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Abstract. This paper reviews methods for evaluating and analyzing the 
understandability of classification models in the context of data mining. The 
motivation for this study is the fact that the majority of previous work on 
evaluation and optimization of classification models has focused on assessing or 
increasing the accuracy of the models and thus user-oriented properties such as 
comprehensibility and understandability have been largely overlooked. We 
conduct a quantitative survey to examine the concept of understandability from the 
user’s point of view. The survey results are analyzed using the analytic hierarchy 
process (AHP) to rank models according to their understandability. The results 
indicate that decision tree models are perceived as more understandable than rule-
based models. Using the survey results regarding understandability of a number of 
models in conjunction with quantitative measurements of the complexity of the 
models, we are able to establish a negative correlation between the complexity and 
understandability of the classification models, at least for one of the two studied 
data sets. 
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Introduction 

Data mining can be described as the nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data [1]. Data mining 
algorithms are commonly only evaluated in terms of predictive accuracy [2]. There are 
a number of other factors, such as interpretability, comprehensibility, usability, and 
interestingness, which could be considered during analysis and optimization [3]. The 
model accuracy is obviously an important criterion, but should not be considered as the 
only dimension by which models should be evaluated to determine their suitability for 
a particular task. For example, if the objective is to use the discovered knowledge in 
human decision-making, there are other criteria that need to be considered as well [4]. 
If domain experts cannot understand the generated models they may not be able to use 
them effectively even though they are accurate [5]. In principle, the need for 
understandable models arises when the model itself, not just its predictions, should be 
interpreted. For example, a physician needs to understand the decision process of the 
model before trusting it as a decision support tool for diagnosis. If we are serious about 
our trials to discover useful knowledge, we have to take into account understandability 
and associated quality attributes even if such criteria are considerably harder to 
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measure in a formal and objective way [2]. Even though many researchers have pointed 
at understandability as a basic requirement in the knowledge discovery process, we 
could not identify any studies devoted to measuring the understandability of 
classification models, which is the motivation for this study. 
 

In this paper, we review previous work related to the aforementioned criteria and 
briefly describe various approaches to measuring understandability. Since properties 
such as understandability, comprehensibility and usability can conceptually be 
regarded as quality attributes [3] and moreover, since quality attributes are evaluated 
using quality metrics, we use these concepts to denote evaluation criteria and ways to 
assess such criteria. We conduct a quantitative survey in which respondents are asked 
to compare pairs of classification models in terms of how understandable they appear 
to be and we then apply the analytic hierarchy process (AHP) [6] to prioritize the 
classification models according to their perceived understandability. Since the concept 
of understandability has been associated with complexity in many previous works, we 
try to establish whether there is a correlation between our obtained measurements of 
understandability and some common complexity metrics. 

1. Background 

Classification represents one of the most common data mining tasks and supervised 
learning (SL) has been shown to be a suitable approach for classification problems. The 
objective of SL is to generate a function, or mapping between inputs and outputs by 
generalizing from training data that features example inputs and presumably correct 
outputs. For classification problems, this function is denoted a classifier. The generated 
classifier should be able to classify new, unseen instances correctly [3]. For example, 
an SL algorithm may be given a database consisting of patient data (inputs) and the 
associated diagnosis of each patient (outputs). The algorithm can then generate a 
classifier, which in turn can be used to diagnose new patients. An algorithm may be 
more or less suitable for a certain classification task depending on which quality 
attributes are important for the task [7]. As most of the properties we focus on in this 
paper are qualitative in nature and may also be regarded as quite subjective, it is 
important to identify characteristic aspects and distinguishable levels of conformity for 
such properties in order to use them for evaluation. Such an approach would of course 
require deep theoretical analyses of the original definitions, which could be scattered in 
such areas as: psychology, statistics, and information retrieval [3]. 

1.1. Quality Attributes 

There is a list of attributes that are often relevant in the consideration of which learning 
model to apply to a given task, e.g.: performance, complexity, extendibility, 
compactness, comprehensibility, and understandability [2][3]. There are different 
approaches to measure each of the mostly subjective qualitative aspects (such as: 
usefulness, interestingness, comprehensibility and understandability). For any case, 
where a human user needs to make important decisions based upon discovered patterns, 
the comprehensibility of the patterns improves their potential usefulness, although it 
does not mean that comprehensibility by itself guarantees the usefulness of the patterns 
from the user’s point of view [2]. In some studies, simplicity together with other factors 



has been identified as the basic part of interestingness, usefulness and understandability 
[8]. Attributes such as interpretability and explainability are often used as synonyms for 
comprehensibility and understandability [9] but sometimes their descriptions expose 
trivial differences [3]. In determining understandability, some researchers state that 
understanding means more than just comprehension; it also demands grasping the 
context. The more rational way of using a classification model is to engage the user in 
understanding what is going on so that they will be able to directly bring the model into 
effect [10]. If the user cannot understand what has been exposed, e.g., in the context of 
her business issues, she cannot trust or make use of the newly acquired knowledge. 
A few studies have been dedicated specifically to the introduction of the human 
cognitive processes into data mining [11][12] and it has been stated that consistency 
with existing knowledge is a factor that influences the comprehensibility and is one of 
the biases of human learners. For example, prior knowledge might tell us that most of 
the people are affected by a long-sightedness problem when they get older. However 
the data might tell us that contact lenses, in 60% of cases are not recommended for 
patients who have been diagnosed as shortsighted. Without such a previous piece of 
knowledge, we might have instead noticed that in general short-sighted patients have 
less chance to receive contact lenses in comparison to long-sighted patients (because 
many of the patients who visit an optician are older than 40). Knowing how people 
assimilate new knowledge and why they prefer a model consistent with prior 
knowledge, could help us to design better learning models [11]. 

1.2. Related Work 

It has not been possible to identify any studies devoted to measuring the 
understandability of classification models, which is the motivation for the presented 
study. The majority of previous work has concentrated on producing accurate models 
as well as the assessment of other aspects such as running time and space used, with a 
slight consideration for ranking the value of patterns and evaluating effectiveness from 
a user point of view [1][13][14]. In most of the related work, model understandability 
and other properties such as comprehensibility and usability [15] have been stated as 
important attributes to consider in model evaluation and selection. However, 
researchers have largely overlooked the problem of measurement and analysis of these 
factors [1]. One reason may be that the aforementioned factors are difficult to quantify. 
A number of studies have been carried out in the area of human learning and 
categorical representation and other related subjects. Although these areas are 
undoubtedly relevant to data mining and the acceptability of learned models from users, 
there are still no general solutions presented. Moreover, a few tangible suggestions 
have been presented on how to measure the understandability of patterns and on how to 
make patterns and models more understandable [11]. 

2. Method 

It is not enough to provide a set of metrics to assess what has really been perceived by 
the users of classification models. There is a need to observe which assumptions are 
correct and which are not, and to determine whether or not previously defined metrics 
are valid. Since empirical evaluations play a significant part in improving measurement 



methods and we could not find any such empirical evaluation that was relevant to our 
study, we decided to conduct a quantitative survey to observe the users’ point of view. 

2.1. Survey Design 

The purpose of this survey is to establish a quantification of classification model 
understandability based on a user’s point of view. By generalizing from the survey 
results, it may be possible to identify some metrics or characteristics associated with 
model understandability. The questionnaire and the appendices are available for 
download 2 . The basic design of the survey is this: we generate a number of 
classification models, using a set of SL algorithms and two commonly available data 
sets. We opted to select common algorithms that produce human readable models For 
each data set, we used three algorithms that produce decision trees and three that 
produce decision rules. 
For each data set, we then generate pairs so that each model is paired with each of the 
remaining models. We adopt a scale of understandability, ranging from one extreme 
(the first model in the pair is absolutely the most understandable), via lesser grades 
pointing in the same direction, to increasingly positive grades toward the second model, 
and finally to the other extreme (the second model is absolutely the most 
understandable). We hand out the questionnaire concerning the first data set to one 
group of participants and similarly hand out the questionnaire concerning the second 
data set to another group of participants. We perform a systematic analysis of the 
survey results in order to prioritize the classification models from each data set 
according to their perceived understandability. 

2.2. Participants 

We selected 100 survey participants that were students at the Bachelor or Master’s 
level programs in software engineering or computer science at the School of 
Computing at Blekinge Institute of Technology in Sweden. 51 students were selected to 
work with models from data set A (see below, under Section 2.3) and 49 students were 
selected to work with models from data set B. The purpose of selecting participants 
with this particular background in addition to their availability was their presumed 
familiarity with models such as: trees, rules, and graphs. Since the students were 
presumably familiar with these types of presentation, they could focus on the actual 
comparison of the models rather than on the structure of the models themselves.  

2.3. Data and Material 

The featured data sets were downloaded from the UCI machine-learning repository3. 
Data set A (Contact Lenses) contains statistical data concerning patients and contact 
lens prescriptions. Data set B (Labor) contains statistical data regarding labor workers 
and job conditions. The Contact Lenses data set contains three classes: the patient 
should be fitted either with hard contact lenses, soft contact lenses, or no contact lenses 
at all. The data set contains four attributes: age, spectacle prescription, tear production-
rate, and astigmatism. The Labor data set contains two classes: work is categorized 
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either as good or bad. The categorization is based on 16 attributes regarding, e.g.: 
salary, vacation, accessibility to health services, educational allowance, and other 
related attributes. 

We applied six SL algorithms to obtain six classifiers to prioritize for each data set. 
We opted to use the SL algorithm implementations available from the Weka machine-
learning workbench [38]. Although we would have preferred to apply the same 
algorithms on both data sets, it was not possible: some algorithms are restricted in 
terms of which type of data can be processed (e.g., numeric or nominal input attributes). 
Thus, four of the applied algorithms are identical for both data sets (J48, REP, JRip, 
and RIDOR) and the other two are chosen on the basis of the requirements of the 
particular data sets but we tried to apply the two closest matches (ID3 and PRISM for 
Contact Lenses; BF and PART for Labor). Out of the six algorithms for each data set, 
three generate decision rules and the remaining algorithms generate decision trees. The 
algorithms have been assigned random identification numbers as described in Table 1. 
Table 1. Algorithm Identification Number Assignment. 

Contact Lenses Labor 
ID Algorithm ID Algorithm 
C1 J48 C1 J48 
C2 RIDOR C2 JRip 
C3 ID3 C3 REP 
C4 PRISM C4 PART 
C5 REP C5 RIDOR 
C6 JRip C6 BF 

 
In order to make the generated Weka models readable, we transformed the decision 
trees from ASCII text format to a graphical presentation of arrows and text boxes. For 
decision rules, minor changes were applied, such as: adding space and parentheses. In 
some cases we added conjunctions such as “otherwise”. All conducted changes were 
applied equally for all provided rules or all decision trees. For the Contact Lenses data 
set, medical terms, such as: Myopic, Hypermetrope, and Presbyopic were replaced with 
known synonyms as Short-sighted, Long-sighted and Old-sighted. 

2.4. Data Analysis 

We use the analytical hierarchy process (AHP) [6] to create a prioritized list of the 
generated classifiers on the basis of the subjective quantification of understandability, 
obtained from the survey. AHP establishes priorities among the elements of the 
hierarchy by making judgments based on pairwise comparisons of the elements. A 
numerical weight is derived for each element of the hierarchy, allowing various 
elements to be compared to one another in a rational and consistent way. This 
capability in addition to the ability of measuring the assessment errors, distinguishes 
AHP from other decision-making techniques [17]. 

Using AHP requires following a number of steps: the first step is to set up the n 
classifiers as rows and columns of an n × n matrix (i.e., a 6 × 6 matrix for each data 
set). The second step is to perform pairwise comparisons of classifiers according to the 
measurement scale. The fundamental scale used for this purpose is shown in Table 2. 
For each pair of classifiers (starting with C1 and C2, for example) we insert their 
determined relative score in the position (C1, C2). In position (C2, C1), we insert the 
mutual value, and in all positions in the main crossways, we insert a value of 1. For a 
matrix of order n, n (n-1)/2 comparisons are required. Thus, in this example, 16 



pairwise comparisons are required. The third step is to use averaging over the 
normalized columns to estimate the eigenvalues of the matrix (which represent the 
criterion distribution) [6]. The approach is to first calculate the sum of the n columns in 
the comparison matrix and then divide each number in the matrix by the sum of the 
related column, and finally to calculate the sums of each row. 
Table 2. Scale for Pairwise Comparison 

Value Meaning 
1 Two classifiers are equally understandable 
3 One classifier is slightly more understandable than the other 
5 One classifier is fairly more understandable than the other 
7 One classifier is strongly more understandable than the other 
9 One classifier is absolutely more understandable than the other 
2,4,6,8 Intermediate values between two adjacent judgments when a comparison is needed 

 
The next step is to normalize the sum of the rows by dividing each row sum with 

the number of classifiers. The result of this calculation is referred to as the priority 
vector and it is an estimation of the eigenvalues of the matrix. We assign each classifier 
its relative value based on the estimated eigenvalues. If we were able to accurately 
determine the relative value of all classifiers, the eigenvalues would be perfectly 
consistent. The redundancy of the pairwise comparisons makes AHP much less 
responsive to assessment errors in comparison to some alternative methods [17]. In 
addition, however, the method allows us to measure assessment errors by calculating 
the consistency index (CI) of the comparison matrix, and then calculating the 
consistency ratio. CI is a first indicator of the accuracy of the pairwise comparisons and 
is calculated as: 

!" =
!!"# − !
! − 1

 
 

The !!"# represents the maximum principal eigenvalue of the comparison matrix. The 
closer the value of !!"# is to the number of classifiers, the smaller the critical error and 
accordingly, the more consistent the result. To calculate !!"#, we first need to multiply 
the comparison matrix by the priority vector. In our case, !!"# is equal to 6.54 and 
thus CI is equal to 0.10. In order to evaluate if the resulting consistency index is 
acceptable, we need to calculate the consistency ratio (CR). The consistency indices of 
the randomly generated mutual matrices from the scale 1 to 9 are denoted the random 
index (RI) and CR is the ratio of CI to RI [6]. The allied RIs for matrices of order n are 
presented in Table 3. The first row shows the order of the matrix, and the second the 
corresponding RI value. According to Table 3, the RI for matrices of order 6 is 1.24. 
Thus, the consistency ratio in our case is:  CR= CI/RI=0.10/1.24=0.08. As a general 
rule, a consistency ratio of 0.10 or less is considered acceptable. This means that the 
result for our example is in the ideal range. 
 

Table 3. Consistency ratios. 

1 2 3 4 5 6 7 8 9 10 
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 



3. Results 

We summarize the results obtained through the survey and the subsequent AHP 
analysis in Table 4. In this table, we have also included classifier complexity measures, 
as calculated in a study on exception directed acyclic graphs (EDAGs) [18] in order to 
compare understandability with complexity. The correlation between understandability 
and complexity as well as between understandability and classifier size (i.e., the 
number of rules or the number of nodes) for Contact Lenses are both equal to -0.163, 
which means that we cannot establish any correlation. The correlation between 
understandability and complexity on Labor is equal to -0.932. The obtained result 
demonstrates a strong negative correlation between the complexity metric and 
understandability. Likewise, the correlation between understandability and classifier 
size for Labor is equal to -0.942, which means that there are strong negative 
correlations between understandability and both complexity and classifier size. 
Interestingly, this means that the larger or more complex a model was, participants 
seem to feel it was more understandable. According to Saaty [17], as a general rule, a 
consistency ratio of 0.10 or less is considered acceptable, however Saaty states that in 
practice consistency ratios exceeding 0.10 occurs frequently. In a random control of the 
results from the survey, with regard to the inconsistency in the priority order, the CRs 
equal to 0.25, 0.53 and 0.72 demonstrated no inconsistency regarding priority order 
selection (out of 15 pairwise comparisons). Thus, we decided not to exclude any CRs 
higher than 0.10 from our survey results. Another interesting result is that trees were 
generally thought of as more understandable than rules and this result holds for both 
data sets. 

4. Discussion 

The obtained results for the two data sets are quite different in that there was a 
correlation between understandability and complexity and classifier size for the Labor 
data set whereas, for the Contact Lenses data set, no correlation between 
understandability and the other properties could be established. 

Participants seemed to think that the larger and more complex models were more 
understandable (at least for the Labor data set). Perhaps, in the studied case, the more 
complex classifiers provided a more detailed information of the classification task, and 
involved more attributes that could help in understanding the decision making process 
in comparison to what was the case for smaller or simpler classifiers. 

This result shows that the assumption that users think that simpler models are more 
understandable, is not always true. Regarding the type of the provided information in 
the Labor data set, participants probably had a relatively good level of background 
knowledge about the context (in comparison to what was the case for Contact Lenses). 
Consistency with background knowledge has been associated with understandability in 
previous studies. Due to this reason we thus suggest that the larger or more complex 
classifiers did not diminish the understanding of the decision process, but may have 
even increased it through providing more steps and including more attributes for each 
decision step. However, the provided data in Contact lenses fit in to a more specific 
area of knowledge (e.g., healthcare or medicine). Many participants have probably 
never heard about any of the medical terms if they have not experience an eyesight 
deficiency problem. 



Since the learning algorithms used for generating the classifiers were not identical 
for the two data sets, we are unable to draw any general conclusions regarding specific 
learning algorithms and their respective understandability. However, there are some 
notable assumptions to consider: if we observe the three least popular classifiers for the 
two data sets (with regard to understandability), we can see that the JRip has the 
highest score while RIDOR has the lowest score. Consider the Labor data set where 
there is a high correlation between complexity and understandability. For this particular 
case, JRip and PART share the same complexity score but JRip outperforms PART 
with regard to understandability. This indicates that the difference in scores is related to 
the representation of the rules. RIDOR is the least complex model but, as mentioned 
earlier, it has the lowest understandability score. A possible explanation is that, unlike 
the other decision rules, RIDOR makes use of exception clauses rather than conditional 
clauses. Probably, users are less likely to understand counterintuitive rule declarations 
of RIDOR. However, subsequent studies involving additional data sets, perhaps in 
conjunction with more open-ended questions that focus on why different choices were 
made, could give us better explanations to these and similar results. 

  
Table 4. AHP results ordered on mean priority for the Contact Lenses data set (A) and the Labor data set (B). 
The #Rules and Node (N) columns represent estimates of classifier size for rules and trees, respectively while 
the last column represent an estimate of model complexity. 

Data 
Set 

Classifier 
ID 

Mean 
Priority 
(SD) 

#Rules Node 
(N) 

Leaf 
(L) 

Arc 
(A) 

Clause 
(C) 

Excess 
E= 
A+L-N 

Complexity 
N+2E+2C/5 

A 

C5 0.213(0.111) 0 5 3 4 7 2 4.6 
C3 0.210(0.145) 0 15 9 14 23 8 15.4 
C1 0.193(0.097) 0 7 4 6 10 3 6.6 
C6 0.177(0.119) 3 0 0 0 6 0 2.4 
C4 0.122(0.112) 9 0 0 0 35 0 14.0 
C2 0.083(0.058) 4 0 0 0 7 0 2.8 

B 

C6 0.230(0.175) 0 13 7 12 19 6 12.6 
C3 0.178(0.087) 0 9 5 8 13 4 8.6 
C1 0.171(0.094) 0 5 3 4 7 2 4.6 
C2 0.149(0.122) 4 0 0 0 8 0 3.2 
C4 0.139(0.084) 3 0 0 0 8 0 3.2 
C5 0.130(0.129) 2 0 0 0 4 0 1.6 

5.  Conclusions and Future Work 

Data mining algorithms are increasingly used in real world applications. There are a 
number of quality attributes that are used to evaluate the efficiency of the generated 
models but some other attributes (such as: understandability) are often disregarded in 
evaluation process. The goal of this study was to examine the possible assumptions 
behind measuring model understandability and to identify quantitative or qualitative 
attributes associated with understandability. We conducted a quantitative survey to 
establish model understandability from a user’s point of view. The results indicate that 
users seem to think that decision trees are generally more understandable than rule-
based models. The results also suggest that, at least in some cases, understandability is 
negatively correlated with the complexity, or the size, of a model. This implies that, the 
more complex or large a model is, the more understandable it is. A plausible reason for 
this counterintuitive result is that the studied data sets are fairly small and thus even the 



most complex or large models are not exceedingly difficult to grasp. What this also 
means is that the simpler models were too simple, that is, they did not provide the users 
with enough information to understand the problem or the decision process. 

Certainly, there is a need to conduct additional work to learn how to evaluate more 
qualitative aspects of data mining models. For future work, we aim to expand our study 
to include a larger population of participants, as well as more algorithms and data sets. 
We also hope to compare different approaches for prioritizing models. There are, for 
example, alternative pairwise comparison methods to evaluate and, additionally, it is 
possible to make use of alternative methods to pairwise comparison in itself. 
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