

Copyright © IEEE.

Citation for the published paper:

This material is posted here with permission of the IEEE. Such permission of the IEEE does

not in any way imply IEEE endorsement of any of BTH's products or services Internal or

personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for

resale or redistribution must be obtained from the IEEE by sending a blank email message to

pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws

protecting it.

An Exploratory Study of Software Evolution and
Quality: Before, During and After a Transfer

Ronald Jabangwe
Blekinge Institute of Technology

Karlskrona, Sweden
Ronald.Jabangwe@bth.se

Darja Šmite
Blekinge Institute of Technology

Karlskrona, Sweden
Darja.Smite@bth.se

Abstract—In the light of globalization it is not uncommon that
different teams from different locations get involved in the
development of a software product during its evolution. However,
empirical evidence that demonstrates the effect of changing team
members on software quality is scarce. In this paper, we
investigate quality of a software product, across subsequent
software releases, that was first developed in one location of
Ericsson, a large multinational corporation, then jointly with an
offshore location of the same company, and finally transferred
offshore. To get a better understanding multiple data sources are
used in the analysis: qualitative data, consisting of interviews and
documentation, and quantitative data, consisting of release
history and defect statistics. Our findings confirm an initial
decline in efficiency and quality after a transfer, and highlight the
areas of concern for companies that are considering transferring
their product development from experienced teams to those
having limited or no previous engagement with the product.

Keywords: Global Software Development; Software transfer;
Software evolution; Software quality; Empirical case study

I. INTRODUCTION
Software is bound to go through numerous

changes due to variances of environmental variables,
for example changes in user requirements, in which
it operates. As a result software evolution is an
inevitable phenomenon. Software evolution refers to
the dynamic change of characteristics and behavior
of the software through, for example, maintenance
activities or implementation of enhancements, over
time [1]. The phenomenon of software evolution
was first observed in 1970 and subsequently led to
the development of eight laws of software evolution
between 1974 and 1985 [2–4].

Global software development (GSD) projects, in
which development activities are carried out in
various settings such as offshore and distributed
development, are increasingly a prevailing
phenomenon. Thus it is not uncommon that software
evolves in a number of GSD settings. Consequently
the role of GSD and its impact on quality has
attracted recent interest in the software engineering
community, but only a few empirical studies are

published, for example, [5] and [6]. While the early
days of GSD as a field provided a mix of
experiences with offshore development, it has been
advised to distinguish unique settings and scenarios
according to the differing and distinct characteristics
they embody [7]. An example of a classification of
different settings can be found in the work of Šmite
and Wohlin [8]. In our case, the company studied
has been involved in a number of scenarios in which
development work was transferred to offshore sites
for further development or maintenance. Relocation
of software development work, which is also called
a software transfer leads to a full exchange of
experienced developers with new developers who
may have limited or no previous engagement with
the product [8]. We thus study the effect of a transfer
as a complication in the course of software evolution
and evaluate software quality across releases.

In their work Belady and Lehman [2] postulate
the bases and peculiarities associated with software
evolution for large systems built for commercial use.
The laws describe the inevitability associated with
evolving systems. Due to market pressure and
demands the product used in this study is subject to
change in characteristics and increase in size with,
for example, the addition of new features, which the
laws of evolution link with implications on
complexity and quality. Thus the following laws are
specifically of interest in our study. The first law of
evolution, the law of continuing change, and the
sixth law of evolution, the law of continuing growth,
suggest the importance of implementing and
adapting changes over time so as to sustain or
increase user satisfaction [2–4]. Software evolution
is a phenomenon that arises as a result of these
progressive changes. The second law, the law of
increasing entropy/complexity, and the seventh law,
the law of declining quality, hypothesize the link
between software evolution and the potential decline

in quality [2–4]. Our work is inspired by the laws of
evolution and driven by the curiosity to better
understand these implications in the context of
software transfers.

This paper describes findings from a
retrospective analysis of evolution of a mature
software-intensive product from a large
telecommunication company. The purpose of this
exploratory study is to assess software quality
before, during and after a transfer. The product used
in this study was first developed in one location,
then jointly with an offshore site and then had the
development work transferred to the offshore site.
We propose that transferring development work
during software evolution to a site that has little or
no past experience with a product may have
implications on quality as the new site build up
competency and climb the learning curve.

The remainder of the paper is organized as
follows. Section II outlines research related to our
study followed by a description of both the context
and the research methods used in this study, in
Section III. Section IV offers results from the
quantitative and qualitative analysis, followed by a
discussion highlighting findings from our study
regarding, software evolution, quality and transfer,
in Section V. Validity threats and study limitations
are discussed in Section VI. The paper ends with the
conclusions and future work, in Section VII.

II. RELATED WORK
Research related to the topic of this paper is

threefold. First of all, we refer to research on how
software quality can be explored, secondly, to the
relation of software evolution and quality, and
thirdly, to research on the influence of offshore
development and software transfers on quality.

Objective data and measures (i.e. related to defect
data) are often used to evaluate quality [1].
However, subjective views on quality can also be
used for software quality assessments. Chang-Peng
et al. [9] use both subjective views and objective
data to investigate quality. The objective
characteristics that they used to denote quality were
the number of defects found and software
complexity as an indirect measure of quality
(calculated using measures, including well-known
measures for object-oriented designs from
Chidamber and Kemerer [10]). Complexity was also

studied subjectively through perceptions of
complexity expressed by developers. Similarly,
Xenos and Christodoulakis [11] propose a method
that can be used to measure perceived quality of
both internal customers, employees that also act as
customers, and external customers, end-users. In
their study of 46 projects a positive correlation was
found between objective measures obtained from the
internal characteristics of the product, such as
McCabe’s cyclomatic complexity, and measures
derived and based on customers notion of quality
(obtained through surveys).

Practices that ensure that software is running as
expected, such as fixing defects, are part of software
maintenance [12]. Maintenance and evolution as
terms are often used interchangeably in academia
and industry [1], [13]. The Software Engineering
Body Of Knowledge (SWEBOK) [14] lists
evolution as a sub-knowledge area of maintenance.
In this paper, we distinguish software evolution from
pure maintenance activities to refer to the process of
adding new features as well as correcting defects
that result in a new software release that has
distinguishing characteristics from the predecessor
version.

Since the early work on software evolution by
Belady and Lehman [2] more studies have been
carried out on the relation of software evolution and
quality. Different measures have been found to link
software artifacts with observed or perceived
quality. From the evolution perspective an important
concept is code churn measures. These are a set of
measures that by their definition attempt to capture
and objectively measure changes over time of
evolution of software artifacts (for example, deleted
lines of code) [15][16]. Results from the study
conducted by Nagappan et al. [16] show that, in the
context of their study, code churn measures are
positively correlated to defects. Defect reports are an
essential concept for quality assurance purposes [1].

As software evolves, quality assurance requires
accounting for the impact of development
environment and processes [15]. One of the
potentially influencing factors that are associated
with quality concerns is globalization of software
development. Different settings in GSD are
associated with unique characteristics and
consequently unique challenges such as different
work practices, asynchronous work, and cultural

differences [8]. These challenges can inhibit the
realization of quality goals. Furthermore, changing
from one setting to another can have an impact on
quality, as in the case of software transfers when
development of an evolving software is moved from
one development team to another. Although there is
little research focused on software product transfers,
an empirical study suggests that transfers cause a
decrease in development efficiency and harder to
capture secondary negative effect on quality [17].

Motivated by the gaps in related work, this study
reports on the changes in quality across different
releases of a software product before, during and
after a transfer. Investigation of the effects of
transfer on software quality is an important
contribution of this study to the body of knowledge
on GSD. In contrast to many studies taking a static
perspective, this study captures an evolutionary view
on quality. In particular release history, defect
reports and documentation are used to conduct
software evolution analysis as suggested by [1].
Objective evaluation is further complemented by
subjective views obtained from developers, as
suggested by [18].

III. RESEARCH METHODOLOGY

A. Purpose
The objective of this exploratory study is to

evaluate software quality through objective
measures and subjective views during software
evolution in a GSD context. The study is conducted
in a company that develops software-intensive
products globally for the telecommunications
market. Though the product used in the study was
transferred from one location to another within the
same company during its evolution, the study does
not dwell on the details of the transfer itself but
rather on the product quality and evolution before,
during and after the transfer. This study is driven by
the following research question:

RQ: How does software quality vary in a GSD
setting that involves a transfer?

The objectives here are to explore the prevailing
perception on quality across releases (to capture
subjective views) and the variation of defects
reported across releases (to capture the objective
measures).

B. Case Description and Context
Research reported in this paper is an empirical

single-case exploratory study, which is conducted
according to recommendations from Runeson and
Höst [19]. The case company is Ericsson, which is a
large multinational corporation that develops
software-intensive products catering for the global
market. The company is selected based on
availability and interest in the research in this area.
Recently a number of products were transferred
from one of the company’s locations (Site-A) to
different offshore sites, and the company was
interested in understanding the impact of such
changes. The company selected one particular
product for these purposes. The product
development was initially carried out at Site-A in
Sweden and then gradually transferred to another
Ericsson location, Site-B in India.

The product under study has a long history.
Development of the software product commenced in
2001 at Site-A and the product was released to the
market in 2007. Employees from Site-B were
temporarily moved to Site-A primarily for practical
training. The transfer from Site-A to Site-B was
carried out and completed in 2009 at which point it
was already a mature product. Details of the transfer
can be found in [17] (in the article the transfer for
this particular product is referred to as Project B).
Šmite et al. [7] proposed a classification of GSD

related empirical studies to help understand the
context and the extent of applicability and
generalizability of reported studies related to GSD.
Table 1 shows how the study reported in this paper
fits into the GSD field according to characteristics of
GSD scenarios provided in [8] and the classification
in [7].

TABLE I. STUDY CHARACTERISTICS IN GSD CONTEXT

Empirical
Background

Main Method Case Study

Sub methods Interviews, quantitative analysis of
defect reports

Empirical Focus Empirically-based (exploratory)
Subjects Practitioners

GSD
Background

Collaboration Mode Intra-organization/Offshore insourcing

Approach and Type
of Work

Single-site execution of software
product development in Site-A, parts of
which were further transferred from
Site-A to Site-B resulting in distributed
work, and then finally transfer of the
remaining parts to Site-B, which
resulted in the single-site execution

Study
Background

Focus of Study

Software evolution and quality

C. Data Collection and Analysis
In empirical research such as case studies,

triangulation is an approach that can be used to
strengthen, and increase accuracy and validity of
findings [19]. Data and methodological triangulation
were thus used for this purpose. Qualitative analysis
results were used to consolidate the results obtained
from quantitative analysis.

The use of both qualitative and quantitative
methods is also referred to as the mixed method
approach [20]. The motivation for using this
approach in this study is that it helps to understand
the context in which the product was developed and
to obtain quality aspects from different viewpoints
(i.e. objective measures and subjective views) during
the evolution of the product. Thus quality is
analyzed using subjective views of those involved
with the product’s development work, prior to the
transfer, as well as using objective measures before
and after the transfer.

1) Quantitative Data
Quantitative analysis involved defect data and

product release history. A defect in this study is used
to refer to any reported deficiency or imperfection or
problem in the source code that resulted in the
software producing results that deviated from the
expected outcome, as defined in the product
specifications, and as a result required a solution to
be implemented directly into the source code.
Therefore we use a slight modification of the two
definitions from the International standard
ISO/IEC/IEEE 24765a [12]. This includes defects
found regardless of the software life cycle or phase
(for example, before or after deployment at customer
sites) or cause, severity, detection method (e.g. static
analysis or during execution), type or solution
method.

Defects reported between 2007 and 2011 were
extracted from the company’s database and used for
the purposes of this study. Only code-related defects
were considered, thus an initial defect analysis was
conducted to identify specifically defects that were
linked to a deficiency or imperfection or problem in
the source code, hence excluding documentation and

a ISO/IEC/IEEE 24765 defines defects as “a problem which, if not corrected,
could cause an application to either fail or to produce incorrect results”, and
“an imperfection or deficiency in a project component where that component
does not meet its requirements or specifications and needs to be either
repaired or replaced”.	

other defects that are irrelevant to the purpose of this
study. A test and verification expert at the case
company assisted with defect data extraction,
compilation and analysis. A series of meetings were
held with the expert to discuss and to ensure that
appropriate defects linked with an imperfection or
problem in the source code were identified.
Furthermore the meetings were used to consult with
the expert on the data correctness and to also discuss
and verify analysis results such as the alignment of
defects to the correct releases. Hence these meetings
increased the precision of the quantitative analysis
results. The results were documented using meeting
notes.

Analysis of the quantitative data was done
through the aid of descriptive statistics. Descriptive
statistics targets creation of an understanding and
provides an overall description of the most important
details of the data [20]. In this case it is used to
explore significant characteristics of the defect data
reported across releases.

2) Qualitative Data
As a part of the qualitative analysis, interviews

were conducted with employees that were involved
with the product development before the transfer.
The purpose of the interviews was to investigate
subjective opinions on quality across different
releases during software evolution. An overview of
the interviewees, their roles and responsibilities, and
the number of years of being involved with the
product are given in Table 2. Due to convenience
and availability for face-to-face interviews, only
employees from Site-A were interviewed.

None of the interviewees are involved with
development of the product any longer. The latest
involvement was terminated in 2010 as seen in
Table 2. It is worth noting that several interviewees
were involved with the product before, during and
after the transfer. This is important, because we
explore what happened in the post transfer period.

Quality is multifaceted thus questions were
formulated to ensure different angles and
perspectives were covered during the interview
process. This ideology is similar to that proposed in
the McCall model [21]. In particular,
maintainability, reliability and reusability were
selected as the key source code quality
characteristics as suggested in [22] [23], while
questions pertaining to understandability, modularity

and complexity were used to detect inconsistencies
in the information provided by the interviewees. The
approach of using such safeguards is similar to that
suggested by Xenos and Christodoulakis [11].

TABLE II. INTERVIEWEES ROLES AND RESPONSIBILITIES

No Role Responsibility Involvement
(No. of Years)

1

Coordinator
and Techincal

Lead

Leadership of a team of developers
involved in product customizations

~ 9 years

2

Developer

Design, development and testing in the
maintenance activities (2008-2009)

~ 8 years

3

Developer

Design and development

~ 8 years

4

Solution
Architect

Design and communication of the
product architecture to developers and
the verification and validation team.

~ 3 years

5 Team Leader Leadership of a team of appr. 10
developers involved in design and
development

~ 7 years

6 Tester Application integration testing ~ 9 years
7 Tester Non-functional testing ~ 8 years
8

Development
Manager

Unit Management for appr. 20 people.
Responsibility for the product.

~ 9 years

9 Test Line
Manager

Test Line Management ~ 7 years

10

System
Architect and

Technical
Manager

Analysis of the architecture and source
code architects

~ 10 years

All interviews were recorded with the consent of
the interviewees. Coding was conducted by placing
interview quotes into categories of specific quality
factors. Depending on the context of discussion
modularity, complexity and understandability were
linked to reliability, maintainability or reusability
aspects. This process of grouping qualitative data
according to patterns and relation is similar to the
Typological analysis method [24]. Table III contains
the number of interview quotes that were found to be
associated with three quality attributes and
confounding factors that were noted by the interview
participants as having potential influence on defect
occurrence. Some interview quotes counted in the
analysis were not mutually exclusive. For example,
certain quotes for reliability were also found to be
either associated with maintainability or reusability
or both aspects of the system. Hence some quotes
were counted in multiple categories.

In addition to the interviews, archival data and
records, such as documentation and information
posted on the company’s intranet webpages, were
also reviewed to gain deeper insight into the product
evolution. After the interviews, email

communication with the interview participants was
also used to clarify any unclear details.

TABLE III. INTERVIEW QUOTES

Categories No. of
quotations

Quality Attributes Reliability 48
Maintainability 59
Reusability 24

Confounding
factors on defect
occurrences

Differences in culture or ways of working 8
Change in product attributes (i.e.
Increase in size or complexity)

17

Lack of prior engagement 10

IV. RESULTS AND ANALYSIS
In this section we first discuss how the product

evolved from its initial release in 2007, and then
present our findings regarding the quality of the
product and how different GSD settings influence
the quality.
A. Evolution

Table IV illustrates the product release history
data for six major releases, including subsequent
changes in releases since their announcement. The
number of defects in the table is multiplied by an
anonymous factor for confidentiality reasons.
Analysis of the size of each release is important for
several reasons. First of all it is fair to assume that
the larger the release, the more potential defects it
may contain. Secondly, the larger the release, the
more time it may require to be delivered.

The findings suggest that the source code for the
product’s releases grew in size by approximately
56% between releases R1 and R6. The main sources
of additional changes (and thus LOC) in subsequent
releases were new features, customizations for
specific customers and/or defect corrections for each
release, which are assessed qualitatively in relation
to the main release.

TABLE IV. RELEASE HISTORY

 Release Year Release Size
(in LOC)

Increase in LOC
(relative)

Delivered
after

Defectsb

R1 2007 910 974 Unavailable — 100
R2 2007 1 004 814 +5,7% 5 months 222
R3 2008 1 100 881 +19,1% 6 months 91
R4 2008 1 217 545 +19,1% 6 months 361
R5 2009 1 334 120 +0,2% 8 months 427
R6 2010 1 424 943 +15,0% 12 months 801

b. Number of defects is multiplied by an anonymous factor for confidentiality reasons

Column “Increase in LOC” denotes percentage
increase for each release i.e. difference in LOC since

introduction of the specific release on the market
until end of 2011. For example since the availability
of R2 on the market, R2 has increased in LOC by
5,7% due to defect corrections and customizations.

Against expectations the size of additional
changes was not proportional to the number of
defects found. This may be explained by refactoring
efforts, which are not evident from the purely
quantitative data analysis. Thus, explanations were
further sought through interviews. Information
obtained from the interviews revealed that
refactoring was seldom performed before R4.

As one interviewee explained, new functionality
was added without any refactoring efforts, and only

after R4 the code was being revised.
This means that LOC is not a reliable measure of

work effort. However, from the quality point of view
it still illustrates the size of the legacy code that is
maintained and thus is of interest for our analysis.

The evolution of the product suggests linear
growth in size between subsequent releases of
approximately 9-10% between the first five releases
and approximately 6% between R5 and R6. This is
consistent with the first and sixth laws of evolution
[4]: law of continuing change and law of continuing
growth, respectively. With the implementation of
mainly new features and defect corrections, each
software release has been larger than the
predecessor. Thus, growth in sizes of source code
artifacts may increase complexity of releases [1].

Some interviewees revealed that as the product
increased in size over time, they had more difficulty
isolating defective source code components.

Thus the increase in complexity in the course of
evolution needs to be taken into consideration. For
example, it could explain why release frequency
slowed down over time as the release cycle history
indicates.
B. Evolution and Quality

Like many software organizations, defect data in
Ericsson is used to evaluate the quality of the
product. Table IV shows that there has been a
gradual increase of defects after R3, with a
significant increase in defects for R6.

Seven of the interviewees related the increase in
defects reported primarily to the increase in size of
releases and the increase in complexity of features.

In order to understand the criticality of this trend
the defect data was then broken down to different
priority levels as shown in Figure 1. Priority “A”
represents the highest priority level and “C”
represents the lowest level, according to the
significance or severity of the reported problem.
Interestingly, while the amount of defects of “B” and
“C” priorities is proportional and repeats the overall
defect curve, there is no dramatic increase in the
high priority problems since R3.

As mentioned earlier, the total number of defects
per release has been collected not only during the
actual development of the initial version of the
release, but also during its subsequent maintenance
activities. Figure 1 depicts the length of the lifetime
of and the relative number of defects per release. For
example, R1 has been on the market for 56 months,
while R6 only for 20 months. We would expect to
see more defects for older releases, since the
likelihood of new or more defects emerging
increases as the system usage increases [25].

Some interviewees pointed out that increase in
the number of customers over time could have

influenced the number of defects reported.
When studying the data, however, no linear

dependency was observed. Thus we conjure that
more powerful factors have determined the defect
curves for example effectiveness of testing process.

Motivated by our findings a more detailed look
on the defect data focusing on the chronological
course of defect reports was created and discussed
with the interviewees (see Figure 2).

We noticed that there is a sharp rise and decline
in the number of defects shortly before and/or
immediately after each release. Interviewees
attributed this trend to the implementation of new
features in each new release.

Interviewees revealed that, there would be often a
peak in the number of reported defects after
implementing new functionalities. However,

eventually the number of defects reported would
decline and stabilize.

c. Number of defects is multiplied by an anonymous factor for confidentiality reasons

Figure 1. Defects and Priorities per Release

Interestingly, R6 has several peaks that qualify as
pre- and post-release increase in the number of
defects, and these are significantly larger than for the
previous releases. To investigate the reasons for this
trend we further discuss the impact of a transfer on
product quality.

C. Software Transfer and Quality
As noted earlier, the evolution of the transfer

indicates two interesting trends – there is a growing
amount of defects in R6 and the delivery of that
release required much longer time. To illustrate
these trends in the light of product evolution we
show the distribution of defects reported from the
beginning of 2007 until the end of 2011 as well as
the transfer milestones between releases R1 and R6
in Figure 2. The actual transfer took place after R4
as shown in the figure. R5 was released during the
transfer period whilst R6 was released after the
transfer.

Though confounding factors, such as system
usage increase, may have had a role in the exposure
of defects, our observations suggest that the transfer
of the product from Site-A to Site-B might have
been the main cause of the significant increase.
When discussed with the interviewees, a common
opinion was expressed.

Eight out of ten interviewees noted, that the
average defect-rate across releases was rather

stable, and that introduction of the new developers
from Site-B into the development caused various

challenges when transferring the knowledge
necessary to build up competency and aligning

quality views

Figure 2. Defects Across Releases and Transfer Period

A (high)
B (medium)
C (low)

Priorities

1400

1200

1000

200

400

600

800

180 399 163 649 769 1442
Defects
per release

0
20
40
60

R1

R2

R3

R4

R5

R6

No of defectsc

Releases

Release
market
appearance

Months

56 52 46 40 32 20

300!

250!

200!

150!

100!

50!

0!

2008! 2009! 2010! 2011!2007!

R1! R2! R3! R4! R5! R6!

Responsibility in Site-A!
Some involvement from Site-B!

Transfer ! Responsibility in Site-B!
No involvement from Site-A!

Employees from Site-B were temporarily moved
to Site-A for competency and practical training in
the preparation for the transfer. Involvement of the
Site-B led to several observations of the learning
process as discussed by the interviewees.

Some interviewees pointed out that the lack of
prior engagement with the product meant that they

were not aware of dependencies between source
code artifacts or components, and thus of the ripple
effect that certain changes had. However, as time
passed the necessary knowledge and competences

were built up and defects related to such cases
decreased.

Two interviewees perceived cultural difference
to have an important role in explaining why the
defect curves changed.

The interviewees perceived that the new site had
different ways of approaching quality goals.

According to the results from the interviews there
was a misalignment of the notion of quality between
employees from Site A and those from Site B. As a
result the ways of meeting quality goals and ways of
working differed between employees from the two
sites. This potentially influenced defect occurrence
during the involvement of employees from Site B.

Although the limited knowledge and experience
has a profound influence on the quality, we conjure
that implementation of different testing processes
might have also contributed to the post-transfer
increase in the number of defects reported.

V. DISCUSSION
In this paper we have studied an evolution of a

product that was first developed in one location and
then transferred to another location of the same
company. We have explored how quality of the
product changed throughout its lifetime on the basis
of quantitative defect analysis and qualitative
observations elicited from developers.

The hard facts indicate that the size of the product
experienced a linear growth with each release, the
delivery cycles became larger and the number of
defects was uneven and notably increased for the
last release. However, there are many other factors
that may alter the interpretation of objective
measures over different releases [26] and further
explanations were sought through interviewing
product developers.

These additional observations suggest that as the
size of the product grew, complexity increased and
maintaining the legacy code became challenging.
This confirms the second law of evolution – the law
of increasing entropy/complexity [4].

Other factors discussed as potential sources of
quality concerns were: the number of customers,
exposure to the market, and complexity of the new
features developed. However, the relative stability of
the defect curves in the first five releases (with
exception of the third release) suggests that the
seventh law, the law of declining quality during
product evolution [4], is not confirmed. This means
that it also cannot be used to explain the sudden
significant increase in the last release of the product.

One of the emerging findings in this study relates
to the impact of a software transfer on product
quality. Previous research has established that a
transfer is a nontrivial and demanding task, more so
for large complex software products [17]. This study
confirms related findings of an initial decrease in
quality after a transfer [17][27], and attributes it to a
limited knowledge and experience with the product.
While task familiarity is important for performance
[28], a transfer disrupts the continuity of the
knowledge. Some of the discussed consequences
revealed problems with isolating defects and ripple
effects caused by the failure to evaluate the impact
of changes. It is worth noting that the decrease in the
number of defects in 2011 in Figure 2 shall not be
perceived as the quality improvement, as it simply
illustrates the “tale” of the defect reports for R6. To
understand whether the quality is improving or not, a
latter release shall be inspected.

Transfers have been also blamed for initial
decrease in efficiency [17][27][29]. For example,
Mockus and Weiss [29] report that in their study,
full recovery of productivity for development work
after a transfer was approximately 15 months
(excluding training period). Although we have not
measured productivity in our study, we indirectly
support the decrease in efficiency by observing the
post-transfer increase in the length of release cycles.
While the first four releases were delivered on
average twice a year, the transfer activities slowed
down the delivery of the fifth release to eight
months, and the delivery of the sixth release to a full
year. Notably, 19 months passed since the last
release by the time of our study, but the seventh

release has not seen the light. This suggests that
companies transferring software products shall
expect not only a quality decrease, but also
significant effect on the release frequency or scope.

Finally, perceptions of quality elicited from
developers in our exploratory study were consistent
with that obtained from the quantitative analysis of
the defect data. Data obtained from the interviews
provided invaluable explanations pertaining to
certain variances in the defect data. We thus
highlight the importance of identifying
environmental variables that should be considered
during defect data analysis and not relying on solely
quantitative analysis of quality through defects.

VI. VALIDITY THREATS
At the time of this study, approximately three

years had passed since the interviewees terminated
their involvement with the product. Hence
recollecting events or details pertaining to the course
of events was problematic. However, relating the
interview questions to major milestones during the
evolution (for example, involvement of the new
employees into the team, beginning of the transfer)
helped the participants to remember certain
important aspects. The list of interview questions
also contained some questions that were used to
check for inconsistencies in information provided.
The idea of using such a set of questions is similar to
the approach of using safeguard questions by Xenos
and Christodoulakis in [11].

Observations gathered through the interviews
represented only the perspective of employees at
Site-A. This is a limitation of our study and may
have biased the findings. Interviews with Site-B
could have helped to identify the different factors
that contributed to the increase in post-transfer
defects. Nevertheless, the defect trend and
distribution over-time was consistent with the
viewpoints collected through the interviews
conducted, thus we trust that our major conclusions
are reliable.

Accuracy of the quantitative analysis results
relies on the accuracy and precision of the defect
data collection process. Furthermore, defects need to
be appropriately linked to the actual releases e.g. a
defect can be linked to a change or defect fix
implemented in release R2 but only found in R4.
Hence, to increase precision of results the test and

verification expert at the case company helped with
gathering defect data and tracing it to release history
information. In addition, taking into account human
error, defect data used in the quantitative analysis is
treated as approximation rather than exact measures.

Quality is a multifaceted concept that can be
described from different viewpoints and notion of
quality differs between roles. This makes the
selection of characteristics challenging in any
quality study. We alleviated this issue by
formulating interview questions designed to tackle
different angles of software quality; an idea similar
to that proposed in the model by McCall et al. [21].

VII. CONCLUSIONS AND FUTURE WORK
In this exploratory study, quality analysis is

conducted across releases of a software product that
has been transferred between two sites of a
company. The evolution of the product confirms the
sustainable growth in size, while the quality levels
varied between the releases and were subject for
further investigation.

The analysis of the possible reasons for the
changing quality revealed that the growth in size is
related to the increase in complexity of maintaining
the legacy code of the product. Complexity of the
new features included in particular releases, as well
as the number of customers and exposure to the
market are also factors that have to be taken into
account. However, the major impact in the evolution
of the product studied according to our results was
caused by the transfer of development and
responsibility to people who had limited or no
previous engagement with the product. This is a
logical consequence, since the growing complexity
of the legacy code during software evolution puts
much more pressure and demands on the developers,
and thus changes in project staffing have more
dramatic effects. Our findings suggest that
companies that plan to transfer development from
one site to another shall expect an initial decrease in
quality and increase in the length of release cycles.
Although our findings are inconclusive about the
recovery period, the fact that the work on the second
post-transfer release is yet to be finalized indicates
that the new site is still challenged by the work on
the product.

Results from this study are limited to the context
of the company, such as locations of the sites and

complexity of the product. However, we believe that
our conclusions regarding the implications of
software transfers on quality and productivity shall
be relevant for other software companies that
transfer work both on the global scale and locally. In
fact, we conjure that transfers from one building to a
neighboring building may have same consequences.

For future work, we plan to continue monitoring
the defect reports and delivery cycles, as well as
interviewing developers from the receiving site, in
order to better understand the changes in ways of
working and identify practices that can alleviate the
recovery after a transfer. Additionally, we plan to
differentiate between customer defect reports and
internal testing reports in the future data analysis,
and add the actual number of customers per release
to get a better understanding of the market impact.

ACKNOWLEDGMENT
We thank Professor Claes Wohlin for his

valuable feedback and discussions, and Dr. Kai
Petersen and Ericsson employees for their help in
retrieving and analyzing the data. Without their
support this study would not have been possible.
Ericsson Software Research and the Swedish
Knowledge Foundation fund this work under the
grants 2009/0249 and 2010/0311.

REFERENCE
[1] T. Mens and S. Demeyer, Software evolution. Springer, 2008.
[2] L. A. Belady and M. M. Lehman, “A model of large program

development,” IBM Systems Journal, vol. 15, pp. 225–252, 1976.
[3] M. M. Lehman, “Laws of Software Evolution Revisited,” Computing,

vol. 1149, pp. 1–11, 1996.
[4] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.

Turski, “Metrics and Laws of Software Evolution - The Nineties
View,” in Proceedings of the 4th International Symposium on
Software Metrics, Washington, DC, USA, 1997, p. 20–32.

[5] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality”, In 30th International
Conference on Software Engineering. ICSE 2008, p. 521.

[6] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality? An empirical case
study of Windows Vista,” 2009, pp. 518–528.

[7] D. Smite, C. Wohlin, R. Feldt, and T. Gorschek, “Reporting
Empirical Research in Global Software Engineering: A Classification
Scheme,” in IEEE International Conference on Global Software
Engineering, ICGSE 2008, pp. 173–181.

[8] D. Smite and C. Wohlin, “Strategies Facilitating Software Product
Transfers,” IEEE Software, vol. 28, no. 5, pp. 60–66, Oct. 2011.

[9] L. Chang-Peng, L. Bin-Shiang, L. Yen-Sung, and W. Feng-Jian, A
validation of software complexity metrics for object-oriented
programs, Hsinchu, Taiwan Nat. Chiao Tung Univ, 1994. vol.1

[10] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–
493, Jun. 1994.

[11] M. Xenos and D. Christodoulakis, “Measuring perceived software
quality,” Information and Software Technology, vol. 39, no. 6, pp.
417–424, 1997.

[12] Systems and software engineering -- Vocabulary, ISO Standard no. 1,
pp. 1–418, 2010.

[13] M. W. Godfrey and D. M. German, “The past, present, and future of
software evolution,” in Frontiers of Software Maintenance, 2008.
FoSM 2008., 2008, pp. 129–138.

[14] P. Bourque and R. Dupuis, Guide to the Software Engineering Body
of Knowledge, Software Engineering Body of Knowledge , 2004.

[15] C. F. Kemerer and S. Slaughter, “An empirical approach to studying
software evolution,” IEEE Transactions on Software Engineering, vol.
25, no. 4, pp. 493–509, Aug. 1999.

[16] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in 27th International Conference on
Software Engineering. ICSE 2005, pp. 284– 292.

[17] D. Šmite and C. Wohlin, “Lessons learned from transferring software
products to India,” Journal of Software Maintenance and Evolution:
Research and Practice, Published online 27 July 2011

[18] J. Li, N. B. Moe, and T. Dyb\aa, “Transition from a plan-driven
process to Scrum: a longitudinal case study on software quality,” in
Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2010. New
York, NY, USA, 2010, pp. 13:1–13:10.

[19] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, pp. 131–164, Dec. 2008.

[20] C. Robson, Real World Research, 3rd ed. John Wiley & Sons, 2011.
[21] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software

Quality. Concepts and Definitions of Software Quality,” Nov. 1977.
vol 1.

[22] Software engineering - Product quality - Part 1: Quality model, ISO
Standard vol. 2, no. 1, pp. 1–25, 2001.

[23] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24, no. 2,
pp. 131–183, Jun. 1992.

[24] E. Given Lisa M, The SAGE Encyclopedia of Qualitative Research
Methods, vol 1 and 2. Sage Publications, 2008.

[25] M. M. Lehman, “Programs, Life Cycles and the Laws of Software
Evolution,” Proceedings of the IEEE, vol. 68, no. 9, pp. 1060–1076,
1980.

[26] M. M. Lehman, D. E. Perry, and J. F. Ramil, “Implications of
evolution metrics on software maintenance,” in 1998 International
Conference on Software Maintenance, ICSE 1998, pp. 208–217.

[27] D. Šmite and C. Wohlin, “Software Product Transfers: Lessons
Learned from a Case Study,” in 2010 IEEE International Conference
on Global Software Engineering. ICGSE 2010, pp. 97–105.

[28] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb,
“Familiarity, Complexity, and Team Performance in Geographically
Distributed Software Development,” Organization Science, vol. 18,
no. 4, pp. 613–630, 2007.

[29] A. Mockus and D. M. Weiss, “Globalization by Chunking: A
Quantitative Approach,” IEEE Software, vol. 18, no. 2, pp. 30–37,
2001.

	Title: An Exploratory Study of Software Evolution and Quality: Before, During and After a Transfer
	Author: Ronald Jabangwe, Darja Šmite
	Conference: International Conference on Global Software Engineering (ICGSE)
	Year: 2012
	City:

