedings of the 9th International Workshop on Database and Expert Systems
Applications, Le Chesnay, France, pp. 925-930.

References

243

Clement, A. and Besselar, P. V. d. (1993): A retrospective look at PD projects,
Communication of the ACM, special issue on Graphical User Interfaces - the Next
Generation, 36(4), pp. 29-37.

Cook, S., Harrison, R., Lehman, M. M., et al. (2006): Evolution in software systems:
foundations of the SPE classification scheme, Journal of Software Maintenance and
Evolution: Research and Practice, 2006(18), pp. 1-35.

Costabile, M. F., Fogli, D., Mussion, P., et al. (2006): End-user development - the software
shaping workshop approach, in End User Development, H. Lieberman, F. Paternò and V.
Wulf (Ed.), 1st edition, Springer, Netherlands, pp. 183-205.

Dearden, A., Finlay, J., Allgar, E., et al. (2002): Using pattern languages in Participatory
Design, in Proceedings of the Participatory Design Conference, Malmö, Sweden, pp.
104-112.

DePaula, R. (2004): Lost in Translation - A critical analysis of actors, artifacts, agendas, and
arenas in Participatory Design, in Proceedings of the Participatory Design Conference
2004, Toronto, Canada, pp. 162-172.

Diestelkamp, W. (2002): On Design Methodology for Flexible Systems, Licentiate thesis,
Department of Software Engineering and Computer Science, Blekinge Institute of
Technology, Ronneby.

Dittrich, Y. and Lindeberg, O. (2002): Designing for changing work and business practices,
in Evolutionary and Adaptive Information Systems, N. Patel (Ed.), 1st edition, IDEA
Group Publishing, USA, pp. 152-171.

Dittrich, Y., Lundberg, L. and Lindeberg, O. (2006): End-user development as adaptive
maintenance, in End User Development, H. Lieberman, F. Paternò and V. Wulf (Eds.), 1st

edition, Springer Verlag, Netherlands, pp. 295-313.

Dittrich, Y., Rönkkö, K., Eriksson, J., et al. (2007): Co-operative Method Development –
combining qualitative empirical research with process improvement, accepted for the
Empirical Software Engineering Journal, published online December 2007,
<http://www.springerlink.com/content/712m872162v41l86/?p=5f045b7d307f4f379423ac
3e07a4af64&pi=0>

Doubleday, A., Ryan, M., Springett, M., et al. (1997): A comparison of usability techniques
for evaluating design, in Proceedings of the 2nd Conference on Designing Interactive
Systems - Processes, Practices, Methods, and Techniques (DIS '97), Amsterdam,
Netherlands, pp. 101-110.

Dourish, P. (1996): Open Implementation and Flexibility in CSCW Toolkits, Doctoral
Dissertation, London University College, London, UK.

Ehn, P. and Kyng, M. (1991): Cardboard computers: mocking-it-up or hands on the future, in
Design at Work - Cooperative Design of Computer System, J. Greenbaum and M. Kyng
(Eds.), 1st edition, Lawrence Erlbaum Associates, Hillsdale, New Jersey, USA, pp. 139-
154.

Ely, M., Anzul, M., Friedman, T., et al. (1993): Kvalitativ Forskningsmetodik i Praktiken -
Cirklar inom Cirklar, 1st edition, Studentlitteratur, Lund, Sweden (in Swedish).

References

244

Ericsson, K. A. and Simon, H. A. (1993): Protocol Analysis - Verbal Reports as Data, 1st

edition, MIT Press, Cambridge, MA, USA.

Farooq, U., Merkel, C. B., Nash, H., et al. (2005): Participatory Design as apprenticeship:
sustainable watershed management as community computing application, Proceedings of
the 38th Hawaii International Conference on System Science, Hawaii, USA, pp. 178c-
187c.

Ferre, X., Jusisto, N., Moreno, A. M., et al. (2003): A software architectural view of usability
patterns, Proceedings of INTERACT 2003, Zürich, Switzerland.

Fischer, G. (2001): Communities of Interest - learning through the interaction of multiple
knowledge systems, in Proceedings of the 24th annual Information Systems Research
Seminar in Scandinavia (IRIS 24), Ulvik, Norway, pp. 1-14.

Fischer, G. (2003): Meta-Design - beyond user-centered and participatory design, in
Proceedings of the 10th International Conference on Human-Computer Interaction (HCI
2003), Crete, Greece, pp. 88-92.

Fischer, G. and Girgensohn, A. (1990): End-user modifiability in design environments, in
Proceedings of the conference on Human Factors in Computing Systems, CHI'90,
Washington, USA, pp. 183-192.

Fischer, G. and Ostwald, J. (2001): Problems, promises, realities, and challenges, IEEE
Intelligent Systems, January/February, pp. 60-72.

Fischer, G. and Ostwald, J. (2002): Seeding, evolutionary growth, and reseeding - enriching
Participatory Design with Informed Participation, in Proceedings of Participatory Design
Conference (PDC'02), Malmö University, Sweden, pp. 135-143.

Fischer, G., Giaccardi, E., Eden, H., et al. (2005): Beyond binary choices - integrating
individual and social creativity, Human-Computer Studies, 63(2005), pp. 482-512.

Fischer, G., McCall, R., Ostwald, J., et al. (1994): Seeding, evolutionary growth and
reseeding - incremental development of collaborative design environments, in
Proceedings of Human Factors in Computing Systems, CHI'94, pp. 292-298.

Fleischmann, K. R. (2006): Do-it-yourself information technology - role hybridization and
the design-use interface, Journal of the American Society for Information Science and
Technology, 57(1), pp. 87-95.

Floyd, C. (1984): A systematic look at prototyping, in Approaches to Prototyping, R. Budde,
K. Kuhlenkamp, L. Mathiassen and H. Zuellighoven (Eds.), 1st edition, Springer-Verlag,
Berlin, Germany, pp. 1-18.

Folmer, E. and Bosch, J. (2003.): Usability patterns in software architecture, in Proceedings
of the 10th International Conference on Human-Computer Interaction (HCI 2003), Crete,
Greece, pp. 93-97.

Foster-Fisherman, P. G., Berkowitz, S. L., Lounsbury, D. W., et al. (2001): Building
collaborative capacity in community coalitions - a review and integrative framework.
American Journal of Community Psychology, 29(2), pp. 241-261.

Gamma, E., Helm, R., Johnsson, R., et al. (1995): Design Patterns - Elements of Reusable
Object-Oriented Software, 26th edition, Addison-Wesley, Indianapolis, USA.

References

245

Gantt, M. and Nardi, B. A. (1992): Gardeners and gurus - patterns of cooperation among
CAD users, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, Monterey, California, USA, pp. 107-117.

Gasson, S. (2003): Human-centered vs. user-centered approaches to information system
design, JITTA: Journal of Information Technology Theory and Application, 5(2), pp. 29-
46.

Gershkoff-Stowe, L. and Rakison, D. H. (Eds.) (2005): Building Object Categories in
Developmental Time, 1st edition, Lawrence Erlbaum, Philadelphia, PA, USA.

Gerson, K. and Horowitz, R. (2002): Observation and interviewing - options and choices in
qualitative research, in Qualitative Research in Action, T. May (Ed.), 1st edition, SAGE
Publishers, Trowbridge, Wiltshire, UK, pp. 199-224.

Golm, M. (1997): Design and Implementation of Meta Architecture for Java, Diplomarbeit,
Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany.

Goodman, R. M., Speers, M. A., Mcleroy, K., et al. (1998): Identifying and defining the
dimensions of community capacity to provide a basis for measurements, Health
Education & Behavior, 25(6), pp. 258-278.

Greenberg, S. and Fitchett, C. (2001): The phidget architecture - rapid development of
physical user interfaces, in Proceedings of the UbiTools'01 Workshop on Application
Models and Programming Tools for Ubiquitous Computing at UBICOMP'2001, Atlanta,
USA.

Grønbæk, K., Kyng, M. and Morgensen, P. (1997): Toward a cooperative experimental
systems development approach, in Computers and Design in Context, M. Kyng and L.
Mathiasen (Ed.), 1st edition, MIT Press, Cambridge, MA, USA, pp. 201-238.

Henderson, A. and Kyng, M. (1991): There's no place like home - continuing design in use,
in Design at Work, J. Greenbaum and M. Kyng (Eds.), 1st edition, Lawrence Erlbaum,
Hillsdale, NJ, USA, pp. 219-240.

Hevner, A. R., March, S. T., Park, J., et al. (2004): Design science in information systems
research, MIS Quarterly, 28(1), pp. 75-105.

Huang, A. C., Ling, B. C., Barton, J., et al. (2001): Making computers disappear - appliance
data service, in Proceedings of the 7th Annual International Conference on Mobile
Computing and Networking, Rome, Italy, pp. 108-121.

Hummes, J. and Merialdo, B. (2000): Design of extensible component-based groupware,
Computer Supported Cooperative Work (CSCW), 9(1), pp. 53-74.

Ilvari, J. and Iivari, N. (2006): Varieties of user-centeredness, in Proceedings of the 39th

Annual Hawaii International Conference on System Sciences, HICSS '06, Hawaii, USA,
pp. 176a-186a.

Irving, C. W. and Eichmann, D. (1996): Patterns and design adaptability, Pattern Languages
of Programs, 2(1996), pp. 1-10.

ISO ISO/IEC 9126 Information Technology - Software Quality, International Standard
Organization.

References

246

Jacobsen, K. and Johansen, D. (1999): Ubiquitous devices united - enabling distributed
computing through mobile code, in Proceedings of the 1999 ACM Symposium on Applied
Computing, San Antonio, Texas USA, pp. 399-404.

Jacobson, I., Griss, M. and Jonsson, P. (1997): Software Reuse; Architecture, Process and
Organization for Business Success, 2nd edition, Addison Wesley Longman Limited,
Palantino, USA.

John, B. E., Bass, L., Kazman, R., et al. (2004): Identifying gaps between HCI, Software
Engineering, and design, and boundary object to bridge them, in Proceedings of the
conference on Human Computer Interaction (CHI 2004), workshop, Vienna, Austria, pp.
1723-1724.

John, B. E., Bass, L., Sanchez-Segura, M.-I., et al. (2004): Bringing usability concerns to the
design of software architecture, in Proceedings of 9th IFIP Working Conference on
Engineering for Human-Computer Interaction, Hamburg, Germany, pp. 1-19.

Johnson, B., Woolfolk, W. W., Miller, R., et al. (2005): Flexible Software Design - Systems
Development for Changing Requirements, 1st edition, Auerbach Publications, Taylor &
Francis Group, Boca Raton, FL, USA.

Juristo, N., Lopez, M., Moreno, A. M., et al. (2003): Improving software usability through
architectural patterns, in Proceedings of ICSE 2003 Workshop "Bridging the Gaps
between Software Engineering and Human-Computer Interaction", Portland, Oregon,
USA, pp. 12-19.

Kahler, H. (2001): Supporting Collaborative Tailoring, Doctoral Dissertation, Datalogiske
Skrifter No. 91, 2001, Department of Computer Science, Roskilde University, Roskilde,
Denmark.

Kahler, H., Mørch, A., Stiemerling, O., et al. (2000): Introduction, Computer Supported
Cooperative Work (CSCW), 9(1), pp. 1-4.

Kensing, F. (2003): Methods and Practices in Participatory Design, Doctoral Thesis, ITU
University, ITU Press, Copenhagen.

Kensing, F. and Blomberg, J. (1998): Participatory Design - issues and concerns, Computer
Supported Cooperative Work (CSCW), 7(1998), pp. 167-185.

Kensing, F., Simonsen, J. and Bødker, K. (1998): MUST - a method for Participatory Design,
Human-Computer Interaction, 13(1998), pp. 167-198.

Kiczales, G. (1991): The Art of the MetaObject Protocol, 1st edition, MIT Press, UK.

Kiczales, G. (1992): Towards a new model of abstraction in the engineering of software, in
Proceedings of the International Workshop on New Models for Software Architecture
(IMSA): Reflection and Meta-Level Architecture, Tokyo, Japan.

Kiczales, G., Ashley, J. M., Rodriguez, L., et al. (1993): Metaobject Protocols - why we want
them and what else they can do, in Objectoriented Programming - The CLOS Perspective,
A. Paepcke (Ed.), 1st edition, MIT Press, pp. 101-118.

Kindberg, T., Barton, J., Morgan, J., et al. (2000): People, places, things - web presence for
the real world, in Proceedings of 3rd IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA 2000), Monterey Marriot, CA, USA, pp. 19-28.

References

247

Klann, M. (2003): EUD-Net's roadmap to end-user development, in Proceedings of the
Workshop on End-User Development in Conjunction with CHI 2003 Conference, Fort
Lauderdale, USA, pp. 23-26.

Kolfschoten, G. L., Appelman, J. H., Briggs, R. O., et al. (2004): Recurring patterns of
facilitation interventions in GSS sessions, in Proceedings of the 37th Hawaii International
Conference on System Sciences, Hawaii, USA.

Kolfschoten, G. L., Briggs, R. O., de Vreede, G.-J., et al. (2006): A conceptual foundation of
the ThinkLet concept for Collaboration Engineering, International Journal of Human-
Computer Studies, 64(2006), pp. 611-621.

Kuniacsky, M. (2003): Observing the User Experience - A Practitioner’s Guide to User
Research, 1st edition, Morgan Kaufmann Publishers, San Fransisco, USA.

Langheinrich, M., Mattern, F., Roemer, K., et al. (2000): First step towards an event-based
infrastructure for Smart Things., in Proceedings of Ubiquitous Computing Workshop
(PACT 2000), Philadelphia, PA, USA.

Lave, J. and Wenger, E. (1991): Situated Learning - Legitimate Peripheral Participation, 1st

edition, Cambridge University Press, Cambridge, USA.

Lee, J., Siau, K. and Hong, S. (2003): Enterprise integration with ERP and EAI,
Communications of the ACM, 46(2), pp. 54-60.

Lehman, M. M. (1980): Programs, life cycles, and laws of software evolution, in Proceedings
of the IEEE (Special issue on Software Engineering), 68(9), 1060-1076.

Lehman, M. M. (1994): Software evolution, in Encyclopedia of Software Engineering, J. L.
Marciniak (Ed.), 1st edition, John Wiley & Sons Ltd, New York, USA, pp. 1202-1208.

Letondal, C. (2006): Participatory programming - developing programmable bioformatics
tools for end-users, in End User Development, H. Lieberman, F. Paternò and V. Wulf
(Ed.), 1st edition, Springer, Netherlands, pp. 207-242.

Letondal, C. and Mackay, W. E. (2004): Participatory programming and the scope of mutual
responsibility - balancing scientific, design and software commitment, in Proceedings of
Participatory Design Conference (PDC’04), Toronto, Canada, pp. 31-41.

Lindeberg, O. and Diestelkamp, W. (2001): How much adaptability do you need? Evaluating
meta-modeling techniques for adaptable special-purpose systems, in Proceedings of the
5th conference on Software Engineering and Applications, Anaheim, USA.

Lukosch, S. and Schümmer, T. (2006): Groupware development support with technology
patterns, International Journal of Human-Computer Studies, 64(7), pp. 599-610.

Löwgren, J. and Stolterman, E. (2004): Design av Informationsteknik, 2nd edition,
Studentlitteratur, Lund, Sweden, (in Swedish).

Mackay, W. E. (1990): Patterns of sharing customizable software, in Proceedings of the
Conference on Computer Supported Cooperative Work (CSCW'90), Los Angeles,
California, USA, pp. 209-221.

Mackay, W. E. (1991): Triggers and barriers to customizing software, in Proceedings of the
Conference on Human Factors in Computing Systems (CHI´94), Boston, Massachusetts,
USA, pp. 153-160.

References

248

MacLean, A., Carter, K., Lövstrand, L., et al. (1990): User-tailorable systems - pressing the
issues with buttons, in Proceedings of the Conference on Human Factors in Computer
Systems, CHI 90, New York, USA, pp. 175-182

Maes, P. (1987): Computational Reflection, Technical Report 87_2, Vrieje Universiteit,
Brussels, Belgium.

Malone, T. W., Lai, K.-Y. and Fry, C. (1995): Experiments with oval - a radically tailorable
tool for cooperative work, ACM Transactions on Information Systems, 13(2), pp. 177-205.

March, S. T. and Smith, G. F. (1995): Design and natural science research on information
technology, Decision Support Systems, 15(1), pp. 251-266.

Mason, J. (1996): Qualitative Researching, 2nd edition, Sage Publications, London, UK.

McCall, J. A., Richards, P. K. and Walters, G. F. (1977): Factors in software quality, Nat'l
Tech Information Service, 1, 2 and 3.

Mens, T., Wermelinger, M., Ducasse, S., et al. (2005): Challenges in software evolution, in
Proceedings of the 8th International Workshop on Principles of Software Evolution,
Lisbon, Portugal, pp. 13-22.

Minar, N., Gray, M., Roup, O., et al. (1999): Hive - distributed agents for networking things,
in Proceedings of the 1st International Symposium on Agents Systems Applications and the
3rd Symposium on Mobile Agents (ASA/MA '99), Palm Springs, CA, USA, pp. 118-129.

Muller, M. J., Wildman, D. M. and White, E. A. (1993): Participatory Design,
Communication of ACM, 36(4), pp. 23-28.

Muller, M. J., Wildman, D. M. and White, E. A. (1994): Participatory Design trough games
and other group exercises, in Proceedings of the conference on Human Factors in
Computing Systems, Boston, MA, USA, pp. 411-412.

Muller, M., Matheson, L., Page, C., et al. (1998): Methods & tools - participatory heuristic
evaluation, Interactions, 5(5), pp. 13-18.

Mørch, A. (1995): Three levels of end-user tailoring - customization, integration, and
extension, in Proceedings of the 3rd Decennial Aarhus Conference, Aarhus, Denmark, pp.
157-166.

Mørch, A. (1997): Evolving a generic application into domain-oriented design environment,
Scandinavian Journal of Information System, 8 (2), pp. 63-89.

Mørch, A. (2002): Aspect-oriented software components, in Evolutionary and Adaptive
Information Systems, N. Patel (Ed.), 1st edition, IDEA Group Publishing, USA, pp. 105-
124.

Mørch, A. (2002): Evolutionary growth and control in user tailorable systems, in
Evolutionary and Adaptive Information Systems, N. Patel (Ed.), 1st edition, IDEA Group
Publishing, USA, pp. 30-58.

Mørch, A. and Mehandjiev, N. (2000): Tailoring as collaboration - the mediating role of
multiple representations and Application Units, Computer Supported Cooperative Work
(CSCW), 9(1), pp. 75-100.

Mørch, A. I., Stevens, G., Won, M., et al. (2004): Component-based technologies for end-
user development, Communications of the ACM, 47(9), pp. 59-62.

References

249

Nardi, B. A. (1993): A Small Matter of Programming - Perspectives on End User Computing,
1st edition, MIT Press, Cambridge, USA.

Nardi, B. A. and Miller, J. R. (1991): Twinkling lights and nested loops - distributed problem
solving and spreadsheet development, International Journal of Man-Machine Studies,
34(1), pp. 161-184.

Nielsen, J. and Mack, R. L. (1994): Usability Inspection Methods, 1st edition, John Wiley &
Sons, Inc, New York, NY, USA.

Norman, D. A. (1999): Affordance, conventions, and design, Interactions, 6(3), pp. 38 - 43

Nunamaker, J., Chen, M. and Purdin, T. (1991): System development in information systems
research, Journal of Management Information Systems, 7(3), pp. 89-106.

Olsson, E. (2004): What active users and designers contribute in the design process,
Interacting with Computers, 16(2004), pp. 377-401.

Paterno, F., Klann, M. and Wulf, V. (2002): End-user development - empowering people to
flexibly employ advanced information and communication technology, Research Agenda
and Roadmap for EUD, Deliverable for EUD-Net Network of Excellence, Action Line:
IST-2002-8.1.2.

Patton, M. Q. (1987): How to Use Qualitative Methods in Evaluation, 2nd edition, SAGE
Publications, USA.

Pipek, V. and Kahler, H. (2006): Supporting collaborative tailoring, in End User
Development, H. Lieberman, F. Paternò and V. Wulf (Ed.), 1st edition, Springer,
Netherlands, pp. 315-345.

Pree, W. and Sikora, H. (1997): Design patterns for object-oriented software development, in
Proceedings of the International Conference on Software Engineering (ICSE '97),
tutorial, Boston, Massachusetts, USA, pp. 663-664.

Preece, J., Sharp, H. and Rogers, Y. (2002): Interaction Design - Beyond Human-Computer
Interaction, 1st edition, John Wiley & Sons, Inc., New York, USA.

Regnell, B., Höst, M., Natt och Dag, J., et al. (2000): Visualization of agreement and
satisfaction in distributed prioritization of market requirements, in Proceedings of 6th
International Workshop on Requirements Engineering: Foundation for Software Quality,
Stockholm, Sweden.

Rivard, F. (1996): Smalltalk - a Reflective Language, in Proceedings of the 1st International
Conference on Computational Reflection (Refelction'96), San Francisco.

Robinson, M. (1999): Computer Supported Cooperative Work - cases and concepts, in
Proceedings of Groupware'99, pp. 59-75. Reprinted in R.M Baecker (Ed.) Readings in
Groupware and Computer-Supported Cooperative Work: Assisting Human-Human
Collaboration, pp. 29-49.

Robson, C. (2002): Real World Research, 2nd edition, Blackwell Publishers Ltd, Oxford, UK.

Rode, J., Rosson, M. B. and Quiñones, M. A. P. (2006): End user development of web
applications, in End User Development, H. Lieberman, F. Paternò and V. Wulf (Eds.), 1st

edition, Springer Verlag, Dordrecht, Netherlands, pp. 161-182.

References

250

Rosenbaum, S. (1989): Usability evaluations versus usability testing - when and why? IEEE
Transaction on Professional Communication, 42(4), pp. 210-216.

Sánchez-Jankowski, M. (2002): Representation, responsibility and reliability in participant-
observation, in Qualitative Research in Action, T. May (Ed.), 1st edition, SAGE
Publishers, Trowbridge, Wiltshire, UK, pp. 144-160.

Sanoff, H. (2007): Editorial - special issue on participatory design, Design Studies, 28(3), pp.
213-215.

Schuler, D. and Namioka, A. (1993): Participatory Design - Principles and Practices, 1st

edition, Lawrence Erlbaum Associates, Hillsdale, NJ, USA.
Schümmer, T. and Slagter, R. (2004): The Oregon software development process, in

Proceedings of the 5th International Conference on Extreme Programming and Agile
Processes in Software Engineering (XP 2004), Berlin/Heidelberg, Germany, pp. 148-156.

Schümmer, T., Lukosch, S. and Slagter, R. (2005): Empowering end-users - a pattern-
centered groupware development process, in Proceedings of 11th International Workshop
on Groupware (CRIWG 2005) - Groupware: Design, Implementation, and Use, Porto de
Galinhas, Brazil, pp. 73-88.

Shapiro, D. (2005): Participatory Design - the will to succeed, in Proceedings of the 4th

Decennial Conference on Critical Computing - between Sense and Sensibility, Aarhus,
Denmark, pp. 29-38.

Silverman, D. (2001): Interpreting Qualitative Data; Methods for Analyzing Talk, Text and
Interaction, 2nd edition, SAGE Publishers, Trowbridge, Wiltshire, UK.

Sommerville, I. (2001): Software Engineering, 6th edition, Pearson Education Limited,
Harlow, UK.

Star, S. L. and Griesemer, J. R. (1989): Institutional ecology, translations and boundary
objects - amateurs and professionals in Berkeley's museum of vertebrate zoology, 1907-
39, Social Studies of Science, 19(8), pp. 387-420.

Stevens, G., Quaisser, G. and Klann, M. (2006): Breaking it up - an industrial case study of
component-based tailorable software design, in End-User Development, H. Lieberman, F.
Paternò and V. Wulf (Eds.), 1st edition, Springer, Dordrecht, Netherlands, pp. 269-294.

Stiemerling, O. (2000): Component-Based Tailorability, Doctoral Dissertation, Bonn
University, Bonn, Germany.

Stiemerling, O., Cremers and Armin, B. (1998): Tailorable component architectures for
CSCW-systems, in Proceedings of the 6th Euromicro Workshop on Parallel and
Distributed Programming, Madrid, Spain, pp. 302-308.

Stiemerling, O., Kahler, H. and Wulf, V. (1997): How to make software softer - designing
tailorable applications, in Proceedings of the Symposium on Designing Interactive
Systems (DIS'97), Amsterdam, Netherlands, pp. 365-376.

Subramanian, M. (1999): Network Management - An Introduction to Principles and Practice,
1st edition, Addison-Wesley, Reading, MA, USA.

Svahnberg, M. (2003): Supporting Software Architecture Evolution; Architecture Selection
and Variability, Doctoral Dissertation, Department of Software Engineering and
Computer Science, Blekinge Institute of Technology, Ronneby, Sweden.

References

251

Svahnberg, M. (2005): A taxonomy of variability realization techniques, Software - Practice
and Experience, 35(8), pp. 705-754.

Szyperski, C. (2002): Component Software beyond Object-Oriented Programming, 2nd

edition, Addison-Wesley, London, UK.
Tidwell, J. (2006): Designing Interfaces - Patterns for Effective Interaction Design, 1st

edition, O'Reilly, Sebastpol; CA, USA.

Trigg, R. and Bødker, S. (1994): From implementation to design - tailoring and the
emergence of systematization in CSCW, in Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW 94), Chapel Hill, NC, USA, pp. 45-54.

de Vreede, G. J., Davison, R. and Briggs, R. O. (2003): How a silver bullet may lose its shine
- learning from failures with Group Support Systems. Communications of the ACM, 46(8),
pp. 96-101.

Wake, W. C. (2002): Extreme Programming Explored, 1st edition, Addison-Wesley, Upper
Sadle River, NJ, USA.

Waldo, J. (1999): The Jini architecture for network-centric computing, Communication of
ACM, 42(7), pp. 76-82.

Wang, W. and Haake, J. M. (2000): Tailoring groupware - the cooperative hypermedia
approach, Computer Supported Cooperative Work (CSCW), 9(1), pp. 123-146.

Want, R., Fishkin, K. P., Gujar, A., et al. (1999): Bridging physical and virtual worlds with
electronic tags, in Proceedings of the 1999 Conference on Human Factors in Computing
Systems (CHI '99), Pittsburg, PA, USA, pp. 370-377.

Weiser, M. (1991): The computer for the century, Scientific America, 265 (3), pp. 94-104.

Wesson, J. and Cowley, L. (2003): Designing with patterns - possibilities and pitfalls, in
Proceedings of the 2nd Workshop on Software and Usability Cross-Pollination: The role
of Usability Patterns, INTERACT 2003, Zürich, Switzerland.

Winograd, T. (2000): Interaction spaces for the 21th century computing, in HCI in the New
Millennium, J. Carroll (Ed.), 1st edition, Addison Wesley, pp. 259-276.

Wulf, V. and Rohdein, M. (1995): Towards an integrated organization and technology
development, in Proceedings of the Symposium on Designing Interactive Systems
(DIS'95), Ann Arbor, Michigan, USA, pp. 55-64.

Yin, R. K. (2003): Case Study Research - Design and Methods, 1st edition, SAGE
Publications, Thousand Oaks, CA, USA.

Zimmerman, C. (1996): Reflections on adaptable real-time metalevel architecture, Journal of
Parallel and Distributed Computing, 36(1996), pp. 81-89.

252

253

List of Figures

Figure 1 : 1 Central themes in the thesis…………………………………………….. 5
Figure 1 : 2 Overview of Chapter One……………………………………….………. 6
Figure 1 : 3 Tailoring 11
Figure 1 : 4 Spiral model of development and evolution…………………………… 12
Figure 1 : 5 Software evolution performed by professional developers…………... 13
Figure 1 : 6 Participatory Design……………………………………………………… 17
Figure 1 : 7 Seeding, evolutionary growth and reseeding (Fischer et al., 2005)… 18
Figure 1 : 8 Participatory Design Activities…………………………………….…….. 19
Figure 1 : 9 Intersections between the areas discussed in the thesis…………..… 20
Figure 1 : 10 Cooperative Method Development………………………………….….. 21
Figure 1 : 11 The five process steps of design research…………………………….. 23
Figure 1 : 12 The research process……………………………………………………. 25
Figure 1 : 13 Overview of research questions and chapters in Part I………………. 33
Figure 1 : 14 Overview of research questions and chapters in Part II……………… 34
Figure 1 : 15 Relationship between the chapters in Part I…………………………… 35
Figure 1 : 16 Relationship between the chapters in Part II………………………….. 39
Figure 1 : 17 Two types of development of tailoring capabilities……………………. 45
Figure 1 : 18 Spiral model of evolution of tailorable business systems…………..... 46
Figure 1 : 19 The approach in the thesis in terms of SER…………………………… 46
Figure 1 : 20 Two types of development of tailoring capabilities and PD………….. 48
Figure 1 : 21 Components contained in the cooperative design process of end-

user tailoring………………………………………….…………………… 48
Figure 1 : 22 Cooperative Design of end-user tailoring……………………………… 49

Figure 2 : 1 Overview of Chapter Two……………………………………………….. 60
Figure 2 : 2 A part of the Java meta-model………………………………………….. 63
Figure 2 : 3 The system architecture…………………………………………………. 64
Figure 2 : 4 Type hierarchy…………………………………………………………… 65
Figure 2 : 5 Inheritance hierarchy for the contract types…………………………… 67
Figure 2 : 6 Meta representation……………………………………………………… 69
Figure 2 :7 An example……………………………………………………………….. 70

List of Figures

254

Figure 3 : 1 Overview of Chapter Three…………………………………………….. 77
Figure 3 : 2 Conceptual model for ActionBlocks……………………………………. 80
Figure 3 : 3 Pure peer-to-peer architecture………………………………………….. 81
Figure 3 : 4 ActionBlocks in the exhibition hall………………………………………. 82
Figure 3 : 5 Schematic interface to configure a system……………………………. 83
Figure 3 : 6 Peer-to-peer architecture with distributed services…………………… 84
Figure 3 : 7 Functionality of the prototype…………………………………………… 84
Figure 3 : 8 Client-Server architecture……………………………………………….. 86
Figure 3 : 9 Logic for the projector……………………………………………………. 87
Figure 3 : 9 The whole system………………………………………………………… 88

Figure 4 : 1 Overview of Chapter Four……………………………………………….. 96
Figure 4 : 2 EDIT……………………………………………………………………….. 100
Figure 4 : 3 Step 7……………………………………………………………………… 102
Figure 4 : 4 Division into three parts…………………………………………………. 104

Figure 5 : 1 Overview of Chapter Five……………………………………………….. 108
Figure 5 : 2 The connection between the prototype and the surrounding

systems……………………………………………………………………. 112

Figure 6 : 1 Overview of Chapter Six…………………………………………………. 129

Figure 7 : 1 Overview of Chapter Seven……………………………………………... 156

Figure 8 : 1 Overview of Chapter Eight………………………………………………. 171
Figure 8 : 2 Matching categories and variability realization mechanisms/

hotspots………………………………………………………...…………. 182
Figure 8 : 3 Matching design patterns………………………………………………... 183
Figure 8 : 4 Matching categories to patterns………………………………………… 184

Figure 9 : 1 Relationship between cooperation issues and the developed tool…. 196
Figure 9 : 2 Overview of Chapter Nine……………………………….………………. 197
Figure 9 : 3 Outline of a tool…………………………………………………………… 198
Figure 9 : 4 Example of overview of workflow……………………………..………… 208
Figure 9 : 5 Relationships between the tools in the toolset………………………… 209

List of Figures

255

Figure 10 : 1 Overview of Chapter Ten………………………………………………... 220
Figure 10 : 2 Critical Elements of Collaborative Capacity…………………………… 221
Figure 10 : 3 Chain to arrive at detailed evaluation questions………………………. 225
Figure 10 : 4 Example of mapping between the explicit requirements and the

evaluation questions……………………………………………………... 226
Figure 10 : 5 Overview of the relationship between the Categorization and Matrix

Tools and the capacities they should support…………………………. 227
Figure 10 : 6 Overview of the relationship between the Usability Patterns and

Design Pattern Tools and the capacities they should support………. 228
Figure 10: 7 Overview of the relationship between the BoundLets and the

capacities they should support………………………………………….. 228
Figure 10 : 8 Relational capacity questions and evaluation of Categorization Tool. 230
Figure 10 : 9 Relational capacity questions and evaluation of the Matrix Tool……. 231
Figure 10 : 10 Member capacity questions and evaluation of Usability Patterns

Tool………………………………………………………………………… 233
Figure 10 : 11 Relational capacity questions and evaluation of the Usability

Patterns Tool……………………………………………………………… 234
Figure 10 : 12 Programmatic capacity questions and evaluation of Usability

Patterns Tool……………………………………………………………… 234
Figure 10 : 13 Member capacity questions and evaluation of Design Patterns Tool. 236
Figure 10 : 14 Relational capacity questions and evaluation of Design Patterns

Tool………………………………………………………………………… 236
Figure 10 : 15 Programmatic capacity questions and evaluation of Design Patterns

Tool………………………………………………………………………… 237
Figure 10 : 16 Organizational capacity questions and evaluation of BoundLets…… 238

256

257

List of Tables

Table 1 : 1 Implemented phases of the Cooperative Method Development
approach……………………………………………………………………… 22

Table 1 : 2 Applied research approach in Phase 2……………………………………. 26
Table 1 : 3 Outcomes from Project 1,2 and 3………………………………………….. 42
Table 1 : 4 Outcomes from Project 4……………………………………………………. 43

Table 6 : 1 Tailoring from a user perspective…………………………………………... 131
Table 6 : 2 Ways of achieving tailorability from a system perspective………………. 132
Table 6 : 3 User and system perspective in combination…………………………...… 134
Table 6 : 4 The four-to-five categorization of tailorable software…………………….. 134
Table 6 : 5 Differences between the three research approaches...………………….. 135
Table 6 : 6 The three research cases from a user perspective...…………………….. 144
Table 6 : 7 The three research cases from a system perspective...…………...…….. 145
Table 6 : 8 Summary of the classification of the research cases…………………….. 145

Table 7 : 1 Categorization of tailorable software……………………………….………. 157
Table 7 : 2 Matrix of the attribute values of the four categories of end-user tailoring 162

Table 8 : 1 Categorization of tailorable software……………………………………….. 172
Table 8 : 2 Relations between usability issues and properties……………………….. 176
Table 8 : 3 Tailoring categories and corresponding scenarios and pattern…………. 177
Table 8 : 4 Design Patterns from Gamma et al. (1995)………………...……………... 178
Table 8 : 5 Change in relation to the categorization of end-user tailoring, variability

realization techniques and hotspots………………….…………………….. 182
Table 8 : 6 Matching patterns with type of change…………………………………...... 183
Table 8 : 7 Design patterns matched with type of change and tailoring categories... 184
Table 8 : 8 Comparison of four different pattern structures…………………………… 187
Table 8 : 9 Compliance of requirements………………………………………………… 188
Table 8 : 10 Template of design pattern for use in the cooperative design process… 189

List of Tables

258

Table 9 : 1 Relationship between the collaboration issues (requirements) and the
created artefacts……………………………………………………………… 197

Table 9 : 2 Categorization of end-user tailoring………………………………………... 199
Table 9 : 3 The Matrix…………………………………………………………………….. 201
Table 9 : 4 Meaning of attributes………………………………………………………… 201
Table 9 : 5 Structure of usability patterns…………………………………….…………. 204
Table 9 : 6 Similarities and differences between ThinkLets and BoundLets………... 215

Table 10 : 1 Requirements…………………………..…………………………………….. 225
Table 10 : 2 Requirements in Relation to the tools……………………….…………….. 227
Table 10 : 3 Suggested improvements to the Categorization tool……….…...……….. 231
Table 10 : 4 Suggested improvements to the Matrix tool……………….……………… 232
Table 10 : 5 Suggested improvements to Usability Pattern tool……………………….. 235
Table 10 : 6 Suggested improvements to Design Pattern tool………….……………... 237
Table 10 : 7 Summary of the quantitative assessment…………………………………. 239

Appendixes

Introduction to Examples

A company establishes contracts with the subcontractors. The contracts are a base for prices
and discounts for the delivered material. Dependent on different market forces the contracts
are updated and renegotiated. A contract always consists of contract type, sub contractor,
regular price plan and time period the contract is valid for. Specific discounts and a specific
price plan that differ from the regular price plan for a time period can be added to the
contract. The contracts are stored in the Company’s “Contract Handler” and the content of the
contracts is used by different software systems.

The contract official has to create new contract types and fill the contracts with data that is
valid for a specific contract.

Contracts are renegotiated and new contracts are created as a response to what happens on the
market.

What has to be done in the Contract Handler when a contract is changed can differ. Four ways
of creating new contract types are illustrated in Examples 1-4

Example 1

When the contract official shall create a new contract he can choose to create

• A basic contract (consisting of contract type, sub contractor, regular price plan and
time period)

• A contract with discounts (that contains all a basic contract consists of and a
component for discount)

• A contract with a specific price plan (that contains all a basic contract consists of and
specific price plan that differs from the regular price plan for some time period) or

• A contract with both specific price plan and discounts.

When the choice is made a user interface starts. The interface represents the chosen contract
type and the contract official may fill in the data that is required.

When the contract is renegotiated and thereby changed a new contract is created as above. In
this case, four types of contracts are preprogrammed in the Contract Handler. What happens
in the system when a new contract is created is that the contract official chooses one of the
contract types that shall be used when the chosen contract type is shown.

Example 2

When the contract official creates a new contract he first decides what kind of contract he
wants to create. If it is a contract with discounts, he first chooses new contract in the user
interface. He then automatically gets a basic contract on the monitor. Then he clicks on the
button marked “Add” and can thereafter choose if he wants discounts and a specific price plan
too. He chooses discounts and when this choice is made the interface is extended with a
component representing the discounts. The contract official can then fill in the data required.

When the contract is renegotiated and thereby changed, a new contract is created as above. In
this case there are three different contract modules in the program.

• Basic contract
• Discount module
• Specific price plan module.

When the contract official chooses to create a contract by choosing a basic contract and a
discount module, a relationship between the modules are created. This relationship is
represented in the program in form of code. This code determines what is shown, in this case
both basic contract and the discount component.

Appendix A

Example 3

When the contract official shall create a new contract he first decides if he wants to
create a new contract from start or if he wants to build on an existing contract. Maybe
he has created a contract with discounts earlier and now he needs a contract that
contains both discount and a specific price plan. In the interface he can choose to start
from a contract that combines a basic contract and discount that he or someone else
created earlier. He then automatically gets a basic contract with discount on the
monitor. Thereafter he clicks the “add” button and he adds a specific price plan. When
this is done the interface is extended with a specific price plan component and the
contract official can fill in the data.

When the contract official has created a new contract type by relating some of the
basic modules, as in Example 2, the combination is regarded by the program as a new
composite module and is treated in the same way as the basic components. Every time
a new type of contract is created a new module is created (in this case only three ways
of combining the modules exist. This means that only six modules can exist in the
system).

In this case there are four different contract modules in the program.

• Basic contract
• Discount module
• Specific price plan module.
• Personal modules

Example 4

In the examples above the contract official has a limited number of choices. But
suppose there is a need for a component in the contract that handles the delivery
guarantee. As the Contract Handler is described in Examples 1-3 above this
possibility does not exist. But the Contract Handler in this example makes it possible
for the contract official to make modules from the start. When the contract official
shall make a contract that contains delivery guarantee he chooses “Create Module”
and an interface opens showing an empty module. The contract official can fill the
empty module with predefined parameters and even write some code to make the
module work as desired. He saves his “delivery guarantee module” and then chooses
to create a new contract. A basic contract is shown on the monitor and he chooses
“add” and his new “delivery guarantee module” is shown among the modules to
choose between. He can choose to add the new module and then the interface is
extended with a part of delivery guarantee. Then the contract official can fill in the
data.

What happens when the contract official creates the new module by choosing between
parameters and writing some code is that the program interprets the extension and
transforms it to a coherent code that is encapsulated by the code that constitutes the
‘empty’ module. As all modules (preprogrammed or self made) have the same shell
they can be treated in the same way.

Appendix A

DOCUMENTS
(A) BoundLet: Common Understanding (1 page) BoundLet

(B) Categorization (1 page) Artefact

(C) Example 1-4 (5 page) Support documents

(X1) BoundLetExtra: Create Agreement 1 Support document

OVERVIEW of WORKFLOW

1 BoundLet that frames how to reach an agreement in the group. Not included in the appendix.

Appendix B

Bo
un

dL
et

: C
om

m
on

 U
nd

er
st

an
di

ng
 (B) Categorization

(C) Example 1-4

(X1) BoundLetExtra:
Create Agreement

1. Write your definition of a flexible system.

2. Display your definition.

3. Sort in the definitions into the
categorization. Motivate your definition.

4. Agree upon a common definition.

5. Optional: customize the categories in the
categorization.

6. Put up the common definition on the
wall.

(A)

CATEGORIZATION TOOL

Appendix B

BOUNDLET: COMMON UNDERSTANDING A

• Categorization

• The group can make references to their positive and negative experiences here.

• When there is confusion within the group about what flexible software systems mean and
about which flexibility is needed in the software.

• When the group feels they need a common basis to work from.
• When the group starts a cooperation around flexibility in software.
• Even when there is no common concrete example to base the definition on.

• The participants first individually define to themselves what flexibility means. Thereafter
each person’s definition is shown to the others and together the group classifies the
definitions. Then the participants start to negotiate about what the definition should be,
to reach a definition all participants can agree upon. (also see workflow on the first page)

INPUT: Diverse opinions and experiences of flexible software systems.

OUTPUT: A unified definition of what a flexible software system means to the group.

1. Define what a flexible software system means to you. Write down your definition.
2. When everyone is finished you must display your definition for everybody to see.
3. Sort all the definitions into suitable categories in Categorization (B)

a. Use Example 1 to 4 (C) if you need a common example for the participants to relate
to.

b. Motivate and explain your definition when it is going to be sorted.
c. Why do you think of flexibility in this way?

4. Use BoundLetExtra: CreateAgreement (D) to agree upon a common definition and to
clarify differences in opinions.

5. Specify the descriptions of the categories in Categorization if this is needed for the
categories to work in the specific context or situation.

6. Write down the common definition on a large paper and put it up on the wall.

• Everybody must write down their definition.
• Everybody must motive how they think about flexibility.
• Everybody must be active in the discussion to create a common definition.

Input and
Output

Choose this
tool…

Overview

Artefact

Instructions

Rules

Experiences

User Perspective System Perspective
Customization Set parameter values

(The end-user makes small
changes, e.g. sets parameter
values.)

Interpretation of existing code
(Parameter Values are interpreted and used in
existing code.)

Composition Link different existing
components
(The end-user relates
different existing
components to each other.)

Definition of relationships between
components
 (The relationships between the components
are defined by a composition language. (It does
not matter which programming language))

Code Generation (optional)

Expansion Creation of new
component
(The end-user creates a new
component.)

Definition of relationships between
components
(Components are integrated into the software
by the implementation language and the new
component does not differ from the pre-
existing components. The composed
component is used as a starting point for
further tailoring.)

New and predefined components are
treated uniformly

Code Generation (optional)
(The software may generate code that is added
to the pre-existing code, or incorporate the
new component into the application in some
other way.)

Extension Insertion of code
(The end-user adds code to
the software.)

New code is added
(New code (implemented by the end-user) is
added to the pre-existing code.)

Code Generation (optional)
(The application may also generate code to
integrate the end-user’s code into the
software.)

Appendix B

CATEGORIZATION OF END-USER TAILORING B

Appendix B

EXAMPLES INTRODUCTION C:1

A company establishes contracts with the subcontractors. The
contracts are a base for prices and discounts for the delivered
material. Dependent on different market forces the contracts are
updated and renegotiated. A contract always consists of contract
type, sub contractor, regular price plan and time period the
contract is valid for. Specific discounts and a specific price plan
that differ from the regular price plan for a time period can be
added to the contract. The contracts are stored in the Company’s
“Contract Handler” and the content of the contracts is used by
different software systems.

The contract official has to create new contract types and fill the
contracts with data that is valid for a specific contract.

Contracts are renegotiated and new contracts are created as a
response to what happens on the market.

What has to be done in the Contract Handler when a contract is
changed can differ. Four ways of creating new contract types are
illustrated in Examples 1-4.

Appendix B

EXAMPLE 1 CUSTOMIZATION C:2

This type of program contains the following possibilities to make
changes:

When the contract official shall create a new contract he can
choose to create

• A basic contract (consisting of contract type, sub contractor,
regular price plan and time period)

• A contract with discounts (that contains all a basic contract
consists of and a component for discount)

• A contract with a specific price plan (that contains all a basic
contract consists of and specific price plan that differs from
the regular price plan for some time period) or

• A contract with both specific price plan and discounts.

When the choice is made a user interface starts. The interface
represents the chosen contract type and the contract official may
fill in the data that is required.

When the contract is renegotiated and thereby changed a new
contract is created as above. In this case, four types of contracts
are preprogrammed in the Contract Handler. What happens in the
system when a new contract is created is that the contract official
chooses one of the contract types that shall be used when the
chosen contract type is shown.

Appendix B

EXAMPLE 2 COMPOSITION C:3

This type of program contains the following possibilities to make a
change:

When the contract official creates a new contract he first decides
what kind of contract he wants to create. If it is a contract with
discounts, he first chooses new contract in the user interface. He
then automatically gets a basic contract on the monitor. Then he
clicks on the button marked “Add” and can thereafter choose if he
wants discounts and a specific price plan too. He chooses
discounts and when this choice is made the interface is extended
with a component representing the discounts. The contract official
can then fill in the data required.

When the contract is renegotiated and thereby changed, a new
contract is created as above. In this case there are three different
contract modules in the program.

• Basic contract

• Discount module

• Specific price plan module.

When the contract official chooses to create a contract by
choosing a basic contract and a discount module, a relationship
between the modules are created. This relationship is represented
in the program in form of code. This code determines what is
shown, in this case both basic contract and the discount
component.

Appendix B

EXAMPLE 3 EXPANSION C:4

This type of program contains the following possibilities to make a
change:

When the contract official shall create a new contract he first
decides if he wants to create a new contract from start or if he
wants to build on an existing contract. Maybe he has created a
contract with discounts earlier and now he needs a contract that
contains both discount and a specific price plan. In the interface
he can choose to start from a contract that combines a basic
contract and discount that he or someone else created earlier. He
then automatically gets a basic contract with discount on the
monitor. Thereafter he clicks the “add” button and he adds a
specific price plan. When this is done the interface is extended
with a specific price plan component and the contract official can
fill in the data.

When the contract official has created a new contract type by
relating some of the basic modules, as in Example 2, the
combination is regarded by the program as a new composite
module and is treated in the same way as the basic components.
Every time a new type of contract is created a new module is
created (in this case only three ways of combining the modules
exist. This means that only six modules can exist in the system).

In this case there are four different contract modules in the
program.

• Basic contract

• Discount module

• Specific price plan module.

• Personal modules

Appendix B

EXAMPLE 4 EXTENSION C:5

This type of program contains the following possibilities to make a
change:

In the examples above the contract official has a limited number of
choices. But suppose there is a need for a component in the
contract that handles the delivery guarantee. As the Contract
Handler is described in Examples 1-3 above this possibility does
not exist. But the Contract Handler in this example makes it
possible for the contract official to make modules from the start.
When the contract official shall make a contract that contains
delivery guarantee he chooses “Create Module” and an interface
opens showing an empty module. The contract official can fill the
empty module with predefined parameters and even write some
code to make the module work as desired. He saves his “delivery
guarantee module” and then chooses to create a new contract. A
basic contract is shown on the monitor and he chooses “add” and
his new “delivery guarantee module” is shown among the modules
to choose between. He can choose to add the new module and then
the interface is extended with a part of delivery guarantee. Then
the contract official can fill in the data.

What happens when the contract official creates the new module
by choosing between parameters and writing some code is that the
program interprets the extension and transforms it to a coherent
code that is encapsulated by the code that constitutes the ‘empty’
module. As all modules (preprogrammed or self made) have the
same shell they can be treated in the same way.

DOCUMENTS
(A) BoundLet: Flexibility Dilemmas (1 page) BoundLet
(B) Matrix (1 page) Artefact
(C) Questions (1 page) Support document
(D) Personal Form (1 page) Support document
(E) Group Form (1 page) Support document
(F) Speech Bubble Questions (1 page) Support document
(X1) BoundLetExtra: Create Agreement 1 Support document

 OVERVIEW of WORKFLOW

1 BoundLet that frames how to reach an agreement in the group. Not included in the appendix.

Appendix C

MATRIX TOOL
Bo

un
dL

et
: F

le
xi

bi
lit

y
D

ile
m

m
as

(E) Group Form

(B) Matrix

1. Define context and mark your answers.

2. Discuss the variations in the answers.

3. Mark the common answers.

4. Compare the groups’ answers with the
Matrix.

6. Reach an agreement.

(C) Questions

(D) Personal Form

(X1) BoundLetExtra:
CreateAgreement

5. Discuss the similarities and differences. (F) Speech Bubble
Questions

(E) Group Form

(A)

Appendix C

A

Input and
Output

Choose this
tool…

Overview

Artefact

Instructions

Rules

Experiences

• Matrix

• The group can make references to their positive and negative experiences here.

• When the group needs to explore what type of flexibility to implement.
• When the participants need to discuss and probe deeply into the forces that influence the

choice of flexibility.
• When there is a need to map out and understand the compromises that have to be made.
• When the group have a case, and a task to create new flexible functionality.
• When the group needs guidance in which flexibility that should be chosen for the task.

• The participants start by thinking individually about the context and the flexibility needed
and try to pinpoint the need, based on the questions. Then the group does the same thing.
The next step is to compare the group’s answers and opinions with the Matrix. The Matrix
can guide the discussion of which flexibility to use, and the advantages and disadvantages
come up to the surface and illuminate which compromises have to be made. (also see
workflow on the first page)

• A joint definition of what a flexible software system means.
• A joint case to work with.
• An understanding of the context and flexibility needed and also which compromises may

be necessary to make.

1. Define from questions the form of the context for the flexible functionality that shall be
implemented.
a. Mark your answer in the Personal Form. Deal with one question at a time and judge it

as low (L), medium (M) or high (H).
2. Discuss in the group how the answers vary and the reasons for differences in the

answers.
3. Mark the joint answer in the Group Form.
4. When all the questions are dealt with the groups judgements are compared with the

Matrix. The numbers of corresponding answers is summarised in the Group Form.
5. The result is discussed with the help of the Speech Bubble Questions.
6. BoundLetExtra: CreateAgreement is used to reach an agreement of what type of

flexibility to try to build for the functionality.

• In the discussion, the word passes around the table, to make it possible for everyone to
express their opinions.

BOUNDLET: FLEXIBILITY DILEMMAS

Business changes
 Frequency of change – how often the business changes occur, frequently or

infrequently

 Anticipation of change – to what extent it is possible to anticipate the business
changes

 System support for change – how well the software has to support business changes

Usability issues
 User control – how much control the users have to have of what happens in the

software

 Transparency – how easy it should be for the users to know if the result is correct.

Realization speed – how fast it should be to realize the changes in the software.

Software attributes
Fault tolerance– to which degree the software has to prevent mistakes.

Complexity– how complex the software could be

2 Users thought the example was highly suitable for anticipated changes, developers thought the
example was not so suitable for such situations.
3 Dependent of how user control is interpreted the value can be either H or L. Should the control be
in the software or in the user knowledge?

Characteristics

 Custom
ization

 Com
position

 Expansion

 Extension

Business Changes
Frequency of change M M H H
Anticipation of change H M L-H2 L

System support of change L M M-H H

Usability Issues

User control H M-H M-H ?3

Transparency H M-H M-H ?

Realization speed H H M M-H

Frequency of use L H - -

User competence - - M-H H

Software Attributes Fault tolerance H M-H M L
Complexity L L- M M H

Appendix C

BMATRIX

Appendix C

C

Business changes
Frequency of change – How often do the business changes

occur, frequently/infrequently?

Anticipation of change – To what extent is it possible to
anticipate the business changes?

System support for change – How well does the software
support business changes?

Usability issues
User control – How much control do the users have

to have of what happens in the
software?

Transparency – How easy should it be for the users
to know if the result is correct?

Realization speed – How fast should it be to realize the
changes in the software?

Software attributes
Fault tolerance – To which degree does the software

have to prevent mistakes?

Complexity – How complex is the software
allowed to be?

QUESTIONS

Characteristics Personal Matrix

Business Changes Frequency of change

Anticipation of change

System support of change

Usability Issues User control

Transparency

Realization speed

Frequency of use

User competence

Software Attributes Fault tolerance

Complexity

Appendix C

D

Judge how your context and environment relates to the
characteristics?

(L=Low, M=Medium, H=High, ?= not sure)

PERSONAL FORM

Characteristics Group Matrix

Business Changes Frequency of change

Anticipation of change

System support of change

Usability Issues User control

Transparency

Realization speed

Frequency of use

User competence

Software Attributes Fault tolerance

Complexity

Number of correspondences in the matrix
Customization
Composition
Expansion
Extension

Appendix C

Judge how your context and environment relates to the
characteristics?

(L=Low, M=Medium, H=High, ?= not sure)

EGROUP FORM

Appendix C

FSPEECH BUBBLE QUESTIONS

• Does the Matrix point towards a suitable flexibility
type? If not, what is the reason?

• Is the answer unambiguous?
• Is the answer ambiguous?
• What compromises must be made?
• What are the advantages and disadvantages of the

alternatives?
•
•
•

1

DOCUMENTS
(A) BoundLet: Selection of Usability Patterns (1 page) BoundLet
(B) Table of Vital Usability Patterns (1 page) Support document
(C) Usability Scenarios (1 page) Support document
(D) Priority List (1 page) Support document
(E) Speech Bubble Questions (1 page) Support document
(F) Usability Patterns1 Artefact

 OVERVIEW of WORKFLOW

1 Only the patterns structure is available in the appendix.

Appendix D

USABILITY PATTERN TOOL

Bo
un

dL
et

: S
el

ec
tio

n
of

 U
sa

bi
lit

y
Pa

tt
er

ns
 (F) Usability

Pattern

(C) Usability
Scenarios

1a. Choose the vital usability patterns
corresponding to the chosen flexibility
type.

1b-c. Use the Speech Bubble Questions to go
through the descriptions of a pattern.

2a. Choose the scenarios relevant for the
situation

2b. Choose the corresponding usability
patterns

2g-h. Prioritize the patterns and write down
the comments

(B) Table of Vital
Usability Patterns

(D) Priority List2c. Based on the name, do a rough priority of
the patterns

(E) Speech Bubble
Questions

More patterns?
1d. yes

no

(F) Usability
Patterns

2d-e. Use the Speech Bubble Questions to go
through the descriptions of a pattern.

More patterns?
2f. yes

no

(F) Usability
Patterns

(F) Usability
Pattern

(E) Speech Bubble
Questions

(D) Priority List

(A)

2

Appendix D

• Usability Patterns with architectural impact

• The group can make references to their positive and negative experiences here.

1 - VITAL PATTERNS
a. Based on the flexibility type chosen the vital usability patterns (see table) are

selected.
b. By using the pattern’s description work through the Speech Bubble Questions

together.
c. Work through the parts of the pattern description that have not been considered.

Base the work on the maturity of the group. A more mature group can go deeper
into the pattern description. Does it add anything to the assessment?

d. Move to the next pattern by returning to b).
2 – OTHER PATTERNS

a. Work through the other usability scenarios and choose those that are relevant for
the situation.

b. Choose the usability patterns corresponding to the usability scenarios
c. Based on the name, make a preliminary prioritization. Which pattern is most

important? Start with that pattern.
d. By using the pattern’s description work through the Speech Bubble Questions

together.
e. Work through the parts of the pattern description that have not been considered.

Base the work on the maturity of the group. A more mature group can go deeper
into the pattern description. Does it add anything to the assessment?

f. Choose the next pattern. Repeat h to j until all the patterns are worked through.
g. When all the patterns in the selected collection are worked through, prioritize the

patterns together in the group.
h. Write down the prioritizations and comments in the priority list

Input and
Output

INPUT: A chosen flexibility type
 Tentativ, basic architecture
OUTPUT: A collection of prioritized usability patterns that can be used in the design of the

flexible functionality.

• When the group is new to the use of patterns.
• When the ability to understand and use patterns needs to be trained.
• In the initial stage when user participation in the technical design process is introduced.
• When the goal is primarily to make the software usable.

Choose this
tool…

Overview

Artefact

Instructions

Rules

Experiences

• Users and developers together work through the usability patterns, starting with the most
important. The aim is to explore the consequences of the use of the specific pattern and to
understand and agree on which design decisions to make. (Also see the workflow on the
first page)

• In the initial phase the focus must be on the usability pattern that is of vital importance for
the type of flexibility chosen (see Table of Vital Usability Pattern).

• In the discussion word is passed around the table to make it possible for everybody to
express their opinion.

• The opinions that are revealed must be weighed together and be used actively to make the
process proceed (deliberation).

BOUNDLET: SELECTION OF USABILITY PATTERNS A

3

Category Usability Scenario Pattern
Customization Checking for

correctness
Supporting undo
Providing good help

Form/Field validation
Undo
Wizard, Context-sensitive help,
Standard Help, Tour
User profile

Category Usability Scenario Pattern
Composition Checking for

correctness
Supporting undo
Providing good help

Working in an
unfamiliar context

Form/Field validation
Undo
Wizard, Context-sensitive help,
Standard Help, Tour
User profile
Workflow model

Category Usability Scenario Pattern
Expansion Checking for

correctness
Supporting undo
Providing good help

Working in an
unfamiliar context
Observing system
state

Form/Field validation
Undo
Wizard, Context-sensitive help,
Standard Help, Tour
User profile
Workflow model

Status indication

Category Usability Scenario Pattern
Extension Checking for

correctness
Supporting undo
Providing good help

Working in an
unfamiliar context
Observing system
state
Verifying resources

Form/Field validation
Undo
Wizard, Context-sensitive help,
Standard Help, Tour
User profile
Workflow model

Status indication

Alert

Appendix D

BTABLE OF VITAL USABILITY PATTERNS

4

1. Checking for correctness 2

2. Supporting undo

3. Providing good help

4. Working in an unfamiliar context

5. Observing system state

6. Verifying recourses

7. Aggregating data

8. Aggregating commands

9. Cancelling commands

10. Using applications concurrently

11. Maintaining device independence

12. Evaluating the system

13. Recovering from failure

14. Retrieving forgotten passwords

15. Reusing information

16. Supporting international use

17. Leveraging human knowledge

18. Modifying interfaces

19. Supporting multiple activities

20. Navigating within a single view

21. Working at the users’ pace

22. Predicting task duration

23. Supporting comprehensive searching

24. Operating consistently across views

25. Making views accessible

26. Supporting visualization

27. Supporting personalization

2 Explanations to the scenarios are not included in the appendix.

Appendix D

CUSABILITY SCENARIOS

5

Rough prioritization

Priority Pattern

1

2

3

4

5

6

7

Priority Pattern Comments

1

2

3

4

5

6

7

8

9

10

Appendix D

D
PRIORITY LIST

6

Appendix D

ESPEECH BUBBLE QUESTIONS

• What impact does the pattern have on use?

• What impact does the pattern have on the
architecture?

• Does the use of the pattern mean that compromises
have to be made?

• How can this pattern be realized?

• .

•

7

3 Only the pattern structure is available in the appendix.

Usability Pattern for End-user tailorable software3

Introductory description
• Name
• Ranking The author’s confidence in the pattern
• Tailoring Categories Which categories of tailoring the pattern is suitable for
• Illustration

Overall description of problem and solution
• Problem
• Forces • Environment

and task
Forces from environment and task that influence the choice
of solution.

• Human
desires and
capabilities

Forces from human desires and capabilities that have an
impact on the choice of solution.

• State of the
software

Forces generated by the system state, for example software
is sometimes unresponsive

• General Solution

Detailed description of solution
• Specific Solution Example of prior design decisions that influence the choice

of solution. The forces are specific for the situation. • Prior design
decisions

• Diagrams
• Consequences
• Danger spots
• Sample code A short example of how to implement the pattern. Written

in the language used at the company or in C++ since this is
well known.

• Examples Examples of features in applications where the pattern is
used

• Related patterns

Appendix D

FUSABILITY PATTERN <NAME>

8

DOCUMENTS
(A) BoundLet: Technical Trade-offs (1 page) BoundLet
(B) Base for selection: Design Patterns (1 page) Support document
(C) Speech Bubble Questions (1 page) Support document
(D) Design Patterns1 Artefacts

(X2) BoundLetExtra: Evaluation 2 Support document

 OVERVIEW of WORKFLOW

1 Only the patterns structure is available in the appendix.
2 BoundLet that frames how to compare and evaluate the patterns. Not included in the appendix.

Appendix E

DESIGN PATTERN TOOL
Bo

un
dL

et
: T

ec
hn

ic
al

 T
ra

de
-o

ff
s

1. Choose the design patterns corresponding
to the chosen flexibility type.

2. Based on the metaphor choose the patterns
that seem suitable.

5. Compare the chosen patterns.

(B) Base for
selection: Design
Patterns

3. Use the Speech Bubble Questions to go
through the descriptions of a pattern.

More patterns?
4. yes

no

(D) Design
Patterns

(D) Design Pattern

(C) Speech Bubble
Questions

(X2)
BoundLetExtra:
Evaluation

(A)

Appendix E

• The group can make references to their positive and negative experiences here.

1. Dependent on the type of flexibility that is to be implemented a collection of design
patterns are chosen. Use Base of selection of Design Patterns (B)

2. Based on the pattern metaphors the patterns that best match the idea of the software
system are chosen.

3. The participants work through the pattern by using the pattern description of the Design
Pattern. The Speech Bubble Questions may help in the work.

4. Continue with the next pattern to get an overview and understanding of the different
patterns.

5. Compare the patterns. Use BoundLetExtra: Evaluation.

• In the discussion words is passed around the table to make it possible for everyone to
contribute to the discussion.

• All the participants’ opinions are valuable.
• It happens easily that the developers take over, as they already possesses technical skill,

but this must be prevented so that nobody feels inferior.
• The opinions that are revealed must be considered and actively used to make the process

proceed. (deliberation)

• Users and developers together create an overall goal for what is needed. Patterns are
selected bases on the corresponding metaphor. Each pattern is discussed on the basis of a
set of questions. The patterns are compared and a first choice is made. (See also the
workflow on the first page)

• Design Patterns

Input and
Output

Choose this
tool…

Overview

Artefact

Instructions

Rules

Experiences

• When the group is used to working with patterns and all participants feel comfortable in
such situations.

• When the users think it is interesting to learn more about underlying techniques and their
consequences for use.

INPUT: Chosen type of flexibility.
 Familiarity with patterns.
OUTPUT: Suggestions for design patterns that can be used for the design of flexible systems.

ABOUNDLET: TECHNICAL TRADE-OFFS

Categorization
of tailoring

Explanation

customization 1.Choosing specialisation within a component
2.Choosing between different operations

composition 3.Choosing components
expansion 6.Creating a new component by connecting

several components
4. Adding
connector

extension 5.Creating a new component by subclassing

Category Design Pattern Type of ‘change’

customization Strategy 1

Template Method 1,2

Command 2

composition Decorator 3

extension Adapter 4

Façade 4

Abstract Factory 5

Prototype 5

Interpreter 5

Proxy 5,6

expansion Adapter 4

Façade 4

Proxy 5,6

Builder 6

Composite 6

Mediator 6

Appendix E

BBASE FOR SELECTION OF DESIGN PATTERN

Appendix E

• What impact does the pattern have on use?

• What impact does the pattern have on maintenance?

• What are the advantages and disadvantages?

• Does using the pattern mean that compromises have to
be made?

• How should the pattern be realized?

• Go through the remaining parts of the pattern that
appear to be relevant. Do they add anything to the
judgment?

• .

.

CSPEECH BUBBLE QUESTIONS

3 Only the pattern structure is available in the appendix.

Design Pattern for End-user tailorable software3

Introductory description
• Name
• Ranking The author’s confidence in the pattern
• Tailoring Categories Which categories of tailoring the pattern is suitable for
• Illustration

Overall description of problem and solution
• Problem
• Forces • Environment

and task
Forces from environment and task that influence the
choice of solution.

• Human
desires and
capabilities

Forces from human desires and capabilities that have an
impact on the choice of solution.

• State of the
software

Forces generated by the system state, for example
software is sometimes unresponsive

• General Solution

Detailed description of solution
• Specific Solution Example of prior design decisions that influence the

choice of solution. The forces are specific for the
situation.

• Prior design
decisions

• Diagrams
• Consequences
• Danger spots
• Sample code A short example of how to implement the pattern.

Written in the language used at the company or in
C++ since this is well known.

• Examples Examples of features in applications where the
pattern is used

• Related patterns

Appendix E

DDESIGN PATTERN <NAME>

ISSN 1653-2090

ISBN 978-91-7295-130-3

In most business areas today, competition is hard
and it is a matter of company survival to inter-
pret and follow up changes within the business
market. The margin between success and failure is
small. Possessing suitable, sustainable information
systems is an advantage when attempting to stay
in the front line of the business area. In order to
be and remain competitive, these information sys-
tems must be up-to-date, and adapt to changes in
the business environment. Keeping business sys-
tems up-to-date in a business environment that
changes rapidly and continuously, is a huge chal-
lenge.
This thesis is concerned with end-user tailorable
software. Tailorable software makes it possible for
end users to evolve an application better to fit
altered business requirements and tasks. In the
view of tailorable software taken in this thesis, the
users should be seen as co-designers, as they take
over the design of the software when it is in use.
In this work, it is important that the users are
aware of the possibilities and limitations of the
software.
However, tailoring is not enough, because the tai-
loring capabilities are always limited, meaning that
tailoring cannot support completely unanticipated
changes. The tailoring capabilities must therefore
be extended, and tailoring activities must be coor-
dinated with software evolution activities perfor-
med by professional developers. This allows the
system to adapt continuously to a rapidly chang-
ing business environment and thereby live up to

the intention of the system. Studies so far have
tended to look at evolution from either a user
perspective or a system perspective, resulting in
a gap between development and use. This thesis
takes an overall stand and states that it is possible
to benefit from both the user and system per-
spectives, through collaboration between users,
tailors and developers.
This thesis also presents a set of tools to sup-
port collaboration on equal terms between users
and developers, in the technical design process of
evolving the tailorable software and extending the
tailoring capabilities. The toolkit aims at building
a common understanding of tailoring, supporting
democratic agreements and a common under-
standing of what kind of tailoring to implement.
It makes it possible for the users to take part in
technical design decisions and have a better un-
derstanding of trade-offs and system boundaries.
All of the research is based on field studies in-
cluding participatory observations, interviews and
workshops with users and developers. These stu-
dies led to the creation of prototypes and tools
that act as mediating artefacts when exploring the
research questions.
The contribution of the thesis is twofold. Firstly,
the thesis elucidates the need for a cooperative
design process to ensure that end-user tailorable
software remains useful and sustainable. Secondly,
the thesis suggests a toolkit with four different
tools to support such a cooperative design pro-
cess.

ABSTRACT

2008:03

Blekinge Institute of Technology
Doctoral Dissertation Series No. 2008:03
School of Engineering

SuppoRTing The CoopeRATive DeSign
pRoCeSS of enD-uSeR TAiloRing

Jeanette Eriksson

S
u

p
p

o
R

T
in

g
 T

h
e

 C
o

o
p

e
R

A
T

iv
e

D

e
S

ig
n

 p
R

o
C

e
S

S
 o

f
 e

n
D

-u
S

e
R

 T
A

il
o

R
in

g
Jeanette Eriksson

2008:03

