

Copyright © IEEE.

Citation for the published paper:

This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of BTH's products or services Internal or

personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for

resale or redistribution must be obtained from the IEEE by sending a blank email message to

pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws

protecting it.

1

Informed Software Installation through License
Agreement Categorization

Anton Borg, Martin Boldt and Niklas Lavesson
Blekinge Institute of Technology

School of Computing
SE-371 79 Karlskrona, Sweden

{anton.borg, martin.boldt, niklas.lavesson}@bth.se

Abstract—Spyware detection can be achieved by using machine
learning techniques that identify patterns in the End User
License Agreements (EULAs) presented by application installers.
However, solutions have required manual input from the user
with varying degrees of accuracy. We have implemented an
automatic prototype for extraction and classification and used
it to generate a large data set of EULAs. This data set is used
to compare four different machine learning algorithms when
classifying EULAs. Furthermore, the effect of feature selection
is investigated and for the top two algorithms, we investigate
optimizing the performance using parameter tuning. Our con-
clusion is that feature selection and performance tuning are of
limited use in this context, providing limited performance gains.
However, both the Bagging and the Random Forest algorithms
show promising results, with Bagging reaching an AUC measure
of 0.997 and a False Negative Rate of 0.062. This shows the
applicability of License Agreement Categorization for realizing
informed software installation.

Keywords-Parameter tuning; EULA analysis; Spyware; auto-
mated detection

I. I NTRODUCTION

This work addresses the problem of uninformed installa-
tion of spyware and focuses on analysing End User License
Agreements (EULAs). Malicious software (malware) vendors
often include (disguised) information about the malicious
behavior in the EULAs to avoid legal consequences. It would
therefore be beneficial for the user to get decision support
when installing applications. A decision support tool thatcan
give an indication whether an application can be considered
spyware or not would presumably make the installation task
simpler for regular users and would enable the user to be more
secure when installing downloaded applications. We present
an automated method that extracts and classifies EULAs and
investigate the performance of this method. More concretely,
the proposed method is based on the use of machine learning
techniques to categorize previously unknown EULAs, as be-
longing to either the class of legitimate or malicious software.
Machine learning, in this context, enables computer programs
to learn relationships between patterns in input data (EULAs)
and the class of output data (malicious or legitimate software).
These relationships can be used to make classifications of new
(unseen) EULAs.

A. Aim and Scope

The primary aim of this study is to present a method for
automatic EULA extraction and classification. Additionally,
we, using this method, obtain and prepare a large data set of
EULAs. This data set is used for benchmarking four different
algorithms. Evaluating the impact of feature selection and
machine learning algorithm parameter tuning is also done1.

B. Outline

In Section II-A we present the background, definitions and
related work. Section II describes an automated system for
classifying EULAs as well as the steps needed for creating
a database of classified EULAs. This database is then used
for the experiments, which are defined in Section IV. The
experimental results are presented in Section V and discussed
further in Section VI. The paper is then concluded with some
suggestions for future work in Section VII.

II. BACKGROUND AND RELATED WORK

A. Background

Malware, e.g. viruses, originated from a rather small set of
software, with the primary goal of generating revenues for the
attacker, or creating chaos among infected computer systems
[20]. To protect users from these types of software, anti-virus
tools emerged. As the malware at this point were illegal,
removing malware was a question of using the resources and
techniques available at the time [21].

At the end of 1990, a new type of malware emerged,
known as spyware, with the purpose of gathering personal
information. Due to the increase of the number of Internet
users, a market for targeted online advertisement developed.
Spyware was not considered explicitly illegal, which compli-
cated malware removal and resulted in the creation of a legal
grey zone.

A common technique for detecting malware was to blacklist
these applications through the use of signatures, i.e., by
statically dividing between legitimate and malicious software.
However, this required a copy of the malware to first be
captured on the Internet in order to create a unique signature,
and then being distributed to all customers of the anti-virus

1A web link to the actual database will be provided in a potential camera
ready version

2

tool [21]. The main drawback with this technique is the fact
that the anti-virus tools were one step behind the creators of
malware. Another drawback is related to the vast amount of
malware that spread on the Internet, increasing the size of
the signature database rapidly and resulting in significantly
decreased performance when used by customers.

Anti-virus manufacturers therefore began researching alter-
native techniques for solving the problem. For example, agent-
based approaches [15] and artificial neural networks [1][9]was
investigated. Another technique used was dynamic analysis,
which kept a suspicious program in captivity within a so-
called sandbox, e.g. a virtual machine, while monitoring its
execution as a way to discover any deviant behavior [8][21].
Even though dynamic analysis could be used for computer
viruses, e.g. by detecting the self-replication routines,it was
much harder to distinguish spyware or adware applications
from their legitimate counterparts. The reason is that adware
and spyware applications simply show information on the
screen or transmit rather small quantities of data over the
network, i.e. behaviors that are shared by most legitimate
programs as well.

B. Machine Learning

The machine learning discipline concerns the study of pro-
grams that learn from experience to improve the performance
at solving tasks[14]. A large number of directions, methods,
and concepts, which can be organized into learning paradigms.
Usually, three paradigms can be distinguished; supervised
learning, unsupervised learning, and reinforcement learning.
The suitability of a certain learning method or paradigm
depends largely on the type of available data for the problem
at hand.

From a machine learning perspective, the main problem
studied in this paper can be described as that of learning how
to classify software applications on the basis of their associated
EULAs by generalizing from known associations of EULAs
and software application classifications[12].

More formally, and based on suitable definitions [13], we
assume the existence of a universal set,I, of EULA instances.
Each EULA instance,i ∈ I, is defined by a set of features
(e.g., words, strings, values, and so on). Furthermore, we
assume that the EULAs can be categoried into a limited
number of categories or classes,C.

The learning task is then to generate a function (or mapping)
betweenI andC. This function,c : I → C, is known as a
classifier or generalization. In practice, however, one does not
have access to the complete set,I, or the correct classification
of each element of that set. Instead, a common case is to
have a limited set,J ⊂ I, of instances (inputs) and correct
classifications (outputs).

Thus, the practical objective, is to generate a classifier by
generalizing fromJ (or a subset ofJ) and the associated
known classifications for each instance ofJ . Since we are
interested in generating a classifier that will indeed be able to
classify unknown instances (instances fromI but which are
not included inJ), we need to estimate the theoretical clas-
sification performance onI by calculating the classification
performance ofJ (or, again, a subset ofJ).

The common practice in data mining and machine learning
is to divideJ into two distinct sets; the training set,Jtrain, and
the testing set,Jtest. This way, a classifier can be generated
from Jtrain and the prediction performance can be estimated
by computing the classification performance onJtest.

There are many learning algorithms available that can
perform the task of generating a classifier from input data
associated with known outputs. However, each algorithm has
its own learning bias, which is used to define the search space
(the set of available classifiers) and the traversal of the search
space. A completely unbiased learner would have access to
the complete set of possible classifiers and would be able to
traverse this set in any possible way. Of course, this search
is practically infeasible in real-world situations. It is therefore
necessary to select an algorithm, or a set of algorithms, whose
learning biases are most suitable for the problem at hand.

C. Related work

Previous research on the use of text classification techniques
within the context of EULAs is quite sparse. It have been
shown that it is possible to use machine learning techniques
to address the problem of EULA classification [12][2]. State-
of-the-art within commercial tools involve one stand-alone
application called EULAlyzer2 and one website3 called EULA
Analyzer that includes the ability to analyze a EULA. Both of
these services are proprietary and therefore lack information
regarding their design and internal construct. However, it
seems as if they make use of blacklisted words to simply
highlight any sentence within a EULA that contains one of the
blacklisted words. The computer user then has to read through
the highlighted sentences to try to come to a conclusion
whether the particular EULA should be considered legitimate
or spyware.

A comparison is made between EULA Analyzer and 15
machine learning algorithms [2], with the conclusion was
that both the Support Vector Machines [6] and Naive Bayes
Multinominal [10] algorithms performed significantly better
than the state-of-the-art tool. Finally, it could also be added
that the performance of these two algorithms have later been
improved even more when utilized on an extended data set
of EULAs [12]. However, the previous research conducted
requires user interaction when gathering the EULA, which can
be considered infeasible in a large-scale setting. Performance
tuning have also been overlooked in this context, and should
be investigated as it has proven beneficial in other cases[19].

III. A PPROACH

We have gathered 7,041 applications, where approximately
21% of the applications are malicious, from which we ex-
tract EULAs to form an extended data set. The EULAs
were extracted using the automated tool described in Sec-
tion III-A. The malicious applications, counting 1,530 applica-
tions, have been provided by Lavasoft4 and the legitimate ap-
plications, counting 5,511 applications, have been downloaded

2EULAlyzer, http://www.javacoolsoftware.com/eulalyzer.html
3License Analyzer, http://www.spywareguide.com/analyze/analyzer.php
4Ad-Aware by Lavasoft, http://www.lavasoft.se

3

from CNET’s download.com site5. Download.com thoroughly
checks for malware among the applications made available
to the public and can thus be said to be a good source of
legitimate applications.6 We also, in Section IV, test the data
of the two sources to find differences.

In order to extract the licenses from the applications, we
make use of the automated system presented in section III-A.
From the applications we managed to extract a number of
license agreements for use in our experiments. As not all
applications have licenses and our extractor does not support
all file structure, as described in Section III-A, this has left
us with 810 malicious licenses and 1,961 legitimate licenses.
For software with localized EULAs, only the English version
were kept. These numbers means that our automatic tool is
currently capable of extracting licenses from approximately
53% of the malicious applications and 35% of the benign
applications. With more extractors implemented, this number
is likely to increase. Many benign applications have similar
licenses, but since minor details still vary and they help with
the categorization, similar licenses are kept.

A. Automated System

We have for this study developed a system for automated
license classification, using a binary file as in-parameter and
presenting the user with a classification of the binary file based
on the EULA. Earlier research has used a manual process of
extracting EULAs from the binary, which is infeasible in an
real world setting. We have implemented an automated system
using machine learning techniques for this purpose. In its
current incarnation, it supports the standard installer types, e.g.
NSIS, MSI, Inno setup, as well as standard archive formats,
and makes use of publicly available programs as subsystems.
Our proposed system is divided into three stages, extraction,
transformation and classification. A flowchart of how the
proposed system works can be seen in Figure 1 and pseudo
code for the identification stage is shown in Algorithm 1. The
system is implemented in Ruby7 and in a way designed to
make it easy to extend, thus adding support for more types of
applications is fairly simple.

The system is based on the premise that a wide range of
installers are roughly equivalent to a compressed archive.In
order to know which extraction routine to use, the system
identifies the binary file. To do this, the system makes use
of the program TrId8. The system then tries to extract the
EULA from the binary file. Depending on the result of the
identification, this is done using different extraction routines.
An example of this is the MSI installer. MSI installers store
licenses in Rich Text Format(RTF) inside their string data.
The system locates the RTF data inside the string data file
and extract it. To perform the decompression of the binary
file, we have built our system around the 7zip extractor9. 7zip

5CNET Download.com, http://download.com
6Download.com Software policy, http://www.cnet.com/download-software-

policies/
7Ruby Programming Language, http://www.ruby-lang.org/en/
8Mark Pontello’s Home, http://mark0.net/soft-trid-e.html
97-Zip, http://www.7-zip.org/

File
Identification

License
Extraction

Converter Preprocessor

Classifier

Extracted text

EULA instance

Binary file

Good Bad

No EULA
Found

Fig. 1. A conceptual view of EULA extraction and classification.

Algorithm 1 File Identification
1: function CHECK(path)
2: if path is a file then
3: type = typeIdentifier(path)
4: if type is an installerthen
5: Extractor(path, type)*
6: else if type is a documentthen
7: if path.name contains license or eulathen
8: SaveDocument(path)
9: end if

10: else
11: extracted = Extractor(path, default)
12: if extracted is not NULL then
13: for all file in extracted do
14: check(file)
15: end for
16: end if
17: end if
18: else if path is a directorythen
19: for all file in path do
20: check(file)
21: end for
22: end if
23: end function

* The extractor chooses a suitable extraction routine basedon
the type. The extraction of an MSI installer is described in
Section III-A.

4

supports a large number of filetypes and are thus suitable for
our system.

The transformation stage is divided into two substages,
conversion and preprocessing. In the conversion stage, the
system converts the license to plain text. This is for the
preprocessing to be able to read the license agreement, as the
different installers store the license agreements in different
formats, e.g. MSI uses the RTF format. The RTF licenses for
example is converted to plain text files using the UnRTF10

program, stripping everything but the text from these files.
UnRTF is specifically designed to convert from RTF to other
formats. The preprocessing substage is described thoroughly
in section III-B. The result of this stage is a EULA instance
that the classifier can categorize.

The EULA instance is then passed to the classifier stage
where it is categorized using machine learning algorithms.
The result of the categorization is then presented to the user,
helping the user to decide if the application is either good or
bad, and whether or not to install the application.

B. Data Preprocessing

We conduct our experiment using the Weka machine learn-
ing workbench [22], a commonly applied suite of algorithms
and evaluation methods. In order for Weka to be able to
process the EULAs, we have opted to remove special char-
acters and to only keep the standard latin characters. As
few machine learning algorithms can process strings, we
transform the strings to a more suitable representation. Ways
for representing text include, e.g.: meta data (such as word
length, frequency or the number of words) [11], bag-of-words
(where each word in the text is defined as a feature) [17] and
n-grams [5]. [17] also looks at phrase based features, where
words would form a phrase which is able to better convey the
meaning of the sentence, and Hypernym based features, where
relationships between words is taken into account. The study
found that the bag-of-words model outperformed the more
complex text representation methods [17]. In the bag-of-words
model, strings are tokenized to words and represented by word
vectors. In Weka, this transformation is carried out using the
StringToWordVectorfilter, which we apply to the licenses. We
employ the following filter configuration: a maximum of2, 000
words are stored per category, TF IDF (Term Frequency-
Inverse Document Frequency) is used for word frequency
calculation, and the Iterated Lovins stemmer is used to reduce
the number of words by keeping only the stems of words.

Software licenses can contain a large amount of text and
as a result, yields a large number of features. Many of these
features are not useful to the learning algorithm and have, in
some cases, even been shown to deteriorate the performance of
the classifier [22]. We have therefore chosen to remove some
of the attributes left by the StringToWordVector filter.

Feature Selection is the process of reducing the number of
features available in a data set in order to increase either the
classification and/or the computational performance [16].This
is done by, using an algorithm, removing features that are
deemed unlikely to help in the classification process. It has

10UnRTF, http://www.gnu.org/software/unrtf/unrtf.html

been shown that classification accuracy have been improved
when reducing the number of features using feature selection
algorithms [23]. Several comparisons between feature selec-
tion algorithms applied on text categorization have been done
in the past. The results is thatχ2 is often considered to be the
most efficient algorithm [16][23]. However, when compared
to Categorical Proportional Difference(CPD), CPD have been
shown to outperform traditional feature selection methods, e.g.
χ2 [19]. As a result we choose to use CPD as the feature
selection algorithm of our choice. However, as we do not
know which is the best cutoff point, i.e. how many attributes
CPD should remove, we have defined a keep ratio interval
and selected a step size. In the presented study, we use a keep
ratio interval of 100% to 10% together with a step size of 10%.
After applying CPD, we are left with 10 data sets, where the
attributes range from 10% of the attributes kept to 100% of
the attributes kept.

IV. EXPERIMENTAL PROCEDURE

We want to determine whether the classification results
obtained in previous research are valid for a larger data set.
We also investigate if the classification performance can be
increased using feature selection or by tuning problem-specific
algorithm parameters.

Four algorithms have been chosen as a basis for our exper-
iments. The algorithms are Bagging, Random Forest, Naive
Bayes Multinomial and Support Vector Machine (SVM). The
three first were selected on the basis of previous experimental
results [12], and we chose to include only one algorithm from
each family of algorithms. SVM was also included since it
has been proved to work well in other text categorization
tasks [18]. In both experiments, the performance is estimated
by using the 10-fold cross-validation test. 10-fold cross vali-
dation is the process of dividing the data set into 10 subsets
(folds), using 9 folds for training and 1 fold for testing. This
is then repeated 10 times, switching the testing fold each
time. Before running our experiments we executed preliminary
experiments, which indicated that feature selection combined
with parameter tuning do not yield any specific performance
boost when used together. Therefore, we conduct separate
experiments for feature selection and parameter tuning. Also,
we made an attempt to validate that the learning algorithms
included in our experiments indeed detect the differences
between benign and spyware EULAs. Therefore, we divided
the data set into two dummy classes that each included 50
% of the benign EULAs and 50 % of the spyware EULAs.
Then we used the Naive Bayes Multinomial learning algorithm
to generalize from these two dummy classes to make sure
there were no patterns separating them, i.e. patterns included
in both the randomly selected benign and spyware EULAs.
This resulted in a AUC score of 0.526, which is very close
to random guessing (AUC is explained in Section IV-C).
Therefore the results indicate that there does not seem to be
any other hidden patterns tying the classes together, and thus
that our data set is valid for further exploration.

5

TABLE I
FEATURE SELECTION

Feature Set Sizea Weighted AUC
Relative Absolute SVM Bagging Random Forest NBb

10% 140 0.929 0.932 0.941 0.802
20% 278 0.946 0.976 0.986 0.863
30% 417 0.964 0.989 0.995 0.891
40% 555 0.968 0.991 0.994 0.956
50% 693 0.968 0.992 0.996 0.973
60% 832 0.975 0.990 0.993 0.956
70% 970 0.978 0.992 0.997 0.936
80% 1,109 0.977 0.991 0.994 0.903
90% 1,247 0.977 0.995 0.995 0.896

100% 1,385 0.977 0.995 0.992 0.897
a The fraction of attributes to keep after CPD attribute ranking
b Nave Bayes Multinominal

A. Experiment 1: Feature Selection

In this experiment we investigate what effects feature se-
lection have on the performance results of the four machine
learning algorithms mentioned previously. In order to evaluate
any potential performance gains we create ten new data sets
that all are subsets of the initial data set containing 2,771
EULAs. This gives us data sets ranging from 10 to 100%
of attributes kept, with a step size of 10%. The number of
attributes for 10% and 100% are 140 respectively 1,385, as
can be seen in Table I.

B. Experiment 2: Parameter Tuning

In the second experiment we investigate if it is possible
to increase the performance using parameter tuning of the
two algorithms with the highest performance measure from
the previous experiment. The two algorithms included in this
experiment were Bagging and Random Forests. We opted to
select the top two performers rather than the top performer,
since these two algorithms both showed fairly similar results.
Moreover, the ways in which the two algorithms can be
configured are quite different from each other. The variables
that we use for parameter tuning is discussed below. However,
it should be mentioned that both algorithms are ensemble al-
gorithms, meaning that they each use several different learning
algorithms that votes on the classification of each instance. It is
then the task of the ensemble algorithms to reach a decision
based on the results from the different learning algorithms
used.

1) Random Forests:Random forest contains two main
variables that we tune in order to determine if we are able
to increase the performance. The first variable is the number
of trees created in the forest. Each tree gets to vote for the
instance, and the class with most votes is picked. Thus, the
higher number of trees, the more votes are used as a basis
for the classification. The second variable is the number of
attributes used to build each tree. The number of attributesis
a subset of all available attributes within the data set, andis
chosen randomly for each tree. A higher number of attributes
decreases the errors produced by the forest. However, it also
makes each tree more similar [4]. For both these values we
have chosen a symmetric range of values to use, based on the
default values available in Weka.

The default value for the number of trees in Weka is 10.
Based on this value, the range we have chosen is between 4
and 16 trees (inclusive) with a step interval of 2. The default
value for the number of attributes islog2(n)+1, wheren is the
number of attributes available in the data set. Working from
this we have calculated our ranges of values for the number
of attributes withlog2(n)± x, wherex is a range from -3 to
3 with a step size of 1. The number of attributes for the data
set with 100% of the features left, seen in Table I, is 1385 and
based on this we get that the default value for our data set is
11.

2) Bagging: In Bagging we have chosen to investigate how
tuning the bag size based on the training set used, as well as
the number of iterations that the bagging algorithm performs
affect the performance of the algorithm.

The first variable is the size of the bags from which the
trees in the model is build. The sizes of these bags are
set as a percentage of the training set size. The bags are
filled randomly by sampling with the replacement from the
original training set. This means that in each bag, there will
be duplicates, as each instance in the training set can be
selected more than once. The second variable is the number
of iterations, which decides how many trees should be created
within the current bag [3]. The vote result of each tree is then
used as the result for the current bag.

The default value for the number of iterations is 10, and
we have chosen to investigate the range 6 to 14 with a step
interval of 2. The training sizes investigated is an five percent
step ranging from 100%, which is the default value in Weka,
to 75%.

C. Evaluation Metrics

We represent EULAs associated with spyware programs as
positives, while benign EULAs are represented as negativesin
our experiments. Used metrics are True Positive (TP), False
Negative (FN), False Positive (FP) and True Negative (TN).
A TP is a spyware instance classified as spyware and a FP
is a benign instance classified as spyware. A TN is a benign
instance classified as benign and a FN is a spyware instance
classified as benign. The True Positive Rate (TPR) and False
Negative Rate (FNR) are used to see how the spyware EULAs
were classified. TPR is defined asTP/(TP +FN) and FNR
is defined asFN/(TP + FN).

When evaluating the performance of the algorithms, we
have chosen to use the weighted area under the ROC curve
(AUC) single point measure, which is based on TPR and the
FPR. Two important properties of the AUC metric is that it
is not depend on equal class distribution or misclassification
costs [22]. The calculation of, and motivation for, AUC is
described in detail in [7].

V. RESULTS

A. Experiment 1

As can be seen in Figure 2, Random Forests and Bagging
outperform Naive Bayes Multinomial. The latter performs
best when only 50% of the attributes are kept.This suggests
the use of feature selection when employing Naive Bayes

6

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Naive Bayes
Random Forest
SVM
Bagging

Percentage of features kept.

W
ei

gh
te

d
A

U
C

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Fig. 2. AUC for Random Forest, Bagging, Naive-bayes Multinomial and
SVM on data sets with different amount of kept attributes.

Multinomial. However, Bagging and Random Forests still
perform better than Naive Bayes Multinomial. SVM also
performs well, but there is a clear loss of performance as the
number of attributes is decreased, and the algorithm does not
perform as well as Bagging and Random Forests, as can be
seen in Table I.

Bagging and Random Forests perform fairly similarly as
long as the percentage of kept attributes is 30% or higher. This
shows that it is possible to remove a fairly large amount of the
attributes before starting performance is degradated. However,
since the feature selection does not provide any performance
enhancement, in fact there seem to be a small performance
loss in most cases, there is no obvious argument for applying
feature selection during pre-processing.

B. Experiment 2

The second experiment concerned the impact of parameter
tuning on Random Forests and Bagging. In the following two
subsections, we present the results of our experiments.

1) Random Forest:Table II(a) and II(b) shows the result
of the parameter tuning done on the algorithms. Looking at
Table II(a) we can see that the performance of the algorithm
correlates to the number of trees used in the forest. However,
although an increased number of trees, the actual performance
gain, when measured in AUC, is minimal. In Table II(b),
showing the effects of using different amounts of attributes
used when creating each tree, we see that for each number
of attributes the results vary. These results do not seem to be
related in any way, indicating that one cannot argue that tuning
this variable is beneficiary to the overall performance.

2) Bagging: The effects of tuning the Bagging algorithm
is presented in Table II(c) and II(d). The results in Table II(c)
indicates that it is possible to lower the bag size, up till a
certain point, and gain performance. However, the results are
contradictory and should not be taken as a certainty. However,
compared to Random Forest, the TPR and FNR values are
worse.

Table II(d) shows us that increasing the number of iterations
do in fact produce a better result, going from0.995 to 0.996,

TABLE II
RESULTS FOREXPERIMENT 2

(a) Results of tuning the number of trees in Random Forest
algorithm

Trees Weighted AUC FNR TPR
mean (STD) mean (STD) mean (STD)

4 0.993(0.006) 0.019(0.019) 0.980(0.016)
6 0.993(0.006) 0.021(0.017) 0.978(0.016)
8 0.994(0.006) 0.021(0.017) 0.980(0.015)
10 * 0.994(0.006) 0.022(0.018) 0.979(0.015)
12 0.994(0.006) 0.022(0.018) 0.979(0.015)
14 0.995(0.006) 0.022(0.018) 0.979(0.015)
16 0.995(0.006) 0.022(0.018) 0.979(0.015)

(b) Results of tuning the number of attributes in Random Forest
algorithm

Attributes Weighted AUC FNR TPR
mean (STD) mean (STD) mean (STD)

8 0.994(0.006) 0.020(0.016) 0.980(0.016)
9 0.995(0.007) 0.021(0.015) 0.979(0.015)
10 0.994(0.006) 0.021(0.015) 0.979(0.014)
11* 0.994(0.006) 0.021(0.015) 0.979(0.015)
12 0.994(0.005) 0.021(0.015) 0.979(0.015)
13 0.995(0.005) 0.020(0.015) 0.980(0.015)
14 0.995(0.005) 0.021(0.015) 0.979(0.015)

(c) Results of tuning the bag size in Bagging algorithm

Bag size Weighted AUC FNR TPR
mean (STD) mean (STD) mean (STD)

100% * 0.995(0.005) 0.061(0.017) 0.942(0.023)
95% 0.997(0.003) 0.062(0.018) 0.942(0.023)
90% 0.996(0.004) 0.061(0.022) 0.938(0.022)
85% 0.996(0.004) 0.068(0.024) 0.934(0.031)
80% 0.994(0.005) 0.062(0.023) 0.935(0.025)
75% 0.995(0.005) 0.074(0.010) 0.928(0.021)

(d) Results of tuning the number of iterations in Bagging algorithm

Iterations Weighted AUC FNR TPR
mean (STD) mean (STD) mean (STD)

6 0.994(0.005) 0.063(0.015) 0.944(0.019)
8 0.994(0.005) 0.062(0.018) 0.943(0.019)
10* 0.995(0.005) 0.061(0.017) 0.942(0.023)
12 0.995(0.004) 0.057(0.020) 0.944(0.024)
14 0.996(0.004) 0.057(0.020) 0.944(0.024)
Default value is marked with an asterisk.
All other parameters are left as per default.

concerning AUC. The TPR and FNR values indicate that an
increased number of iterations provide a minimal performance
gain. The TPR in Table II(c) indicates that decreasing the bag
size can result in decreased performance.

VI. D ISCUSSION

We have in this work presented an automated tool that
(based on the EULA) decides if an application is considered
malicious or benign. The use of this tool would help the user
to decide whether or not an application can be considered ma-
licious. In order to make this tool work we had to implement
a number of extractors capable of extract the EULA for the
program. As there exists several different installer formats and
packers, we have in this study focused on the ones prevalent in
our data set. However, we have built our tool in such a way that
it is quite easy to extend it with more formats. It is also written
in a way that makes it possible to use it for bulk tasks (e.g. in

7

a bash script) or calling it from a program (e.g. an antivirus
tool), the program is flexible and possible to use in both a
server environment and desktop environment. Earlier research
has shown the feasibility of using machine learning techniques
to perform text classification on EULAs to distinguish between
malicious and benign applications. However, earlier toolshave
required manual input when extracting EULA and submitting
it for classification. One of the main contributions of this paper
is the presentation of an automated tool that is able to extract
EULAs, classify them, and then give decision support. The
level of performance reached by the algorithms clearly shows
the potential of an automated system for EULA classification.

A. Data Set Content

This work involves a significantly extended data set of 2,771
EULAs compared to the two previous studies that contained
100 and 996 instances, respectively. By using this data set of
increased size it is our intention to more accurately mimic a
real world setting. During the work of extracting the EULA
texts from both the collected spyware and legitimate programs
we could see a clear trend that malicious applications to a
higher extent contained EULAs compared to benign applica-
tions. In this case 53 % of the malicious programs contained
EULAs compared to 36 % of the benign programs, which
strengthens the claim that developers of malicious programs
make use of EULAs as a means to avoid legal consequences.

Even though this is a large data set, gathering it revealed
that of the 7,041 applications gathered, we were only able to
extract 2,771 EULAs, i.e. around 39%. This can mostly be
attributed to the number of extractors implemented and can
thus be corrected by implementing more extractors. However,
another contributing factor could be that some applications
will not contain a EULA, but as the goal of this is detecting
malicious software that uses EULA, this can be considered
acceptable.

B. Proposed System Vulnerabilities

Our proposed automated system classifies EULAs as be-
longing to either malicious or benign programs, and then
presents the results to the user. If the classified EULA is
previously unknown by the system it could be considered
that the system ask the user if the EULA content, together
with meta-data about the associated binary program, could be
collected. With this information it is then possible to automat-
ically retrain the classifier with the new and slightly extended
data set, i.e. using online learning. The alternative approach is
offline learning, which involves collecting previously unseen
EULAs by other means, and thereafter manually regenerating
a new classifier at certain time-intervals, e.g. once a month.
Regardless which method is being used the classifier would
still automatically detect any attempt by the developers of
malicious programs to fool the system by reformulating the
content in their EULAs. The reason for this is that they always
need to express their software’s behavior in the text, and by
doing so they distinguish their EULA content from the benign
EULAs.

However, it could be argued that the overall classification
performance probably would be slightly higher if an online
learning approach is used instead of an offline, since the
classifier would be continuously re-trained using new EULAs.
Of course, a prerequisite for the online learning approach is
that the integrity of the new EULAs and the associated meta-
data can be guaranteed. Otherwise, it could be possible for
external parties to feed the learning component with false
EULA content and meta-data in an attempt to reach a certain
conclusion for a specific EULA. The fundamental problem
in such a scenario is whether the input from the clients to
the server really can be trusted to be untampered with. Using
cryptographic techniques it could be set up so that the data
could not be modified in transit, but unfortunately it is harder
to protect the client software from any unauthorized tampering.

C. Experimental Results

Our results show that both Bagging and the Random Forest
algorithms handles the EULA categorization problem well,
which is surprising as SVM often is considered the algorithm
most suited for text categorization problems. Both Random
Forest and Bagging outperforms SVM as can be seen in Figure
2. Naive Bayes Multinomial was also out performed since it
showed quite poor performance results except when around
50 % of the features were reduced.

As shown in Figure 2, both Bagging and Random Forest
show equivalent results when their default configurations were
used, with a slight peak when 10 % of the features were
reduced using CPD. Parameter tuning for both algorithms
showed only slight alterations in performance. The resultsalso
indicate that configuring the Random Forest algorithm using
14 trees and 14 attributes present the best result within the
context of EULA classification. For the Bagging algorithm
the use of a bag size of 95 % and 14 iterations result in
best performance. The Bagging algorithm reached the highest
performance with an AUC measure of 0.997 and a standard
deviation of 0.03, together with a low FNR of 0.062. The latter
is important as trust in the proposed system otherwise could
be lost if the proposed system suggests to the user that he/she
should install a malicious application. From a user perspective
it is less critical if the system suggest that the user shouldn’t
install a legitimate program. It should be noted, that when
novel instances, from outside our data set, are applied to the
classifier, a certain performance degradation is expected.

VII. C ONCLUSION AND FUTURE WORK

We have implemented and presented an automated tool for
classification of binaries, based on the bundled EULA. We
have created an algorithm, also presented in the paper, which
handles the extraction. As the number of malicious programs
increases, the presented system could assist users in separating
between malicious and benign programs based on their EULA.

Furthermore, we have, as a result of using our automated
tool created a dataset consisting of 2,771 EULAs. To the best
of our knowledge, this is the largest collection of labeled
EULAs available today. Using this dataset, we investigate the
performance of four different learning algorithms, strongly

8

suggesting the suitability of using Bagging and Random
Forest to classify EULAs. The compilation and use of this
extended dataset compared to previous datasets used in our
prior experiments is a major contribution in this paper.

Using this dataset, we have investigated whether or not
performance tuning of the learning algorithms provide bet-
ter results than the standard settings. The results makes us
conclude that the use of performance tuning is of limited
use for the problem at hand. Similarly, we investigated the
impact of using the feature selection algorithm CPD, which
in other settings have proven very effective for increasingthe
prediction of the learning algorithm. However, we’ve found
that, excluding Naive Bayes Multinomial, prediction is of
almost no difference or even worse. In the case of Naive Bayes
Multinomial, CPD increased the prediction, but otherwise
performed worse than the other algorithms evaluated.

For future work we plan to carry out experiments where
computer users evaluate the use and benefit of a fully au-
tomated decision support tool when installing software. We
will also investigate the occurrence of EULAs in a real world
setting.

REFERENCES

[1] W. Arnold and G. Tesauro. Automatically generated win32heuristic
virus detection. InProceedings of the 10th International Virus Bulletin
Conference, Orlando, USA, September 2000.

[2] M. Boldt, A. Jacobsson, N. Lavesson, and P. Davidsson. Automated
spyware detection using end user license agreements. InProceedings
of the Second International Conference on Information Security and
Assurance, Busan, Korea, April 2008.

[3] L. Breiman. Bagging predictors.Machine learning, 24(2):123–140, Jan
1996.

[4] L. Breiman. Random forests.Machine learning, 45(1):5–32, Jan 2001.
[5] W. Cavnar and J. Trenkle. N-gram-based text categorization. In

Proceedings of the 3rd Annual Symposium on Document Analysis and
Information Retrieval, Hong Kong, China, Jan 1994.

[6] N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge Univer-
sity Press, West Nyack, NY, 2000.

[7] T. Fawcett. An introduction to roc analysis.Pattern Recognition Letters,
Jan 2006.

[8] G. Jacob, H. Debar, and E. Filiol. Behavioral detection of malware:
from a survey towards an established taxonomy.Journal in Computer
Virology, 4(3), 2007.

[9] J. O. Kephart. Biologically inspired defenses against computer viruses.
In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, Montral, Canada, January 1995.

[10] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes. Multinomial
naive bayes for text categorization revisited. InProceedings of the 17th
Australian joint conference on artificial intelligence, Cairns, Australia,
December 2004.

[11] L. Larkey. Automatic essay grading using text categorization techniques.
In Proceedings of the 21st International Conference on Research and
Development in Information Retrieval, Melbourne, Australia, Jan 1998.

[12] N. Lavesson, M. Boldt, P. Davidsson, and A. Jacobsson. Learning
to detect spyware using end user license agreements.Knowledge and
Information Systems, 2(3):285–307, 2011.

[13] N. Lavesson and P. Davidsson. Evaluating learning algorithms and
classifiers. Intelligent Information & Database Systems, 1(1):37–52,
2007.

[14] T. M. Mitchell. Machine learning. page 414, Jan 1997.
[15] T. Okamoto and Y. Ishida. A distributed approach to computer virus

detection and neutralization by autonomous heterogeneousagents. In
Proceedings of the 4th International Symposium on Autonomous De-
centralized Systems, Tokyo, Japan, March 1999.

[16] M. Rogati and Y. Yang. High-performing feature selection for text
classification. InProceedings of the Eleventh International Conference
on Information and Knowledge Management, McLean, USA, Jan 2002.

[17] S. Scott and S. Matwin. Feature engineering for text classification.
In Proceedings of the Sixteenth International Conference on Machine
Learning, Seattle, USA, Jan 1999.

[18] F. Sebastiani. Classification of text, automatic. InThe Encyclopedia of
Language and Linguistics, pages 457–463. Elsevier Science Publishers,
2006.

[19] M. Simeon and R. Hilderman. Categorical proportional difference: A
feature selection method for text categorization. InProceedings of the
Seventh Australasian Data Mining Conference, Glenelg, Australia, Jan
2008.

[20] E. Skoudis. Malware - Fighting Malicious Code. Prentice Hall PTR,
Upper Saddle River NJ, 2004.

[21] P. Szor. The Art of Computer Virus Research and Defence. Pearson
Education, Upper Saddle River NJ, 2005.

[22] I. Witten and E. Frank.Data Mining: Practical Machine Learning Tools
and Techniques. Elsevier, San Francisco, USA, 2005.

[23] Y. Yang and J. Pedersen. A comparative study on feature selection
in text categorization. InProceedings of the Fourteenth International
Conference on Machine Learning, San Francisco, USA, Jan 1997.

	Title: Informed Software Installation through License Agreement Categorization
	Author: Anton Borg, Martin Boldt, Niklas Lavesson
	Conference: Information Security for South Africa
	Year: 2011
	City: Johannesburg

