Non-Uniformly Partitioned Block Convolution on Graphics Processing Units

Maryam Sadreddini

This thesis is presented as part of Degree of
Master of Science in Electrical Engineering

Blekinge Institute of Technology
February 2013
Abstract

Real time convolution has many applications among others simulating room reverberation in audio processing. Non-uniformly partitioning filters could satisfy the both desired features of having a low latency and less computational complexity for an efficient convolution. However, distributing the computation to have an uniform demand on Central Processing Unit (CPU) is still challenging. Moreover, computational cost for very long filters is still not acceptable. In this thesis, a new algorithm is presented by taking advantage of the broad memory on Graphics Processing Units (GPU). Performing the computations of a non-uniformly partitioned block convolution on GPU could solve the problem of work load on CPU. It is shown that the computational time in this algorithm reduces for the filters with long length.
Acknowledgements

First of all, I would like to thank my supervisor at Blekinge Institute of Technology, Professor Dr. Wlodek Kulesza, who taught me how to be an academic researcher. His support was always encouraging during my thesis as well as during my studies at BTH.

I would like to express my greatest gratitude to my supervisor at International Audio Laboratories Erlangen (AudioLabs) in Erlangen, Germany, Michael Schöffler M.Sc., whom offered me this interesting topic and gave me the opportunity to do this research under his supervision. He always guided me patiently through all the steps of this research and never withheld his beneficial help. I really appreciate all the things he taught me. I could never finish this thesis without his enlightening instructions and supports.

My special thanks goes to my husband who always stood by my side and supported me in all the steps of this work. Last but not least, I could never thank my mother enough for her support and encouragement during my whole life.
Contents

Abstract iii
Acknowledgements v
List of Figures ix

1 Introduction 1
1.1 Motivation ... 1
1.2 Background ... 2
1.2.1 Overlap-save method for real-time processing 4
1.3 Definitions ... 5
1.4 Thesis organization 8

2 Survey of related works 9
2.1 Uniformly partitioning 9
2.2 Non-uniformly partitioning 13
2.2.1 Efficient convolution by Gardner 13
2.2.2 Multiple-FDL Convolution by Garcia 14
2.2.3 Other Algorithms 14

3 Problem statement and main contribution 17

4 Problem solution 19
4.1 Modeling .. 19
4.1.1 Partitioning ... 19
4.1.2 Scheduling ... 21
4.1.3 Load balancing 22
4.1.4 Multi-threading 23
4.1.5 OpenCL framework 23
4.2 Implementation .. 26
4.2.1 Work space .. 26
4.2.2 Downmixing and upmixing 28
4.2.3 Fading .. 28
4.2.4 Architecture in CPU 29
4.2.5 Architecture in GPU 32
5 Results 37
6 Conclusion 41
List of Figures

1.1 Filtering of data sequences .. 3
1.2 Input signal blocks for Overlap-Save method 4
1.3 Output signal blocks for Overlap-Save method 5
1.4 A Room Impulse Response with 400 milliseconds length 6

2.1 Long filter uniformly partitioned to four blocks and parallel structure for its convolution .. 10
2.2 Steps of computing convolution by block transform 11
2.3 Frequency-domain Delay Line (FDL) 11
2.4 Convolution of one input channel and a BRIR filter in frequency domain using uniform partitioning and overlap-save method 12

4.1 An example of a realizable and non-realizable partition 20
4.2 An example of a realizable partition 21
4.3 OpenCL framework .. 24
4.4 OpenCL memory model .. 25
4.5 Simplified work space ... 27
4.6 Linear and non-linear functions for fading 29
4.7 A block diagram of proposed algorithm 34

5.1 Computation time for a binaural system with latency condition of 8192 samples with and without cross fading 39
5.2 Computation time for a binaural system with latency condition of 16384 samples with and without cross fading 39
5.3 Computation time for a binaural system with latency condition of 32768 samples with and without cross fading 39
To the love of my life, my husband, who stood by my side during this thesis; same as always . . .
Chapter 1

Introduction

1.1 Motivation

Convolution is one of basic concepts in signal processing which has various applications. The application which this thesis is concentrating on, is room reverberation simulation which can be done by convolving input audio signals with Room Impulse Responses (RIRs) which gives the impression of hearing those signals inside the target room.

A convolution could be calculated in time domain without inherent latency from direct implementation of convolution sum. However, the computational cost of convolution for long filters makes this computation method impractical in real time processing.

On the other hand, several methods are developed for convolving more efficiently in frequency domain. Block transform methods based on Fast Fourier Transform (FFT) such as overlap-save method or overlap-add method are the most common approaches. The overlap-save method is going to be used here which collects a block of input samples and convolves that block with a filter. The problem with this method is a large input-output delay in case of long filters [1]. To overcome this problem, long filters can be divided into short blocks. If the length of each block is considered equal, it is called uniformly partitioned filter. In this way, the latency at the output decreases significantly.

However, a low latency costs computational complexity. Since the low latency is required at the output, a hybrid model can be presented in which the impulse response of filter has a non-uniformly partitioning; shorter length blocks at the beginning of filter to satisfy latency condition, and increasing block sizes at later times in the filter to reduce computational complexity [2].

A non-uniform partitioning which has the best compromising between low computation cost and low work load on CPU is the first objective of this thesis. We aim to show that
using the broad memory of Graphic Processing Unit (GPU) accelerates operations for long filters.

1.2 Background

Convolution is defined as:

\[y(n) = x(n) * h(n) = \sum_{k=0}^{N-1} h(k)x(n - k) \]

where \(x(n) \) is a discrete-time input signal, \(h(n) \) is an impulse response of a filter, \(N \) is the length of \(h(n) \), and \(y(n) \) is a discrete-time output signal. The convolution summation can easily be implemented using a direct form of Finite Impulse Response (FIR) filter. Convolving in time domain from equation 1.1 has no inherent latency at the output. However, by defining the computational cost of convolution as the number of multiply-add operations per output sample, it can easily be derived that increasing the length of filter will result in linearly increasing the computational cost. Consequently, this method cannot be considered as a solution of performing long convolutions in real time.

There are some methods in frequency domain which are more efficient than convolution in time domain. The Discrete Time Fourier Transform (DTFT) of a discrete sequence converts a signal into frequency domain. The DTFT of a discrete sequence is a continuous function of frequency. In practice, the sequence \(x(n) \) is finite in duration and the DTFT can be sampled at uniformly spaced frequencies. This sampling gives a new transform referred to as **Discrete Fourier Transform** (DFT)[3].

Multiplication of the DTFTs of two signals corresponds to their linear convolution in time domain. However, in the DFT domain, multiplication of the DFTs of two sequences does not correspond to linear convolution but **circular convolution** of the two sequences, that is,

\[x(n) \otimes h(n) = \sum_{m=0}^{N-1} x(m)H((n - m) \mod N) \overset{DFT}{\Rightarrow} X(k)H(k) \]

where \(\otimes \) denotes circular convolution, \(X(k) \) and \(H(k) \) are the \(N \)-point DFTs of \(x(n) \) and \(h(n) \), respectively, and the notation \((i) \mod j \) indicates integer \(i \) modulo integer \(j \).

Thus, the inverse DFT of \(X(k)H(k) \) cannot be used to obtain the linear convolution of \(x(n) \) with \(h(n) \). Therefore, \(IDFT\{X(k)H(k)\} \neq x(n) * h(n) \), where \(IDFT\{\cdot\} \) indicates the inverse DFT operation. However, it is possible to use DFT to compute the linear convolution of two sequences if the two sequences are properly padded with
zeros [3]. Consider that \(x(n) \) is nonzero over the interval \(0 \leq n \leq L - 1 \) and \(h(n) \) is nonzero over the interval \(0 \leq n \leq M - 1 \). If an \(N \)-point DFT is chosen such that \(N \geq M + L - 1 \), the circular convolution will be equivalent to linear convolution, that is, \(IDFT\{X(k)H(k)\} = x(n) \ast h(n) \). The requirement that \(N \geq M + L - 1 \) comes from the fact that the length of the output sequence resulting from linear convolution is equal to the sum of the individual lengths of two sequences minus one.

In order to use DFT for linear convolution, let \(x(n) \) and \(h(n) \) have support as defined in previous paragraph. Then, we can set \(N \geq M + L - 1 \) and zero pad \(x(n) \) and \(h(n) \) to have support \(n = 0, 1, \ldots, N - 1 \). The following steps must be done:

1. Take \(N \)-DFT point of \(x(n) \) to give \(X(k), k = 0, 1, \ldots, N - 1 \).
2. Take \(N \)-DFT point of \(h(n) \) to give \(H(k), k = 0, 1, \ldots, N - 1 \).
3. Multiply: \(Y(k) = X(k)H(k), k = 0, 1, \ldots, N - 1 \).
4. Take \(N \)-IDFT point of \(Y(k) \) to give \(y(n), n = 0, 1, \ldots, N - 1 \).

In practice, long data sequences needed to be filtered. That is, input signal \(x(n) \) is often very long especially in real-time signal monitoring applications. For linear filtering via the DFT, the signal must be limited size due to memory requirements. Therefore, we consider \(N \)-input samples at a time. If \(N \) is too large as for long data sequences, then there is a significant delay in processing that precludes real-time processing.

In Figure 1.1, the filtering process is illustrated. The input signal is first delayed and then passed through a data acquisition module. Afterward, the signal is delayed again and processed through a DFT-based linear filtering module. Finally, the output signal is delayed once more before being sent to the output device.

Therefore, as the first step for filtering of long sequences, the input signal should be segmented into fixed-size blocks prior to processing. Afterwards, we compute DFT-based linear filtering of each block separately via the Fast Fourier Transform (FFT) which is an efficient algorithm for calculating DFT. For FFT to be computed more efficiently, the length of blocks should be considered as integer powers of two. By using FFT algorithm, the order of computational complexity for larger \(N \) will be increased logarithmically \((O(\log N)) \), which is effectively reduced compared to linearly increasing of computational complexity in time domain. Finally, the output blocks should be fitted together in a way that the overall output is equivalent to the linear filtering of \(x(n) \). The main advantage of this method is that samples of the output \(y(n) = h(n) \ast x(n) \) will be available real-time on a block-by-block basis.
Two main approaches to real-time linear filtering of long inputs are: Overlap-Add method and Overlap-Save method. Overlap-save method is used in this thesis since it does not need to buffer the result of previous block, like overlap-add method [4], and therefore, it is easier to implement.

1.2.1 Overlap-save method for real-time processing

Overlap-Save method is also called as Overlap-Discard method [4]. Consider that we framed our input signal, \(x(n) \), into \(m \) blocks with \(L \) points and our filter, \(h(n) \) is a \(M \) points filter. For filtering each input block with \(h(n) \), an \(N \)-DFT is needed where \(N = L + M - 1 \). In order to deal with aliasing corruption, the support of input blocks should change into \(N \) points. This can be seen in Figure 1.2 where for visualisation purpose, it is considered that \(M < L \). Each input block \(x_m(n) \) for \(m > 1 \) has an overlap in the first \(M - 1 \) points with the last \(M - 1 \) points of the previous block \(x_{m-1}(n) \). For \(m = 1 \), there is no previous block. Thus the first \(M - 1 \) points are zeros. That is,

\[
\begin{align*}
 x_1(n) &= \left\{ 0, 0, \ldots, 0, x(0), x(1), \ldots, x(L-1) \right\} \\
 x_2(n) &= \left\{ x(L - M + 1), \ldots, x(L-1), x(L), \ldots, x(2L-1) \right\} \\
 x_3(n) &= \left\{ x(2L - M + 1), \ldots, x(2L-1), x(2L), \ldots, x(3L-1) \right\} \\
 &\vdots
\end{align*}
\]

\((1.3) \)

\[\text{Figure 1.2: Input signal blocks for Overlap-Save method [4]}\]

The input blocks \(x_m(n) \) are now of length \(N \) and they do not need any zero-padding. Afterwards, we take \(N \)-DFT of \(x_m(n) \) to give \(X_m(k), k = 0, 1, \ldots, N - 1 \). The second step is to take an \(N \)-DFT of \(h(n) \). But, a zero-padding of \(h(n) \) is required to change its support from \(M \) points to \(n = 0, 1, \ldots, N - 1 \). Since the filter is always
the same for all the input blocks, only a one-time zero-padding is sufficient. An \(N\)-DFT of \(h(n)\) gives \(H(k), k = 0, 1, \ldots, N - 1\).

The third step is to multiply \(X_m(k)\) and \(H(k)\) to get \(Y_m(k) = X_m(k)H(k), k = 0, 1, \ldots, N - 1\). Finally, to obtain the filtered input in time domain, we take \(N\)-IDFT of \(Y_m(k)\) to give \(y_m(n), n = 0, 1, \ldots, N - 1\). According to Figure 1.3, the first \(M - 1\) points of each output block must be discarded and the remaining \(L\) points of each output block are appended to form \(y(n)\). That is,

\[
\begin{align*}
y_1(n) &= \{ y_1(0), y_1(1), \ldots, y_1(M - 2), y(0), \ldots, y(L - 1) \} \\
y_2(n) &= \{ y_2(0), y_2(1), \ldots, y_2(M - 2), y(L), \ldots, y(2L - 1) \} \\
y_3(n) &= \{ y_3(0), y_3(1), \ldots, y_3(M - 2), y(2L), \ldots, y(3L - 1) \} \\
&\vdots
\end{align*}
\]

\(\text{(1.4)}\)

\[\text{Figure 1.3: Output signal blocks for Overlap-Save method [4]}\]

1.3 Definitions

In order to avoid any misunderstanding, setting some definitions could be useful.

BRIR and HRIR

A Binaural Room Impulse Response (BRIR) consists of two Room Impulse Responses (RIRs) for a left and right ear. Each RIR is called a filter for shorter notation. A Head Related Impulse Response (HRIR) is a filter which corresponds to a specific head position. The coefficients of HRIRs varies for different head positions in order to convey...
the characteristics of the room for any head position. An example of RIR is shown in Figure 1.4. From the figure, it can be seen that the impulse response of filter has large coefficients in the beginning. As the reverberation of a signal in a room is attenuated by passing time, the coefficients are decreasing as well.

![Figure 1.4: A Room Impulse Response with 400 milliseconds length](image)

Block

Dividing filters into shorter blocks is necessary for efficient convolution. The smallest division of filter on which block transform is operating, is called a *Block*.

Partition

Filters could be divided into shorter blocks in two different main ways: *uniformly*, that is when all the blocks have the same length, and *non-uniformly* when the size of blocks varies. No matter how it is divided, the combination of all blocks of a filter is called a *Partition*.

Segment

All blocks which have the same length create a *Segment*. It is clear that in uniformly partitioning, there is only one segment in a filter’s partition. The length of blocks within a segment is called *Blocklength*, and the number of existed blocks in one segment is called *Multiplicity*. If the blocklength considered to be longer, then the multiplicity will be reduced. Therefore, the number of times that overlap-save method should be applied will be decreased and its direct effect will be decreasing the computational complexity of the convolution. Blocklength of the first segment in a partition is restricted by the latency condition. This condition will be clarified in Chapter 3. The motivation to
use a non-uniform partition is to decrease the computational complexity. Hence, other segments at later times should have longer blocklength. It can directly be derived that blocklength of segments within a partition is always an increasing sequence.

Optimal Filter Partition

There are several possible non-uniform partitioning for a filter. In order to choose the best one, a cost analysis is needed to measure the computational costs for the non-uniformly partition convolution. The cost function used in this thesis is the one introduced in [5] in which the costs are assessed by the amount of computation per output sample. This will be explained in more details in section 4.2.1.

Schedule

All blocks of a partition should be convolved with input samples. The time for convolving each block should be chosen appropriately in a way that convolution by a block transform starts when enough input samples are accumulated. This time will be referred to as a starting time slot for each block. There could be latency in the result of convolving with first block. But since the first output is generated, results should always be ready to be heard at the output. This constraint defines a deadline for computation of each block so that the computation must be finished before the deadline. A schedule which defines starting time slots and deadlines for all blocks of a partition is called an acceptable schedule.

Load Balancing

It is very important for the demand on a processor to be uniform as much as possible. That is, the processor should have equal computation load over time. To meet this goal, the cost function might be use again. Using different schedules, the cost function could estimate the cost in each processing step. The schedule which results with the lowest Mean Absolute Deviation (MAD) from the mean of cost will be chosen. Using multi-threading on CPU could also result in better load balanced demand on CPU.
Chapter 1. Introduction

1.4 Thesis organization

The remainder of this thesis is organized as follows:

In Chapter 2, the uniformly partitioning algorithm is explained and the advantages and disadvantages of using it is investigated. Moreover, an overview of the related works about efficient convolution is given, using both uniform and non-uniform partitioning.

In Chapter 3, the problem is stated and the contribution of this thesis is clarified.

In Chapter 4, the modeling is given, the work space in which all the research has been done is introduced, and the architecture of implementing the non-uniform algorithm on both CPU and GPU is elaborated.

In Chapter 5, the result of executing the non-uniform algorithm on GPU is shown and compared to CPU implementation.

Finally, in Chapter 6, the important conclusions are summarized and some ideas are presented which might be beneficial for future work.
Chapter 2

Survey of related works

2.1 Uniformly partitioning

Room Impulse Responses could have duration of several seconds. An RIR of only two seconds which has been sampled with frequency rate of 48000 Hz, has 96000 samples and the overlap-save method needs to collect the same number of samples from the input since the length of an input block and a filter used in the overlap-save method is considered to be equal due to easier implementation. Therefore, there will be a delay of 96000 samples in the results plus the calculation time. This is clearly a significant delay in the output which is unacceptable. The solution to this problem is given by exploiting the linearity characteristic of convolution: the filter can be partitioned into shorter blocks and the result of each block could be calculated separately. The time for convolving a small block of a filter is much less than convolving the whole filter. Therefore, the latency will be decreased significantly [1].

The easiest partitioning is uniformly partitioning in which all the blocks have the same length as equal as the length of input block. Deciding about this length depends on the latency condition, i.e. the maximum acceptable latency for gathering the input samples. A common size for an input signal with frequency sampling rate of 48000 Hz is 256 samples per block. Using these settings, the latency will be $\frac{256}{48000} \approx 5.3$ ms which is easily negligible.

The linearity of convolution requires the result of convolving each block of the filter response with the input signal to be delayed according to the position of that block within the filter. That is, the result of convolving a block which starts at sample p within the filter must be delayed by p samples. Summing the delayed results of all blocks yields the output. This procedure is shown in Figure 2.1 for a filter divided into
four blocks. Since the partitioning is uniform, then: \(d_3 - d_2 = d_2 - d_1 = d \), where \(d \) is equal to the latency condition 5.3 milliseconds.

\[
\begin{align*}
 d_3 - d_2 &= d_2 - d_1 = d, \\
 \text{where } d &= \text{equal to the latency condition } 5.3 \text{ milliseconds.}
\end{align*}
\]

\[\text{Figure 2.1: Long filter uniformly partitioned to four blocks (top), Parallel structure for its convolution (bottom)}\]

Careful attention to this procedure shows that the first block of filter should have zero delay in its result. Since the overlap-save method imposes a delay, we need to use a hybrid model in which the first block \(h_0 \) is always be computed using the direct form FIR filter, while the rest of blocks are convolving using the overlap-save method [1]. Although for a typical Digital Signal Processor (DSP), block transform convolution is more efficient than direct form filtering for samples more than or equal to 64, this is the accepted trade off to have zero input-output delay [2].

An equal parallel structure for the blocks which are convolved using the overlap-save method is presented in Figure 2.2. Given the samples of an input block \(x(n) \), the computation time for each block of the filter should not exceed 5.3 milliseconds, so that the result of each block will be ready in time to be sent to the output. Hence, the needed delay, \(d = 5.3ms \), for the second block \((H1) \) is provided by the computation time of the overlap-save method and we do not need to apply any delay for this block. This is the case for all the blocks. Therefore, their needed delay will be subtracted by one \(d \). According to the linearity of convolution, a delay block could also be inserted in the beginning of the block diagram.

Using the fact that the same input block is needed for computing the convolution of all the blocks, a very efficient optimization is possible in a uniform partition. That is, FFT of the input block can be calculated only once and the delay might be applied in frequency domain. Also, one IFFT after summing all the result would be sufficient. This optimization is called \textit{Frequency-domain Delay Line (FDL)} by Garcia[2]. Using
FDL has a great effect on reducing the execution time of convolving long filters. This is shown in Figure 2.3.

In order to gain a clear idea about how an input block convolves with blocks of a uniformly partitioned filter using the overlap-save method and the FDL optimization, an example of one input channel and a binaural output is shown in Figure 2.4 where each square block represents one sample. In this example, a BRIR should be convolved with an input block to create binaural output. The length of BRIR, F1 and F2 shown in green, is 12 samples and the input block has 4 samples. Consequently, blocks of the filters should also be of length 4. First blocks of the BRIR are not shown in the Figure since they should be convolved with the input in time domain. Each two blocks of both filters F1 and F2 are already zero-padded and transferred into frequency domain as it is required in the overlap-save method. The signal processing could be divided in three phases: input processing, multiplying, and output processing [7].
Chapter 2. Survey of related works

Input Processing

The current input block, shown in orange, should be concatenated to the previous block, shown in dark orange, which is called recent input block. For the first time of running when there are no recent input samples, the current block should be concatenated with zeros of the same size. Then they should be transformed into frequency domain, shown in blue. Afterwards, they should be inserted into the FDL’s buffer. The size of this buffer is twice the length of all the block of the filter which should to be convolved with the input block in the frequency domain. The reason for doubling the size is emerging imaginary parts for each sample after taking the FFT. Before inserting the result of FFT into the buffer, a wrapping is necessary so that the previous calculated input will be preserved. The default values in the FDL’s buffer are all zero.

Multiplying

In this phase, the latest inserted complex values in the buffer are multiplied by the FFT of the first block of the filter which is transformed into frequency domain. The wrapped values of the buffer will be multiplied by the next block of the filter which corresponds to convolving the delayed block of the input with that block. By Buffering the FDL, all the needed convolutions are executing with only one multiplication command.
Output processing

The results of all blocks, shown in purple, should sum up and its Inverse-FFT, shown in yellow, should be calculated. According to the overlap-save method, only the second half of the result should be kept and the first half should be discarded. The number of samples in the output is equal to the number of given input block as expected.

2.2 Non-uniformly partitioning

Uniformly partitioned convolution could solve the imposed problem of latency by using the block transform. However, even after all the optimization, the computational cost is still increasing drastically for longer filters because of increasing the number of complex multiplication/adds. Therefore, this algorithm becomes impractical for very long room impulse responses. In order to reduce the computational complexity, the number of blocks should be reduced. But that is only possible if the length of each block increases which results in an unacceptable large delay. Non-uniformly partitioning emerged to overcome this problem.

Having low latency together with low computational complexity is only possible when first blocks of a filter has small length and later blocks have larger length. Splitting the filters could follow any pattern which is not uniform. Designing the best partition is the challenge for researchers and different algorithms have been proposed. Some of these algorithms are explained briefly in the following.

2.2.1 Efficient convolution by Gardner

Gardner was one of the very first researchers who worked on this problem. He proposed a particular non-uniform partition in [1] in which the heading partitions have shorter length and the length is doubled every two blocks. His goal was to achieve the result without input-output delay. Therefore, his model is a hybrid of direct form FIR filter for the first block and overlap-save block convolution for the rest of blocks. This idea has been exploited in this thesis too.

Another special aspect of his model is to make the demand on the processor to become uniform over time. He achieved this aim by setting a constraint that all the blocks of length M, except the first one, should start at least $2M$ samples into the filter while the needed time of computing output for each block should be the same amount of waiting time for accumulating its corresponding M input samples. He also proposed a scheduling by defining three priority levels of tasks: low priority, medium priority and
high priority. In order to have the result ready before the deadline, a high priority task should never be interrupted. Likewise, low priority tasks should always be interrupted before tasks with medium priority.

By this algorithm, he managed to reduce computational complexity compare to uniform partitioning while low latency condition is not violated.

2.2.2 Multiple-FDL Convolution by Garcia

Later, Garcia presented another model in [2] called Multiple-FDL Convolution. He correctly argued that although Gardners model was more efficient than uniformly partitioning, the FDL optimization used in uniformly partitioning was still a very effective way of optimizing which could be exploited in a non-uniform partition as well. In other words, having more multiplicities of blocks within each segment of a non-uniform partition could reduce computational complexity even more than having longer blocks with repetition of only two times. He showed that the cost of Multiple-FDL Convolution is more than twice as efficient as the non-uniform model given by Gardner.

This Multiple FDL model seems to be the best possible partitioning. However, deciding about the number of segments and multiplicities is still challenging. Garcia proposed an algorithm to find the best partition and its schedule, but only to have the lowest computational complexity. He did not take the load of work on the processor into account.

2.2.3 Other Algorithms

Even with the model presented by Garcia, for long filters a lot of computation is still needed. Some studies try to reduce computational complexity such as [8]. One important design problem in implementing the non-uniform partitioning is to obtain the correct schedule for all blocks. However, the most challenging part is load balancing since the computations for small blocks should be performed at every processing step, while other blocks should wait for accumulating enough input samples. It could logically be derived that in order to have a uniform demand on processor, the load of calculation for longer blocks should be split within every step. It is shown in [6] that implementing a schedule using thread synchronization always outperforms other scheduling. A thread synchronization can be done by multi-threading in C++. It will force all the cores of Central Processing Unit (CPU) to cooperate in computations. Also several Events will be defined to keep track of the schedule for each block. Therefore, CPU load will be reduced significantly. Thread synchronization will be elaborated in Chapter 4.
It is worth to mention that Non-uniformly partitioning is more competent than uniformly partitioning only in case of having long filters. Otherwise, implementing the whole process for non-uniformly partitioning would be more expensive than the computational cost of the uniform partition. This is why there are still some studies on uniformly partitioning such as [9].
Chapter 3

Problem statement and main contribution

Although lots of efforts have been done to find an efficient non-uniformly partitioned block convolution with an even distribution of load on the processor, it still remains as a problem. An algorithm will be presented in this thesis for finding a partition with minimum cost and the best scheduling to result in the best balanced load of work. Thread synchronization plays an important role to balance the workload on CPU by controlling the operation. However, if CPU does not have multiple cores, the thread synchronization cannot have a strong effect. Moreover, other applications might demand a high workload on CPU and calculating the convolution might be forced into an imposed delay. Furthermore, calculating a convolution on multiple channel audio systems, such as 5.1 or even 22.2 surround systems causes a very high processing load.

Using Graphic Processing Unit (GPU) as a co-processor could solve these problems. Nowadays, many new applications are trying to take advantage of its highly parallel structure and efficient computing capabilities for their computationally-intensive work. Our hypothesis is that a GPU with high number of computational units could effectively be used in vector-based operations of the convolution.

The idea of using GPU for fast convolution on uniformly partitioning was presented in [10]. Also a comparison of highly configurable CPU and GPU convolution engine was given in [7]. They show that in simulating a room reverberation with long filters for multichannel systems, GPUs are necessary. However, a Non-Uniformly Partitioned Block Convolution on GPUs was never implemented. This study is accomplished in this thesis.
Chapter 4

Problem solution

4.1 Modeling

4.1.1 Partitioning

The very first designing problem for the convolution is how to split a filter into a partition. It should be noted that not all possible partitions are realizable. A block of size M should always be placed in a partition no sooner than M samples into the filter, except for the first block. The reason lies in two constraints. First, computation of each block takes some time, at least one processing step, and it cannot be done instantaneously. Second, the needed input samples for each convolving block of size M are equal to M due to defined constraint in overlap save method. Therefore, if a block of size M placed into a partition sooner than M samples into the filter, the result will be ready after its deadline and nothing would be sent to the output in some steps. Clearly, this is not desirable since it violates having no input-output delay.

Two different partitions for a filter of length 1536 are shown in Figure 4.1 which could illustrate the difference between a realizable and non-realizable partition better. Let’s assume that an input block of 256 samples is ready and the sampling frequency is equal to 48000 Hz. Therefore, the duration of each processing step is 5.3 milliseconds. As mentioned in section 2.1, first blocks should always be convolved in time domain to have zero input-output delay. Therefore, the output samples for first processing step are ready without any delay. During listening to these results in the output, the next 256 samples of second input block are accumulating. Meanwhile, the computation of convolving second block of the filter with the first input block is executing. This computation should be finished before the beginning of next processing step so that in the second processing step, the result of second block could be heard in the output. Now, there are only 512
samples of inputs ready and they could be convolved with third block of partition shown in Figure 4.1(a). This computation should be finished by the end of second processing step so that the results are ready before deadline and samples of output could be heard during third processing step.

\[\begin{array}{cccc}
256 & 256 & 512 & 512 \\
\end{array} \]
(a)

\[\begin{array}{cccc}
256 & 256 & 1024 & \\
\end{array} \]
(b)

Figure 4.1: An example of a realizable(a) and non-realizable(b) partition

However, the third block in partition of Figure 4.1(b) requires 1024 samples of inputs to do the calculations. Clearly, the algorithm has to wait two more processing steps until two more input blocks are accumulated. This will cause an input-output delay since the inputs are keeping coming while no corresponding output is generated in these two steps. Therefore, this partition is considered as non-realizable.

An important note here is that the processor is capable of executing operations for blocks longer than 256 samples within one processing step. It is just a matter of scheduling to have the results ready in time. In this algorithm there is no need to the constraint given in [1] in which computation of block size \(M \) should take time equal to the length of that block.

Optimal partition

Once all the possible partitions are found for a filter, the optimal partition should be chosen between them. That is, the partition for which the computational complexity is minimum. For this purpose, a cost function is needed in order to calculate the cost of computation for each partition. Then it is easy to select the partition which has minimum cost. The cost function used in this thesis is the one given in [5]. They derived this cost function based on the arithmetic complexity. The result is expressed in floating-point operations per sample (FLOPs/sample), where FLOPs is a measure of computer performance.

Within each partition, the cost function for each segment is defined as:

\[
CF(b, m) = 4k_{FFT} \log_2 2b + 8m - 1 + \frac{8m - 2}{b} \quad (4.1)
\]
Where \(b \) is the blocklength of each block and \(m \) is the multiplicity of blocks within the segment. The proportional constant \(k_{FFT} \) depends on the efficiency of FFT which is obtained in [5] approximately equal to 1.7. They achieved this approximation by curve fitting for block sizes \(1 \leq N \leq 2^{17} \). Blocklengths are always considered as an integer power of two in order to optimize the FFT calculations. The length of FFT calculated by IPP must be a power of two. To have the overall cost of the partition, the results for all segments should be summed up according to equation 4.2.

\[
CF(p) := \sum_{i=1}^{k} CF_i(b, m) \tag{4.2}
\]

Where \(p \) stands for partition and \(i \) is the number of segments. CF of different partitions for a given filter is shown in Table 5.1.

4.1.2 Scheduling

Another important design problem is Scheduling. Even if a partition is realizable, if the scheduler does not work properly, the same problem in Figure 4.1(b) will happen.

In order to know when a block should be calculated, a time slot should be defined for each block to determine the processing step in which each input block should be convolved with that block. Also, a deadline is needed to investigate that the result is ready in time. The first block which convolves with the input in time domain does not need a scheduler. Also the time slot for second block should always be zero so that the calculation starts immediately. Accordingly, the deadline for second block should be equal to 1 so that the result is ready by the end of first processing step and it could be heard in the output during second processing step.

The example shown in Figure 4.2 could illustrate that several schedules are possible for a partition of filter with length 4096. First block is not shown in the Figure since it does not need a scheduler. These schedules are shown in Table 4.1.

| 256 | 256 | 256 | 512 | 512 | 1024 | 1024 |

Figure 4.2: An example of a realizable partition
To sum up, each block could start its computation once enough input samples are gathered and it must finish before the deadline. The deadline for each block is changing non-linearly since only 256 samples will be heard in output at each processing step. Therefore, for blocks which their prior blocklength is longer than 256, the deadline will be increased until the step in which all previous results will be heard in the output.

The number of processing steps needed to cover all blocks of the filter can be calculated from equation 4.3.

\[
\text{Number of timeslots} = \frac{\text{Length of filter} - \text{length of last block}}{256} + 1 \quad (4.3)
\]

The schedules shown in Table 4.1 are all practical without violating zero input-output delay. But which one should be chosen in the implementation?

4.1.3 Load balancing

Clearly, an algorithm which causes a non-uniform demand on the processor is not desirable. In order to avoid this situation, a load balancing is needed. Once again the equation 4.2 will become functional. This time the cost function per cycle (processing step) should be calculated for each schedule. By taking average of the costs between all cycles for each schedule, Mean Absolute Deviation (MAD) could be calculated.

\[
MAD = |\text{average cost} - \text{cost per cycle}| \quad (4.4)
\]
The schedule which results in lowest MAD will be chosen to gain an even distribution of computational load.

4.1.4 Multi-threading

Every process on CPU has at least one thread. The operating system gives a small memory to each program of the process in order to run all operations and this one thread will keep track of them. However, in complicated programs like convolution engine, it is not necessary for the thread to keep track of all the steps. It is possible to define a few *socket threads*. Several threads could work in parallel and report their status to these sockets. These threads are called *worker threads*. Whenever a new status is reported to sockets, the main thread could intervene to manage later steps.

Multi-threading has several advantages. The most important one is that the operating system could assign each thread to a different core of processor. If the processor has multiple cores, this will reduce CPU load effectively. Another benefit is that the main thread does not have to poll the socket threads constantly which would be a wasted CPU cycle. There are two main commands at sockets sending by worker threads: *signal* and *wait*. The main thread should go to sockets only after getting a signal command.

For convolving an input audio signal with a non-uniform partitioned filter on CPU, using the multi-threading is crucial in order to reduce the workload.

4.1.5 OpenCL framework

OpenCL (Open Computing Language) is an open standard for general purpose parallel programming on processors such as CPUs and GPUs (including both NVIDIA and ARM) [12]. For implementing the algorithm on GPU, first we should know the characteristics of this language.

As it is shown in Figure 4.3, the openCL framework consists of a context which enables sharing memory. Different devices must be on the same context in order to be able to compile a common code on them. In the application of this thesis, two devices are used: Central Processing Unit (CPU) and Graphic Processing Unit (GPU). It should be noted that a CPU or GPU with multiple cores will also be considered as one device. Therefore, to start setting up, first the devices should be introduced to OpenCL. Then the context should be created. For each device, at least one command queue is needed. All works are submitted through these queues. Commands on a queue will be executed in order unless a command is mentioned to be out of order. In that case, the run time will take
the decision that which work has priority. Other components are explained separately in the following subsections.

Figure 4.3: OpenCL framework

Programs and Kernels

Kernels are the heart of programming which are like functions that execute on OpenCL devices. They work based on data parallelism and task parallelism which is completely appropriate for GPU structure with lots of computational units. A program is a collection of kernels which can be considered as a dynamic library. For a program to be executed, first it should be created by referring to the collection of kernels as the source code. Then it should be compiled by a command of "build" in which the devices must be specified. If there is an error in building the program, there is a list of all possible errors during building which makes debugging easier. Each function of the program can be executed only when its corresponding kernel is executed.

For executing a kernel, first it should be created by giving address of the program and name of the function corresponds to that kernel. Then the used arguments should set and finally it should be enqueued which means that the execution command of kernel will be sent to the command queue to wait for its turn to be executed.

It should be emphasized again that a kernel cannot be executed without building its program first, and a program cannot be created if the source code is not a collection of kernels. They are highly dependent to each other.
Memory objects

There are two memory resources available: Buffers and Images. For one dimensional computations, buffers are proper. They are simple chunks of memory to which kernels have access. A buffer can easily be created to allocate memory in a context with a specific size and use (read or write or both). Kernels can access buffers through the context and that is how they set their arguments and save their results. The size of needed memory should always be given to buffers in bytes. Reading and writing in buffers is a work which its command will also be sent to the command queue.

To have a more exact view of memory structure, memory model in OpenCL is given in Figure 4.4. As it is shown in the Figure, transmitting data between Host (which is CPU in this application) and the compute device (which is GPU) is only possible through the Global or constant memory. This memory is also accessible by all work groups. In order to accelerate the data transmission within GPU, it is better to define several work groups. Each work group has a local memory which its size will be defined by the local dimensions. They could also split into shorter tasks, known as work item, with specific private memory. Only a work item has access to its private memory. Similarly, each work group has access only to its own local memory.
Chapter 4. Problem solution

The advantage of having work groups is that synchronization becomes possible. Different tasks could be done simultaneously within different work groups while no synchronization is possible on global memory.

If work groups are defined, the address of local memory should also be given to the buffer when it is creating.

Queues - Events

As it is mentioned before, each queue can execute its command in order or out of order. For in order commands, the ordered kernel just starts executing and the run time doesn’t necessarily wait for the result. However, if it is necessary for a code, it is possible to lock the command queue until the results are acquired. This can be done by a boolean blocking option.

Events can impose an out of order command in queues. Out of order command becomes functional when a kernel has high priority. It is possible for the run time to force that kernel to execute at once. Events are used to control the execution between commands and also to synchronize different queues in host and other devices. Therefore, they are very helpful in optimization.

4.2 Implementation

4.2.1 Work space

Virtual Studio Technology (VST) is a well-known interface for audio software. The convolution engine used for all the tests in this research is a VST plugin which runs in AudioMulch, a windows VST host software. This plugin is capable of having any desired number of input and output channels. Number of filters needed in the convolution engine will be determined by the multiplication of the number of inputs and outputs. Within the configuration of the plugin, mappings are defined to clarify which input and filter should be convolved together and to which output channel the result should be sent.

There is also a set of Head Related Impulse Responses (HRIRs). As mentioned in the introduction, the objective of this convolution engine is to give the impression of hearing those signals inside a room. As one might change his head position in the room, the same feature is available in this convolution engine. Listener’s head position can be tracked by a webcam and the filters corresponding to that head position will be chosen.
between the set of HRIRs. HRIRs existed in this convolution engine could cover the head rotation from -45 to 45 degree with accuracy of one degree.

Due to changing the head position of listener within a process time, fading phenomenon will happen in the sense that the result of convolving with previous filters will be attenuated in the outputs while the result of current filters will be intensified. This will be done by a cross-fader which will be explained in more details later.

The explained procedure is shown in Figure 4.5 when only one input channel and two output channels exist (Binaural output). The cylinder shown in the left side of Figure 4.5 consists of all BRIRs from which one will be chosen by filter selection according to the head position of listener. If the head position changes, another BRIR will be selected. Input M will be convolved with both recent and current BRIR. The results of the left RIRs will fade by left cross-fader, and the results of the right RIRs will fade by right cross-fader. Therefore, the listener could hear a faded output in both his right and left ears.

![Figure 4.5: The listener's head position is tracked by a standard webcam to select the proper BRIR filters for real-time convolution. Both current and recent selected BRIRs are convolved, followed by a crossfading for eliminating audible artifacts [7].](image)

Block size of AudioMulch needs careful attention in the process since that should obey the latency condition described in section 2.1. The default block size in AudioMulch 2.1.2 is equal to 256 samples which correspond to $5.3ms$ for sampling rate of 48000 Hz.
4.2.2 Downmixing and upmixing

As mentioned in previous section, a mapping existed within convolution engine. According to this mapping, each filter should only be convolved with the incoming samples from the input channel to which it is mapped. Similarly, the result of computation should be sent only to the output channel which the mapping has determined. If the number of input channels are more than output channels, accordingly several results will be sent to each output channel. Therefore, they should mix to produce the proper output. The easiest way of downmixing is to multiply the summation of those results by a scaling factor.

Depending on the configuration of convolution engine, filtering fewer number of input channels and sending them to more number of output channels might also occur. This will be done by upmixing.

4.2.3 Fading

If the head position of listener changes during listening to the room reverberation, a fading feature is anticipated. To make this goal feasible, the prior result should be kept for one processing step so that it could fade into the new result. Clearly, fading imposes a need of more memory and more computations. However, it is necessary to eliminate the audible artifacts.

Different functions could be used for fading. Here, one linear and one non-linear function is implemented. In linear fading, result of recent output will be faded out according to equation 4.5 and current result will be faded in according to equation 4.6. For non-linear fading, a cosine function is used according to equations 4.7, 8. The summation of fade-in and fade-out will be sent to the output. These functions are shown in Figure 4.6 for a block length equal to 256.

\[
Fade_{out} = 1 - \frac{\text{recent result}}{\text{blocklength}} \quad (4.5)
\]

\[
Fade_{in} = \frac{\text{current result}}{\text{blocklength}} \quad (4.6)
\]

\[
Fade_{out} = \cos \left(\frac{90\pi \times \text{recent result}}{180 \times \text{blocklength}} \right) \quad (4.7)
\]
\[\text{Fade}_\text{in} = 1 - \cos \left(\frac{90\pi \times \text{recent result}}{180 \times \text{blocklength}} \right) \] \hfill (4.8)

Figure 4.6: Linear (a) and non-linear (b) functions for fading

4.2.4 Architecture in CPU

Although implementing on CPU is not the aim of this thesis, this section is given in order to get a good understanding of how complicated the algorithm on CPU is, and to have a basis for a comparison with GPU implementation. Moreover, not all the steps of the algorithm can be done on GPU since reading and writing on it is quite expensive. Designing the optimal partition and convolution of the first block in time domain will still be performed on CPU. Therefore, using CPU at some levels is inevitable.

The programming language used for CPU part in this thesis is C++ since it is implemented on a wide variety of hardware and operating system platforms. Microsoft Visual Studio is an Integrated Development Environment (IDE) with several built-in languages including C++. The Dynamic Link Library (dll) is the plugin needed in AudioMulch which will be created by visual studio. The library used for executing Fast Fourier Transform (FFT) and other signal processing operations is Intel Integrated Performance Primitives (Intel IPP) which is a software library with highly optimized functions for this purpose [11].

A code written in C++ which is used to program an application, has several parts. Two of them are important to mention. *Constructor* is the part which executes only once in every time we run the application, and that is when the application is initializing. Another part is the one which executes every time a new input is given to the application during its run time. We call this part as *process*.

First step in the implementation is to find the optimal partition as described in section 4.1.1. Then, the FFT of all blocks should be computed for the chosen partition according
to the overlap-save method i.e. a block of size k must be appended by k zeros (zero-padding). Then, an FFT of size $2k$ must be calculated. These calculations should be done once in the constructor of code. Considering the work space described in 4.2.1, that is a large amount of computation since there might be so many filters used in the convolution engine, depending on the number of mappings. Moreover, the filters are HRIRs which consist of 91 different sets of coefficients for each filter to cover the head rotation from -45 to 45 degree. Having all these filters transformed into frequency domain before the process starts, is really necessary.

However, the rest of computations need to be done during the process since they are dependent on the input samples. These computations could also be divided in three major steps same as uniformly partitioning: input processing, multiplying, and output processing. But there are some substantial differences between these steps and the steps explained in section 2.1.

Input processing

Unlike uniformly partitioning, a need of buffering input is perceptible here since the length of input block should conform the length of convolving block, and blocklengths are longer than 256 samples in later segments. Once the length of current input samples is enough, they should be concatenated with recent ones. For the first time when there are no recent inputs, the current block should be concatenated with zeros of the same size. Then they are transformed into frequency domain. Afterwards, they should be inserted into so called Frequency-domain Delay line’s buffer. Prior to the insertion, a wrapping in the FDL’s buffer is required (see section 2.1).

Another important difference in non-uniform partition is that several FDLs are needed i.e. one FDL with a size of twice each segment for all existing segments. However, not all the FDLs are active when process is called. The wrapping and insertion in the FDL’s buffer is done only in the steps where enough input samples are accumulated for each FDL. For example, if an FDL corresponds to a segment with blocklength 1024, 4 blocks of 256 input samples should be accumulated. Then, those samples are concatenated with the recent block of the same size and their FFT is computed and inserted in their corresponding buffer.

Multiplying

It should be noted that all blocks of each segment should be multiplied by their corresponding buffers. Clearly, this step should also be executing only when the FDLs are
ready. In this work space, another important factor is to chose the correct transformed filter according to the head position of listener.

Output processing

In this step, the results of all blocks from the complex multiplication of each FDL are adding up together. Then an Inverse Fourier Transform is applied on the outcomes. Afterwards, each sample of all the IFFT results will be added to their corresponding samples. For sending the results to the proper output according to the mapping of the convolution engine, after applying the coefficients due to the probable upmixing or downmixing, the first 256 acquired samples will be sent directly. If fading is present, then the current samples of results should be fade-in and the recent samples should be fade-out. Summing the result of them will be sent to the output. But for the rest of samples, a buffering in the output is needed. Other samples will be saved in this output buffer and each 256 samples of them will respectively be added to the output at each later processing step.

Multi-threading

The three steps mentioned above, will not be executed for all the FDLs at every call of the process. The scheduling found according to section 4.1.3 which results in a balanced distribution of computational load on CPU, will determine which FDL’s should be processes. Keeping the track of this schedule is easier by using the thread synchronization. Even for a uniformly partitioned block convolution, multi-threading could be useful to reduce the computational load on CPU. To get a better understanding of how threads work, a synchronization of tasks using multi-threading for both uniformly and uniformly partitioning is explained briefly in the following.

For a uniformly partitioned convolution given in 2.1, the first socket thread can be placed after the first phase of computation, input processing. If the input is multi-channel, then the input samples coming from each channel can be processed in a different thread. When the inputs arrive, these threads should begin working. The command from threads on the socket is *wait* while they are computing. Once the FDL is ready, the command will change to *signal*. This signal command is also a trigger for next group of threads to begin. Another group of thread can compute the operations in phase two, multiplying. These threads also have a socket thread. When one FDL is ready, the corresponding multiplication could start and the processor does not have to wait for all the FDLs to become ready. However, during the computation of second group of threads, no new
values should be inserted in FDLs. Otherwise, the previous calculated values will be overwritten. To solve this problem, the first socket thread will lock those memory objects from use. The new calculated values should wait for the FDLs to become unlocked. Signal command on the second socket thread will trigger the next step. A third group of threads will do the output processing. If fading is required, the socket thread of output should wait for the signal from fading thread workers too.

Clearly, for a non-uniform partition more number of threads are needed. One way for splitting tasks between different threads in input processing is to define thread workers according to the schedule. That is, all blocks with equal length which have the same timeslot and same deadline could be placed in one thread. Once all the blocks of one FDL is calculated, signal command can be sent to the first thread socket. Later socket threads could be defined the same as uniformly partition. The only difference is that the number of threads will be increased by the number of segments in each partition since several FDLs are needed. As it may seem, synchronizing between large amount of threads is complicated. Two different thread synchronizations for non-uniformly partitioning are investigated in [6].

4.2.5 Architecture in GPU

As mentioned in section 4.1.5, the language used for programming GPU is OpenCL which its specification could be found in [12]. The basic idea in this algorithm is to implement filtering by using the optimized non-uniform partition selected in 4.2.1 since that was proved to be the best partition. Scheduling is not needed here since multi-threading does not play any role due to task parallelism property of kernels. It means that all the kernels will be running in parallel after execution, and no control is needed for managing the order of operations. Another important property in GPU is that having less buffers with longer size is more preferable since the kernels are working in data parallel structure. It means that with only one kernel execution, the code will be executed on all the data in that buffer simultaneously.

A block diagram of all processing steps is shown in Figure 4.7 to get a better overview. In order to have a better understanding, only one HRIR with monaural input and output is considered. In the first step, all the RIRs existed in convolution engine for every head positions will be sent to a big memory buffer, called f, on GPU by a write command (block a). Since block transform is required, these filters should be divided into blocks according to the optimal partition and each one should be zero padded by its own size (block b). Apple Inc developers provided an open source OpenCL-FFT for FFT implementation on OpenCL with high performance [13]. After taking FFT of all blocks,
the results will be saved in another memory buffer, called F, which is four times bigger than f (block c). The reason is that the result of FFT will be returned interleaved i.e. one real value and one imaginary. Clearly this needs a double size memory.

Later process should be done during the process. However, the required kernels should already be created and all the needed memory buffers should be anticipated. In each processing step, input samples should be sent to a memory in GPU (block d). As mentioned in section 4.2.4, buffering the inputs are necessary for a non-uniform partition. Therefore, a kernel should be executed in order to buffer the input samples (block e). Once enough input samples are accumulated in the buffer, another kernel should build concatenated block form recent and current input samples (block f). Clearly, enough input samples is relative for different segments. A loop should go through all the segments of the partition to check the blocklength of each segment. An if condition inside the loop should check whether enough input samples are acquired for each segment. After taking FFT of the concatenated input blocks, the result should be saved in FDL (block h). For the same reason as explained in input processing of CPU structure, a particular FDL is needed. According to what explained here, it sounds rational to be able to save all the result of accumulated input blocks of different size and if there was only one FDL, the data would be over written. The later steps will only be executed for the FDLs in which new values are inserted. Consequently, the computation for the segment with shortest blocklength (256) will be done at all processing steps, but for other segments, they could involve in filtering the input only when enough input samples are available.

Before inserting data in FDL, a kernel should wrap the previous data to implement the delay of previous blocks of inputs (block g). Then the complex values achieved in FDL should be multiplied by the complex valued resulted from FFT of filter (block i). Obviously, the right Head-related filter should be chosen within the big memory F which could be pointed out by an offset. Also, the FDL should only be multiplied by its corresponding segment within the filter.

A kernel should be executed to sum up the results of all blocks in each FDL (block j). Then an Inverse FFT of the result will be computed with OpenCL FFT provided in [13]. Considering the procedure in overlap-save method, only the second half of the results will be kept (block k). The result of IFFT is also given in interleaved format. Therefore, a kernel is needed to keep only the real values (block l). Having results of different sizes, brings up the obligation of buffering output (block m).

If during computation, the head position of listener has changed, now is the time to apply its effect. The result of buffering output form the recent head position should be preserved in a separate buffer. A kernel will fade out the result from recent head position while fading in the result of current one (block n).
Now the result is ready and the first 256 samples of buffered-output should be sent to the output. This will be done by a read command to transfer them from GPU to the output in CPU (block o). Rest of the values in buffered-output should be sent in later steps. Each 256 samples of this buffer should be wrapped in order to get one step closer to sending to the output (block p). In later steps, the next 256 samples of this buffered-output will be summed up with new results and they will be sent to CPU together so that all the results could be heard.

Figure 4.7: A block diagram of proposed algorithm

Generalizing this algorithm is easier now for more complicated structures. In case of having multi-channel inputs and outputs, when more filters are involved, all the filters should still be sent to one very big memory buffer and this part remains the same. But buffering inputs should be done for each filter individually, since the convolution engine is highly configurable and it is possible to have filters with different length. Obviously, the partitioning will change when the length of filter changes. Therefore, different Buffers and FDLs are needed. Consequently, the memory need will be increased and all the
memories needed from block e to block l will be multiplied by the number of filters. Also, a special attention to mapping is needed in order to select that which filter should be multiplied by input in block i. The needed buffer for the outputs will also increase to the number of output mappings. For deciding about in which output-buffer the result should be saved in block m, once again the mapping will become functional. If an output is used in the mapping more than once, the results of each time will be added together. Finally, the results will be sent from each output-buffer to its corresponding output in CPU.

It should not be forgotten that for having zero input-output delay, it was required to do the convolution for the first block of filters in time domain. This statement is still valid. Since writing in GPU and reading from GPU is quite expensive, the convolution in time domain should be computed in CPU same as before.
Chapter 5

Results

In this chapter, some tables and graphs are going to be presented to show how the implementation works, and to investigate whether the results agree to the expectations according to the hypothesis.

It was mentioned in section 4.2.1 that the best partition is chosen from the minimum result of cost function given in equation 4.2 for each partition. The cost function is measured in FLOPs. In order to show how it works, all possible partitions with their costs are shown in table 5.1 for a filter of length 4096 samples. Latency condition is considered 256 samples at frequency sampling rate of 48000 Hertz. The first block is not shown in the table since it always has to be 256 samples and it should be filtered in time domain.

The best partition for this example is uniformly partitioning which has the lowest cost. This result was expected since the filter length is short. Non-uniformly partitioning is more complicated and it can reduce computational complexity only in long filters.

The most important aim of this thesis was to show that non-uniform block convolution for long filters on GPU is more efficient than other algorithms. In [7] it is shown that implementing uniformly partitioning on GPU is more efficient than CPU for longer filters. As a rule of thumb, GPU implementation for non-uniformly partitioning is also faster especially since multi-threading for non-uniform implementation on CPU gets even more complicated.

The computer system on which the tests were running on, has a CPU and GPU with the following specification:

CPU: Intel (R) Xeon(R) X5675@3.07 GHz

GPU: NVIDIA GeForce GTX 560 Ti, GF114 Revision A1
Table 5.1: All possible partitions for a filter of length 4096 with their computational costs

<table>
<thead>
<tr>
<th>Possible partitions</th>
<th>Cost [FLOPs/sample]</th>
</tr>
</thead>
<tbody>
<tr>
<td>256(^{15})</td>
<td>180.66093</td>
</tr>
<tr>
<td>256(^{13}), 512(^{1})</td>
<td>239.61015</td>
</tr>
<tr>
<td>256(^{11}), 512(^{2})</td>
<td>231.56328</td>
</tr>
<tr>
<td>256(^{11}), 1024(^{1})</td>
<td>230.34180</td>
</tr>
<tr>
<td>256(^{9}), 512(^{4})</td>
<td>223.51640</td>
</tr>
<tr>
<td>256(^{9}), 512(^{4}), 1024(^{1})</td>
<td>289.29102</td>
</tr>
<tr>
<td>256(^{7}), 512(^{4})</td>
<td>215.46954</td>
</tr>
<tr>
<td>256(^{7}), 512(^{2}), 1024(^{1})</td>
<td>281.24414</td>
</tr>
<tr>
<td>256(^{7}), 1024(^{2})</td>
<td>206.22461</td>
</tr>
<tr>
<td>256(^{9}), 512(^{8})</td>
<td>207.42267</td>
</tr>
<tr>
<td>256(^{9}), 512(^{8}), 1024(^{1})</td>
<td>273.19727</td>
</tr>
<tr>
<td>256(^{9}), 512(^{4}), 1024(^{2})</td>
<td>265.17383</td>
</tr>
<tr>
<td>256(^{9}), 512(^{8})</td>
<td>199.37579</td>
</tr>
<tr>
<td>256(^{9}), 512(^{4}), 1024(^{1})</td>
<td>265.15039</td>
</tr>
<tr>
<td>256(^{9}), 512(^{2}), 1024(^{2})</td>
<td>257.12695</td>
</tr>
</tbody>
</table>

A filter of length 5,461,33 seconds is considered as the starting filter length which has 262,144 samples at frequency sampling of 48,000 Hz. The filter length is chosen to be a power of two in order to have more efficient computation. Since the implementation in this thesis was first try of the kind, there are some memory limitations which force us to increase the latency condition in order to investigate if the algorithm is working properly. Therefore, the shortest block length is considered equal to 8,192 samples in Figure 5.1. It should be noted that this is just a limitation, not an error, and the result is absolutely reliable for any latency condition. The computational cost is measured in time by averaging the results from 25,000 run to have a more solid outcome. The system is considered to be binaural and the filter length is multiplied by two every time. It can be seen that the computational effort on CPU becomes almost double by doubling the filter length, while the computational cost on GPU is almost constant. Also, the computational time on CPU increases even more when fading has to be calculated additionally since the computational load is increasing. However, fading does not have any affect on the computational cost on GPU.

The CPU load used by the test program during computation of uniformly partitioning was almost 14% without fading and 25% with fading. But this load stays constant at 4% during computation on GPU.

The same experiment is done with latency condition of 16,384 and 32,768 samples. The results are shown in Figures 5.2 and 5.3 respectively.
Figure 5.1: Computation time for a binaural system with latency condition of 8192 samples without cross fading (a) and with cross fading (b)

Figure 5.2: Computation time for a binaural system with latency condition of 16384 samples without cross fading (a) and with cross fading (b)

Figure 5.3: Computation time for a binaural system with latency condition of 32768 samples without cross fading (a) and with cross fading (b)
The implementation which is chosen to be more efficient is the one with less computational time. Therefore, for filters with the lengths longer than the crossing points, GPU implementation is more efficient. Obviously, the computational time should be shorter than the length of filter to have zero delay.

As Figures show, the computational cost of non-uniformly partitioning convolution on GPU almost stays constant while changing the filter length. This feature is of great importance. Also the CPU load is reduced effectively compare to uniformly partitioning convolution on CPU. The reason for having CPU load while the computation is done on GPU is that choosing the best partition and convolving the first block in time domain is still performed on CPU.
Chapter 6

Conclusion

In this chapter, a conclusion will be derived from the obtained result given in previous chapters. Also, some new ideas are going to be presented for a probable future work.

It was shown in this thesis that non-uniformly partitioning could reduce computational complexity while keeping the latency condition. Moreover, a hybrid model of convolving in time and frequency domain was implemented to result in no input-output delay. Furthermore, a method for choosing the best partitioning was explained. Also, the structure of implementation on CPU was elaborated and using multi-threading was clarified to attain a load balanced demand on CPU.

Later, it was argued that even after all the considerations, the computational complexity for very long filters could still be problematic. Therefore, GPU was presented as a co-processor, and the framework of openCL was explained which is used for programming on GPU. Finally, an algorithm was presented to do the convolution by using Non-uniformly partitioned block convolution on GPU.

As confirmed by results of Chapter 5, increasing the length of filter while using GPU has a negligible affect on the processing time. The time will stay constant also during convolution on multiple channel audio systems and fading procedure. Therefore, the computational time by using GPU in non-uniformly partitioning for filters long enough will be more efficient than using CPU. This length of filter depends on the optimal partition chosen, the number of channels in audio system, and the presence of fading. Task parallel and data parallel structure of GPU could result in larger efficiency when the number of computations are more. Moreover, by using GPU the working load on CPU will be reduced significantly.

However, there are some optimization which could be done in order to make using GPU more efficient even for the filters with shorter length. Writing to and reading from
GPU is the most expensive command used in the algorithm which causes the algorithm not to work properly for shorter length filters. A future work could be implementing a hybrid model between CPU and GPU in which blocks with shorter blocklength will be computed on CPU and blocks with longer blocklength on GPU. This optimization should shift the crossing on Figures of Chapter 5 on a sooner time.

Another future work could be solving the memory limitation faced in this thesis. This could be solved by an optimization on choosing the optimal partitioning and best schedule. The algorithm used in this thesis was *Brute Force* in which all the possible states will be calculates and the minimum one will be chosen. Obviously, when the filter length is large and the latency condition is small, lots of possibilities will be included and the computation for all of them needs a lot of memory. Substituting *Brute Force* algorithm with *Viterbi* algorithm could overcome this limitation [14].

The final outlook is implementing loadbalancing on GPU. In this thesis no loadbalancing were considered on GPU since it consists of a broad memory and a loadbalancing algorithm does not have any effect except making the algorithm more complicated. However, there are lots of new applications such as new encoders and decoders which are trying to make use of the memory on GPU. Therefore, a loadbalancing on GPU might become necessary in the future.
References

