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Abstract 

The amount of spyware increases rapidly over the 
Internet and it is usually hard for the average user to know 
if a software application hosts spyware. This paper 
investigates the hypothesis that it is possible to detect from 
the End User License Agreement (EULA) whether its 
associated software hosts spyware or not. We generated a 
data set by collecting 100 applications with EULAs and 
classifying each EULA as either good or bad. An 
experiment was conducted, in which 15 popular default-
configured mining algorithms were applied on the data set. 
The results show that 13 algorithms are significantly better 
than random guessing, thus we conclude that the 
hypothesis can be accepted. Moreover, 2 algorithms also 
perform significantly better than the current state-of-the-
art EULA analysis method. Based on these results, we 
present a novel tool that can be used to prevent the 
installation of spyware.   

1. Introduction 

The occurrence of spyware in user-oriented applications 
widely available over the Internet has become more and 
more commonplace during recent years. From a user 
perspective, spyware is inherently bad since it often 
degrades computer performance and stability, and violates 
the users’ right to privacy. Due to that spyware typically is 
difficult to remove once it has entered a system and 
because current protection mechanisms can at best 
immunize spyware components, the need for new and more 
efficient spyware protection measures is accentuated. 
Ideally, countermeasures should not only remove unwanted 
software, but also prevent spyware from entering 
computers thus stopping any damage before it can actually 
occur. In this study we try to take advantage of the fact 
that, contrary to that of the creators of malware like viruses 
and worms, the vendors of spyware-hosting applications 
usually try to pose their software as legitimate. There are 
typically two objectives that counteract for these vendors in 
that they want users to download and install applications 
that covertly install spyware but without any legal 
consequences for the vendor. The most common solution 
seems to be to mention in the End User License Agreement 
(EULA) that spyware will indeed be installed but to give 

this information in a way most users find very hard to 
understand and time consuming to read. Not to mention 
that many EULAs contain thousands of words and even the 
EULAs of legitimate software could be hard to interpret for 
regular users due to the extensive use of legal terms. We 
therefore address the spyware problem by mining EULAs 
of both legitimate software and spyware-hosting 
applications looking for patterns in order to determine if it 
is possible to detect from the EULA whether the associated 
software hosts spyware or not. A data mining approach is 
in essence ideal for this problem since it can be used to sift 
through large amounts of data, in this case large text 
documents, to extract relevant information, e.g., 
combinations of words or phrases that are predominantly 
used in spyware EULAs. This paper is organized as 
follows. In the next section we present the problem domain 
and review the different existing definitions of spyware. 
Section 3 then reviews related work and the subsequent 
section describes the data gathering process, the experiment 
and the obtained results. In Section 5 we discuss some 
consequences of the results and present a novel tool for 
preventing spyware from being covertly installed and 
finally, we draw conclusions and give pointers to future 
work in Section 6. 

2. Spyware 

Spyware exists because information has value and is 
most often bundled as a hidden component of popular and 
free software widely available for download [13]. Some 
common examples of applications hosting spyware are file-
sharing tools and instant messaging clients. Spyware is 
typically designed to collect user information usable for 
marketing campaigns, e.g., via toolbars, pop-up windows 
and spam E-mail messaging. Amazingly, close to 88% of 
consumer PCs was found to be infected by spyware and an 
average of 20 instances of spyware was found for every 
1000th enterprise computer scanned in 2006 [34]. One 
report claims that the spyware industry earned over $2 
billion distributing and installing software that monitored 
and reported on its victims in 2004 [35]. The anti-spyware 
industry, on the other hand, “only” earned an estimated 
$100 million the same year although its revenue is 
projected to reach $1.2 billion by 2010. 



2.1 Definition 

In general terms, spyware can be defined as a category 
of software that collects personal information about users 
without their informed consent [13]. Although, it has 
proven difficult to agree on a more formal and precise 
definition of spyware, it is clear that such software can be 
conceptually placed between ordinary (or legitimate) 
software and malicious software (malware) [24]. In 
contrast to spyware, the definition of malware and its 
subclasses (e.g., virus programs and worms) has proven 
more successful. One reason is that there is a distinct 
difference between legitimate software and its malicious 
(and illegitimate) counterpart [20]. Typically, such a 
difference cannot be found between ordinary software and 
spyware programs. The latter category is usually covertly 
bundled with seemingly “ordinary and legitimate” software 
and has a hidden functionality, which may be to, e.g., 
monitor Web surfing, display messages on the screen, and 
collect personal details about users and programs. The 
difficulty in making a clear distinction between legitimate 
and illegitimate software is manifested mainly within the 
anti-spyware industry. This has resulted in vast numbers of 
computer users experiencing loss of control over personal 
information, decreased computer performance and stability, 
and circumvented system integrity [15][16][23]. 

2.2 Countermeasures 

Anti-virus techniques have traditionally been the most 
frequently used type of countermeasure against spyware, 
even though these techniques were originally designed for 
a radically different problem, i.e., separating illegitimate 
virus programs from legitimate software [22]. Due to the 
inability of anti-virus programs to properly define, discern 
and remove spyware, the threat of spyware is more 
considerable than ever. As a conclusion, instead of relying 
on techniques not originally designed for the versatility and 
ambiguity of the spyware problem we need new 
countermeasures that properly detect the particular 
characteristics of the commercially-motivated spyware. 
Adaware is perhaps the most popular specialized anti-
spyware product [29]. It can be used to scan a system for 
spyware and returns the number of hits (occurrences of 
spyware) found, sorted into a number of categories, e.g., 
tracking cookies and modem hijackers. However, whereas 
Adaware and most anti-virus products are reactive, thus 
trying to remove something which has already infected a 
system, we examine the possibility of a preventive 
approach that detects the presence of spyware by 
examining the EULA, even before the application is 
installed.  

2.3 The state-of-the-art 

One way of detecting spyware could be to analyze its 
EULA. On this topic, there are a few applications available 
today. In fact, we have found one web based tool for 
analyzing the content of a EULA, namely the EULA 
analyzer [12]. The user pastes the content of a EULA into a 
text field on the EULA analyzer web page and presses 
submit in order to get the results..The analyzer sifts through 
the EULA text and assigns a credit point that indicates the 
likelihood of spyware inclusion in the particular application 
and also shows some statistics about the number of words, 
phrases, and the level of language complexity. However, it 
is important to notice that the credit point merely 
corresponds to the number of spyware related keywords or 
phrases that are found, i.e. a word count; there is no 
automatic learning of new patterns, there is no way to 
represent, e.g., non-trivial rules, and there is no software 
classification. A low credit point indicates legitimate 
software and high points indicates spyware.  However, the 
credit limit that separates bad EULAs from good EULAs is 
dependent on the particular set of submitted EULAs and 
has to be manually found by the user, e.g., using a linear 
search, in order to be able to use the EULA analyzer for 
classifying software application based on their 
corresponding EULAs. Ultimately this means that the 
accuracy of this product in deciding whether application is 
good or bad depends on the user. Another product, that is 
very similar with regard to the EULA analysis technique, is 
EULAlyzer [36]. Unlike the web based EULA analyzer, 
EULAlyzer is an installable application. Unfortunately 
both state-of-the-art tools are proprietary and thus it is 
impossible to know for sure which techniques or 
algorithms are used however, the tool descriptions indicate 
that they rely on a static set of keywords. 

3. Related Work 

Within the research areas of information security and 
privacy, several studies on spyware have been presented. 
Sariou and Gribble introduce methods for measuring 
spyware activity in heavily trafficked networks [13]. The 
occurrence of spyware in popular file-sharing clients as 
well as the effects thereof has been outlined in a suit of 
papers. For instance, there are some initiatives exploring 
the purposes behind spyware as well as its commercial 
impact [17][18]. Fox investigates how user behavior is 
affected by the occurrence of spyware in home and work 
computers [19]. Robertson classifies five major classes of 
spyware and investigates how these classes affect computer 
usage [20]. Numerous white papers, technical reports, and 
surveys on various aspects of spyware are available 
[21][22][23]. McCardle presents an in depth analysis of 
spyware capabilities and discusses various technical means 
of protecting operating systems [22]. Townsend elaborates 



on how spyware infected applications may violate 
corporate security policies and procedures [23]. Good et al. 
investigate the fact that users agree to accept spyware as 
part of a software bundle as a cost associated with gaining 
the functionality they desire and demonstrate that interface 
design can be a significant factor in eliciting informed 
consent to software installation [21]. Notably, very few 
initiatives on spyware countermeasures exist, although 
some that have been outlined include, e.g., anti-virus 
techniques [23] or user participation [24]. We have not 
been able to identify any studies which apply data mining 
algorithms on EULAs to find patterns that could be used to 
distinguish between good and bad software 
applications..Much work has been done in the related area 
of E-mail filtering, i.e., the classification of E-mail 
messages as legitimate or spam depending on the subject, 
body or other properties, using different mining algorithms, 
e.g.; rule learners, support vector machines, instance-based 
learners, decision trees, and stacking [5][6][7][8][9]. A 
more recent study investigates the performance of random 
forests for the same type of problem claiming that this 
algorithm outperforms some of the earlier mentioned 
algorithms on several problems [10].Yet another study 
applies an unsupervised feature selection algorithm and 
clustering to classify unlabeled documents [11]. 

4. Experiments 

Our hypothesis is that it is possible to detect from the 
EULA whether the associated software contains spyware or 
not, i.e., if it should be classified as good or bad. To test 
this hypothesis we gather examples of good and bad 
software applications and their corresponding EULAs and 
generate a data set of instances represented by pairs of 
EULAs and application classifications. We then mine the 
generated data set using a set of popular algorithms to 
investigate whether the hypothesis should be rejected or 
accepted. 

4.1 Data representation 

Since the stated classification problem is quite 
analogous to that of classifying E-mail messages as either 
spam or legitimate, we choose to adopt a simple, yet 
successful way of representing the data from that area of 
research; we represent each EULA using a word frequency 
vector, thus the data instances are essentially represented 
by pairs of word frequency vectors and classes. 

4.2 Data gathering process  and classification 

In order to get the best settings for testing the 
hypothesis the following search strategy was adopted when 

collecting applications to include in the data set; the 
applications should be easily downloaded from the Internet 
and they should present the user with a EULA that could be 
copied and pasted as ASCII text. The good software 
instances were collected by downloading the 50 most 
popular Windows applications from Download.com [25] 
and the bad applications were collected from 
SpywareGuide.com [26]. After the installation of each 
application the operating system was scanned with 
Adaware to verify the classification  [29]. This verification 
showed that all applications associated with bad EULAs 
were detected by Adware, while no hits were found for the 
legitimate applications. 

4.3 Data set format and pre-processing 

We stored the data set using the Weka ARFF format in 
which each word frequency is represented by a numeric 
attribute and the class is represented by one nominal 
attribute (with two possible values; good or bad) [4]. The 
data set features 50 instances classified as good and 50 
instances classified as bad, thus we did not have to deal 
with problems associated with a skewed class distribution. 
However, we believe that an equal class distribution will be 
difficult to achieve when creating larger data sets due to the 
simple fact that it is much harder to find bad applications 
and their corresponding EULAs. It could of course be 
argued that one should try to achieve a distribution that is 
close to the real-world distribution. Even though it is 
problematic to estimate this distribution it is commonly 
perceived that the amount of good software greatly 
outnumbers the amount of bad software. The word 
frequency vector was generated using Weka’s 
StringToWordVector filter with the settings adjusted as in 
the study by Frank and Bouckaert [14], thus the TF IDF 
weight was applied, all characters were converted to 
lowercase, only alphabetic tokens were considered, stop 
words and hapax legomena were removed. We furthermore 
employed a form of feature selection in that we used the 
Weka default setting of storing a maximum of 1000 words 
per class to generate the data set. 

4.4 Algorithms and settings 

The main objective of this paper is not to determine the 
most suitable miner for the studied problem, which would 
most certainly involve extensive parameter tuning of each 
featured algorithm, but rather to determine if the hypothesis 
stated in the beginning of Section 4 should be accepted or 
rejected. To maximize the probability of finding a pattern, 
if indeed such a pattern exists at all, we chose to include a 
diverse population of 15 algorithms from different learning 
categories (e.g. functions, lazy learners, Bayesian learners, 
trees, meta-learners, rules, etc.). We used algorithm 



implementations from Weka version 3.5.5 and applied the 
default configuration for each algorithm.  

4.5 Experimental setup 

The primary priority, in setting up the experiment, was 
that we needed to be able to test our hypothesis. We 
therefore needed to assess the accuracy of our candidates. 
Since we had a limited amount of data for training and 
testing (100 instances), we chose to perform repeated 
holdout tests to estimate prediction accuracy using two 
metrics; accuracy (correctly classified instances divided by 
total number of classified instances), and the area under the 
ROC curve (AUC). These metrics are by far the most 
widely used although one should keep in mind that there 
are issues both regarding accuracy and AUC as with most 
other metrics [2][29]. We note that many studies have 
shown the applicability of AUC for a wide range of data 
mining and machine learning problems, cf. Provost and 
Fawcett [3]. Intuitively, if our hypothesis holds, it should 
be possible to generate a classifier that should perform 
better on average than randomly guessing the class. Hence, 
we formulate the hypothesis test as follows; if anyone of 
the featured algorithms is significantly better than a random 
guesser on the featured data set for both accuracy and AUC 
we accept the hypothesis, otherwise we reject it. To 
investigate which algorithms performed significantly better 
than a random guesser we used repeated holdouts and the 
corrected paired t- test, which is a common combination 
used in similar applications [31]. We calculated the mean 
and standard deviation of 10 repeated holdouts with a 66% 
training set / 34% test set randomized split for each of the 
following metrics; accuracy (percent correct), AUC 
(including true positives rate and false positives rate), 
training time, and testing time. We used the corrected 
paired t-test (confidence 0.05, two-tailed) to compare each 
featured algorithm with a Weka baseline classifier called 
ZeroR, which classifies all instances as belonging to the 
same class, thus it shares the same results for both accuracy 
and AUC with a random guesser for a Boolean problem. 
We also compared the performance, in terms of accuracy, 
of the 15 featured algorithms with the state-of-the-art 
EULA analyzer tool according to the following procedure; 
we generated ten folds for testing by sampling, without 
replacement, 17 bad instances and 17 good instances for 
each fold (since the holdout procedure used to evaluate the 
15 algorithms uses a 66/34 split) from the collection of 
EULAs. Obviously we did not generate any training folds 
since the EULA analyzer is a static model (in the sense that 
it does not learn). Since the EULA analyzer works by 
looking for keywords in plain text we used text document 
instances instead of word vector representations (which 
have been subjected to feature selection, etc.), thus it is 
important to keep this difference in mind when comparing 
the results later. More importantly, one should recognize 

that in a real-world scenario, the accuracy of EULA 
analyzer is dependent of the interpretation capabilities of 
the user concerning the resulting credit score for a 
particular EULA. For our experiment we used the optimal 
credit score cut-point which means that the published 
accuracy results of the EULA analyzer are likely to be 
higher than what can be achieved by the average user of the 
product. The process of submitting a EULA document to 
the analyzer and getting a classification is described in 
Section 2.3. We also emphasize that, since the testing folds 
for the EULA analyzer and the testing folds for the 
algorithms are not identical, we used a corrected non-
paired t-test (confidence 0.05, two-tailed) for this part of 
the experiment. The objective was to find out for which 
algorithms there are significant improvements or 
degradations in performance compared to the state-of-the-
art, however, as clearly mentioned earlier, we did not try to 
tune any of the learning algorithms to maximize 
performance (i.e., increasing the probability of finding 
significant improvements over the state-of-the-art). A 
secondary priority was to measure performance in terms of 
training and testing time. These priorities coincide with the 
objective of investigating if indeed a tool can be designed 
that builds upon the classification method presented in this 
paper to prevent the covert installation of spyware. 

4.6 Experimental results 

We present the results concerning the area under the 
ROC curve (AUC) and the accuracy in Table 1. It is clear 
that our hypothesis should be accepted since at least one 
classifier achieves a significant improvement, with regard 
to both AUC and accuracy, in comparison to the baseline 
classifier. There are, in fact, significant improvements of 
both accuracy and AUC for 13 out of 15 featured 
algorithms, excluding DecisionStump and Ridor. 
Moreover, when comparing the accuracy of the state-of-
the-art EULA analysis method (the EULA analyzer) with 
the accuracy achieved by the featured algorithms it is also 
shown that 10 algorithms outperform this method, at least 
for the studied data set. However, only the improvements 
of Multinomial Naive Bayes and Support Vector Machines 
are statistically significant. For one algorithm, KStar, the 
accuracy is significantly degraded in comparison to the 
state-of-the-art. The high false positive rate of Kstar (0.77) 
might be alarming. However, it is important to recognize 
that our study merely features 100 instances. As more data 
is gathered for future work our hypothesis is that the 
performance will increase even for the worst performing 
algorithms. We further observe that Multinomial Naive 
Bayes is the best performing algorithm on this data set, 
achieving the best AUC and accuracy followed by Support 
Vector Machines, and Voted Perceptron. Support Vector 
Machines has the slowest training time out of these three 
candidates; however the testing time does not differ 



significantly between them. Only KStar stands out, with 
regards to the measured testing time, with a mean result of 
approximately 10 seconds, while the other algorithms 
achieve results close to 0 seconds. Regarding training time, 
there is no algorithm needing more than 5 seconds and, in 
particular, HyperPipes, IBk, KStar, Multinomial Naive 
Bayes, and VotedPerceptron needs close to 0 seconds. 
Exactly what words the best behaving algorithms used for 
distinguishing between good and bad software EULAs 
could not be easily grasped because of their implicit 
representation of the learned classifiers. However, in our 
limited data set of 100 instances,  tree and rule based 
algorithms identified single words such as “search” or 
“advertisements” for distinguishing between good and bad 
EULAs.  

5. Discussion 

The studied problem in general and the results from the 
conducted experiments in particular, raises several 
interesting issues which will now be addressed. We first 
bring forth some technical aspects related to the featured 
algorithms and their performance on EULA classification, 
and continue discussing the importance of automatic 
EULA analysis. This is followed by a proposal of a novel 
software tool for spyware prevention. Finally, we discuss 
what can be referred to as an arms race between E-mail 
spammers, spyware and malware vendors on one side and 
the countermeasure application developers on the other 
side. 

5.1 Algorithm comparison 

The results pertaining to the performance of the top 
three candidates for solving the studied problem seem to be 
well-aligned with results in related work; Multinomial 
Naive Bayes is known to perform very well on large 
vocabularies, i.e., when mining text documents that contain 
a large number of words [27]. However, it is usually 
acknowledged that Support Vector Machines outperforms 
Multinomial Naive Bayes on many problems, cf. [28]. Still, 
it should be considered that Multinomial Naive Bayes has 
no parameters that need to be tuned for a particular 
problem, while Support Vector Machines implementation 
does have a large number of configuration parameters, for 
instance the complexity constant, the choice of kernel, and 
the specific properties of the selected kernel. This would 
favor the Multinomial Naive Bayes algorithm in this study 
since only default configurations are used. 

5.2 The relevance of EULA analysis 

It is typically very hard for the average user to know if 
an application hosts spyware or not. The obvious way to 
gain such knowledge is to read the EULA of the 
application about to be installed. The distributors of 
software which include spyware programs specify the 
occurrence thereof in the EULAs that precede installation 
to avoid legal repercussions. Since users often find EULAs 
too lengthy to read and too complicated to understand, they 
neglect to inspect the EULAs and instead accept them and 
install the application unaware of the hidden spyware 
programs bound to infiltrate their operating systems [32]. 
As an example, one software vendor offered $1000 in prize 
money to the first person that contacts the company after 
reading the statement included in the EULA [33]. It took 
more than four months and over 3,000 downloads of the 
software before the prize money was claimed. A EULA for 
an application which is classified as good typically contains 
several thousand words [33]. However, EULAs for 
applications classified as bad are usually larger and more 
complex (as they often are intentionally written in a 
perplex way) and it is not uncommon for them to include 
warranties that minimize the vendors’ responsibility and 
limit the user’s access to the original code, e.g., by 
specifying that it is prohibited to reverse engineer the 
application or to eavesdrop on network packets sent from it 
[21]. It is evident that many users would benefit from using 
an automated tool, which can assist them in analyzing the 
contents of a EULA and predicting if the related software 
hosts spyware or not.  

5.3 Towards a tool for spyware prevention 

The EULA classification method outlined in this paper 
can be implemented as a software tool for spyware 
prevention. This tool should be designed as a middleware 
that operates between the operating system and the 
application bound to be installed. The tool should be 
executed as a background process set to identify and 
analyze a EULA as soon as it appears on the screen during 
an installation. Based on the result from the EULA 
analysis, the tool will provide the user with 
recommendations about the classification of the 
application. This allows the tool to assist users in making 
informed decisions about the installation of software 
without forcing them to read (and understand) the lengthy 
and intricate EULAs. Should a EULA be classified as bad, 
a user can take appropriate actions against it, e.g., by 
disagreeing with the EULA and exiting the installation 
process. It should however be noted that any tool based on 
our method should not be used in isolation, but in 
combination with other approaches, e.g., anti-spyware 
software (e.g. [29]). A similar application already exists, 
however, the significant differences lie in our use of data 



mining algorithms (which has been shown in this study to 
be more accurate than keyword spotting services) on the 
one hand and the visualization of which parts of the EULA 
which significantly contributed to its classification as either 
good or bad software [36]. This visualization could, for 
instance, be implemented by using extracted rules or 
generated trees. If proven efficient, the tool should also be 
applicable in other settings, for instance in the case of 
privacy policies for Web sites and for the combination of 
privacy policies and EULAs. An interesting application 
would be a Web browser that automatically classifies 
privacy policies on Web sites visited and informs the user 
about the privacy status of those sites.  

5.4 An arms race 

Historically, there have been arms races between the 
distributors of spam e-mail messages and malware 
programs and those combating them. So far, there are some 
resemblances between this phenomenon and that of the 
spyware industry, for instance with respect to the 
similarities in design between anti-spyware and anti-
malware applications. However, whereas malware and 
spam distributors really do not need to care for legal 
matters in licenses, etc., spyware vendors do. Spyware can 
only exist if their host applications are freely downloaded 
and installed by users wanting to gain access to the 
software host. For this purpose the EULAs are needed by 
the spyware industry. Moreover, this substantiates the 
significance of EULAs in the enhancement of user privacy. 
If spyware components were to be included without any 
references thereof in the EULA, the vendors of the host 
application face great risk of being brought to justice. 
Furthermore, the EULAs need to be constructed in a way 
so that they are valid and hold in court. We take advantage 
of this particular fact when mining the EULAs for patterns 
that separate good applications from bad.  

6. Conclusions and Future Work 

We investigate the possibility to predict whether a 
software application is, or hosts, spyware on the basis of its 
End User License Agreement (EULA). We conduct this 
investigation by collecting and analyzing 100 software 
applications and their corresponding EULAs by installing 
each application to determine and scanning the operating 
system with anti-spyware software, if the particular 
application is bad or good, i.e., if it hosts or indeed is 
classified as spyware or not. Each EULA text document is 
transformed to a word frequency vector and, together with 
the classification; it constitutes an instance that can be used 
for training and testing classifiers. The generated data set, 
which includes 100 classified EULA instances is available 
for downloading [30]. We conduct an empirical experiment 

in which 15 mining algorithms, 1 baseline classifier, and a 
state-of-the-art EULA analysis tool are applied on the data 
set. The results reveal that 13 out of the 15 algorithms 
significantly outperformed the baseline classifier in terms 
of both AUC and accuracy. Moreover, 2 algorithms also 
significantly outperform the state-of-the-art EULA analysis 
method, the EULA analyzer in terms of predictive 
accuracy. Most notably, the Multinomial Naive Bayes, 
Support Vector Machines, and Voted Perceptron 
algorithms achieve the highest AUC and accuracy scores 
and these three algorithms also share a low false positives 
rate. Our main conclusion is that the results strongly 
support our hypothesis that EULAs can indeed be used as a 
basis for classifying the corresponding software as good or 
bad. Based on this conclusion and the low training and 
testing times of most algorithms, we also conclude that it 
would be quite possible to use the EULA classification 
method in a spyware prevention tool that classifies the 
EULA when it is shown to a user during an application 
installation. The result from such an analysis gives the user 
a recommendation about the legitimacy of the application 
before the installation continues as well as some type of 
visualization of what information in the EULA that 
triggered this classification.  

As future work, there is intent to implement and release 
such a software tool. Another interesting direction for 
future work is to collect data enough for a larger version of 
the empirical experiment conducted in this study in order 
for us to verify our main hypothesis and the results 
obtained. Further, it would be interesting to tune the 
parameters of the investigated algorithms included in the 
proposed extended experiment, cf. Lavesson and 
Davidsson [1].  Such an experiment could also involve 
more mining and feature selection algorithms, 
computational linguistic methods, other EULA text 
document representation except for word frequency 
vectors, as well as an analysis and visualization of words 
that trigger classification into legitimate software and 
spyware, respectively. Moreover, it might be possible to 
extend the domains of the tool to also include privacy 
policies of Web sites visited. 
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8. Appendix 

Table  1. Predictive accuracies and area under the ROC curve results for 15 algorithms compared using a corrected paired t-test 
(confidence 0.05, two-tailed) with a baseline classifier which has the same performance as a random guesser. Significant 

improvements, compared to the baseline classifier, are shown with ●. True positives rates (TPR), false positives rates (FPR), 
training times, and testing times are also presented for each algorithm. All results are presented with the mean and standard 
deviation of 10 runs of holdout using a 66% training set / 34% test set randomized split. All algorithms are also compared, in 
terms of accuracy, using a regular, non-paired corrected t-test (confidence 0.05, two-tailed) with the state-of-the-art EULA 

analyzer. Significant improvements, compared to the EULA analyzer, are shown with + while significant degradations are shown 
with ○. 

Algorithm 
Accuracy 
% correct 

TPR 
(TP/TP+FN) 

FPR 
(FP/FP+TN) AUC Training Time 

seconds 
Testing Time

seconds 

AdaBoostM1 73.82(5.79) ● 0.72(0.08) 0.24(0.09) 0.78(0.04) ● 3.55(0.28) 0.00(0.01) 

DecisionStump 68.82(11.11) 0.54(0.16) 0.16(0.19) 0.69(0.11) 0.33(0.08) 0.00(0.00) 

HyperPipes 76.47(7.59) ● 0.91(0.14) 0.38(0.19) 0.90(0.07) ● 0.04(0.01) 0.07(0.09) 

IBk 77.94(5.59) ● 0.71(0.07) 0.15(0.10) 0.78(0.06) ● 0.04(0.01) 0.13(0.02) 

J48 73.24(10.23) ● 0.72(0.16) 0.26(0.18) 0.73(0.10) ● 1.29(0.23) 0.00(0.01) 

JRip 71.18(5.33) ● 0.71(0.14) 0.29(0.12) 0.72(0.07) ● 2.02(0.23) 0.00(0.00) 

KStar 59.71(4.17) ●○ 0.96(0.03) 0.77(0.09) 0.68(0.07) ● 0.00(0.00) 9.20(0.42) 

NaiveBayes 79.41(9.80) ● 0.91(0.09) 0.32(0.17) 0.80(0.10) ● 0.31(0.02) 0.11(0.05) 

NaiveBayesNominal 87.94(6.42) ●+ 0.88(0.11) 0.12(0.11) 0.93(0.06) ● 0.03(0.01) 0.00(0.01) 

PART 72.65(10.74) ● 0.72(0.15) 0.26(0.15) 0.72(0.11) ● 2.41(2.15) 0.00(0.01) 

RandomForest 75.29(7.10) ● 0.79(0.09) 0.28(0.09) 0.83(0.08) ● 3.64(0.20) 0.00(0.00) 

RBFNetwork 77.35(7.73) ● 0.75(0.12) 0.21(0.13) 0.78(0.09) ● 1.46(0.19) 0.17(0.02) 

Ridor 67.65(11.35) 0.63(0.14) 0.28(0.13) 0.68(0.11) 0.87(0.11) 0.00(0.01) 

SMO 83.53(3.97) ●+ 0.78(0.08) 0.11(0.08) 0.84(0.04) ● 0.25(0.08) 0.00(0.00) 

VotedPerceptron 81.47(6.66) ● 0.85(0.13) 0.22(0.10) 0.87(0.07) ● 0.04(0.01) 0.02(0.01) 

ZeroR (baseline) 50.00(0.00) 1.00(0.00) 1.00(0.00) 0.50(0.00) 0.00(0.01) 0.00(0.00) 

EULA analyzer 72.7 (3.86) N/A N/A N/A N/A N/A 

 


