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Abstract The article presents a new algorithm for handling concept drift: the Trigger-
based Ensemble (TBE) is designed to handle concept drift in surgery prediction but it
is shown to perform well for other classification problems as well. At the primary care,
queries about the need for surgical treatment are referred to a surgeon specialist. At the
secondary care, referrals are reviewed by a team of specialists. The possible outcomes
of this review are that the referral: (i) is cancelled, (ii) needs to be complemented, or
(iii) is predicted to lead to surgery. In the third case, the referred patient is scheduled for
an appointment with a surgeon specialist. This article focuses on the binary prediction
of case three (surgery prediction). The guidelines for the referral and the review of the
referral are changed due to, e.g., scientific developments and clinical practices. Exist-
ing decision support is based on the expert systems approach, which usually requires
manual updates when changes in clinical practice occur. In order to automatically re-
vise decision rules, the occurrence of concept drift (CD) must be detected and handled.
The existing CD handling techniques are often specialized; it is challenging to develop
a more generic technique that performs well regardless of CD type. Experiments are
conducted to measure the impact of CD on prediction performance and to reduce CD
impact. The experiments evaluate and compare TBE to three existing CD handling
methods (AWE, Active Classifier, and Learn++) on one real-world dataset and one ar-
tificial dataset. TBA significantly outperforms the other algorithms on both datasets but
is less accurate on noisy synthetic variations of the real-world dataset.
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1 Introduction

The application of data mining and machine learning techniques has helped many ser-
vice providers to improve their decision-making process. The healthcare domain applies
an increasing number of data mining solutions for decision-making and knowledge dis-
covery. Notable applications include: the analysis of clinical parameters for diagnosis,
prediction of the effectiveness of surgical procedures, and discovery of the relationships
among clinical and diagnosis data (Magoulas and Prentza, 2001). Today, the demand
for non-critical elective surgical care is increasing rapidly. The increase in demand has
made patient referral an important process to optimize. Also, surgery is one of the most
expensive treatments in the secondary care (Persson and Lavesson, 2009).

One example of the application of supervised learning to improve the referral pro-
cess is the identification of surgical indicators by mining combined sets of histor-
ical patient record data and the corresponding decisions about whether to perform
surgery (Persson and Lavesson, 2009). If the need for surgery can be predicted as early
as the referral stage, it is possible to optimize the incoming patient queue to the sec-
ondary care and the allocation of surgeons and other resources. However, the decision
of whether to refer a patient to the secondary care for surgery evolves through time
because of changes in scientific developments and clinical practices. Consequently, the
performance of the prediction model will decrease because the learned concept be-
comes invalid due to concept drift (Alippi et al, 2011). The existing decision support
systems for patient referral require manual updates when changes in clinical practice
occur. Automatically updating the decision support system by handling the concept drift
can improve the efficiency of healthcare systems. Accordingly, the impact of concept
drift in surgery prediction and the relationship between temporal changes in data distri-
bution and concept drift need to be investigated. Moreover in the state-of-the-art, there
are only specific ways of handling concept drift; developing a more generic technique
that performs well regardless of concept drift type (e.g.: slow, fast, sudden, gradual,
cyclical, noisy) or distribution change is still a challenge (Elwell and Polikar, 2011).

This article presents a concept drift handling algorithm, the Trigger-based Ensemble
(TBE), which is based on ensemble-based batch learning (Zhao et al, 2009, Yang et al,
2006) and boosting (Oza and Russell, 2001). TBE predicts the need for surgery without
suffering from a significant decrease in prediction performance over time. Experiments
are conducted to investigate the impact of concept drift, the relation between concept
drift and temporal changes in the data distribution, and to compare the proposed han-
dling algorithm to the state-of-the-art. The algorithms are evaluated on a real-world data
set (from the orthopedic department at Blekinge hospital in Sweden) and an artificial
data set that represent a different domain. The artifical data set is obtained from the UCI
machine learning repository 1. The artifical data set is included in the experiments to
investigate the generalizability of the proposed approach.

The remainder of the article is organized as follows: The next section presents a
discussion about surgery prediction and concept drift, which is followed by a review
of related work in Section 3. In Section 4, the proposed algorithm is presented. The

1 The UCI machine learning repository, http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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experimental procedure is described in Section 5. Finally, Section 6 concludes the
article with an analysis and provides some pointers to future work.

2 Surgery Prediction and Concept Drift

An elective patient referral is a non-emergency case that is commonly submitted by
the general practitioner at the primary care. In Sweden, the general practitioner refers a
patient when surgery seems necessary. The referral is assessed by a surgeon specialist
at the hospital. However, since the general practitioners are not experts on all special-
ties, unnecessary patient referrals occur quite frequently. Thus, the general practitioners
need support on what examinations to conduct before referring a patient.

The elective patient referral contains valuable information that indicates patient
surgery need. The indicators can be used as an input to develop an intelligent decision
support system for the primary care. The intelligent decision support system predicts
patient surgery need and assists the general practitioners in making a correct decision.
Hence, unnecessary patient referrals can be reduced through the use of intelligent deci-
sion support systems.

In previous work (Persson and Lavesson, 2009), an experiment was conducted in
which historical patient records were collected and associated with the corresponding
decisions about whether to perform surgery or not. A number of patient record features
were identified as surgery indicators. These indicators were used to automatically gen-
erate a classification model that could predict the need for surgery as early as during the
referral stage on the condition that the general practitioner could run some additional
tests during the first examination. The classification model was accurate enough to be
used as a basis for optimizing the incoming patient queue to the secondary care. How-
ever, the collected data originated from one particular year and it was recognized that
the guidelines for taking decisions based on the referral change almost every year.

Thus, regardless of learning algorithm choice, the generated classification model
will not always perform well in dynamic environments because the concept acquired
during the training phase might have changed (Alippi et al, 2011). The medicine and
healthcare management domains are dynamic and complex. Clinical practice, diagnosis
procedures, choice of treatment, resource allocation and many other components of
healthcare are affected by a vast amount of both known and unknown factors. It is
argued that surgery prediction is susceptible to concept drift.

2.1 Concept Drift

Concept drift, in the context of data mining or machine learning, is when prediction
models start to perform worse after a period of time. The models lose their performance
since the target class or the data distribution of a dataset is changed (Tsymbal, 2004,
Wang et al, 2011, Elwell and Polikar, 2011).

There are two types of concept drifts; real and virtual. A real concept drift is a
change in the target class which can occur due to changes in a hidden context. A virtual
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Fig. 1 Original Model Data Observation

(a) Real and Virtual Concept Drift (b) Virtual Concept Drift

Fig. 2 Concept Drift

concept drift is a change in the data distribution that can occur while the target class
remains the same (Tsymbal, 2004, Masud et al, 2010). For real concept drifts, mod-
els need to be replaced since the learned concepts become invalid, whereas in virtual
concept drift models need additional learning as the error of models may no longer be
acceptable. In surgery prediction, concept drift occurs due to scientific development,
change in clinical practice, or other changes in data distributions or patterns with un-
known causes. Figure 1 shows the concept learned by an algorithm from historical data.
The current value of the walking-aid attribute is changed to yes in both Figure 2(a) and
Figure 2(b). Figure 2(a) shows the occurrence of both real and virtual concept drifts,
i.e., the target class is changed from no to yes. In contrast, Figure 2(b) demonstrates
that the change does not affect the target class, which indicates virtual concept drift.

There are different types of change in concept drift. The common types are sudden,
gradual and recurring. The sudden changes are abrupt when affecting the classification
model. For example, when a specific surgery technique is stopped on a legal basis be-
cause the treatment is discovered to be hazardous to the surgery outcome and to the
patient’s health, the concept drift may be sudden. The gradual changes evolve slowly
across time, such as when a specific surgery technique is tried out on a specific health
situation and proven to be successful by accident, and hence gradually learned by other
surgeons. The recurring changes are hidden contexts that reoccur, either cyclically or in
an unordered manner. For example, when surgery and drugs are competing treatments
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for a specific problem and drugs in combination with the surgery technique is gradu-
ally changing the concept but cyclically replace each other. A supervised algorithm that
learns models for a task for which concept drift occurs needs be able to handle these
changes (Widmer and Kubat, 1996).

3 Related Work

STAGGER is the first technique designed to cope with concept drift (Ouyang et al,
2011, Schlimmer and Granger, 1986). It uses a concept description consisting of class
nodes connected to attribute-value nodes by probabilistic arcs. The probabilities are
updated when new training examples arrive. It also adds nodes corresponding to new
classes and new features. To address concept drift, STAGGER decays its probabilities
over time. The Active classifier is another single classifier approach that focuses on
learning an accurate model with as few labels as possible. It studies how to label se-
lectively instead of asking for all true labels. The method is based on random labeling,
a fixed uncertainty strategy, variable allocation of labeling efforts over time, and ran-
domization of the search space. An active classifier encapsulates all the active learning
strategies and allows benchmark streaming data experiments through stored, shared,
and repeatable settings for synthetic and real-world data (Zliobaite et al, 2011). When a
change is detected by the Active Classifier, the old classifier is replaced by a new model.
In such a case, recurrent concept drifts may not be handled. The concept drift detection
techniques used by the Active Classifier are the Drift detection method (DDM) and
Early Drift detection method (EDDM). Both Drift Detection Method(DDM) and Early
Drift Detection (EDDM) can be embedded on single classifier as detectors in many
concept drift handling techniques (Sobhani and Beigy, 2011).

Gama et al (2004) propose the Drift Detection Method (DDM), each online classi-
fier used to predict the class of an example, that can either true or false. The error rate is
modeled by the number of classification errors with a Binomial distribution. However,
DDM only detects sudden changes. To improve detection of gradual changes, EDDM
extends DDM by relying on the distance between two classification error rates instead
of considering only the number of errors (Jose et al, 2006). These concept drift detec-
tion methods employ change detection mechanisms, or triggers.

Streaming Ensemble of Algorithms (SEA) is based on a fixed number of ensemble
classifiers each constructed from relatively small subsets of data, read sequentially in
blocks (Street and Kim, 2001). Once the ensemble is full, new classifiers are added only
if they satisfy some quality criterion, based on their estimated ability to improve the en-
semble performance. Since the ensemble size is fixed, one of the existing classifiers
must be replaced when adding a new model. However, because of the replacement of
the ensembles recurrent concepts are not easily addressed. Wang et al (2003) also pro-
pose an ensemble of classifiers called the Accuracy Weighted Ensemble. This method
maintains classifiers built from batches of training samples, but it weighs each clas-
sifier based on their performance on the most recent batch. One of the drawbacks of
evolving ensembles of classifiers, in general, is that they build a new base classifier for
each batch of new data. Elwell and Polikar (2011) introduce a relatively more generic
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ensemble of classifiers. It incrementally learns in the presence of concept drift and is
commonly called Learn++ or Learn++.NSE. The classifiers are incrementally trained
(with no access to previous data) on incoming batches of data, and then combined with
weighted majority voting. Classifiers capable of identifying previously unknown in-
stances get more credits while classifiers that misclassify previously known data are
penalized. However, since the weight adjustment mechanism used is based on histori-
cal classification accuracies, classifiers may get penalized or rewarded wrongly because
of noisy input. The inclusion of a noise detector before updating the classifiers would
make this framework more effective. In addition, a new set of classifiers is created for
each new batch of data. Thus, the ensemble size can become very large over time.

In general, the current approaches are either tested on synthetic data or are studied
for specific drift types in specific environments (Elwell and Polikar, 2011). For ex-
ample, techniques used effectively in spam filtering may not perform well in surgery
prediction or weather forecasting. Developing an adaptive learning model that handles
concept drift in dynamic environments with the treatment of concept drift and noise
is an area of research that demands attention and improvements to the state-of-the-
art (Wang et al, 2011, Ouyang et al, 2011).

4 Method

4.1 Trigger Based Ensemble (TBE)

The problem of concept drift in surgery prediction is modeled theoretically to handle
changes in concept. The theoretical model combines the trigger and ensemble-based
approaches to handle concept drifts. Street and Kim (2001) and Wang et al (2003) ar-
gue that an ensemble built by dividing the data into sequential blocks of fixed size
examples is effective in handling concept drift. The ensemble-based algorithm handles
recurrent concepts by retaining the old concepts in the ensemble (Tsymbal et al, 2006).
There are several empirical evaluations that suggest that ensembles perform better than
a single classifier (Xiang et al, 2009). However, such ensembles create new classifiers
for each block of examples without actively detecting the occurrence of concept drift.
This results in an unnecessary growth of the number of classifiers and increase memory
consumption. Managing the ensemble size by creating new classifiers only when a con-
cept drift is detected can decrease memory consumption and improve computational
efficiency.

The problem of concept drift in surgery prediction is framed by dividing the dataset
into sequential blocks of fixed size. Each block, or batch, of patient examples is an m
dimensional vector of attributes in some predefined vector space x = Rm and with a
class label y 2 {yes,no}. Each batch, b, contains n examples. A sequence of batches is
defined as [(xi,yi),(xi+1,yi+1), . ..(xn,yn)], where the i-th example will be represented
by (xi,yi). Each incoming patient example is represented as (x,y) in TBE.
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4.2 Concept Change Detection

Many parametric approaches assume that the data distribution is Gaussian in nature
and can be modeled statistically based on means and covariance. The performance of
classification algorithms are commonly evaluated through error and reject rate. Errors
are unavoidable due to the existence of uncertainty and noise in classification tasks.
Subsequently, a reject rate is introduced as threshold to avoid excessive misclassifica-
tion (Markou and Singh, 2003). Recently, researchers suggest classification error rate as
a concept detection method (Jose et al, 2006, Gama et al, 2004, Nishida and Yamauchi,
2007). Classification error rate-based detection methods are able to detect concept drift
from a small number of examples and have less computational costs than other pro-
posed methods (Nishida and Yamauchi, 2007). Thus, classification error rate is selected
to monitor concept changes in TBE.

TBE adapts the Early Drift Detection Method (EDDM) to monitor surgery predic-
tion classification error rates. EDDM computes the probability of misclassifying each
instance and their standard deviations to monitor change in concept. According to PAC,
if the distribution of an example is similar to another example, the classification er-
ror rate decreases as the number of examples increases (Mitchell, 1997). With a large
number of examples, n > 30, the Binomial distribution is closely approximated by a
Gaussian distribution with the same mean and variance (Jose et al, 2006). Thus, each
batch is chosen so that it includes more than 30 examples in order to make the detection
method valid and to monitor classification error rates based on the mean and variance.

4.3 Concept Drift Handling Algorithm

The patient examples arrive in batch, b, over time, t. A knowledge base is initialized by
creating a base classifier from the first batch b of data. For each new training dataset, the
existence of concept drift is monitored using the EDDM detection method. If a drift is
detected, the algorithm adds a new classifier. Otherwise, the classifiers will be trained by
updating their weights based on their performance on the current dataset. The weights
are increased for classifiers that perform well and vice versa. When the buffer size is
full, irrelevant classifiers will be pruned based on error rate and generation time. This
pruning helps the model in maintaining the overall competency of the ensemble and
preserves memory and computation time for long-term data mining applications (Wang
et al, 2003). The final decision of the ensemble is obtained based on majority voting of
the current classifiers. This method can be applied with most classification learning al-
gorithms. It can be directly implemented inside online and incremental algorithms, and
can be implemented as a wrapper to batch learners. The goal of the proposed method
is to detect concept drift from a sequences of examples with a uniform distribution.
Those sequences of examples are denoted as context. From the practical point of view,
the method tries to select the training set that is the most appropriate to the actual class
distribution of the examples.

In general, Trigger Based Ensemble (TBE) is an ensemble algorithm with an em-
bedded active concept drift detector. The active concept drift detector monitors the oc-
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currence of concept change on each incoming batch. A new classifier is added, if and
only if a concept drift is detected. This reduces the chance of the ensemble classi-
fiers suffering from outvoting, the growth in the number of incompetent classifiers and
memory usage. In TBE, the ensemble handles concept drift by assigning weights to
the classifiers based on their classification performance. The final decision is obtained
through majority voting. The pseudocode of TBE is presented in Algorithm 1.

5 Experiment

The experiment is conducted using the Massive Online Analysis (MOA) framework.
The existing algorithms that are compared with TBE are already available in the MOA
framework. The algorithms are selected from different learning paradigms, based on
their ability to handle different types of concept drifts. From the single classifier family,
the Active Classifier with the early drift detection method is selected. From the ensem-
ble method family, the Accuracy Weighted Ensemble (AWE) and Learn++ are selected.
The AWE algorithm is reported to work well on data with reoccurring concepts as well
as on different types of drifts. AWE improves its performance gradually over time and
is best suited for large data streams. The Active Classifier is a single classifier with con-
cept drift detectors, DDM and EDDM. Learn++ is an incremental ensemble learning
algorithm that learns from consecutive batches of data without making any assump-
tions about the nature or the rate of the drift (Elwell and Polikar, 2011).

The algorithm classification error rate is used as performance evaluation criterion.
To make the performance evaluation as fair as possible, similar parameter values are
used for all algorithms. For the ensemble and Active Classifier algorithms, the default
settings are used to evaluate the classification performance.

5.1 Dataset

There is a shortage of suitable and publicly available real-world benchmark datasets
intended for research in data stream classification. Most of the available benchmark
datasets are unsuitable for evaluating data stream classification algorithms because the
datasets contain too few examples and include insufficient amounts of concept drift. For
this reason, it has become common practice to publish results based on both real-world
and synthetic datasets. The original sample data collected from Blekinge hospital is too
limited to derive generalization from. Thus, additional real-world datasets are obtained
and synthetic hospital datasets are generated for this purpose. The datasets used are a
new hip-replacement dataset from the orthopedics department of Blekinge hospital and
the poker-hand dataset from the UCI machine learning repository.

The Hip-replacement dataset includes two years of patient referrals seen at the out-
patient clinic of the orthopedics department at Blekinge Hospital. The data are collected
for the years 2008 and 2011. Accordingly, a total of 151 complete patient records
are identified. Moreover, a total of 80 patient referrals are included from the original
hip-replacement dataset from 2008. The identified patient records are preprocessed by
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1

Input : For each dataset Dt where t = 1,2, . . .
Training Data: xt(i)eX ;yt(i)eY ; i = 1, . . . ,no inst

2 Supervised learning algorithm: BaseClassifier

3 for element of b in Dt do
4 if t > 1 then
5 Detect the occurrence of change

IsConceptChanged (b)a

for element of i in b do
6 Detected isDetected()
7 end
8 if detected then
9 if buffer full then Remove the poorest and oldest classifier, and add a new classifier;

10 else add new classifier ;
11 end
12 if notDetected then
13 Compute error of the existing ensemble on new data

for i 0 to noinst�1 do
14 error = Â1/noinstance
15 end
16

17 end
18 Update and normalize instance weights

for i 0 to noinst�1 do
19 if correctlyClassified then instweight(i) = 1÷noinstances

totalweight+= 1÷noinstances
;

20 else instweight(i) = (1÷ error)⇥ (1÷noinstances)
totalweight+= (1÷ error)⇥ (1÷noinstances)
;

21 end
22 for i 0 to noinst�1 do
23 instweight(i) = instweight(i)/totalweight

24 end
25

26 else
27 Initialize instweight(i) = 1÷noinst
28 end
29 Call Base Classifier with Dt , obtain ht : X ! Y

Evaluate all existing classifiers on new data Dt

Compute the weight of each classifier based on its current accuracy on the new data
Normalize and update the weight of each classifier k
Obtain the final hypothesis based on majority vote

30 end

a Batch
Algorithm 1: TBE Algorithm Pseudocode



10

removing attributes that could be used to identify specific individuals, irrelevant at-
tributes for the classification and noisy data. Some of the numerical attributes are also
discretized in the preprocessing. Finally, a total of 222 existing patient instances are
used for experimentation after preprocessing. These instances are defined by 10 input
attributes and one binary target attribute.

The hip-replacement dataset is used as a baseline to generate synthetic data. The
synthetic data are generated by using two concept generators, STAGGER and SEA, to
introduce different types of concept drifts. These concept drift generators are selected
based on the types of concept drift they simulate in the real-world dataset.

Both STAGGER and SEA are used to generate a larger amount instances for the
hip-replacement dataset from the existing 222 real-world examples. A total of 10,000
instances are generated for each concept generator. STAGGER creates sequences of
data with gradual, abrupt concept drift and noise free examples (Minku et al, 2010,
Gama et al, 2004). On the other hand, SEA simulates recurrent and abrupt concept
drift to the hip-replacement dataset (Minku et al, 2010). SEA also introduces noise
to the dataset it generates. SEA is configured to add 10% noise to the synthetic hip-
replacement dataset.

The poker-hand dataset consists of 1,000,000 instances and 11 attributes. Each
instance of the poker-hand dataset is an example of a hand consisting of five playing
cards drawn from a standard deck of 52. Each card is described using two attributes,
suit and rank, for a total of 10 predictive attributes. There is one class attribute that
describes the poker hand. The order of cards is important, which is why there are 480
possible Royal Flush hands instead of 4. The poker-hand dataset is used to increase
the generalizability of the experimental performance results of the proposed algorithm.
The number of instances included in the experiment are limited to 10,000 because of
limitations in computational resources. The first 10,000 instances that are selected as
defining the poker-hand dataset have random cards.

The datasets are divided into chunks, or batches, of data in the experiment. The
batch size is determined in proportion to the total number instances. A large batch size
results in a stable learner that is suitable for gradual drifts while a small batch size adapts
quickly to concept changes, appropriate to abrupt drifts. The Binomial distribution can
be approximated by the Gaussian distribution with for a large number of examples,
n > 30. Accordingly, the batch size is chosen to have 50 to 500 instances so as to
make the detection method valid, monitor classification accuracy based on means and
covariance and avoid batch related issues. The batch size is set to be 50 and 500 in
proportion to the total number of instances.

5.2 Experimental Results and Discussion

Table 1 presents classification error rates before and after handling concept drift. The
impact of concept drift in surgery prediction and the relationship between concept drift
and temporal changes in the data distribution are shown in Figure 3(a). The relationship
between concept drift and temporal changes is presented based on the standard devi-
ation of the error rate between two consecutive batches. The improvement of surgery
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Table 1 Performance on the manually modified hip-replacement dataset

Data batch Instances

Error rate without
concept drift handling(SD)a

Before Handling

Error rate with
concept drift handling(SD)b

After Handling
1 50 0.50(-) 0.30(-)
2 100 0.21(0.21) 0.34(0.23)
3 150 0.16(0.04) 0.22(0.08)
4 200 0.17(0.01) 0.14(0.06)
5c 250 0.34(0.12) 0.28(0.10)
6 300 0.54(0.14) 0.56(0.20)
7 350 0.73(0.13) 0.43(0.09)
8 400 0.88(0.11) 0.26(0.12)
9 450 0.90(0.01) 0.19(0.04)

Mean error rate 0.49 0.30

a The error rate of each batch before handling concept drift. SD is the standard deviation between two
consecutive batches (For instance, between batch 1 and batch 2, between batch 2 and batch 3 and so on.)

b The concept drift handling algorithm is TBE
c A sudden increase in error rate

prediction performance after handling concept drift is shown in Figure 3(b). Finally,
the performance and rank of the four concept drift handling algorithms (Active Classi-
fier, AWE, Learn++, and TBE), are shown in Table 2 through Table 4. Moreover, the
performances of the four concept drift handling algorithms are visually presented in
Figure 4 through Figure 6. Non-parametric statistical analyses are conducted on the
performance results to determine if there are significant performance differences be-
tween the compared algorithms.

The experimental results in Table 1 illustrate the classification performance of surgery
prediction on the manually modified hip-replacement dataset. The dataset is modified
by replicating the real-word hip-replacement dataset and introducing a real concept drift
by changing only the class value of the replicated hip-replacement dataset. A total of
444 instances are included in the modified hip-replacement dataset. The classification
performance is measured based on error rate. In Column 3 of Table 1, the result of the
classification error rate over sequences of batches before handling concept drift is pre-
sented. Likewise, Column 4 of Table 1 is the result of the classification error rate over
sequences of batches after handling concept drift with TBE. The standard deviation
between two consecutive batches indicates the deviation of the current classifier per-
formance from the previous classifier performance. Figure 3(a) depicts the error rate of
surgery prediction over sequences of batches before handling concept drift. The figure
on the right side, Figure 3(b), depicts the classification error rate of surgery prediction
after handling concept drift. The error bars that originate at the classification error rate
of each batch represent the deviation in performance between two consecutive batches,
b and b�1.
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Fig. 3 Hip-replacement dataset prediction performance before and after handling concept drift.

Evaluation of Concept Drift Impact on Surgery Prediction

The result obtained from the experiment in Column 3 of Table 1 is used to evaluate the
degree of prediction performance changes over a sequence of batches in the occurrence
of concept drift. If the distribution of examples are assumed to be drawn independently
from an identical distribution, the classification error rate decreases as the number of
examples increases (Mitchell, 1997, McAllester, 1998). Similarly, in Figure 3(a), the
classification error rate decreases in the first few batches as the number of instances
increase. However, the error rate increases suddenly at the 5-th batch due to changes
in the concept. The experimental results are analyzed statistically to evaluate the effect
of concept drift in surgery prediction performance. The non-parametric Wilcoxon rank
sum test, is used with confidence level 0.05. Accordingly, the test result indicates that
classification performance significantly decreases in the occurrence of concept drift.
Thus, the null hypothesis, that classification performance is unaffected by the occur-
rence of concept drift, is rejected for p < 0.05.

The relationship between temporal changes in data distribution and surgery pre-
diction is shown based on the standard deviation of the classification error rate of two
consecutive batches. As discussed in Section 4.3, a sequence of instances are treated in
batches that arrive at different points in time. The standard deviation between the classi-
fication error rates of two consecutive batches is depicted in Figure 3(a) and Figure 3(b),
with error bars. A variance in prediction performance indicates concept change. The
Levene test is used to check the probability of batches being drawn from the same
distribution. Accordingly, the test result indicates that the variance of classification per-
formance differs between batches (for p < 0.05). Hence, significant temporal changes
in the data distribution indicate concept drift. TBE adapts the EDDM detection method
that monitors the occurrence of concept drift by computing the standard deviation of
misclassified instances.
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Performance Evaluation Before and After Handling Concept Drift

The negative impact of concept drift in surgery prediction is reduced through a concept
drift handling algorithm as can be viewed in Figure 3(b). The experimental results in
Column 4 of Table 1 are statistically analyzed using the Wilcoxon paired-pairs signed-
ranks test with confidence level 0.05. The test result shows that concept drift handling
improves classification performance significantly. That is, the null hypothesis is rejected
with p < 0.05. Similarly, the plot in Figure 3(b), reveals a decrease in the classification
error rate after handling the occurrence of concept drift, at the 6-th batch; whereas
Figure 3(a) describes how the error rate increases due to the occurrence of concept
drift. This shows that concept drift handling improves classification performance in
general. However, the amount of improvement in prediction performance depends on
the type of concept drift handling method used. It is important to recognize that it is
difficult to define a generally acceptable error rate for the surgery prediction task. The
acceptable level of performance is related to the reason for conducting the prediction
task (for example, to improve resource allocation or to decrease waiting times for a
specific group of patients).

In the remaining experiments, the plausible combinations of the existing detection
and handling algorithms including TBE are evaluated on a synthetic hip-replacement
dataset generated by STAGGER and SEA. The experiments compare the performance
of handling concept drift of four handling algorithms (AWE, Active Classifier, Learn++,
TBE). The four algorithms are statistically analyzed using Friedman’s two-way anal-
ysis of variance in conjunction with the Nemenyi post-hoc test. The Friedman test is
used to determine whether there is any significant differences in performance between
the algorithms. If a significant difference is detected the Nemenyi post-hoc test is used
to conduct pair-wise comparisons of the performance of the algorithms, to determine
which algorithms differ significantly in performance and in which direction. The ex-
perimental results are illustrated in Table 2 through Table 4 and in Figure 4 through
Figure 6, respectively.

From Figure 4 to Figure 6 the performances of AWE, Active Classifier, Learn++,
and TBE on the real-world dataset and the artificial Poker dataset are presented. Figure 4
depicts the decreasing error rates of the four algorithms (AWE, Active Classifier, Learn++,
and TBE) on the synthetic hip-replacement dataset generated by the STAGGER concept
generator. Similarly, Table 2 illustrates the classification accuracies and corresponding
ranks of the four compared algorithms on the same dataset.

Performance Evaluation on the STAGGER-based Hip-replacement Dataset

The four included algorithms are compared on a synthetic dataset: the hip-replacement
dataset is used as a basis by the STAGGER concept generator to produce a synthetic
variant of the dataset with 10,000 instances. As in earlier comparisons of the algo-
rithms, Friedman’s test is used to statistically analyze the performance results to deter-
mine whether there are significant differences. Again, the Nemenyi post-hoc test is used
for pair-wise comparisons if a significant difference is detected. A confidence level of
0.05 is used.
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Fig. 4 Performance Comparison on Handling CD (STAGGER Hip-replacement Dataset)

Table 2 Comparison of the accuracy(%) of the included concept drift handling algorithms on the hip-
replacement data set simulated by STAGGER concept generator

Batch Instances TBE(Ranka) AWE(Rank) Learn++(Rank) Active Classifier(Rank)
1 500 80.00(1) 14.00(3.5) 14.00(3.5) 46.00(2)
2 1,000 87.80(1) 50.40(3) 13.60(4) 72.80(2)
3 1,500 90.80(1) 65.20(3) 12.93(4) 81.40(2)
4 2,000 92.15(1) 73.90(3) 12.35(4) 84.30(2)
5 2,500 92.92(1) 79.12(3) 11.96(4) 85.36(2)
6 3,000 93.50(1) 82.60(3) 12.30(4) 85.47(2)
7 3,500 93.89(1) 85.09(3) 12.20(4) 85.89(2)
8 4,000 94.13(1) 86.95(2) 12.28(4) 86.05(3)
9 4,500 94.42(1) 88.40(2) 11.69(4) 86.82(3)
10 5,000 94.60(1) 89.56(2) 11.58(4) 87.08(3)
11 5,500 94.71(1) 90.51(2) 11.47(4) 87.31(3)
12 6,000 94.88(1) 91.30(2) 11.37(4) 87.52(3)
13 6,500 95.06(1) 91.97(2) 11.45(4) 87.52(3)
14 7,000 95.17(1) 92.54(2) 11.31(4) 87.73(3)
15 7,500 95.23(1) 93.04(2) 11.16(4) 87.95(3)
16 8,000 95.34(1) 93.48(2) 11.14(4) 88.03(3)
17 8,500 95.45(1) 93.86(2) 11.04(4) 88.18(3)
18 9,000 95.47(1) 94.20(2) 11.04(4) 88.21(3)
19 9,500 95.51(1) 94.51(2) 11.04(4) 88.25(3)
20 10,000 95.56(1) 94.78(2) 11.08(4) 88.25(3)

Average Rank 1 3.02 3.98 2.65

a The rank is computed based on accuracy
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Fig. 5 Performance Comparison on Handling CD (SEA Hip-replacement Dataset)

Table 2 illustrates the classification performance of the four algorithms (AWE,
Learn++, Active Classifier, and TBE). The performance of each algorithm is ranked.
The average ranks provide a reasonable comparison of the algorithms (Demsar, 2006).
The Friedman test checks whether the average ranks are significantly different from
the mean rank. The average rank is computed based on each algorithm’s ranks. Con-
sequently, the test result indicates a significant difference between the four algorithms
(with p < 0.05). Since the null-hypothesis is rejected, further analyses are conducted
with the Nemenyi post-hoc test to compare the algorithms to each other. The perfor-
mance of two classifiers is significantly different if the corresponding average ranks
differ by at least the critical difference. Consequently, the accuracy of TBE is signifi-
cantly higher than those of the remaining algorithms (with p < 0.05).

In addition to the statistical test results, Figure 4 also provides visual information
that TBE has lower error rate starting from the first batch compared to the other algo-
rithms. This indicates that TBE handles concept drift better than the other algorithms
with a low variation throughout the batches. TBE also performs in a consistent manner
by handling the occurrence of concept drifts for both small and large datasets. Over-
all, the performance of TBE is significantly better than AWE, Active Classifier and
Learn++.

Figure 5 shows the performances of the four algorithms, AWE, Active Classifier,
Learn++ and TBE, on the 10,000-instance synthetic hip-replacement dataset generated
by the SEA concept generator. SEA simulates recurrent, abrupt drifts and adds 10% of
noisy data. The figure shows the error rate of the concept drift handling algorithms over
sequences of batches.
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Table 3 Comparison of accuracy(%) between concept drift handling algorithms on the hip-replacement
data set generated by the SEA concept generator

Batch Instances TBE(Ranka) AWE(Rank) Learn++(Rank) Active Classifier(Rank)
1 5,00 58.60(2) 36.60(3.5) 36.60(3.5) 60.40(1)
2 1,000 62.10(1) 52.50(3) 35.60(4) 60.70(2)
3 1,500 61.87(3) 62.93(2) 36.53(4) 67.93(1)
4 2,000 67.25(3) 69.40(2) 36.55(4) 72.85(1)
5 2,500 70.32(3) 72.72(2) 36.44(4) 74.80(1)
6 3,000 73.40(3) 75.70(2) 35.93(4) 76.77(1)
7 3,500 75.09(3) 77.09(2) 36.34(4) 77.80(1)
8 4,000 76.28(3) 78.45(2) 36.53(4) 78.83(1)
9 4,500 77.38(3) 79.64(2) 36.00(4) 79.67(1)
10 5,000 78.16(3) 80.46(1) 35.92(4) 80.38(2b)
11 5,500 78.69(3) 81.07(1) 36.07(4) 79.67(2)
12 6,000 79.05(3) 81.70(1) 36.25(4) 79.33(2)
13 6,500 79.54(2) 82.18(1) 36.18(4) 79.52(3)
14 7,000 79.87(3) 82.60(1) 36.40(4) 79.99(2)
15 7,500 80.28(3) 82.96(1) 36.28(4) 80.32(2)
16 8,000 80.70(3) 83.40(1) 36.24(4) 80.84(2)
17 8,500 80.98(3) 83.66(1) 36.31(4) 81.14(2)
18 9,000 81.17(3) 83.83(1) 36.36(4) 81.20(2)
19 9,500 81.37(3) 84.04(1) 36.26(4) 81.44(2)
20 10,000 81.60(3) 84.23(1) 36.28(4) 81.74(2)

Average Rankc 2.80 1.58 3.98 1.65

a The rank is assigned based classification accuracy
b Accuracy starts to decrease
c The average rank of the algorithms.

Figure 4 and Figure 5 indicates that LearnNSE maintains a high error rate across
batches while the remaining algorithms manage to reduce the error rate as new batches
are processed. The reductions seem to exhibit exponential behavior during the first ten
batches. Table 3 illustrates the classification accuracies and ranks of the four algorithms

on the hip-replacement data set generated by the SEA concept generator.

Performance Evaluation on SEA-based Hip-replacement Dataset

The performances of the four algorithms on the synthetic dataset generated from the
hip-replacement dataset by the SEA concept generator are statistically analyzed using
the Friedman test. A confidence level of 0.05 is employed. If significant differences are
detected, further analysis is conducted with the Nemenyi post-hoc test to find out which
algorithm performs better than other algorithms.

Table 3 illustrates the comparison between the four algorithms (AWE, Learn++,
Active Classifier, and TBE). The average ranks provide a fair comparison of the algo-
rithms. The Friedman test checks whether the average ranks are significantly different
from the mean rank, 2.5. The average rank is computed based on accuracy of the algo-
rithms. Consequently, the test result indicates a significant difference between the four
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Table 4 Comparison of the accuracy(%) of the concept drift handling algorithms on the Poker dataset

Batch Instances TBE(Ranka) AWE(Rank) Learn++(Rank) Active Classifier(Rank)
1 500 32.40(2.5) 32.40(2.5) 32.40(2.5) 38.00(1)
2 1,000 52.80(1.5) 51.50(4) 52.80(1.5) 52.10(3)
3 1,500 56.26(1) 48.19(4) 51.06(3) 52.86(2)
4 2,000 62.00(1) 46.45(4) 49.05(3) 50.55(2)
5 2,500 65.64(1) 41.76(4) 55.27(3) 56.59(2)
6 3,000 65.26(1) 43.46(4) 53.63(3) 59.66(2)
7 3,500 68.25(1) 42.17(4) 54.17(3) 58.68(2)
8 4,000 70.35(1) 43.10(4) 58.02(3) 61.30(2)
9 4,500 72.00(1) 44.24(4) 54.95(3) 63.62(2)
10 5,000 74.02(1) 41.12(4) 58.06(3) 64.74(2)
11 5,500 74.61(1) 40.80(4) 60.10(3) 65.52(2)
12 6,000 74.35(1) 39.46(4) 61.05(3) 65.68(2)
13 6,500 73.87(1) 40.98(4) 60.06(3) 66.01(2)
14 7,000 72.64(1) 40.34(4) 60.00(3) 65.85(2)
15 7,500 72.65(1) 41.08(4) 60.68(3) 66.25(2)
16 8,000 72.33(1) 41.80(4) 59.47(3) 67.41(2)
17 8,500 72.81(1) 43.77(4) 60.50(3) 67.80(2)
18 9,000 73.38(1) 44.33(4) 59.64(3) 67.43(2)
19 9,500 73.64(1) 45.23(4) 60.66(3) 68.09(2)
20 10,000 73.74(1) 43.84(4) 60.95(3) 67.64(2)

Average Rank 1.10 3.93 2.90 2.00

a The rank is assigned based on accuracy.

algorithms (with p < 0.05). A further post-hoc test is conducted for pairwise compar-
isons. Accordingly, the error rate of AWE and Active classifier is significantly lower
than TBE and Learn++ (with p < 0.05). The error rate of AWE is insignificantly differ-
ent to Active Classifier. Overall, AWE and Active classifier are significantly better than
the other algorithms and TBE is found to be relatively less capable next to Learn++ in
handling noisy data.

In addition to the statistical test result, Figure 5 provides visual information about
the four algorithms. AWE starts with a very high error rate but outperforms the other
algorithms by adapting quickly to changes as the number of examples increases. Active
classifier starts with a better performance than the other algorithms but the error rate
increases starting from the 10-th batch. TBE starts with better performance next to the
Active classifier but adapts gradually for both small and large datasets by maintaining
the performance of existing classifiers. Table 4 illustrates the classification accuracy of

the four algorithms on the Poker dataset. The performance of each algorithm is mea-
sured using classification accuracy. Similarly, Figure 6 depicts the performances of the
four algorithms, AWE, Active Classifier, Learn++ and TBE, on the 10,000-instance
Poker dataset.
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Fig. 6 Performance comparison on Handling CD (Poker dataset)

Performance Evaluation on the Poker Dataset

For generalization purposes, the four algorithms (AWE, Active Classifier, Learn++, and
TBE) are also evaluated on another domain using the Poker dataset. This part of the
experiment is unrelated to surgery prediction. Instead, the aim is to investigate whether
the results achieved on the surgery prediction case translate over to other domains. The
statistical testing procedure is identical to the earlier experimental comparisons of the
four algorithms for the surgery prediction case.

Table 4 illustrates a fair comparison of the algorithms (AWE, Learn++, Active Clas-
sifier, and TBE) based on average ranks. The Friedman test is again used to determine
whether the average ranks are significantly different from the mean rank, 2.48. The
average rank is computed based on the ranks of the classification accuracies. As a con-
sequence, there is a significant difference between the four algorithms (with p < 0.05).
Further analysis is conducted with the Nemenyi post-hoc test for pairwise compar-
isons. Accordingly, the error rate of TBE is significantly lower than those of AWE and
Learn++ (with p < 0.05). On the other hand, the error rate of Active Classifier is in-
significantly different from TBE and Learn++ but significantly lower than AWE.

Experimental Summary

To summarize, the experimental results from Figure 4 to Figure 6 illustrate that TBE
performs better on average compared to the other algorithms. TBE performed signif-
icantly better than the other algorithms on the hip-replacement data set simulated by
STAGGER and on the Poker dataset. Moreover, the results show that TBE handles con-
cept drift in a consistent manner for both small and large datasets. However, AWE and
Active Classifier perform better on a noisy hip-replacement dataset that is simulated by
the SEA concept generator.
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Future Work

The future research has three main directions: (i) optimizing the performance of TBE
and developing noise handling capabilities, (ii) performing additional experiments on
datasets from other domains with different characteristics to validate and optimize the
performance of the Trigger-based Ensemble method, and (iii) investigating how to prop-
erly distinguish real concept drift from noise for selected domains. The additional ex-
periments should also include additional performance measures as well as time, com-
plexity, and memory consumption measurements. In this article, we have used error rate
as the primary performance measure. The rationale for this decision is that error rate
is the predominantly employed measure in comparable studies on concept drift. The
authors believe, however, that a more deepened analysis of the performance impact of
concept drift is warranted. Subsequent experiments should therefore encompass alterna-
tive performance measures such as the area under the precision–recall curve, sensitivity,
and specificity. In addition, the computational complexity of concept drift detection and
handling is an important aspect in this area of research. A simplified complexity anal-
ysis can of course be performed by reviewing the presented algorithm pseudocode. We
are, however, planning a future theoretical analysis of the TBE detection and handling
algorithms.

6 Conclusion

This article investigated a concept drift handling algorithm designed for the surgery
prediction task, which is a supervised learning task where the aim is to generate a
mapping between patient record instances and a binary target indicating whether the
corresponding patient needs surgery or not. Today, this task is performed manually.
The general practitioner who examines the patient need to decide whether to refer the
patient to the secondary care for specialist treatment. The scope is delimited to elective
surgical specialist care. If the surgery prediction task is to be automated, it is important
to be able to handle concept drift since the guidelines for making decisions about the
need for surgery are revised, sometimes gradually and sometimes abruptly.

The occurrence of concept drift in the hip-replacement dataset caused a sudden de-
crease in classification performance. If the distribution from which examples are drawn
is similar or identical across batches, the classification performance should not decrease
for subsequent (and larger) batches. However, the results on the hip-replacement dataset
indicate that the error rate increases as the number of examples increase. There is a sig-
nificant variation in classification performance, when the learned concept is changed.
The negative effect of concept drift can be reduced through concept drift handling al-
gorithms.

State-of-the-art concept drift handling algorithms (based on either single classifiers
or ensemble approaches) are here evaluated on a real-world dataset of patients with hip
problems and the Poker hand dataset from the UCI machine learning repository (the
latter is used for generalization purposes). The investigation led to the development of
an algorithm called the Trigger-based Ensemble, which is based on ensemble learning
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and boosting. This proposed algorithm showed a comparatively better ability to detect
and handle concept drift than the state-of-the-art algorithms.

The Trigger-based Ensemble actively detects the occurrence of changes on each
incoming batch of instances and adapts to the changes incrementally. It uses the current
and past predictions of classifiers combined with dynamically updated voting weights.
It is assumed that adding an active detector reduces the chance of ensemble classifiers
suffering from outvoting, that is, the growth of the number of incompetent classifiers.
Moreover, the ensemble size does not become overly large. Thus the contribution of
this research is twofold; improving the performance on the surgery prediction task and
presenting a generic concept drift handling algorithm that performed comparatively
better than the existing concept drift handling algorithms.
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