
Master Thesis  
Software Engineering 
Thesis no: MSE-2009:27 
November 2009 

School of Engineering 
Blekinge Institute of Technology 
Box 520 
SE – 372 25 Ronneby 
Sweden 

Minimizing Defects Originating from Elicitation, 
Analysis and Negotiation (E and A&N) Phase in 

Bespoke Requirements Engineering 

Israr Ahmed 
Shahid Nadeem 



  ii

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology in 
partial fulfillment of the requirements for the degree of Master of Science in Software 
Engineering. The thesis is equivalent to 40 weeks of full time studies. 

Contact Information: 
Author(s): 
 
Israr Ahmed 
E-mail: sh_sheikh03@yahoo.com 
 
Shahid Nadeem 
E-mail: shahid.nadeim@gmail.com 
 

University advisor(s): 
Tony Gorschek 
Department of System and Software Engineering 

School of Engineering 
Blekinge Institute of Technology 
Box 520 
SE – 372 25 Ronneby 
Sweden 

Internet `: www.bth.se/tek 
Phone : +46 457 38 50 00 
Fax : + 46 457 271 25 

mailto:sh_sheikh03@yahoo.com
mailto:shahid.nadeim@gmail.com


  1

ABSTRACT 
 

Defect prevention (DP) in early stages of software development life cycle (SDLC) is very 
cost effective than in later stages. The requirements elicitation and analysis & negotiation (E 
and A&N) phases in requirements engineering (RE) process are very critical and are major 
source of requirements defects. A poor E and A&N process may lead to a software 
requirements specifications (SRS) full of defects like missing, ambiguous, inconsistent, 
misunderstood, and incomplete requirements. If these defects are identified and fixed in later 
stages of SDLC then they could cause major rework by spending extra cost and effort. 
Organizations are spending about half of their total project budget on avoidable rework and 
majority of defects originate from RE activities. This study is an attempt to prevent 
requirements level defects from penetrates into later stages of SDLC. For this purpose 
empirical and literature studies are presented in this thesis. The empirical study is carried out 
with the help of six companies from Pakistan & Sweden by conducting interviews and 
literature study is done by using literature reviews. This study explores the most common 
requirements defect types, their reasons, severity level of defects (i.e. major or minor), DP 
techniques (DPTs) & methods, defect identification techniques that have been using in 
software development industry and problems in these DPTs. This study also describes 
possible major differences between Swedish and Pakistani software companies in terms of 
defect types and rate of defects originating from E and A&N phases. On the bases of study 
results, some solutions have been proposed to prevent requirements defects during the RE 
process. In this way we can minimize defects originating from E and A&N phases of RE in 
the bespoke requirements engineering (BESRE). 

 
Keywords:  E and A&N, RE, SDLC, BESRE, most common requirements defect types, 
DPTs, empirical study, literature study, interviews, literature reviews, requirements defect 
taxonomy, adoptability  



  2

ACKNOWLEDGEMENT 
 

Foremost, we would like to express our utmost gratitude to our supervisor Dr. Tony Gorschek 
for providing us consistent and valuable support in research. We thank to him for giving us 
precious time and attentions whenever required. A part from these, we also admire his interest 
in research with numerous discussions, constructive comments, and beneficial suggestions 
which not only improved this work but also greatly helped us to utilize our effort in the right 
direction.  
 
It is our pleasure to admire all those interviewees from Pakistan and Sweden which gave us 
appropriate time and showed immense interest in research topic. We appreciate them for 
giving us useful information in data collection process. Without their involvement we were 
unable to get good results.  
 
We greatly acknowledge the Software Engineering Department at BTH for providing us 
useful information and guidelines in conducting a good research. We also admire Library 
staff for providing us technical resources for the thesis. They were helpful for providing us an 
environment to access online databases regarding research resources and related materials.  
 
We are also greatly indebted to our friends for their continued love and support. Finally, we 
intensely appreciate the moral support from our parents. Their advices, love and 
encouragement had really made this thesis possible.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  3

TABLE OF CONTENTS 
ABSTRACT ............................................................................................................................................ 1 

ACKNOWLEDGEMENT ..................................................................................................................... 2 

TABLE OF CONTENTS ...................................................................................................................... 3 

LIST OF FIGURES ............................................................................................................................... 6 

LIST OF TABLES ................................................................................................................................. 7 

1 INTRODUCTION ......................................................................................................................... 8 

2 BACKGROUND ........................................................................................................................... 9 

2.1 RELATED WORK ....................................................................................................................12 

3 RESEARCH DESIGN .................................................................................................................15 

3.1 AIMS AND OBJECTIVES ..........................................................................................................15 
3.2 RESEARCH QUESTIONS ...........................................................................................................15 
3.3 EXPECTED OUTCOMES ...........................................................................................................16 
3.4 RESEARCH METHODOLOGY ...................................................................................................16 

4 STUDY DESIGN ..........................................................................................................................18 

4.1 LITERATURE REVIEW DESIGN ................................................................................................18 
4.1.1 Literature Review Approach .............................................................................................18 
4.1.2 Literature Review Resources.............................................................................................18 
4.1.3 Selection of Articles ..........................................................................................................18 
4.1.4 Data Processing ................................................................................................................19 
4.1.5 Exact Execution of Design ................................................................................................19 

4.2 QUALITATIVE INTERVIEW DESIGN .........................................................................................19 
4.2.1 Interview Goal ..................................................................................................................19 
4.2.2 Subject Selection ...............................................................................................................20 
4.2.3 Interview Technique ..........................................................................................................20 
4.2.4 Interview Instruments ........................................................................................................20 
4.2.5 Interview Recording ..........................................................................................................21 
4.2.6 Interview Execution...........................................................................................................21 
4.2.7 Data Analysis & Validation ..............................................................................................21 
4.2.8 Exact Interviews Execution ...............................................................................................21 

4.3 QUALITATIVE DATA ANALYSIS ..............................................................................................23 
4.3.1 Noticing and Coding .........................................................................................................23 
4.3.2 Collecting and Sorting ......................................................................................................23 
4.3.3 Thinking ............................................................................................................................23 

4.4 VALIDITY THREATS ...............................................................................................................24 
4.4.1 Credibility .........................................................................................................................24 
4.4.2 Transferability ...................................................................................................................26 
4.4.3 Conformability ..................................................................................................................27 
4.4.4 Dependability ....................................................................................................................27 

4.5 VALIDATION DESIGN OF STUDY FINDING ..............................................................................28 
4.5.1 Validation Design .............................................................................................................28 

5 LITERATURE STUDY RESULTS ............................................................................................29 

5.1 MOST COMMON REQUIREMENTS DEFECT TYPES REPORTED BY LITERATURE BASED ON E AND 
A&N PHASES OF RE ............................................................................................................................29 
5.2 REQUIREMENTS BASED DEFECT TAXONOMY .........................................................................33 

5.2.1 Orthogonal Defect Classification (ODC) .........................................................................34 
5.2.2 Boris Beizer Taxonomy .....................................................................................................34 
5.2.3 IEEE Taxonomy for Software Anomaly ............................................................................35 
5.2.4 HP-Defect Classification Scheme (DCS) ..........................................................................35 
5.2.5 Requirements Fault Taxonomy .........................................................................................36 



  4

5.3 REQUIREMENTS DEFECT IDENTIFICATION & PREVENTION TECHNIQUES AND THEIR 
WEAKNESSES ......................................................................................................................................36 

5.3.1 Defect Identification Techniques .......................................................................................37 
5.3.1.1 Prototyping ............................................................................................................................. 37 
5.3.1.2 N-fold Inspection .................................................................................................................... 37 
5.3.1.3 Ad Hoc Reading ..................................................................................................................... 38 
5.3.1.4 Checklist Based Reading ........................................................................................................ 39 
5.3.1.5 Scenario Based Reading (Defect Based Reading) .................................................................. 39 
5.3.1.6 Perspective Based Reading ..................................................................................................... 39 
5.3.1.7 Usage Based Reading (UBR) ................................................................................................. 40 
5.3.1.8 Function Point Reading .......................................................................................................... 40 
5.3.1.9 Metric Based Reading Technique ........................................................................................... 40 
5.3.1.10 Inspection Using Error Abstraction ........................................................................................ 41 
5.3.1.11 Goal Oriented Requirements Analysis ................................................................................... 41 
5.3.1.12 Attributed GORA Technique .................................................................................................. 43 

5.3.2 Defect Prevention Methods ...............................................................................................44 
5.3.2.1 Formal Specification Method ................................................................................................. 44 
5.3.2.2 Structural Analysis and Design Technique (SADT) ............................................................... 45 
5.3.2.3 Goal Based Requirements Analysis Method .......................................................................... 46 
5.3.2.4 Object Oriented Requirements Analysis ................................................................................. 47 
5.3.2.5 Joint Application Design (JAD) ............................................................................................. 48 
5.3.2.6 Cleanroom Methodology ........................................................................................................ 49 
5.3.2.7 Quality Function Deployment (QFD) ..................................................................................... 50 
5.3.2.8 Participatory Design ............................................................................................................... 51 

6 EMPIRICAL STUDY RESULTS ...............................................................................................53 

6.1 MOST COMMON REQUIREMENTS DEFECT TYPES REPORTED BY INDUSTRY ...........................53 
6.1.1 Company A ........................................................................................................................53 

6.1.1.1 Interviewee ............................................................................................................................. 53 
6.1.1.2 Defect Types and Their Reasons based on E and A&N ......................................................... 53 
6.1.1.3 Techniques Reported by Company A ..................................................................................... 54 

6.1.2 Company B ........................................................................................................................54 
6.1.2.1 Interviewee ............................................................................................................................. 54 
6.1.2.2 Defect Types and Their Reasons based on E and A&N ......................................................... 54 
6.1.2.3 Techniques Reported by Company B ..................................................................................... 55 

6.1.3 Company C........................................................................................................................55 
6.1.3.1 Interviewee ............................................................................................................................. 55 
6.1.3.2 Defect Types and Their Reasons based on E and A&N ......................................................... 55 
6.1.3.3 Techniques Reported by Company C ..................................................................................... 56 

6.1.4 Company D .......................................................................................................................56 
6.1.4.1 Interviewees............................................................................................................................ 56 
6.1.4.2 Defect Types and Their Reasons based on E and A&N ......................................................... 57 
6.1.4.3 Techniques Reported by Company D ..................................................................................... 57 

6.1.5 Company E ........................................................................................................................57 
6.1.5.1 Interviewee ............................................................................................................................. 58 
6.1.5.2 Defect Types and Their Reasons based on E and A&N ......................................................... 58 
6.1.5.3 Techniques Reported by Company E ..................................................................................... 58 

6.1.6 Company F ........................................................................................................................59 
6.1.6.1 Interviewee ............................................................................................................................. 59 
6.1.6.2 Defect Types and Their Reasons based on E and A&N ......................................................... 60 
6.1.6.3 Techniques Reported by Company F ...................................................................................... 60 

7 DATA ANALYSIS .......................................................................................................................61 

7.1 RQ1 & DATA ANALYSIS ........................................................................................................61 
7.1.1 Summary of Most Common Defects Types and Their Causes that Originate from E and 
A&N Phases in BESRE ..................................................................................................................67 

7.2 RQ2 & DATA ANALYSIS ........................................................................................................69 
7.2.1 Comparison between Pakistani Companies (B, C, E) .......................................................69 
7.2.2 Comparison between Swedish Companies (A, D, F) .........................................................71 
7.2.3 Comparison between Swedish and Pakistani Companies .................................................72 

7.2.3.1 Use of Defect Taxonomies ..................................................................................................... 72 
7.2.3.2 Root Cause Analysis ............................................................................................................... 72 
7.2.3.3 RE Risk Consideration ........................................................................................................... 73 
7.2.3.4 Awareness of DPTs and DP Methods ..................................................................................... 73 



  5

7.2.3.5 Acquisition of Academic Research......................................................................................... 73 
7.2.3.6 Training for RE Process ......................................................................................................... 73 
7.2.3.7 Number of Developers for Each Project or Release ............................................................... 73 
7.2.3.8 Defect Types Comparisons ..................................................................................................... 73 

7.3 RQ3 & DATA ANALYSIS ........................................................................................................76 
7.3.1 Comparison of SRS Reading Techniques ..........................................................................80 

7.4 RQ4 & DATA ANALYSIS ........................................................................................................84 
7.4.1 Classification of Most Common Defect Types Using Boris Beizer Defect Classification 
Scheme 85 

7.4.1.1 Classification of Major Defect Types ..................................................................................... 86 
7.4.2 List of Recommendations ..................................................................................................89 
7.4.3 Improvement in Defect Identification Technique ..............................................................89 

7.4.3.1 Four-fold Inspection ............................................................................................................... 91 
7.5 RQ5 & DATA ANALYSIS ........................................................................................................93 

7.5.1 Validation of Study Finding ..............................................................................................93 
7.5.2 Validation Execution .........................................................................................................94 

7.5.2.1 Validation Feedback from Company C .................................................................................. 94 
7.5.2.2 Validation Feedback from Company D .................................................................................. 95 

7.5.3 Lesson Learnt ....................................................................................................................95 

8 RQS &ANSWERS TO RQS........................................................................................................96 

8.1 RQ1 (RQ1.1, QR1.2, RQ1.3) .................................................................................................96 
8.2 RQ2 .......................................................................................................................................96 
8.3 RQ3 (RQ3.1, RQ3.2) .............................................................................................................97 
8.4 RQ4 .......................................................................................................................................97 
8.5 RQ5 .......................................................................................................................................97 

9 CONCLUSIONS ..........................................................................................................................98 

10 FUTURE WORK .......................................................................................................................100 

11 REFERENCES ...........................................................................................................................101 

APPENDIX A: INTERVIEW QUESTIONNAIRES .....................................................................................106 
APPENDIX B: BORIS BUG TAXONOMY (BBT) ...................................................................................108 
APPENDIX C: IMPROVEMENTS VALIDATION (COMPANY C) ..............................................................110 
APPENDIX D: IMPROVEMENTS VALIDATION (COMPANY D) ..............................................................112 
APPENDIX E: COMMON REQUIREMENTS DEFECT TYPES AND THEIR REASONS .................................114 



  6

LIST OF FIGURES 
 
Figure 1: RE process activities [4] ............................................................................................. 9 
Figure 2: Requirements E and A&N spiral [7] ........................................................................ 10 
Figure 3: Requirements defect correction in different phases and relative cost [4]................. 11 
Figure 4: Our focused RE activities ......................................................................................... 12 
Figure 5: Steps in QDA [83] .................................................................................................... 23 
Figure 6: Study design ............................................................................................................. 24 
Figure 7: An AND/OR decomposition that depicts alternatives for achieving the meeting 
scheduling goal [46] ................................................................................................................ 42 
Figure 8: A partial softgoal hierarchy for usability [46] .......................................................... 43 
Figure 9: The result of goal correlation analysis for schedule meeting [46] ........................... 43 
Figure 10: SADT decomposition [43] ..................................................................................... 45 
Figure 11: House of quality in quality function deployment [61] ........................................... 51 
Figure 12: common and major requirements level defects types reported by industry and 
academia .................................................................................................................................. 74 
Figure 13: Classification of major defect types ....................................................................... 87 
Figure 14: First step in Four-fold inspection ........................................................................... 91 
Figure 15: Combined inspection report……………………………………………………....91 
Figure 16: Second step in Four-fold  inspection ...................................................................... 92 
Figure 17: Steps in requirements defect identification ............................................................ 93 
 



  7

LIST OF TABLES 
 

Table 1: Relationship among research questions, research methodology, research objectives 
and outcomes ........................................................................................................................... 17 
Table 2: Requirements related defects categories in Beizer Bugs Taxonomy ......................... 34 
Table 3: Major categories in requirements fault taxonomy [73] ............................................. 36 
Table 4: Most common defect types based on research from literature .................................. 62 
Table 5: Risk related to requirements leading to requirements defects ................................... 64 
Table 6: Most common defect types reported by industry....................................................... 65 
Table 7: Defect types and their reasons that affect project plan .............................................. 67 
Table 8: Most common defect types based on research from literature and industry.............. 68 
Table 9: Comparison of Pakistani and Swedish companies w.r.t defect reporting, RE process, 
SRS standards, and DP approaches ......................................................................................... 70 
Table 10: Techniques reported by literature research .............................................................. 78 
Table 11: Techniques practiced in industry ............................................................................. 79 
Table 12: Problems in defect identification techniques ........................................................... 82 
Table 13: Problems in DPTs .................................................................................................... 83 
Table 14: Sub-categories and their definition added into classification .................................. 88 
Table 15: Questionnaires for study finding ............................................................................. 93 

 



  8

1 INTRODUCTION 
 

The RE process is the initial important phase of SDLC that is used to discover and develop 
requirements for a system [4]. In general, this process is employed to explore the customer’s 
needs, analyze those needs to find problems, achieve feasibility, negotiate appropriate 
solution, specify the solution, validate real customer’s needs, and manages the requirements 
[17]. From preceding definition it is clear that the RE process consists of requirements 
elicitation, analysis & negotiation, specification, validation and requirements management 
activities. The requirements elicitation phase involves communication with system 
stakeholders i.e. customer and end-users etc to identify system requirements. It is the most 
difficult, error prone, most critical, and most communication intensive aspect [4]. 

 
The requirements analysis and negotiation (A&N) is the process of analyzing the system 
requirements to identify conflicting, unnecessary and incomplete requirements and to 
negotiate them with stakeholders to reach an agreement. The E and A&N phases are very 
tightly coupled with each other. [7] A poor E and A&N process may result an SRS full of 
missing, ambiguous, overlapping, incomplete, inconsistence, conflicting, infeasible, 
unprioritize, unverifiable and unrealistic requirements [4, 7]. Software industry has been 
trying to develop a quality SRS by using different techniques, and methods but besides of 
these attempts more than 50 to 70 percent defects are originating from the RE process. Defect 
correction in later stages of SDLC is more expensive, time consuming and hard to fix than in 
early stages [2, 3, 51]. It is also noted that software projects spend about 40 to 50 percent of 
their total effort on avoidable rework. So there is need to minimize these requirements level 
defects as early as possible to avoid their later consequences [3, 4]. Wesley in 2001 has 
explained that from 80 percent defects associated with requirements, 49 percent are due to 
incorrect assumptions, 29 percent result by omitted requirements and 56 percent of the 
defects are due to poor communication between user and analyst [6]. It means major source 
of requirements defects are E and A&N phases in the RE process and action should be taken 
on these phases to prevent defects. 
 
To reduce rework generated as a consequences of requirements level defects, the authors will 
try to minimize avoidable rework in later stages of SDLC. This will be done by identifying 
most common requirements defects types reported from literature research (literature review) 
and industrial research (interviews). The authors will then look for reasons for these defects, 
DPTs and methods along with their strengths and weaknesses. Based on this information, the 
authors will propose appropriate solution in the form of list of recommendations, or 
modification in DPTs or methods to achieve research goals.  
 



  9

2 BACKGROUND 
 
The RE process is the structure set of activities involves in discovering, documenting and 
managing the requirements for a system [7, 18]. In general, it provides the understanding of 
what the customers want, analyzing their needs, assessing feasibility, negotiating a reasonable 
solution, specifying the solution, validating the specification with respect to customers, and 
managing the requirements as they are transformed into an operational system [17]. The RE 
process has two main components 1) Requirements Development and 2) Requirements 
Management [4]. Requirements development process includes requirements elicitation, 
analysis and negotiation, specification and validation activities. A brief detail of these 
activities is given below in figure 1.   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: RE process activities [4] 
 
The RE process starts with the requirements elicitation activity which involves 
communication with system stakeholders i.e. customer and end-users etc to identify system 
requirements. According to Gorschek [18], “the requirements elicitation is the process of 
discovering the requirements for a system by communication with the stakeholder and 
through the observation of them in their domain”. Christel and Kang have stated that 
deficiencies in this phase can directly lead to problem of scope, understandability of 
customer’s need and requirements volatility [17]. Elicitation phase covers all four levels of 
requirements like business, user, functional and system requirements [4]. These four levels of 
requirements are discovered by having discussion with stakeholders, system documentation, 
domain knowledge and market studies [7]. The requirements elicitation is performed using 
different elicitation techniques. Commonly used techniques at this phase are interviews, 
surveys, scenarios, observation, group elicitation techniques which includes brainstorming, 
Joint Application Design (JAD) workshops, group interviews and brainstorming sessions 
detail of these can be find in [7, 17, 18]. 
 
The requirements A&N is the process of analyzing the system requirements in order to 
identify conflicting, unnecessary and incomplete requirements and to negotiate them with 
stakeholders to reach an agreement on changes that satisfy all stakeholders’ needs. A cross 
check is performed among requirements to identify conflicts. Requirements prioritization is 
the part of requirements negotiation (RN) by communicating with different stakeholders 
which put priorities on different system requirements [7]. It helps in finding the most 
important requirements for a system.  A set of candidate requirements are given to the 
prioritization process and after having negotiation with customer, most important 
requirements are selected [4]. AHP, 100-point method and planning game are examples of 
prioritization techniques.  
    

Requirements Engineering Process 

Requirements Development Requirements 
Management 

Elicitation Analysis & 
Negotiation 

Specification Validation 



  10

Requirements 
Problem 

Draft statement of 
requirements 

Requirements 
Specification  

Requirements 
Elicitation  

Requirements 
Analysis 

Requirements  
Negotiation 

Requirements Negotiation 
 

Requirements Analysis 
 

Requirements 
Problems 

 

Necessity 
Checking 

Consistency 
& 

Completenes
 

Feasibility 
Checking 

Unnecessary  
Requirement 

Conflicting 
& 

Incomplete 

Infeasible 
Checking 

Requirement 
Discussion 

Requirement 
Prioritization 

Requirement 
agreement  

E and A&N are most erroneous phase of the RE process. Different techniques and methods 
have been using in accomplishment of this phase such as interview, brainstorming, QFD, 
JAD etc. Requirements analysis gets inputs from the elicitation phase and focuses on 
requirements necessity checking, consistency and incompleteness checking, overlapping, 
conflicting requirements, and requirements feasibility checking as shown in figure 2 [7]. 
  
RN phase gets activate when conflicts were found during requirements analysis. These 
conflicts are resolved by discussing it with customers. It is very time consuming phase and 
conflicts are not settled down perfectly. RN tries to establish a compromise between 
customers or users and final requirements are always a compromised set of requirements. 
This compromise is based on needs of the organization in general; budget and schedule for 
the system development, the specific requirements of different stakeholders, design and 
implementation constraints. Whenever requirements analyst discovers a conflict or a 
problem, the E and A&N phases are re activated and to get more information about that 
particular conflict or problems and try to resolve it. Here we can say that E and A&N 
processes are segment in a spiral. Activities in E and A&N are described in more detail in 
figure 2 from which it is clear that E and A&N are closely related and linked process. [7] 

 
 
 

 
 
 

 
 
 

Figure 2: Requirements E and A&N spiral [7] 
 
The output of this spiral would be refined and agreed set of requirements [7]. A bad E and 
A&N process may lead to an SRS full of missing, ambiguous, overlapping, incomplete, 
inconsistence, conflicting, infeasible, unprioritize, unverifiable and unrealistic requirements 
[4, 7]. Industry has been using a lot of techniques, tools and methods to develop refined and 
correct requirements for a system but in addition to these attempts more that 50 to 70 percent 
defects have been reported from the RE process that have been causing major rework in later 
stages of SDLC [3, 4]. So there is need to minimize these requirements level defects as early 
as possible to avoid their later consequences.  
 
Requirements specification phase has gained special importance for last few years. The 
objective of this phase is to create requirements specifications so accurate that it can provide 
functionalities or system behavior that the user wants actually [42]. In other words 
Requirements specification is the official statement of agreed set of system requirements in 
such a way that is understandable by customer, end-users and people involved in software 
development i.e. tester, software developer, designer etc. [7]. Kelly et al. has said that there 
are more defects found in SRS than any other document developed during SDLC [50]. 

 
Requirements validation is the process of identifying problems in requirements specification 
and to ensure that requirements are realized in the right way according to the customer. 
Inspection and reviews can be used to identify defects in SRS [7, 17, 18, 19, 22]. Validation 



  11

process isn't just a single unique phase that is performed after gathering and documenting all 
the requirements. Some validation activities, such as incremental reviews of the growing 
SRS, are carried out throughout the iterative elicitation, analysis, and specification processes 
[7].  
 
Requirements management is the process of managing changes in requirements due to 
development of customer awareness during system evolution. The principle concerns of 
requirements management are; 1) managing changes to the agreed requirements, 2) managing 
the relationships between requirements, 3) managing the dependencies between documents 
produced during system development process [7].   
 
DP is the process of finding the root causes of defects and prevents them from reoccurring 
[1]. Defect correction in later stages of SDLC is more expensive, time consuming and hard to 
fix than in early stages [2, 3, 51]. Fairley has presented data that shows that it is 5 times more 
costly to correct a fault at the design stage than during initial requirements, 10 times more 
costly to correct it during coding, 20 to 50 times more costly to correct it at acceptance 
testing, and 100 to 200 times more costly to correct that problem during actual operation (a 
variation on the theme “pay me now or pay me later”) [20]. Karl E. Wiegers seems to be 
agreeing with Fairley’s data presentation as he has shown in figure in 3. Karl E. Wiegers has 
observed that preventing requirements defects or identifying them in early stages provides 
huge positive effect in reducing rework in later stages [4]. 

 

 
 

Figure 3: Requirements defect correction in different phases and relative cost [4] 
 
It is found that most of the organizations use a reactive strategy (find and fix after delivery) to 
deal with them instead of using a proactive approach (DP) [1, 36]. This reactive strategy is 
often 100 times more expensive than finding and fixing the defects during requirements [2]. 
Software projects spend about 40 to 50 percent of their total effort on avoidable rework [3, 
4]. The earliest solution is DP to optimize the development and rework cost [4, 5]. Karl 
Wiegers has proposed that more than 40 to 70 percent of defects found in the RE process 
which causes a lot of rework in later stages of SDLC [4]. Almost 70 percent of the system 
errors are due to inadequate system specification, lack of user inputs and changing customer’s 
requirements [6]. Wesley in 2001 proposed that 80 percent of the defects in developed 
software originate from requirements due to incorrect assumptions (49%), omitted 
requirements (29%), inconsistent (13%) and ambiguous requirements (5%). 56 percent of the 
defects are due to poor communication between user and analyst in defining requirements 
resulting 82 percent of rework in later stages of SDLC [6]. That’s why there is a need to 
converge the focus from SDLC to RE activities in the context of DP.  
 
In the BESRE, as mentioned above that out of 80 percent defects 49 percent are due to 
incorrect assumption, 29 percent result by omitted requirements and 56 percent of the defects 



  12

are due to poor communication between user and analyst (Wesley et. al, 2001). This 
demonstrates that the major sources of defects among the BESRE activities are E and A&N 
phases, so action should be taken to prevent defects in these activities to avoid their later 
consequences. So we converge our focus to E and A&N phases of the BESRE process as 
shown in figure 4. Further in requirements development, the requirements elicitation is the 
most difficult, error prone, most critical, and most communication intensive aspect [4]. 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Figure 4: Our focused RE activities 
 
It is not just to ask what the customer’s needs are but it has multiple dimensions that cause 
different problems for requirements analyst. These problems include 1) application 
knowledge doesn’t exist in one place but it is found in multiple places like textbooks, 
working manuals and in people’s head who has been working in that area 2) organizational 
issues and political factors may affect the collected requirements 3) stakeholders often don’t 
know what they want for their system. They don’t realize the importance of giving complete 
and detailed requirements 4) RE teams do not want to spend more time in the RE process. [7] 
 
RE phases have many problems like defining the system scope, misunderstanding among 
different communities (such as customers and developers) affected by the development of a 
given system, and problem of volatility in requirements. By improving the requirements 
elicitation process, software engineering process might be improved. In this way good system 
requirements specification could be developed and ultimately a much better system will be 
developed. An improved and quality requirements elicitation process also guarantees 
reduction in requirements errors that cause tremendous rework when those are happened in 
later stages of SDLC. The IEEE Guide to SRS has defined some attributes for a good SRS. 
These attributes are unambiguous, complete, verifiable, consistent, modifiable and traceable. 
A good elicitation process helps in the development of SRS with above attributes. On the 
other hand a bad elicitation process will develop an SRS that will be full of incomplete, 
unverifiable, inconsistent, non modifiable and untraceable requirements. [77] Requirements E 
and A&N are very closely linked processes. Software requirements A&N confirms agreed set 
of requirements that must be complete and consistent [7]. From this discussion, it seems that 
poor elicitation process leads to poor SRS which ultimately leads to erroneous software 
system and that’s why our focused is on E and A&N phases of RE. 

2.1 Related Work 
In order to deal with requirements level defects, if defect information (most common defect 
types, defect sources, etc) from past project is considered during review then it is easy to 
overcome their consequences in later stages. Some Methods use defect information to deal 
with defects which are defect-causal analysis is considered to be a low cast technique for 
minimizing defects in software developed by IBM in 90's and focus on learning from defects 

Requirements Engineering Process 

Requirements 
Development 

Requirements 
Management 

Elicitation Analysis & 
Negotiation 

Specification Validation 



  13

[36]. It is a team-based approach (performed by a team) that focus on identifying classes of 
defects and than proposes actions to deal with them rather than correcting individual defects 
[21, 36]. Software bugs analysis also aims at determining the sources of defects [21]. Root 
cause analysis focuses to identify the actual causes of defects but it is time consuming, 
require experience and effective if there are large number of defects [21]. Error abstraction 
process analyzes the group of related defects to determine their causes based on inspector 
experience [21].  
 
DP process is a proactive strategy that uses defect casual analysis to identify causes of defect 
and propose preventive actions to avoid those defects [21]. There are many DP approaches 
discussed in [21, 23] most common of which are Cleanroom, Join Application Design (JAD), 
quality function deployment (QFD) etc.   
 
Current research regarding DP is focused on SDLC using various mechanisms [8, 9]. Quality 
standards like ISO, CMMI etc also propose actions to deal with DP such as Casual Analysis 
and Resolution, Corrective and Preventive actions etc [9]. They focus on explaining things in 
term of “what” instead of “how”, which make them less effective. Requirements processes in 
these standards are less supported, less focused and less mature than other software processes 
in SDLC [9]. Techniques like inspection, prototyping and reviews etc are also widely used to 
detect defects in requirements [4]. Most of the requirements reading techniques (such as ad 
hoc, checklist, defect based reading) do not pay attention to particular aspects of the SRS   
and put all requirements information on the same level of importance. In this way the 
identification of all types of defects in the entire document becomes ineffective [22]. 
Methodology such as Cleanroom focus on formal specification and verification, QFD focus 
on customers and design parameters requirements, and JAD sessions are considered to be the 
most effective techniques to deal with early defects in requirement and design but they are 
costly and time taking approaches [10]. Schneider, Johnny Martin and W.T. Tsai have 
conducted an experiment to identify requirements level defects by inspecting SRS. They 
noted that if only one team is assigned for the inspection of SRS then only 27% defects were 
caught. When they used N-fold inspection technique and appointed ten teams then defect 
detection rate raised up to 80% [19]. It means ten times more resources are required to catch 
80% requirements level defects. But it is realty that most of the organizations believe in 
finding and fixing defects in later stages of SDLC [1] and don’t want to appoint ten teams for 
the inspection of requirements. Other different approaches are described in [11, 23, 31] to 
deal with defects a part from those describes above which are risk analysis, Personal Software 
Process (PSP), scenarios and focus group with users, etc. The continued paragraph reflects 
that there are a lot of DP methods, techniques and approaches in practice, but still more than 
40 to 70 percent defects are originating from RE phases [4] and organizations are spending 40 
to 50 percent of total effort over avoidable rework [3]. 
 
Research findings in the field of DP focused more on work product instead of process in the 
context of the BESRE [5, 11, 12]. As SRS is the primary work product at requirements level 
so authors will focus on SRS instead of RE process.  Defects found in work products are 
mostly based on Beizer's Taxonomy proposed by Beizer in 1990 which act like a 
classification of predefined defect types from past projects [31, 34]. It is found in literature 
that most of the organizations develop their own defect taxonomies because defect data might 
be heterogeneous data that comes from different sources, at different periods of time, in 
different formats, have different terminologies and different problem needs of an organization 
[26, 31, 34]. Commonly used taxonomies are Hewlett Packard Defect Classification Scheme 
(HP-DCS) used for SDLC with limited number of defect modes (represent the nature of 
defect types whether it is missing, unclear or incomplete, etc) for defect types [76] that are 
difficult to use for requirements level defects. IEEE provides a standard classification 
mechanism for anomalies (IEEE use a common term “anomaly” for all type of problem, 
errors, defects, fault, and failures etc) [75]. NASA developed a taxonomy specific to 
requirements for its projects which is simple but does not contain enough detail for adoption 



  14

[73]. Boris Beizer in 1990s proposed detailed bug taxonomy for SDLC which contain enough 
detail to classify defects [32].  
 
To deal with the problems and to reduce rework generated as a consequence of requirements 
level defects, the authors will try to reduce avoidable rework in later stages of SDLC by 
identifying most common defect types and reasons for defects using both academia and 
industry as sources. Then we will find how much rework would be done based on probability 
if a defect (from a defect type) would be identified and fixed in later stages of SDLC (i.e. 
design, implementation). We will then look for existing DPTs that are mostly used to handle 
these defects. On the basis of problems found in DPT, preventive action will be taken to 
minimize these defects so that they can cause little rework in later stages of SDLC. These DP 
actions might be change in existing DPT, enhancement in DPT, creating a new DPT, or a list 
of recommendations.  



  15

3 RESEARCH DESIGN 

3.1 Aims and Objectives 
The aim of this thesis to reduce the rework in later stages of SDLC that is caused by 
requirements defects originating from E and A & N phase in the BESRE;  

1) Identify major defects types and reasons for defects related to E and A&N phases in 
the BESRE found in academia and industry 

2) Analyze the defects types in order to find their impact (in the form of rework). 
3)  Analyzing differences if any in defect types between Swedish and Pakistani 

companies 
4) Finding problems in DPT connected with defect types.  
5) Propose preventive action based on defect information.  
6) Reducing avoidable rework in the form of defect correction   

3.2 Research Questions 
1. What are requirements level defect types and reasons for defects related to E and A&N 

phases that can cause major rework in later stages of SDLC?  
1.1. What are the most common defects types reported by research based on E and A&N?  

Description  
Poor E and A&N phases in RE result different types of defects that cause major 
rework in later stages of SDLC. We want to find these defects types and their causes 
that have been reported by different industrial case studies in literature and academic 
research (articles, books).   
 

 
1.2. What are the most common defects types and reasons for defects originating from E 

and A&N as reported from Swedish and Pakistani software companies respectively?        
Description  
We want to conduct an empirical study for defects originating from E and A&N and 
want to know what common types of defects are there and what are their causes 
reported by current software development industry. For this purpose three Pakistani 
and three Swedish companies have been selected. 

 
1.3. Find possible rework caused by each defect? 

Description  
In this question We want to know that what types of defects cause major rework if it 
would be identified and fixed in later stages of SDLC. All types of defects would 
not be of the same importance. There must be some types of defects that are of 
minor importance with respect to rework. We will consider only those types of 
defects that cause major rework when they occur in later stages of SDLC.  

 
2. Are there any major differences between Swedish and Pakistani companies in terms of 

types and rate of defects originating from E and A&N phase? 
Description 
There might be some differences in terms of defect types originating from E and 
A&N phase among Pakistani and Swedish companies due to difference in RE 
practices. The rate of origination of defect from E and A&N phase might be 
different among Pakistani and Swedish software development companies. There 
might be some similarities among both Pakistani and Swedish companies in terms 
of types and rate of defect originating from E and A&N phase.    



  16

3. What DPT is associated with each defect type that is being practicing in industry based 
on E and A&N?  
3.1. What is appropriate DPT for each defect type? 

Description  
There must be some DPTs to prevent defects originating from E and A&N. We 
want to know about these DPTs so that we can have a critical overview of these 
DPTs.  

 
3.2. What are problem in existing DPT (s)?  

Description 
Since We have mentioned above that more than 40 to 70 percent defects are 
originating from software requirements, so there must be some weaknesses or 
problems in current DPTs practicing in software development industry. We want to 
know these problems so that We can take preventive actions in the form of change 
in existing techniques, create a new technique or give some recommendations. 

 
4. How can we remove the problems in DPT and make them more efficient to handle 

defects that cause major rework? 
Description  
After finding problems in existing DPTs practicing in software industries, how We 
will remove these problems? It might be change in existing DPT or creation of new 
DPT or We can give a list of recommendations. 

 
5. To what extent the prevention actions are valid?  

Description  
In the end We have to validate our preventive actions as mentioned in description of 
RQ3.2 

3.3 Expected Outcomes 
The outcomes of our thesis will be; 

1) Understandings of problems in E and A&N phase that causes defects  
2) Understanding of DPT (s)  suitable to deal with defects in these phases 
3) Understanding of differences in defect types and rate of defects in Pakistan and 

Sweden industry in E and A&N phase 
4) Preventive actions to improve the E and A&N phase   

3.4 Research Methodology  
The research questions that we have prepared to support the objectives of our thesis, need 
different types of research methodologies. The big picture of these research methodologies 
seem to be qualitative. The qualitative approach is used and is consistent with the nature of 
current study because of two things. First, it is a subjective approach which focuses on 
finding questions in term of “what”, “why” and “how” and second, it helps in understanding 
the things in their environment in which they operate concerning their social aspects [13].  
The study comprises of literature review and interviews as sources of data collection.  
 
Qualitative literature review will be conducted for the proposed study because it provides 
solid base to know the current status of the body of knowledge (what is already known (done) 
and what is need to know i.e. new research) regarding related research field [14]. We will 
follow Concept-centric approach that will tie literature with current study based on 
continuous focus on one important question during reviewing literature and writing the 
literature review. This important question is ‘how is the work presented in the article I read 
related to my study? 
 



  17

Data will be collected from literature reviews using literature sources based on Creswell 
priority list e.g. journals articles, books and conferences [16]. Data will be then processed to 
extract useful information by following data processing steps proposed by levy 1) know the 
material, 2) comprehend the material, 3) apply, 4) analyze by comparison, separation or 
making connection of cited information with respect to our research question and 5) evaluate 
[14]. 
 
The purpose of conducting interviews is to get current knowledge being practice in industry. 
It will provide more information from industrial expert in term of current practices, 
techniques related to E, A & N, common defects & defect types, defect sources, preventive 
actions and other related issues. Semi structure interviews (open-ended) will be use as 
qualitative approach to elicit information from industry because it provides a freedom of 
information to the participant involved [14]. Although this approach have risk of having 
inadequate and diverse information [15] but it is useful in this situation because of the 
interviewer’s minute industry experience. Meeting will be arranged in advance and 
interviews will be conducted by using both face-to-face (in-person) and through phone calls 
options. During each meeting data will be recorded using the tape recorder and handwritten 
notes. Data will be then transcribed in to text form using MS word for analysis. This data will 
be analyzed through brainstorming and discussion which help to understand and interpret the 
data to find the target research questions. We have given in detail the appropriate research 
methodology for each research questions and corresponding objective and expected outcome 
achievement. This is shown in the table 1 given below. 
 

Table 1: Relationship among research questions, research methodology, 
research objectives and outcomes 

 
Research 
Question 
(RQ) 

Research Methodology Objective 
Achieved 

Expected 
Outcomes 

RQ 1 Literature Review, Interviews, We will create a defect 
taxonomy based on recommendations from literature. 

1 1 

RQ 1.1 Literature Review 1 1 
RQ1.2 Interviews 1 1 
RQ1.3 We will conduct interviews with experts (analyst, developer 

etc).  He will show by his experience that what level of 
rework a particular defect can cause. This level may be Low, 
Medium, or High. In this way We will select defects that 
would cause High rework in later stage. 

2 1 

RQ2 Interviews will be conducted to experts both in Pakistani and 
Swedish companies 

3 1 

RQ3 We will conduct interview with experts and will ask about 
the DPTs and defect identification techniques that they are 
practicing in their company against defect they find. We will 
also do Literature Review. 

4 2 

RQ3.1 Literature Review, Interviews 4 2 
RQ3.2 Literature Review 4 2 
RQ4 On the bases of RQ3.2 We will take preventive actions. It 

will be done by consulting literature and our own creative 
ability. 

5 3 

RQ5 We will conduct interviews with experts to validate our 
preventive actions against problems in DPTs. 

6 3 



  18

4 STUDY DESIGN 
 

The proposed research study aims to find requirements level defects and their reasons through 
data collection using literature review from academia to learn from research carried out so far 
along with industrial experience that focus on what is happening in industry in practically. 
The study mainly focuses on finding requirements level defects types, their reasons, severity 
level with respect to rework, DPTs & DP methods, and problems in DPTs or DP methods. 
This information is achieved through data collection using literature review from academia 
and software development industry that focus on RQs described in section 3. This section 
contains how the study is planned, designed, and executed exactly in order to achieve RQs. 
The detail of this design is given below. 

4.1 Literature Review Design  
The literature part of study will contribute to figure out requirements level defect types that 
cause major rework in later stages of SDLC along with commonly used defect taxonomies 
and DPT’s. The authors did literature review to find out above mentioned information. This 
section explains the literature review design which describes what kinds of resources are used 
for research articles, what selection criteria for articles were,  how useful information was 
extracted from articles, and how exactly the literature review design was executed.   

4.1.1 Literature Review Approach 
We will follow Concept-centric approach that will tie literature with current study based on 
continuous focus of question that the author will keep in mind during reviewing literature and 
writing the literature review. This important question is ‘how is the work presented in the 
article I read related to my study? 

4.1.2 Literature Review Resources  
Data is collected from literature reviews using literature sources based on priority list 
proposed by Creswell e.g. journals articles, books and conferences [16]. The literature 
resources consist of RE conferences and following electronic databases   

• IEEE Xplorer 
• ACM Digital Library 
• Springer Links 
• Science Direct (Elsevier) 
• Engineering Village (Compendex, Inspec) 
• Wiley Inter Science  

4.1.3 Selection of Articles  
The papers are selected from literature sources like ACM, IEEE and Springer Link etc. This 
selection is based on search criteria comprises of  

• The articles should be peer reviewed 
• The article can be a literature review, systematic review, an experiment, case study or 

survey report.  
• The article should discuss RE level defects fully (specific to RE) or partially 

(discussed in SDLC) 
• The article should discuss DPTs applied at RE level or they can be life cycle oriented 

techniques or methods.  
• The articles should discuss software defect taxonomies, requirements error 

taxonomies or software defect taxonomies.  
• The articles should discuss the most recent research related to a particular topic of 

interest.   



  19

4.1.4 Data Processing  
Data will be then processed to extract useful information by following data processing steps 
proposed by levy [14]. 

1). Know the material: it means researchers have to demonstrate that they have 
thoroughly read the article and have extracted meaningful information from it. They 
can do it by performing four activities like listing, defining, describing and 
identifying the things. 

2). Comprehend the material: after knowing the material the researcher should be able 
to summarize, interpret, differentiate, and contrast the concepts. It means researcher 
not only just repeat what was included in the article but they also know the true 
meanings and significance what was reported by the article.  

3). Apply: it deals with identification of major concepts of the study and placing them in 
correct categories. 

4). Analysis: analyze by comparison, separation or making connection of cited 
information with respect to research question 

5). Evaluate: evaluation in literature review demands clearly distinguish the opinions, 
theories, and empirically extracted facts.   

4.1.5 Exact Execution of Design  
Concept-centric approach was strictly followed by the authors during reviewing literature. 
The authors visited several hundreds of research articles that were supposed to be related to 
their RQ but only 82 articles were selected according to criteria to the selection of research 
articles. These selected articles are firmly related to RQs that depend on qualitative review of 
literature. 
 
Since the authors had enough time and full access to all literature resources (mentioned 
above), so they followed all resources with good search queries to make literature review 
effective and fruitful. On the other hand the data processing was not an easy task for the 
authors. They tried their best to follow data processing steps that were recommended by Levy 
(mentioned in section 4.1.4) 
 
The analysis of literature study results was done in the same manner as it was done on 
industrial study results (see section 4.2.8) 

4.2 Qualitative Interview Design  
Qualitative interviews will be conducted for data collection from software expert in industry. 
Interview is an effective way of eliciting and learning information about research topic from 
interviewee experience in their domain [54]. According to Kahn and Cannel, interview is a 
meaningful and purposeful discussion between two or more persons [55]. During interview, 
interviewee is the main source of information who shares his experience, believe, opinion, 
and personal feeling about research topic based on questions posed by interviewer [54]. 
Generally, interview is conducted in two ways; one is using fact-to-face or in-person 
interview and second is conducted through telephone or call over internet using various 
sources e.g. Skype or messenger etc. [16]. For current study, authors will conduct interviews 
in six software industries both in Pakistan and Sweden (three from each) to know about 
requirements level defects and techniques to deal with them. Before conducting qualitative 
interviews, authors have designed the interview part in the following way.  

4.2.1 Interview Goal 
The goal of conducting interviews in industry is to know requirements level defects that 
originated from E and A&N phases of RE and causes a lot of rework if they are reported by 
customer after software put into operation. The goal of interview will be achieved through 
research questions related to qualitative interview described in table 1. The interview part of 
research study mainly focus on finding most common defect types, reasons for those defects, 



  20

defect rates, expected rework in case the defects occur and technique (s) to deal with them. 
To achieve interview goal, the plan of actions to accomplish thesis goals consists of following 
activities.  

4.2.2 Subject Selection 
Interview data will be collection from software industry both in Pakistan and Sweden. Three 
companies from each country will be selected in this regard. The purpose of selecting 
organizations from two countries help to understand the variation of domain and environment 
and other aspects as well specifically related to RE. To get useful and correct information 
about requirements level defects originated from E and A&N phases, it is necessary to select 
those people for interview which are involved in RE activities. These people can be 
requirements analyst, developer, tester or product manager. They have a deep understanding 
of the RE process and work product. Tester usually generate test cases during requirements 
validation process to determine the correctness of requirements, requirements analyst on the 
other hand is involved in E and A&N process. To implement requirements, developer and 
analyst must have same opinion about agreed set of requirements. Product manager has the 
vivid picture of ongoing projects in the organization and he is familiar with the defects during 
in-process and product after deployment. He also knows the policies and organization 
resources to deal with on-going project problems. As a whole, the subject for interview is 
selected on following basics;  

1) Subject should be directly involved in the RE process 
2) Subject could be from quality assurance department and have complete 

understanding of requirements related defects  
3) Subject should have three to five years of experience and should hold a senior 

position in organization  

4.2.3 Interview Technique 
According to [54] [56], interview is categorized into structured, semi-structured, and 
unstructured depending upon the way the questions are posed during interview. Structured 
interviews is one in which interviewer elicit information based on same set of question to 
each interviewee in the same way. A questionnaire can be used as an instrument to aid the 
interview process. This type of interview is suitable in situation where one require limited 
range of responses from interviewees [54]. Semi-structure interview involves open-ended 
questions asked sequentially by the interviewer to cover research topic [54]. This type of 
interview does not limit the interviewee to a pre-defined set of question as in case of 
structured interview. Thus providing freedom of asking questions to the participants involve 
in the interviews which results in getting broader picture of overall topic. A questionnaire is 
also used in this technique to give prior knowledge to interviewee about the research topic. 
This type of interview is suitable in situation where interviewer have little knowledge about 
what is happening in interviewee domain. A problem with this type is having risk of diverse 
information that is difficult to transcribe and is time taking. It is better to consider 
information which is related to research topic and interview goal. The proposed study will use 
semi-structure interviews for data collection process. It will help us in getting our required 
research questions in detail from interviewee’s experience.  

4.2.4 Interview Instruments  
To support the semi-structure interview, a questionnaire was developed and communicated 
with the interviewees in advance before the meeting. The questionnaire was developed in 
such a way that it fulfills the interview goals described above based on research questions. In 
order to develop questionnaires, a literature survey was carried out in advance as a pre-
requisite for the interview study. The literature survey cover requirements level defects, 
survey of various defect taxonomy for defect classification and DPTs used specifically for 
requirements level are discussed in detail before conducting interviews. Questionnaire can be 
found in Appendix A. The data and time of interviews meeting are decided in advance with 



  21

interviewees. Interviews are conducted through face-to-face meeting and through Skype 
messenger. Time for each interview is allocated to 45-60 minutes approximately.  

4.2.5 Interview Recording 
To record interview data, tape recorder will be used. It is an efficient way of recording the 
interview complete information in original form thus avoiding loss of information. It is also 
useful for interviewer to focus more on eliciting information during interview instead of 
making a note of every interviewee’s response. Besides this, we will collect key points during 
interview on notebook to remember what the interviewee has said during interview. It will 
enable authors to ask new questions based on what the interview described. This will also 
helps us to make a quick analysis of data to make sure that nothing is left out.  

4.2.6 Interview Execution 
In order to conduct interviews, various software organizations were contacted in Pakistan and 
Sweden, and three companies from each country were selected for data collection. The 
interviewees were selected based on criteria described above under subject selection. The 
date and time for meeting is decided in advance. A short description of research topic and 
interview questions is communicated with interviewees through email before the interview 
execution. This will provides each interviewee an idea about interview purpose and research 
topic.  The interview will starts with formal introduction of interviewee (s), their domain, and 
their requirement engineering process and later interview questions will be asked 
sequentially. The time for each interview will be 45 – 60 minutes approximately.  

4.2.7 Data Analysis & Validation  
At the end of each interview, the collected data from tape recorder will be transcribed into 
MS word document. Data will be analyzed simultaneously using word documents and notes 
taken during interview. Both authors will analyze data using brainstorming and discussion 
and map the keyword in interview to relate research questions related to interview study. The 
process of analysis of data one after another give better control to authors over interview 
process. It is because of deficiencies from one interview help to improve and overcome them 
in later interviews.  
 
In order to get the right data for each interview according to questionnaires the authors will 
do a short analysis during each interview. The authors will make important note of 
interviewee’s response to make sure important things are covered. They will also make a 
quick review of interview questions at the end of interview to make sure that interviewee (s) 
answers all the questions and nothing is left out. Ambiguities after data analysis that lead to 
confusion about some information are eliminated through emails. This way helps the authors 
to verify the answer from the voice of interviewee. Besides that a copy of analyzed form of 
data will be sent to the interviewee (s) for validation purpose so that they can map and 
confirm it from their perspective what they described during interview.  

4.2.8 Exact Interviews Execution  
Before going into the details of empirical study results, it is important to have a look at how 
interviews were conducted exactly. The authors have given a step by step execution of 
qualitative interview design that is given below. 
 
The exact execution of empirical study was based on qualitative interview design described in 
section 4.1. Based on planned study design, the execution of design was accomplished in the 
following steps 
1) The interview study requires a strong background and related information of those RQ 

that could be achieved through interviews. The background part was achieved through the 
study of following topics in detail   

• RE process and related information (section 2) 
• Defect types from literature along with their definition (section 5.1) 



  22

• Commonly used DPTs and DP methods at requirement level (section 5.3) 
• Requirements defect taxonomies and their purpose (section 5.2) 
• Study of qualitative research design and interview techniques (Creswell [16])  

2) The authors planned and designed the qualitative interview described in section 4. This 
section contains the complete detail of design 

3) Authors searched for software companies and contacted the most relevant interviewees in 
these organizations. The selection of interviewees was based on criteria described by the 
authors in section 4.2.  

4) Authors discussed and developed interview questionnaire based on RQs. The 
questionnaire was also communicated with supervisors for refinement and was updated 
accordingly.  

5) Authors fixed data and time for meeting and a short description of thesis was also 
communicated with the interviewees to give interviewees an understanding of thesis 
background. 

6) During interview execution, data was recorded with the permission of interview and some 
information was also collected on notes. As authors have proposed to use open-ended 
questions approach, so some run time questions were also asked and recorded when 
necessary.  

7) After every interview, data was transcribed into MS word without any delay to avoid the 
risk of tacit information. The shortcoming in one interview was discussed among the 
authors and they tried to overcome it in the next interview 

8) After converting all the data into MS word, data was analyzed against RQ.  
9) The analysis process involved brainstorming and discussion on study results by the 

authors in the following steps (based on QDA model, see figure 6) 
•  First of all things were noticed in the form of interesting terms or points and then 

these interesting things were given names. For example missing requirements defects, 
ambiguous requirements, major defects, minor defects, high or low rate of 
occurrence, training for RE process, dedicated RE department, informal RE process, 
SRS, and so on.  

• After noticing and naming the things the Collection and sorting processes were 
started in which the authors logically coupled related information into categories. For 
example missing requirements, ambiguous requirements or things like that were 
cohesively coupled in a category called “requirements defect types”, major defects or 
minor defects were grouped into “severity level” category, low and high rate of 
occurrence was grouped into “rate of defect occurrence” category, terms like training 
for RE process, dedicated RE process, and informal RE process were categorized into 
“RE process” category. 

• After collecting and sorting things, the authors focus on three important goals  like 1) 
develop some kinds of sense from each group of data, 2) look for some special 
patterns, within the collections or across the collections (like similarities, differences), 
and 3) make some discoveries about a fact for which you are researching. Based on 
about goals the authors first thought about each category and tried to develop a sense 
and tried to find any possible relationship with other collections. Since data was 
collected from industrial interviews and reviewing the literature, so there was good 
opportunity to make relationships within the interview results, within the literature 
review results and across each other. On the bases of collected things the authors 
conducted comparison within Pakistani companies, within Swedish companies, 
between Pakistani and Swedish companies, within literature study, between industrial 
and academic study, and tried to compare findings with state of the art research. 

• The last steps involved Presenting information in a useful way (in the form of text,      
graphs and tables) that satisfy related RQs 
 



  23

4.3 Qualitative Data Analysis  
The building of qualitative data analysis (QDA) is standing on three pillars that are noticing, 
collecting, and thinking. John V. Seidel has developed a model (see figure 5) that shows 
possible interactions among these three notes. He also called QDA as symphony of noticing, 
collecting, and thinking. He got this idea of explaining things in very simple way from his 
professor Ray Cuzzort who called statistics as symphony of two notes: mean and standard 
deviations. [83]  
 

 
Figure 5: Steps in QDA [83] 

 
The data obtained from qualitative interviews and from reviewing of literature will be 
analyzed on the bases of QDA model given by in figure 5. The figure 5 shows that QDA 
model is non linear and has following characteristics [83]  

1). It is iterative and progressive because it is in cyclic form that can repeat the steps.  
2). It is recursive because if you are collecting things then you might have needed to 

notice any other part to collect new things. 
3). It is holographic because each step contains the entire process in itself. 

Now we will put in plain words the meanings of noticing, collecting, and thinking in detail. 

4.3.1 Noticing and Coding 
Noticing is very similar when you are reading a book and highlighting interesting and 
important words, terms, or interesting things. It has two levels 1) Noticing on general level, 
and 2) Noticing the produced record. The noticing on general level involves observing the 
things, writing field notes, interview recording, and so on. In this way analyst just makes 
records of interesting things. On the other hand the second level noticing means to have focus 
on records to get information of interest. After going through the recorded data the analyst 
names the interesting things that he has noticed. This process is called coding things [83]. 

4.3.2 Collecting and Sorting  
After noticing and naming the interesting things, the things need to be collected and sorted in 
the form of groups. It means the most relevant things will be categorize in the same category. 
For example, in jigsaw puzzle where we start by sorting the pieces of puzzle to make anything 
like a house, tree, or sky. [83] 

4.3.3 Thinking  
Next step is thinking about the collected and sorted things. It involves the observations of 
categorized things with different perspectives. At this point analyst keep in mind some goals 
like 1) he tries to develop some kinds of sense from each group of data, 2) he looks for some 
special patterns, within the collections or across the collections (like similarities, differences), 
and 3) he makes some discoveries about a fact for which he is researching.[83] 
 
 
 



  24

The figure 6 shows the whole qualitative study design that consists of industry interviews and 
reviewing of literature. It also covers solutions and study validation process. Before going to 
read about study results and other rest of material, figure 6 provides a roadmap to the readers. 
 

 
 

Figure 6: Study design 

4.4 Validity Threats 
Validation in research provides a mechanism to researcher to make an assessment of study 
finding whether they are accurate, reliable, and can be generalized to a population of interest 
in the specified research area [82]. Qualitative research validation deals with the extent to 
which the study results or findings are accurate and credible according to the participant 
involved in research [16]. To achieve this validity of study there are four different way to 
access the credibility of qualitative study described by [80]. They are credibility, 
transferability, conformability, and dependability. The current study is assessed according to 
these assessment criteria is given below 

4.4.1 Credibility 
According to Trochim et. al. [80], credibility involves the extent to which the results of 
qualitative research are credible and believable according to participant’s perspective involve 
in the research. The purpose of credibility is to make sure that the study results are reasonable 
and realistic. To conduct rightful research study, the authors have designed qualitative 



  25

research from two different but related areas of exploration. One aims at theoretical study by 
investigating requirements level defect based on research from academia while other focus on 
practical aspect in the form of industry interviews as a mean of data collection for the 
proposed study. Using both mechanisms of data collection give better control over research 
topic to attain research objectives. To make research credible, 

• The authors used some reliable and quality database resources like IEEE, Springer 
link, ACM Digital Library, Science Direct, Engineering Valley, and Wiley Inter 
Science.  

• To get realist and feasible results they focused on industrial case studies and 
experiments performed in industry related to our area of interest (DP in RE).  

• They tried their best to get the most relevant interviewee and to ask the most relevant 
questions during interviews that cover each research question (see apendix)  

 
Further a literature review was carried out by the authors in the following three areas;  

• Research in literature about requirements level defects (see section 5.1 ) 
• Taxonomies in literature specific to RE phase for the classification these defects (see 

section 5.2) 
• Defect identification and prevention techniques to deal with these defects and their 

strength and weaknesses (section 5.3) 
 
The literature review part not only helps authors to get broader insight into requirements 
levels defects but also provides a prerequisite for qualitative interview study. The interview 
part is designed and followed as described in section 4 and 6 respectively. 
  
Authors have tried their best to perform a though literature review and conducted effective 
interviews with six companies both from Pakistan and Sweden with different domains for 
example company A provides content management and portal solutions, company C provides 
digital signage solutions, company D deals in mobile and communication devices, and so on. 
Most of the interviewees were well experienced and were appointed on relevant position 
related to RE.  For example interviewee of company A was appointed as product manager 
having three scrum teams under him, interviewee form company B has four year experience 
in software development and involved in RE in many different projects like Air Traffic 
Control System (ATCS), and image tools, interviewee form company E was serving as 
project manager who has ten years of experience in software development, and so on. 
 
On the other hand authors spent their best effort to conduct literature review regarding DPTs 
and DP methods. For example they extracted data from around 35 research articles that were 
related to DPTs and DP methods only as mentioned in section 5.3. 
 
Date and time for meeting is fixed in advance with each interviewee. The research study 
proposed open-ended interview strategy. To aid this strategy, a questionnaire was developed 
(see appendix A) and communicated with interviewees before the meeting along with the 
background of thesis, so that they have complete idea about the research topic and 
information domain. Each interview data is recorded and validated by short review at the end 
of each interview to confirm nothing is left our and a short summary is also presented to them 
to confirm the elicited data. The transcribed document is also communicated back to the 
interviewees who validated the recorded data before starting analysis.  
The authors have experienced some threats to credibility of the study that are given in 
following paragraphs. 
 
Since authors are students and are not mature enough in creating a relevant questionnaire for 
interview study. For example they can miss some important questions, can make non realistic 
questions, and can misunderstand the meanings of interviewee’s answer and so on.  The 



  26

authors tried to remove this threat by consulting interview questionnaire with their thesis 
supervisor. 
Although the authors tried to conduct interview in six companies from different domains but 
still they missed a lot of domains like e commerce, computer networks, embedded systems, 
telecommunication, artificial intelligence, biometrics, and so on. So study findings will be 
limited to the domains that the authors have already covered.  
 
It is fact that some people have knowledge but they are not capable of explaining it in a good 
way. If an interviewee has this fault then it would be very difficult for the authors to extract 
right information from the interviewee. This threat was minimized by asking some runtime 
questions, and sometimes interviewee was asked to explain his point of view with real life 
example and scenarios. 
 
Some interviewees can skip important information just because of limited time. In this way 
the information could be infeasible and incomplete. This threat was minimized by asking to 
the point questions.   
 
The interviewee can also hide some important information just because of company’s privacy 
policy. Before developing interview questionnaire the authors kept in mind that companies 
would not share their secret information in the form of documents. So questionnaire was free 
from the questions that can violate their internal policies. 
 
There could be vast aggregation of relevant martial in different sources (like IEEE, ACM 
Digital Library, Springer links) and author can miss it just because of limited access rights, 
and limited time. The authors had enough time and had easy access to all sources (mentioned 
in section 4.1.2). 

4.4.2 Transferability  
Transferability deals with generalizing the research study results to some other settings, 
contexts or population [16]. As the proposed study is focused on academia as well as industry 
which provides useful information to learn about the type of requirements level defects. The 
study resulted in finding major defects that cause major rework if they are not identified and 
fix at requirements level. If these defects are identified at later stages of SDLC then they can 
cause major rework in term of more effort and time which obviously increase project cost. So 
the findings are supportive and useful for software industry to learn about the defects at 
requirements level so that special attention could be given to them to avoid their 
consequences. A part from these defects, there must be some actions in the form of 
techniques or methods to deal with them. 
 
One of the major parts of study is the discussion about the defect identification and 
prevention techniques used to deal with requirements level defects. Although industry is 
using some of them but most of the organizations are not familiar with them and their 
importance. Authors have given a thorough description of DPTs, DP methods, defect 
identification techniques, and SRS reading techniques (in chapter 5) so that companies get 
familiar with them.  
 
The study also provides support to organizations to learn about these techniques to improve 
their processes and quality of their products. The use of taxonomy helps organizations to 
learn about its structure and classification of defects in order to make certain decision based 
on defect classification. For example, classification of defect through taxonomy can help the 
analyst to take care of problems arising during E and A&N phases. It also provides help the 
tester to create test cases based on major defect types in the taxonomy.  
 
One possible threat can be related to interviewee knowledge about DPTs and DP methods. It 
might be possible that particular interviewee doesn’t know about DPTs, so we cannot 



  27

generalize the things only on behave of single employee and there might be dozens or 
hundreds of employees with specific level of expertise and domain knowledge. For example 
when authors asked a question during interview with employee of company D in Sweden that 
“can we generalize things that you have told us”? They replied that you never do that because 
they have thousands of employees all over the world with different domains and departments. 
So the way of working might be different in different cities and countries. In response of this 
threat the authors have tried to minimize it by selecting the most experience and most 
relevant interviewee based on criteria described in section 4.2.2.  
 
Another threat is that Pakistan has different ethnical groups of people than Sweden. 
Companies in Pakistan can have different working environment, trends, culture, and external 
environment. So study findings and solutions recommended by the authors (based on 
Swedish companies) might not work exactly in Pakistan as in Swedish companies and vice 
versa. 

4.4.3 Conformability  
The influence of researcher’s judgment is minimized. The data and their interpretation are not 
figments of the researcher’s imagination. [80] 
As the proposed study consists of literature review and interviews, the authors use realistic 
approach to collect, interpret, analyze and document results (see section 5 and 6). The 
literature part focused on finding requirements level defects based on research from 
academia. The data is collected from literature using authentic database sources like IEEE 
and ACM etc (see section 5.1). The authors biasing and judgments are kept minimize by 
following the instruction and research design set initially in the research.  
 
During qualitative interview part, the focus was on getting valuable data from experts in 
software industry. The authors use abbreviation instead of using organizations name (see 
section 6). This information can be audited and published with the permission of 
organizations. The interviews are recorded on tape and any external source apart from 
researcher can audit it.  
 
On the basis of study results analysis, the authors proposed some solution (list of 
recommendation, defect taxonomy and modified N-Fold inspection technique). These 
solutions are validated by interviewees from company C and D respectively in section 7.5. 
 
Since authors don’t have industrial experience and don’t know about environment of industry. 
It is possible that the authors create some non realistic interview questions due to lacking of 
software industry experience. The authors tried to remove this threat by consulting interview 
questionnaire with their thesis supervisor. 

4.4.4 Dependability  
The dependability assessment criteria refer to the ever-changing context or circumstance that 
are fundamental to the research study [80] [81]. This demonstrates that focus and strategies 
may change as the research proceeds [81].  
 
During qualitative interviews, one of the major threat is the unawareness of software 
engineering terminologies for the interviewees e.g. interviewees from company D. Although 
organizations are using and following techniques for defects identification but they are not 
familiar with technical terms. Authors have designed the interview study and they followed it 
but the information provided by interview is abstract, less and sometimes irrelevant to 
research topic. Our focus remains same but we sometimes come up with scenarios to get into 
the information we are looking from interviewees perspective otherwise it might affect our 
findings.  
 



  28

It was also experienced that some of the interviewees reschedule the meeting (interviewees 
from company A & F) although it was already decided but due to interviewee personal 
problem we have to postpone it. This thing affect our schedule but to a smaller scale. Further 
the authors planed to give around two to three weeks to interviews but it took more than five 
weeks because interviewees had very tight schedules  

4.5 Validation Design of Study Finding 
The study results proposed during data analysis (in section 7) are credible according to 
author’s perspective. In order to get opinion about the usefulness of results, authors have 
proposed interview with expert from industry to validate the study findings in order to 
determine their significance. The purpose of this validation is to ensure the credibility, 
effectiveness, and usefulness of study results so that they can be generalized in some context 
or population.   

4.5.1 Validation Design  
To validate the study findings, authors will conduct interviews with experts from industry 
who will help them in determining the significance of their study results. For this purpose, 
two interviewee from company C and D will be selected. The selection is based on criteria 
described in section 4.2.2. The data and time for interview will be fixed in advance. The time 
for each interview is expected to be 30 to 45 minutes approximately. Authors will conduct 
fact-to-face meeting with interviewees. To record the interview, tape recorder will be used. A 
questionnaire will be used for evaluation purpose. This questionnaire will be based on study 
findings and it will be developed by mapping questions (in questionnaires) to the proposed 
research finding explicitly. Before starting questions with interviewee(s), a short presentation 
will be given to interviewee about the  

1) Background of the study  
2) Reported requirements defects based on research from academia that originate from 

E and A&N phases of RE (see table 4 ) 
3) Reported requirements defects investigated as a result of qualitative interviews (see 

table 6) 
4) Use of defect taxonomy for classification (see figure 13) 
5) Proposed list of recommendation given as a results of research study 
6) Proposed techniques helps to minimize requirements level defects 

 



  29

5 LITERATURE STUDY RESULTS 
 

5.1 Most Common Requirements Defect Types 
Reported by Literature based on E and A&N 
phases of RE 
 

To identify most common defects based on research from academia, following research is 
carried out related to requirements level defects.   
 
Jane Huffman conducted a study to deal with requirements level defects in [24] and it was 
based on fault-based analysis. He proposed a methodology for NASA base on requirements-
based fault analysis by developing a requirements fault taxonomy and processes for tailoring 
that taxonomy to a specific project [24]. This methodology was used during verification and 
validation process. Historical data from previous projects was used to identify the most 
common types of faults, and risk analysis was performed to identify their likelihood 
consequences. According to [24], fault-based analysis can be performed early in SDLC prior 
to implementation. The primary purpose of this analysis is to identify the defects originating 
from the RE phase so that they can be prevented as early as possible to avoid rework in later 
stages. They identified 13 defects types related to requirements and grouped the related 
defects with defect types in a generic taxonomy [24]. 
 
The defect types described by [24] are incomplete decomposition, omitted requirements, 
improper translation, operational environment incompatibility, incomplete requirement 
description, infeasible requirements, conflicting requirements, incorrect assignment of 
resources, conflicting inter-system specification, incorrect or missing external constants, 
incorrect or missing description of initial system state, over-specification of requirements and 
incorrect input or output descriptions. The description of defects associated with each defect 
type is given in [24]. By applying the taxonomies for three different classes of project, it was 
found that for class B, 83% of defects were due to three types of defects which were 
incompleteness, ambiguous, or inconsistent. For class C, 83% of the defects were due to three 
types of defects incompleteness, omitted or incorrect requirements. Using same taxonomy for 
International Space Station (ISS) project by examining the defect data, it was found that the 
first three categories of taxonomy which include incompleteness (20.9%), omitted/missing 
(23.9%), and incorrect (23.9%) accounted for almost 80% of requirements defects [24].   
 
Kosman has developed a two step methodology to get rid of two main defect types 
originating from requirements. This methodology can be applied on any kind of software 
system (like business, mission critical) that has Geographical User Interface (GUI) and needs 
requirements specification. They have categorized the requirements defect types into two 
main categories 1) Specification Generation Defects and 2) unwanted/unnecessary or 
incorrect user functionality and omitted user requirements written in specification and 
implemented in GUI. Specification generation defects type includes inconsistencies, 
ambiguities, typographical error, input/output mismatching, missing and incorrect data. [2] 
 
Søren Lauesen and Otto Vinter have conducted a case study at Brüel and Kjaer requirements 
defects by studying a real time product. During case study they investigated a product after a 
few months of product release. They found around 800 defects reports and to avoid the 
burden of analysis they selected 200 defects (every fourth defect) for analysis. On the bases 
of interviews with developers and their own study, they found that 107 defects were from 



  30

requirements and 93 were from implementation. These 107 defects were categorized into 
different types of defects. About 60 reported defects were due to tacit requirements 
(requirements that had not been written down, surprising requirements) that fall into omission 
defect type. About 20 defects belonged to ambiguous, wrong and forgotten requirements and 
remaining 20 reported defects were due to ambiguous requirements about external work 
packages. [25]  
 
There are some common risks regarding software requirements. These risks might lead to a 
defected product. It is very essential to overcome these risks to reduce the probability of extra 
rework in the form of defect identification and fixing in later stages of SDLC. Thesis risks are 
1) Insufficient User Involvement during elicitation and negotiation processes. In this risk 
developer thinks that he know what customer wants. On the other hand costumers don’t want 
to spend more time for detail requirements. 2) Gold Plating, here developers can add a self-
made functionality or feature to make customer happy or developers believe that customer 
will love it. So it can lead to unwanted or unnecessary requirements. It will waste resources 
during designing, implementation, and testing processes. 3) Creeping User Requirements risk 
happen when user frequently requests changes and developers don’t response to that request 
4) Ambiguous Requirements risk can cause bad deliverable, wastage of time when developer 
develops a wrong requirement  and tester becomes confused about verifying the actual 
requirements 5) Minimal Specification risk takes place when marketing staff or managers 
create a limited requirements specification, perhaps a general concept of product instead of 
detailed requirements (might be omissions or missing requirements). They want developers to 
explore detail specifications when project is in progress. This risk put the developers in a 
tight position of frustration (they might be working under incorrect assumptions and with 
limited directions) and customers get disappoint to receive a wrong product 6) Overlooked 
User Classes takes place when requirements engineers don’t care different classes of users. 
Some of them might use different subsets of features; have different frequencies of use, or 
different experience levels. It may lead to dissatisfaction of some users of the product 7) 
Inaccurate Planning risk occurs when inaccurate estimations are done like cost estimation. 
The major contributors of poor cost estimation are frequent requirements changes, missing 
requirements, insufficient communications with users, poor specification of requirements and 
insufficient requirements analysis. [4] 
 
In another research article authors have shared their experience about aggregation of 
historical datasets that contained inspected defect data. Since aggregated datasets might be 
heterogeneous data that comes from different sources, at different periods of time, in different 
formats and have different terminologies, so to make it understandable and manageable they 
used different categorization schemes in aggregating historical inspection defect data. They 
collected defect data from 2529 inspections from 81 projects in NASA. For this purpose they 
visited five centers of NASA in USA. Each center was using different defect taxonomy and 
in some cases they were using multiple defect taxonomies. Their aim was to create a model 
based on historical datasets that describes the behavior of software inspection at NASA. They 
wanted to develop a unified defect taxonomy that can help in using historical defects to guide 
future development projects in NASA and this defect taxonomy has ability of backwards 
compatibility with existing data, captures domain specific elements of interests to NASA, 
holding desirable properties of good defect taxonomy. This taxonomy would facilitate the 
mapping of historical data to new sets of defect categories and would be easy to apply in 
future data collection effort. In this paper they created an initial draft of defect types for each 
work product like requirements, design, and code and test plan artifacts. [26]  
 
They have categorized defects related to software requirements into seven types. These are 
clarity (requirements description may not be clear, what is required actually [7]), 
completeness (needed constraints or services are not missed [7]), compliance (problem with 
compliance to any relevant standard), consistency, correctness, testability (bad testable 
requirements mean unclear or missing requirements [7]) and others. Others mean any 



  31

problem or defect that cannot be put into rest of defect types mentioned above that had 
logged during requirements inspections. [26] 
 
A constant change in software requirements is one of the major causes of software defects 
and software industry is suffering from this issue. More changes in requirements make the 
requirements unstable. These changes are easy to manage in early stages like RE phase but in 
later stages of SDLC it has very bad impact. John’s study about requirements changes has 
explained that a new feature in later stages of development life cycle has 50 percent more 
defects associated with it than those of the artifacts associated with original requirements 
[37]. We know that software development is dynamic process and this process is influenced 
by changes. It is noted that RE process even continued while software development is in 
progress and that leads to volatile requirements [27]. Requirements volatility is defined as 
tendency of requirements to change overtime. Volatile requirement is a factor that causes 
major difficulties in software development in the form of extra cost and effort (causes rework 
in later stages of SDLC), that’s why this factor is called “the cost driver” [38]. Requirements 
volatility also has impact on defect density in code phase [28], project schedule and cost [29], 
quality of code, quality of project management and developer’s capability [38]. In most of the 
companies project development is started with unclear, fuzzy and incomplete requirements. 
The major sources of change in requirements might be changing work environment, 
organizational complexity and conflicting requirements [27].  
 
Lamsweerde in 2000 gathered empirical data by using survey from 350 US companies and 
over 8000 projects were investigated. This empirical study found that one third of the projects 
were never completed and one half succeeded partially. Partially means with partial 
functionalities, major cost overruns, and significant delays. When it was asked about the 
causes of such failures, the executive managers found poor requirements as the major source 
of problems (about half of the responses), the lack of user involvement (13%), requirements 
incompleteness (12%), changing requirements (11%), unrealistic customer’s expectations 
(6%), and unclear objectives (5%). So changing requirements has overwhelming percentage 
(11%) of project significant delay, incomplete functionalities, and major cost overturns. [30]  
  
In 1992 Michael Schneider, Johnny Martin and W.T. Tsai in [20] conducted an experimental 
study to verify the results from an earlier project which calculated fault detection rates in 
SRS. They appointed nine inspection teams to inspect the SRS by using N-fold inspection 
technique. All teams were motivated to find as many defects as possible for them. After 
experiment they found that rate of fault detection in requirements had been low by using 
formal inspections and advantages were achieved by using N-fold inspection technique that 
was created by the authors. The hypothesis of this technique is that “the N separate inspection 
teams do not significantly duplicate each other’s efforts and that there is not a high degree of 
fault-detection overlap. Instead, each team neither finds a significant number of SRS faults 
nor located by other teams”.  
 
According to the hypothesis multiple reviews are needed instead of single review of SRS. If 
hypothesis is true then defect detection rate by using N-fold technique will be higher than 
single review inspection. The validation of this hypothesis was done by Martin and Tsai in a 
detail study (first experiment). They found that the average number of defects found by a 
single team were 25 out of 92 or 27%. When five parallel teams were appointed to inspect 
SRS, then fault detection rate raised up to 65% and after appointing ten parallel teams fault 
detection rate raised up to 80%. In this way defect detection rate was increased tremendously. 
But their first experimental study had major problem of uncontrolled experimental 
environment. Uncontrolled environment means differences in ability between teams, team’s 
familiarity with inspection process, pace of inspection process and the number and types of 
defects assigned in their experimental study [19]. Therefore they decided to conduct second 
experimental study to avoid mistakes which were found in first experiment and to find 
reliable statistical data based on N-fold inspection. [20] 



  32

 
The SRS was similar in this experiment except with small change in control for the number 
and type of defects. During this experimental study they found different types of defects by 
using N-fold inspection in SRS. These requirements defects were categorized into two main 
classes that are called class 1 faults (Missing Information) and class 2 faults (Wrong 
Information Faults). Class 1 includes faults includes defect types such as 1) Missing 
Functionality or Missing Feature, 2) Missing Interface (how the system will interface and 
communicate with the objects outside the scope of the system that has been omitted), 3) 
Missing Performance (omitted system performance specification that is unacceptable for 
acceptance testing), and 4) Missing Environment (hardware/software/database environment 
that has been omitted). Class 2 faults include defect types such as 1) Ambiguous Information 
and 2) Inconsistent or Contradictory Information. [20]  
 
Søren Lauesen, Jan Pries and Otto Vinter have conducted a case study at Brüel & Kjær to 
prevent requirements level defects. They studied defect reports of previous projects to 
understand issues in the RE process that can lead to defects. They identified three main 
classes of requirements defect tpyes which are missing requirements, volatile requirements 
and ambiguous requirements by developers and testers [31].  The defects are classified and 
analyzed by using Boris Beizer Taxonomy describes in [32]. The Beizer taxonomy is 
categorized into ten major classes each of which comprises of three levels [32]. We will 
discuss taxonomies later in detail but the category deal with requirements level defects in 
Beizer taxonomy is “Requirements and Feature” which further breakdown into main defects 
of requirements completeness, presentation, volatility and incorrect requirements each one is 
further divided into third levels to describe related defects under each category [32]. 
 
Defect taxonomy is an effective means of identifying and analyzing the type of defects in the 
development process. It provides basis for corrective actions both for present and future 
perspective of product in the form of prevention whose primary goal is to reduce the number 
of defects in the product. [33] According to a case study 51% of defects are related to 
requirements [31] out of which usability issues were dominating up to 68%.  Other problems 
were understanding of third party software and their associated defects and functionality 
issues were in common. The defects from defect reports did not reflect all of defects found in 
Beizer Taxonomy, so it was modified little bit with new defects subcategories at lower level 
of Beizer Taxonomy [31]. Requirements related errors were then classified based on error 
source that cause defects and quality factor [31]. These quality factors were based on ISO 
9126 quality factors model that consider the quality characteristics of functionality, usability, 
reliability, maintainability, and portability, each one of which are further divided into sub 
categories [31].  
 
The purpose of considering the quality factor in classification is to get deeper understanding 
of quality requirements by mapping quality factors like usability and functionality issues into 
those stated in ISO 9126 because functionality and usability issues are dominating up to 68% 
as discussed above [31]. In most of the defect reports the major source of defects was the tacit 
requirements during elicitation phase that caused missing or misunderstood requirements 
[31]. To deal with the problem, they studied different 50 DPTs based on hit-rates and 
proposed to use Scenarios and Navigational Prototype Usability Test, Daily Tasks in the 
requirement elicitation and validation phase by training their employee with the proposed 
techniques. By applying the proposed techniques 27% of requirements related defects were 
eliminated, whereas according to quality factors, requirements issues have been reduced by 
36% [31]. 
 
Another case study conducted in same organization (Brüel & Kjær) by Otto Vinter and Soren 
Lausen is similar with the previous one but the primary purpose was to find the most 
common types of defects and problem in DPTs related to requirements [34]. The study was 
based on analysis of defect report to identify most common defects types. The report was 



  33

analyzed using interview with people involved in development. To make classification of 
defect they used Bezier taxonomy with little modification. According to authors, the reason 
for modification was lack of some categories in taxonomy that didn’t fit well with some of 
today’s programming language and tools as Bezier taxonomy was developed in mid 1980’s 
[32][34].  
 
During analysis they founded that most of the defects originated from the RE process. 
Majority of defects were due to missing, incomplete, tacit, assumed, and volatile 
requirements in the implementation phase. The primary defects were not concerned with SRS 
instead they were due to missing and tacit assumption about the requirements in the 
elicitation phase [34]. According to authors, about quarter of defects were in “requirements 
and features” category of Beizer Taxonomy [34]. They also classified the defects according 
to source of defects and perform a closer analysis of requirements related defects using 
quality factor also describes in [31] to identify quality issues like usability issues which was 
reported to be 64%. Other defects were deal with understanding and cooperating (28%) with 
third party software found during interface analysis, while other issues account for 13% [34]. 
To provide effective preventive actions, they performed cost/benefits analysis of potential 
prevention techniques and mainly focused on techniques that addressed the requirements 
elicitation issues [34]. They proposed to use scenarios and navigational prototype usability 
test and daily task after training their employees with these techniques [34] are also described 
in [31]. By applying proposed techniques, an overall improvement of 27% reduction in defect 
report was reported with 72% decrease in usability issues [34].  
 
In another research article authors described that inspection in requirements specification 
phases can figure out inconsistent and incorrect requirements before they go for design and 
implementation. Most of the requirements reading techniques (such as ad hoc, checklist, 
defect based reading) do not pay attention on particular aspects of the SRS and put all 
requirements information on the same level of importance. In this way the identification of all 
types of defects in the entire document becomes foggy. Researchers at the Experimental 
Software Engineering Group at the University of Maryland have created Perspective Based 
Reading (PBR) that provides a set of software reading techniques and can find defects in SRS 
written in English language. PBR believes that the importance of information in requirements 
might be different for different uses of SRS. [22] 
 
There are three major uses of SRS in SDLC such as 1) A description of the customer’s needs, 
2) A bases for the system design and 3) A point of comparison for the system test. These uses 
provide foundation of perspectives for reviewing SRS. For example designer needs correct 
and clear requirements with details for the major component of the system that is under 
review. The tester focuses on requirements testability and wants appropriate information to 
build a good test plan. The customer or user of the system uses SRS to know the correct and 
complete accomplishment of all system functionalities. It was found that PBR can find 
following defect types in SRS 1) Missing Information, 2) Ambiguous Information, 3) 
Inconsistent, 4) Incorrect Fact (a requirement fact that cannot be true in particular condition 
of the system, wrong behavior), 5) Extraneous Information (unnecessary or unused 
information), 6) Miscellaneous defects (errors like including requirements in wrong sections). 
[22]   

5.2 Requirements Based Defect Taxonomy  
Defect taxonomy is an approach to learn about the types of defect occurs during SDLC [68]. 
If there are number of defects reported during software development or during operation than 
it is difficult to relate which one belong to which phase in SDLC and activity in that phase. 
Taxonomy provides a simple and efficient approach about the types of defects [68]. It is an 
effective approach of learning between projects through defect elimination of same types and 
helps to avoid them in future. Taxonomy in general is the “classification of things into 



  34

ordered groups or categories that indicate natural, hierarchical relationships among 
categories" [69]. This word is a combination of two Greek words "Taxis" meaning 
arrangement of things and "onoma" meaning name used for representation [69].  
 
Defect taxonomy maintains systematic arrangement of related defects identified by unique 
names in order to represent and retrieve information about them. Different taxonomies have 
been developed in different fields of sciences depending upon their requirements and 
information to organize i.e. business taxonomies, medical sciences, software fault 
taxonomies, and software security taxonomies are common examples [70]. Taxonomy in 
software aims to categories the defects among SDLC based on core phases i.e. requirements, 
design, implementation, testing etc. representing the group of defects in each phase which 
further describes the defect types within each group and so on until the defects lie under a 
certain defect type. It helps to understand the defects mechanism and provide an ease to put a 
defect under a certain type belong to that defect. For example, defects related to requirements 
are put under requirements which are further classified into types e.g. incompleteness, 
consistency, ambiguity etc. These types can be further narrow down into defects associated to 
each type e.g. incomplete requirements, incomplete attributes, or incomplete feature or 
interfaces etc. The level of classification can vary until it satisfy the complete defects under a 
certain type but the relationship between defect and types must be consistent and coherent 
[32]. It should be simple and easy to understand so that it can be easy to make decision about 
a particular defect position in the taxonomy [32]. Some common defect taxonomies related to 
requirements phase of development life cycles are discussed below;  

5.2.1 Orthogonal Defect Classification (ODC)  
A part from defect taxonomy for classification and analysis of defect data, IMB in mid 90’s, 
proposed Orthogonal Defect Classification technique to categorize defects and their possible 
causes in software [71]. Using ODC, defects are classified based on defect attributes 
consisting of defect types, defect trigger, source and their impact [72]. This classification 
helps in analyzing the data by understanding the categorization of defects and possible causes 
thus help in making action plans for focused defect. It also improve process activities by 
understanding of defects distribution over phases through mapping of defect types to the 
development activities (i.e design, coding, etc) [71][72]. The overall purpose of using ODC is 
to find the deficiencies in process by mapping the defect types back to the development 
activities to know their root causes. So that deficiencies can be eliminated that causes the 
defect to surface. ODC mainly focuses on design and implementation defects with limited 
and fixed number of defect types and triggers that is difficult to use for requirements [21] 
[71] [73].   

5.2.2 Boris Beizer Taxonomy  
It defines a four level classification of software defects using fine-grained framework used for 
categorization of defects [32]. Major categories related to requirements in Beizer taxonomy 
are shown in table 2; [32] [74] 
 

Table 2: Requirements defect types in Beizer Bugs Taxonomy 
 

1xxx Requirements 
        11xx Requirements Incorrect 

12xx Requirements Logic 
13xx Requirements, Completeness 
14xx Verifiability 
15xx Presentation , Documentation  
16xx Requirements Changes 

 



  35

It is a comprehensive and life cycle oriented bug taxonomy covering requirements in detail 
along with other phases of SDLC. Thus it provides complete information of defects for the 
whole development process. This taxonomy classifies bugs in more detail with four digit 
number to represent the level of detail for bugs from major categories to defect types to their 
respective defect.  A four digit characters i.e. xxxx is used as mask for each category as 
shown in table 2 which are further assigned number as proceed from top level to downward. 
The first level describes major nine categories covering development activities consisting of 
requirements, feature, implementation, testing etc. Each category is associated with defect 
types specific to that category that is mutually exclusive, non-conflicting and consistent to 
avoid the chance of putting the defects in wrong category. From table 2, it is clear that there 
are six defect types associated with requirements that were proposed by Beizer in 1990. 
These types are further associated with defects that best represent the type. The requirements 
classification through Beizer taxonomy provides useful information about the types of defects 
that can be easy to use and implement for requirements level defects. This way of identifying 
the nature of problem helps to know the actual reasons behind the problem [32] [74].  

5.2.3 IEEE Taxonomy for Software Anomaly 
IEEE uses a generic term “anomaly” that is used for all terms i.e. error, faults, failure, 
problems, bugs, defects, flaw, incident or glitch to communicate all these types. According to 
IEEE, anomaly is “any condition that departs from the expected that comes from 
documentation or from someone’s perception or experiences” [75]. It is also generic and life 
cycle oriented taxonomy of software bugs. The classification process proposed by IEEE 
consists of four sequential steps which include [75]; 

1) Recognition  
2) Investigation 
3) Action 
4) Disposition 

Each step undergoes through administrative activities of recording, classifying and 
identifying the impact. The purpose of these administrative activities is to record the 
anomalies related information in each classification process. This information provides useful 
help to make improvement, corrective and preventive actions. Whether it belongs to a process 
or work product. For example, the classification process starts with recognition of anomalies. 
In this process environment in which anomaly has occurred and related information is record. 
Further important attributes of anomalies are classified through a classification scheme. 
Finally, information about the consequences of anomaly shall be record by the person who 
recognizes the anomaly. This information about anomalies continues until the last steps of 
classification process. The classification scheme divided the anomaly among project phase, 
activities in each phase and the suspected causes that lead to that anomaly. [75]  

5.2.4 HP-Defect Classification Scheme (DCS) 
In 1986, Robert Grandy and Deborah of Hewlett-Packard (HP) proposed a simple defect 
classification scheme (DCS) for defect categorization [10]. In this DCS, information about 
defects is established using two forms; one for the classification of defects in term of defect 
severity, method of discovering and symptoms while the other form establishes the resolution 
of detected defects based on information gather in classification form. These both forms are 
maintained under defect tracking system use to track and resolve the defects in the system. 
Defect tracking system is the part of HP metrics program that is used to determine the causes 
of defects in order to improve the development process. The resolution form set priority of 
each defects along with proposed solution that focus on how to fix the defect and the person 
who fix it. They proposed that team should have a clear understanding of why the 
development team needs to track defect data that affects the software. [76] 
 
The classification scheme of HP focus on three dimension 1) Origin (where) of defects in the 
phases of development process i.e. requirements, design, code, etc, 2) Type (what) of defects 
in specific phase e.g. specification and functionality defects related to defects, hardware 



  36

interface, software interface under design phase, etc. 3) Mode (why) of defects bases on 
defect type that associate the defects under a defect type e.g. missing, or unclear mode may 
relate to defect type software interface that was either missed or unclear [76].  HP 
classification scheme in general is  
 

Origin (Where) -> Defect Type (What) -> Mode (Why) 
 

The problem with this scheme is support of limited number of defect types in each 
development with limited number of defects associated with defect types. Defect mode in 
HP-DCS considers missing, unclear, wrong, changed and better way to fit them for all defects 
types encountered in each development phase thus making it generic independent of phase.  

5.2.5 Requirements Fault Taxonomy 
NASA in 2003 proposed a requirements fault taxonomy specific to RE for its projects based 
on historical data for understanding the most common and repeatable defects along with their 
root causes [73]. The taxonomy helps to identify most common faults that would be 
overwhelming. This taxonomy is used a part of requirements based fault analysis for early 
development phases i.e. requirements prior to design and implementation. It is based on 
classification of faults in requirements by considering the characteristics and relationships 
between faults. The analysis is performed as a part of verification and validation process. The 
taxonomy is based on two basic principles 1) fault categories are mutually exclusive, 2) fault 
categories are not specific to a particular language, environment, or system development 
approach [73]. Thus it is generic in nature and can be applied to any software system. 
According to [73], the requirements faults originate in requirements phase i.e. elicitation, 
analysis and found in the SRS. The major categories of requirements faults are described in 
table 3. The subcategories associated with those described in table 3 can be found in detail in 
[73].   
Table 3: Requirements defect categories in requirements fault taxonomy [73] 

 
1. Requirements Faults 

1.1 Incomplete decomposition 
1.2 Omitted requirements  
1.3 Improper translation 
1.4 Operational environment incompatibility 
1.5 Incomplete requirements description 
1.6 Infeasible requirements 
1.7 Conflicting requirements 
1.8 Incorrect assignment of resources 
1.9 Conflicting inter-system specification 
1.10 Incorrect or missing external constants 
1.11 Incorrect or missing description of initial system state 
1.12 Over-specification of requirements  
1.13 Incorrect input or output descriptions  

5.3 Requirements Defect Identification & 
Prevention Techniques and Their Weaknesses 

There are lots of defect identification and prevention techniques and methods those help in 
stopping requirements defects to penetrate them into later stages of SDLC. If requirements 
defects would mistakenly allowed reaching the customer or tester then these defects would be 
very costly to fix in the form of tremendous rework [4]. Authors have conducted both 
empirical and literature study for defect identification and prevention techniques that have 
been using during requirements analysis phases. There are also some methods those help in 
preventing requirements defects. These methods try to prevent defects in different phases of 



  37

the RE processes like E and A&N. Authors have given details of these techniques and 
methods with their advantages and disadvantages. In this way readers would have good idea 
about attempts those were made to prevent defects in current industry. During literature study 
authors tried their best to keep focus on industrial case studies and research papers those have 
industrial experiments 

5.3.1 Defect Identification Techniques 

5.3.1.1 Prototyping  
 In the RE process, SRS is used for requirements validation in the presence of customers or 
users to make sure that the requirements are realized in the right way. The problem with this 
approach is that users find it very difficult (by just reading specification document) to 
visualize how the system will perform required tasks or functionalities. It becomes more 
difficult when developing system is supposed to be used by large numbers of users having 
conflicting requirements and users with weak background of system knowledge. They feel 
uncertainty in the fulfillment of requirements that they have put forward. It is also very 
difficult to know whether an SRS is complete, consistent and ambiguous and if these threats 
prolong to downstream stages of SLDC then it will be more costly to correct them [42]. To 
overcome these problems a lot of methods and tools have been working. Tools are divided 
into two categories 1) system specification languages and 2) graphical tools. Formal methods 
are also another approach which uses formal languages like problem statement language 
(PLS) and requirements specification language (RSL) to develop SRS. Similarly graphical 
approaches (such as information flow diagram, and ER diagram) has been using to develop 
quality SRS. The use of formal specification languages (FSL) has been described in detail in 
section 5.3.2.1. 
 
The above methods and tools for requirements specification leave a gap between users and 
developers of a system. Prototyping can remove this communication gape because user can 
give vital feedback to the developer on the appropriateness of SRS. Even the circulation of 
SRS among different stakeholders in the organization often gets no useful feedback and it is 
very difficult for users to have a thorough reading of such a lengthy document. That’s why 
they find it boring and consequently results become misty. The cost of accommodating 
changes increases tremendously as the software development moves into later stages of 
SDLC [42]. Prototyping can minimize this cost by getting user feedback early in RE phase. 
Prototyping also helps in developing applications that are more users oriented. Prototyping 
approach is also useful for training users about how to use the system but it is necessary to 
keep the prototype up to date. This advantages also is compared with cost factor, it will not be 
used if cost of maintaining the prototype is exceeding planned budget. [42] 
 
Prototyping is implemented after the development of preliminary version of the SRS. In this 
way developer has good opportunity to take vital feedback from users to improve the quality 
of SRS. The concept behind the prototype development is to show the users backend 
functionalities of the system that are not visible for them. If developer will follow this 
concept then they would be able to get beneficial feedback from the users. Prototyping should 
be stopped when time and cost required making modifications (in response of user feedback) 
to the prototype have been outweighed. On the other hand if developers and users feel its 
usefulness they can continue it again. In short prototyping approach ensures that SRS is 
complete and correct by only spending less than 10% of total cost for the project. For 
ambiguity and consistency checking, RSL can be used. [42] 

5.3.1.2 N-fold Inspection 
The SRS is very important RE work product because it defines the needs and boundaries of 
the software product. It also acts as an agreement between customers and developers. It plays 
pivotal role in the success or failure of the developing product [19]. It is bases for rest of 



  38

project planning, design, and coding and is foundation for system testing and user 
documentation [4]. Finding and fixing software problems after product release is 100 times 
more expensive than finding and fixing during RE practices or during design phase [19, 42]. 
The investigation of SRS is very important to avoid rework in later stages of SDLC because 
problems in products (like SRS) of early phase have very bad impact on product 
development. Defect detection in SRS could be done by different methods. 
 
Formal inspection is very effective and efficient approach and particularly in case of 
requirements inspection phase it can find inconsistent or incorrect requirements [22]. N-fold 
inspection based on formal inspection (Fagan Inspection) described in [39] it replicates 
inspection activities by using N-fold inspection. It is used to identify faults or defects in SRS 
as early as possible just to avoid them to be occurred in later stages of SDLC. In N-fold the 
same artifact (SRS) is given to all N independent inspection teams. A single moderator 
handles the results of all inspection teams. In the end of inspection process moderator gathers 
effort of all teams and records detected faults in a database. Since there is probability of a 
fault or defect to be identified by multiple teams, so the moderator writes each fault once in 
the database. The logic behind N-fold inspection is that a fault that is not supposed to be 
found by single team can be found if multiple teams are working on single artifact [19]. It is 
also hoped that different inspection teams will find different defect or faults, in this way large 
number of teams will find more defects [39]. 
 
It is very important to choose the best values of N in N-fold inspection. Sometimes by 
increasing inspection teams the rate of fault detection does not increase with respect to added 
inspection team members [19]. The best value of N based on three factors 1) availability of 
teams, 2) cost of additional teams, and 3) potential cost for not finding a defect during 
inspection. Study of Kantorowitz et al., (1997) have proved that N-fold inspection does not 
depend on type and size of the system to be developed. They have suggested that more teams 
for inspection and more inspection experts in each team can assure better performance [39].  
Advantages  

• The overlapping of fault detection by different team is minimal 
• Early detection of faults in SRS becomes more effective 
• Two or more teams inspecting same document can identify more faults as compared 

to single team. 

Disadvantages   
• Some faults were not found during inspection of SRS even by multiple teams, it 

means inspection process is good but not good enough. 
• Some faults of SRS cannot be discovered during inspection that needs execution in 

the form of design or implementation. These faults can be identified by using formal 
specification and design. 

• A flawed inspection team cannot perform well in the identification of faults   
• Multiple teams in N-fold inspection is costly but it provide substantial benefits  

For requirements analysis, inspection has been proved an excellent technique [22]. During 
inspection process, inspectors need some sort of reading techniques for SRS. These reading 
techniques might base on experience and knowledge, business objectives, product goals, 
defect taxonomies, particular scenarios, specific perspectives and so on. 

5.3.1.3  Ad Hoc Reading  
This technique is used to take a general viewpoint of reviewers. It does not offer any support 
to the reviewers. They use their own knowledge and experience to find defect in a document. 
It does not enforce a specific process to perform inspection [39]. Participants are guided 



  39

during inspection sessions to find defects in SRS. All participants follow defect taxonomy. 
For example they can use following defect taxonomy. 

• Omission Defects: this category includes missing functionality, missing environment, 
missing performance and missing interface 

5.3.1.4 Checklist Based Reading  
It seems more systematic than Ad hoc reading. In this reading technique participants are 
given a list of questions that are answered by the reviewers or they tick predefine important 
issues that need to be checked. This list of questions helps the inspector (reviewer) to carry 
out good inspection process. For each project there should be unique checklists. For each 
individual type of document to be reviewed and for each individual type of product, there 
must be specific type of checklist. [39] For example if currently a company is developing real 
time application that put reliability, availability and performance attributes on high priority 
then checklist to review artifacts should focus these attributes. In the same company if 
another project say Management Information System (MIS) is going on then checklist to 
review artifact will cover issues related MIS. 

5.3.1.5 Scenario Based Reading (Defect Based Reading) 
Defect based reading (DBR) technique was developed to find defects from SRS. In this 
technique, inspection is done based on different scenarios that are defined according to defect 
taxonomy in use. Defects are categorized into different classes and for each class of defect a 
set of questions are developed. Scenarios are also considered to focus a specific view point 
that helps to indentify particular type of defects. [39] For example a company is developing 
Railway Track Crossing system. During the inspection of SRS for this project, reviewer can 
make a scenario like “when train reaches 5Km away from the railway track barrier then 
barrier will start to come down. Let if barrier stops in the middle and do not come down 
completely then what could be problems” 
 
Porter and Votta in 1994 and Porter in 1995 have conducted multiple experiments in which 
they compared scenario based reading (SBR) with checklist and ad hoc reading techniques 
based on defect identification rate. The findings of experiments proved that scenario based or 
DBR has higher rate of defect identification than checklist and ad hoc based reading approach 
and checklist reading was no more effective than ad hoc. Practically it was proved that SBR 
captures 35% more defects than checklist and ad hoc approaches. [48] 
 
In 1995, Gough et al has performed a large scale study in market industrial environment in 
which he used scenarios based reading technique in Fagan’s inspection. Each inspection team 
was consisted of five reviewers having particular role. Gough found that reviewers captured 
2-4 defects per hour. Author claimed that SBR is good mean of requirements elicitation. 
Fusaro et al in 1997 also conducted and experiment and compared SBR with checklist and ad 
hoc. His results seem not in favor of SBR technique. He pointed out that average defect 
identification rate for SBR was not significantly different as compare to checklist and ad hoc 
reading techniques. [39] 

5.3.1.6 Perspective Based Reading 
It is an enhanced form of DBR or SBR technique. Instead of using defect classification (as in 
case of SBR) PBR focuses the stakeholders point of view and their needs regarding system. 
Scenarios are developed on the bases of stakeholder’s point of view [39]. It provides a set of 
procedures to reviewers (developers) that can help them to know the problems of 
requirements inspection. The theme of this reading technique is that the requirements have 
different information which is more or less significant for different uses of the SRS. It is very 
important to find true users of inspect-able artifact (like SRS) and to know how they will use 
the artifact but this selection of users is different for different project or organizations. There 



  40

are some examples of different perspectives to use SRS in later stages of SDLC such as 1) 
Description of the customer’s needs, 2) A basis for the system design, and 3) A point of 
comparison for system test. PBR guides the reviewers during requirements inspection to 
answers the two important questions. These questions are 1) what information in these 
requirements they must be checked? And 2) how can they find defects in that information? 
[22].  
 
Basili et al. have performed some experiments to know the effectiveness of PBR on SRS in 
NASA. He found that there is no major difference of reviewer’s who were using PBR and 
those who were using other reading techniques like checklist. But PBR reviewers performed 
well on generic documents. Laitenberger and DeBaud have also performed deep experiments 
to find effectiveness of PBR. They also found no significant difference in performance of 
reviewers when they were using PBR on code document. On the other hand Shull et al. said 
that PBR is better for reviewers who have some experience. According to above discussed of 
authors, it is proved that PBR reviewers can capture more defects as compared to the 
reviewer who use less systematic and less structured approach for review. They further added 
that PBR is more systematic, focused, goal oriented and tailor-able [39, 48].  

5.3.1.7 Usage Based Reading (UBR) 
Effectiveness and efficiency of fault detection can be improved by using reading techniques 
such as PBR, DBR, CBR and ad hoc reading techniques. User perspective has got values in 
software development by different methodologies like use cases in object oriented 
development and operational profile testing. User perspective can be used during 
requirements inspection when inspector prepare for inspection meeting. Inspectors can use 
user oriented approach in reading SRS just to confirm the quality of specifications from 
user’s point of view. There are two important attributes of UBR, such as 1) use cases, and 2) 
prioritization. Use cases helps the reviewers to inspect SRS and prioritization helps in sorting 
out most important functionalities from user’s perspective. During inspection the reviewers 
get a prioritized set of use cases and inspect the software artifact. Similarly a fault will be 
critical if user will consider it critical. [49]  
 
In an experiment that was conducted by a group of students [49], they proved that UBR 
technique is more efficient in detecting faults than CBR and UBR is also efficient in finding 
different defects or faults than CBR (that is popular in industry). There are also some 
drawbacks in UBR those are given below. 

• It is not feasible for real time system because real time system are explained by event 
based tables or diagrams 

• It does not cover business goals 
• It does not cover quality attributes of the software system 

5.3.1.8 Function Point Reading  
It is the enhanced form of SBR technique. To strengthen the inspection process for 
commercial systems, Benjamin Cheng and Ross Jeffery have developed scenarios based on 
Function Point Analysis (FPA) that is called Function Point Scenarios (FPS). Authors 
conducted an experiment in which they used SRS as inspection artifact instead of code and 
implementation documents. They proved that FPS technique is more efficient to inspect 
crucial areas of the software artifact (like SRS) than simple SBR technique. [50] 

5.3.1.9 Metric Based Reading Technique 
Besides the inspection of SRS, it is important to find defects in notations (use case diagrams) 
in which that SRS was written down. On the bases of this recommendation, Metric Based 
Reading (MBR) technique was come into being. Its main goal is to inspect the SRS and to 
identify specific types of defects in use cases. MBR is based on a set of heuristics that are 



  41

used during requirements inspection process. These heuristics are developed based on some 
structural properties of use cases (that are easy to measure) that could be early indicators of 
some particular type of defects in use cases like incompleteness, ambiguity, 
misunderstanding, and lack of conciseness in use cases. There are lots of use case metrics 
such as Number of steps of the use case (NOS), Number of actor action steps of the use case 
(NOAS), Number of conditional steps of the use case (NOCS) and so on. These metrics are 
used as defect-proneness indicators. Each heuristic defines a threshold level for a use case 
metric, if a use case has values more than this threshold then the probability of the use case 
being defective increases. Authors had conducted an experiment to validate this technique. 
They found that it was more effective in the detection of defects than CBR technique. 
However it was not proved more efficient because it take to much time to be implemented 
properly. [51] 

5.3.1.10 Inspection Using Error Abstraction 
In [52] a group of authors had conducted an experiment to validate PBR technique. During 
experiment they found that it is very hard to classify, quantify and defining individual fault. 
Reading techniques that concentrate on individual fault have to face problem of fault 
classification, quantification and definition. There are some drawbacks of concentrating of 
faults during inspection process such as 1) same fault can be described in different ways, 2) 
some faults could be linked with totally different parts of the requirements, and 3) similar 
faults can be in single group of fault. If we take researcher’s view point then they recommend 
concentrating on errors (mistake by human) instead of individual fault, so that reviewers can 
get rid of above mentioned problems [52]. 
 
 There are some potential advantages for this approach such as 1) communication about the 
document can be improved by focusing on area of functionality that document author has 
specified incorrectly rather than focusing on every individual mistake, 2) if reviewers will 
focus on basic misconceptions then they can learn what is actual problem and how they can 
prevent it to happen again, and 3) since error are higher level of abstraction than faults and 
they could be made available in the organization to other reviewers and developers. In this 
way prevention from these mistakes can be avoided. Authors had proved by a controlled 
experiment that this process of error abstraction appeared feasible but the effectiveness of the 
process could not achieve author’s expectations. [52] 

5.3.1.11 Goal Oriented Requirements Analysis  
Requirements analysis should not rely on only understanding and modeling the functions, 
data and interfaces for the new system but they should explore alternatives and evaluate them 
with respect to business objectives and transitively these objectives will meet business goals 
of the system [46]. Goal Oriented Requirements Analysis (GORA) technique provides a 
platform for traditional requirements analysis techniques (inspection, ad hoc based reading, 
prototyping etc) for their better performance. So that traditional requirements analysis 
techniques can identify and evaluate alternative ways of meeting business goals. It provides a 
way of refining organizational and technical objectives so that more and more alternatives 
(alternative solutions to meet an objective or goal) can be explored during requirements 
definition [46]. For example our generic goal is to achieve better security of ASS (Airport 
Security System). We can decompose these goals into multiple sub goals like achieving 
availability, reliability, performance, confidentiality and integrity of the system as alternative 
solutions. It is not necessary that all alternative solutions will be considered but we can select 
some of them by using OR and AND operators. 
 
Each of these sub goals can be decomposed into further sub goals to identify more 
alternatives to refine organizational and technical objectives. In case of ASS we can identify 
more alternatives by decomposing its second order sub goals (availability, reliability, 
performance etc). We can decompose performance attribute into response time, information 



  42

sharing, fault tolerance ability, computer memory in use, resources to be allocated in the 
execution of software and so on. Similarly we can decompose availability attribute into time 
to repair, time to rejoin the system, time to failure, duration of availability of the system and 
so on.  In this way a hierarchy of goals is developed that help the requirements analyst to 
have simple form of analysis. There are five steps [46] in GORA technique.  

1) Goal analysis, where authors decompose functional requirements into an AND/OR 
hierarchy as shown in figure 7 below. In this figure the decomposition of Schedule 
Meeting goal has been shown. There are a lot of alternatives and each alternative has 
specific plan to satisfy the goal. It is marked with single arc that shows AND operator and 
double arc shows OR operator. It means satisfaction of a goal will be accomplished with 
the satisfaction of all sub goals or by the satisfaction of any sub goal respectively.  

 
 

Figure 7: An AND/OR decomposition that depicts alternatives for achieving the meeting 
scheduling goal [46] 

 
2) Soft-goal Analysis, here the quality attributes associated with a system are 

decomposed into soft-goal hierarchy. Figure 7 shows non functional requirement for 
a system that is “system should be highly usable”. It means usability is the soft-goal 
and that can be decomposed into hierarchy of sub soft-goals that is shown in figure 
below. This hierarchy is composed of AND/OR operators and also positive operators 
that shows a loose relationship as compare to AND/OR. Positive operator indicates 
that a soft-goal is positively influenced by its sub soft-goals. It means a soft-goal will 
be satisfied if it will get more positive influence from its sub soft-goals. However in 
case of more negative influence it will not be satisfied by its sub soft-goals. 



  43

 
 

Figure 8: A partial softgoal hierarchy for usability [46] 
 

3) Since quality goals have frequent contradictions between each other. If one goal is 
achieved then other might get less attention. For example security and user 
friendliness, and high quality and low cost. Soft-goal correlation analysis is 
performed to identify positive or negative relationships among conflicting soft-goals.  

4) Goal correlation analysis, which identifies relationship between goals and soft-goals. 
So we have to combine figure 7 and 8 on the bases of best relationships between 
goals and soft-goals. Figure 9 shows a possible set of relationships for refined version 
of the Schedule Meeting goal and soft-goals such as Minimum Effort and Quality of 
Schedule. 

 
 

Figure 9: The result of goal correlation analysis for schedule meeting [46] 
 

5) In the last step, evaluation of functional goals decomposition is performed in terms of 
soft-goal hierarchy that was constructed to meet quality of the system. This 
evaluation is performed by selecting a set of goals and soft-goals and that can satisfy 
all functional goals and expected quality of the system. 

5.3.1.12 Attributed GORA Technique 
There is an advanced version of GORA technique that is Attributed GORA (AGORA). In this 
technique system attributes are valued in digits (such as contribution values and preference 
matrices). Requirements analyst attaches these values with edges and nodes respectively in a 
goal graph. The contribution values of an edge show that to what extant a sub goal 



  44

contributes to achieve its parent goal. On the other hand preference matrix of a goal 
represents the preference of a goal for each stakeholder involved. AGORA can help the 
requirements analyst to find inconsistency among the goals, to analyze the impact of 
requirements changes and to choose and adopt a goal from its alternatives. Requirements 
analyst can also judge the quality of SRS on the bases of its quality attributes such as 
correctness, unambiguousness, completeness and so on. [53] 

5.3.2 Defect Prevention Methods 
We have given detail of some methods that support DP in different phase of the RE process. 
We explained how these methods work and what kind of problems they have. These methods 
are given below.  

5.3.2.1 Formal Specification Method 
Formal specification method has been an important method in designing, validating, 
documenting, communicating, reengineering, and reusing solutions and formality helps in 
obtaining higher-quality SRS within such processes [41]. Formal methods are based on 
mathematical formulization. In the RE process formal methods are used in requirements 
specification phase. For informal or semi formal methods such as structured methods (like 
object oriented analysis and structured analysis) text, diagrams, tables and simple notations 
are used. On the other hand formal aspect demands mathematically formal syntax and 
semantics to specify system requirements in the form of system function and behavior. FSL 
are composed of three components that are syntax (Specific notation with which the 
specification is represented), semantic (how the language indicate system requirements or the 
real and correct meaning of requirements represented by a language) and relation (it defines 
the rules that show which objects properly satisfy the specification). Some examples of FSLs 
are 1) using model based notions such as Z and Vienna Development Method (VDM) and 2) 
based on process algebras such as Communicating Sequential Processes (CPS) and LOTOS 
[7].  It can be defined as “a formal specification is the expression, in some formal language 
and at some level of abstraction, of a collection of properties some system should 
satisfy.”[41] Formal specification removes ambiguity and encourages quality in early stages 
of SDLC. Because it depends on mathematical formulation so it is possible to verify the 
incompleteness, inconsistency and correctness checking formally specified requirements. The 
use of formal methods enhances system user’s confidence because by using formal methods 
requirements actually represent user desires. [7]. Formal methods are more useful where 
safety and security is critical. Unfortunately the formal methods could not get popularity 
among developers [41, 7]. There are some drawbacks such as  

• Difficulty for system users and software developers in understanding the notations 
used in specification.  

• Difficulty in specifying some aspects requirements for example requirements related 
to user interface. 

• Software management feel hesitate in using new techniques that are not frequently 
practiced [7] 

• Only functional requirements or properties of a system are formalized by using 
formal specification techniques (BNF-Style Specification, algebraic approach, and 
model based approach) and non functional properties are left behind the wall. It 
means formal specification techniques have limited scope 

• There is no clear separation between essential properties of the system (functional 
requirements), assumptions about the environment of the system considered and 
properties of the application domain. All of them are mixed together in SRS. 

• Formal specification techniques generally require extra ordinary expertise in formal 
systems and particularly mathematical logic. Due to this requirement the use of 
formal specification methods is limited in industry 

• A typical user, who is going to approve SRS, will face problem in understanding the 
SRS that is written in a formal language [42]. 



  45

5.3.2.2  Structural Analysis and Design Technique (SADT) 
SADT is a diagrammatic notation that is designed to make the people understand a system or 
to describe the system. SADT provides rigorous expression of high level idea that previously 
had been too foggy to treat technically. It does not solve the problem but it allows people to 
understand, manipulate or check problem elements. SADT has arise from a premise that “The 
human mind can accommodate any amount of complexity as long as it is presented in easy-
to-grasp chunks that together make the whole” SADT identifies these chunks, make the 
structure of these chunks visible and model them into a describable form . It has been playing 
good role in defining requirements, specifying functionalities of a system and in problem 
analysis. It has been applied to wide range of complex problems from real time 
communication to process control, system software, project management, software system 
specification, simulations etc [43, 44].  
 
SADT consists of 1) the box-arrow diagramming language of structural analysis and 2) the 
design techniques. These both principal parts are strongly related to each other [44]. It 
provides two types of techniques 1) for performing system analysis, and 2) for performing 
system design. It also provides a process by which these techniques types are applied on 
requirements definition (requirements analysis) and system implementation. The most 
important aspect of SADT is Graphic Techniques. The SADT graphic language gives an idea 
about initial constructs from which analysts and designers of the system can get orderly 
structures of any required size. There are some simple notions by which graphical 
representation of a system or initial constructs of a system is possible, such as boxes and 
arrows. Arrows don’t represent data flow as in case of dataflow diagram but it represents 
interfaces between parts (Boxes) in the same SADT model or in different SADT models. 
Whole represents a diagram in which multiple boxes (maximum six boxes or parts), natural 
language names, some other notations and arrows exist as shown in figure 10 below. Same 
graphical notations are used in both activities and data [43]. 
 
An SADT model depicts a well organized sequence of diagrams, each with concise 
supporting text. The high level diagram shows big picture of the subject and each low level 
diagram show a bit detail of well constrained topic or problem. This process continues until 
appropriate detail of the given topic (such as software specification) has been achieved as 
shown in figure 10. By this continuous process of problem decomposition SADT model 
represents a hierarchal structure of the system. However its depth is bounded based on its 
advantages and contents of SADT for a system are bounded by its viewpoint 

 
Figure 10: SADT decomposition [43] 

 
Each low level diagram remains in connection with high level diagram logically. In this way 
the logical relationship between all higher and lower level diagrams of a system remains 
correct. Requirements definition (requirements analysis) needs dedicated team work. For this 



  46

purpose SADT has mentioned its own way of establishing titles and assigning roles. For 
example in requirements analysis the author would be analysts, trained and would have 
experience in SADT. The interaction between assigned roles helps in meeting communication 
needs of requirements definition, for regular and critical reviews and for understandable and 
current documentation [43].  
 
During the construction of SADT model for a system, if anyone wants to give suggestion or 
wants to make a change during review, he can write directly on the copy of draft. This change 
becomes the part of project files. When author and commenter reach a satisfactory position 
the work is reviewed by a committee of senior technical and management personnel. After 
this review documentation is produced as the model has evolved. The final SADT model 
makes the project highly visible. It is now easy for management to study the requirements in 
a top-down manner from basic overview to relevant levels of details [43].    
 
SADT provides detailed graphical diagram of the system specification that is understandable 
for the system users so that they can give valuable feedback to the developers. From users 
point of view the best way of knowing whether his requirement have been met for a particular 
system, is hands-on use of the system [42]. 

5.3.2.3 Goal Based Requirements Analysis Method 
Normally, requirements analysis explores relevant data and functions that a system will 
contain. The features and functional data of the system might be represented in the form of 
entity relationship diagrams, data flow diagrams or one can use object oriented approach. 
Goal Requirements Analysis Based Method (GBRAM) provides a vision to cover maximum 
aspects of the developing system. It provides a platform for traditional requirements analysis 
to perform well [46]. GBRAM enforce to categorize, decompose, and structure goals as 
requirements. It is very often in the organization that their goals remains unclear and are not 
provided easily. So to identify organization goals it is very significant to have as good 
information as possible to understand the domain, organization, process, and system [45]. 
 
Next question is where can we identify goals during the RE process? What entity or process 
will be responsible to achieve that goal and what constraints are there for each goal? To find 
answers of these questions we have to elaborate different artifacts (SRS, design description 
etc) and aspects of the RE process. In [45] they tried to give answers of above questions. 
They have explained that goals can be found by searching for statements which seems to 
guide design description at different levels with the system of organization, by searching for 
action and operation words from customer or any stakeholder’s description document. For 
example for a Library Management System customer can describe actions and operations 
words like “reserve, delete, search and update” and we can extract goals such as reserve 
book, delete old book, and search a book and so on.  
 
Goals responsible and stakeholder must be identified as early as possible. For example 
responsibility of goal search book is the responsibility of students and librarian. Constraints 
are also important because they provide some useful information for achieving a goal and 
keep the achievement of goal in definite scope. They can be identified by looking for 
dependencies and by searching for connectives like before, during and after. [45] For 
example for goal “search book” constrain might be as “student must have student ID for 
searching book”. 
 
Goals evolve with the passage of time, because the mind of stakeholder can be changed, or 
their goal priorities can be changed. There are two types of changes 1) goal elaboration and 2) 
goal refinement. Goal elaboration can be handled by some techniques such as identifying 
goal obstacles, analyzing scenarios and constraints, and operationalizing goals. When change 
happens in goal priorities then scenarios helps in the evaluation of new goal prioritization. On 



  47

the other hand goal refinement is needed when contradiction in goals occurs, when goals are 
merged into a sub goal categorization, when constraints are identified, and when goals are 
operational zed. These issues can be removed by enabling different methods and techniques 
such as determination of pre and post condition of a goal, elimination goal dependencies and 
parallelism, goal categorization and usage of goal elaboration. [45] 
 
Now we will discuss problems and issues that were found during implementation of GBRAM 
on Career Track Training System. It was observed during implementation that GBRAM is 
extremely fragmented, tremendously effort and time consuming, and extra human resources 
utilization [45]. Authors have conducted interviews from six software development 
companies and authors found that no one is using GBRAM. It means it is not widely used 
method.  
 
On the bases of GBRAM in [46] a group of researchers have developed GORA technique. 
They enforce to explore alternatives ways to satisfy system requirements that had been 
explained in section 5.3.1.11 

5.3.2.4 Object Oriented Requirements Analysis 
Object oriented approach for system analysis has been popular for few decades. There are 
some modeling techniques such as data flow diagrams, RE diagrams and state transition 
diagrams that have been using widely in software development process. These techniques 
give proper shape to system specifications that object oriented system analysis becomes 
possible. In this way system analyst becomes able to capture the rich information that need to 
be model, analyzed, and understood before putting software system into implementation 
phase. Early requirements analysis techniques were made on the bases of structural 
programming concepts. As the structural programming has been converting to object 
orientation, so requirements analysis techniques have got influence form this conversion. 
Object oriented Analysis (OOA) techniques models the real-world environment, that means 
an environment comprising of people, work processes, material things, and software systems 
[47]. For example if Library Management System (LMS) system requires OOA, 
identification of classes (student, librarian, books etc), attributes (for example for class Book, 
name of the book, author name, ISB no. etc) related to each class, services (for class librarian, 
services might be search book, reserve book, delete book, register a student and so on) that a 
class can provide, and relationship between classes (such as librarian can reserve a book for 
student, book can be returned by a student) is very significant. After it the idea of whole 
system is modeled by using modeling techniques such as data flow diagram, ER diagram, and 
transition diagrams. 
 
Object Oriented Requirements Analysis (OORA) is getting popularity because it provides 
better understandability of requirements specification and supports in object oriented design 
and implementation [67]. During OORA the above discussed diagrams and concepts with 
natural language helps different stakeholders (in case of LMS stakeholders would be students, 
requirements analyst, librarian, university, developers, project manager and so on) to be agree 
on the relevant objects and relationships among them. How can we model objects to 
accomplish requirements analysis? We can find the answer from [67] where an object model 
is given that tells how requirements can be made analyzable. The main points of this model 
are 1) identify the object classes from the requirements statements, 2) identify association 
between classes, 3) identify object attributes, and 4) organize classes using inheritance to 
share common structures. These steps can be put into an iterative loop just to get complete 
and correct object model. After it you can apply bottom up or top down or both approaches to 
build a hierarchical object model.  
 
It is possible that late in design phase, the requirements object oriented model might get a 
change in the form of enhancement [47]. For example if a LMS needs to have track of 



  48

information about very old books just to vanish them from the shelf, then there will be 
addition of a new class such as oldbooksinfo. There are some drawback of this approach that 
are given below 

• Empirical study has proved that GORA technique can provide more detailed 
requirements definition than OORA techniques. 

• It emphasis on static modeling and for real time system (such as distributed system) 
only OORA is no enough [67]. 

• It does not handle non functional requirements, that way in [46] the author did move 
from OORA to GORA because GORA handles non functional requirements in the 
form of soft-goals. 

• It seems that designing takes more attention than real problem 

5.3.2.5 Joint Application Design (JAD)  
JAD also known as Joint Application Development was developed in 1970s by IBM [35]. It 
is considered to be an effective approach for DP in early phases of development. The basic 
idea of JAD is to conduct a joint session of system clients, users of different background and 
people within organization who manage and develop the system requirements. JAD sessions 
bring information sources that interact with the system on one platform to share information, 
discuss business needs, propose opinions, discuss problems and policies, and user’s 
expectation toward the proposed system [35]. These sessions will be ended up with agreed 
and joint decisions about system constraints and refined requirements.  
 
To improve the quality of requirements, software engineers use structure analysis techniques 
i.e. data flow diagrams, entity relationship diagrams and data models etc to describe the 
stakeholders’ requirements into logical system representation that is understandable to them 
and developer as well [35]. Prior training and preparation are provided to the stakeholders in 
this regard which make them able to understand these technical terms [35]. This process 
resulted in the form of a collective and collaborative SRS with combined authorship [34]. 
Thus we can say that it gives a clear picture of system being developed to all those who will 
use this documents during this process and later in development process. It can be concluded 
that this team base approach of exploring system requirements in a collective and cooperative 
environment can helps; 

• To eliminate communication barriers by providing an environment where 
everyone who interact with the system can participate to express his needs.  

• Resolve conflicts of varying stakeholder’s needs toward systems in an open 
atmosphere by providing them opportunity to discuss and negotiate. 

• Brings developers, users and system analyst on a single point in the form of 
agreed set of requirements in order to eliminate ambiguities which further 
improve later phases due to clear understanding of system requirements.  

• Helps in eliminating potential defects related to requirements in the form of 
correctness, ambiguity, missing and incomplete requirements through continuous 
customer’s involvement. [35] 

• Give management an opportunity to control project scope, budget and schedule 
by clearly understanding the customer needs and organization’s limitation.  

• Good replace of interviews i.e. instead of having a series of interviews to know 
stakeholders needs, make a joint session of them to know system requirements. 
[35]  

As JAD is a team based approach that establish sessions in the form of meetings, it requires 
prior homework (in the form of training to employees and users, and access to right people 
for sessions especially from client sides), scheduling JAD session, pre-defined roles of people 
and their responsibilities (facilitators, requirements analyst, developers and users), meeting 
agendas, managing JAD sessions and people commitment to make JAD session effective [35] 
[57]. The JAD team can improve efficiency of the RE process by making reasonable 



  49

decisions, explore business need together, develop business model, analyze business need, 
negotiate each other to reach consensus (in case of disagreement), and document agreed set of 
requirements [35].  

 
The philosophy of JAD is to refine the RE process together with the stakeholder’s so that 
there is less chance of requirements issues in later stages of development. Getting right 
people from stakeholders (end-users, executives, and developers) and their involvement is 
also complicated in order to get the right job. There is also need of training and effective 
leadership for successful JAD sessions. [57] 

5.3.2.6 Cleanroom Methodology  
Cleanroom methodology (CRM) was built on the idea of defect free development that came 
from electrical industry. During manufacturing of silicon chips in semiconductor industry, 
they proposed to use defect free environment in the form of clean room which is free of dust 
particles, humidity or chemical vapor or any other particles that affect the production of 
semiconductor [58]. Using same idea of electrical industry for software development, form 
the basis of cleanroom. Instead of dealing with defects after deployment or during testing, it 
is better to eliminated them during manufacturing or development process i.e. zero defect 
during development.  
 
To achieve this, cleanroom provides a complete and structured set of engineering activities 
similar to typical life cycle activities (planning, designing, implementing and testing etc) but 
with focus and use of mathematical approach [58]. It is iterative in nature and build product 
in small increments [58] [59]. The principle that uses cleanroom for defect free software 
during development is based on mathematical techniques used during requirements 
specification, verification and design. We will stick around requirements and design phase in 
cleanroom to see how cleanroom is an affective methodology for DP in early stages of life 
cycle.   
 
At RE level, it uses formal method for formal specification of requirements instead of using 
natural language which is often misunderstood and misinterpreted [58] [59]. Formal method 
is based on mathematical and logical formalization that is used to specify requirements in 
mathematical form. Formal specification is describes in detailed in section 5.3.2.1 [58]. 
Along with mathematically established formal specification at requirements level, it uses 
correctness verification techniques in a team review to make sure these requirements are 
correctly specified before the implementation of software [58].  
 
In cleanroom, the specification team is responsible for analyzing and specifying stakeholder’s 
requirements. They produce two different specification documents i.e. functional and usage 
specification. The function specification provides basis for each increment which carry out 
design and verification cycle using functional specification. Usage specification is based on 
usage scenarios for all possible system usage. This specification is used to generate test cases 
and provide basics for testing process. The function specification describes external system 
behavior and mapping of all possible users inputs to the expected output that describes 
system behavior in all circumstances. [58] [59] 
 
Cleanroom process recommended a box structure approach for specification and design while 
functional verification is used to confirm that designed is correctly implemented with respect 
to specification [58]. The functionality of system is describes in term of objects using box 
structure through three level of abstraction which are demonstrated by black view which 
describes behavior view (input, output, and behavior of object), state view describes the finite 
state machine view and clear view which describes the procedural view [58] [59] [60]. These 
three different views are implemented by using Design Box Language (BDL) used to define 
the functionality [60]. From the above discussion it is clear that though this technique is 



  50

efficient due to use of mathematical notation for requirements representation but it require 
trained people that are familiar and expert in using it. Further, people indented to use SRS 
should also know about formal method in order to understand the requirements. It is also 
difficult to communicate the SRS with the customer. From [58] [59], it is found that 
cleanroom focuses on use of formal method during analysis so cleanroom provides aids to 
requirements analysis as compared to elicitation phase of RE.  

5.3.2.7 Quality Function Deployment (QFD) 
QFD is considered to be an effective DPT which focuses more in early phases of software 
development especially requirements and design. The main focus of QFD is to satisfy 
customer’s needs. According to [61], QFD is used as a systematic process of identifying and 
prioritizing customer requirements and incorporate these requirements into subsequent 
process and product specification. QFD focus more on requirements and design phase of 
development life cycle by making a correlation between customers and design requirements 
by identifying primary functional needs [62]. This correlation is established through matrix 
based approach between customer’s requirement and design requirements that drive those 
customer requirements [61] [62]. The QFD process is achieved through a planning tool called 
House of Quality (HOQ) [61] [62]. It is matrix based approach for specifying customer 
requirements and design parameters. The term HOQ is based on series of process where each 
process is considered as a room. Each room presents information in the form of matrix. 
Collectively, these rooms form the shape of a house. There are five rooms and a roof in HOQ 
as shown in figure 11. The activities and information contained in each room is given below 
also described in figure 11 [61] [62]; 
1) Customer’s requirements – This room describes the customer’s requirements written in 

their own words describing what they want called “voice of the customer”. It deals with 
the requirements elicitation from customers. To enter into to HOQ these requirements 
must be structured. It contains the prioritized list of customer requirements. Requirements 
are prioritized based on customer’s importance which assign weight to each requirements 
to demonstrate their importance.  

2) Technical requirements – This room deals with requirements that describes design 
requirements that drive how these customer requirements will be accomplished. A QFD 
design team is responsible for specifying these requirements.  These requirements are 
also specified in the same manner in matrix like customer’s requirements. This matrix 
lies below the roof of the house.  

3) Roof – The roof of HOQ is a matrix above technical requirements where they are cross 
checked to determine correlation between engineering activities.  

4) Correlation between customer and design requirements – This matrix is used to measure 
the relationship of each customer requirements and design parameter to measure their 
significance. This matrix will demonstrate how a certain design parameter will be 
associated to a certain customer requirement.  

5) Planning matrix -A planning matrix is used to demonstrate an overall weighing of 
product by comparing customer’s priority of each product feature with the competitor’s 
products. This planning mechanism helps management team to find the importance of 
customers’ demands, competitor’s strategy, market demands and improvement areas for 
the current product [61].  

6) Target matrix - It is the final process of HOQ which is based on conclusion drawn from 
information from other rooms of HOQ. The QFD team discusses and makes collective 
decisions. It contains an assessment of technical and cost estimation of technical 
requirements that are further used for resource allocation based on these estimations [61].  
 



  51

 
 

Figure 11: House of quality in quality function deployment [61] 
 
QFD focus more on customer satisfaction throughout the project. It is a complex method and 
develop matrix for everything from customer requirements to engineering specification. For 
each matrix that measures the importance or correlation between two entities in HOQ, it uses 
different calculation, scale, symbols and statistical method to value that object. We can say 
that HOQ is a tool used in QFD to determine customer and engineering specification during 
product development. It is a team based approach with greater involvement of analysis and 
design team. It also requires a lot of work in the form of competitor’s product for planning 
and performance of product. Moreover, the size of matrix is directly related to customer 
requirements. The greater the number of requirements for a system the larger will be the size 
of HOQ, which requires larger among of effort. Besides its complexity, the accuracy of 
requirements and design parameters that are used to convert those requirements into 
development is very efficient. As it compare customer’s requirements through their voice to 
design parameter that play an important role in their implementation. Further, considering 
competitors perspective, customer importance, design parameters, organization existing 
products helps in improving product design and performance. Comparing design parameters 
with product feature helps in establishing a consistency between requirements, design and 
implementation. One of the major benefits of QFD is to overcome requirements and design 
problems i.e. inconsistencies, ambiguity, clarity, incompleteness early in life cycle through 
matrix-based approach [62].  

5.3.2.8 Participatory Design  
Participatory Design (PD) as name describes is a collaborative and collective approach that 
focus on end-users involvement in development process. The primary goal of PD is customer 
satisfaction which is achieved through collaboration of end-users who are considered as 
domain expert along with designers and developers [63]. The participation in PD means 
discussion about the system and end-users requirements through active user participation in 
the requirements elicitation process where they collectively share information and identify 
issues. PD focuses on actual users of the system and the environment in which they work 
[64].    

 
PD, the "Scandinavian approach" to system development, focuses on much stronger 
involvement of the end-users than JAD does, facilitating a mutual learning process between 
users and designers, and joint experiences into a simulated work situation [65]. During 
requirements elicitation, requirements can also be gathered through PD workshops. The focus 



  52

of PD is to consider the end-users viewpoint about the product thus mainly focus on customer 
satisfaction. This could be achieved by gathering and involving them in a workshop to get 
their needs and demand about the proposed system. This will give more and more 
information from end-users perspectives. A workshop in PD is an efficient way of getting 
important customers requirements. In PD workshop, developers, designer, and customers 
work together to identify system requirements and design a solution that realize customer’s 
needs [64]. This participation with end-users involvement can lead to efficient and usable 
system design.  

 
According to [66], the people intended to use the system can play a vital role in designing the 
system because they have better understand of system i.e. they are domain expert. Through 
collaborative participation, changes can be minimized as users are directly involved in 
designing system. Thus, the rate of volatility will be low if requirements are initially 
developed clearly with the collaboration of customers. User’s participation in design can 
improve prior knowledge about system before development of actual system, unable 
development team to develop realistic system according to expectation and reduce resistance 
to changes [63]. Both JAD and PD are similar and are design approaches with user 
involvement during software development [35] [57] [63] [66]. According to [57], the 
different between JAD and PD is the participation criteria in term of participation selection, 
involvement, technical staff and facilitators participation, structure and development speed 
along with goals setting for collaborative system design. 

 
The goal of JAD is to produce a high quality design while PD focuses on social context of 
system domain with respect to users who indented to use it [35] [57]. PD emerges as result of 
a workplace democratic moment in Scandinavia in 1980 to improve the social environment of 
worker in order to enable them to efficiently use the system. This gives the idea of worker 
participation to improve the quality of workplace because of workers have better understand 
of domain [57]. So both JAD & PD focus on user’s participation in the workshops. They both 
facilitate low-documentation and visualization method like prototyping, models for data 
representation during workshops [35] [57].  



  53

6 EMPIRICAL STUDY RESULTS 

6.1 Most Common Requirements Defect Types 
Reported by Industry 

6.1.1 Company A  
Company A is privately owned Swedish software Company. It was founded in 1994 and is 
leading company in Content Management and portal solutions through the platform 
EPiserver. The company is a Microsoft Gold Certified Partner and holds AAA-ranking by 
Dun & Bradstreet since 2000. Company A has its main development centre in Stockholm and 
they have their development teams in Norway, Denmark and United Kingdom as well.  

6.1.1.1 Interviewee 
The contacted persons for company A is the second product manager working on company’s 
major product and directly deals with requirements. Product manager is responsible for the 
RE process and overall product development. There are three teams working under the 
supervision of product manager and each team has five members. Product owner is the main 
source of providing requirements to product manager for a certain release. Product manager 
along with other participant selected from different team based on their experience establish 
the RE process right from requirements acquisition to final development of SRS which 
provide basic for later life cycle activities. The participants involved in the RE process 
include product owner, product manager (participate as analyst), tester, and developers. The 
interviewee is directly involved in the RE process and according to him the company wants 
improvement in the RE process. Being involved in the RE process, he knows issues related to 
requirements before and after the product is released to the customers.  

6.1.1.2 Defect Types and Their Reasons based on E and A&N 
It was quite different from what we were expecting from interviewee. We thought that 
interviewee will answer our questions very simply, if we will ask about defects originating 
from requirements then he would answer simply but case was quite different. Whenever we 
asked question he answered describing real life scenarios that he had experienced in his 
company.  Interviewee has little bit different experience about the severity of requirements 
level defects with respect to definition of major and minor defects types as described in table 
6 in section 7.1. He said that requirements defect types like missing, ambiguous, 
inconsistency, and extraneous information are minor defect types. He did consider omission 
defect type as major. Since they freeze the requirements before implementation and after 
requirements validation which means volatility factor is not serious here and change requests 
are put into next releases. However they think that requirements are not perfect and there 
might be some missing or unclear requirements during implementation phase. If they find an 
unclear requirement during testing phase then they reactivate the RE process. So they expect 
that the RE process can be activated again. They believe in dealing with defects as early as 
possible. They use scrum methodology, defects found in one sprint are fixed in that sprint 
before proceeding to the next sprint. They mostly identify defect during implementation 
phase. The organization uses their own definition to describe the severity of customer 
reported defects i.e. broken functionality (medium priority defects), critical functionality 
(highest priority defects) and entire functionality (low priority defects). Out of these types, 
critical and broken functionality defects are serious and communicated with developers who 
fix them. There is no mechanism of training of their employees regarding RE process and 
they rely on their experience and knowledge. To avoid repeatable defects happen a results of 
human mistakes, they use guidelines to make sure that same mistakes will never happen 



  54

again. The interviewee was curious to hear about DPTs like cleanroom, JAD and QFD but 
eager to learn about them.   

6.1.1.3 Techniques Reported by Company A 
Company A do not have a dedicated RE department rather they have a support team 
responsible for communication with customer. RE process is based on experience and 
knowledge of people responsible for it. Organization has iterative process for requirements 
validation and they create wire frames (basic user interface mock-up) for each feature or 
functionality on a paper or whiteboard or by using prototyping tool to verify that they have 
draw right requirements or not. They prevent a defect by just having analysis on it and 
provide some guidelines about it. They formulize the problem by using different methods like 
pair programming, and code review. For document review they use checklist for requirements 
analysis. They compare features and functionalities against the checklist. To make the 
requirements feasible they use two techniques such as 1) Decomposition of requirements, and 
2) prioritization. To write requirements they use dialogs. For requirements analysis they 
spend time in short meetings and discuss the problems. They don’t know about DPTs that are 
mentioned in section 5.3. 

6.1.2 Company B 
Company B is Pakistan based IT company with eight year of experience in off shore and 
custom development in major software technologies. The organization provides outsourcing 
services and works with different projects. It deals with different projects and has its client in 
Pakistan and in Germany. 

6.1.2.1 Interviewee  
The contacted person from company B has a four year experience in software development 
and involved in RE in many different projects which included Air Traffic Control System 
(ATCS), image tools, downloader FTP/HTTP and data base updater application. The 
interviewee was involved in RE activities in some project as a requirement analyst, developer 
for developing prototyping for requirements validation as well as a tester. The interviewee 
was aware of RE issues and it was interesting and beneficial to get our research questions 
from his experience both as a developer and requirement analyst. The interviewee was a 
valuable resource for us due to his variant role in different project gives us a broader picture 
of defects from different perspective in the form of requirements analyst (who is aware of 
defects at requirements level), developer and tester (defects during testing related to 
requirements.)  

6.1.2.2 Defect Types and Their Reasons based on E and A&N 
The interviewee identified unclear requirements as a major defect because requirements are 
not initially clear which causes a lots of problems. The reason for this problem is lack of 
investor involvement, limited time allocated for RE and for validation purposes and political 
factors within organization. It was also experienced that most of the defects were reported by 
end-use in the form of missing features and these features are hard to fix if they are related to 
functional requirements. They can cause malfunctioning and even system crash. Due to 
missing requirements at initial phase of life cycle they are hard to identified but uncover when 
customers report them due to some problem with software. This means that they were neither 
implemented nor tested because they were not specified in the SRS. Sometimes these missing 
features are reported by QA team. Inconsistencies and conflicting requirements are resolved 
at requirements level and there is a very little chance of their appearance and consequence in 
later stages. Infeasible requirements are settled down by negotiation with customers. In case 
of a change in functional requirements, it has direct influence on system design. The reasons 
for this change are lack of understanding, and the initial work is not done in the right 
direction. Defects are mostly reported by customers (e.g. missing requirements) and 



  55

according to interviewee sometime they are greater than 60% but if these defects are tackle at 
requirements level their rework will be 5%.  
 
Defects reported during requirements validation are more than 74%. The interviewee 
believed that they believe in DP strategy which is ensured though a well defined RE process. 
According to interview, the defect identification rate from E and A&N phases of RE is 
approximately 60% to 70%.  

6.1.2.3 Techniques Reported by Company B 
The company B has a dedicated RE department and they involve customers during RE 
process. Three to four people are involved in RE process with 5 to 6 years of experience. 
Company B uses different techniques during the RE process. The requirements elicitation 
phase starts with studying the existing system. The requirements analyst is responsible for 
studying domain knowledge, conduct interviews with relevant people who interact with the 
system.  People involved during the RE process are requirements analyst, client (system 
users), developers and management. During elicitation phase, the company uses more than 
one technique. The company uses interviews and brainstorming techniques during the 
requirements elicitation phase. After study existing system, the requirements analyst uses 
questionnaire during interview with system users. The questionnaire contains set of key 
questions related to new systems e.g. one question could be “why you need this solution 
when you already have the mechanism to do the job”. During analysis, requirements are cross 
checked to identify and resolve conflicts. Once the system analyst develops the final SRS 
document he arranged a session with developer/coder to discuss requirements in detail so to 
make sure that coder gets it in the right direction. The company B uses prototyping as mean 
of defects identification during requirements validation to find missing and incomplete 
requirements. The company also involves customers during this validation process. Besides 
that they have chat session with clients to make things understandable and clear if they found 
some ambiguities in requirements. They also don’t know about DPTs that are mentioned in 
section 5.3. 
 

6.1.3 Company C 
The Company C provides digital signage solution to its customers in Northern Europe. The 
organization is expert in software development as well as hardware development. It deals in 
developing monitors and screens with video interface provided for the digital signage. The 
organization is the main supplier of digital signage for different retailers and offers its 
product in almost 30 countries. The organization clients included telecom organization, 
departmental stores, shopping malls, and restaurants etc in different countries.  

6.1.3.1 Interviewee  
The interviewee has five years of experience in different engineering disciplines. Currently 
the interviewee works as an operation manager. The primary responsibility of interviewee is 
to validate and verify the requirements along with acceptance testing of final system to make 
sure that requirements are implemented according to requirements described in the SRS. 
Apart from interviewee's current role, the interviewee was also involved in development 
activities and worked on different role during his tenure. The interviewee had worked as a 
developer for implementation of requirements and in quality department as a test to generate 
and execute test cases based on SRS. The varying and extensive experience of interviewee 
helped us to get more information about research questions.  

6.1.3.2 Defect Types and Their Reasons based on E and A&N 
The interviewee reported missing requirements by giving a scenario experienced by him. He 
also figured out other defect types that originate from E and A&N phases such as unclear 



  56

requirements, extraneous information, omissions, high volatility rate, inconsistency (not 
frequent), ambiguity, after releasing product, sometimes they have to do a lot of extra work 
when they receive a change from the customer. The reasons for missing requirements were 
due to communication gap between developer and customers and poor requirements analysis 
while unclear requirements were due to complex nature of features. 

6.1.3.3 Techniques Reported by Company C 
They use ad hoc approach to analyze the requirements but overall they were fallowing Xp 
programming approach. When they get basic requirements from the customer about 4 to 5 
experts sit together (group meeting) that includes developers and operational manager. The 
owner of the company has direct contact with customer. He is also involved in acceptance 
testing.  First they try to understand the requirements and do clear all requirements. Then they 
look at each requirement from design and implementation perspective. If developers find 
problem or misunderstanding of a requirement they inform their boss (who has direct access 
to the customers) about that requirement. Their boss in return makes screen shorts or tries to 
make them understand by sketching diagrams on white board. During this process the 
inconsistencies and dependencies are discussed and fixed. They use IEEE format for writing 
SRS. In requirements validation process SRS is sent to customer, tester, designer and 
operational manager. Tester makes test cases and if find any problem then he informs RE 
team to correct it or can also give his suggestion. Sometimes they had to develop prototype to 
clarify a requirements to the customers. When they clarify all requirements then they 
prioritize the requirements on the bases of experience and value based technique.  
 
When they find a defect during testing phase, they make that defect part of test case 
document. In this way they can avoid that type of defect for the next time. Further they keep 
the log history of any missed test case or defect (with causes) that tester finds. This test log is 
given to developer so that they can know their weaknesses and can avoid making them again. 
Tester reports most of the defects (more than 80%). They also do not follow any DPTs 
mentioned in section 5.3 

6.1.4 Company D 
Company D is a world famous organization deals in mobile and communication devices. The 
company has its network in almost 160 countries. To deal with customers, company has 
different Marketing Units (MUs) spread all over the world, who interact with the customers 
to know their demands and to get features to implement. The MUs then look for requirements 
and communicated with the development center in Karlskrona where they develop and test 
the requirements.  

6.1.4.1 Interviewees 
Two persons were contacted from Company D i.e. one is tester and one is designer. They 
both interact with the customer’s requirements. As described above the MUs department is 
responsible for gathering requirements where customer give them requirements that are 
abstract or sometimes they come up with solution as well. They have another department 
called system handler and system organization who also deals with the RE process. The RE 
process starts from MUs which act as an interface between company and customers. They 
gather requirements and the requirements for a particular release end up in their development 
center in Karlskrona, there are teams responsible for analyzing the requirements. It provides 
information about the estimation of requirements whether it is possible to implement it or not, 
how much time they will take, problem with requirements and finalize the SRS. First SRS is 
produced at MUs for writing the customer’s requirements and the final document is produced 
after analyzing the requirements in collaboration with MUs and development team. Both 
interviewees have four and nine year of experiences in their related field. They analyze the 
requirements after getting it from marketing departments. As they have a lot of experience so 
they analysis process is much more dependent on their personal experience. One of the 



  57

problems with interviewees is their lack of awareness about technical terms. They just want 
to discuss about interview questions in their own term which they used within their 
organization.   

6.1.4.2 Defect Types and Their Reasons based on E and A&N 
The interviewee’s identified unclear requirements as major requirements. They said that 
requirements are always unclear when they get it from MUs. They are ambiguous and 
produce different meaning for single requirements. The interviewees as worked in a team 
discuss and negotiate with the MUs and requirements handler department where they solve 
the problem. The cause of this problem comes from marketing department where they write 
the first SRS in collaboration with customer. They also find inconsistencies among 
requirements due to conflicting requirements. The person who wrote the first SRS made 
mistakes due to which there can be conflicts or contradiction among requirements. They also 
experience changes in some requirements even during implementation phase. This will create 
problems because this can disturb the project schedule. So they are difficult to implement and 
manage in future releases. These changes are rare as they proceed to development after 
finalizing the requirements. After analysis of requirements, a final document of requirements 
is produced and sent back to the customer for final approval in case of changes, they are 
handled at that level so there is little chance of requirements volatility. Defects are reported 
by tester most of the time. From the customer`s side, they have configuration problem related 
to software but this issue arise due to lack of awareness and understanding about products. 
Defects found fall into different categories on the basis of their severity. The interviewees 
identified requirements defects like ambiguous, unclear, and missing. Sometimes they are 
major and sometimes they are minor defects. Sometimes they are not feasible to implement 
and sometime organization have their own limitation for implementation. They use IEEE 
standard for specifying requirements. Moreover, there is no classification mechanism for 
defects instead during testing they defined their own definition to describe the severity of a 
defect e.g. emergency and intermediate correction etc.  During RE process, requirement 
analysts are given the training about system knowledge but there is no mechanism of explicit 
RE training. They are depending upon their employee’s experience and tacit knowledge but 
they spend more time to RE process. 

6.1.4.3 Techniques Reported by Company D 
Although company do not has a specific DP mechanism but they take different approaches at 
different level of development e.g. pair programming, use of checklist for inspection and 
design rules before starting development. These rules provide guidelines that act as 
preventive action. To deal with in-process and customer reported defects, they maintain 
defect/trouble reports which defined four different levels of defects based on their severity. 
During requirement engineering process they have some training sessions and courses on 
methodology that they use i.e. extreme programming. Besides this they are also relying on 
their experience to avoid defects.  
 
To make the RE process efficient, the company has a separate and dedicated department for 
gathering requirements from customer. They are continuously intact with the customers in 
getting new features and requirements all the time. The analysis is performed both by the 
requirement handler and the design team. Thus there is little chance of lack in requirements in 
later stages. To find problem in requirements they performed inspection with formal reviews 
of SRS. They are also not familiar with the DPTs that are mentioned in section 5.3. 

6.1.5 Company E 
The Company E is a leading Pakistani software organization deals in developing tools for 
documents composition, resource management, and also provides web-based support for 
organization to create, manage and optimize their documents work flow. The 



  58

company develops application for both stand alone solution and integrated solution for 
existing systems. The organization has customer all over the world in almost 70 countries.   

6.1.5.1 Interviewee 
Interviewee has been working in software development industry for almost ten years. Mostly 
he spent time as developer with less customer interaction, complete design and 
implementation. After getting experience during his job in company E, he was appointed as 
DM (Development Manager). As a DM he has been involved in communication with testers, 
requirements analyst, and product manager. Currently he is Project Manager in company E.  

6.1.5.2 Defect Types and Their Reasons based on E and A&N 
According to interviewee, the rate of defect depends upon the number of customers. The 
product having greater number of customers have more defect rates. Unclear requirements are 
identified by development manager. Inconsistencies and ambiguities in requirements are 
identified by requirements analyst and testers but they are rare (about 5%). They have seen 
missing requirements after product release. For example when company E launches a 
product, customer observed its features and finds some missing feature then he inform 
requirements analyst that your product is okay but if you will add feature X then it would be 
acceptable for him. This missing requirement is handled as enhancement request. 
Since company E has scrum teams (5 to 8 members in each team) for software development 
and has multiple sprints for each project. Each sprint is consisted of one month or some more 
days. For each sprint they freeze SRS before implementation. So rate of volatile requirements 
is very low. Misunderstanding in requirements (20% to 30%) is identified by testers. This 
misunderstanding in requirements leads the developers to implement wrong requirements. 
  
Some customers don’t like features that company E adds to their products because developers 
think that customer will love this feature. But on the hand customer complains that it was not 
his requirement, he doesn’t like this feature. This defect is called gold plating (due to over 
fleetingness. The interviewee also told that unfortunate Pakistani companies don’t share their 
industrial research and they do research only to solve their own problems. 
 
The development team most works on finds and fix strategy but according to interviewee, the 
overall strategy of organization aims at DP which is achieved through testing. Testers ensure 
that the product is defect free and the defect can not reach customers. This demonstrate that 
the preventive measures happen only on testing phase 
 
According to interviewee, time parameter is more important for them. They prefer to provide 
product to the customers on time even if the product has some known defects. By doing so 
they believe that they gain customer satisfaction and trust because customers might think that 
the organization has at least deliver something and on time. It means time and customer trust 
is more important for the organization.  
 
There is also no training mechanism for the employee regarding RE process. The structure of 
organization promote developers to reach at higher position with respect to responsibility i.e. 
from develop to requirements analyst or designer.  

6.1.5.3 Techniques Reported by Company E 
Company E doesn’t have formal process for requirements analysis and they are not using any 
structural approach. Requirements analysts fallow ad hoc (use their experience and 
knowledge) approach for analysis. For all requirements, product manager maintains product 
backlog that can help them in future. He refines product backlog by getting feedback from 
development manager. Developers are involved in requirements validation process. They get 
SRS and analysis each requirement, if they find that requirement X is not feasible for 



  59

implementation or something is not clear then they send their feedback to requirements 
analyst. If unclear requirements remain persistent then requirements analyst use a method that 
is called POC (Proof of Concept) to clear the requirements. POC is implemented by 
developing a prototype that shows the real meaning and picture of unclear requirements to the 
developer. Requirements analysts are expert in developing prototype for a particular 
requirement. Requirements analyst can also communicate with business unit, if some 
problems regarding requirements need customer involvement. In most of the cases 
development manager has to consult with requirements analyst about problems in SRS 
Business development management team is spread in different parts of the world. They 
survey the market and looks for any business opportunity (what products are going on, who is 
looking for solution for their product) for their organization. After getting an opportunity, 
they try to sell their product if it provide good solution otherwise they enhance their product 
to fulfill customer requirements.  In other words business units is the part of the requirements 
elicitation process business units has direct communication with product manager and 
requirements analysts. They are not familiar with the DPTs that are mentioned in section 5.3. 
 
They don’t have a formal process for DP. They develop a document named problem log. The 
problems that they face throughout product development are logged in the form of a 
document. These problems are considered for the next just avoid them to re occur. This 
problem log is used during testing and automated testing process. Before starting a project 
they specify all areas where they need more concentration. They give importance to a 
customer if he is main figure head. 

6.1.6 Company F 
The Company F is a Swedish based software organization that provides software to improve 
business performance for telecom organization. The organization develops software for 
different telecom operators where they manage and optimize their Business Operation 
Systems (BOS) consisted of Business Support Systems (BSS) and Operations Support 
Systems (OSS). As there is a wide range of voice traffic exchanged between telecom carriers, 
so there is need of support tool for handling the trading and voice traffic among them. The 
organization provides this facility through their tools called Carrier Cockpit Suit, for telecom 
operators. Different telecom operators are the sole customers of organization. The 
organization do not have a dedicated department for managing customers requirements 
instead they have a support department which is responsible for providing services to 
organization existing customers who put problems in existing systems and suggestion for 
improvement in the system.  

6.1.6.1 Interviewee 
The contacted person from Company is the product manager who is responsible for defining 
features for a product release. The interview has many year of experience in his field and 
directly deals with defining requirements, set plans for different product releases. The 
interviewee directly deals with customers who are representative of different telecom 
operators who put different requirements on system. The product manager along with team 
gathers and manages requirements for these customers. This product management team set 
discussion with customers in order to identify their needs. At high level, customers create a 
short abstract definition of what they want. The interview is a technical person and 
responsible for writing use-cases for functional requirements for the system. These use-cases 
are further analyzed by product management team who resolve conflicts among requirements 
prioritize and estimate them. The organization uses its own template for specifying 
requirements which is based on UML notation. The interviewee is also responsible for 
validation requirements along with expert consultant. The varying responsibilities of product 
manager were helpful for data collection and through his experience it was beneficial for us 
to find relevant and related information about research questions. 



  60

6.1.6.2 Defect Types and Their Reasons based on E and A&N 
During requirements analysis sometimes they find use cases really not understandable, 
inconsistent and ambiguous. They believe that requirements don’t have frequent changes and 
SRS remains stable and they don’t have volatility factor so serious because they freeze SRS 
before implementation of requirements. During testing phase they mostly identify defects that 
are related to missing requirements (time plan for requirements validation, late involvement 
of tester in test specification are reasons), and defect related to implementation. After putting 
their product into operation, customers also report some defects that are related to 
requirements. Sometimes they have to face missing non functional requirements defect. For 
example interface that they develop don’t satisfy the customer. In response they have to do 
rework and sometime they do major rework to satisfy the customer. If inexperience people 
have developed a product then customer complains major defects (ambiguous requirements, 
wrong requirements) that cause tremendous rework but it happens in rare case. Summary of 
most common requirements defect types reported by industrial study is given in table 6 (see 
section 7.1). Definition of major and minor requirements defect is given in RQ 1.3 in section 
7.1. 

6.1.6.3 Techniques Reported by Company F 
Company F don’t have dedicated department for the RE process. A dedicated support team is 
available which directly deals with customers. The responsibility of this department is to 
deals with customer complaints about the products or improvements in the products. After 
getting requirements they write short description of all requirements. At product management 
level they have some expert consultants where they look, defined and describe how they do 
realize actual requirements. Here they estimate the requirements and after that they 
communicate back to the customer where they look for their solution. They don’t use any 
formal language to write SRS but only use cases and plain English and try to make it very 
simple. They avoid complex English word and phrase. They draw uses cases to model the 
functional requirements from short description of requirements and these uses cases are 
reviewed by product management team, developers and expert consultants. They use pear 
reviews and in some case for more complex requirements they use prototyping technique. 
Some time there are lots of inconsistencies in use cases and they go back to customers for 
negotiation. 
 
They believe that for complex RN process is very time consuming and that’s why  have to 
use prototyping technique to make the customer understand a requirement. To avoid 
inconsistency, ambiguity and misunderstanding in uses case they try to make use cases as 
simple as possible. During requirements validation they make real life scenarios and test 
cases from SRS and customer is involved only when he request change. They validate final 
SRS in a formal meeting that is attended by project manager, product manager, developers 
and testers. They do have open discussion in this meeting where everyone is freely allowed to 
share his views. They are not familiar with DPTs that are mentioned in section 5.3. 
 
As a DP measure they document all defects with scale of major and minor defects. The major 
defects are avoided in early stages from reoccurring. This process of DP is handled by QA 
department and interviewee doesn’t know about this process. They use a tool named Acura by 
which they keep track of releases, software cycle, and software release changes. 



  61

7 DATA ANALYSIS 
 
Authors have conducted both empirical and literature research to support the aim of the 
thesis. Throughout this research authors have used qualitative research methodologies like 
literature reviews and industry interviews. Each RQ was achieved by an appropriate research 
methodology. The detail of appropriate research methodology for each research questions and 
corresponding objective and expected outcome achievement is described in table 1.  
 
The results of empirical and literature research is shown in chapters 5 and 6 in detail. On the 
bases of results authors have proposed some solutions that ultimately answer one of the given 
RQs. In this chapter authors have conducted an analysis of the study findings. This will helps 
authors to determine that to what extent these findings are helpful in meeting all RQs (that 
will be done by mapping RQs with study results), and will discuss some interesting issues 
based on data that has been collected from literature and industry. 

7.1 RQ1 & Data Analysis 
RQ1 has been divided into three sub questions (RQ1.1, RQ1.2, and RQ1.3). The answer of 
RQ1 will be achieved by explicitly answering subsequent sub questions. RQ1 is given below  
 
RQ1: What are requirements level defect types and reasons for defects related to E and A&N 
phases that can cause major rework in later stages of SDLC?  
 

RQ1.1 - What are the most common defects types reported by research based on E and 
A&N? 

 
To identify most common requirements defect types reported by literature research, a 
thorough literature review (see section 5.1) has been conducted that kept focus on industrial 
case studies and industrial experiments so that authors can find a realistic results about 
requirements level defects that originate from E and A&N phases of the RE process. The 
summary of literature review is given in table 4 that shows mostly occurring requirement 
defects, their description and number of references from literature (industrial experiments, 
case studies).  
 
Authors have found lots of defects types that are associated with software requirements and 
they have put all these defect types in a single category called requirements defect types as 
shown in column two of table 4. Each defect type has been reported by multiple sources (i.e. 
case studies, industrial experiments). 
 



  62

Table 4: Most common requirements defect types based on research from 
literature 

 
S.No.  Requirements 

Defect Types 
Defect Types Description Ref.   

1.  Ambiguity It is interpretation of requirements in more than one way thus creating 
different understanding of a requirement. So ambiguity leads to 
confusion and extra rework during software development process. For 
example if requirements validation process was not performed well 
then ambiguous requirements will be put in design and implementation 
phase. The tester could have another interpretation of that requirement 
and he will confuse about what he should test. So the cost and effort 
spent during design and implementation phase would be wasted if 
customer had different interpretation of that ambiguous requirement. 

[25, 4, 31, 
20, 35] 

2. Inconsistencies  Inconsistency means contradiction in requirements [20] or 
requirements conflicts with one another. For example a user wants 
access to a particular portion of database but database administrator 
does not grand this access due to security policies. So a conflict arises 
between these two requirements of different users.  

[24, 26, 20, 
35] 

3. Omissions Omission means something that was left out or requirements that was 
not written down. For example if an ATM machine does not handle 
multiple cards simultaneously, it means this functionality was omitted 
(was not written or was skipped).   

[24, 2, 25, 
4, 26, 30, 
20] 

4. Unwanted/ 
unnecessary  

This type of defects includes some functionality or features that 
customer does not want but the developers add it just to make the 
customer happy. Developer thinks that customer will love it. In other 
words the developers perform Gold Plating. For example if customer 
did not mention the he want a highly graphical interface but the 
developer adds it just make the customer happy. 

[2, 4, 34] 

5. Volatility   Volatility is the tendency of requirements change over time. If RE 
process will continue even during implementation, then requirements 
will becomes more volatile. In other words the chance of considering a 
requirement for current release becomes minimal in later stages of 
development cycle. If this volatile requirement is made part of current 
release then it might take more cost and time.  

[38, 39, 31, 
 34] 

6. Clarity  Requirements description may not make clear that what is required 
actually 

[26, 30] 

7. Incorrect fact A requirement fact that cannot be true in particular condition of the 
system, wrong behavior), 

[22] 

8. Missing 
 Requirements 

Missing functionality/feature, Missing interface, Missing performance, 
or Missing environment)  

[24, 25, 4,  
26, 30, 31,  
20, 34, 35] 

9. Extraneous 
 Information 

Unnecessary or unused information 
 

[22] 

10. Others Problems or defects that cannot be put into rest of defect types that are 
mentioned above  
 

[25, 26 ] 

11. Unstable 
requirements 

Software requirements become unstable when changes in SRS occur 
frequently.  

[37] 

 
In table 4 the authors have listed requirements defect types (with their description) reported 
by the literature study and this table has been extracted from the most relevant research 
articles that were 17 in numbers. If we consider these 17 articles as sample from academia 



  63

then we can figure out the most common requirements defect types reported by literature. 
Table 4 shows that missing requirements defect has been reported by 9 articles, omission by 7 
articles, ambiguity by 5 articles, inconsistency & volatility by 4 articles, 
unwanted/unnecessary & clarity by 3 articles, and incorrect fact & unstable requirements by 1 
article. On the bases of preceding calculations we can say that missing requirement, 
omissions, and ambiguous requirements are the most commonly occurring defect types.  
Inconsistency, volatility, unwanted, and clarity are relative less commonly occurring defect 
types. The following paragraph contains some references from literature study that are in the 
favor of continuing paragraph.  
 
It has been noted that information obtained from some articles like [24, 25] clearly mention 
the most important defect types that hold major contribution among all types of defect types 
at RE level. According to [24 ] about 83 percent of defects are due to incompleteness, 
missing, omitted, and incorrect requirements defect types and in [25] it has been reported that 
omitted defect type hold about 56 percent of requirements defects and , 17 percent defect are 
due to ambiguous requirements. An experimental study in [20] has also put missing 
information and wrong information on top priority. In [31] a case study was conducted where 
they found that major requirements defect types are missing requirements, ambiguous 
requirements, and volatile requirements. In another case study it was proved that most of the 
defects  were  due  to  missing,  incomplete,  tacit,  assumed,  and  volatile  requirements in 
the implementation phase [34]. 
 
From above discussion in last two paragraphs, it has proved that requirements defects like 
missing, omissions, ambiguous, and volatile requirements are the most common requirements 
defect types reported by literature. 
 
The most common defect types based on research from literature is described in detail in 
section 5.1. The study results are based on research from different case studies carried out to 
find the requirements level defects. The defects found out in literature research are 
summarized in table 4. Based on literature study results in section 5.1 it is found that; 

1) Not all defects are originated from a single phase of RE 
2) Defects originated in one phase are detected in later phase i.e. during analysis and 

validation process.  
3) Not all defects hold the same level of importance i.e. some defect types are more 

critical while others are less serious 
Requirements level defects are originated and treated at different level of RE. They fall into 
different categories based on the phase where they are initiated and detected 
 
1) Elicitation related defects - Elicitation related defects originated as a result of problems in; 

• Communication between customer and requirements analyst,  
• Technique (s) used for elicitation  
• Domain knowledge  
• Users/customers involvement  
• Requirements analyst experience 

Typically defect types at this level includes  
• Unnecessary or unwanted requirements – these requirements are added by the 

requirements analyst which resulted to gold plating 
• Tacit requirements – requirements that are in the mind of analyst, although these 

requirements are elicited but they are in the mind of analyst 
•  Lack in this phase leads to volatility in requirements. If the elicitation process in not 

properly performed, the system may ends up with wrong and unexpected results.  
• Missing information – Requirement that are not elicited  

2) A & N related defects are 
• Inconsistency  



  64

• Incompleteness  
• Feasibility  

3) Specification related defects  
• Ambiguities 
• Typographical error 
• Input/output mismatching 
• Missing and incorrect data 
• Poorly written requirements  
• Minimal requirements  

4) Validation related defects  
• Missing information 
• Incompleteness 

 
There are some risks that are associated with the RE process (see section 5.1 and table 5). 
These risks can play awful role in the origination of defects associated with the requirements. 
So measures should be taken to avoid these risks. Authors have given more detail of these 
risks and their consequences in table 5 given below. 
 

Table 5: Risks related to RE process leading to requirements defects 
 

Risk  
 

Description Defects Consequences 

Insufficient 
user 
involvements 

Minimal users involvement in 
elicitation and negotiation phase 
lead to missing, or incomplete 
information   

Missing information 
Incomplete requirements 
 

Lack of user involvement leads to 
lack in requirements. The 
consequences of this could be 
unrealistic system.  

Gold plating Adding an attractive feature just 
to make the customer happy 

Unnecessary requirements, 
unwanted requirements 

Wastage of resources in term of 
time and human 

Creeping users 
requirements 

Too many change requests by 
users in requirements  

Requirements volatility 
Unstable requirements  

Too many change request make 
the requirements unstable enough 
to increase project time 

Ambiguous 
requirements 

Confusing and unclear 
requirements many lead to 
different interpretation of 
requirements which is difficult 
to implement and test  

Unclear requirements 
Confusing requirements  
Requirements misinterpreted 
differently 

Implementation is different than 
specified in specification or the 
requirements described in 
specification in a different way 
that produce different meanings 
from actual context of the  
requirements  

Overlooked 
user classes 

There different classes of users 
that use different subsets of 
features; have different 
frequencies of use, or different 
experience levels. They should 
not be overlooked by 
requirements analysts  

Missing and incomplete 
information, inconsistencies  

It may leads to dissatisfaction of 
some users of the product 

Incorrect 
planning 

Inaccurate estimations are done 
like cost estimation.  

Infeasible requirements 
Compliance  

Poor cost estimation leads to 
frequent requirements changes, 
missing requirements, insufficient 
communication with users, poor 
specification of requirements and 
insufficient requirements 
analysis.  

 



  65

 
RQ1.2 - What are the most common defect types and reasons for defects originating from E 
and A&N phases as reported from Swedish and Pakistani software companies respectively? 

 
 
Second and third parts of RQ1 is related to empirical study that was done by conducting 
industrial interviews in both Pakistani and Swedish software companies (see section 6). The 
detailed description of defect types and their reasons is given in appendix E that will help the 
readers to clearly understand them.  
 
On the bases of empirical study results, the RQ1.2 requires aggregation of some interesting 
data categories like requirements defect types, their reasons, and name of companies (from 
Pakistan and Sweden) that report requirements defect types and their reasons. The authors 
have collected preceding data from three Swedish and three Pakistani software development 
companies during interviews. During interviews the authors wanted to explore two more data 
categories like rate of defect occurrence and their severity level because these factors will 
help in explaining the importance of requirements defect with respect to rework in later stages 
of SDLC. This aggregation of important points is given in table 6 given below. The purpose 
of this table is to explain the summary of industrial research that particularly covers RQ1.2.  
  

Table 6: Most common requirements defect types based on research from 
industry 

Pakistani Companies = B, C, E   
Swedish Companies = A, D, F 

 
Serial 
No. 

Defect Type Defect Reasons Rate of 
Occurrence 

Severity  
Level  

Reported 
Company 

1. Missing Limited time allocated to RE process, 
 lack of domain knowledge, 
communication gap between customers 
and developers, poor requirements 
analysis, time plan for requirements 
validation, late involvement of testers 
in test case specification process 

High 
Low (A) 

Major  
Minor (A) 

A, B, C, D 
, E, F 

2. Unclear  Requirements are not initially clear, 
lack of investor involvement, complex 
nature of requirements feature, wrong 
interpretation 

High Minor  
Major (D) 

A, B, C, D,  
E 

3. Missing  
Feature 

Tacit or unwritten requirements  Medium Major B  

4. Inconsistency Disagreement among customers, 
conflicting requirements, bad 
requirements writing ability, lack user 
involvement 

High 
Medium (C) 
Low (E) 

Minor  B, E, C, D, F 

5. Extraneous 
Information   

 Unnecessary customer’s needs  Medium Minor  C 

6. Ambiguity  Poorly written SRS, complex feature, 
wrong interpretation or misunderstood 
requirements 

Low (E, F) Major  C, D, E, F 

7. Volatility Changing work environment, 
organizational complexity and 
conflicting requirements   

High (C) 
Low (A, B, 
 E, F, D) 

Major  A, B, E,  
F, D, C,  



  66

8. Unstable 
Requirements  

Frequent change requests  Low  Major   C 

9. Omission Tacit or unwritten requirements  Medium  Major  B, A, C 
10. Misunderstood  

Requirements  
Misunderstanding in requirements, 
Remote location communication, 
Culture, political environment,  
Involvement of inexperience people  

Medium  
Low (F) 

Major  E, F 

11. Unwanted/ 
Unnecessary 

Gold plating, over fleetingness Medium Major  E 

12. Missing quality 
attributes  

time plan for requirements validation, 
 late involvement of testers in test  
case specification process 

Medium  Major  F 

 
During literature study authors found some interesting points regarding RQ1 (i.e. volatility 
and instability in requirements) that seem to be neglected by literature (reported by only 4 
articles out of 17, see table 4). Unstable requirements are associated with the frequency of 
change occurrence in SRS and volatility depends on time when a change occurs. For example 
if a change occurs in RE or design phases of SDLC then requirements are less volatile and on 
the other hand requirements become more volatile as the changes occur during 
implementation, testing and maintenance phases of SLDC. It means volatility of requirements 
is directly proportional to time of development process. 
 
Volatile requirements are sometimes called the cost drivers because they demands extra cost 
and effort. They also affect the defect density in code phase, quality of code, quality of 
project management and quality of developer’s capability. An unstable SRS is very easy to 
handle in early stages of SRS but as the time passes it becomes very difficult to manage it 
because the factor of volatility becomes active in later stages of SDLC and this situation can 
cause tremendous rework.  
 
RQ1.3 - Find possible rework caused by each defect?  

 
Sub question RQ1.3 deals with the severity of industry reported defects in term of their major 
or minor rework. This information is also described in table 6 against each defect types under 
column “Severity Level”. This sub question describes the rework caused by each defect if it 
would be identified and fixed in later stages of SDLC (implementation, testing, and 
maintenance). In order to find the possible rework caused by each defect types, the authors 
have provided a definition of major and minor defect based on rework they caused. This 
definition was presented to the interviewees during interviews to find the answer of this sub 
question. The definition of major and minor is given below.  

• Major defect is one which can cause a major rework when it would be identified and 
fixed during implementation or after product release.  

• Minor defect is one which has no significant rework when it would be identified and 
fixed during implementation or after product release.  
 

Table 6 shows that ambiguity, omissions, missing requirements (missing feature, missing 
quality attributes), unnecessary/unwanted requirements, volatile requirements, unstable 
requirements, misunderstood requirements, are reported major defect types by interviewees. 
On the other hand inconsistency, extraneous information, and unclearness have been reported 
minor defect types by most of the companies (both form Pakistan and Sweden, see figure 12). 
 
Since the aim of this thesis is to reduce the rework in later stages of SDLC that is caused by  
defects originating from E and A&N phases; so our focus has been only major requirements 
level defects because prevention of these major defects will ensure reduction in rework in 
later stages of SDLC. 



  67

7.1.1 Summary of Most Common Defects Types and Their 
Causes that Originate from E and A&N Phases in 
BESRE 
 

Based on findings from above sub questions, the complete answer of RQ1 can be found by 
combining table 4 and 6 in a separate table. The results from both empirical and literature 
studies are summarized in table 8 that is given below. Table 8 answers the questions like what 
are most common defects types and their reasons that originate from E and A&N phase, how 
much they are severe (major or minor) with respect to rework, and what is their rate of 
occurrence. It also explains that which company is reporting defect types, and what is 
severity level of a defect with respect to that company?  
 
Authors have observed during interview that most of the companies freeze SRS before 
starting the implementation process. If they have new change request during implementation 
or after implementation then they put it in next release. However if the customer insists the 
project manager to add current new requirements in developing project then it might need 
marvelous amount of rework in the form of changes in software architecture, design and 
implementation overhead. Authors think that it is not a good practice for project based 
companies to put volatile requirements in next release because customers are not always in 
tradeoff position. So there is need to overcome the factors that cause volatile requirements 
like changing working environment, organizational complexity, and conflicting requirements.  
 
According to IEEE a good SRS has some attributes like unambiguous, complete, verifiable, 
consistent, modifiable, and traceable [77]. Authors have noticed that defects that cause major 
rework in later stages, were not related to preceding attributes of an SRS but it were related to 
omissions, missing requirements, unclear requirements and so on.  
 
Poor requirements are also a big source of project failures and partially succeeded in the form 
of partial functionalities, major cost overruns, and significant delays. An empirical study was 
conducted based on large survey where authors found that major reasons of poor 
requirements are the lack of user involvement (13%), requirements incompleteness (12%), 
changing requirements (11%), unrealistic customer’s expectations (6%), and unclear 
objectives (5%). So changing requirements has overwhelming percentage (11%) of project 
significant delay, incomplete functionalities, and major cost overturns [30]. Now we will see 
what defect types (described in table 6) have reasons similar to preceding defect reasons. 
Table 7 is extracted from table 6 and from discussion above. It shows that defect types like 
extraneous information, unstable requirements, and missing requirements have significant 
impact on project failure or success because these defect types can lead to delayed, 
incomplete and a more costly project.  
 
Table 7: Requirements defect types and their reasons that affect project plan 

 
Serial No. Defect Types Defect Reasons 
1. Extraneous Information Customer’s expectation 
2. Unstable Requirements Changing requirements 
3. Missing Requirements Requirements incompleteness, lack of user 

involvement 
 



  68

Table 8: Most common requirements defect types based on research from 
literature and industry 

Pakistani Companies = B, C, E   
Swedish Companies = A, D, F  
 

Serial 
No. 

Defect Type  Defect Reasons Occurrence 
Rate w.r.t 
Companies 

Severity 
 Level  

Reference 

1.  Ambiguity  Poorly written SRS, complexity  
Of  features, misunderstandings or 
wrong interpretation  

Low (E, F) Major 
(C,D,E, F) 

[25, 4, 31, 
20, 35] 

2.  Inconsistency  Disagreement among customers, 
conflicting requirements, bad  
requirements writing ability 

High (B,D,F) 
Medium (C) 
Low (E) 

Minor (B, 
 C, D, E, F) 

[24,26, 20, 
35] 

3.  Omission  Tacit or unwritten requirements, skipped 
requirements  
 

Medium (B, 
 A, C) 

Major (B, 
 A, C) 

[24, 2, 25, 
4, 26, 30, 
20] 

4.  Missing Limited time allocated to The re 
process,  lack of domain knowledge,  
communication gap between customers 
and developers, poor requirements 
analysis, , lack user involvement, time 
plan for requirements validation, late 
involvement of testers in test case 
specification process 

High (B, C, 
D, 
E, F) 
Low (A) 

Major (B, 
 C, D, E, F) 
Minor (A) 

[24, 25, 4,  
26, 30, 31,  
20,34, 35] 

5.  Unnecessary/Unwanted  Gold plating, over fleetingness Medium (E) Major (E) [2, 4, 34] 
6.  Volatility  Changing work environment, 

organizational complexity and 
conflicting requirements   
 

High (C) 
Low (A, B, 
 E, F, D) 

Major [38]  [38, 39, 
31, 
 34] 

7.  Unclearness   Requirements are not initially clear, lack 
of investor involvement, limited time 
allocated for RE and for validation 
purposes complex nature of 
requirements feature, wrong 
interpretation  

High  Major (D) 
Minor (A,  
B, C, E) 

[26, 30] 

8.  Extraneous 
Information  

 Unnecessary customer’s expectations  Low (C) Minor (C) [22] 

9.  Missing feature  Tacit or unwritten  requirements Medium (B) Major (B) [20] 
10.  Unstable Requirements Frequent change requests  Major [37] [37] 
11.  Misunderstood 

Requirements 
Misunderstanding in requirements, 
Remote location communication, 
Culture, political environment, 
Involvement of inexperience people 

Medium (E) 
Low (F) 

Major (E, 
F) 

 

12.  Missing quality 
attributes 

Time plan for requirements validation, 
late involvement of testers in test case 
specification process 

Medium (F) Major (F) [20] 

 
Table 8 shows some defects types that have high rate of occurrence like inconsistency, 
missing, omissions, incorrectness, and unclearness. The preceding defect types (accept 
inconsistency) are also major defects with respect to cost and effort required when they 
would be found and fixed in latter stages of SDLC. Here we can raise a question that how 
much percentage (of total requirements defects found) these major defect types hold? It is 



  69

also clear from [24] to find answer of this question where author have conducted an 
experiment to find requirements defects which includes incompleteness (20.9%), 
omitted/missing (23.9%), and incorrect (23.9%) accounted for almost 80% of requirements 
defects 

7.2 RQ2 & Data Analysis 
 

RQ2 - Are there any differences between Pakistani and Swedish companies in term of types 
and rate of defects originating from E and A&N phases? 

 
This RQ is based on empirical study described in sections 6 and it is found that there is a very 
slight difference between defect types and rates of defects between Pakistani and Swedish 
companies. The defects and their rates vary and depend upon the RE process they follow, 
techniques and methods used during RE process, domain, company size, and time and 
resources (people) allocated to the RE process. To know the difference between these two 
countries in term of defects and rate of defects, authors have examined them individually 
(within countries) and results are compared with each other (across countries i.e. Pakistani vs. 
Swedish companies) to find interesting concerns (similarities and dissimilarities).  

7.2.1 Comparison between Pakistani Companies (B, C, E)  
Defect types reported by Pakistani companies are more in number as compared to Swedish 
companies. Requirements are unclear (company B and E) most of the time because of lack of 
investor involvement, limited time allocated to RE and other political factors involved within 
the organizations. They reported missing features and missing functionality and they are 
mostly reported by customers (company B). According to Pakistani companies this defect 
types of missing requirements are hard to fix if they are related to functional requirements of 
the system. Defects are mostly reported by customers and according to interviewee sometime 
they are greater than 60% (company B). They also reported omissions, extraneous 
information, inconsistencies, conflicts (rare), misunderstanding (20 to 30 % reported by 
company E) and ambiguous requirements (5% to 30% reported by company E). Like Swedish 
companies, they also have low volatility rates, although requirements do change during 
implementation but they are very rare.  
 
The above mentioned defects vary among organizations. They also focus on identifying 
defects at requirements level and during testing phase. According to some organization, more 
than 74% (company B, this percentage is about defect finding only in RE phase) defects are 
identified and fixed during RE process. Defects reported during testing are estimated to 60% 
to 70% (B & C) and rest of the defects is reported by customers after release which is more 
than 60 % (company B) 
 
The authors have created a table that contains discussion of some interesting data categories. 
This information is given in table 9 given below. 
 



  70

Table 9: Comparison of Pakistani and Swedish companies with respect to defect 
reporting, RE process, SRS standards, and DP approaches 

 
 

Company 
 
Mostly Defects are 
Reported By  

 
Requirements 
Engineering Process 

 
Usage of 
IEEE 

Standard 
for SRS 

 
Defect Prevention OR 
Defect Find & Fix 
Approach 

Pakistani Companies 

Company B  Most of the defects were 
reported by end-use in the 
form of missing features 
(about 60 percent of all 
defects) 

They give limited time 
to RE process, have 
dedicated RE 
department, but do not  
have  proper training  

No They believe in DP  
strategies and approaches 

Company C Mostly by software 
testers that is around 80 

percent 

 No training for RE 
process 

 

Yes  They believe in DP but 
seems that they have more 
focus in finding and 
fixing in testing phase 

Company E Software testers and 
sometimes by customers 

(due to gold plating) but it 
is rare. 

 No training for RE 
process , informal RE 
process 

No  They believe in finding 
and fixing of defects at 
testing phase 

Swedish Companies 
 

Company A Testers during  
implementation 

Informal training for RE 
process , no dedicated 
RE department 

     No DP approach  

Company D Most of times software 
testers find defects related 
to requirements and 
implementation  

Dedicated RE 
department, but no 
explicit training for RE 
process and depends 
upon employees 
experience 

     Yes  They believe in DP 
approach  

Company F Software testers and 
sometimes by customer 
but it is rare. 

No dedicated 
department for RE 
process but a dedicated 
team is responsible for 
support customers about 
improvement in product 
and handles customer 
complaints  
 

     No  They believe in 
prevention of defect in 
early stages by using a 
software tool   

 
This table shows that  
1) Company B and C believe in DP but unfortunately they don’t have any proper DP 

technique or method that the authors have mentioned in table 10. The reason behind it is 
the unfamiliarity of companies with DPT and DP methods.  On the other hand company E 
pays its attention on finding and fixing defects at software testing phase.  They spend the 
major part of their effort and resources on testing phase to find all kinds of defects. It is 
also reported by literature that most of the organizations believe in finding and fixing 
defects in later stages of SDLC [1]. When authors asked interviewee that why not 
requirements analyst spend more time on requirements analysis to find defects then 
interviewee replied that our requirements analysts are very busy persons and they spend 



  71

their precious time on other activities. He further added that the software testing 
department is responsible for finding all kinds of defects. 

2) In company C & E most of the defects are reported by the software tester. It means they 
don’t spend more time and effort on requirements analysis process, and they don’t use 
any formal DPT.  One more reason for it is that they are depending only on developer’s 
personal experience and knowledge. On the other hand interviewee from company B told 
the authors that around 60 percent of defects are reported by customers in the form of 
missing features. It shows that company B doesn’t have good enough software testing 
process and we know that finding and fixing software problems after product release is 
100 times more expensive than finding and fixing during RE practices or during design 
phase [19, 42]. Further  If  requirements defects would mistakenly allowed reaching the 
customer or tester then these defects would be very  costly  to  fix  in  the  form  of  
tremendous  rework  [4] So company B would have to spend more time and effort for 
each defect correction. One more reason for it is that company B spend very limited time 
for RE process during software development process. 

3) It is noted that not a single Pakistani company arrange training for their RE process (give 
a ref here to reason preceding paragraph). In company E the senior developers are eligible 
for requirements analyst post and in this way they don’t have need to hire special 
software engineering. 

4) SRS is very important RE work product because it defines the needs and boundaries of 
the software product. It also acts as an agreement between customers and developers. It 
plays pivotal  role  in  the  success  or  failure  of  the  developing  product  [19]. 
According to IEEE a good SRS has some attributes like unambiguous, complete, 
verifiable, consistent, modifiable, and traceable [77]. It is noted that only Company C 
uses IEEE standard for SRS creation but company B and E don’t use it. It means 
company C can create a quality SRS than companies B and E. 

7.2.2 Comparison between Swedish Companies (A, D, F)  
The comparison of Swedish companies based on table 9 shows that  

1) All three companies believe in DP in early stages but don’t follow any formal DPT or 
DP method as describe in table 10. It has same reason like Pakistani companies that is 
unfamiliarity of companies with DPT and DP methods. 

2) In companies A,D, and F the software testers reports major part of all types of 
defects. During requirements analysis they correct some defects found in 
requirements but their focus remains at software testing phase to find and fix all kinds 
of defects. It means they don’t spend more time and effort on requirements analysis 
process, and they don’t use any formal DPT. One more reason could be that company 
A & F don’t have a dedicated RE department but company B and D have a well 
established RE department consisting of well experienced requirements analysts.   

3) Only company D was using IEEE standard for SRS development and other two 
companies has their own standard. So attributes of quality SRS like unambiguous, 
complete, verifiable, consistent, modifiable, and traceable cannot be met without 
using IEEE standard for SRS development as described in [77]. 

Company D and F face less defect types in development and low defect rates after releasing 
their products. The organization (D) uses extensive testing in order to deal with defects before 
release. All of these Swedish companies are not aware of DP techniques rather they are using 
defect identification technique during informal requirements inspection with ad hoc 
(company A) and checklist based (company D) reading techniques.  
 
Mostly reported defect types from Swedish companies are missing, inconsistency, unclear 
and ambiguous requirements (company A, D, and F). The reasons for these defects are the 
less involvement of design team with the marketing department and less interaction with the 
customers (see section 6.1.1, 6.1.4, and 6.1.6). The major issue in this regard is the 
communication issue and less customer involvement. However besides these defects they 



  72

have also reported missing non-functional requirements, inconsistent and conflicting 
requirements. Changes are very rare in these companies and their rate is very low. They are 
managed at requirements level and there is very little chance of volatility in later stages 
because they freeze SRS before implementation and any major changes in requirements are 
put in to next release.  
 
As described before that these companies believe on reactive strategy of finding and fixing 
defects. So they mostly uncover defects during testing phase before release (Company D, F 
and A). It is also observed that the rate of defects found after release is very low for the 
organization which has a dedicated RE department (company D). 
 
The customers report defects are classified based on organization self defined criteria 
(company D and F) which describes the severity and criticality of those defects. These defects 
are prioritized based on classification schema (i.e. most critical, critical, broken functionality 
etc.) that described which defect is most important and should be considered and solved first. 
Out of three Swedish companies it is found that they are not familiar with DPT’s (company 
A, D, and F. 

7.2.3 Comparison between Swedish and Pakistani 
Companies 

There are some more interesting points noticed by the authors during data analysis that have 
been discussed below, 

7.2.3.1 Use of Defect Taxonomies  
It is noticed that out of six companies not a single company is using defect taxonomy 
mentioned in section 5.2. They are not widely using the structured defect taxonomies like 
Boris Beizer and ODC. Some organizations have their own defect taxonomy (like company 
E) as defect preventive measures .on the other hand the authors could not find even a single 
defect taxonomy that focuses only on requirements defects. For example Boris Beizer defect 
taxonomy classifies defects of requirements, design and implementation level. It is very 
important to pay more attention on requirements defect taxonomy because it any measure that 
will be taken to stop requirements level defect from penetrating into later stages will save 
effort and time. We know that if requirements defects would mistakenly allowed reaching the 
customer or tester then these defects would be very  costly  to  fix  in  the  form  of  
tremendous  rework  [4]. 

7.2.3.2 Root Cause Analysis  
One very important practice that has been neglected by most of companies (both Pakistani 
and Swedish) is root cause analysis. During the interviews authors have found that companies 
don’t want to spend time in formal root because analysis of defects found during 
requirements analysis and software testing processes. They keep focus on identification and 
fixing the defects or faults. Root cause analysis is very important because it inform the 
software development team that what is the category of cause of error (like communication, 
oversight), how and at what stage error was introduced, and how can we prevent this error in 
future. In similar type of projects the root cause analysis can play a vital role in removing 
major defect types that cause major rework in later stages of SDLC. [1] It is very similar with 
real life example that if a patient suffering from fever comes to physician who recommends 
him to take medicine that cure his fever only. If physician would not try to diagnose root 
cause of the fever (it might be chest inflammation, infection in small intestine, or infection in 
tonsils) then patient would suffer from the fever again.  



  73

7.2.3.3 RE Risk Consideration 
According to [4] there are seven requirements level risks that can have bad affect on 
requirements if they would happen. These risks are explained in section 5.1 and table 5. Most 
of the risks are related to elicitation phase of RE that directly related to customer or users. 
During industrial interviews the authors have noticed that most of companies are not taking 
care of these risks and merely depending on their experience and knowledge (this practice is 
high in Pakistan than Sweden). They pay attention to a customer if he is the main financing 
figure head and their developers sometimes do gold plating (company E). Most of companies 
have revised that they believe in catching defects as early as possible but they don’t have any 
formal method or DPT that you can see in table 10. Some interviewees (from company A and 
C) showed their will to improve RE process but some were satisfied with their RE process 
such as from company E, and B. Here we can say that if companies get satisfied with their 
informal RE process and carry on finding and fixing requirements defects in later stages of 
SDLC then it could be one of the reasons to get 50 to 70 percent defects form requirements 
and to spend 40 to 50 percent of the whole budget on avoidable rework as mentioned in [2, 3, 
4, 51]. 

7.2.3.4 Awareness of DPTs and DP Methods  
 Authors have also noticed that companies (both Pakistani and Swedish) even don’t know 
about the names of DPTs and methods that can be found in literature. In the light of 
preceding discussion it is recommended that companies should keep in touch with current 
research so that they can find solution of their problems that cause tremendous rework down 
the software development road.  

7.2.3.5 Acquisition of Academic Research  
One of our interviewee (company E) told us that Pakistani companies don’t share their 
industrial research in open market. They use their research for their own benefits but authors 
think that sharing of mutual problems and their solutions among Pakistani companies can 
solve industrial problems more rapidly. It is noted that companies those deal with similar 
types of projects have less rate of requirements level defects (company E) and they spend less 
effort and time in later rework. 

7.2.3.6 Training for RE Process  
During interview the authors found that Pakistani companies don’t hire trained, well educated 
and specialist requirements engineers. They appoint a product manager who is most senior 
developer or tester (see Company B & E). Even they don’t have special training for new 
requirements engineers. On the other hand some Swedish companies have training for new 
requirements engineers like company A (informal training). Company D is even hiring 
requirements engineers who are specialist in RE with related educational background. 

7.2.3.7 Number of Developers for Each Project or Release 
It was noted during interviews that companies were appointing not more than 15 to 18 people 
for single release or project. For example in company A there were three scrum teams having 
maximum 5 people in each team, and in company E there were also three teams having 5 to 8 
people in each team. We also know that each inspection team requires 3 to 5 people.  

7.2.3.8 Defect Types Comparisons  
Table 6 shows that defect types having high severity and high rate of occurrence is only 
missing requirement and it is reported by all six companies from Pakistan and Sweden. Some 
major defect types have medium rate of occurrence like omissions, misunderstood 
requirements, unwanted/unnecessary, and missing quality attributes. On the other hand some 
defect types have low rate of occurrence but severity level is high such as ambiguity, and 



  74

volatile requirements. The defect types having high rate of occurrence and minor severity 
level are inconsistency, and misunderstood requirements, extraneous information has low rate 
of occurrence and minor severity level, and unclearness has high rate of occurrence but minor 
severity level with respect to rework in later stages of SDLC. All preceding severity levels 
and rate of defect occurrence were reported by both Pakistani and Swedish companies as 
shown in table (combined). The summary of continuing paragraph has been explained in 
figure 12 that is given below. 
 
It is clear from figure 12 that missing quality attributes unwanted/unnecessary requirements, 
misunderstood requirements, omissions; missing functional requirements are the most 
common and major defect types. It means that more effort and time should be spent on these 
defect types to minimize avoidable rework that is done when preceding defect types are 
identified and fixed down the development road. On the other hand volatile requirements, and 
ambiguous requirements defect types are major but happening rate is low. We can also pay 
attention to volatility and ambiguous requirements because they also major and can cause 
tremendous rework in later stages of SDLC in the form of more time and effort. 
 
It has been proved from discussion (see below table 5) that missing, omissions, ambiguous, 
and volatile requirements are the most common requirements defect types reported by 
literature. The comparison of red circled requirements level defect types (see figure 12) with 
defect types reported by literature, proves that the Union (mathematical binary operator) of 
both provides the same list of major defect types that has been circled with red color in figure 
below. So we can say that figure 12 shows the most common and major requirements level 
defect types reported by industry and academia. 
 

 
Figure 12: Common and major requirements level defects types reported by 

industry and academia 
 

Table 6 contains four important defect parameters such as defect types, defect reasons, rate of 
occurrence, and severity level. High defect occurrence rate means high priority to prevent it 
from occurring again. However it does not mean that every defect that happens frequently 
causes major rework. For example inconsistency in requirements has been reported with high 
rate of occurrence but it is minor with respect to rework if it occurs in later stages of SDLC 
(see table 6). This study mainly depends on severity level and partially depends on rate of 
defect occurrence. To fulfill the purpose of this study all major defects having high rate of 
occurrence have been put on top priority and is recommended to spend more time and effort 
to prevent them from reoccurring. There are lots of defect types that have been identified so 
for (see table 6) but all are not major (see definition of major and minor defects in above 



  75

paragraphs). So instead of spending time on all defects types in the RE process we can spend 
time and effort on only major defects that cause major rework in later stages in the form of 
extra time, cost and effort. 
 
One thing should be noted that the authors decide, any major or minor defect type by 
considering number of companies reporting that defect type. It means that the authors 
democratically decide major or minor defect types and severity levels (low, medium, high). 
For example the severity level of defect type inconsistency is reported high by companies B, 
D, E, medium by company C, and low by company E. In this way collectively inconsistency 
will be considered as high in severity level. 
 



  76

7.3 RQ3 & Data Analysis  
 

RQ3 - What DPTs is associated with each defect type that is being practicing in industry 
based on E and A&N? 

 
Preceding RQ provides complete information regarding defect types originating from E and 
A&N phases of RE. The requirements related defects data demonstrated above provide useful 
information to learn about the defect types, reasons of those types and their severity in term 
of rework in SDLC. Besides that there is need to know and learn about the underlying 
techniques or methods found in both academia and industry and their related strength and 
weaknesses used to eliminate and minimize defects at requirements level. The stated RQ 
helps to explore defect identification and prevention techniques from academia and industry 
used to deal with the requirements defect types (see section 5.3).  
 
To find related information in this regard, we proposed to accumulate qualitative data from 
academia and industry. The information for this RQ is achieved by dividing the RQ into two 
different but related sub-questions. The first sub-question (RQ3.1) deals with DPTs reported 
by literature research and industry (using interviews) while the other sub-question (RQ3.2) 
deals with the problems in these techniques which make them less efficient and less 
adoptable. The research in academia is concerned to find the information in second sub-
question. 
  
During industrial interviews the authors have noticed an interesting thing that companies 
even don’t know about DPTs, defect identification and DP methods that are found in 
academic research. Some interviewees were curious about these DPTs and DP methods. 
Authors have provided enough aggregation of these methods and techniques (see section 5.3) 
according to their best knowledge. In this way software industry may get familiar with these 
requirements DPTs and DP methods to make the RE process more effective.   
 
RQ3.1 - What is appropriate DPT for each defect types?  

 
Appropriate techniques and methods used to deal with requirements defects are described in 
table 10 and 11 based on research from academia and industry simultaneously. Information in 
these tables is demonstrated on the basis of data analysis carried out explicitly from academia 
and empirical study results from section 5 and 6 respectively. Following table describes the 
techniques and methods reported by literature research along with the Company which follow 
these techniques. The detail of each technique can be uniquely found in section 5.3.  
 
During interview it was very difficult to find DPT for a specific requirements defect type. 
Whenever authors asked questions to know DPT for each defect type, the interviewees could 
not tell them exactly. Since they were not using any DPT (see table 10) so how they can tell 
us what DPT handles which kinds of requirements defect types.  However to identify defects 
in SRS, companies were using different method and techniques as given in table 11. You can 
also see in table 10 what types of defects are handled by which techniques those are practiced 
in six companies both in Pakistan and Sweden. 
 
On the other hand the literature review results shows that DPTs like JAD, QFD, CRM, and 
participatory design do not focus on a particular defect type. They even don’t only focus on 
requirements level defects but also do focus on design. They prevent defects in respective of 
defect type and SDLC phases. 
 



  77

To avoid rework in later stages, it is very important to prevent defects associated with 
requirements as early as possible. According to author’s best knowledge they have given 
DPTs, DP methods, and defect identification techniques those can be used during the RE 
process to stop defects from penetrating them into later stages of SDLC. However the 
problem is unfamiliarity of companies with these DPTs and methods. The authors have tried 
to solve this problem by giving description of all DPTs, and DP methods in section 5.3. 
 
It has been noticed in table 10 & 11 that most of the companies were using defect 
identification techniques instead of DPTs and DP methods. The comparison of these 
requirements analysis techniques proves that N-fold requirements analysis technique has been 
proved the best option because, 

• Formal Inspection of SRS has been proved a good choice to identify defects that 
originate from the elicitation phase. It also achieves HDR (High Detection Rate) as 
compared to other requirements analysis techniques. HDR needs large numbers of 
inspectors to find defect from SRS. As we know large teams are known to be 
inefficient therefore instead of making large teams, N numbers of small teams were 
created in N-fold inspection. [78]. One more concern is that a fault that is not 
supposed to be found by single team (as in case of formal inspection) but it can be 
found if multiple teams (as in case of N-fold inspection) working on a single artifact 
[19]. It is also hoped that different inspection teams will find different defect or 
faults, in this way large number of teams will find more defects [39]. 

• It is true that prototyping removes gap between customer and developer but it can 
focus on only completeness and correctness of SRS. On the other hand N fold 
inspection has been proved versatile in finding defect types of defects with excellent 
rate of defect identification (discuss in percentages). During N fold inspection the 
analysts in multiple teams can identify defects that cannot be identified by a single 
team. 

• It has been proved in an experiment that when N-fold inspection technique was used 
and appointed ten teams then defect detection rate raised up to 80% [19]. It means ten 
times more resources are required to catch 80% requirements level defects. But it is 
realty that most of the organizations believe in finding and fixing defects in later 
stages of SDLC [1] and don’t want to appoint ten teams for the inspection of 
requirements. It means that N-fold requirement analysis technique is has HDR than 
prototyping and formal inspection but it needs more resources. 

 



  78

Table 10: Defect identification and DP techniques reported by literature research 
Pakistani Companies = B, C, E   
Swedish Companies = A, D, F 
 

Sr. No. Techniques Reported by Literature Company 
 Defect Identification Techniques   

1. Formal Requirements Inspection D, F 
2. Prototyping  A, B, C, E, F 
3. N-fold Inspection  

Reading Techniques 
4. Ad Hoc Based Reading  A, B, C, D, E 
5. Checklist Based Reading  A, D 
6. Scenario Based Reading (Defect Based Reading)  
7. Perspective Based Reading  C 
8. Usage Based Reading   
9. Function Point Reading   
10. Metric Based Reading   
11. Inspection Using Error Abstraction   
12. Goal Oriented Requirements Analysis   
13. Attributed GORA Technique  

Defect Prevention Techniques 
14. Formal Specification Method  
15. Structural Analysis and Design Technique   
16. Goal Based Requirements Analysis Method  
17. Object Oriented Requirements Analysis  
18. Joint Application Design (JAD)  
19. Cleanroom Methodology (CRM)  
20. Quality Function Deployment (QFD)   
21. Participatory Design   

 



  79

Following table 11 contains the defect identification and prevention techniques typically 
practiced in industry to deals with requirements defect types.   
 

Table 11: Techniques practiced in industry 
Pakistani Companies = B, C, E   
Swedish Companies = A, D, F 
 
Techniques Description Company 

Mock-ups This technique is used by organizations for creating user 
interface for understandability of functionality or features 
using paper or whiteboard for creation. Customer can 
participate and understand its purpose but using manual work 
takes too much time for complex interfaces.  

A, C 

Prototyping Use prototyping of complex features to make requirements 
clear, understandable, unambiguous and to verify 
requirements correctness. Some organizations involve 
customer during this techniques to find missing and 
incomplete requirements.  

A, B, C, E, 
F 

Guidelines It is found that some organizations used a pre-define set of 
instructions before starting the process. This technique is used 
to provide guidelines to requirements analyst to perform 
activities in process based on defined criteria to avoid 
problem in the process.  

A, D 

Informal 
meeting 

An informal meeting is used to discuss problem in 
requirements. Some organization used check-list based to find 
problems in each requirement.  

A 

Sometimes the requirements analyst arranged a session with 
developer and tester to make the requirements clear to them 
so that they all have a common understanding of 
requirements.  

B 

Group meeting is also used where 4 to 5 people held a 
meeting to discuss problems in requirements. Stakeholders of 
this meeting are usually developers and operation manager. 

C 

Checklist 
based reading  

The reading techniques is used in informal meeting or during 
inspection process to identify problems in requirements  

A, D 

Chat sessions Some organizations establish open chat sessions with 
customers to make things understandable and clear if they 
found some ambiguities in requirements  

B 

Perspective-
based reading 

This technique is used during inspection to determine 
requirements from a particular perspectives i.e. customers, 
design, or implementation. During this approach 
misunderstanding and problems in requirements are discussed 
with the customers.  

C 

Test case 
generation 

Some organizations used test-case based approach to 
determine the correctness of requirements. For this purpose 
tester is involved in the validation process which creates test 
cases for each requirement. If it is unable to create test cases 
for a requirement then it means there is something wrong with 
the specified requirements.  

C 

Ad-hoc This technique is much more dependent upon the experience 
and knowledge of people involved in the RE process.  

A, B, C, D, 
E,  

Formal 
Inspection  

To analyze requirements, inspection process is used to find 
problems in SRS with formal reviews. 

D, F 



  80

Defect/trouble 
reports 

To deal with customers reported and in-process defects, 
reported defects are documented in the form of a report. This 
report is later communicated with developer and analyst to 
learn about weaknesses and problem areas in the process.  

D 

Problem log or log history is another mechanism to maintain 
and track software defects. The defects reported using this 
mechanism helps to identify incomplete and missing 
requirements as a result of malfunctioning or system crash.  

E, C 

Use cases  Use cases are used to manage and organize requirements for a 
system. It provides information about the interaction of users 
with the intended system from different perspective thus 
making requirements much more clear.     

F 

 
Some of the techniques described in literature in section 5.3, are not frequently practiced in 
industry like formal inspection, N-Fold inspection and DPTs. It is found that most of the 
organizations use ad hoc based reading techniques to find defects in SRS.  
 
It is found that some organizations use prototyping of most complex features to make 
requirements clear and understandable. Prototyping and mock ups help in translating system 
requirements into executable form which help them to visualize and understand the system in 
a better way. This technique is very efficient to deal with some of the requirements problems 
especially those deals with critical user interface design. It is found that these techniques are 
costly and require time to implement, training to learn and resources. Initially at the start of 
project resources and cost are limited [79] so instead of making the prototype for the whole 
system, it would be a better approach to make it for most critical and most complex features.  
 
Some organizations use guidelines before starting a process i.e. design, implementation. They 
also discuss problems and defects from the project of similar type from their defect or trouble 
reports. These techniques also help in minimizing defect if the organizations update their 
guidelines accordingly. It is found during empirical study that most of the organizations use 
guidelines for the design and implement purpose. They didn’t care about the RE process and 
focus more on design and implementation. These guidelines are standards develop by the 
organization to guide designers and coders to develop things according to those standards. To 
make the RE process effective there must be some guidelines that contains thing that should 
be considered and taking care of before processing to the RE process. Chat sessions with 
customer to make things understandable are also helpful but they are not formal and can still 
leads to ambiguity, misunderstanding and omission due to remote communication and 
customer interest.  

7.3.1 Comparison of SRS Reading Techniques 
If you a look at table 10 then you will come to know that companies are using defect 
identification techniques instead of DP techniques or methods. It means at RE level they want 
to prevent defects just by finding and correcting them. Table 11 also shows that ad hoc and 
CBR techniques have been using frequently by the companies. If we have look at section 5.3 
(reading technique) then we will come to know that there are better reading techniques than 
ad hoc and CBR techniques.  
 
Porter and Votta  in 1994 and Porter  in 1995 have conducted multiple experiments in which 
they  compared  scenario based  reading  (SBR) with checklist and  ad hoc  reading  
techniques based on defect identification rate. The findings of experiments proved that 
scenario based or DBR has higher rate of defect identification than CBR and ad hoc based 
reading approach and checklist reading was no more effective than ad hoc. Practically it was 
proved that SBR or DBR captures 35% more defects than checklist and ad hoc approaches. 
[48] 



  81

Basili et al. have performed some experiments to know the effectiveness of PBR on SRS in 
NASA. He found that there is no major difference of reviewer’s who were using PBR and 
those who were using other reading techniques like CBR but PBR reviewers performed well 
on generic documents. Laitenberger and DeBaud have also performed deep experiments to 
find effectiveness of PBR. They also found no significant difference in performance of 
reviewers when they were using PBR on code document. On the other hand Shull et al. said 
that PBR is better for reviewers who have some experience. According to above discussed of 
authors,  it  is  proved  that  PBR  reviewers  can  capture  more  defects  as  compared  to  the 
reviewer who use less systematic and less structured approach for review. They further added 
that PBR is more systematic, focused, goal oriented and tailor-able [39, 48]. 
 
In an  experiment  that was  conducted  by  a  group  of  students  [49],  they  proved  that 
UBR technique is more efficient in detecting faults than CBR and UBR is also efficient in 
finding different  defects  or  faults  than  CBR  (that  is  popular  in  industry). They proved 
that FPS technique is more efficient to inspect crucial areas of the software artifact (like SRS) 
than simple SBR technique. [50] 
 
Authors had conducted an experiment to validate MBR technique. They  found  that  it  was  
more  effective  in  the  detection  of  defects  than  CBR  technique. However it was not 
proved more efficient because it takes too much time to be implemented properly. [51] 
It is proved from discussion above that DBR, PBR, UBR, and MBR are more effective than 
CBR and ABR techniques based on defect identification rate. It was noted that MBR is more 
effective than DBR but MBR takes too much time to be implemented properly. On the other 
hand FPR has been proved more effective than simple SBR technique. If we draw a sequence 
of SRS reading techniques with their effectiveness bases on defect identification rate then 
FPR will be on top and ABR technique will be at bottom. In other words FPR is more 
effective than SBR, CBR, and ABR techniques. 
 
(GORA)  technique  provides  a platform  for  traditional  requirements analysis  techniques  
(inspection, ad hoc based  reading, prototyping  etc)  for  their  better  performance and  It 
also handle non functional requirements of the system. There is another requirement analysis 
technique (OORA) described in section 5.3.2.4 that is based on object oriented approach but 
OORA does not handle non functional requirements, and that way in [46] the author did move 
from OORA to GORA  because GORA  handles  non  functional  requirements  in  the form 
of soft-goals. So GORA is better than OORA that provide reliable plate form for traditional 
requirements analysis techniques. 
 
There is an enhance from of GORA technique that is called Attributed GORA technique 
because AGORA can  help  the requirements  analyst  to  find  inconsistency among  the  
goals,  to  analyze  the  impact  of requirements changes  and to choose and adopt a goal from 
its alternatives. Requirements analyst can also judge the quality of SRS on the bases of its 
quality attributes such as correctness, unambiguousness, completeness and so on. [53]. 
 
RQ3.2 What are problems in existing DPT(s)? 

 
This questions deals with identifying weaknesses in existing techniques in order to determine 
their adoptability and efficiency. The problems in existing techniques are described in 
detailed in section 5.3.  
 
The preceding RQ illustrated the most commonly available DPTs described in literature 
research as well as those used in software industry. The purpose of those techniques is to 
facilitate the RE process to produce a quality SRS. They also facilitate the minimization of 
requirement related defects that cause major rework in later stages of SDLC. It is clear from 
table 10 that most of the techniques are not practiced in reality. Only few techniques 



  82

described in literature (see section 5.3) are used in software industry. Here we can raise a 
question that why these techniques are not practiced by the industry? We can find answer of 
this question by taking empirical results into account because results shows those companies 
even did not hear about these DPTs (like A, B, C, D, E and F).  
   
However if we do justice then we should say that a particular interviewee doesn’t know about 
DPTs because we cannot generalize the things only on behave of single employee and there 
might be dozens or hundreds of employees with specific level of expertise and domain 
knowledge. For example when authors asked a question during interview with employee of 
company D in Sweden that “can we generalize things that you have told us”? They replied 
that you never do that because they have thousands of employees all over the world with 
different domains and departments. So the way of working might be different in different 
cities and countries. According to author’s best literature review they found that DPTs have 
themselves some problems. The following tables 12 & 13 describe problems in DPTs based 
on section 5.3 and also explain which DPT and DP method have the best usage in particular 
conditions. 
 

Table 12: Problems in defect identification techniques 
 
Techniques 
Reported by 
Literature 

Problems in Defect Identification 
Techniques  

Best usage 

Formal 
Requirements 
Inspection 

• It needs trained people having good 
knowledge of inspection process and 
having good understanding of product 
[39] 

Formal inspection has been 
proved versatile in finding 
different types of defects 
excellent defect identification 
rate. 

Prototyping  • It needs about 10 percent budge of the 
whole project, it 

• It is very difficult to create a prototype 
of very large systems. 

• It needs trained peoples  

Prototyping is used to take vital 
feedback from users to improve 
the quality of SRS. Its mean 
prototyping strongly depends on 
users feedback to develop a 
quality SRS. 

 
N-fold 
Inspection 

• Some  faults  were  not  found  during  
inspection  of  SRS  even  by multiple  
teams,  it means inspection process is 
good but not good enough.  

• Some faults of SRS cannot be 
discovered during inspection that needs 
execution in the form of design or 
implementation. These faults can be 
identified by using formal specification 
and design.  

• A flawed inspection team cannot 
perform well in the identification of 
faults 

• Multiple teams in N-fold inspection is 
costly  

Prototyping becomes hard to 
implement for a complex and 
large features. It is true that 
prototyping removes gap between 
customer and developer but it can 
focus on only completeness and 
correctness of SRS. On the other 
hand N fold inspection has been 
proved versatile in finding defect 
types of defects with excellent 
rate of defect identification 
(discuss in percentages). During 
N fold inspection the analysts in 
multiple teams can indentify 
defects that cannot be identified 
by a single team. 

 



  83

Table 13: Problems in DPTs 
 

Techniques 
Reported by 
Literature 

Problems in DPT Best usage 

Formal 
Specification 
Method 

• Formal method contains notations that are 
hard to understand for customers  

• Difficult to specify some aspects like 
requirements related to user interface  

• Software management feels hesitation to 
use a technique that is not widely used  

• Need extra ordinary expertise in formal 
systems and particularly in mathematical 
logics 

• Users feel hurdle in approving SRS 
because of difficult formal language  

Formal methods are used where 
safety and security are critical  
 

Structural 
Analysis and 
Design 
Technique  

• Needs trained people 
• Complex in nature 
• Hard to implement  
• Used only to check problem elements but 

don’t solve the problems 

It does not solve the problem but it 
allows people to understand, 
manipulate or check problem 
elements. 

 

Goal Based 
Requirements 
Analysis 
Method 

• Difficult to draw hierarchy of goals   
• Complex in nature  

It is very often in the organization 
that their goals remains unclear and 
are not provided easily.  So  to  
identify  organization  goals  
GOBRA  is  very  significant  to  
have  as  good information as 
possible to understand the domain, 
organization, process, and system 
[45] 

Object 
Oriented 
Requirements 
Analysis 

• Empirical  study  has  proved  that  GORA  
technique  can  provide  more  detailed 
requirements definition than OORA 
techniques.  

• OORA method emphasis on static 
modeling and for real time system (such 
as distributed system) only OORA is not 
enough [67]. 

• OORA method does not handle non 
functional requirements, that’s way in [46] 
the author did move from OORA  to 
GORA  because GORA  handles  non  
functional  requirements  in  the form of 
soft-goals.  

• Needs good knowledge of object oriented 
methodology 

The OOA techniques model the real-
world environment that means an 
environment comprising of people, 
work processes, material things, and 
software systems [47].  In this way 
we can capture rich information that 
need to be model, analyzed, and 
understand before putting software 
system into implementation phase. It 
also provides better understanding of 
requirements specification and 
supports in OO design and 
implementation. 



  84

Joint 
Application 
Design (JAD) 

• JAD needs training for users 
• Needs effective leadership 

Resolve  conflicts  of  varying  
stakeholder’s  needs  toward  systems  
in  an  open atmosphere by providing 
them opportunity to discuss and 
negotiate. Helps  in  eliminating  
potential  defects  related  to  
requirements  in  the  form  of 
correctness, ambiguity, missing and 
incomplete requirements through 
continuous customer’s involvement. 
[35] 

Cleanroom 
Methodology 
(CRM) 

• It needs trained peoples with good 
understanding of formal methods  

• Difficult to communicate SRS with 
customers 

• Complex in nature  

 CRM is used where safety and 
security are critical 
 

Quality 
Function 
Deployment  

• Difficult to apply on complex projects 
• Complex in nature  

The main focus of QFD is to satisfy 
customer’s needs 

 
In addition to above discussion there could be some factors that can offer difficulty to adopt 
DPTs. These factors (extracted from section 5.3) are given below  

• Complexity – some techniques are complex in nature and difficult to apply on 
projects. A typical example is the house of quality in QFD which is complex in nature 
and difficult to apply on complex project. Other example includes use of box 
structure in cleanroom methodology and hierarchy of goals in GORA techniques.  

• Training and education – due to complex nature of techniques, they require particular 
training and education in order to apply them on projects e.g. use of formal methods 
limiting the authors of SRS to know about these method of specification.   

• Domain specific – most of the techniques is domain specific and difficult to apply for 
all type of projects e.g. QFD for MIS system and prototype for user interface. It is 
therefore recommended to use more than one technique to attain certain goals.  

• Resource consumption – some techniques are complex and take too much time to 
produce work products even for a single phase of SDLC. These techniques if applied 
on small projects can produce unrealistic results and leads to resource consumption. 
For example if the number of requirements increases then the size of house of quality 
matrix will increases and difficult to maintain. These techniques results in resource 
consumption in term of time, human and cost as well.  
 

From the above discussion it is clear that most of the DPTs are obstacle for organizations due 
to the above problem factors. Other major problems for organizations are lack of awareness 
and research gap between industry and academia. They are not familiar with the DPTs and 
their significance as reported by literature research.  

7.4 RQ4 & Data Analysis 
 

RQ4 - How can we remove the problems in DPT and make them more efficient to handle 
defects that cause major rework? 

 
DP is the process of finding the root causes of defects and prevents them from reoccurring 
[1]. However it is necessary to identify defect before finding their root causes and taking 
preventive actions.  Authors have given detailed description of defect identification 
techniques like N-fold inspection, and prototyping in section 5.3.1. For requirements analysis, 



  85

formal inspection has been proved an excellent technique [22]. During inspection  process,  
inspectors  need  some  sort  of  reading  techniques  for  SRS. On the bases of literature 
review the authors have also given SRS reading techniques in section 5.3.1 that help in 
identifying requirements defect. This study mainly depends on early identification and 
prevention of requirements defects so that defects would not cause major rework down the 
development road. So defect identification in early stages gets importance and that’s why the 
authors have given detail description of defect identification techniques with SRS reading 
techniques in section 5.3.1. In this way companies those are not familiar with DPTs, DP 
methods, defect identification techniques, and SRS reading techniques can have good enough 
introduction with preceding techniques. 
 
On the bases of data analysis in section 7, the authors have given a list of recommendations 
and change in defect identification technique. N-fold inspection technique has been modified 
just to make it adoptable by those who don’t use this efficient technique only due to its high 
cost and effort. There might be some questions in reader’s mind that why we did select N-fold 
for modification? How modified N-fold would be cost effective and efficient?  You can find 
answers of preceding questions in section 7.4.4 
 
According to empirical study, most of the techniques are not widely used as shown in table 10 
but you can see in the same table that most of the companies are using defect identification 
techniques to avoid requirements level defects from penetrating into later stages of SDLC. 
We know that the aim of this study is to avoid requirements level defects from penetrating 
down the software development road so that avoidable rework could be minimized (that is 
about 40 to 50 % of whole the project budget). So, on the bases of table 10 we can modify 
any defect identification technique to make it adoptable for organizations to get the best 
results regarding defect identification. On the bases of study findings the authors have 
provided solutions in three different areas that are given below. 

• Improvement in a defect identification technique.  
• Proposed defect taxonomy on the bases of figure 13 as defect preventive measure.  
• Proposed a list of recommendations that will help in preventing defects at RE level.  

7.4.1 Classification of Most Common Defect Types Using 
Boris Beizer Defect Classification Scheme  

Based on defect identified from research in literature (see table 4) and through industry in the 
form of qualitative interview (see table 6 in section 7.1), the most common defects reported 
by both sources are summarized in table 8 and visually described in figure 12. It contains the 
information of most common requirements level defect types that originate from E and A&N 
phases of RE and cause major or minor rework in later stages of SDLC if they are identifies 
in later stages. In order to understand these defect types in more general form, there is need to 
classify them using some classification scheme to understand their class and details with 
respect to taxonomies discussed in section 5.2 in detail. To regulate these defect types into 
defect taxonomy, we selected Boris Bug Taxonomy (BBT) as guidelines for categorization of 
these defects. Following are the reasons for the selection of this specific taxonomy;  

1) It is life cycle oriented taxonomy covering RE phase in detail.  
2) Provides level of detail for defects (see appendix B) and also provide information 

about which defect belong to which type.  
3) Provides definition for each defect type and associated defects as guidelines that 

make defects easy to adjust under a certain defect type.  
4) Provides the flexibility to modify the taxonomy in case of an unadjustable defect type 

or defects that do not fit in the taxonomy.  
5) According to available defects data (see table 8 and figure 12), this taxonomy is easy 

to use and implement.  
The detail of BBT can be found in appendix B. Classifying the defects according to 
prescribed taxonomy surface new modifications due to some defects that are not described in 



  86

the classification hence they are added under some defect types that make a consistent 
relation between defects and respective defect type. Most common defects found in table 8 
and figure 12 falls into following major defect categories of BBT. [32] 

1. Requirements Completeness – requirements as specified is either ambiguous and 
incomplete or overly specified.  

2. Requirements Changes – requirements whether correct or not have been changed 
between the time programming started and testing ended.  

7.4.1.1 Classification of Major Defect Types  
The purpose of using BBT is to make a new classification of requirements defects types 
which is; 

2. Simple and easy to understand.  
3. Contains those defect types that are critical based on definition provided in section 

7.1 under RQ 1.3 which describes the severity of defects in term of their rework in 
later stages of SDLC.  

Although there are a number defects reported by research but it is clear from table 8 that 
some are major while other are minor. This information is also described in figure 12. By 
using BBT, a refined classification of major requirements level defects can be developed 
which will point out those defects that should be considered during RE process. The detail of 
classification with respect to defects summarized in table 8 in section 7.1 and figure 12 is 
given below [32].  
1. Undesirable requirements - the requirement or a part of it is undesirable  

a. Unwanted - requirement is correct as stated but it is not desirable (Gold plating)   
b. Unnecessary - requirement is not needed. (Unnecessary requirements) 

2. Completeness - the requirement as specified is either ambiguous, incomplete. or overly 
specified  

a. Missing/unspecified - the entire requirement is missing 
i. Missing functionality - the entire functionality or part of it is missing  
ii. Missing features - the feature customer wanted is missing 
iii. Missing interface - requirements related to interfaces or packages are 

missed 
iv. Missing quality attributes - (non-functional requirements): missing 

quality requirements  
b. Omitted - tacit or unwritten requirements 
c. Unclearness - lack of clarity in requirements  

i. Ambiguity - interpretation of requirements in more than one way thus 
creating different meanings of requirements. 

ii. Misunderstood – requirements wrongly understood 
3. Requirements volatility- requirements, whether or not correct, have been changed 

between the time programming started and testing ended  
a. Features - requirement changes concerned with features 

i. Feature added - a new feature has been added 
ii. Feature deleted - previously required feature deleted 
iii. Feature changed - significant changes to feature, other than changes in 

cases 
b. Cases - cases within a feature have been changed. Feature itself is not 

significantly modified except for cases   
i. Case added 
ii. Case deleted 
iii. Case changed - processing or treatment of specific case(s) changed  

c. Domain changes - input data domain modified: e.g., boundary changes, closure, 
treatment 

d. User messages and diagnostics - changes in text, content, or conditions under 
which user prompts, warning, error messages, etc. are produced  



  87

e. Internal interfaces - direct internal interfaces such as call sequences, or indirect 
interfaces (e.g., via data structures) have been changed  

f. External interfaces - external interfaces, such as device drivers, protocols, etc. 
have been changed  

g. Performance and timing - changes to performance requirements (e.g., 
throughput) and/or timings   

 
Classification of major defects based on table 8 from section 7.1 is described in more general 
form is described with the help of a diagram given below.    
 

 
Figure 13: Classification of major defect types 

 
The defects classification process start by mapping the defects types from summarized set of 
defect (see table 8 and figure 12) into above mentioned classification. This mapping helps to 
place a certain defect types under a specific bug category or sub-category is given below. 
1) The first defect type is “ambiguity”. According to classification (figure 13), it comes 

under “Completeness” as this defect type deals with incomplete, ambiguous and overly 
specified requirements. Ambiguity is a sub-category having category type “Unclearness” 
deals with misinterpretation of requirements due to use of ambiguous words in SRS while 
another defect called misunderstanding deals with requirements which are wrongly 
misunderstood also place under the same defect type as shown in figure 13.  



  88

2) According to table 8, it is found that inconsistency is a minor defect (as reported by most 
of the companies) and resolved at requirements level so there is very little chance of it to 
escape into later phases and the rework for it is also minor so it is excluded from the 
taxonomy. Other defect that are minor in term of severity are also excluded from 
taxonomy 

3) Defect type “Omission” means something that is tacit and not written down because it is 
elicited but it is in the mind of requirements analyst. It deals with completeness category 
of defect classification (see figure 13) under a new category.   

4) “Unwanted” and “not needed” defects come under the first category which is 
“undesirable requirements”. Once of the most common requirements risk is Gold platting 
which give extra features to customer although he does not demanded for it. This risk is 
the example of unwanted requirements. Which means requirements is written correctly 
but it is not required. God plating can increase project schedule and can put more effort 
on features that are not the actual demand of customers. The second defect “not needed” 
is demanded by customer although this feature is extra but it doesn’t make any sense into 
the product except utilization of resources. 

5) “Missing requirements” deal with functional as well as non functional requirements and 
contains missing features, missing functionality, missing interfaces and quality attributes 
etc. According to classification (see figure 13), it comes under “Completeness”. We 
further divided it in term of missing functionality, feature, interface and quality attributes, 
so it must come under defect type “missing, unspecified” which means, the entire 
requirements or part of it is missed. A detail of sub-category that is added under 
“missing, unspecified” is given below 

 
Table 14: Sub-categories and their definition added into classification 

 
Type  Description Example 

 
Missing 
functionality 

 
The entire functionality of 
part of it is missing 

 
“User can save their name and 
password”. An option will be given 
to the user to save the name and 
password is missing 

Missing 
features  

The feature customer 
wanted is missing 

A mobile phone can provides video 
file feature with *.3GP and *.avi 
format. If it only support *.3GP 
format which means that the *.avi 
feature was missing 

Missing 
interface 

Requirements related to 
internal or external 
interface i.e. software and 
hardware interfaces 
respectively are missed 

Software requirements such as third 
party interface is missing or 
Hardware requirements such as 
protocols, device drivers are missed 

Missing 
quality 
attributes 

Missing quality 
requirements 

Missing user-interface requirements  

 
6) Requirements volatility is the same as described by BBT because it’s a major defect and 
contains complete detail in prescribed taxonomy in term of feature (added, deleted or 
modified), domain changes and interfaces changes etc.  
 
Figure 13 shows detail of defect taxonomy in more simple form. It contains defects types and 
subsequent defects that can cause major rework in later stages of SDLC. The definition of 



  89

each defect types can be found above. It is proposed to consider those defects that cause 
major lack in requirements. Although there are many other requirements level defects but 
their consequences are minor as found in figure 12. So it is better to put effort, resources and 
time for those defects which are major in term of their criticality, and severity.  

7.4.2 List of Recommendations  
On the bases of industrial and literature study findings (see chapter 7) the authors have given 
a list of recommendations that will help in preventing requirements level major defects. In 
this way rework can be minimized that has to be done when requirements defects are 
identified and fixed after implementation or product release.  
This list of recommendation is given below in points. 

1. In the beginning, the leader of RE team must held a start up meeting in which 
following information should be discussed  

a. Discuss and understand the importance of common requirements risks. The 
description of these risks can be found in section 5.1 and table 5 respectively. 
Common requirements risks are;  

i. Insufficient users environment 
ii. Creeping users requirements 

iii. Ambiguous requirements 
iv. Gold plating  
v. Minimal specification  

vi. Inaccurate planning 
vii. Traceability  

viii. Tacit requirements  
b. Discussion of bugs reported (requirements defects only) in last similar type 

of project. 
2. Since the requirements elicitation is the most erroneous phase of RE as compared to 

other phases so people involved in this phase should have experience, training in 
term of technique(s) used in this phase and complete domain knowledge.  

3. Requirements defect taxonomy should be used for defect classification that authors 
have given in section 7.4.2 

4. Use IEEE SRS standards for writing requirements to make SRS unambiguous, 
complete, verifiable, consistent, modifiable, and traceable.  

5. Follow proposed steps for requirements defect identification at RE level (see figure 
17).  

6. Industry need to learn about DPTs along with their strength and weaknesses in order 
to take advantage of them.  

7. Industry should keep in contact with academia to open gateway for new research 
regarding DPTs and DP methods.  

8. Most critical defects (described in figure 12) should be put on top priority during 
requirements analysis 

9. More effort and time should be spent to identify and correct defect types discussed in 
taxonomy (see section 7.4.2) as compares to others.  

10. Extraneous information, unstable requirements, and missing requirements should be 
identified and corrected at RE level to avoid project delay or failure.    

7.4.3 Improvement in Defect Identification Technique  
It was noted that companies were unfamiliar with DPTs were using defect identification 
techniques for requirements analysis. So there is needed to make defect identification more 
effective. The authors have found N-fold inspection is a good technique (however it needs 
more resources) to identify more percentage of requirements defects as compare to formal 
inspection and prototyping. It was noted during interviews that only two companies such as D 
and F were using formal inspection to find requirements defects but not even a single 
company was using N-fold inspection. The reason behind it could be its cost and extra 
resources requirements.  



  90

We cannot neglect the importance of an SRS because it plays pivotal role in the success or 
failure of the developing product [19]. It is bases for the rest of project planning, design, and 
coding. It is foundation for system testing and user documentation [4]. A complete and 
accurate description of product is very important before starting implementation [19]. A poor 
SRS can lead to a fail product. Defect correction in later stages of SDLC is more expensive, 
time consuming and hard to fix than in early stages [2, 3, 51]. It means early prevention of 
defects is very cost effective and could be helpful in minimizing rework in later stages of 
SDLC. We can prevent these defects from penetrating into later stages of SDLC by early 
identification process by an effective way.  
 
Formal Inspection of SRS has been proved a good choice to identify defects that originate 
from the elicitation phase. It also achieves HDR (High Detection Rate) as compared to other 
requirements analysis techniques. HDR needs large numbers of inspectors to find defect from 
SRS. As we know large teams are known to be inefficient therefore instead of making large 
teams, N numbers of small teams were created in N-fold inspection. [78] We have described 
in chapter number 2 in detail that how N-fold inspection works. To identify maximum 
number of defects from SRS, we did converge our focus on N-fold inspection. It has many 
advantages that are given below  

• The overlapping of fault detection by different team is minimal 
• Early detection of faults in SRS becomes more effective 
• Two or more teams inspecting same document can identify more faults as compared 

to single team. 

The logic behind N-fold inspection is that a fault that is not supposed to be found by single 
team can be found if multiple teams are working on single artifact [19]. It is also hoped that 
different inspection teams will find different defect or faults, in this way large number of 
teams will find more defects [39]. 
 
Schneider, Johnny Martin and W.T. Tsai have conducted an experiment to identify 
requirements level defects by inspecting SRS. They noted that if only one team was assigned 
for the inspection of SRS then only 27% defects were caught. When they used N-fold 
inspection technique and appointed ten teams then defect detection rate raised up to 80% 
[19]. It means ten times more resources are required to catch 80% requirements level defects. 
However it is realty that most of the organizations believe in finding and fixing defects in 
later stages of SDLC [1] and don’t want to appoint ten teams for the inspection of 
requirements. 

 
Companies avoid N-fold inspection because it needs extra resources and time that makes it a 
costly process. To prevent requirements defect from penetrating into later stages of SDLC, it 
is very important to make N-fold inspection adoptable and efficient for all kinds of software 
development organizations. Here we feel that we should make an amendment in N-fold so 
that organizations can adopt it to find more defects within less cost. The authors thought over 
it that how it is possible if less number of teams may perform nearly equal to N-fold 
inspection?  
 
We found during industrial interviews that companies were appointing not more than 15 to 18 
people for single release or project. For example in company A there were three scrum teams 
having maximum 5 people in each team, and in company E there were also three teams 
having 5 to 8 people in each team. We also know that each inspection team requires 3 to 5 
people. By keeping in mind the above figures, we decided to restrict N-fold Inspection up to 
four inspection teams with a moderator. This new modification in N-fold inspection is named 
as Four-fold inspection.   



  91

7.4.3.1  Four-fold Inspection   
In four-fold inspection there are four inspection teams having 3 to 5 team members in each 
team. Single moderator is responsible for driving meeting in parallel and also responsible for 
handling results of all teams. Moderator (we recommend experienced requirements analyst or 
author) has direct contact with customer and team leader of each inspection team. In the first 
step these four teams are divided into two groups say group A and group B. The initial draft 
of SRS is also divided into two parts SRS-A and SRS-B based on requirements cohesiveness 
and requirements dependability. First part is provided to group A and second part to group B 
respectively and both groups A and B start inspection of their SRS parts. In the end of 
inspection process, moderator gathers effort of each group separately as shown in figure 14. 
 
In step two before combining effort of both groups he distributes the SRS part of group A 
among the teams of group B and vice versa as shown in figure 15. The purpose of this 
distribution is to conduct informal peer review (walkthrough) of the SRS part of each group 
by teams of opposite group (both teams of group A will informally review SRS part of group 
B and teams of group B will informally review SRS part of group A). Walkthrough is an 
informal review technique as compare to formal inspection. It doesn’t need defined 
procedure, no specified exit criteria, and meeting might be causal or disciplined [4]. 
 
 It also does not need formal inspection steps like Planning, Overview, and Preparation. 
When both groups A and B complete inspection meeting they are not allowed to leave the 
room because they get second part of SRS that they haven’t inspected yet (group A gets SRS-
B and group B gets SRS-A) as shown in figure 16, then each team in each group start 
walkthrough meeting that is recommended to take time equal to or less than formal inspection 
meeting time. 

 
 

Figure 14: First step in Four-fold inspection 
 
It means if formal inspection meeting takes time T then walkthrough meeting time (say W) 
can be represented as W≤ T. The author (requirements analyst) of SRS walks the reviewers 
through all requirements that he has written down. After the completion of informal peer 
review (walkthrough), step 3 gets start and moderator combines the effort of all teams and 
records detected faults in a database. Since there is probability of a fault or defect to be 
identified by multiple teams, so the moderator writes each fault once in the database.  
 



  92

 

 
 
 

 
Figure 15: Combined inspection report   Figure 16: Second step in Four-fold  

inspection 
 
During walkthrough meeting there is no need to be prepared and it will be less formal than 
inspection meeting. All participants of walkthrough meeting would have background 
knowledge of the system that is going to be developed because they already have inspected 
one part of system’s SRS. And team leader doesn’t need to conduct planning, overview 
meeting, and preparation sessions because all members have got enough idea about system 
SRS by inspecting first part of SRS. 
 
The purpose of including walkthrough peer review is to save time and resources that are 
needed in N-fold inspection process for second part of SRS. We divided initial draft of 
requirements into two parts for N-fold inspection because each inspection team will spend 
half time as compare to total time of inspection process. We can save second half time of 
inspection process but we have to spend time on walkthrough meeting (equal to or less than 
formal inspection meeting). It means walkthrough can save time and resources that supposed 
to be spent during formal inspection process in the form of Planning, overview meeting, and 
preparation effort of second half of SRS. 

 
As we know that inspection process requires a specific reading technique like CBR, PBR and 
SBR. These techniques help the inspector for better identification of requirements defects. 
For four-fold inspection the authors have recommended scenarios based reading (defect based 
reading) technique because it is more efficient than ad hoc based reading and CBR technique 
[48, 39]. It can capture more than 35% more defects than ad hoc and CBR [48]. In addition 
SBR provides good opportunity to focus on defect taxonomy to prevent requirements defects. 
As the authors have developed their own requirements defect taxonomy (see figure 13) based 
on BBT and based on major defect types described in figure 12. 
 
We have summarized in figure 13 the most common and major requirements level defects 
that can cause major rework if they would be identified and fixed after implementation. So it 
is very important to identify them during the RE process. As the authors have put all these 
major defects in the taxonomy that they have developed, so this taxonomy must be focused 
by an efficient reading technique like SBR. We hope that combination of our defect 
taxonomy and SBR in Four-fold inspection would be best combination to identify and 
prevent requirements level defects. For better results FPBR can be used instead of SBR. 
 
By using SBR, inspection is done based on different scenarios that are defined according to 
defect taxonomy in use [39]. Defects are categorized into different classes and for each class 
of defect a set of questions are developed. Scenarios are also considered to focus a specific 



  93

view point that helps to identify particular type of defects. For example say a company is 
developing Railway Track Crossing system. During inspection of SRS for this project, 
reviewer can make a scenario like “when train reaches 5Km away from the railway track 
barrier then barrier will start to come down. Let if barrier stops in the middle and do not come 
down completely then what could be problems”. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Steps in requirements defect identification 
 
It is very often in the organization that their goals remains unclear and are not provided easily.  
So  to  identify  organization  goals  it is  very  significant  to  have  as  good information as 
possible to understand the domain, organization, process, and system [45]. Since the GORA 
technique  provides  a platform  for  traditional  requirements analysis  techniques  
(inspection, ad hoc based  reading, prototyping  etc)  for  their  better  performance and  it 
makes organizational goals clear. It also handles non functional requirements of the system in 
the form of soft-goals and is better than OORA method. So the SRS review process (that is 
done by using SBR and defect taxonomy created by the authors) should be based on GORA 
technique. The overall process of defect identification recommended by the authors would 
adopt a shape as described in figure 17. Besides that, employees should have completed 
understanding of scenario based reading technique and GORA technique in order to 
implement it efficiently. The authors have given sufficient detail about these techniques in 
sections 5.3.1.5 and 5.3.2.3 

7.5 RQ5 & Data Analysis 
 

To what extent the prevention actions are valid?  

7.5.1 Validation of Study Finding 
In this section we will discuss about the validation of our finding from research study. The 
validation is based on designed described in section 4.5. Based on study finding, authors have 
designed questionnaires given below in table 15. This questionnaire will be used during 
interview meeting.  
 

Table 15: Questionnaires for study finding 
 
S.No. Questions 

1 What do you think about start-up meeting and the things that should be discussed 
in the meeting? Would it be proved effective in preventing requirements level 
defects?  



  94

2 Should it be (start-up meeting) beneficial for improving overall RE process and 
minimizing requirements defects? 

5 Do you think the use of maximum number of scenarios for requirements help to 
overcome missing and incompleteness in requirements? 

6 Do you think that use of IEEE standards for specifying requirements helps to 
improve SRS quality? 

8 Do you think that the information obtained from classification of defects proves 
to be valuable in start-up meeting? 

9 Do you think training, experience and domain knowledge can improve elicitation 
process? 

10 Do you think an SRS that is unambiguous, complete, verifiable, consistent, 
modifiable, and traceable is a quality SRS? 

11  Do you think Four-fold inspection is an adoptable requirements analysis 
technique as compared to N-fold inspection? 

12 Do you think that defect detection rate of Four-fold inspection would be low, 
medium or high? 

13 Do you think Four-fold inspection would catch requirements defects nearly equal 
to N-fold inspection (where N=4)? 

14 Do you think Four-fold inspection is a cost effective inspection technique as 
compared to N-fold inspection? 

15 Do you think the combination of our proposed requirements defect taxonomy 
and scenario based reading (defect based reading) technique proposed in Four-
fold inspection can identify good number of major requirements defects? 

16 What do you think about our proposed solution (i.e. list of recommendations, 
Four-fold inspection technique, and requirements defect taxonomy) would prove 
a good attempt to prevent requirements level defects and to minimize rework 
caused by those defects in later stages of SDLC? 

 

7.5.2 Validation Execution  

7.5.2.1 Validation Feedback from Company C 
In order to validate the study finding, the interviewee from Company C is selected for this 
purpose. The detail of Company and interviewee can be found in section 6.1.3. Before going 
directly to the questionnaires described in table 14, a short presentation is given to the 
interviewee as a background of thesis. The answers of interviewee with respect to 
questionnaires are described in appendix C.   
 
According to interviewee, the start-up meeting can play an important role in improving the 
RE process and minimizing defects. The use of defects reports of previous similar projects 
and risk that might affect the performance of the RE process in a positive way. According to 
interviewee, start-up meeting will consume time but if organization can plan things that are 
mentioned in start-up meeting in advance then they can avoid them before they get serious. 
Besides that people involved in the requirements elicitation process should be experience and 
have training if required to make this process much more effective. For Incompleteness and 
missing requirements, use of scenario-based approach helps to overcome them at 
requirements level. The interviewee also agrees with the use of IEEE standards for improve 
the quality of SRS. This will help to overcome a lot of problem arise from poorly written 
documents. 
 
According to interviewee, four-fold inspection techniques is a better approach to overcome 
the major requirements defects as compare to N fold inspection where N = 4 and it depends 
upon the size of document in term of number of requirements. Interviewee proposed that this 
technique could be efficient for projects having 200 requirements but in case of requirements 



  95

greater than 400 four-fold could be limited. It takes equal resources as compare to N fold but 
the cost and time are less consumed. Based on interviewee experience, four-fold inspection 
will catch 42% defects than normal N fold inspection for N = 4. The use of scenario based 
approach in four-fold make this techniques efficient because according to interviewee while 
inspecting SRS using scenario-based reading, one can see requirements from actual users 
perspective with respect to their actual use in users domain. Thus this approach helps in 
understand and finding lack in requirements more. According to interviewee, it is a better 
way to overcome requirements level defects to avoid there ripple effect in later phases of 
SDLC. 

7.5.2.2 Validation Feedback from Company D 
The second interviewee from Company D was selected for validation. The detail of Company 
and interviewee can be found in section 6.1.2. The interviewee fully agrees with the start-up 
meeting for the improvement of the RE process and minimizing requirements defects. 
According to interviewee, tacit requirements are the primary risk to the RE because both 
analyst and customer got tacit requirements on their own. It is better if you discuss them in 
advance to provide an awareness to consider it during the RE process.  
 
Interviewee also agrees with the concept of prior requirements elicitation training, analyst 
experience and sufficient domain knowledge about proposed system. To uncover 
requirements defects like incompleteness and missing, scenarios could prove to be a better 
approach. To overcome SRS related problems, use of standard template for specifying 
requirements will also improve this process. The interviewee also aggress with the concept of 
short meeting after testing and maintenance phases and use of taxonomy for classification of 
defects would be a good approach to classify and learn about defects. A part from that, 
interviewee agreed that four-fold inspection is adoptable and can work efficiently as compare 
to N-Fold for four teams. According to interviewee, this technique is cost effective, identify 
defects equal to N-fold inspection (for N=4) and it would be a good approach to use scenario 
based reading and GORA techniques with four-fold inspection to get maximum benefits. 
However, in order to implement it, employees must have experience and training of 
techniques used in four-fold inspection as proposed by authors.  

7.5.3 Lesson Learnt 
Based on validation of study finding from two interviewees, we infer the following points. 

• Risks related to RE that might affect the process or create other requirements related 
problems should be considered so that they can be minimized. 

• Use of formal RE process with defined roles and responsibility along with training (if 
required) could also help to overcome lack in requirements. 

• It is a beneficial if in-process and operation reported defects related to requirements 
are properly classified 

• Use of start-up meeting would be valuable for overall improvement of the RE process 
and minimization of requirements related defects. 

• Use of scenarios helps in identifying missing and incomplete requirements 
• To avoid SRS related issues, use of standards like IEEE will be favorable. 
• Four-fold inspection with scenario based reading would be a better approach during 

requirements analysis to uncover maximum number of defects. 
.   
 



  96

8 RQS &ANSWERS TO RQS 
 
This section contains the summary of RQs and answers to each RQ. 

8.1 RQ1 (RQ1.1, QR1.2, RQ1.3) 
The most common requirements level defect types reported by research literature based on E 
and A&N are missing, omissions, ambiguous, and volatile requirements. There are some risks 
that are associated with the RE process. These risks can play unpleasant role in the origination 
of defects associated with the requirements. In table 5, it has been mentioned that which 
requirements risk can cause what defect type and what kinds of consequences it has. Most of 
the risks are related to elicitation phase of RE that directly related to customer or users. 
During industrial interviews the authors have noticed that most of companies are not taking 
care of these risks and merely depending on their experience and knowledge.  
 
Each defect types can cause rework down the development road in the form of “Major” or 
“Minor” rework. This has been described in table 6 against each defect types under column 
“Severity Level”.  The severity level (major or minor) of defect type describes the rework 
caused by each defect if it would be identified and fixed in later stages of SDLC (design, 
implementation, testing, and maintenance). 
 
The volatile requirements, ambiguity, missing quality attributes, misunderstood, omission, 
unwanted/unnecessary, missing requirements are requirements defect types with high severity 
level (major) and mutually reported by industry research and literature study. The reasons for 
each defect types are given in table 8 under the column third (named defect reasons). The 
defect types having high severity and high rate of occurrence is only missing requirement and 
it is reported by all six companies from Pakistan and Sweden. All major defect types do not 
have high rate of occurrence and all minor defect types don’t have low rate of occurrence (see 
figure 12).  

8.2 RQ2  
Defect types reported by Pakistani companies are more in number as compared to Swedish 
companies. Defects are mostly reported by customers and according to interviewee sometime 
they are greater than 60% (company B). They also reported omissions, extraneous 
information, inconsistencies, conflicts (rare), misunderstanding (20 to 30 % reported by 
company E) and ambiguous requirements (5% to 30% reported by company E). According to 
Pakistani company B, more than 74% (this percentage is about defect finding only in RE 
phase) defects are identified and fixed during RE process. Defects reported during testing are 
estimated to 60% to 70% (B & C) and rest of the defects is reported by customers after 
release which is more than 60 % (company B). Swedish Companies like D and F face less 
defect types in development and low defect rates after releasing their products. The 
organization (D) uses extensive testing in order to deal with defects before release. The 
companies from both countries freeze SRS before starting implementation. 
 
There is only one company (B) in which most of the defects are reported by the customer and 
in rest of companies mostly defects are reported by the software tester. Most of the 
companies (A, B, E, and F) don’t use IEEE for SRS development and believe in finding 
requirements defects in early stages but they  don’t have any formal DPT (see table 10) for 
early defect prevention and they do not categorize their defects according to defect 
taxonomies given in section 5.2. Swedish companies have more formal RE process than 
Pakistani companies. One very important practice that has been neglected by most of 
companies (both Pakistani and Swedish) is root cause analysis. 



  97

 It has been noted that interviewees from both countries were not aware of DPTs or DP 
methods that have been shown in table 10 and instead they were using defect identification 
techniques as shown in table 11. The maximum numbers of software developers for a single 
project (project module or release) were reported not more than 20 by some Pakistani and 
Swedish companies. 

8.3 RQ3 (RQ3.1, RQ3.2) 
During interview it was very difficult to find DPT for a specific requirements defect type. 
Whenever the authors asked questions to know DPT for each defect type, the interviewees 
could not tell them exactly. Since they were not using any DPT (see table 10) so how they can 
tell us what DPT handles which kinds of requirements defect types.  However to identify 
defects in SRS, companies were using different method and techniques (defect identification 
techniques) as given in table 11. You can also see in table 11 what types of defects are 
handled by which techniques those are practiced in six companies both in Pakistan and 
Sweden. Since companies are not familiar with DPTs and DP methods, so according to 
author’s best knowledge they have given DPTs, DP methods, and defect identification 
techniques those can be used during requirements analysis to stop defects from penetrating 
them into later stages of SDLC. 
 
The comparison of formal requirements inspection technique, N-fold inspection technique, 
and prototyping as requirements analysis technique proves that N-fold inspection has high 
defect identification rate but it needs more resources. The comparisons of SRS reading 
techniques (given in section 5.3) show that SBR identifies more defects than ABR and CBR 
techniques, and FPR technique identifies more defects than SBR or DBR techniques. On the 
other hand GORA technique is more efficient than OORA technique for requirements 
analysis. 
 
It has been revealed in tables 12 & 13 that which DPT or DP method has what kinds of 
problems and under third column (“Best Usage”) you can see the best usage of each DPT or 
DP method. 

8.4 RQ4  
The description of RQ4 explains that after finding problems in existing DPTs practicing in 
software industries, how we will remove these problems? It might be change in existing DPT 
or creation of new DPT or we can give a list of recommendations. In response of this question 
the authors have modified N-fold requirements analysis technique on the bases of study 
findings and proposed to use SBR, GORA techniques, and defect taxonomy (developed by 
the authors on the bases of study finding) within modified N-fold inspection (four-fold 
inspection, see sections, 7.4.1.1, 7.4.3 and figure 17). The authors have also proposed a list of 
recommendations to avoid requirements level defects from going down the development road.  

8.5 RQ5 
The validation is based on design described in section 4.5. Based on study finding, authors 
have designed questionnaires given in table 15. This questionnaire has been used during 
interview meeting. The interviews were conducted from two companies and the interviewees 
had good enough background knowledge of all proposed solutions that has been discussed in 
RQ4.  

 



  98

9 CONCLUSIONS 
 
Defect prevention (DP) in early stages of software development life cycle (SDLC) is very 
cost effective than in later stages. The requirements elicitation and analysis & negotiation (E 
and A&N) phases in requirements engineering (RE) process are very critical and are major 
source of requirements defects. A poor E and A&N process may lead to a software 
requirements specifications (SRS) full of defects like missing, ambiguous, inconsistent, 
misunderstood, and incomplete requirements. If these defects are identified and fixed in later 
stages of SDLC then they could cause major rework by spending extra cost and effort. 
Organizations are spending about half of their total project budget on avoidable rework and 
majority of defects originate from RE activities.  

 
The aim of this thesis to reduce the rework in later stages of SDLC that is caused by 
requirements defects originating from E and A & N phase in the BESRE. To fulfill the 
purpose of this study, qualitative research approach has been adopted (empirical and literature 
studies are presented in this thesis). The empirical study is carried out with the help of six 
companies from Pakistan & Sweden by conducting interviews while literature study is done 
by using literature reviews. 
 
Most commonly reported defect types by literature study are missing requirements, 
omissions, ambiguous, and volatile requirements. The major defect types reported by industry 
research are missing requirements, unnecessary/unwanted requirements, volatile 
requirements, misunderstood and unstable requirements.  On the other hand volatile 
requirements, ambiguity, missing quality attributes, misunderstood, omission, 
unwanted/unnecessary, missing requirements are requirements defect types with high severity 
level and mutually reported by industry research and literature study (see figure 12). To fulfill 
the purpose of this study, all major defects having high rate of occurrence have been put on 
top priority and is recommended to spend more time and effort to prevent them from 
reoccurring during RE process and which can ensure reduction in rework down the 
development road. The reasons of these defects are described in section 7.1. It is also found 
that defects are reported by tester most of the time (see table 9). 

 
The defect types having high severity and high rate of occurrence is only missing requirement 
and it is reported by all six companies from Pakistan and Sweden. Some major defect types 
have medium rate of occurrence like omissions, misunderstood requirements, 
unwanted/unnecessary, and missing quality attributes. On the other hand some defect types 
have low rate of occurrence but severity level is high such as ambiguity, and volatile 
requirements. The defect types having high rate of occurrence and minor severity level are 
inconsistency, and misunderstood requirements, extraneous information has low rate of 
occurrence and minor severity level, and unclearness has high rate of occurrence but minor 
severity level with respect to rework in later stages of SDLC (see figure 12) 

 
Extraneous information, unstable requirements and missing requirements can affect the 
project plan in the form of project delay or failure.  
 
Swedish companies have more formal RE process as compared to Pakistani companies. Most 
of the companies do not use IEEE format for SRS development and freeze SRS before 
starting implementation that means they have low requirements volatility rate. It was found 
during industrial study that not more than 20 software developers were appointed for a single 
release, project, or module. 
 



  99

It is also found that both Pakistani and Swedish companies believe in DP in early stages but 
they are not using any formal DPT or DP method found in literature. They are also not 
familiar with defect taxonomies (see section 5.2), and current research about DPTs and DP 
(see section 5.3) methods instead they are using and relying on defect identification 
techniques. Apart from unfamiliarity of industry from DTS, It is observed from literature 
research that most of the DPTs are complex in nature and require training in order to 
implement them.  
 
N-Fold inspection technique finds more defects than informal inspection and prototyping 
during software requirements analysis. On the other hand SBR technique identify more 
defects than CBR and ABR techniques however FPB reading technique is more effective than 
SBR with respect to defect identification rate. It is also noted that GORA technique is more 
efficient than OORA to conduct good quality requirements analysis. 
 
On the bases of study findings the authors have proposed solutions in three different areas that 
are 1) Steps in requirements defect identification, where N-fold requirements inspection 
technique has been modified in the form of four-fold requirements inspection. It is proposed 
to use SBR or FPBR technique as SRS reading technique during inspection process by using 
defect taxonomy developed by the authors that purely covers major defect types described in 
figure 12. It is also proposed that the SRS review process (that is done by using SBR and 
defect taxonomy created by the authors) should be based on GORA technique (see figure 17), 
2) Proposed defect taxonomy on the bases of major defect types mutually reported by 
industry and literature research (see figure 12) as defect preventive measure, and 3) Proposed 
a list of recommendations that will help in preventing defects at RE level. The authors hope 
that preceding measures will help in preventing requirements level defects at RE level and 
there will be reduction in avoidable rework in later stages of SDLC.  
 

 
  
 



  100

10 FUTURE WORK 
 

To confirm the efficiency and benefits of proposed taxonomy, it will be beneficial to apply it 
on a defect report of a real project. This will help to understand the importance of 
classification of defects and to learn about the types of defects. To determine the 
effectiveness of proposed steps to indentify requirements level defects, it is necessary to 
perform an experiment in a controlled environment. This will help in making decision about 
whether four-fold works better in the presence of GORA, SBR, and defect taxonomy 
proposed by the authors are efficient to identify requirements defects as compare to 
traditional N-fold requirements analysis. 
 
Different companies have different types of projects with different domains, different 
software development methodologies, different bases (product based or project based), and 
different software life cycles. So it would be interesting if case study would be conducted for 
particular company to prevent requirements defects and to avoid rework in later stages, 
because case study of a company provides detailed information for a specific domain. 
 
After industrial interviews authors found that there are lots of DPTs and DP methods like 
QFD, CRM, and JAD from which companies are not familiar. It would be interesting if 
someone try to make them adoptable by convincing the companies with their advantages and 
importance. 



  101

11 REFERENCES 
 

[1] Mays, R. G., Jones, C. L., Holloway, G. J., and Studinski, D. P. 1990. Experiences 
with defect prevention. IBM Syst. J. 29, 1 (Jan. 1990), 4-32.  

[2] Kosman, R. J. 1997. A two-step methodology to reduce requirement defects. Ann. 
Softw. Eng. 3 (Jan. 1997), 477-494.  

[3] Boehm, B. and Basili, V. R. 2001. Software Defect Reduction Top 10 
List. Computer 34, 1 (Jan. 2001), 135-137. DOI= http://dx.doi.org/10.1109/2.962984  

[4] Wiegers, K. E. 2003 Software Requirements. 2nd Edition. Microsoft Press.  
[5] Peled, A.; Salzman, L; Danon, A.; Rogoway, P.; Defect Prevention Techniques for 

High Quality and Reduced Cycle Time, An ESSI Process Improvement Experiment 
(PIE), Motorola Communication Israel Ltd. DOI = 
http://www.iscn.at/select_newspaper/measurement/motorola2.html 

[6] Prasad, R. Roger, L. Thomas, A. Chia-Chu, C. and Dale, K. 2005 A new approach 
for software requirements elicitation, Software Engineering, Artificial Intelligence, 
Networking and Parallel/Distributed Computing, and First CIS International 
Workshop on Self-Assembling Wireless Networks. SNPD/SAWN 2005. Sixth 
International Conference on 23-25 May 2005 Page(s):32 - 42 DOI =   
10.1109/SNPD-SAWN.2005.5   

[7] Kotonya, G. and Sommerville, I., Requirements Engineering Process and 
Techniques. In: pp. 294 

[8] Tian, J. 2005. Software Quality Engineering: Testing, Quality Assurance, and 
Quantifiable Improvement, Willey-IEEE Computer Society Press, ISBN: 
9780471713456 

[9] McDonald, M., Musson, R., and Smith, R. 2007 The Practical Guide to Defect 
Prevention. First. Microsoft Press. 

[10] Langari, Z. and Pidduck, A. B. 2005. Quality, cleanroom and formal methods. 
In Proceedings of the Third Workshop on Software Quality (St. Louis, Missouri, May 
17 - 17, 2005). 3-WoSQ. ACM, New York, NY, 1-5. DOI= 
http://doi.acm.org/10.1145/1083292.1083302 

[11] Kashif, A. Ahmad, S. and Akhtar, S. 2005. Defect Prevention Techniques and its 
Usage in Requirements Gathering - Industry Practices S. National University of 
Computer and Emerging Sciences. Student Conference on  27-27 Aug. 2005 Page(s): 
1-5 

[12] Lauesen, S.; Vinter, O.; 2000 Preventing Requirements Defects: An Experiment in 
Process Improvement, Requirements Engineering Journal, In Proceedings of the 
Sixth International Workshop on Requirements 2000, pp. 37-50. 

[13] Hazzan, O., Dubinsky, Y., Eidelman, L., Sakhnini, V., and Teif, M. 2006. Qualitative 
research in computer science education. In Proceedings of the 37th SIGCSE 
Technical Symposium on Computer Science Education (Houston, Texas, USA, 
March 03 - 05, 2006). SIGCSE '06. ACM, New York, NY, 408-412. DOI= 
http://doi.acm.org/10.1145/1121341.1121469 

[14] Levy, Y. and Ellis, T.J. 2006. A Systems Approach to Conduct an Effective 
Literature Review in Support of Information Systems Research. Informing Science 
Journal Vol. 9 No. 1 pp. 181-212 

[15] Hancock, B 1998. An Introduction to Qualitative Research. UK: Trentfocus Org. 
[16] Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed 

methods approach. Thousand Oaks, CA: Sage Publications, Inc.  
[17] Pressman, Roger S. (2005).  Software Engineering: A Practitioner's Approach, 6th 

Edition.  McGraw-Hill. ISBN: 978-0-0728-5318-6. 

http://www.iscn.at/select_newspaper/measurement/motorola2.html
http://ieeexplore.ieee.org.miman.bib.bth.se/xpl/RecentCon.jsp?punumber=9806
http://ieeexplore.ieee.org.miman.bib.bth.se/xpl/RecentCon.jsp?punumber=9806
http://ieeexplore.ieee.org.miman.bib.bth.se/xpl/RecentCon.jsp?punumber=9806
http://ieeexplore.ieee.org.miman.bib.bth.se/xpl/RecentCon.jsp?punumber=9806
http://doi.acm.org/10.1145/1083292.1083302
http://ieeexplore.ieee.org.miman.bib.bth.se/xpl/RecentCon.jsp?punumber=4382865
http://www.mcgrawhill.ca/highereducation/php/bookinfo.php?isbn=0072853182&pNumber=587973


  102

[18] Gorschek, T., 2006. Requirements Engineering Supporting Technical Product 
Management. Ph.D. Thesis, Department of Systems and Software Engineering, 
Blekinge Institute of Technology, Ronneby, Sweden 

[19] Martin, J. and Tsai, W. T. 1990. N-Fold inspection: a requirements analysis 
technique. Commun. ACM 33, 2 (Feb. 1990), 225-232. DOI= 
http://doi.acm.org/10.1145/75577. 

[20] Schneider, G. M., Martin, J., and Tsai, W. T. 1992. An experimental study of fault 
detection in user requirements documents.ACM Trans. Softw. Eng. Methodol. 1, 2 
(Apr. 1992), 188-204. DOI= http://doi.acm.org/10.1145/128894.128897 

[21] Walia, G. and Carver, J. "A Systematic Literature Review to Identify and Classify 
Software Requirements Errors. Journal of Information and Software Technology. 

[22] Shull, F., Rus, I., and Basili, V. 2000. How Perspective-Based Reading Can Improve 
Requirements Inspections. Computer 33, 7 (Jul. 2000), 73-79. DOI= 
http://dx.doi.org/10.1109/2.869376  

[23] Jones, C., 1997. Software quality analysis and guidelines for success, International 
Thomson Computer Press, pp. 158 – 164 

[24] Hayes, J. H. 2003. Building a Requirement Fault Taxonomy: Experiences from a 
NASA Verification and Validation Research Project. In Proceedings of the 14th 
international Symposium on Software Reliability Engineering (November 17 - 21, 
2003). ISSRE. IEEE Computer Society, Washington, DC, 49.  

[25] Lauesen, S. and O. Vinter 2001. Preventing requirement defects: An experiment in 
process improvement, Requirements Engineering Journal 6(1): 37-50.  

[26] Seaman, C. B., Shull, F., Regardie, M., Elbert, D., Feldmann, R. L., Guo, Y., and 
Godfrey, S. 2008. Defect categorization: making use of a decade of widely varying 
historical data. In Proceedings of the Second ACM-IEEE international Symposium on 
Empirical Software Engineering and Measurement (Kaiserslautern, Germany, 
October 09 - 10, 2008). ESEM '08. ACM, New York, NY, 149-157. DOI= 
http://doi.acm.org/10.1145/1414004.1414030 

[27] Zowghi, D. and Nurmuliani, N. 2002. A Study of the Impact of Requirements 
Volatility on Software Project Performance. InProceedings of the Ninth Asia-Pacific 
Software Engineering Conference (December 04 - 06, 2002). APSEC. IEEE 
Computer Society, Washington, DC, 3. 

[28] Malaiya, Y. K. and Denton, J. 1999. Requirements Volatility and Defect Density. 
In Proceedings of the 10th international Symposium on Software Reliability 
Engineering (November 01 - 04, 1999). ISSRE. IEEE Computer Society, 
Washington, DC, 285. 

[29] Stark, G. E., Oman, P., Skillicorn, A., and Ameele, A. 1999. An examination of the 
effects of requirements changes on software maintenance releases. Journal of 
Software Maintenance 11, 5 (Sep. 1999), 293-309. DOI= 
http://dx.doi.org/10.1002/(SICI)1096-908X(199909/10)11:5<293::AID-
SMR198>3.0.CO;2-R. 

[30] Van Lamsweerde, A. 2000. Requirements engineering in the year 00: a research 
perspective. In Proceedings of the 22nd international Conference on Software 
Engineering (Limerick, Ireland, June 04 - 11, 2000). ICSE '00. ACM, New York, 
NY, 5-19. DOI= http://doi.acm.org/10.1145/337180.337184  

[31] Vinter, O., Lauesen, S., and Pries-Heje, J. 1998. A Methodology for Preventing 
Requirements Issues from Becoming Defects (PRIDE). ESSI Project No. 21167. Final 
Report. http://www. esi.es/ESSI/AII/21167  

[32] Beizer, B. 1990 Software Testing Techniques (2nd Ed.). Van Nostrand Reinhold Co. 
[33] McDonald, M., Musson, R., and Smith, R. 2007 The Practical Guide to Defect 

Prevention. First. Microsoft Press. 
[34] Vinter, O., Lauesen, S. 2000. Analyzing Requirements Bugs, Software Testing & 

Quality Engineering, Volume 2. 
[35] Chin, K. F. 1995. A JAD experience (abstract). In Proceedings of the 1995 ACM 

SIGCPR Conference on Supporting Teams, Groups, and Learning inside and Outside 



  103

the IS Function Reinventing IS (Nashville, Tennessee, United States, April 06 - 08, 
1995). L. Olfman, Ed.  SIGCPR '95. ACM, New York, NY, 235-236. DOI= 
http://doi.acm.org/10.1145/212490.213690  

[36] IEEE Software Staff 1993. Defect-Causal Analysis Drives Down Error Rates. IEEE 
Softw. 10, 4 (Jul. 1993), 98-99. DOI= http://dx.doi.org/10.1109/52.219639  

[37] Javed, T., Maqsood, M. e., and Durrani, Q. S. 2004. A study to investigate the impact 
of requirements instability on software defects. SIGSOFT Softw. Eng. Notes 29, 3 
(May. 2004), 1-7. DOI= http://doi.acm.org/10.1145/986710.986727 

[38] Zowghi, D. and Nurmuliani, N. 2006. Requirements Volatility and Its Impact on 
Change Effort: Evidence-based Research in Software Development Projects. AWRE 
2006 Adelaide, Australia 

[39] Aurum, A., Petersson, H. and Wohlin, C., “State-of-the-Art:Software Inspections 
after 25 Years”,     Software Testing, Verification and Reliability, 12(3):133-154, 
2002. 

[40] Martin, J. and Tsai, W. T. 1990. N-Fold inspection: a requirements analysis 
technique. Commun. ACM 33, 2 (Feb. 1990), 225-232. DOI= 
http://doi.acm.org/10.1145/75577.75587 

[41] Lamsweerde, A. v. 2000. Formal specification: a roadmap. In Proceedings of the 
Conference on the Future of Software Engineering (Limerick, Ireland, June 04 - 11, 
2000). ICSE '00. ACM, New York, NY, 147-159. DOI= 
http://doi.acm.org/10.1145/336512.336546 

[42] Gomaa, H. and Scott, D. B. 1981. Prototyping as a tool in the specification of user 
requirements. In Proceedings of the 5th international Conference on Software 
Engineering (San Diego, California, United States, March 09 - 12, 1981). 
International Conference on Software Engineering. IEEE Press, Piscataway, NJ, 333-
342. 

[43] Ross, D. T. and Schoman, K. E. 1979. Structured analysis for requirements 
definition. In Classics in Software Engineering, E. N. Yourdon, Ed. ACM Classic 
Books Series. Yourdon Press, Upper Saddle River, NJ, 363-386. 

[44] Ross, D. T. 1985. Applications and Extensions of SADT. Computer 18, 4 (Apr. 
1985), 25-34. DOI= http://dx.doi.org/10.1109/MC.1985.1662862 

[45] Anton, A. I. 1996. Goal-Based Requirements Analysis. In Proceedings of the 2nd 
international Conference on Requirements Engineering (ICRE '96) (April 15 - 18, 
1996). ICRE. IEEE Computer Society, Washington, DC, 136. 

[46] Mylopoulos, J., Chung, L., Liao, S., Wang, H., and Yu, E. 2001. Exploring 
Alternatives During Requirements Analysis. IEEE Softw. 18, 1 (Jan. 2001), 92-96. 
DOI= http://dx.doi.org/10.1109/52.903174 

[47] Mylopoulos, J., Chung, L., and Yu, E. 1999. From object-oriented to goal-oriented 
requirements analysis. Commun. ACM42, 1 (Jan. 1999), 31-37. DOI= 
http://doi.acm.org/10.1145/291469.293165 

[48] V. Basili, G. Caldiera, F. Lanubile, and F. Shull, “Studies on Reading Techniques,” 
Proceedings of the Software Engineering Workshop, Greenbelt, MD, pp. 59-65, 
December 1996. 

[49] Thelin, T., Andersson, C., Runeson, P., and Dzamashvili-Fogelstrom, N. 2004. A 
Replicated Experiment of Usage-Based and Checklist-Based Reading. In Proceedings 
of the Software Metrics, 10th international Symposium (September 11 - 17, 2004). 
METRICS. IEEE Computer Society, Washington, DC, 246-256. DOI= 
http://dx.doi.org/10.1109/METRICS.2004.3 

[50] Cheng, B. and Jeffery, R. 1996. Comparing Inspection Strategies for Software 
Requirement Specifications. In Proceedings of the 1996 Australian Software 
Engineering Conference (July 14 - 18, 1996). ASWEC. IEEE Computer Society, 
Washington, DC, 203. 

[51] Bernardez, B., Genero, M., Duran, A., and Toro, M. 2004. A Controlled Experiment 
for Evaluating a Metric-Based Reading Technique for Requirements Inspection. 
In Proceedings of the Software Metrics, 10th international Symposium (September 

http://www.cs.umd.edu/users/basili/publications/proceedings/P75.pdf


  104

11 - 17, 2004). METRICS. IEEE Computer Society, Washington, DC, 257-268. 
DOI= http://dx.doi.org/10.1109/METRICS.2004.1 

[52] Lanubile, F., Shull, F., and Basili, V. R. 1998. Experimenting with Error Abstraction 
in Requirements Documents. InProceedings of the 5th international Symposium on 
Software Metrics (March 20 - 21, 1998). METRICS. IEEE Computer Society, 
Washington, DC, 114. 

[53] Haruhiko Kaiya, Hisayuki Horai, Motoshi Saeki: AGORA: Attributed Goal-Oriented 
Requirements Analysis Method. RE 2002: 13-22 

[54] Hancock, B 1998. An Introduction to Qualitative Research. UK: Trentfocus Org. 
[55] Kahn, R.L., Cannell, C.F. (1957), The Dynamics of Interviewing: Theory, 

Technique, and Cases, Wiley, New York, NY,. 
[56] Siw Elisabeth Hove; Bente Anda, "Experiences from Conducting Semi-Structured 

Interviews in Empirical Software Engineering Research", 11th International Software 
Metrics Symposium METRICS 2005 

[57] Carmel, E., Whitaker, R. D., and George, J. F. 1993. PD and joint application design: 
a transatlantic comparison. Commun. ACM 36, 6 (Jun. 1993), 40-48. DOI= 
http://doi.acm.org/10.1145/153571.163265 

[58] A. Spangler, Cleanroom software engineering-plan your work and work your plan in 
small increments, IEEE Potentials, 15(4), 1996, p29 –32 

[59] Langari, Z. and Pidduck, A. B. 2005. Quality, cleanroom and formal 
methods. SIGSOFT Softw. Eng. Notes 30, 4 (Jul. 2005), 1-5. DOI= 
http://doi.acm.org/10.1145/1082983.1083302 

[60] D. Fetzer and J. Poore, "Using Box Structures with the Z Notation," Proceedings of 
the 25th Annual Hawaii International Conference on System Sciences, Vol. II--
Software Technology Track, IEEE Computer Society Press, Los Alamitos, CA 
(January 1992). 

[61] Menon, U., O'Grady, P.J., Gu, J.Z., Young, R.E. (1994), "Quality function 
deployment: an overview", in Syan, C.S., Menon, U. (Eds),Concurrent Engineering: 
Concepts, Implementation and Practice, Chapman & Hall, London, pp.91-9. 

[62]  Verma, D., R. Chilakapati, and B. Blanchard, "Quality Function Deployment (QFD): 
Integration of Logistics Requirements into the Mainstream System Design and 
Development Process," Proceedings, Annual Symposium, Society of Logistics 
Engineers, San Antonio, TX, August 1995 

[63] Wood, C. 1998. Meeting Customer Needs Using Participatory Techniques. 
In Proceedings of the Australasian Conference on Computer Human 
interaction (November 29 - December 12, 1998). OZCHI. IEEE Computer Society, 
Washington, DC, 336.  

[64] Kensing, F. and Blomberg, J. 1998. Participatory Design: Issues and 
Concerns. Comput. Supported Coop. Work 7, 3-4 (Jan. 1998), 167-185. [2] 
Participatory Design: issues and concerns  

[65] Herlea, D.E. (1996), Users Involvement in the Requirements Engineering process in 
the Proceedings of KAW'96, Banff, Alberta, Canada 

[66] Gregory, J. "Scandinavian Approaches to Participatory Design," International Journal 
of Engineering Education (19:1), Special Issue on Social Dimensions of Engineering 
Design, C. Dym, and L. Winner (eds.), 2003, pp. 62--74. 

[67] Yau,S.S., Yeom, K., Gao, B., Li, L., Bae, D. An Object-Oriented Software 
Development Framework for Autonomous Decentralized Systems.Autonomous 
Decentralized Systems, 1995. Proceedings. ISADS 95., Second International 
Symposium on (1995), 405-411 

[68] Kelly, D. and Shepard, T. 2001. A case study in the use of defect classification in 
inspections. In Proceedings of the 2001 Conference of the Centre For Advanced 
Studies on Collaborative Research (Toronto, Ontario, Canada, November 05 - 07, 
2001). D. A. Stewart and J. H. Johnson, Eds. IBM Centre for Advanced Studies 
Conference. IBM Press, 7. 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kaiya:Haruhiko.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Horai:Hisayuki.html
http://www.informatik.uni-trier.de/~ley/db/conf/re/re2002.html#KaiyaHS02


  105

[69] Evans, I. 2004. A Practitioner's Guide to Software Test Design. By Lee Copeland. 
Published by Artech House, Norwood, MA, U.S.A., 2004. ISBN: 1-58053-791-X, 
320 pages.: Book Reviews. Softw. Test. Verif. Reliab. 14, 4 (Dec. 2004), 283-284. 
DOI= http://dx.doi.org/10.1002/stvr.v14:4 

[70] G. Vijayaraghavan and C. Kaner, 2003. Bug Taxonomies: Use Them to Generate 
Better Tests. In the Software Testing Analysis & Review Conference (STAR) East 
(Orlando, Florida, USA, 2003). 

[71] Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray, B. 
K., and Wong, M. 1992. Orthogonal Defect Classification-A Concept for In-Process 
Measurements. IEEE Trans. Softw. Eng. 18, 11 (Nov. 1992), 943-956. DOI= 
http://dx.doi.org/10.1109/32.177364  

[72] Wagner, S. 2008. Defect classification and defect types revisited. In Proceedings of 
the 2008 Workshop on Defects in Large Software Systems (Seattle, Washington, July 
20 - 20, 2008). DEFECTS '08. ACM, New York, NY, 39-40. DOI= 
http://doi.acm.org/10.1145/1390817.1390829 

[73] Jane Huffman Hayes, Ashlee Holbrook, Inies Chemannoor, Dave Pruett, “Fault-
Based Analysis: How History Can Help Improve Performance and Dependability 
Requirements for High Assurance Systems,” accepted to Fifth International 
Workshop on Requirements for High Assurance Systems (RHAS), to be presented in 
Chicago, IL on November 8, 2005. 

[74] Kelly, D. and Shepard, T. 2001. A case study in the use of defect classification in 
inspections. In Proceedings of the 2001 Conference of the Centre For Advanced 
Studies on Collaborative Research (Toronto, Ontario, Canada, November 05 - 07, 
2001). D. A. Stewart and J. H. Johnson, Eds. IBM Centre for Advanced Studies 
Conference. IBM Press, 7. 

[75] IEEE (1993). IEEE standard classification for software anomalies. IEEE Standard 
1044-1993. 

[76] Grady, R. B. 1992 Practical Software Metrics for Project Management and Process 
Improvement. Prentice-Hall, Inc. 

[77] Christel, M. & Kang, K. 1992. Issues in Requirements Elicitation. (CMU/SEI-92-TR-
012, ADA258932). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon 
University 

[78] Kaner, C., 1998. The Performance of the N-Fold Requirement Inspection Method.,  
Requirements Engineering Journal, V. 2, N. 2, Month , pp. 114-116 

[79] 2004 A Guide to the Project Management Body of Knowledge (PMBOK Guides). 
Project Management Institute. 

[80] Trochim, W. and Donnelly, J.P. (2007). The Research Methods Knowledge Base. 3rd 
edition. Thomson Publishing, Mason, OH.   

[81] Guba, E & Lincoln, Y 1981, Effective evaluation: Improving the usefulness of evaluation 
results through responsive and naturalistic approaches, Jossey-Bass, San Francisco. 

[82] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. 2000 
Experimentation in Software Engineering: an Introduction. Kluwer Academic Publishers.  

[83] Seidel, J. (1991). Qualitative Data Analysis, Qualis Research, DOI = 
http//www.qualisresearch.com 



  106

Appendix A: Interview Questionnaires  
• What are requirements level defect types and reasons for defects related to 

Elicitation, Analysis and Negotiation (E and A&N) phases that can cause major 
rework in later stages of SDLC?  

○ What are the most common defects types reported by research based on E 
and A&N? 

○ What are the most common defects types and reasons for defects 
originating from E and A&N as reported from Swedish and Pakistani 
software companies respectively? 
 

1. What types of defects you find mostly that originate from requirements E and A&N phase 
in your projects. 

○ What types of defect are identified by requirements analysts during requirements 
analysis process? For example it could be inconsistencies in requirements, 
unclearness, missing, and incomplete requirements. 

○ What types of requirements defects are reported by testers?  
○ When you have release your project then what kinds of defects customer reports? 

2. what do you think about the origination of these defects (E or A&N phase) 
3. Who reports major defects? (customer, analyst, requirements validation team, tester or 

system maintainer)   
4. Do these defects were found first time?  
5. Do these defects are repeatedly found? 
6. What are reasons for these defects? (like incomplete requirements, unclear requirements) 

there may be some risks that can be a reason for defects or may be a defect type itself. 
Questions regarding them is given below 

○ Do all requirements engineers are very interested in spending time for the RE 
process or they think that they have understood all user requirements? 

○ Do all users are agree to give detailed requirements? 
○ Do the developer Gold plating? If yes then is it expectable for customer or he 

always refuse? 
○ Do the users request changes frequently or seldom (creeping user requirements)? 
○ If users request changes then does the developers response to that change? 
○ Do the elicitators gather detailed requirements or just get  main idea of the product 

and leave the detail requirements gathering task upon developers during 
implementation phase? 

○ When requirements specification document is frozen? 
○ Do requirements are changed frequently? 
○ Does your customer always want you to make changes? 

 
7. How do you categorize these defects? Is there any defect taxonomy? 
8. Are there some defect types beyond this defect taxonomy? 
9. In which stage of SDLC you keep focus in finding defects and fix them? (RE, 

implementation, Testing or maintenance ) 
10. Do you believe in finding and fixing the defects during testing phase? If yes then why you 

don’t believe in DP in early stages of SDLC? 
11. What is percentage of defects found that have been identified by customers? 
12. What is percentage of defects found that have been identified during requirements 



  107

validation? 
 

○ Find possible rework caused by each defect? 
 

13. How do you differentiate between major and minor defects found in your projects? 
14. If a major defect (like missing requirements) is identified during requirements engineering 

process then can you estimate the possible rework cause by that defect if it is identified and 
fixed during testing or maintenance phases of SDLC (Low, Medium or High)?  

 
• Are there any major differences between Swedish and Pakistani companies in 

terms of types and rate of defects originating from E and A&N phases? 
                     

1. What types of defects you identify during V and V process those originate from E and 
A&N phases?  

2. In SDLC, at what stage (RE, Design, implementation or testing) where you mostly identify 
defects and fix them? 

3. Does you organization believe in DP strategy or just believe in find and fix the defects. 
4. How many people are assigned for elicitation process? 
5. How many people are assigned for analysis process? 
6. How many people are assigned for validation process? 
7. What is skill level of your employees? (Bad, Satisfactory, Very good or Excellent) 
8. Do your employees have special training for the RE process? 
9. How much experience your employees have in the RE process (1, 2, 3, 4, 5 years or more)? 
10. What is rate of defects identification (during verification and validation activities) that 

originates from E and A&N phases? 

 
• What DPT is associated with each defect type that is being practicing in industry 

based on E and A&N phases?  
○ What is appropriate DPT for each defect type? 
○ What are the problems in existing DPT (s)? 

  
11. When you find a defect originating from E or A&N phase then what kinds of measures you 

adopt? 
12. Are there any preventive actions (like change in technique, process or use new tool) that 

you take against them to avoid them to reoccur? If yes then please tell us about it. 
13. Are you following any DP approach during E or A&N phases (like clean room, JAD)? 
14. What techniques for defect identification you have been using in requirements analysis, 

specification and validation processes? 
 
Note: Questions in boxes are interview questions related to research questions 
written above each research question.  
 



  108

Appendix B: Boris Bug Taxonomy (BBT) 
(Adopted from [32]) 
 
1xxx: FUNCTIONAL BUGS: REQUIREMENTS AND FEATURES: bugs having to do 
with requirements as specified or as implemented.  
11xx: REQUIREMENTS INCORRECT: the requirement or a part of it is incorrect.  
111x: Incorrect: requirement is wrong.  
112x: Undesirable: requirement is correct as stated but it is not desirable.  
113x: Not needed: requirement is not needed.  
12xx: LOGIC: the requirement is illogical or unreasonable.  
121x: Illogical: illogical, usually because of a self–contradiction which can be exposed by a 
logical analysis of cases.  
122x: Unreasonable: logical and consistent but unreasonable with respect to the 
environment and/or budgetary and time constraints.  
123x: Unachievable: requirement fundamentally impossible or cannot be achieved under 
existing constraints.  
124x: Inconsistent, incompatible: requirement is inconsistent with other requirements or 
with the environment.  
1242: Internal: the inconsistency is evident within the specified component.  
1244: External: the inconsistency is with external (to the component) components or the 
environment.  
1248: Configuration sensitivity: the incompatibility is with one or more configurations 
(hardware, software, operating system) in which the component is expected to work.  
13xx: COMPLETENESS: the requirement as specified is either ambiguous, incomplete. or 
overly specified.  
131x: Incomplete: the specification is incomplete; cases, features, variations or attributes are 
not specified and therefore not implemented.  
132x: Missing, unspecified: the entire requirement is missing.  
133x: Duplicated, overlapped: specified requirement totally or partially overlaps another 
requirement either already implemented or specified elsewhere.  
134x: Overly generalized: requirement as specified is correct and consistent but is overly 
generalized (e.g., too powerful) for the application.  
137x: Not downward compatible: requirement as specified will mean that objects created or 
manipulated by prior versions can either not be processed by this version or will be 
incorrectly processed.  
138x: Insufficiently extendable: requirement as specified cannot be expanded in ways that 
are likely to be needed—important hooks are left out of specification.  
14xx: VERIFIABILITY: specification bugs having to do with verifying that the requirement 
was correctly or incorrectly implemented.  
141x: Unverifiable: the requirement, if implemented, cannot be verified by any means or 
within available time and budget. For example, it is possible to design a test, but the outcome 
of the test cannot be verified as correct or incorrect.  
142x: Untestable: it is not possible to design and/or execute tests that will verify the 
requirement. Untestable is stronger than unverifiable.  
15xx: PRESENTATION: bugs in the presentation or documentation of requirements. The 
requirements are presumed to be correct, but the form in which they are presented is not. This 
can be important for test design automation systems, which demand specific formats.  
152x: Presentation, documentation: general presentation, documentation, format, media, 
etc.  

153x: Standards: presentation violates standards for requirements.  
16xx: REQUIREMENT CHANGES: requirements, whether or not correct, have been 
changed between the time programming started and testing ended.  
162x: Features: requirement changes concerned with features.  



  109

1621: Feature added: a new feature has been added.  
1622: Feature deleted: previously required feature deleted.  
1623: Feature changed: significant changes to feature, other than changes in cases.  
163x: Cases: cases within a feature have been changed. Feature itself is not significantly 
modified except for cases.  
1631: Cases added.  
1632: Cases deleted.  
1633: Cases changed: processing or treatment of specific case(s) changed.  
164x: Domain changes: input data domain modified: e.g., boundary changes, closure, 
treatment.  
165x: User messages and diagnostics: changes in text, content, or conditions under which 
user prompts, warning, error messages, etc. are produced.  
166x: Internal interfaces: direct internal interfaces such as call sequences, or indirect 
interfaces (e.g., via data structures) have been changed.  
167x: External interfaces: external interfaces, such as device drivers, protocols, etc. have 
been changed.  
168x: Performance and timing: changes to performance requirements (e.g., throughput) 
and/or timings.  



  110

Appendix C: Improvements Validation (Company C) 
 

S.No. Questions 
1 What do you think about start-up meeting and the things that should be 

discussed in the meeting? Would it be proved effective in preventing 
requirements level defects?  
Yes, the startup meeting will help to improve the RE process and minimize RE 
level defects and the content of this meeting are beneficial prior to the RE 
process initialization. Its better if you plan these content in advance but it will 
take time 

2 Should it be (start-up meeting) beneficial for improving overall RE process 
and minimizing requirements defects? 
Yes, by considering things that you decided to discuss in start-up meeting is 
related to improvement in the RE process and helps in minimizing requirements 
defects.  

5 Do you think the use of maximum number of scenarios for requirements help 
to overcome missing and incompleteness in requirements? 
Scenarios did not cover all type of defects but to identify or detect 
incompleteness and missing requirements scenarios can be useful 

6 Do you think that use of IEEE standards for specifying requirements helps to 
improve SRS quality? 
Yes, use of standards will also help to overcome defects related to 
documentation of requirements.  

8 Do you think that the information obtained from classification of defects 
proves to be valuable in start-up meeting? 
Yes, properly classified defects help to understand the types of defects which is 
beneficial for improvements.  

9 Do you think training, experience and domain knowledge can improve 
elicitation process? 
Yes, it is necessary that people involved in requirements elicitaion should be 
experienced and have completed domain knowledge to understand their 
customer’s requirements. They must be some training to make this process 
efficient. 

10 Do you think an SRS that is unambiguous, complete, verifiable, consistent, 
modifiable, and traceable is a quality SRS? 
Yes, these qualities must exist for a good SRS and I think using standards like 
IEEE for specification will help to achieve these SRS attributes.  

11  Do you think Four-fold inspection is an adoptable requirements analysis 
technique as compared to N-fold inspection? 
Yes, it is efficient but it depends upon the size of SRS and the type of project. 
For medium size project up to 200 requirements it would be beneficial but if we 
talk about product with 10, 000 requirements then four-fold could be limited.   

12 Do you think that defect detection rate of Four-fold inspection would be low, 
medium or high? 
In case of single team the defect detection rate is 27% but in case of four fold 
inspection this detection rate would be 42% to 43%.  

13 Do you think Four-fold inspection would catch requirements defects nearly 
equal to N-fold inspection (where N=4)? 
I think four-fold technique would reports defects more than N fold for N=4 
because using divide and conqueror rule   

14 Do you think Four-fold inspection is a cost effective inspection technique as 
compared to N-fold inspection? 



  111

Although resources are equally consumed but less cost and time is used as 
compared to N-Fold (N=4) 

15 Do you think the combination of our proposed requirements defect taxonomy 
and scenario based reading (defect based reading) technique proposed in 
Four-fold inspection can identify good number of major requirements defects? 
Yes, it is better to use taxonomy and scenarios in combination with four-fold. 
The reason for this is when you inspect a document in scenario based reading of 
requirements which mean you can also see them as use cases from different 
perspectives with respect to its usage. Second you also visualize requirements 
from real usage of end users. This will also reduce their ripple affect into later 
stages if you tackle requirements defects at RE level.   

16 What do you think about our proposed solution (list of recommendations, 
Four-fold inspection technique, and requirements defect taxonomy) would 
prove a good attempt to prevent requirements level defects and to minimize 
rework caused by those defects in later stages of SDLC? 
Yes, it is helpful if you consider things in advance to cause lack in requirements 
and to reduce their ripple effect in later stages of SDLC. It is better to initially 
clear and fix things at requirements level.  

17 We have observed during industrial research that most of the interviewees 
don’t know about defect prevention techniques (DPTs) and methods. We have 
given detail of them in our thesis. What do you think if the companies would 
get familiar with such DPTs then can they prevent more requirements level 
defects?  
?? 

18 During our research we found that missing quality attributes 
unwanted/unnecessary requirements, misunderstood requirements, omissions; 
missing functional requirements are the most common and major defect types. 
It means that more effort and time should be spent on these defect types to 
minimize avoidable rework that is done when preceding defect types are 
identified and fixed down the development road. What do you think our above 
suggestion is would be good step in preventing the requirements level defects? 
Or you have any suggestion? 
?? 

19 Do you have any suggestions to improve list of recommendation or four fold 
inspections? 
?? 

 



  112

Appendix D: Improvements Validation (Company D) 
 
S.No. Questions 

1 What do you think about start-up meeting and the things that should be 
discussed in the meeting? Would it be proved effective in preventing 
requirements level defects?  
Recently we had a lecture in our company where the lecturer discussed the 
similar problems like risks associated to SDLC. He also stressed to do care of 
risks. So definitely it is important to care of requirements level risks and 
obliviously by considering these risks the defects associated with requirements 
will be minimized.  

2 Should it be (start-up meeting) beneficial for improving overall RE process 
and minimizing requirements defects? 
A part from the contents that should be discussed in start-up meeting. Users also 
have some tacit assumption about requirements which he/she think that 
requirements analyst should consider it by default. So it should also be discussed 
in this meeting.  

5 Do you think the use of maximum number of scenarios for requirements help 
to overcome missing and incompleteness in requirements? 
Yes, it is better to uncover missing and incomplete requirements through the use 
of scenarios.  

6 Do you think that use of IEEE standards for specifying requirements helps to 
improve SRS quality? 
Yes, use of standards for specifying requirements helps to improve the SRS 
quality.   

8 Do you think that the information obtained from classification of defects 
proves to be valuable in start-up meeting? 
Yes, properly classified defects help to understand the types of defects which is 
beneficial for improvements.  

9 Do you think training, experience and domain knowledge can improve 
elicitation process? 
Yes, these things are necessary for an efficient requirements elicitation process.  

10 Do you think an SRS that is unambiguous, complete, verifiable, consistent, 
modifiable, and traceable is a quality SRS? 
Yes, these qualities must exist for a good SRS and I think using standards like 
IEEE for specification will help to achieve these SRS attributes.  

11  Do you think Four-fold inspection is an adoptable requirements analysis 
technique as compared to N-fold inspection? 
I think it is an adoptable requirements analysis technique which can work 
efficiently as compare to N-fold inspection having N = 4 and it can save time as 
well.  

12 Do you think that defect detection rate of Four-fold inspection would be low, 
medium or high? 
I think four-fold inspection will identify defects equal to N-fold inspection if you 
will put N=4. 

13 Do you think Four-fold inspection would catch requirements defects nearly 
equal to N-fold inspection (where N=4)? 
Yes, it will work but inspector must be trained or expert in SBR technique and 
GORA technique. The use of defect taxonomy that you have proposed is also a 
good choice.  

14 Do you think Four-fold inspection is a cost effective inspection technique as 
compared to N-fold inspection? 



  113

Yes, it is cost effective because teams are only four to identify maximum number 
of defects but training and expertise are required to get better results.  

15 Do you think the combination of our proposed requirements defect taxonomy 
and scenario based reading (defect based reading) technique proposed in 
Four-fold inspection can identify good number of major requirements defects? 
Yes, I think it is a good attempt to minimize requirements levels defects. The use 
of scenario based reading and GORA technique seems a good combination with 
four fold inspection. I will again repeat that training is very important to get 
good results. 

16 What do you think about our proposed solution (i.e. list of recommendations, 
Four-fold inspection technique, and requirements defect taxonomy) would 
prove a good attempt to prevent requirements level defects and to minimize 
rework caused by those defects in later stages of SDLC? 
Definitely your proposed solutions are a good attempt to solve the problems that 
you have mentioned in your thesis. 

17 We have observed during industrial research that most of the interviewees 
don’t know about defect prevention techniques (DPTs) and methods. We have 
given detail of them in our thesis. What do you think if the companies would 
get familiar with such DPTs then can they prevent more requirements level 
defects?  
Yes you are right that people in companies don’t know about the DPTs but if 
you see at company level the perhaps they know them. I think if software 
developer or analyst get familiar with DPTs top prevent requirements level 
defects then definitely they would get good results. It is good attempt by you that 
you have given description of all DPTs or DP methods in your thesis. 

18 During our research we found that missing quality attributes 
unwanted/unnecessary requirements, misunderstood requirements, omissions; 
missing functional requirements are the most common and major defect types. 
It means that more effort and time should be spent on these defect types to 
minimize avoidable rework that is done when preceding defect types are 
identified and fixed down the development road. What do you think our above 
suggestion is would be good step in preventing the requirements level defects? 
Or you have any suggestion? 
Yes, definitely it will help in preventing requirements level defects if you will 
put more effort on above mentioned defects. 

19 Do you have any suggestions to improve list of recommendation or four fold 
inspections? 
I have no more suggestions except one that is training in four fold inspection, 
SBR, and GORA technique. 

 



  114

Appendix E: Common Requirements Defect Types 
and their Reasons  
 
Ambiguity - ambiguity in requirements in early stages leads to confusion, misinterpretation 
and misunderstanding of requirements. Different meanings of requirement construct different 
interpretation about it. This happens only if the requirements or part of it is too ambiguous to 
understand or requirements are not initially clear. To deal with the problem there must be 
some common understanding of each and every requirement among the users of those 
requirements. Secondly, issues related to requirements must be resolved at early stages to 
avoid rework. Ambiguity happens because of   

• Improper translation of requirements,  
• Requirements are not initially clear  
• Requirements are poorly described or defined  
• Incomplete requirements description  
• Use of third party software also leads to misunderstanding, confusion and associated 

defects [31] [33].  
 

Inconsistencies – inconsistency in requirements is the most common issues exist because of 
conflicts or contradiction among requirements. During requirements analysis, conflicts must 
be resolved. Inconsistencies in requirements arise as a result of varying customer’s demands, 
different viewpoint of customers about requirements, disagreements among customers and 
mistakes or omission in requirements [7]. Requirements are crosschecked to identifying 
problems and conflicts are resolved by organizing a conflicts resolution meeting with the 
customers [7]. 
 
Omissions – omission occurs as a result of errors or deficiencies in requirements which make 
the requirements incomplete. During elicitation or specification process, it is observed that 
most of the requirement analysts use their experience to elicit customer requirements. If 
requirements are not immediately written down as they are elicited then there might be a 
chance that some requirements or important information could be left out. This lack of 
information or unwritten requirements leads to omission in requirements. Omission occur as a 
result of  

• Poor elicitation process 
• Lack of experience of analyst  
• Requirements that were elicited but not written down 
• Tacit requirements  

 
Unwanted/unnecessary requirements - these defects are not mostly generated by customer 
but the development organization uses the concept of gold plating to gain customer 
compassion.  Adding extra features or functionality to products although not demanded by 
customer may lead to many problems. Unwanted or unnecessary requirements occur because 
of 

• Gold plating 
• Extraneous requirements  
• Wrong assumptions about requirements  

 
Volatility – good software always welcome new changes in requirements but if the 
requirement change over time in development phase then there could be some problem with 
the requirements. Volatility in requirements occurs because of following some factors [7]. 

• Customers little or minute knowledge about system can make the requirements 
volatile 

• Chance in system environment  



  115

• Technology change  
• Changing customers priorities  
• Change in organizational process or structure  

 
Clarity – in requirements also leads to undesirable requirements because customers 
themselves are not clear about the system. This problem occurs because of incorrect 
requirements description, wrong requirements assumptions, requirements badly expressed or 
omitted requirements during requirements elicitation.  
 
Incorrect fact – deals with feasibility of requirements where a requirement is correct but it is 
not feasible or suitable to implement it under certain environment and under particular 
condition. This usually comes under infeasible requirements but the problem in requirement 
is the wrong behavior it under certain condition of system. To deal with this problem, 
stakeholder must be consulted to make modification about the requirements and make it 
realistic. [7]  
 
Missing requirements – is the most commonly occurring problems consisting of missing 
features, functionality, missing requirement or part of it, missing quality attributes, and 
missing environment etc. Missing requirements occurs because of  

• Poor elicitation process 
• Poor domain knowledge 
• Wrong requirements specification 
• Incomplete requirements.  

 
Unstable Requirements – directly deals with the volatility of requirements. Too many 
changes in requirements make the requirement unstable. Unstable requirements create the 
problem of decision making regarding freezing SRS and to make the requirements part of a 
certain release due to volatility.  
 


	1 INTRODUCTION
	2 BACKGROUND
	2.1 Related Work

	3 RESEARCH DESIGN
	3.1 Aims and Objectives
	3.2 Research Questions
	3.3 Expected Outcomes
	3.4 Research Methodology

	4 STUDY DESIGN
	4.1 Literature Review Design
	4.1.1 Literature Review Approach
	4.1.2 Literature Review Resources
	4.1.3 Selection of Articles
	4.1.4 Data Processing
	4.1.5 Exact Execution of Design

	4.2 Qualitative Interview Design
	4.2.1 Interview Goal
	4.2.2 Subject Selection
	4.2.3 Interview Technique
	4.2.4 Interview Instruments
	4.2.5 Interview Recording
	4.2.6 Interview Execution
	4.2.7 Data Analysis & Validation
	4.2.8 Exact Interviews Execution

	4.3 Qualitative Data Analysis
	4.3.1 Noticing and Coding
	4.3.2 Collecting and Sorting
	4.3.3 Thinking

	4.4 Validity Threats
	4.4.1 Credibility
	4.4.2 Transferability
	4.4.3 Conformability
	4.4.4 Dependability

	4.5 Validation Design of Study Finding
	4.5.1 Validation Design


	5 LITERATURE STUDY RESULTS
	5.1 Most Common Requirements Defect Types Reported by Literature based on E and A&N phases of RE
	5.2 Requirements Based Defect Taxonomy
	5.2.1 Orthogonal Defect Classification (ODC)
	5.2.2 Boris Beizer Taxonomy
	5.2.3 IEEE Taxonomy for Software Anomaly
	5.2.4 HP-Defect Classification Scheme (DCS)
	5.2.5 Requirements Fault Taxonomy

	5.3 Requirements Defect Identification & Prevention Techniques and Their Weaknesses
	5.3.1 Defect Identification Techniques
	5.3.1.1 Prototyping
	5.3.1.2 N-fold Inspection
	5.3.1.3 Ad Hoc Reading
	5.3.1.4 Checklist Based Reading
	5.3.1.5 Scenario Based Reading (Defect Based Reading)
	5.3.1.6 Perspective Based Reading
	5.3.1.7 Usage Based Reading (UBR)
	5.3.1.8 Function Point Reading
	5.3.1.9 Metric Based Reading Technique
	5.3.1.10 Inspection Using Error Abstraction
	5.3.1.11 Goal Oriented Requirements Analysis
	5.3.1.12 Attributed GORA Technique

	5.3.2 Defect Prevention Methods
	5.3.2.1 Formal Specification Method
	5.3.2.2 Structural Analysis and Design Technique (SADT)
	5.3.2.3 Goal Based Requirements Analysis Method
	5.3.2.4 Object Oriented Requirements Analysis
	5.3.2.5 Joint Application Design (JAD)
	5.3.2.6 Cleanroom Methodology
	5.3.2.7 Quality Function Deployment (QFD)
	5.3.2.8 Participatory Design



	6 EMPIRICAL STUDY RESULTS
	6.1 Most Common Requirements Defect Types Reported by Industry
	6.1.1 Company A
	6.1.1.1 Interviewee
	6.1.1.2 Defect Types and Their Reasons based on E and A&N
	6.1.1.3 Techniques Reported by Company A

	6.1.2 Company B
	6.1.2.1 Interviewee
	6.1.2.2 Defect Types and Their Reasons based on E and A&N
	6.1.2.3 Techniques Reported by Company B

	6.1.3 Company C
	6.1.3.1 Interviewee
	6.1.3.2 Defect Types and Their Reasons based on E and A&N
	6.1.3.3 Techniques Reported by Company C

	6.1.4 Company D
	6.1.4.1 Interviewees
	6.1.4.2 Defect Types and Their Reasons based on E and A&N
	6.1.4.3 Techniques Reported by Company D

	6.1.5 Company E
	6.1.5.1 Interviewee
	6.1.5.2 Defect Types and Their Reasons based on E and A&N
	6.1.5.3 Techniques Reported by Company E

	6.1.6 Company F
	6.1.6.1 Interviewee
	6.1.6.2 Defect Types and Their Reasons based on E and A&N
	6.1.6.3 Techniques Reported by Company F



	7 DATA ANALYSIS
	7.1 RQ1 & Data Analysis
	7.1.1 Summary of Most Common Defects Types and Their Causes that Originate from E and A&N Phases in BESRE

	7.2 RQ2 & Data Analysis
	7.2.1 Comparison between Pakistani Companies (B, C, E)
	7.2.2 Comparison between Swedish Companies (A, D, F)
	7.2.3 Comparison between Swedish and Pakistani Companies
	7.2.3.1 Use of Defect Taxonomies
	7.2.3.2 Root Cause Analysis
	7.2.3.3 RE Risk Consideration
	7.2.3.4 Awareness of DPTs and DP Methods
	7.2.3.5 Acquisition of Academic Research
	7.2.3.6 Training for RE Process
	7.2.3.7 Number of Developers for Each Project or Release
	7.2.3.8 Defect Types Comparisons


	7.3 RQ3 & Data Analysis
	7.3.1 Comparison of SRS Reading Techniques

	7.4 RQ4 & Data Analysis
	7.4.1 Classification of Most Common Defect Types Using Boris Beizer Defect Classification Scheme
	7.4.1.1 Classification of Major Defect Types

	7.4.2 List of Recommendations
	7.4.3 Improvement in Defect Identification Technique
	7.4.3.1 Four-fold Inspection


	7.5 RQ5 & Data Analysis
	7.5.1 Validation of Study Finding
	7.5.2 Validation Execution
	7.5.2.1 Validation Feedback from Company C
	7.5.2.2 Validation Feedback from Company D

	7.5.3 Lesson Learnt


	8 RQs &ANSWERS TO RQs
	8.1 RQ1 (RQ1.1, QR1.2, RQ1.3)
	8.2 RQ2
	8.3 RQ3 (RQ3.1, RQ3.2)
	8.4 RQ4
	8.5 RQ5

	9 CONCLUSIONS
	10 FUTURE WORK
	11 REFERENCES
	Appendix A: Interview Questionnaires
	Appendix B: Boris Bug Taxonomy (BBT)
	Appendix C: Improvements Validation (Company C)
	Appendix D: Improvements Validation (Company D)
	Appendix E: Common Requirements Defect Types and their Reasons


