

Electronic Research Archive of Blekinge Institute of Technology

http://www.bth.se/fou/

This is an author produced version of a conference paper. The paper has been peer-reviewed

but may not include the final publisher proof-corrections or pagination of the proceedings.

Citation for the published Conference paper:

Title:

Author:

Conference Name:

Conference Year:

Conference Location:

Access to the published version may require subscription.

Published with permission from:

Perspectives on
Productivity and Delays in Large-Scale Agile Projects

Deepika Badampudi, Samuel A. Fricker1, Ana M. Moreno2,

1 Blekinge Institute of Technology, 371 79 Karlskrona, Sweden
2 Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain

deba10@student.bth.se, samuel.fricker@bth.se, anamaria.moreno@upm.es

Abstract. Many large and distributed companies run agile projects in
development environments that are inconsistent with the original agile ideas.
Problems that result from these inconsistencies can affect the productivity of
development projects and the timeliness of releases. To be effective in such
contexts, the agile ideas need to be adapted. We take an inductive approach for
reaching this aim by basing the design of the development process on
observations of how context, practices, challenges, and impacts interact. This
paper reports the results of an interview study of five agile development
projects in an environment that was unfavorable for agile principles. Grounded
theory was used to identify the challenges of these projects and how these
challenges affected productivity and delays according to the involved project
roles. Productivity and delay-influencing factors were discovered that related to
requirements creation and use, collaboration, knowledge management, and the
application domain. The practitioners’ explanations about the factors' impacts
are, on one hand, a rich empirical source for avoiding and mitigating
productivity and delay problems and, on the other hand, a good starting point
for further research on flexible large-scale development.

Keywords: Inductive process improvement, large-scale agile development,
grounded theory.

1 Introduction

Agile methods promise lightweight, fast, and nimble development of software
solutions [1]. The values and principles of agile methods suit project environments
particularly well that are characterized by small, competent, and collocated teams that
aim at creating rapid value with small products for well-collaborating customers. The
methods’ rapid and continuous feedback from customer to development team allows a
shared understanding to emerge, rather than requiring requirements to be pre-
determined and specified up-front.

Many organizations are appealed by the idea of generating rapid value with
emergent requirements. However, when attempting to use agile methods for large-
scale product innovation, these organizations discover misalignments between method
and environment [29]. Large scale implies distributed collaboration, coordination

among teams, and the presence of many stakeholders that need to be satisfied in
addition to the project customer. Product and technology novelty imply competence
gaps, potentially both for customer and project team [15]. Misalignments affect
project success negatively or lead to failure [9].

To improve project performance, companies invest in process improvement. Such
learning organizations actively collect experience and modify their behavior to reflect
the insights they have gained [16]. In mature areas, such process improvement is often
based on prescriptive frameworks, such as CMMI [10], that benchmark industry best
practices. When best practices for specific improvement goals have not been
established yet, inductive approaches are used to guide process improvements [5, 27].
An inductive approach exposes past experience and allows the organization to learn
from it. If they are attractive enough, the results from inductive process development
ultimately become part of prescriptive benchmarking frameworks.

This paper reports early results of such inductive process improvement that aimed
at enhancing productivity and reducing delays of large-scale agile development in a
particular software development organization. The organization enabled large-scale
software product innovation for a multi-national company, a market and technology
leader in multiple industry sectors. The organization noticed a misalignment of
project needs for predictability and dependability with agile practices. It used
inductive process improvement to assess and improve the productivity of their
development projects. The assessment elicited challenges and their impact on project
roles to identify how to avoid these challenges and to mitigate their effects. The
results are a condensed rich description of real-world experiences that enables
evidence-based definition of a prescriptive framework to diagnose and improve
agility for large-scale software product innovation.

The remainder of this paper is structured as follows. Section 2 describes related
work and motivates the research. Section 3 describes the research method. Sections 4
and 5 characterize and discuss the results. Section 6 summarizes and concludes.

2 Related Work

Many organizations feel pressure to produce more at lower costs [23]. Productivity
improvements require software projects to reduce development cost, while still
ensuring that solutions are technically correct and satisfactory to stakeholders.
Usually, this is achieved by increasing development efficiency and avoiding rework.
Productivity is also closely related to predictability. Wrong estimates and scheduling
problems increase the error rate of investment decisions [12]. Productivity problems
and delays affect the company’s bottom line because market share erodes rapidly and
the market is entered with a little attractive product [3].

A variety of factors affect productivity and delays. The ability to plan is a key
determinant: requirements engineering, prototyping, and reuse reduce the need for
error correction and rework [2, 3]. Requirements engineering, in particular, enables
effort estimation, project negotiation, progress tracking, and high test coverage [12].
Project management problems such as customer and management changes, unrealistic
project plans, staffing problems, and inability to track problems early lead to delays

[17]. Other determinants are software architecture, team size, and tooling. Software
architecture limits the number of developers that can effectively work together on a
software solution [7]. Small teams with better programmers are more productive than
large teams [3]. Tools, finally, have positive or negative effects on productivity [6].

Many companies believe that agile methods effectively address productivity
problems, in particular because they enable continuous change instead of costly
upfront requirements specifications [23]. Some companies were successful:
phenomenal productivity was achieved with a shared backlog, shared code ownership,
and joint daily Scrum meetings even in globally distributed development [32, 33].
Productivity improvements were also reported in other studies [8].

Productivity suffers if methods are used in an incompatible environment, however.
Agile methods shift success determinants from good planning to frequent releases and
strong communication [9]. This shift is difficult for companies that are used to
heavyweight sequential processes [25] and companies that are confronted with
interdependent teams and stakeholders located at different locations [9]. Challenges
appear in development and management processes [4, 11]. However, they can be
addressed with appropriate practices for improving communication, sharing
knowledge, managing trust, and adapting processes [22, 28].

Companies that have adopted agile practices and discover that their development
environment is incompatible have limited support for improving development
performance. An enabler for identifying effective practices is to understand the
development context and how it enables, respectively inhibits success [19]. Without
such knowledge, projects outside the agile “sweet spot” [21] feel forced to change
again the development method and, due to lack of alternatives, will probably fall back
to the old traditional way of development, losing some of the benefits that agile
frameworks can provide.

3 Research Methodology

Our work aimed at understanding productivity impediments of projects for large-scale
software product development. The here presented embedded multi-case study [34]
was part of an inductive process development effort [27] in a software development
organization of a multi-national company. The effort aimed at improving the
organization’s agile development practices by capturing the experience of the
employees. Members of multiple projects were interviewed to identify challenges in
the application of agile techniques. Grounded theory [31] was used to analyze the
impact of these challenges on the various roles involved in the software projects and
to understand how productivity problems can be avoided and mitigated. The cause-
effect form of the resulting analysis not only supports the specific process
improvement, but also represents an empirical basis for the definition of a situational
framework with guidelines for flexible large-scale development.

To understand the challenges of the agile projects and the impacts of these
challenges, the following research questions were posed:

− RQ1: Which challenges led to productivity problems and delays?
− RQ2: How were the involved project roles affected by these challenges?

Data collection and analysis proceeded iteratively and in parallel. The collected
data was analyzed to build a model of causes and effects for the observed challenges.
Information needs from the analysis indicated the roles that needed to be interviewed.
For example, if an interviewee mentioned a challenge in a particular activity, then the
project role responsible for that activity was selected for the next interview. Our
industry partner’s quality manager identified relevant projects and interviewees to
ensure representativeness for the organization and the application domains of the
developed software products. A total of 14 representatives for the following roles
were selected: product manager, global project manager, architect, integration
manager, technology manager, scrum master, developer, and tester. A brief
description of each role is provided in the next section. The data collection continued
until the saturation point where no new data about the challenges could be obtained.

Semi-structured interviews [30] were used for data collection. During the
interviews, the purpose of the study was explained and open-ended questions about
challenges and the impact of the challenges were asked. The initial questionnaire was
continuously refined on the basis of the analysis results and the information needs
discovered during the analysis. Each interview lasted approximately 120 minutes. The
interviews were recorded and transcribed.

The transcribed data was analyzed using grounded theory [31] by following the
steps iteratively. Pre-coding: we have identified the parts of our transcripts that
pertained to challenges and impacts. Open coding: we have defined codes to label the
identified challenges, their causes, and their impacts. Each challenge and impact then
was described from the interviewees’ perspectives in terms of its characteristics
(Table 1). Axial coding: we connected challenges with conditions that gave rise to the
challenges (Table 2) and the impacts of the challenges (Tables 3 and 4). Selective
coding: we then identified the central traits of the observed large-scale challenges and
discussed them in relation to previous literature and potential solutions.

Flexible research is confronted with the following threats to validity [30]: reactivity,
respondent bias, researcher bias, reliability, and generalizability.

Reactivity refers to the way in which the researcher’s presence alters the behavior
of the subjects involved in the research. This threat to validity was addressed by
letting the interviewing researcher stay at the development organization for a
prolonged period of time and develop trusted relationships with the interviewees.

Respondent bias refers to the risks of obtaining answers that respondents judge
are those the researchers want and of having information withheld that can be used
against the respondents. This threat to validity was reduced by aligning the study
goals with the interests of the study participants: understanding how to improve their
development processes. To check correctness of the obtained answers, one of the
researchers studied the company’s standard processes and participated as observers in
project meetings. Further threat reduction was achieved by triangulating the data
among the interviewees.

Researcher bias refers to the preconceptions and assumptions the researcher
brings into the study. Researcher bias could have manifested in the selection of the
projects and interviewees. This threat to validity was reduced by letting the quality
manager of the organization, who was interested in correct and useful results, select
the projects and the interviewees and review the questionnaire. The open-ended

interview questions allowed the interviewees to share answers they judged to be
important.

Reliability refers to how carefully the research was performed and how honestly
the results were presented. Reliability was achieved by following the above-described
research design, by transcribing all interviews, by managing coding results with a
qualitative analysis tool, and maintaining a chain of evidence.

Generalizability refers to how far the obtained results are applicable and valid.
To support generalization beyond the studied organization we developed a model of
challenges, causes, and impacts that can be used for generating hypotheses about
determinants for productivity and delays in large-scale software product development.
In addition, the results were compared with related work to indicate consistency and
differences with previous state of knowledge.

4 Results

4.1 The Development Organization

We studied a development organization of a Global 500 company. The company
served a large number of markets with a widely diversified portfolio of products,
systems, and services. Many of the products were built on leading technologies and
contained a significant amount of software.

The development organization developed software solutions with projects
requested by product managers. Many of these solutions were established for 5 to 10
years and represented critical parts of products and larger systems that included both
hardware and software. The largest software had approximately 5 million lines of
code. The products and services targeted customers in a number of industry sectors.
They were managed by product managers that worked remotely and acted as product
owners to the development projects. The projects were globally distributed with 25 to
100 members allocated to up to 10 Scrum teams and located at up to 4 development
sites. Important roles of the Scrum teams were the Scrum master responsible for a
team’s work process, the developers responsible for component design and
implementation, and the testers responsible for quality assurance. Important members
of the global project teams were the product manager responsible for product success,
the project manager responsible for coordinating the Scrum teams in the global
project, the architect responsible for overall product design, the integration manager
responsible for composing the overall product, and the technology manager
responsible for the development organization. An independent organization verified
compliance to regulations.

The development organization had adopted agile development processes, in
particular Scrum, for over 5 years and followed agile practices like short iterations,
daily stand-up meetings, pair programming, and test-first development. Kano analysis
was used for prioritization at the project level and planning poker for development
iterations. State-of-art tools were used to manage the product repository that included
requirements, agile project management, code, and testing artifacts.

The projects were not implementing Scrum to the letter. Deviations were due to
compliance, business practices, and distribution of teams. FDA regulations imposed
documentation and traceability requirements, and external testing of the product was
not possible until the entire product was ready. Most projects had contracts signed
early, and workshops disrupted the regular flow of work. These deviations were one
source for the challenges the study discovered.

4.2 Challenges that Affected Productivity and Delays

The practitioners reported a wide range of challenges they perceived affected
development productivity and timeliness of software releases. The challenges related
to requirements creation and use, collaboration, knowledge, and the product
repository. Table 1 gives an overview of the most problematic productivity and delay-
affecting challenges that have been reported by the interviewees.

Table 1. Challenges that affected productivity and delays in the agile projects (italics: quotes).

Category Challenge Characteristics
Requirements
Creation

Requirements Quality
(RQ)

Sometimes requirements are not mature enough. If a new technology needs
to be implemented, then the requirements are not always well understood.

Non-functional
Requirements (NFR)

Sometimes product managers are not fully aware of the non-functional
requirements. Also the demonstrations do not demonstrate the NFRs. This
comes as a defect when the product goes into system testing.

Estimates (ES) If the project is for 2 years, it is ok to have estimates much bigger. They might
be more than even a man month. In the last step where we plan the single
sprint they should be down to single days.

Competitors’ Influence
(CI)

Time-to-market is influenced by the competitors. It may happen that the
competitors come up with a similar product. Then the product needs to
release earlier with at least the same features like the competitors to avoid
sales loss.

Requirements
Use

Requirements
Selection (RS)

How to split the requirements, how to phase them across different phases of
the project, I would say, continues to be a challenge.

Requirements Stability
(RV)

When there is a change, it takes a couple of sprints to align everything
together. The impact of change can be felt for a longer time

Testing Completeness
(TC)

Incomplete testing is another aspect. Some workflows are not fully tested.

Integration (IN) Global integration reports defects for skipped functionality. This happens
because some other team changes something which was not available to us
for testing and that has cost us the defect.

Clarity of Done (CD) Perspective of developers and product managers differ sometimes due to
poor understanding of requirements. What we consider done is not considered
done by product manager sometimes

Collaboration Communication Quality
(CQ)

Communication is another aspect as all team members are not in the same
place. The communication between the engineering project head and the
product manager is less.

Decision-making (DM) All the key stakeholders from all teams should be involved in release planning
along with the product manager and customer. That would lead to
development of a concrete plan.

Team Dynamics (TD) The scrum masters have own motives in completing their tasks.
Test Infrastructure (TI) When the developers finish the development the scrum server is not available

for testing.
Team Stability (TS) Sometimes resources leave the project. Then recalculations need to be done.

The project may take 15 months instead of 10 months.

Category Challenge Characteristics
Knowledge Domain and

Technology
Knowledge (DTK)

Using a new technology without evaluating it could be a potential risk that can
cause a plan to get derailed.

Product
Repository

Progress
Measurement (PM)

Testing may result in re-implementing the user story. This is not always
updated to the release backlog.

Documentation Quality
(DQ)

Developer pairs code without writing comments because they know each
other. But a third person faces lot of issues.

A majority of the challenges related to requirements creation or use. The creation

of clear, mature, and complete-enough requirements that are correctly estimated and
lead to a stable project and a well-integrated accepted solution was here as important
as in other software development efforts. The use of an agile process did not change
this need. The challenges RQ, NFR, ES, and RV are consistent with those reported by
studies of large-scale market-driven requirements engineering [20]. New challenges
were CI and CD that reflected the importance of product management decisions.
Connected to the agile development process were RS, TC, and IN that were due to
splitting complex requirements and implementing them stepwise.

The next important group of challenges related to collaboration, knowledge, and
the product repository. The collaboration challenges CQ, DM, and TD and the
product repository challenges PM and DQ are well-known global software
development challenges [18]. The challenge of domain and technology learning DTK
is well-known in product innovation [24]. New challenges were the problems of test
infrastructure TI and team stability TS. None of these challenges were removed by the
agile processes.

4.3 Causes for the Challenges

The practitioners suggested that the challenges were caused by six conditions present
in the environment of the development projects. The rationales for why the causes
gave rise to the challenges characterize the misalignment of the organization’s
characteristics and how the agile processes were implemented. Table 2 gives an
overview.

Table 2. Conditions that gave rise to productivity and delay-affecting challenges (italics: quotes).

Condition Challenge Rationale
Project
Complexity

Requirements Quality
(RQ)

If a new [complex] technology needs to be implemented then the
requirements are not always well understood.

Requirements Stability
(RV)

Requirements changes might also come from the development teams.
Sometimes a team realized that they needed support from other teams or
other components.

Multiple Teams Integration (IN)

Other teams change something which was not available to us for testing
and that has cost us the defect.

Clarity of Done (CD) People don't want to report yellow or red. If you have many teams that all
report green, but still have open tasks, this does not give a correct
indication of work done

Test Infrastructure (TI) It happens that the team is ready for beta testing but the beta sites are not
available for testing as other teams use the same site.

Condition Challenge Rationale
Progress Measurement
(PM)

Teams do not always updated requirements that result from defects to the
[global] release backlog. As a result release burndown gives a wrong
indication on the project progress.

Multiple Sites Communication Quality
(CQ)

Lack of communication across locations. Time zones are different. This
causes delay when queries need to be answered.

Decision-making (DM), Sometimes meetings are not done jointly due to time differences. Then
only the minutes of meeting are shared after the meeting.

Team Dynamics (TD) Every scrum group would have their own priorities to finish their tasks.
This creates more problems when teams are multi-site.

Product
Characteristics

Non-functional
Requirements (NFR)

There is no denial that NFRs like scalability are ignored in agile projects.

Documentation Quality
(DQ)

Test cases need to be written at a later stage as a cleanup process due to
FDA regulations.

Requirements Selection
(RS)

How to split the requirements, how to phase them across different phases
of the project, I would say, continues to be a challenge.

Testing Completeness
(TC)

Due to FDA regulations external testing is only done at the end of release
and not after each sprint.

Knowledge
Limitations

Domain and Technology
Knowledge (DTK)

If the domain is not understood there could be lot of errors.

Estimates (ES) It depends how mature the team is. There are overestimations because of
which the team needs to stretch.

Integration (IN) The involved people are still learning about the system. We want to be
more efficient and have better quality of the integrated product.

Product complexity, multiple teams, and multiple sites were conditions related to

the scale of the development effort. The development was highly parallel and
introduced a need for coordinating teams with joint meeting, shared documentation,
consistent progress measurement, and a joint product repository. Shared resources
such as test infrastructure needed to be managed. Perturbations, such as requirements
changes, perturbed the development streams that needed to be stabilized again.

NFR, RS, and TC were challenges due to misalignments of the agile process with
product characteristics. NFR cut across implementation activities of many iterations
and were not easily handled with backlogs. Similarly, implementation with short
iterations required splitting features, such as the support of a workflow, into multiple
parts even-though they would have been preferred to be implemented as a whole. The
product domain was regulated and imposed constraints on development
documentation and process such as traceability and certification tests.

Deep knowledge of the domain, technologies, the product, and the development
organization was needed for effective development. The unavoidable learning was
accompanied with estimation and product quality problems.

4.4 Impact of Challenges on Productivity and Delay of Scrum Teams

The Scrum team members reported that the challenges caused problems in project
planning, in shared understanding (SU) and coordination between the team, other
teams, and stakeholders, and in software quality assurance (SQA). Table 3 gives an
overview of the impact of the challenges on the Scrum teams.

Table 3. Impact of Challenges on Scrum Team (italics: quotes).

Role Challenge Impact Rationale / Mechanism
Scrum
Master

Requirements
Quality (RQ)

Planning: Planning uncertainty and
overestimation.

There are overestimations when requirements
not clear or they are missing.

Estimates (ES) Planning: Overestimation. If I didn’t estimate the size of the feature or
predict the feature to be unstable then my
schedule gets extended.

Developer Estimates (ES) Planning: Inadequate time budget
for implementation.

Estimates from unqualified people do not
match real effort.

Requirements
Stability (RV)

Planning: Deviations from software
design and project schedule.

The reasons for deviation are evolving
requirements and some technical challenges.

Decision-making
(DM)

Planning: Project plan was not
concrete enough.

Involvement of all the key stakeholders from all
teams … will lead to development of a
concrete plan.

Test Infrastructure
(TI)

Planning: Deviations from project
schedule.

Also external factors affect the schedule.
Developers finish the development, but the
scrum server is not available for testing.

Domain or
Technology
Knowledge (DTK)

Planning: Deviations from project
schedule.

Using a new technology without evaluating it
could be a potential risk that can cause a plan
to get derailed.

Communication
Quality (CQ)

SU and Coordination: Coordination
problems and misunderstandings
between stakeholders and
developers.

We lack communication across locations. Time
zones are different. This causes delay when
queries need to be answered. They think about
dependencies, but forget to tell.

Decision-making
(DM)

SU and Coordination: Team
coordination and component
consistency problems.

Workshops should be conducted by having all
stakeholders in one place.

Domain or
Technology
Knowledge (DTK)

SU: Software design conflicts
between teams at different sites.

The European architects are not aware of the
latest technology and still implement [the old]
concepts in new solutions. We learned SE
much later with new technology. So we have a
problem in accepting that.

Documentation
Quality (DQ)

SU: Code understanding difficulties
and delayed code changes and bug
fixing.

Developer pairs code without writing
comments because they know each other. But
a third person faces lot of issues.

Clarity of Done
(CD)

SQA: Failed acceptance of features. Perspectives of developers and product
managers differ sometimes. What we consider
done is not by product manager.

Tester Requirements
Selection (RS)

Planning: Varying test effort
between sprints with ineffective use
of test resources. Re-work of tests.

During the sprints the test cases are written
just for requirements without considering the
[whole] workflow … When the workflow starts
coming, the test cases have to be modified to a
large extent.

Decision-making
(DM)

SQA: Insufficient alignment of
software design and tests.

Testers don’t always get into design
discussions because they are pre-occupied
with testing the previous sprints.

Most of the planning problems were visible in the uncertainty of estimates and

plans that led to inadequate time budget and deviations from project schedule. They
affected Scrum masters and developers. The uncertainties were caused by unclear and
unstable requirements, insufficient qualification, competence, and participation of
decision-makers, and scarce shared resources. Testers were confronted with another
kind of planning problem. Splitting the implementation of requirements over multiple
releases led to uneven distribution of effort and to re-work of test cases.

The problems in shared understanding with other teams and with stakeholders were
encountered by developers. These problems were visible in misunderstandings and
coordination problems that led to inconsistent design and development results and
ultimately resulted in re-work. The problems were caused by challenges of
insufficient knowledge, communication, documentation, and participation in decision-
making.

The quality assurance problems were encountered by developers and testers.
Software and tests were insufficiently aligned and features failed acceptance by
stakeholders and users. These problems were caused by problems in shared
understanding and insufficient participation in decision-making had to be corrected
with re-work.

4.5 Impact of Challenges on Productivity and Delay of Global Project Teams

The managers and architects indicated that the challenges caused problems in plan
quality, in development capacity, in coordination between teams, in shared
understanding between teams and stakeholders, and in software quality assurance.
Table 4 gives an overview.

Table 4. Impact of Challenges on Global Projects (italics: quotes).

Role Challenge Impact Rationale / Mechanism
Product
Manager

Competitors’
Influence (CI)

Planning: Changes in time-to-
market and priorities.

The competitors come up with a similar product. Then
the product needs to release earlier with at least the
same features.

Team Stability
(TS)

Planning: Re-planning with
scope reduction or deadline
postponement.

[When project members leave] the management does
not have budget for additional head count. In that
case the deadline is increased or the scope reduced.

Project
Manager

Testing
Completeness
(TC)

Planning: Underestimated effort
for bug-fixing.

The external testing is only done at the end of a
release and not after each sprint. It might reveal that
the algorithm is not fully tuned to real world cases.
Another 2 or 3 weeks are spent on adjusting the
product.

Communication
Quality (CQ)

SU: Misunderstandings between
product and project managers
and remote team members

The reason for delay is lack of clarity at each
development step - design, coding, and testing. This
is because of limited communication across multiple
sites.

Team
Dynamics (TD)

Coordination: Coordination
problems between teams.

Typically interdependency is not really considered.
Every scrum group has its own priorities to finish its
tasks.

Progress
Measurement
(PM)

Coordination: Coordination
problems among development
teams.

Re-implementation due to bugs or changes from
customer is not updated to the release backlog.
Some scrum teams may not be aware of the
changes.

Role Challenge Impact Rationale / Mechanism
Architect Non-functional

Requirements
(NFR)

Planning and SQA: Defect
discovery in system testing or
feature delivery. Late costly
changes.

Demonstrations do not demonstrate the NFRs. This
comes as a defect in large scale testing or in test of
the system limits. This requires change of design,
which is costly.

Requirements
Stability (RV)

Planning and Coordination:
Solution redesign during
development. Plan changes.
Increased coordination effort.

Changes in NFRs caused refactoring of design and
code.

Integration (IN) SQA: Irreproducible defects at
integration testing and difficult
root-cause analysis.

Other components may have caused the defect. We
see a trend that defects at this stage are not
reproducible or consistent. Fixes for these defects are
not easy.

Integration
Manager

Integrations
(IN)

Capacity: Not enough people
working on integration

A dedicated integration team was not setup until last
year: there are not enough people working on it as
the people who are involved are still learning about
the system.

Communication
Quality (CQ)

Coordination: Incomplete
awareness of dependencies.

Even though at some instance they think about
dependencies then they may forget to tell. Then we
don’t find out.

Technology
Manager

Estimation (ES) Capacity: Teams overloaded
with work.

Actual work is much more than people would think.

Requirements
Stability (RV)

Capacity: Congested backlogs. The impact of change can be felt for a long time.

Clarity of Done
(CD)

Coordination: Wrong
understanding of real progress.

If all [teams] report green but they still have some
open tasks then at the end to the management it is all
green.

Many of the problems at the global project level were not visible at the Scrum team

level and related to enabling and coordinating the teams and integrating their results.
Problems of shared understanding were less a concern than on Scrum team level.
Planning problems were experienced at a similar extent, but with different causes.

The planning problems affected first product managers, project managers, and
architects. Market changes and resource problems led to scope and deadline changes.
Requirement changes and failed external regulatory tests led to redesign, delays, and
increased coordination effort. Related were capacity problems that were stated by the
integration and technology managers. The learning process and repercussions of
changes congested backlogs, overloaded teams, and introduced delays.

Coordination problems were mentioned by all interviewed roles except the product
managers. Sub-optimized plans, inconsistent reporting, insufficient communication,
and requirements changes caused misaligned work, inconsistent work results, and
wrong understanding of real progress. The communication challenges also introduced
problems of shared understanding between management and remote teams. Together
with ignored and unstable NFR they led to hard problems in quality assurance.

5 Discussion

Many of the reported challenges were well known. They represented a selection of
challenges reported in market-driven requirements engineering [20], global software
engineering [18], and innovation [24]. Agile development did not change importance

of these challenges. Instead it added the previously hidden angle of product
management and introduced new problems such as those due to stepwise
implementation of complex requirements.

The development organization showed a need for predictability, dependability,
stability, and effective use of an appropriate amount of resources. On a global level, it
turned to solutions offered by planning, coordination, and communication. The
complexity of the products and of the organization, however, led to the described
challenges that generated productivity problems and delays. The problems generated
by these challenges differed depending on the organizational level. The Scrum teams
struggled mainly with plan stability and adherence, shared understanding, and quality
assurance. The global projects battled mainly with project plans, enabling and
coordinating the Scrum teams, and integrating results.

The study results were partially consistent with previous research on determinants for
productivity and delays. Many determinants of the studied projects were the same as
the determinants of pre-agile projects [2, 3, 12, 17]. Requirements could only be
stabilized when the product and product use were clear enough. Unclear requirements,
limited knowledge of domain, technology, and the organization, and communication
problems led to uncertain estimates, unstable plans and integration, and quality
problems with the consequent need for rework.

Determinants that were not reported by the subjects to be problematic were team
sizing [3] and tooling [6]. They seemed to have been adequately addressed by the
organization.

The study discovered new determinants that affected productivity and delay:
stability of markets and organization, consistency of the development process with
product characteristics, and support of complexity of the organization. Releases of
competitive products and personnel fluctuation affected scope, deadlines, and
capacity. Complex requirements, regulations that imposed documentation and product
certification, and separation of product development and maintenance were difficult
to handle with the chosen agile approach. Shared understanding, collaboration
between teams, and consistent reporting were addressed unsatisfactorily, especially
because they led to costly ripple effects.

Solutions are known that can help to avoid many of the challenges and mitigate their
impact on productivity problems and delays. For example, an approach to stabilizing
requirements is structured handshaking between stakeholders and development teams
with implementation proposals [13]. Implementation proposals allow focusing design
and prototyping on critical features and stabilizing the concerned requirements with
stakeholder feedback. Sufficient coverage of requirements with implementation
proposals increased reliability of project plans.

Requirements structuring with feature trees modularizes specifications and plans
according to alternative decision options [14]. Such modularization reduces planning
complexity, simplifies progress reporting, and integrates backlogs of individual teams
in a consistent manner.

Collocation of some members of distributed teams with scrum masters and product
owners and regular, well-prepared global scrum team meetings improves shared
understanding and team coordination, and reduces integration problems [33]. Other

collections of practices exist and provide concrete approaches for addressing
challenges related to scaling agile development [22].

The overall development throughput can be improved by capturing the flow of
software development by tracking the lifecycle stage of features and visualizing
progress with cumulative flow diagrams [26]. This specific approach can be used as
an early warning system and for identifying bottlenecks.

The list of solutions is by far not exhaustive. Selection of an appropriate
combination of practices and evaluation of their effects is the concern of the next
process improvement steps at the studied organization. Research towards
understanding the fundamental principles of productivity and delays in large-scale
agile development will support that work.

6 Conclusions

This paper presented the results of an empirical study that examines the challenges
that affected productivity and delays encountered in large-scale agile development of
a global product company. Data was collected from 14 interviewees and covered 8
roles in 5 relevant projects.

In relation to RQ1, which challenges led to productivity problems and delays, 17
challenges were identified that were caused by project and organizational complexity,
by product characteristics, and by knowledge limitations. Many of the challenges
were well known, but have not been removed by the agile development process.
Instead, the agile focus added new problems such as those due to stepwise
implementation of complex requirements.

RQ2 asked how the involved project roles were affected by these challenges. The
interviewees identified 28 mechanisms of how the challenges affected the roles. The
problems at the global project level were mostly about enabling, planning, and
coordinating the Scrum teams and integrating their results. The problems at the Scrum
teams level were about shared understanding, planning, and quality assurance.

Interestingly, the organization did not abolish planning for their large projects.
Instead, consistent with previous research on productivity and delays, it wanted
predictability, dependability, stability, and effective use of resources. Known
determinants for productivity and delays were confirmed and new ones related to
software product management, process-product alignment, and process-organization
alignment discovered.

In sum, the study describes an in-depth analysis of an organization that has adopted
agile processes for large-scale product development, discovered misalignments of this
approach with the project context, and intends to adjust its processes to improve
productivity and delays. The results are a basis for selecting appropriate solutions and
for better understanding principles of productivity and delays with future theoretical
and empirical studies.

Acknowledgments

This work was funded by The Knowledge Foundation in Sweden under a research
grant for the Blekinge Engineering Software Qualities (BESQ) project. We would like
to thank our anonymous industry partner for enabling the here reported research.

References

1. Abrahamsson, P., et al., Agile software development methods: Review and
analysis. VTT Publications 478. Vol. 478. 2002, Espoo: VTT.

2. Basili, V.R., L. Briand, and W. Melo, How Reuse Influences Productivity in
Object-Oriented Systems. Communications of the ACM, 1996. 39(10): p. 104-
116.

3. Blackburn, J., G. Scudder, and L. Van Wassenhove, Improving Speed and
Productivity of Software Development: A Global Survey of Software Developers.
IEEE Transactions on Software Engineering, 1996. 22(12): p. 875-885.

4. Boehm, B. and R. Turner, Management Challenges to Implementing Agile
Processes in Traditional Development Organizations. IEEE Software, 2005.
22(5): p. 30-39.

5. Briand, L., K. El Emam, and W. Melo, An inductive method for software process
improvement: concrete steps and guidelines, in Elements of Software Process
Assessment & Improvement, K. El Emam and N. Madhavji, Editors. 2001,
Wiley-IEEE Computer Society.

6. Bruckhaus, T., et al., The Impact of Tools on Software Productivity. IEEE
Software, 1996. 13(5): p. 29-38.

7. Cain, J. and R. McCrindle, An Investigation into the Effects of Code Coupling on
Team Dynamics and Productivity, in 26th Annual International Computer
Software and Applications Conference (COMPSAC 2002). 2002: Oxford, UK.

8. Cardozo, E., et al., SCRUM and productivity in software projects: a systematic
literature review, in 14th international conference on Evaluation and
Assessment in Software Engineering (EASE'10). 2010: Keele, UK.

9. Chow, T. and D.-B. Cao, A survey study of critical success factors in agile
software projects. Journal of Systems and Software, 2007. 81(6): p. 961-791.

10. CMMI Product Team, CMMI for Development, Version 1.3. 2010, Carnegie
Mellon University.

11. Cohn, M. and D. Ford, Introducing an Agile Process to an Organization. IEEE
Computer, 2003. 36(6): p. 74-78.

12. Damian, D., et al., Requirements payoff: An empirical study of the relationship
between requirements practice and software productivity, quality and risk
management. 2003, University of Victoria.

13. Fricker, S., et al., Handshaking with Implementation Proposals: Negotiating
Requirements Understanding. IEEE Software, 2010. 27(2): p. 72-80.

14. Fricker, S. and S. Schumacher, Release Planning with Feature Trees: Industrial
Case, in Requirements Engineering: Foundations for Software Quality (RefsQ
2012). 2012: Essen, Germany.

15. Garcia, R. and R. Calantone, A Critical Look at Technological Innovation
Typology and Innovativeness Terminology: A Literature Review. The Journal of
Product Innovation Management, 2002. 19(2): p. 110-132.

16. Garvin, D., Building a Learning Organization. Harvard Business Review, 2000.
71(4): p. 78-91.

17. Genuchten, v., Why is Software Late? An Empirical Study of Reasons For Delay
in Software Development. IEEE Transactions on Software Engineering, 1991.
17(6): p. 582-590.

18. Herbsleb, J. and D. Moitra, Global Software Development. IEEE Software,
2001. 18(2): p. 16-20.

19. Hoda, R., et al., Agility in Context, in OOPSLA/SPLASH'10. 2010: Reno/Tahoe,
Nevada, USA.

20. Karlsson, L., et al., Requirements Engineering Challenges in Market-Driven
Software Development - An Interview Study with Practitioners. Information and
Software Technology, 2007. 49(6): p. 588-604.

21. Kruchten, P., Scaling Down Large Projects to Meet the Agile Sweet Sport, in
IBM developerWorks. 2004, IBM.

22. Leffingewell, D., Scaling Software Agility: Best Practices for Large Enterprises.
2007: Addison-Wesley.

23. Lindvall, M., et al., Agile Software Development in Large Organizations. IEEE
Computer, 2004. 37(12): p. 26-34.

24. Lynn, G., J. Morone, and A. Paulson, Marketing and Discontinuous Innovation.
California Management Review, 1996. 38(3): p. 8-37.

25. Nerur, S., R.K. Mahapatra, and G. Mangalaraj, Challenges of Migrating to Agile
Methodologies. Communications of the ACM, 2005. 48(5): p. 73-78.

26. Petersen, K. and C. Wohlin, Measuring the flow in lean software development.
Software Practice and Experience, 2010. 41(9): p. 975-996.

27. Pettersson, F., et al., A practitioner's guide to light weight software process
assessment and improvement planning. Journal of Systems and Software, 2007.
81(6): p. 972-995.

28. Ramesh, B., et al., Can Distributed Software Development be Agile?
Communications of the ACM, 2006. 49(10): p. 41-46.

29. Reifer, D., F. Maurer, and H. Erdogmus, Scaling Agile Methods. IEEE Software,
2003. 20(4): p. 12-14.

30. Robson, C., Real World Research: A Resource for Social Scientists and
Practitioner Researchers. 2nd ed. 2002: Blackwell Publishing.

31. Strauss, A. and J. Corbin, Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory. 1998: SAGE Publications.

32. Sutherland, J., et al., Fully Distributed Scrum: Linear Scalability of Production
between San Francisco and India, in Agile Conference (AGILE'08). 2009:
Toronto, Canada.

33. Sutherland, J., et al., Disributed Scrum: Agile Project Management with
Outsourced Development Teams, in 40th Hawaii International Conference on
System Sciecnes. 2007: Hawaii, USA.

34. Yin, R.K., Case study research: Design and methods. 2008: SAGE Publications.

	Title: Perspectives on Productivity and Delays in Large-Scale Agile Projects
	Author: Deepika Badampudi, Samuel Fricker, Ana Moreno
	Conference: International Conference on Agile Software Development
	Year: 2013
	Publisher: Springer
	City: Vienna, Austria

