

Copyright © IEEE.

Citation for the published paper:

This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of BTH's products or services Internal or

personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for

resale or redistribution must be obtained from the IEEE by sending a blank email message to

pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws

protecting it.

Using Faults-Slip-Through Metric As A Predictor of
Fault-Proneness

Wasif Afzal
Blekinge Institute of Technology

PO Box 520, SE-372 25 Ronneby
Sweden

wasif.afzal@bth.se

ABSTRACT
Background: The majority of software faults are present in small
number of modules, therefore accurate prediction of fault-prone
modules helps improve software quality by focusing testing ef-
forts on a subset of modules. Aims: This paper evaluates the use
of the faults-slip-through (FST) metric as a potential predictor of
fault-prone modules. Rather than predicting the fault-prone mod-
ules for the complete test phase, the prediction is done at the spe-
cific test levels of integration and system test. Method: We ap-
plied eight classification techniques, to the task of identifying fault-
prone modules, representing a variety of approaches, including a
standard statistical technique for classification (logistic regression),
tree-structured classifiers (C4.5 and random forests), a Bayesian
technique (Naïve Bayes), machine-learning techniques (support vec-
tor machines and back-propagation artificial neural networks) and
search-based techniques (genetic programming and artificial im-
mune recognition systems) on FST data collected from two large
industrial projects from the telecommunication domain. Results:
Using area under the receiver operating characteristic (ROC) curve
and the location of (PF, PD) pairs in the ROC space, the faults-
slip-through metric showed impressive results with the majority of
the techniques for predicting fault-prone modules at both integra-
tion and system test levels. There were, however, no statistically
significant differences between the performance of different tech-
niques based on AUC, even though certain techniques were more
consistent in the classification performance at the two test levels.
Conclusions: We can conclude that the faults-slip-through metric
is a potentially strong predictor of fault-proneness at integration
and system test levels. The faults-slip-through measurements inter-
act in ways that is conveniently accounted for by majority of the
data mining techniques.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance measures,
Process metrics; D.2.9 [Software Engineering]: Management—
Software quality assurance (SQA)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Measurement, classification, reliability

1. INTRODUCTION
The number of faults in a software module or in a particular

release of a software represents quantitative measures of software
quality. A fault prediction model uses historic software quality data
in the form of metrics (including software fault data) to predict the
number of software faults in a module or a release [28, 34]. Auto-
matic prediction of fault-prone modules can be of immense value
for a software testing team especially as we know that 20% of a
software system is responsible for 80% of its errors, costs and re-
work [3]. Some of the benefits of using software fault prediction
include: (a) software quality can be improved by focussing on a
subset of software modules. This in turn can reduce software fail-
ures and hence the maintenance costs. (b) Refactoring candidates
can be identified for reliability enhancement [12]. (c) Testing ac-
tivities can be better planned.

While there is a plethora of studies on software quality classifi-
cation (Section 2), none of them focus on identifying fault-prone
modules at different test levels (such as unit, function, integration
and system). Secondly, due to lack of quantification of quality at
test levels, all the faults are assumed to be found at the right level
which is not the case with many projects. This leads us to the con-
cept of Faults-Slip-Through (FST) [15].

The Faults-Slip-Through (FST) concept is used for determining
whether or not a fault slipped through the phase where it should
have been found. The term phase refers to any phase in a typical
software development life cycle. However the most interesting and
industry-supported applications of FST measurement are during
testing. This is because a defined testing strategy within any orga-
nization implicitly classifies faults whereby certain types of faults
might be targeted by certain strategies. FST is essentially a fault
classification approach and focuses on when it is cost-effective to
find each fault. Depending on the FST numbers for each test levels
(e.g. unit, function, integration and system), improvement poten-
tials can be determined by calculating the difference between the
cost of faults in relation to what the fault cost would have been if
none of them would have slipped through the level where they were
supposed to be found. Thus, FST is a way to provide quantified de-
cision support to reduce the effort spent on rework. This reduction
in effort is due to finding faults earlier in a cost-effective way.

One way to visualize FST for different software testing phases is
using an FST matrix (Figure 1).

The columns in Figure 1 represent the phases in which the faults
were found (Found During), whereas the rows represent the phases
where the faults should have been found (Expected fault identifi-
cation phase). For example 56 of the faults that were found in

Report Name: Fault Slip Through Analysis Project: FST M570 Start Date: 2009-06-22 End Date: 2009-12-13 Customer Delivery: 2009-12-22

FST Measurement Tool

FST Matrix

Found During:

Expected fault

identification phase: Review Unit Test Function Test Integration Test System Test Acceptance Test

Customer

Identified Total

Output

Slippage%

Review 15 25 86 25 30 2 1 184 47

Unit Test 19 56 15 19 1 0 110 25

Function Test 33 4 4 0 0 41 2

Integration Test 8 11 0 0 19 3

System Test 4 0 1 5 0

Acceptence Test 1 0 1 0

Total 15 44 175 52 68 4 2 360

Input Slippage % 0 57 81 85 94 75 100 0

Review Unit Test Function Test Integration Test System Test Acceptance Test Customer

Identified

Total

Incorrect data 76 1 8 25 1 0 0 0 111 24%

Review

Unit Test

Function Test

Integration Test

System Test

Acceptance Test

Customer Identified

System Design Review, Module Design Review, Code Review

HW Development, System Simulation, Module Test

Function Test, Interoperability development test

Integration of modules to functions, Integration Test

System Test, IOT, Delivery Test

Type Approval

Customization, Customer Acceptance, Operator Identified, Customer Identified

Figure 1: An example FST matrix.

function testing should have been found during unit testing.
In this paper we aim at predicting the fault-prone software mod-

ules before integration and system test levels based on FST metric.
The choice of these test levels is because they provide the last safety
net before the software is released for customer use. In particular,
we make use of number of faults slipping from unit and function
test levels to predict the fault-prone modules at the integration and
system test levels. We essentially seek an answer to the following
research question:

RQ: How can we use FST to predict fault prone software modules
before integration and system test and what is the resulting
prediction performance?

The expectation is that answering this research question would
provide valuable decision support for the project and test managers.
This decision support relates to reduction in the number of faults
slipping through to the end customer (lower maintenance and con-
tended customers). We have used a number of classification tech-
niques (logistic regression, C4.5, random forests, naïve Bayes, sup-
port vector machines, artificial neural networks, genetic program-
ming and artificial immune recognition systems) to the task of clas-
sifying the quality of modules. We used FST and the associated
affected modules’ data from two large industrial projects from the
telecommunication domain. The results show that FST data is in-
deed a strong predictor of quality of modules while majority of the
classifiers show an appealing degree of classification performance.
The main contributions of our paper are threefold: (a) It evaluates
the use of FST metric as a potential predictor of fault-proneness.
(b) It quantifies quality at specific test levels, i.e., integration and
system. (c) It evaluates a range of classification techniques using
trust-worthy evaluation criteria.

The remainder of the paper is organized as follows. Section 2
summarizes the related work. Section 3 describes the research con-
text, including the variables and the data collection method. A brief
on different classification techniques is given in Section 4. Sec-
tion 5 gives an overview of how the performances of different tech-
niques are evaluated. Results are given in Section 6 and are dis-
cussed in Section 7. Validity evaluation and conclusions makeup
Sections 8 and 9 respectively.

2. RELATED WORK
There have been a number of techniques used for software qual-

ity modeling (classifying fault-proneness or predicting number of
software faults) based on different sets of metrics. The applica-
ble techniques include statistical methods, machine learning meth-
ods and mixed algorithms [14]. A number of metrics have been
used as independent variables for software quality modeling and
can broadly be classified into three categories [22]: (a) source code
measures (structural measures), (b) measures capturing the amount

of change (delta measures) and, (c) measures collected from meta
data in the repositories (process measures). Due to a large number
of studies covering software quality modeling, the below references
are more representative rather than exhaustive.

Gao and Khoshgoftaar [18] empirically evaluated eight statisti-
cal count models for software quality prediction. They showed that
with a very large number of zero response variables, the zero in-
flated and hurdle-count models are more appropriate. The study
by Yu et al. [47] used number of faults detected in earlier phases
of the development process to predict the number of faults later in
the process. They compared linear regression with a revised form
of, an earlier proposed, Remus-Zilles model. They found a strong
relationship between the number of faults during earlier phases of
development and those found later, especially with their revised
model. Khoshgoftaar et al. [27] showed that the typically used least
squares linear regression and least absolute value linear regression
do not predict software quality well when the data does not sat-
isfy the normality assumption and thus two alternative parameter
estimation procedures (relative least square and minimum relative
error) were found more suitable in this case. In [37], the discrimi-
nant analysis technique is used to classify the programs into either
fault-prone and not fault-prone based upon the uncorrelated mea-
sures of program complexity. Their technique was able to yield
less Type II errors (mistakenly classifying a fault-prone module as
fault-prone) on data sets from two commercial systems.

In [6], optimized set reduction classifications (that generates log-
ical expressions representing patterns in the data) were found to
be more accurate than multivariate logistic regression and clas-
sification trees in modeling high-risk software components. The
less optimistic results of using logistic regression are not in agree-
ment with Khoshgoftaar’s study [24] which supports using logistic
regression for software quality classification. Also the study by
Denaro et al. [16] used logistic regression to successfully classify
faults across homogeneous applications. Basili et al. [2] verified
that most of the Chidamber and Kemerer’s object-oriented metrics
are useful quality indicators for fault-prone classes. Ohlsson et al.
[38] investigated the use of metrics for release n to identify the
most fault-prone modules in release n + 1. Later, in [39], principal
component analysis and discriminant analysis was used to rank the
software modules in several groups according to fault-proneness.

Using the classification and regression trees (CART) algorithm,
and by balancing the cost of misclassification, Khoshgoftaar et al.
[25] showed that the classification-tree models based on several
product, process and execution measurements were useful in qual-
ity classification for successive software releases. Briand et al. [7]
proposed multivariate adaptive regression splines (MARS) to clas-
sify object-oriented (OO) classes as either fault-prone or not fault-
prone. MARS outclassed logistic regression with an added advan-
tage that the functional form of MARS is not known a priori. In
[36], the authors show that static code attributes like McCabe’s and

Halstead’s are valid attributes for fault prediction. It was further
shown that naive Bayes outperformed the decision tree learning
methods.

A number of studies have shown encouraging results using arti-
ficial neural networks (ANNs) as the prediction technique [23, 30].
Cai et al. [10] observed that the prediction results of ANNs show
a positive overall pattern in terms of probability distribution but
were found to be poor at quantitatively estimating the number of
software faults.

A study by Gray et al. [20] showed that neural network mod-
els show more predictive accuracy as compared with regression
based methods. The study also used a criteria-based evaluation
on conceptual requirements and concluded that not all modeling
techniques suit all types of problems. CART-LAD (least absolute
deviation) performed the best in a study by Khoshgoftaar et al. [29]
for fault prediction in a large telecommunications system in com-
parison with CART-LS (least squares), S-plus, regression tree al-
gorithm, multiple linear regression, artificial neural networks and
case-based reasoning.

Gyimothy et al. [21] used OO metrics for predicting the number
of faults in classes using logical and linear regression, decision tree
and neural network methods. They found that the results from these
methods were nearly similar. A recent study by Lessman et al. [34]
also concluded that, with respect to classification, there were no
significant differences among the top-17 of the classifiers used for
comparison in the study.

Apart from ANNs some authors have proposed using fuzzy mod-
els [42] and support vector machines [19] for software quality pre-
dictions. In the later years, interest has shifted to evolutionary and
nature-inspired computation approaches for software quality clas-
sification; examples include genetic programming [26], genetic al-
gorithm [1], artificial immune recognition systems [13] and particle
swarm optimization [11].

While it is clear that previous studies have focussed on predicting
the fault-proneness of software modules, none of them quantify the
quality of modules at different test levels. Quantification of quality
of modules at different test levels promises to provide opportuni-
ties of more focussed improvements at each test level. The current
study is unique from previous studies in two ways. Firstly the study
aims to provide indications of fault-prone modules before starting
integration and system test levels. Secondly the classification of
fault-prone modules is done by making use of faults-slip-through
(FST) data.

3. RESEARCH CONTEXT
The data used in this study comes from two large projects at a

telecommunication company that develops mobile platforms and
wireless semiconductors. The projects are aimed at developing
platforms introducing new radio access technologies written using
the C programming language. The average number of persons in-
volved in these projects is approximately 250. We have data from
106 modules from the two projects. Since a high percentage of
modules were reused in the two projects, we evaluate the fault-
proneness of 106 modules as if they are from a single project. We
use a 10-fold cross-validation to evaluate the performance of dif-
ferent techniques.

The management of these projects follow the company’s gen-
eral project model called PROPS (PROfessional Project Steering).
PROPS is based on the concepts of tollgates, milestones and check-
points to manage and control project deliverables. Tollgates repre-
sent long-term business decisions while milestones are predefined
events at the operating work level. The monitoring of these mile-
stones is an important element of the project management model.

Figure 2: Division of requirements into work packages and
modules, thereby meeting tollgates, milestones and check-
points.

The checkpoints are defined in the development process to define
the work status in a process.

At the operative work level, the software development is struc-
tured around work packages. These works packages are defined
during the project planning phase. The work packages are defined
to implement change requests or a subset of a use-case, thus the
definition of work packages is driven by the functionality to be de-
veloped. An essential feature of work packages is that it allows for
simultaneous work on different modules of the project at the same
time by multiple teams. Figure 2 gives an overview of how a given
project is divided into work packages that affects multiple mod-
ules. The division of an overall system into sub-systems in driven
by design and architectural constraints.

The prediction models in this study make use of number of faults
that should have been found at test levels prior to integration and
system test. Since these faults were cost-effective to be found at
test levels earlier than integration and system test, they are said to
have slipped-through from the earlier test levels. These earlier test
levels in our case are review, unit and function levels. The purpose
of different test levels, as defined at our subject company, is given
below:

• Review: To find faults in the feasibility of requirements, de-
sign and architecture.

• Unit: To find faults in module internal functional behavior
e.g. memory leaks.

• Function: To find faults in functional behavior involving mul-
tiple modules.

• Integration: To find configuration, merge and portability faults.

• System: To find faults in system functions, performance and
concurrency.

Some of these earlier test levels are composed of constituent test
activities that jointly make up the higher-order test levels. Follow-
ing is the division of test levels (i.e. review, unit, function, integra-
tion and system) into constituent activities at our subject organiza-
tion:

• Review: Module design review, code review.

• Unit: Hardware development, Module test.

• Function: Function test.

• Integration: Integration of modules to functions, integration
test.

• System: System test, delivery test.

We collected the fault data for different modules that slipped
from review, unit and function test levels to the integration and sys-
tem test levels. Thus we can classify the modules as being either
fault-prone or non-fault-prone at the integration and system test lev-
els based on whether a single or no fault slipped through to these
test levels from earlier levels.

This association of modules, with the levels where the faults
were to be found in them, provides an intuitive and easy way to
identify fault-prone software modules at different test levels. For
instance, consider a fault in module A that slipped from unit level
and was not captured until at integration level. Now the module
A which is already fault-prone at the unit level, is more costly for
quality improvement at the later integration level due to the higher
cost of finding and fixing the faults at that level. But due to cer-
tain reasons (e.g. ambiguous requirements) the fault is not detected
at the right level and slipped. The integration test level now has
to detect both the faults that are expected to be found in this level
and also any other faults that slipped from earlier levels of review,
unit and function test. At this stage, any indication of fault-prone
modules would help plan better for integration testing. Also since
integration test (and system test for that matter) represents one of
the last test levels before the system is delivered to the end-users,
it is critical that these last test levels have accurate knowledge of
where to focus the testing effort.

Therefore we are interested in identifying those modules that
were fault-prone in earlier test levels of review, unit and function
but the faults from these modules slipped to integration and sys-
tem test levels where they were eventually found. With a historical
backlog of faults slipping through from review, unit and function
test to integration and system test, along with the affected mod-
ules, it is possible to build prediction models to predict fault-prone
modules for an on-going project before the commencement of in-
tegration and system test levels.

Our data set contains nine count metrics and the descriptions are
given in Table 1. The data set contains two additional attributes that
represent the dependent variables: FP-I (fault-prone at integration
test level) and FP-S (fault-prone at system test level). Each one of
these metrics is collected for every module separately; for example
SF-CR in Table 1 represents the count of faults slipping from code
review for each module. The data regarding the number of faults
slipping to/from different test levels is readily available from an
automated report generation tool at the subject company that used
data from an internally developed system for fault logging.

4. A BRIEF BACKGROUND ON THE TECH-
NIQUES

Table 1: Metric descriptions.
Metric Definition
SF-CR No. of faults slipping from (SF) code review

(CR)
SF-MDR No. of faults slipping from (SF) module design

review (MDR)
SF-R No. of faults slipping from (SF) review (R)
SF-HD No. of faults slipping from (SF) hardware de-

velopment (HD)
SF-MT No. of faults slipping from (SF) module test

(MT)
SF-U No. of faults slipping from (SF) unit level (U)
SF-F No. of faults slipping from (SF) function level

(F)
ST-I No. of faults slipping to (ST) integration level

(I)
ST-S No. of faults slipping to (ST) system level (S)

We compare a variety of techniques for the purpose of predicting
fault-prone modules at integration and system test. The techniques
include a standard statistical technique for classification (logistic
regression), tree-structured classifiers (C4.5 and random forests),
a Bayesian technique (Naïve Bayes), machine-learning techniques
(support vector machines and back-propagation artificial neural net-
works) and search-based techniques (genetic programming and ar-
tificial immune recognition systems). Below is a brief description
of these methods while the detailed descriptions can be found in
relevant references.

4.1 Logistic regression (LR)
Logistic regression is used when the dependent variable is di-

chotomous (e.g. either fault-prone or non-fault-prone). Logistic re-
gression does not assume that the dependent variable or the error
terms be normally distributed. The form of the logistic regression
model is:
log

“
p

1−p

”
= β0 + β1X1 + β2X2 + . . . + βkXk

where p is the probability that the fault was found in the module
that slipped to either integration or system test and X1, X2,. . ., Xk

are the independent variables. β0,β1, . . ., βk are the regression
coefficients estimated using maximum likelihood. A multinomial
logistic regression model with a ridge estimator, implemented as
part of WEKA, was used with default parameter values.

4.2 C4.5
C4.5 is the most well-known algorithm in the literature for build-

ing decision trees [32]. C4.5 first creates a decision-tree based
on the attribute values of the available training data such that the
internal nodes denote the different attributes, the branches corre-
spond to value of a certain attribute and the leaf nodes correspond
to the classification of the dependent variable. The decision tree is
made recursively by identifying the attribute(s) that discriminates
the various instances most clearly, i.e., having the highest informa-
tion gain. Once a decision tree is made, the prediction for a new
instance is done by checking the respective attributes and their val-
ues. For our experiments, standard pruning factors as in WEKA
were used i.e. with a confidence factor of 0.25.

4.3 Random forests (RF)
Random forests is a collection of tree-structured classifiers [5].

A new instance is classified on each tree in the forest. Results of
these trees is used for majority voting and the forest selects the clas-

sification having the most votes over all the trees in the forest. Each
classification tree is built using a bootstrap sample of the data. The
results were generated using 10 trees (the default value in WEKA).

4.4 Naïve Bayes (NB)
The naïve Bayes classifier is based on the Bayesian theorem. It

analyses each data attribute independently and being equally im-
portant. The naïve Bayes classifier assigns an instance sk with at-
tribute values (A1 = V1, A2 = V2, . . . , Am = Vm) to class Ci with
maximum prob(Ci|(V1, V2, . . . , Vm)) for all i. The results were
generated using default parameter values in WEKA.

4.5 Support vector machines (SVM)
SVM algorithm classifies data points by finding an optimal lin-

ear separator which possess the largest margin between it and the
one set of data on one side and other set of examples on the other.
The largest separator is found by solving a quadratic programming
optimization problem. Using WEKA, the regularization parameter
(c) was set at 1; the kernel function used was Gaussian (RBF) and
the bandwidth (r) of the kernel function was set to 0.5.

4.6 Artificial neural networks (ANN)
The development of artificial neural networks is inspired by the

interconnections of biological neurons [40]. These neurons, also
called nodes or units, are connected by direct links. These links are
associated with numeric weights which shows both the strength and
sign of the connection [40]. Each neuron computes the weighted
sum of its input, applies an activation (step or transfer) function to
this sum and generates output, which is passed on to other neurons.
A three layer feed forward neural network model has been used in
this study. The final ANN structure consisted of one input layer,
one hidden layer and one output layer. The hidden layer consisted
of five nodes while the output layer had two nodes representing
each of the binary outcome. The number of independent variables
in the problem determined the number of input nodes. The sig-
moid and linear transfer functions have been used for the hidden
and output nodes respectively.

4.7 Genetic programming (GP)
GP, an evolutionary computation technique, is an extension of

genetic algorithms [33]. The population structures (individuals) in
GP are not fixed length character strings but programs that, when
executed, are the candidate solutions to the problem. For the sym-
bolic regression application of GP, programs are expressed as syn-
tax trees, with the nodes indicating the instructions to execute and
are called functions (e.g. min, ∗, +, /), while the tree leaves are
called terminals which may consist of independent variables of the
problem and random constants (e.g. x, y, 3). The worth of an in-
dividual GP program in solving the problem is assessed using a fit-
ness evaluation. The control parameters limit and control how the
search is performed like setting the population size and probabili-
ties of performing the genetic operations. The termination criterion
specifies the ending condition for the GP run and typically includes
a maximum number of generations [9]. GP iteratively transforms
a population of computer programs into a new generation of pro-
grams using various genetic operators. Typical operators include
crossover, mutation and reproduction. The details of genetic oper-
ators are omitted due to space constraints but can be found in [41].
The GP programs were evaluated according to the sum of absolute
differences between the obtained and expected results in all fitness
cases,

Pn
i=1 | ei − e

′
i |, where ei is the actual fault count data, e

′
i

is the estimated value of the fault count data and n is the size of the
data set used to train the GP models. The control parameters that

Table 2: GP control parameters.
Control parameter Value
Population size 50
Termination condition 500 generations
Function set {+,−,∗,/,sin,cos,log,sqrt}
Tree initialization Ramped half-and-half method
Probabilities of crossover, mutation, reproduction 0.8, 0.1, 0.1
Selection method roulette-wheel

were chosen for the GP system are shown in Table 2.

4.8 Artificial immune recognition system
(AIRS)

The concepts of artificial immune systems have been used to pro-
duce a supervised learning system called artificial immune recog-
nition system (AIRS) [45].

Based on immune network theory, [43] developed a resource
limited artificial immune system and introduced the metaphor of an
artificial recognition ball (ARB), a collection of similar B-cells. B-
cells are anti-body secreting cells that is a response of the immune
system against the attack of a disease. For the resource-limited
AIS, a predefined number of resources exists. The ARBs compete
based on their stimulation level. Least stimulated cells are removed
while an ARB having higher stimulation value could claim more
resources. The AIRS is based on the similar idea of a resource-
limited system but many of the network principles were abandoned
in favor of a simple population-based model [45].

The AIRS algorithm consists of five steps [45]: 1) Initializa-
tion, 2) Memory cell identification and ARB generation, 3) Compe-
tition for resources and development of a candidate memory cell, 4)
Memory cell introduction and 5) Classification. The details of each
of these steps can be found in [45] and are omitted due to space
constraints.

The WEKA plug-in for AIRS [8] has been used with the follow-
ing parameters: Affinity threshold = 0.2, clonal rate = 10, hyper-
mutation rate = 2, knn = 3, mutation rate = 0.1, stimulation value =
0.9 and total resources = 150.

5. PERFORMANCE EVALUATION
We use the area under the receiver operating curve (AUC) as

the performance evaluation measure for different classifiers. Area
under the curve (AUC) [4] acts as a single scalar measure of ex-
pected performance and is an obvious choice for performance as-
sessment when ROC curves for different classifiers intersect [34] or
if the algorithm does not allow configuring different values of the
threshold parameter. AUC, as with the ROC curve, is also a gen-
eral measure of predictive performance since it separates predictive
performance from class and cost distributions [34]. The AUC mea-
sures the probability that a randomly chosen fault-prone module
has a higher output value than a randomly chosen non fault-prone
module [17]. The value of AUC is always between 0 and 1; with a
higher AUC is preferable indicating that the classifier is on average
more effective in identifying fault prone modules.

We also plotted the (PF, PD) pairs belonging to various classi-
fication algorithms to facilitate visualization [35] (PF denotes the
probability of false alarm, i.e., proportion of non-fault prone mod-
ules that are erroneously classified and PD denotes the probability
of detection of fault-prone modules).

6. EXPERIMENTAL RESULTS
The (PF, PD) pairs for different techniques for detecting fault-

prone software modules at integration test level are given in Ta-

Table 3: (PF, PD) pairs for fault prediction at integration test
level.

Techniques PF PD
GP 0 0.98
LR 0.04 0.94
C4.5 0 0.98
RF 0 0.96
NB 0.49 0.94
SVM 0 0
ANN 0.90 0.98
AIRS 0.24 0.70

Figure 3: (PF, PD) pairs for different techniques for fault pre-
diction at integration test level.

ble 3. The corresponding location of these pairs in the ROC space
is shown in Figure 3.

It is encouraging to note that six out of eight classifiers (GP, LR,
C4.5, RF, NB, AIRS) are placed in the upper left region of the ROC
space which is the region of interest for the software engineers,
marked by high probability of detection (PD) and low probability
of false alarm (PF). In fact, four out of these six classifiers (GP,
LR, C4.5, RF) are approximately equal to the perfect (PF, PD) pair
of (0, 1). Out of these four classifiers, GP and C4.5 are slightly
better placed than LR and RF but the differences are minimal. SVM
and ANN show less impressive performances and thus offer little
decision-support to the software engineers.

One way to quantify the distances of individual (PF, PD) pairs
from the perfect classification (0, 1) is to use a distance metric,
ED [35]:

ED =
p

Θ ∗ (1 − PD)2 + (1 − Θ) ∗ PF 2

where Θ (ranging from 0 to 1) represents the weights assigned to
PD and PF. If we assume that lower PD is more costly than a higher
PF, one can assign more weight to (1 − PD). Table 4 calculates
the distance metric, ED, for the four visibly better classifiers for
an arbitrary range of Θ values. The smaller the distance, i.e., the
closer the point is to the perfect classification, the better the perfor-
mance of the classifier [35]. GP and C4.5 show smaller distances in
comparison with other two classifiers; a trend that is also confirmed
from visualizing their (PF, PD) pairs in Figure 3.

Table 5 shows the AUC measures for different techniques for
predicting fault-prone modules at integration test level. GP, LR,
C4.5 and RF show higher AUC values than others for fault predic-

Table 4: Distance metric, ED, values for the four better tech-
niques for fault prediction at integration test level.

Θ ED_GP ED_LR ED_C4.5 ED_RF
1 0.02 0.06 0.02 0.04
0.9 0.019 0.058 0.019 0.038
0.8 0.018 0.056 0.018 0.036
0.7 0.017 0.055 0.017 0.033
0.6 0.015 0.053 0.015 0.031

Table 5: AUC measures for different techniques at integration
test level.

GP LR C4.5 RF NB SVM ANN AIRS
0.99 0.95 0.99 0.98 0.73 0.50 0.54 0.73

tion at the integration test level.
The (PF, PD) pairs for different techniques for detecting fault-

prone modules at system test level are given in Table 6. The cor-
responding location of these pairs in the ROC space is shown in
Figure 4. As was the case with integration test level, most of the
techniques (with the exception of SVM) have their (PF, PD) pairs
in the preferred upper left region of the ROC space. Four of the
techniques (GP, LR, C4.5, RF) give the perfect classification per-
formance having the (PF, PD) pairs equal to (0, 1), while NB is
close to having a perfect performance. SVM is not able to pro-
vide useful results, with high probability of false alarms. ANN and
AIRS are able to provide moderate (PF, PD) pairs. The perfect
classification performance of four techniques (GP, LR, C4.5, RF)
renders zero distance metric, ED, which is the best-case scenario.
Table 7 shows the AUC measures for different techniques for pre-
dicting fault-prone modules at system test level. As expected, the
four techniques (GP, LR, C4.5, RF) have perfect AUC values with
NB not far behind.

Now that we have the AUC values for different techniques for
predicting fault-prone modules at integration and system test lev-
els, we can use a two-sample t-test to verify if the differences in
AUC values among different pairs of techniques are significant or
not. The results of applying the two sample t-test appear in Table 8
where h = 1 indicates a rejection of the null hypothesis at 5% sig-
nificance level of the two samples having equal means, while h = 0
indicates a failure to reject the null hypothesis at 5% significance
level.

The results show that apart from nine combinations, highlighted
in bold in Table 8, there are no significant differences between the
AUC values of all other combination of classifiers.

7. DISCUSSION
In this paper, we evaluated the use of several techniques for pre-

Table 6: (PF, PD) pairs for fault prediction at system test level.
Techniques PF PD
GP 0 1
LR 0 1
C4.5 0 1
RF 0 1
NB 0.08 1
SVM 0.90 0.98
ANN 0.24 0.70
AIRS 0.34 0.82

Figure 4: (PF, PD) pairs for different techniques for fault pre-
diction at system test level.

Table 7: AUC measures for different techniques at system test
level.

GP LR C4.5 RF NB SVM ANN AIRS
1 1 1 1 0.96 0.54 0.73 0.74

Table 8: Two-sample t-test results for differences in AUC mea-
sures for different techniques.

Techniques p value h
GP:LR 0.51 0
GP:C4.5 1 0
GP:RF 0.70 0
GP:NB 0.32 0
GP:SVM 0.002 1
GP:ANN 0.06 0
GP:AIRS 0.0007 1
LR:C4.5 0.51 0
LR:RF 0.63 0
LR:NB 0.38 0
LR:SVM 0.005 1
LR:ANN 0.07 0
LR:AIRS 0.01 1
C4.5:RF 0.70 0
C4.5:NB 0.32 0
C4.5:SVM 0.002 1
C4.5:ANN 0.06 0
C4.5:AIRS 0.0007 1
RF:NB 0.33 0
RF:SVM 0.002 1
RF:ANN 0.06 0
RF:AIRS 0.002 1
NB:SVM 0.11 0
NB:ANN 0.29 0
NB:AIRS 0.44 0
SVM:ANN 0.36 0
SVM:AIRS 0.001 1
ANN:AIRS 0.40 0

dicting fault-prone modules at integration and system test levels us-
ing faults-slip-through data from two industrial projects. The most
interesting result of this paper demonstrates the use of faults-slip-
through metric as a potentially strong predictor of fault-proneness.
While previous studies have focussed on structural measures, change
measures and process measures (Section 2) as predictors of fault
proneness, this study shows that the use of number of faults slip-
ping through to/from various test levels are able to provide remark-
able results for finding fault-prone modules at integration and sys-
tem test levels. At integration test level, six out of eight techniques;
while at the system test level, seven out of eight techniques resulted
in impressive AUC values (0.7 or more – with their (PF, PD) pairs
in the preferred region of the ROC space). This shows that the
faults-slip-through measures have sufficient discriminative power
to classify modules as either fault-prone and non-fault-prone at in-
tegration and system test levels.

Previous studies on fault-proneness classified modules irrespec-
tive of the different test levels. While such studies are useful, we
might run into a risk of investing more effort in improving the qual-
ity of a module than is cost-effective at a certain test level. The
quantification of quality of modules at different test levels, cou-
pled with the use of FST measures, entail an additional benefit that
modules can be selected for quality enhancement keeping in view
the cost-effectiveness. Thus the fundamental hypothesis underly-
ing the work in this study is that an efficient test process verifies
each product aspect at a test level where it is easiest to test and the
faults are cheapest to fix; therefore the identification of fault-prone
modules at specific test levels is a step in that direction. We were
assisted in this endeavor to an extent by the segregation of different
test levels at our subject organization.

The statistical comparison of the AUC values for different tech-
niques at the two test levels present an interesting outcome, i.e.,
with few exceptions, most of the techniques did not differ signifi-
cantly. This shows that the FST measures interact in ways that is
conveniently accounted for by the different data mining techniques.
However we need additional ways to visualize the performance of
different techniques and the plotting of (PF, PD) pairs in the ROC
space is one way of achieving it. As clear from the two plots in
Figures 3 and 4, the location of (PF, PD) pairs in the ROC space
can quickly show the trade-off in PF and PD values of competing
techniques whereby one or more techniques might be preferred.
This additional way to visualize performance is important from the
viewpoint of practical use. A software manager who intends to ap-
ply these techniques would be mainly interested in correct detection
of fault-prone modules, i.e., PD [44]. This is because the cost of
delivering fault-prone modules to the end-customers is much more
than the cost of testing one module too many. This unequal costs of
misclassification is the reason why software managers would pre-
fer a trade-off between PF and PD. Using a distance metric like ED
and visualizing the (PF, PD) pairs in the ROC space provides that
flexibility to the software manager.

One trend that is observable from the results is that tree-structured
classifiers (C4.5, RF), a search-based technique (GP) and a rather
simple LR consistently perform remarkably well at both integra-
tion and system test levels. For C4.5, RF and GP one additional
advantage is the comprehensibility of the resulting models which
can lead to an insight of the significant predictor variables and im-
portant rules.

While working on-site at the subject organization for this re-
search, we realized several organizational factors that influence the
success of such a decision-support. Managerial support and an
established organizational culture of quantitative decision-making
helped easy access to data repositories and relevant documentation.

Moreover, collection of faults-slip-through data and association of
that data to modules was made possible using an automated tool
support that greatly reduced the time for data collection and en-
sured data integrity.

8. VALIDITY EVALUATION
There can be different threats to the validity of the empirical re-

sults [46]. Conclusion validity refers to the statistically significant
relationship between the treatment (independent variable) and the
outcome (dependent variable). We tested for any significant differ-
ences between the AUC values of different techniques using a two-
sample t-test at 5% significance level, which is a commonly used
significance level for hypothesis testing. The choice of selecting
a parametric test was based on its greater power to identify differ-
ences and robustness to smaller departures from the normality as-
sumption. Internal validity refers to a causal relationship between
treatment and outcome. Out of the many metrics we could collect,
we only selected those based on the FST metric since our goal was
to evaluate the use of such metrics for quality prediction. We used
a 10-fold cross-validation as a resampling method which has been
found to give low bias and low variance [31]. A potential threat to
internal validity is that the faults-slip-through data did not consider
the severity level of faults, rather treated all faults equally. Con-
struct validity is concerned with the relationship between the the-
ory and application. The use of AUC as the performance measure
is motivated by the fact that it is a general measure of predictive
performance, while the plot of (PF, PD) pairs provides an intuitive
visualization tool. External validity is concerned with generaliza-
tion of results outside the scope of the study. The data used in the
study comes from two industrial projects from the telecommuni-
cation domain and thus represents real-life use. However, more
replications of this study would help generalize the results beyond
the specific environment.

9. CONCLUSION AND FUTURE WORK
This paper evaluated the used of faults-slip-through data as po-

tential predictors of fault-proneness at integration and system test
levels for data gathered from two industrial projects. A variety of
classification algorithms were applied, including a standard statisti-
cal technique for classification (logistic regression), tree-structured
classifiers (C4.5 and random forests), a Bayesian technique (Naïve
Bayes), machine-learning techniques (support vector machines and
back-propagation artificial neural networks) and search-based tech-
niques (genetic programming and artificial immune recognition sys-
tems). The performance of these classifiers was assessed using
AUC and location of (PF, PD) pairs in the ROC space. The re-
sults of this study concluded that faults-slip-through data turns out
to be a remarkable predictor of fault-proneness at integration and
system test levels, with many of the techniques showing impressive
AUC values and were located in the favorable region of the ROC
space in terms of the (PF, PD) pairs. As for the different classifiers,
although C4.5, RF, LR and GP performed more consistently across
both integration and system test levels, the different classifiers did
not differ significantly based on AUC. However, the visualization
of (PF, PD) pairs in the ROC space provides another opportunity
for the test team to assess a classifier performance with respect to
the perfect (PF, PD) pair of (0, 1). A distance metric can then be
calculated, with different weights assigned to represent the misclas-
sification costs of PF and PD, to select a classifier most suited for
the project.

Based on this paper, some interesting future work can be under-
taken. Firstly, it would be interesting to compare the FST metric

with other commonly used predictors of fault proneness to quantify
any differences. Secondly, the performance of FST as an effective
predictor of fault-proneness need to be assessed for a segregation
of faults based on severity levels. Lastly, one can think of a proba-
bilistic model on how likely different fault counts or slips in earlier
phases are for predicting fault-proneness in later phases.

10. REFERENCES
[1] D. Azar, D. Precup, S. Bouktif, B. Kégl, and H. Sahraoui.

Combining and adapting software quality predictive models
by genetic algorithms. In Proceedings of the 17th IEEE
international conference on Automated software engineering
(ASE’02), Washington, DC, USA, 2002. IEEE Computer
Society.

[2] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Transactions on Software Engineering, 22(10):751–761,
1996.

[3] B. Boehm. Industrial software metrics top 10 list. IEEE
Software, 4(9):84–85, 1987.

[4] A. P. Bradley. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern
Recognition, 30:1145–1159, 1997.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[6] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing
interpretable models with optimized set reduction for
identifying high-risk software components. IEEE
Transactions on Software Engineering, 19(11):1028–1044,
1993.

[7] L. C. Briand, W. L. Melo, and J. Wust. Assessing the
applicability of fault-proneness models across
object-oriented software projects. IEEE Transactions on
Software Engineering, 28(7):706–720, 2002.

[8] J. Brownlee. WEKA plug-in for AIRS.
http://wekaclassalgos.sourceforge.net/, 2010.

[9] E. K. Burke and G. Kendall, editors. Search methodologies –
Introductory tutorials in optimization and decision support
techniques. Springer Science and Business Media, Inc.,
2005.

[10] K. Y. Cai, L. Cai, W. D. Wang, Z. Y. Yu, and D. Zhang. On
the neural network approach in software reliability modeling.
Journal of Systems and Software, 58(1):47–62, 2001.

[11] A. B. d. Carvalho, A. Pozo, and S. R. Vergilio. A symbolic
fault-prediction model based on multiobjective particle
swarm optimization. Journal of Systems and Software,
83(5):868 – 882, 2010.

[12] C. Catal and B. Diri. Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software
fault prediction problem. Information Sciences, 179(8):1040
– 1058, 2009.

[13] C. Catal, B. Diri, and B. Ozumut. An artificial immune
system approach for fault prediction in object-oriented
software. International Conference on Dependability of
Computer Systems, 2007.

[14] V. U. B. Challagulla, F. B. Bastani, I. Yen, and R. A. Paul.
Empirical assessment of machine learning based software
defect prediction techniques. In Proceedings of the 10th
IEEE international workshop on object-oriented real-time
dependable systems (WORDS’05), Washington, DC, USA,
2005. IEEE Computer Society.

[15] L.-O. Damm, L. Lundberg, and C. Wohlin.
Faults-slip-through – a concept for measuring the efficiency
of the test process. Software Process: Improvement and
Practice, 11(1):47 – 59, 2006.

[16] G. Denaro and M. Pezze. An empirical evaluation of
fault-proneness models. In Proceedings of the 24th
International Conference on Software Engineering
(ICSE’02), 2002.

[17] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, 27(8):861–874, 2006.

[18] K. Gao and T. Khoshgoftaar. A comprehensive empirical
study of count models for software fault prediction. IEEE
Transactions on Reliability, 56(2), 2007.

[19] I. Gondra. Applying machine learning to software
fault-proneness prediction. Journal of Systems and Software,
81(2):186–195, 2008.

[20] A. Gray and S. MacDonell. A comparison of techniques for
developing predictive models of software metrics.
Information and Software Technology, 39(6), 1997.

[21] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of
object-oriented metrics on open source software for fault
prediction. IEEE Transactions on Software Engineering,
31(10):897–910, 2005.

[22] E. B. Johannessen. Data mining techniques, candidate
measures and evaluation methods for building practically
useful fault-proneness prediction models. Master’s thesis,
University of Oslo, Department of Informatics, Oslo,
Norway.

[23] T. Khoshgoftaar, E. Allen, J. Hudepohl, and S. Aud.
Application of neural networks to software quality modeling
of a very large telecommunications system. IEEE
Transactions on Neural Networks, 8(4), 1997.

[24] T. M. Khoshgoftaar and E. B. Allen. Logistic regression
modeling of software quality. International Journal of
Reliability, Quality and Safety Engineering, 6(4):303–317,
1999.

[25] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. I.
Hudepohl. Classification tree models of software quality over
multiple releases. In Proceedings of the 10th International
Symposium on Software Reliability Engineering (ISSRE’99),
Washington, USA, 1999. IEEE Computer Society.

[26] T. M. Khoshgoftaar and Y. Liu. A multi-objective software
quality classification model using genetic programming.
IEEE Transactions on Reliability, 56(2):237–245, 2007.

[27] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and
G. D. Richardson. Predictive modeling techniques of
software quality from software measures. IEEE Transactions
on Software Engineering, 18(11):979–987, 1992.

[28] T. M. Khoshgoftaar and N. Seliya. Tree-based software
quality estimation models for fault prediction. In
Proceedings of the 8th International Symposium on Software
Metrics (METRICS’02), Washington, DC, USA, 2002. IEEE
Computer Society.

[29] T. M. Khoshgoftaar and N. Seliya. Fault prediction modeling
for software quality estimation: comparing commonly used
techniques. Empirical Software Engineering, 8(3):255–283,
2004.

[30] N. R. Kiran and V. Ravi. Software reliability prediction by
soft computing techniques. Journal of Systems and Software,
81(4), 2008.

[31] R. Kohavi. A study of cross-validation and bootstrap for

accuracy estimation and model selection. In Proceedings of
the 14th international joint conference on Artificial
intelligence (IJCAI’95), San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

[32] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. Machine
learning: A review of classification and combining
techniques. Artificial Intelligence Review, 26(3):159 – 190,
2007.

[33] J. Koza. GP: On the programming of computers by means of
natural selection. MIT Press, Cambridge, MA, USA, 1992.

[34] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings. IEEE
Transactions on Software Engineering, 34(4):485–496, 2008.

[35] Y. Ma and B. Cukic. Adequate and precise evaluation of
quality models in software engineering studies. In
Proceedings of the Third International Workshop on
Predictor Models in Software Engineering (PROMISE’07),
Washington, DC, USA, 2007. IEEE Computer Society.

[36] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Transactions
on Software Engineering, 33(1):2–13, 2007.

[37] J. C. Munson and T. M. Khoshgoftaar. The detection of
fault-prone programs. IEEE Transactions on Software
Engineering, 18(5):423–433, 1992.

[38] N. Ohlsson, A. C. Eriksson, and M. Helander. Early
risk-management by identification of fault-prone modules.
Empirical Software Engineering, 2(2):166–173, 1997.

[39] N. Ohlsson, M. Zhao, and M. Helander. Application of
multivariate analysis for software fault prediction. Software
Quality Journal, 7(1):51–66, 1998.

[40] S. Russell and P. Norvig. Artificial intelligence—A modern
approach. Prentice Hall Series in Artificial Intelligence,
USA, 2003.

[41] S. Silva. GPLAB—A genetic programming toolbox for
MATLAB. http://gplab.sourceforge.net.

[42] S. S. So, S. D. Cha, and Y. R. Kwon. Empirical evaluation of
a fuzzy logic-based software quality prediction model. Fuzzy
Sets and Systems, 127(2):199–208, 2002.

[43] J. Timmis, M. Neal, and J. Hunt. An artificial immune
system for data analysis. Biosystems, 55(1-3), 2000.

[44] O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. D.
Backer, and R. Haesen. Mining software repositories for
comprehensible software fault prediction models. Journal of
Systems and Software, 81(5):823–839, 2008.

[45] A. Watkins, J. Timmis, and L. Boggess. Artificial immune
recognition system (AIRS): An immune-inspired supervised
learning algorithm. GPEM, 5(3), 2004.

[46] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in software engineering:
An introduction. Kluwer Academic Publishers, USA, 2000.

[47] T. J. Yu, V. Y. Shen, and H. E. Dunsmore. An analysis of
several software defect models. IEEE Transactions on
Software Engineering, 14(9):1261–1270, 1988.

	Title: Using faults-slip-through metric as a predictor of fault-proneness
	Author: Wasif Afzal
	Conference: Proceedings of the 17th Asia Pacific Software Engineering Conference (APSEC'10)
	Year: 2010
	City: Sydney

