

Copyright © 2008 IEEE. Citation for the published paper:

Boldt, Martin; Jacobsson, Andreas, Lavesson; Niklas ; Davidsson, Paul.
“Automated Spyware Detection Using End User License Agreements”

2nd International Conference on Information Security and Assurance, Busan,
Korea 2008

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of BTH's products or

services Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional

purposes or for creating new collective works for resale or redistribution must be
obtained from the IEEE by sending a blank email message to pubs-

permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

Automated Spyware Detection Using End User License Agreements

Martin Boldt, Andreas Jacobsson, Niklas Lavesson, & Paul Davidsson
Department of Systems and Software Engineering, School of Engineering,

Blekinge Institute of Technology, 372 25 Ronneby, Sweden
{martin.boldt;andreas.jacobsson;niklas.lavesson;paul.davidsson}@bth.se

Abstract

The amount of spyware increases rapidly over the
Internet and it is usually hard for the average user to know
if a software application hosts spyware. This paper
investigates the hypothesis that it is possible to detect from
the End User License Agreement (EULA) whether its
associated software hosts spyware or not. We generated a
data set by collecting 100 applications with EULAs and
classifying each EULA as either good or bad. An
experiment was conducted, in which 15 popular default-
configured mining algorithms were applied on the data set.
The results show that 13 algorithms are significantly better
than random guessing, thus we conclude that the
hypothesis can be accepted. Moreover, 2 algorithms also
perform significantly better than the current state-of-the-
art EULA analysis method. Based on these results, we
present a novel tool that can be used to prevent the
installation of spyware.

1. Introduction

The occurrence of spyware in user-oriented applications
widely available over the Internet has become more and
more commonplace during recent years. From a user
perspective, spyware is inherently bad since it often
degrades computer performance and stability, and violates
the users’ right to privacy. Due to that spyware typically is
difficult to remove once it has entered a system and
because current protection mechanisms can at best
immunize spyware components, the need for new and more
efficient spyware protection measures is accentuated.
Ideally, countermeasures should not only remove unwanted
software, but also prevent spyware from entering
computers thus stopping any damage before it can actually
occur. In this study we try to take advantage of the fact
that, contrary to that of the creators of malware like viruses
and worms, the vendors of spyware-hosting applications
usually try to pose their software as legitimate. There are
typically two objectives that counteract for these vendors in
that they want users to download and install applications
that covertly install spyware but without any legal
consequences for the vendor. The most common solution
seems to be to mention in the End User License Agreement
(EULA) that spyware will indeed be installed but to give

this information in a way most users find very hard to
understand and time consuming to read. Not to mention
that many EULAs contain thousands of words and even the
EULAs of legitimate software could be hard to interpret for
regular users due to the extensive use of legal terms. We
therefore address the spyware problem by mining EULAs
of both legitimate software and spyware-hosting
applications looking for patterns in order to determine if it
is possible to detect from the EULA whether the associated
software hosts spyware or not. A data mining approach is
in essence ideal for this problem since it can be used to sift
through large amounts of data, in this case large text
documents, to extract relevant information, e.g.,
combinations of words or phrases that are predominantly
used in spyware EULAs. This paper is organized as
follows. In the next section we present the problem domain
and review the different existing definitions of spyware.
Section 3 then reviews related work and the subsequent
section describes the data gathering process, the experiment
and the obtained results. In Section 5 we discuss some
consequences of the results and present a novel tool for
preventing spyware from being covertly installed and
finally, we draw conclusions and give pointers to future
work in Section 6.

2. Spyware

Spyware exists because information has value and is
most often bundled as a hidden component of popular and
free software widely available for download [13]. Some
common examples of applications hosting spyware are file-
sharing tools and instant messaging clients. Spyware is
typically designed to collect user information usable for
marketing campaigns, e.g., via toolbars, pop-up windows
and spam E-mail messaging. Amazingly, close to 88% of
consumer PCs was found to be infected by spyware and an
average of 20 instances of spyware was found for every
1000th enterprise computer scanned in 2006 [34]. One
report claims that the spyware industry earned over $2
billion distributing and installing software that monitored
and reported on its victims in 2004 [35]. The anti-spyware
industry, on the other hand, “only” earned an estimated
$100 million the same year although its revenue is
projected to reach $1.2 billion by 2010.

2.1 Definition

In general terms, spyware can be defined as a category
of software that collects personal information about users
without their informed consent [13]. Although, it has
proven difficult to agree on a more formal and precise
definition of spyware, it is clear that such software can be
conceptually placed between ordinary (or legitimate)
software and malicious software (malware) [24]. In
contrast to spyware, the definition of malware and its
subclasses (e.g., virus programs and worms) has proven
more successful. One reason is that there is a distinct
difference between legitimate software and its malicious
(and illegitimate) counterpart [20]. Typically, such a
difference cannot be found between ordinary software and
spyware programs. The latter category is usually covertly
bundled with seemingly “ordinary and legitimate” software
and has a hidden functionality, which may be to, e.g.,
monitor Web surfing, display messages on the screen, and
collect personal details about users and programs. The
difficulty in making a clear distinction between legitimate
and illegitimate software is manifested mainly within the
anti-spyware industry. This has resulted in vast numbers of
computer users experiencing loss of control over personal
information, decreased computer performance and stability,
and circumvented system integrity [15][16][23].

2.2 Countermeasures

Anti-virus techniques have traditionally been the most
frequently used type of countermeasure against spyware,
even though these techniques were originally designed for
a radically different problem, i.e., separating illegitimate
virus programs from legitimate software [22]. Due to the
inability of anti-virus programs to properly define, discern
and remove spyware, the threat of spyware is more
considerable than ever. As a conclusion, instead of relying
on techniques not originally designed for the versatility and
ambiguity of the spyware problem we need new
countermeasures that properly detect the particular
characteristics of the commercially-motivated spyware.
Adaware is perhaps the most popular specialized anti-
spyware product [29]. It can be used to scan a system for
spyware and returns the number of hits (occurrences of
spyware) found, sorted into a number of categories, e.g.,
tracking cookies and modem hijackers. However, whereas
Adaware and most anti-virus products are reactive, thus
trying to remove something which has already infected a
system, we examine the possibility of a preventive
approach that detects the presence of spyware by
examining the EULA, even before the application is
installed.

2.3 The state-of-the-art

One way of detecting spyware could be to analyze its
EULA. On this topic, there are a few applications available
today. In fact, we have found one web based tool for
analyzing the content of a EULA, namely the EULA
analyzer [12]. The user pastes the content of a EULA into a
text field on the EULA analyzer web page and presses
submit in order to get the results..The analyzer sifts through
the EULA text and assigns a credit point that indicates the
likelihood of spyware inclusion in the particular application
and also shows some statistics about the number of words,
phrases, and the level of language complexity. However, it
is important to notice that the credit point merely
corresponds to the number of spyware related keywords or
phrases that are found, i.e. a word count; there is no
automatic learning of new patterns, there is no way to
represent, e.g., non-trivial rules, and there is no software
classification. A low credit point indicates legitimate
software and high points indicates spyware. However, the
credit limit that separates bad EULAs from good EULAs is
dependent on the particular set of submitted EULAs and
has to be manually found by the user, e.g., using a linear
search, in order to be able to use the EULA analyzer for
classifying software application based on their
corresponding EULAs. Ultimately this means that the
accuracy of this product in deciding whether application is
good or bad depends on the user. Another product, that is
very similar with regard to the EULA analysis technique, is
EULAlyzer [36]. Unlike the web based EULA analyzer,
EULAlyzer is an installable application. Unfortunately
both state-of-the-art tools are proprietary and thus it is
impossible to know for sure which techniques or
algorithms are used however, the tool descriptions indicate
that they rely on a static set of keywords.

3. Related Work

Within the research areas of information security and
privacy, several studies on spyware have been presented.
Sariou and Gribble introduce methods for measuring
spyware activity in heavily trafficked networks [13]. The
occurrence of spyware in popular file-sharing clients as
well as the effects thereof has been outlined in a suit of
papers. For instance, there are some initiatives exploring
the purposes behind spyware as well as its commercial
impact [17][18]. Fox investigates how user behavior is
affected by the occurrence of spyware in home and work
computers [19]. Robertson classifies five major classes of
spyware and investigates how these classes affect computer
usage [20]. Numerous white papers, technical reports, and
surveys on various aspects of spyware are available
[21][22][23]. McCardle presents an in depth analysis of
spyware capabilities and discusses various technical means
of protecting operating systems [22]. Townsend elaborates

on how spyware infected applications may violate
corporate security policies and procedures [23]. Good et al.
investigate the fact that users agree to accept spyware as
part of a software bundle as a cost associated with gaining
the functionality they desire and demonstrate that interface
design can be a significant factor in eliciting informed
consent to software installation [21]. Notably, very few
initiatives on spyware countermeasures exist, although
some that have been outlined include, e.g., anti-virus
techniques [23] or user participation [24]. We have not
been able to identify any studies which apply data mining
algorithms on EULAs to find patterns that could be used to
distinguish between good and bad software
applications..Much work has been done in the related area
of E-mail filtering, i.e., the classification of E-mail
messages as legitimate or spam depending on the subject,
body or other properties, using different mining algorithms,
e.g.; rule learners, support vector machines, instance-based
learners, decision trees, and stacking [5][6][7][8][9]. A
more recent study investigates the performance of random
forests for the same type of problem claiming that this
algorithm outperforms some of the earlier mentioned
algorithms on several problems [10].Yet another study
applies an unsupervised feature selection algorithm and
clustering to classify unlabeled documents [11].

4. Experiments

Our hypothesis is that it is possible to detect from the
EULA whether the associated software contains spyware or
not, i.e., if it should be classified as good or bad. To test
this hypothesis we gather examples of good and bad
software applications and their corresponding EULAs and
generate a data set of instances represented by pairs of
EULAs and application classifications. We then mine the
generated data set using a set of popular algorithms to
investigate whether the hypothesis should be rejected or
accepted.

4.1 Data representation

Since the stated classification problem is quite
analogous to that of classifying E-mail messages as either
spam or legitimate, we choose to adopt a simple, yet
successful way of representing the data from that area of
research; we represent each EULA using a word frequency
vector, thus the data instances are essentially represented
by pairs of word frequency vectors and classes.

4.2 Data gathering process and classification

In order to get the best settings for testing the
hypothesis the following search strategy was adopted when

collecting applications to include in the data set; the
applications should be easily downloaded from the Internet
and they should present the user with a EULA that could be
copied and pasted as ASCII text. The good software
instances were collected by downloading the 50 most
popular Windows applications from Download.com [25]
and the bad applications were collected from
SpywareGuide.com [26]. After the installation of each
application the operating system was scanned with
Adaware to verify the classification [29]. This verification
showed that all applications associated with bad EULAs
were detected by Adware, while no hits were found for the
legitimate applications.

4.3 Data set format and pre-processing

We stored the data set using the Weka ARFF format in
which each word frequency is represented by a numeric
attribute and the class is represented by one nominal
attribute (with two possible values; good or bad) [4]. The
data set features 50 instances classified as good and 50
instances classified as bad, thus we did not have to deal
with problems associated with a skewed class distribution.
However, we believe that an equal class distribution will be
difficult to achieve when creating larger data sets due to the
simple fact that it is much harder to find bad applications
and their corresponding EULAs. It could of course be
argued that one should try to achieve a distribution that is
close to the real-world distribution. Even though it is
problematic to estimate this distribution it is commonly
perceived that the amount of good software greatly
outnumbers the amount of bad software. The word
frequency vector was generated using Weka’s
StringToWordVector filter with the settings adjusted as in
the study by Frank and Bouckaert [14], thus the TF IDF
weight was applied, all characters were converted to
lowercase, only alphabetic tokens were considered, stop
words and hapax legomena were removed. We furthermore
employed a form of feature selection in that we used the
Weka default setting of storing a maximum of 1000 words
per class to generate the data set.

4.4 Algorithms and settings

The main objective of this paper is not to determine the
most suitable miner for the studied problem, which would
most certainly involve extensive parameter tuning of each
featured algorithm, but rather to determine if the hypothesis
stated in the beginning of Section 4 should be accepted or
rejected. To maximize the probability of finding a pattern,
if indeed such a pattern exists at all, we chose to include a
diverse population of 15 algorithms from different learning
categories (e.g. functions, lazy learners, Bayesian learners,
trees, meta-learners, rules, etc.). We used algorithm

implementations from Weka version 3.5.5 and applied the
default configuration for each algorithm.

4.5 Experimental setup

The primary priority, in setting up the experiment, was
that we needed to be able to test our hypothesis. We
therefore needed to assess the accuracy of our candidates.
Since we had a limited amount of data for training and
testing (100 instances), we chose to perform repeated
holdout tests to estimate prediction accuracy using two
metrics; accuracy (correctly classified instances divided by
total number of classified instances), and the area under the
ROC curve (AUC). These metrics are by far the most
widely used although one should keep in mind that there
are issues both regarding accuracy and AUC as with most
other metrics [2][29]. We note that many studies have
shown the applicability of AUC for a wide range of data
mining and machine learning problems, cf. Provost and
Fawcett [3]. Intuitively, if our hypothesis holds, it should
be possible to generate a classifier that should perform
better on average than randomly guessing the class. Hence,
we formulate the hypothesis test as follows; if anyone of
the featured algorithms is significantly better than a random
guesser on the featured data set for both accuracy and AUC
we accept the hypothesis, otherwise we reject it. To
investigate which algorithms performed significantly better
than a random guesser we used repeated holdouts and the
corrected paired t- test, which is a common combination
used in similar applications [31]. We calculated the mean
and standard deviation of 10 repeated holdouts with a 66%
training set / 34% test set randomized split for each of the
following metrics; accuracy (percent correct), AUC
(including true positives rate and false positives rate),
training time, and testing time. We used the corrected
paired t-test (confidence 0.05, two-tailed) to compare each
featured algorithm with a Weka baseline classifier called
ZeroR, which classifies all instances as belonging to the
same class, thus it shares the same results for both accuracy
and AUC with a random guesser for a Boolean problem.
We also compared the performance, in terms of accuracy,
of the 15 featured algorithms with the state-of-the-art
EULA analyzer tool according to the following procedure;
we generated ten folds for testing by sampling, without
replacement, 17 bad instances and 17 good instances for
each fold (since the holdout procedure used to evaluate the
15 algorithms uses a 66/34 split) from the collection of
EULAs. Obviously we did not generate any training folds
since the EULA analyzer is a static model (in the sense that
it does not learn). Since the EULA analyzer works by
looking for keywords in plain text we used text document
instances instead of word vector representations (which
have been subjected to feature selection, etc.), thus it is
important to keep this difference in mind when comparing
the results later. More importantly, one should recognize

that in a real-world scenario, the accuracy of EULA
analyzer is dependent of the interpretation capabilities of
the user concerning the resulting credit score for a
particular EULA. For our experiment we used the optimal
credit score cut-point which means that the published
accuracy results of the EULA analyzer are likely to be
higher than what can be achieved by the average user of the
product. The process of submitting a EULA document to
the analyzer and getting a classification is described in
Section 2.3. We also emphasize that, since the testing folds
for the EULA analyzer and the testing folds for the
algorithms are not identical, we used a corrected non-
paired t-test (confidence 0.05, two-tailed) for this part of
the experiment. The objective was to find out for which
algorithms there are significant improvements or
degradations in performance compared to the state-of-the-
art, however, as clearly mentioned earlier, we did not try to
tune any of the learning algorithms to maximize
performance (i.e., increasing the probability of finding
significant improvements over the state-of-the-art). A
secondary priority was to measure performance in terms of
training and testing time. These priorities coincide with the
objective of investigating if indeed a tool can be designed
that builds upon the classification method presented in this
paper to prevent the covert installation of spyware.

4.6 Experimental results

We present the results concerning the area under the
ROC curve (AUC) and the accuracy in Table 1. It is clear
that our hypothesis should be accepted since at least one
classifier achieves a significant improvement, with regard
to both AUC and accuracy, in comparison to the baseline
classifier. There are, in fact, significant improvements of
both accuracy and AUC for 13 out of 15 featured
algorithms, excluding DecisionStump and Ridor.
Moreover, when comparing the accuracy of the state-of-
the-art EULA analysis method (the EULA analyzer) with
the accuracy achieved by the featured algorithms it is also
shown that 10 algorithms outperform this method, at least
for the studied data set. However, only the improvements
of Multinomial Naive Bayes and Support Vector Machines
are statistically significant. For one algorithm, KStar, the
accuracy is significantly degraded in comparison to the
state-of-the-art. The high false positive rate of Kstar (0.77)
might be alarming. However, it is important to recognize
that our study merely features 100 instances. As more data
is gathered for future work our hypothesis is that the
performance will increase even for the worst performing
algorithms. We further observe that Multinomial Naive
Bayes is the best performing algorithm on this data set,
achieving the best AUC and accuracy followed by Support
Vector Machines, and Voted Perceptron. Support Vector
Machines has the slowest training time out of these three
candidates; however the testing time does not differ

significantly between them. Only KStar stands out, with
regards to the measured testing time, with a mean result of
approximately 10 seconds, while the other algorithms
achieve results close to 0 seconds. Regarding training time,
there is no algorithm needing more than 5 seconds and, in
particular, HyperPipes, IBk, KStar, Multinomial Naive
Bayes, and VotedPerceptron needs close to 0 seconds.
Exactly what words the best behaving algorithms used for
distinguishing between good and bad software EULAs
could not be easily grasped because of their implicit
representation of the learned classifiers. However, in our
limited data set of 100 instances, tree and rule based
algorithms identified single words such as “search” or
“advertisements” for distinguishing between good and bad
EULAs.

5. Discussion

The studied problem in general and the results from the
conducted experiments in particular, raises several
interesting issues which will now be addressed. We first
bring forth some technical aspects related to the featured
algorithms and their performance on EULA classification,
and continue discussing the importance of automatic
EULA analysis. This is followed by a proposal of a novel
software tool for spyware prevention. Finally, we discuss
what can be referred to as an arms race between E-mail
spammers, spyware and malware vendors on one side and
the countermeasure application developers on the other
side.

5.1 Algorithm comparison

The results pertaining to the performance of the top
three candidates for solving the studied problem seem to be
well-aligned with results in related work; Multinomial
Naive Bayes is known to perform very well on large
vocabularies, i.e., when mining text documents that contain
a large number of words [27]. However, it is usually
acknowledged that Support Vector Machines outperforms
Multinomial Naive Bayes on many problems, cf. [28]. Still,
it should be considered that Multinomial Naive Bayes has
no parameters that need to be tuned for a particular
problem, while Support Vector Machines implementation
does have a large number of configuration parameters, for
instance the complexity constant, the choice of kernel, and
the specific properties of the selected kernel. This would
favor the Multinomial Naive Bayes algorithm in this study
since only default configurations are used.

5.2 The relevance of EULA analysis

It is typically very hard for the average user to know if
an application hosts spyware or not. The obvious way to
gain such knowledge is to read the EULA of the
application about to be installed. The distributors of
software which include spyware programs specify the
occurrence thereof in the EULAs that precede installation
to avoid legal repercussions. Since users often find EULAs
too lengthy to read and too complicated to understand, they
neglect to inspect the EULAs and instead accept them and
install the application unaware of the hidden spyware
programs bound to infiltrate their operating systems [32].
As an example, one software vendor offered $1000 in prize
money to the first person that contacts the company after
reading the statement included in the EULA [33]. It took
more than four months and over 3,000 downloads of the
software before the prize money was claimed. A EULA for
an application which is classified as good typically contains
several thousand words [33]. However, EULAs for
applications classified as bad are usually larger and more
complex (as they often are intentionally written in a
perplex way) and it is not uncommon for them to include
warranties that minimize the vendors’ responsibility and
limit the user’s access to the original code, e.g., by
specifying that it is prohibited to reverse engineer the
application or to eavesdrop on network packets sent from it
[21]. It is evident that many users would benefit from using
an automated tool, which can assist them in analyzing the
contents of a EULA and predicting if the related software
hosts spyware or not.

5.3 Towards a tool for spyware prevention

The EULA classification method outlined in this paper
can be implemented as a software tool for spyware
prevention. This tool should be designed as a middleware
that operates between the operating system and the
application bound to be installed. The tool should be
executed as a background process set to identify and
analyze a EULA as soon as it appears on the screen during
an installation. Based on the result from the EULA
analysis, the tool will provide the user with
recommendations about the classification of the
application. This allows the tool to assist users in making
informed decisions about the installation of software
without forcing them to read (and understand) the lengthy
and intricate EULAs. Should a EULA be classified as bad,
a user can take appropriate actions against it, e.g., by
disagreeing with the EULA and exiting the installation
process. It should however be noted that any tool based on
our method should not be used in isolation, but in
combination with other approaches, e.g., anti-spyware
software (e.g. [29]). A similar application already exists,
however, the significant differences lie in our use of data

mining algorithms (which has been shown in this study to
be more accurate than keyword spotting services) on the
one hand and the visualization of which parts of the EULA
which significantly contributed to its classification as either
good or bad software [36]. This visualization could, for
instance, be implemented by using extracted rules or
generated trees. If proven efficient, the tool should also be
applicable in other settings, for instance in the case of
privacy policies for Web sites and for the combination of
privacy policies and EULAs. An interesting application
would be a Web browser that automatically classifies
privacy policies on Web sites visited and informs the user
about the privacy status of those sites.

5.4 An arms race

Historically, there have been arms races between the
distributors of spam e-mail messages and malware
programs and those combating them. So far, there are some
resemblances between this phenomenon and that of the
spyware industry, for instance with respect to the
similarities in design between anti-spyware and anti-
malware applications. However, whereas malware and
spam distributors really do not need to care for legal
matters in licenses, etc., spyware vendors do. Spyware can
only exist if their host applications are freely downloaded
and installed by users wanting to gain access to the
software host. For this purpose the EULAs are needed by
the spyware industry. Moreover, this substantiates the
significance of EULAs in the enhancement of user privacy.
If spyware components were to be included without any
references thereof in the EULA, the vendors of the host
application face great risk of being brought to justice.
Furthermore, the EULAs need to be constructed in a way
so that they are valid and hold in court. We take advantage
of this particular fact when mining the EULAs for patterns
that separate good applications from bad.

6. Conclusions and Future Work

We investigate the possibility to predict whether a
software application is, or hosts, spyware on the basis of its
End User License Agreement (EULA). We conduct this
investigation by collecting and analyzing 100 software
applications and their corresponding EULAs by installing
each application to determine and scanning the operating
system with anti-spyware software, if the particular
application is bad or good, i.e., if it hosts or indeed is
classified as spyware or not. Each EULA text document is
transformed to a word frequency vector and, together with
the classification; it constitutes an instance that can be used
for training and testing classifiers. The generated data set,
which includes 100 classified EULA instances is available
for downloading [30]. We conduct an empirical experiment

in which 15 mining algorithms, 1 baseline classifier, and a
state-of-the-art EULA analysis tool are applied on the data
set. The results reveal that 13 out of the 15 algorithms
significantly outperformed the baseline classifier in terms
of both AUC and accuracy. Moreover, 2 algorithms also
significantly outperform the state-of-the-art EULA analysis
method, the EULA analyzer in terms of predictive
accuracy. Most notably, the Multinomial Naive Bayes,
Support Vector Machines, and Voted Perceptron
algorithms achieve the highest AUC and accuracy scores
and these three algorithms also share a low false positives
rate. Our main conclusion is that the results strongly
support our hypothesis that EULAs can indeed be used as a
basis for classifying the corresponding software as good or
bad. Based on this conclusion and the low training and
testing times of most algorithms, we also conclude that it
would be quite possible to use the EULA classification
method in a spyware prevention tool that classifies the
EULA when it is shown to a user during an application
installation. The result from such an analysis gives the user
a recommendation about the legitimacy of the application
before the installation continues as well as some type of
visualization of what information in the EULA that
triggered this classification.

As future work, there is intent to implement and release
such a software tool. Another interesting direction for
future work is to collect data enough for a larger version of
the empirical experiment conducted in this study in order
for us to verify our main hypothesis and the results
obtained. Further, it would be interesting to tune the
parameters of the investigated algorithms included in the
proposed extended experiment, cf. Lavesson and
Davidsson [1]. Such an experiment could also involve
more mining and feature selection algorithms,
computational linguistic methods, other EULA text
document representation except for word frequency
vectors, as well as an analysis and visualization of words
that trigger classification into legitimate software and
spyware, respectively. Moreover, it might be possible to
extend the domains of the tool to also include privacy
policies of Web sites visited.

7. REFERENCES

[1] Lavesson, N., Davidsson, P., ” Quantifying the Impact of
Learning Algorithm Parameter Tuning”, In Proceedings of
the 21st AAAI National Conference on Artificial Intelligence
(pp. 395-400), AAAI Press, Menlo Park, CA, 2006.

[2] Provost, F., T. Fawcett, and R. Kohavi, “The Case against
Accuracy Estimation for Comparing Induction Algorithms”,
In Proceedings of the 15th International Conference on
Machine Learning, pages 445-453, Morgan Kaufmann, San
Francisco, CA, USA, 1998.

[3] Provost, F., and T. Fawcett, “Analysis and Visualization of
Classifier Performance: Comparison under Imprecise Class

and Cost Distributions”, In Proceedings of the 3rd
International Conference on Knowledge Discovery and Data
Mining, pages 43-48, AAAI Press, Menlo Park, CA, USA,
1997.

[4] Witten, I. H., and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques (2nd edition), Morgan
Kaufmann, San Francisco, CA, USA, 2005.

[5] Cohen, W., “Learning Rules that Classify E-Mail”,
Advances in Inductive Logic Programming, IOS Press,
Amsterdam, the Netherlands, 1996, pp. 124-143.

[6] Drucker, H., D. Wu, and V. Vapnik, “Support Vector
Machines for Spam Categorization”, IEEE Transactions on
Neural Networks, 10(5), IEEE Press, New York City, NY,
USA, 1999, pp. 1048-1054.

[7] Androutsopoulos, I., G. Paliouras, V. Karkaletsis, G. Sakkis,
C. D. Spyropoulos, and P. Stamatopoulos, “Learning to
Filter Spam E-Mail: A Comparison of a Naive Bayesian and
a Memory-Based Approach”, In Proceedings of the
Workshop on Machine Learning and Textual Information
Access, 4th European Conference on Principles and Practice
of Knowledge Discovery in Databases, pages 1-13, 2000.

[8] Carreras, X., and L. Marquez, “Boosting Trees for Anti-
Spam Email Filtering”, In Proceedings of the 4th
International Conference on Recent Advances in Natural
Language Processing, pages 58-64, 2001.

[9] Sakkis, G., I. Androutsopoulos, G. Paliouras, V. Karkaletsis,
C. D. Spyropoulos and P. Stamatopoulos, “Stacking
Classifiers for Anti-spam Filtering of E-mail”, In
Proceedings of the 6th Conference on Empirical Methods in
Natural Language Processing, 2001.

[10] Koprinska, I., J. Poon, J. Clark, and J. Chan, “Learning to
Classify E-Mail”, Information Sciences, 177, Elsevier,
Amsterdam, the Netherlands, 2007, pp. 2167-2187.

[11] Kang, N., C. Domeniconi, and D. Barbara, “Categorization
and Keyword Identification of Unlabeled Documents”, In
Proceedings of the 5th IEEE International Conference on
Data Mining, pages 677 - 680, IEEE Press, New York City,
NY, USA, 2005.

[12] EULA Analyzer
http://www.spyw-areguide.com/analyze-
Last checked 2008-01-04.

[13] Saroiu, S., S. D. Gribble, and H. M. Levy, “Measurement
and Analysis of Spyware in a University Environment”, In
Proceedings of the 1st Symposium on Networked Systems
Design and Implementation, 2004.

[14] Frank, E., and R. R. Bouckaert, “Naive Bayes for Text
Classification with Unbalanced Classes”, In Proceedings of
the 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 503-510,
Springer, Berlin, Germany, 2006.

[15] Boldt, M., Carlsson, B. and Jacobsson, A., ”Exploring
Spyware Effects”, In Proceedings of the 8th Nordic
Workshop on Secure IT Systems (NordSec04), Helsinki
Finland, 2004.

[16] Jacobsson, A., Boldt, M., and Carlsson, B., ”Privacy-
Invasive Software in File-Sharing Tools”, In Proceedings fo

the 18th IFIP World Computer Congress, Toulouse France,
2004.

[17] McFedries, P., “The Spyware Nightmare”, IEEE Spec-trum,
42(8), IEEE Press, New York City, NY, USA, 2005, pp. 72-
72.

[18] Zhang, X., “What Do Consumers Really Know About
Spyware?”, Communications of the ACM, 48(8), ACM
Press, New York City, NY, USA, 2005, pp. 44-48.

[19] Fox, S., “Spyware – The Threat of Unwanted Software
Programs is Changing the Way People use the Internet”, Pew
Internet and American Life Project, 2005.
http://www.pewinternet.org/pdfs/PIP_Spyware_Report_July
_05.pdf
Last checked 2008-01-04.

[20] Robertsson, B., “Five Major Categories of Spyware”,
Consumer Web Watch, October 21st, 2002.
http://www.consumerwebwatch.org/dynamic/
privacy-investigations-categories-spy.cfm
Last checked: 2008-01-04.

[21] Good, N., Grossklags, J., Thaw, D., Perzanowski, A.,
Mulligan, D.K., and Konstan, J., “User Choices and Regret:
Understanding Users’ Decision Process about Consensually
Acquired Spyware”, I/S Law and Policy for the Information
Society, 2(2), ISJLP, Columbus, OH, USA, 2006, pp. 283-
344.

[22] McCardle, M., “How Spyware Fits into Defence in Depth”,
SANS Reading Room, SANS Institute, 2003.
http://www.sans.org/rr/papers/index.php?id=905
Last checked 2008-01-04.

[23] Townsend, K., “Spyware, Adware, and Peer-to-Peer Net-
works: The Hidden Threat to Corporate Security”,
PestPatrol, 2003.
http://www.pestpatrol.com/Whitepapers/CorporateSecurity0
403.asp
Last checked 2008-01-04.

[24] Boldt, M., ”Privacy-Invasive Software - Exploring Effects
and Countermeasures”, Licentiate Thesis Series No.
2007:01, School of Engineering, Blekinge Institute of
Technology, Sweden, 2007.

[25] CNET Download.com
http://www.download.com
Last checked 2008-01-04.

[26] Spyware Guide
http://www.SpywareGuide.com
Last checked 2008-01-04.

[27] McCallum, A., and K. Nigam, “A Comparison of Event
Models for Naive Bayes Text Classification”, In Proceedings
of the AAAI98 Workshop on Learning for Text
Categorization, pages 41-48, Technical Report WS-98-05,
AAAI Press, Menlo Park, CA, USA, 1998.

[28] Kibriya, A. M., E. Frank, B. Pfahringer, and G. Holmes,
“Multinomial Naive Bayes for Text Categorization
Revisited”, In Proceedings of the 7th Australian Joint

Conference on Artificial Intelligence, pages 488-499,
Springer, Heidelberg, Germany, 2004.

[29] Adaware
http://www.lavasoft.com
Last checked 2008-01-04.

[30] Niklas Lavesson, Blekinge Institute of Technology, 2007.
http://www.bth.se/tek/nla
Last accessed 2008-01-04.

[31] Nadeau, C., and Y. Bengio, “Inference for the Generalization
Error”, Machine Learning, 52(3), Springer, Amsterdam, the
Netherlands, 2003, pp. 239–281.

[32] Sipior, J. C., B. T. Ward, and G. R. Roselli, “A United States
Perspective on the Ethical and Legal Issues of Spyware”, In
Proceedings of the 7th International Conference on
Electronic Commerce, pages 738 - 743, ACM Press, New
York City, NY, USA, 2005.

[33] Good, N., R. Dhamija, J. Grossklags, D. Thaw, S.
Aronowitz, D. Mulligan, and J. Konstan. “Stopping Spyware
at the Gate: A User of Privacy, Notice and Spyware”, In

Proceedings of the Symposium on Usable Privacy and
Security, pages 43-52, ACM Press, New York City, NY,
USA, 2005.

[34] State of Spyware Q2 2006 – A Review and Analysis of the
Impact of Spyware on Consumers and Corporations,
Webroot Software, Inc., 2006.
http://h30307.www3.hp.com/pdf/SOS_Q206_USA.pdf
Last accessed 2008-01-04.

[35] State of Spyware Q1 2005 – A Review and Analysis of the
Impact of Spyware on Consumers and Corporations,
Webroot Software, Inc., 2006.
http://whitepapers.zdnet.co.uk/0,1000000651,260134901p,00
.htm
Last accessed 2008-01-04.

[36] EULAlyzer
http://www.javacoolsoftware.com/eulalyzerpro.html
Last checked 2008-01-04.

8. Appendix

Table 1. Predictive accuracies and area under the ROC curve results for 15 algorithms compared using a corrected paired t-test
(confidence 0.05, two-tailed) with a baseline classifier which has the same performance as a random guesser. Significant

improvements, compared to the baseline classifier, are shown with ●. True positives rates (TPR), false positives rates (FPR),
training times, and testing times are also presented for each algorithm. All results are presented with the mean and standard
deviation of 10 runs of holdout using a 66% training set / 34% test set randomized split. All algorithms are also compared, in
terms of accuracy, using a regular, non-paired corrected t-test (confidence 0.05, two-tailed) with the state-of-the-art EULA

analyzer. Significant improvements, compared to the EULA analyzer, are shown with + while significant degradations are shown
with ○.

Algorithm
Accuracy
% correct

TPR
(TP/TP+FN)

FPR
(FP/FP+TN) AUC Training Time

seconds
Testing Time

seconds

AdaBoostM1 73.82(5.79) ● 0.72(0.08) 0.24(0.09) 0.78(0.04) ● 3.55(0.28) 0.00(0.01)

DecisionStump 68.82(11.11) 0.54(0.16) 0.16(0.19) 0.69(0.11) 0.33(0.08) 0.00(0.00)

HyperPipes 76.47(7.59) ● 0.91(0.14) 0.38(0.19) 0.90(0.07) ● 0.04(0.01) 0.07(0.09)

IBk 77.94(5.59) ● 0.71(0.07) 0.15(0.10) 0.78(0.06) ● 0.04(0.01) 0.13(0.02)

J48 73.24(10.23) ● 0.72(0.16) 0.26(0.18) 0.73(0.10) ● 1.29(0.23) 0.00(0.01)

JRip 71.18(5.33) ● 0.71(0.14) 0.29(0.12) 0.72(0.07) ● 2.02(0.23) 0.00(0.00)

KStar 59.71(4.17) ●○ 0.96(0.03) 0.77(0.09) 0.68(0.07) ● 0.00(0.00) 9.20(0.42)

NaiveBayes 79.41(9.80) ● 0.91(0.09) 0.32(0.17) 0.80(0.10) ● 0.31(0.02) 0.11(0.05)

NaiveBayesNominal 87.94(6.42) ●+ 0.88(0.11) 0.12(0.11) 0.93(0.06) ● 0.03(0.01) 0.00(0.01)

PART 72.65(10.74) ● 0.72(0.15) 0.26(0.15) 0.72(0.11) ● 2.41(2.15) 0.00(0.01)

RandomForest 75.29(7.10) ● 0.79(0.09) 0.28(0.09) 0.83(0.08) ● 3.64(0.20) 0.00(0.00)

RBFNetwork 77.35(7.73) ● 0.75(0.12) 0.21(0.13) 0.78(0.09) ● 1.46(0.19) 0.17(0.02)

Ridor 67.65(11.35) 0.63(0.14) 0.28(0.13) 0.68(0.11) 0.87(0.11) 0.00(0.01)

SMO 83.53(3.97) ●+ 0.78(0.08) 0.11(0.08) 0.84(0.04) ● 0.25(0.08) 0.00(0.00)

VotedPerceptron 81.47(6.66) ● 0.85(0.13) 0.22(0.10) 0.87(0.07) ● 0.04(0.01) 0.02(0.01)

ZeroR (baseline) 50.00(0.00) 1.00(0.00) 1.00(0.00) 0.50(0.00) 0.00(0.01) 0.00(0.00)

EULA analyzer 72.7 (3.86) N/A N/A N/A N/A N/A

