Thesis no: MECS-2015-02 V‘lek"

A
g i, 2
E --== g
% Tl S
BTH

Result Prediction by Mining Replays
in Dota 2

Filip Johansson, Jesper Wikstrom

Faculty of Computing
Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden

This thesis is submitted to the Faculty of Computing at Blekinge Institute of Technology
in partial fulfillment of the requirements for the degree of Master of Science in Game and
Software Engineering. The thesis is equivalent to 20 weeks of full-time studies.

Contact Information:
Authors:

Filip Johansson

E-mail: fijo08@student.bth.se

Jesper Wikstrom
E-mail: jewb08@student.bth.se

University advisor:
Dr. Niklas Lavesson
Dept. Computer Science & Engineering

Faculty of Computing Internet : www.bth.se
Blekinge Institute of Technology Phone : +46 455 38 50 00
SE-371 79 Karlskrona, Sweden Fax : 446 455 38 50 57

Abstract

Context. Real-time games like Dota 2 lack the extensive mathematical modeling
of turn-based games that can be used to make objective statements about how
to best play them. Understanding a real-time computer game through the same
kind of modeling as a turn-based game is practically impossible.

Objectives. In this thesis an attempt was made to create a model using machine
learning that can predict the winning team of a Dota 2 game given partial data
collected as the game progressed. A couple of different classifiers were tested, out
of these Random Forest was chosen to be studied more in depth.

Methods. A method was devised for retrieving Dota 2 replays and parsing them
into a format that can be used to train classifier models. An experiment was
conducted comparing the accuracy of several machine learning algorithms with
the Random Forest algorithm on predicting the outcome of Dota 2 games. A
further experiment comparing the average accuracy of 25 Random Forest models
using different settings for the number of trees and attributes was conducted.
Results. Random Forest had the highest accuracy of the different algorithms
with the best parameter setting having an average of 88.83% accuracy, with a
82.23% accuracy at the five minute point.

Conclusions. Given the results, it was concluded that partial game-state data
can be used to accurately predict the results of an ongoing game of Dota 2 in
real-time with the application of machine learning techniques.

Keywords: Dota 2, Machine Learning, Ran-
dom Forest, Result Prediction

Acknowledgements

We would like to thank our advisor Niklas Lavesson and our families.

i

[Abstract]

Contents

[Acknowledgement|

(1 Introduction|
2 Related Work]

3 Background
3.1 Dota? . .

3.2 Machine Learning| 000

3.3 Statistical Hypothesis Testingl

4 Objectives|

4.1 Research Questions|

5 Method

[p.1 Data Acquisition| L

b.2 DataParsingl

(.3 Preliminary Experiment|

b.3.1 Algorithms
(3.2 Results and Conclusionl

[p.4 'Training and Validation Subsets|

(.5 Experiments

b.5.1 Parameter Exploration]

[5.5.2 Random Forest Comparisons|.

6 Results|
8 Conclusions|
9 Future Workl

1l

ii

13
17
18

19

1. Introduction

Real-time games like Dota 2 lack the extensive mathematical modeling of turn-
based games that can be used to make objective statements about how to best
play them. Discussing, designing, and predicting outcomes of real-time games
are therefore mostly done on the basis of experience, expertise, and intuition.
Understanding a real-time computer game through the same kind of modeling as
a turn-based game is practically impossible, because if specified in extensive form
the resulting game tree will be too large to traverse. To put the size of such a tree
into perspective consider that the extensive form of chess is too large to be useful
[1]. The extensive form of a game is a tree where each node is a game-state and
each edge an action leading from one state to another [2]. Chess has an average
of 30 possible actions every turn and the longest games are a few hundred turns
long. For an extensive form of a real-time game every frame tick on the server
would be considered a turn. Considering the longest games being several hours
long having hundreds of possible actions for each turn the game tree would be
orders of magnitude larger than the one for chess.

In this thesis an attempt was made to create a model that can predict the win-
ning team of a Dota 2| game given partial data collected as the game progressed.
These predictions could be useful for spectators to understand the current sit-
uation of the game or for betting sites to adjust odds in real-time. With this
knowledge game developers can determine when a specific game-state indicates a
certain end result, and detect imbalances to provide a more interesting and com-
petitive game. An example of knowing the result of a game from a game-state is
how modern chess artificial intelligence (AI) uses end-game table bases [3], which
dictate optimal play from any game-state with six remaining pieces to all possible
end-states.

The attempted method for predicting game outcomes will be to use machine
learning, for which a large set of data is required. Replays of publicly available
games will serve as the data source. This data will be used to train different
machine learning algorithms, resulting in models that can predict the outcome
given a partial game state.

2. Related Work

Prediction of game results has been conducted earlier in sports like football and
baseball [4]. These predictions were conducted based purely on previous game
results and circumstances leading up to the match, such as the weather and the
number of injuries. Most machine learning research on real time computer games

Thttp://dota2.com Accessed: 6-1-2015

http://dota2.com

has been focused on improving Al by modeling player behavior [5]. Recent work
on Dota 2 has been done based on the hero lineups picked in a game to either
predict a winner [6], or to give advice on further hero selectionﬂ Work has also
been conducted on predicting the outcome of single battles instead of the entire

game [7].

3. Background

In this chapter different underlying techniques used in this thesis and the me-
chanics of Dota 2 are explained. From Dota 2 data is gathered and used as the
base to train Machine Learning models. Statistical hypothesis tests are used to
verify the results acquired from the machine learning models.

3.1 Dota 2

Dota 2 is a stand-alone sequel to the Warcraft fl custom map: Defense of the
Ancients (DotA), and is developed by Valvd?|

Tower
< Barracks
@ Secret Shop
@ Side Shop
Rune
I Ancient
" Lanes

' Jungle

Ancient
® Camp

@ Roshan Pit

Figure 1: The map of Dota 2, patch 6.74

A game of Dota 2 is played by two opposing teams called Dire and Radiant.
It is played on a map divided by a river into two sides (fig. [1)), each side belonging
to a team. The two teams consist of five players and a number of computer
controlled units. Each player controls a unique hero that grows more powerful
by purchasing items with gold, and leveling up by gaining experience. If a hero

Thttp://dota2cp.com Accessed: 20-9-2013
%http://us.blizzard.com/en-us/games/war3/| Accessed: 6-1-2015
Shttp://www.valvesoftware.com Accessed: 6-1-2015

http://dota2cp.com
http://us.blizzard.com/en-us/games/war3/
http://www.valvesoftware.com

Chapter 3. Background 3

dies, that player will lose an amount of gold and then respawn after a period of
time. The amount of gold lost and the time to respawn are both dependent on
the hero’s current level. Heroes gain experience and gold by killing enemy units.
Experience is awarded to all heroes within range whenever an opposing unit is
killed. Bounty (gold reward for killing) is only given to the hero that dealt the
killing instance of damage (last hit). If a player gets the last hit on their allied
units, the bounty will be denied to the opposition and only awarding them a
reduced amount of experience.

Figure 2: In-game screenshot from Dota 2 showing the hero Windranger shooting
at a creep with a tower shown to the right

Teams have a base of structures situated in opposing corners of the map,
each team starts with a number of computer controlled buildings. The victory
condition of the game is to destroy the central building in the opponents’ base (the
Ancient). Three sets of buildings in each base (the Barracks) will spawn small
squads of computer controlled units (Lane creeps) every 30 seconds. These units
run along fixed paths (Lanes) towards the opposing base, attacking every enemy
they encounter. Killing these creeps is the main source of income for both gold
and experience, but they are also vital in attacks on enemy structures. Placed
along the three lanes each team has three towers with increasing strength closer to
the bases. A tower cannot be damaged unless the preceding tower on that lane is
destroyed. When a tower is destroyed the opposing team is rewarded with a large
bounty. Between the lanes on each team’s side there are three (Jungle, Secret
shop, Ancient camp) areas whose positions are visualized in fig. The jungle
contains groups of neutral units that can be killed for bounty and experience and
respawn every minute. The secret shop sells expensive and powerful items. The
ancient camp contains a group of neutral units of greater strength with a high

Chapter 3. Background 4

experience and bounty reward upon death. Situated on the Dire side of the river
is the Roshan pit, where a very powerful neutral unit called Roshan is located.
When Roshan is killed a large bounty is given to the team that got the last hit
on him. At the same time an item, the Aegis of the Immortal, is dropped that
revives the carrier upon death and is thereby consumed.

Dota 2 has many possible indicators for which team is ahead, either by showing
the relative strength of the teams like gold and experience or by showing how close
the team is to winning like tower kills. There is however no objective indicator
like the score in soccer, since the game ends when either team completes their
objective of destroying the Ancient. To find the relationship between the possible
indicators and the eventual winner of a Dota 2 game this thesis will employ a
systematic approach using machine learning.

3.2 Machine Learning

Machine learning [8] is a field of computer science that governs systems that
can learn from data in order to improve performance at a specific task. Within
machine learning there is a subsection of problems called supervised learning
[8], where example inputs are used to create a model which produces a desired
output. The inputs are sets of instances where each instance has a vector of
attributes, one of them being the desired output (target attribute). The models
are constructed attempting to match the relationship from the attributes to the
target attribute found in the data. If the target attribute is a nominal value, it
is called the class and the model a classifier. There is a wide variety of machine
learning algorithms that due to differences in how they operate construct models
that function differently internally, even if they produce similar outputs given
the same input. Using several models constructed from the same or different
algorithms and then using the mean or mode of those predictions as the final
result is a technique to get better predictions called ensemble learning. One such
algorithm is Random Forest (RF) [9] that constructs several trees on randomly
sampled subsets of instances and attributes.

Validating that the models built are accurately representing the dataset is
an important part of machine learning. K-fold cross validation [10] is a model
validation technique, which involves splitting the data into k validation datasets.
For every subset a model is built on the data not in that subset. The model is
then used to predict results from the instances in the validation dataset. The
predicted result from the model is compared to the actual result in the data.
Different statistical tests can be performed on those results in order to test the
models accuracy. Accuracy is the percentage of correct guesses, but it is also
important to consider the rates of correct to incorrect guesses for every possible
outcome of the model. Evaluating these rates gives a deeper insight of how the
model actually performs compared to just looking at the accuracy [I1]. The

results will also vary due to random sampling done during the construction of the
model, it is therefore important to test the results using statistical tests.

3.3 Statistical Hypothesis Testing

Statistical hypothesis tests are a way of inferring how probable certain hypotheses
are from data i.e. how likely is it that a given set of data would arise just from
random chance and not because of the proposed relationships in the data. For
example, given a set of measurements of two different variables a researcher thinks
there’s a relationship between the two. To test this hypothesis the researcher
calculates the chance that these measurements could occur assuming the null
hypothesis is true. The null hypothesis is that there is no relationship between
the variables and given the value of one variable the other will be random. The
chance of the null hypothesis being true given your data is called the p-value
[12]. If the p-value is lower than the significance level, usually 5%, the null
hypothesis is rejected as being unlikely to be true which gives further evidence
for the hypothetical relationship between the variables.

There are many types of statistical tests designed for different types of hy-
potheses, analysis of variance (ANOVA) [I3] is one such test. ANOVA is per-
formed on a grouping of normally distributed data where the null hypothesis is
that the means of all groups are equal. It is used to determine whether there are
differences between the groups and if they can be distinguished from each other
in the data. For example, given a distribution of cars over their max velocities, a
grouping based on chassis color would not create groups with different mean max
velocities because there is no relation between the two attributes. This would
result in a high p-value in an ANOVA test. Grouping the same distribution
based on the cars models would result in differences between the groups and a
low p-value from an ANOVA test. ANOVA is designed to work on data that is
normally distributed without large differences in the variance of the groups, both
of these properties should be tested before using ANOVA to prevent errors in
the conclusion. Since ANOVA only tests whether there is any difference between
the groups, but not which group or groups are diverging, a common follow up is
Tukey’s Test [14].

Tukey’s Test performs a comparison of means for all possible pairwise combi-
nations of the groups. For each combination it tests if the difference between the
two means is less than the standard error. The standard error [15] is the expected
difference between the mean of a sampled distribution and the actual mean of
the distribution it is sampled from. The Tukey’s Test therefore gives the prob-
ability of two groups being similar samples of a bigger distribution. To give an
example using the same scenario as before with cars, when grouping the cars by
model the comparison between two brands of sports cars will give a high p-value
in the Tukey’s Test since they have similar distributions of max velocities, but

comparing one brand of sports cars with a brand of vans will give a low p-value.

4. Objectives

In this thesis an attempt was made to determine the effectiveness of machine
learning techniques with a focus on Random Forest, when applied to classifying
the result of Dota 2 games. This was done using partial game-state data that is
indicative of success without relying on the specific hero lineups of the teams. To
try and prevent the results from becoming irrelevant with future patches, hero
lineups were omitted. Patches tend to change hero lineups more than they do
item purchases or the importance of objectives on the map. Instead the focus
was set on indicators of which team is currently winning for example Hero Kills,
Roshan Kills, Items, and more as detailed in Appendix [A]

4.1 Research Questions

RQ1 What is the highest average accuracy achievable using different parameters
of the Random Forest algorithm?

RQ2 How does the average accuracy of the model vary at different gametimes?

RQ3 What is the relationship between the parameters of the algorithm and the
training and validation time?

5. Method

5.1 Data Acquisition

During the initial research no way was found to adequately acquire the quantity of
replays needed for the experiments. Dota 2 has an average of 450 000 concurrent
playersE] and every match played has a replay temporarily saved on Valve’s servers.
To get these replays, a way of retrieving a list of recently played games was needed.
This was done through Valve’s WebAPIP| described in Appendix [C]

In order to download a replay, a so-called replay salt is needed which is not
provided through the WebAPI, but can be retrieved through the Dota 2 client. A
program based on SteamREﬂ was made in order to retrieve the necessary infor-
mation. Combining both the WebAPI data and replay salt made the downloads
possible.

'http://steamgraph.net/index.php?action=graph&appid=570| Accessed: 10-4-2013
%http://dev.dota2.com/showthread.php?t=58317 Accessed: 6-1-2015
Shttps://github.com/SteamRE/SteamKit Accessed: 6-1-2015

http://steamgraph.net/index.php?action=graph&appid=570
http://dev.dota2.com/showthread.php?t=58317
https://github.com/SteamRE/SteamKit

Chapter 5. Method 7

Replays of 15146 games were gathered, consisting only of games with the AP
(all pick) game mode in the very high skill bracket, played during the period
from 2013-02-28 to 2013-04-15 at all times of the day. It was decided to limit the
sampling and only include the very high skill bracket to ensure the best quality
of play available in public games. It is important to note that no major balance
patch] was deployed during the replay acquisition period, as such an event might
have had an impact on the dataset.

5.2 Data Parsing

Dota 2 game replays are saved in the DEM Format?] compressed using bzip2
and named after their MatchlID, for example "137725678.dem.bz2". Valve does
not provide a parser that extracts all the information contained in the replay,
which lead the community to produce a number of parsers. Among them is an
open source replay parser in Python called Tarrasque, that was used to print the
network packets stored in the replay file into plain text. This parser was modified
to extract the current game-state at each minute. Contributions to Tarrasque
were made in order to extract the specific data needed/’]

The output from Tarrasque was converted to the "Raw" format as seen in
Appendix [A] This was done as parsing replays using Tarrasque was by far the
most time consuming part of the entire data processing procedure (there are now
newer and faster parsers, one example is Clarityﬁ, a Java based parser). A simple
Python parser was made to convert the raw game-state data into the format, as
seen in Team Advantage, Appendix [B]

5.3 Preliminary Experiment

The initial hypothesis was that RF would be a good candidate for the dataset
because it has shown to be among the best algorithms in other studies [16] [17]
[18]. This hypothesis was tested by comparing RF with algorithms from different
families. All the classifiers were tested with default settings in Rf| and multiple
k-fold cross validation tests were performed with varying seeds. The classifiers
were compared based on their accuracy, True Radiant Rate (TRR), and True Dire
Rate (TDR). TRR is the rate of correctly classified instances from games where
Radiant won and TDR is equivalent for the instances were Dire won. TRR and

Thttp://dota2.gamepedia.com/Patches| Accessed: 6-1-2015
%https://developer.valvesoftware.com/wiki/DEM_Format| Accessed: 6-1-2015
Shttps://github.com/skadistats/Tarrasque Accessed: 6-1-2015
4https://github.com/skadistats/Tarrasque/commits?author=Truth-| Accessed: 6-1-2015
Shttps://github.com/skadistats/clarity Accessed: 6-1-2015
Shttp://www.r-project.org/ Accessed: 6-1-2015

http://dota2.gamepedia.com/Patches
https://developer.valvesoftware.com/wiki/DEM_Format
https://github.com/skadistats/Tarrasque
https://github.com/skadistats/Tarrasque/commits?author=Truth-
https://github.com/skadistats/clarity
http://www.r-project.org/

Chapter 5. Method 8

TDR is the sensitivity and specificity [32] of the classification, but are renamed
because there is no positive or negative result of a Dota 2 game.

5.3.1 Algorithms

RF operates by constructing multiple decision trees. For each tree a new dataset
of equal size to the training set is constructed by random sampling with replace-
ment (bootstrapping [19]) from the original training set. Sampling with replace-
ment means that an instance already added to the subset can be added again, the
set will therefore contain some duplicates. During the construction of every tree,
each node in the tree only considers a random selection of attributes, choosing
the attribute that best splits the set of classes. When making predictions the
majority vote from all trees in the model is used. This method of sampling and
voting is called bootstrap aggregating or bagging [20].

LibSVM [21] is a library that implements an algorithm from the Support
Vector Machine (SVM) [22] family, and was chosen as it had promising results
in previous research [23]. SVM works by treating instances of the training set as
spatial vectors. It then finds a single or set of hyperplanes that divides up the
space between instances of different classes and has the greatest distance to their
closest instances. Kernel functions can be used to transform all the instances
into a higher dimensional space to find planes between classes, which originally
could not be separated in their original space. Classifying new instances is done
by putting the instance in that space and assigning it to the same class as the
instances on the same side of the hyperplane or hyperplanes. The resulting model
is quite complex and hard to decipher due to the nature of the algorithm making
SVMs often regarded as black-box solutions.

The Naive Bayes (NB) [24] classifier is often used in problems with text cat-
egorization and has proven to be good in earlier empirical studies [25]. Naive
Bayes is trained by calculating for each class the mean and variance of the at-
tributes of every instance that belong to that class. An instances predicted class
is then the class that has the most probable match given the means and variances
calculated in training. The Naive Bayes algorithm thereby creates a simple model
that considers all attributes independently when assigning a class, ignoring any
co-variance.

The ensemble family encompasses classifiers built on different techniques, bag-
ging and boosting [20]. LogitBoost was chosen has proven to be good in several
studies [28], and is a variant of AdaBoost [29] which is a Meta Algorithm that
uses multiple simple machine learning algorithms, so called weak learners. Logit-
Boost [27] is also built around boosting in contrast to RFs bagging. Boosting is a
method where all instances of data will have an associated weight. These weights
are used by the weak learners when constructing the model (a higher weight is
more important to guess correctly). The weights are changed after every iter-
ation, correctly guessed instances gets decreased and incorrectly gets increased.

Chapter 5. Method 9

After a defined amount of iterations the resulting models are combined to make
a final complex model.

The last chosen algorithm for this experiment was NNge [30] which comes
from the k-Nearest Neighbour (k-NN) algorithm family. NNge is k-NN with
generalization and has been used successfully in previous studies [3I]. NNge
treats instances of the training set as spatial vectors, and generalizes groups of
instances with the same class that are close to each other into non-overlapping
hyperrectangles. Predicting the class of a new instance is done by finding the
class of the nearest instance or hyperrectangle.

5.3.2 Results and Conclusion

During the early stages of evaluation it was discovered that several of the classifi-
cation algorithms were not suited for the dataset. NNge and LibSVM had training
times of over 12 hours on just a subset the dataset and were thus dismissed from
future tests. The three remaining classifiers were all tested with two data sources
described in Appendix [A] and Appendix B] with and without correlation-based
attribute selection.

Algorithm Parameters Accuracy TRR TDR
Team Advg. 85.4% 0.883 0.814
Raw Data 77.3% 0.963 0.652
Team Advg. 79.2% 0.837 0.733
Raw Data 75.8% 0.713 0.950
Team Advg. 83.7% 0.886 0.888
Raw Data 89.4% 0.888 0.903
Team Advg. 82.4% 0.825 0.823
Raw Data 78.1% 0.738 0.927
Team Advg. 83.1% 0.838 0.820
Raw Data 79.2% 0.837 0.733
Team Advg. 84.1% 0.808 0.915
Raw Data 78.1% 0.738 0.927
TRR = True Radiant Rate, TDR = True Dire Rate

None
NaiveBayes
Attri. Selct.

None
Random Forest
Attri. Selct.

None
LogitBoost
Attri. Selct.

Table 1: Preliminary Experiment Results

The results in table [I| shows that RF, no selection, with raw data format
outperformed the others in average accuracy. Because of this it was decided
that future experiments would solely revolve around RF and determining how
parameter tuning would change its accuracy.

5.4 Training and Validation Subsets

For each execution of the main experiments, training and validation subsets were
constructed by grouping all instances into games by Matchld and randomly sam-
pling 20% of all games into the validation set, with the remaining forming the

Chapter 5. Method 10

training set. This was done in order to ensure that there was no interdependence
between instances of the training and validation set. An experiment was per-
formed to make sure that the mean average game-time of the validation sets did
not vary too much from the average game-time of the total set of games, as this
would be an indication of an error in the sampling method.

The sampling used to create the validation sets was evaluated by comparing
the distribution of average game-lengths from generated validation sets to the
average game-length of all games. Specifically if the average game-length of all
games lay within the confidence interval of the distributions mean average game-
length at a confidence level of 0.975.

From 125 generated validation

sets the average game-lengths were Tabel Value
recorded, these are listed in Ap- Standard Deviation 0.125

. .. ¢ Confidence Coefficient 0.975
penle E The standard deviation o Confidence Interval Min 22.617
those averages and the confidence in- Confidence Interval Max 22.649

terval of the mean average game—length Average GameLength of all Games 22.632

for a confidence coefficient of 0.975 is Taple 2. ValidationSet GameTime Data
listed in table 2] The average game-

length of all games lies within this in-

terval. The specifications of the computer used to run the experiments can be
seen in Appendix [D]

The distribution of average game-lengths of the validation sets from Ap-
pendix |[E| was plotted using a density plot (fig. . All the average times fell
within twenty seconds of the average game-length of the entire set of games. Be-
cause the true mean average game-length of the validation sets lies in the interval
given in table 2] with a 97.5% confidence level, there is no indication of an error
during the sampling process.

Chapter 5. Method 11

1.00 -

0.75 -

0.25-

Avg. Game Length of All Games

T T T
22.4 22.6 22.8
Game Length

Figure 3: Distribution of Average Game Lengths from Validation Sets

5.5 Experiments

With the focus on RF, Parameter Exploration was performed in order to find the
answer to RQ1 and RQ3. The answer to RQ2 was studied in RF Comparisons.

5.5.1 Parameter Exploration

To try and find the optimal parameters for RF, all possible combinations of
{1,3,5,7,9} attributes and {10, 60, 110, 160, 210} trees, were trained and vali-
dated five times each with new validation and training sets every time. For each
parameter combination a measurement of the average accuracy, the time it took
to train the model, and the time it took to validate the model was recorded. The
parameters were chosen to cover a wide, evenly spaced range.

5.5.2 Random Forest Comparisons

From the results of the Parameter Exploration experiment it was decided to
make a more in depth comparison between a parameterized RF with 210 trees 9
attributes, RF with default settings, and a majority class classifier. The default
setting for RF in WEKA given dataset the used in this thesis was 100 trees and 8

attributes. The average accuracy of all three models was measured and recorded
on a per minute of game-time basis.

5.6 Evaluation

To determine which parameters had the largest impact on accuracy, an ANOVA
Test was performed on the resulting distribution of prediction accuracies of all
different parameter combinations with the results divided into two groupings by
number of trees or number of attributes. Since ANOVA has requirements on the
data a Shapiro-Wilk [33] normality test and Levene’s Test [34] for homogeneity of
variance was performed. Shapiro-Wilk test result was a p-value of 0.9072 and thus
the null hypothesis of normality was accepted. Levene’s Test resulted in a p-value
of 0.9503 and thus the null hypothesis of homogeneity of variance was accepted.
Any variance between the means detected would then be further explored with a
Tukey’s Test to find out which parameters diverged the most from the means of
the other groups.

6. Results

The results from the parameter exploration experiment are listed in table [3] The
True Radiant Rate (TRR) doesn’t improve with different parameters, only True
Dire Rate (TDR) performs better. The Validation Time (VT) increases with the
number of trees but decreases with the number of attributes. Training Time (TT)
scales with both parameters.

12

Trees Attributes Accuracy TRR TDR TT VT
10 1 86.49% 0.926 0.777 1.96 0.1

10 3 86.91% 0.924 0.790 2.4 0.08
10 5 87.23% 0.923 0.800 2.85 0.08
10 7 87.55% 0.926 0.803 3.39 0.08
10 9 87.50% 0.924 0.804 3.83 0.08
60 1 88.16% 0.925 0.819 11.41 0.36
60 3 88.26% 0.925 0.824 13.78 0.28
60 5 88.44% 0924 0.828 169 0.24
60 7 838.58% 0.923 0.833 20.08 0.22
60 9 88.57% 0.921 0.835 22.98 0.21
110 1 83.41% 0926 0.825 20.61 0.86
110 3 83.48% 0925 0.830 2527 0.6
110 5 88.63% 0.924 0.833 30.92 0.48
110 7 838.61% 0.922 0.836 36.54 0.43
110 9 88.74% 0.922 0.839 4241 04
160 1 83.48% 0.926 0.827 30.47 1.48
160 3 88.58% 0.922 0.833 37.08 1.02
160 5 88.66% 0.922 0.836 44.55 0.82
160 7 838.63% 0.922 0.836 53.45 0.71
160 9 88.78% 0.925 0.836 61.25 0.64
210 1 88.35% 0.924 0.824 385 2.07
210 3 83.51% 0923 0.831 49.06 1.47
210 5 83.66% 0923 0.835 594 1.19
210 7 88.78% 0.922 0.839 70.16 1.02

210 9 88.83% 0.922 0.840 80.03 0.91
TRR = True Radiant Rate, TDR = True Dire Rate,
TT = Training Time, VT = Validation Time

Table 3: Average of Raw Data with Different Parameters, the Training and Vali-
dation Time displays average in number of minutes it took to execute

The table [] contains a summary of the results from the RF comparisons
between default parameters, 210 trees 9 attributes, and a majority class classifier.
A more detailed summary for each minute of game-time is listed in Appendix [F]

Classifier Instances Accuracy TRR TDR
Majority Class 357984 59.97% 0.600 0.000
Default 355539 87.41% 0.926 0.802

210 Trees - 9 Attributes 359486 88.83% 0.922 0.840
TRR = True Radiant Rate, TDR = True Dire Rate

Table 4: Random Forest Summary

13

Chapter 7. Analysis 14

7. Analysis

As seen in fig. [4] the number of trees has the largest positive impact on accuracy.
This increase however diminishes with a high number of trees, while an increase
in attributes is still contributing to an increase in accuracy. This is corroborated
by the ANOVA Test in table [5] and the Tukey’s Test in table [6 The p-value
is lower for the Trees group than the Attributes group in the ANOVA test but
looking at the Tukey’s Test 110-210 trees has a higher value than 5-9 attributes,
the greatest difference for trees is when increasing from 10 to 60.

X X o
& 7 3 ~
88.5% - = 0 A
(@)
A
(@)
88.0% -
c
3
5 +
0 875%- X
m Number Attributes
01
87.0% - A As
M5
+7
86.5% - QO X9
| | | | |
0 50 100 150 200
Number Trees

Figure 4: Random Forest Accuracy with different number Trees/Attributes

Variable n M SD t D
Trees 4 0.004018 0.0010044 149.35 < 2e-16
Attributes 4 0.000435 0.0001086 16.16 1.59e-10
M = mean, SD = standard deviation

Table 5: ANOVA Test on Parameter Experiment grouped by Trees and Attributes

The time required for building the classifiers scales linearly with either factor
and exponentially if you increase both, as can be seen in fig. []] The validation

Chapter 7. Analysis 15
Mean Bounds Adjusted Mean Bounds Adjust

Trees Difference Lower Upper P-Value Attributes Difference Lower Upper P-Value
110-10 1.44e-2 1.24e-2 1.65e-2 0.00e+0 3-1 1.69e-3 -3.44e-4 3.72e-3 1.52¢-1
160-10 1.49e-2 1.29¢-2 1.70e-2 0.00e+0 5-1 3.45e-3 1.42e-3 5.49e-3 6.81e-5
210-10 1.49e-2 1.29e-2 1.70e-2 0.00e+0 7-1 4.54e-3 2.48e-3 6.59e-3 1.00e-7
60-10 1.27e-2 1.06e-2 1.47¢-2 0.00e+0 9-1 5.05e-3 3.02e-3 7.08¢-3 0.00e+0
160-110 5.03e-4 -1.53e¢-3 2.54e-3 9.59e-1 5-3 1.76e-3 -2.68¢-4 3.80e-3 1.2le-1
210-110 5.03e-4 -1.53e-3 2.54e-3 9.59e-1 7-3 2.85e-3 7.96e-4 4.90e-3 1.82e-3
60-110 -1.74e-3 -3.78e-3 2.88e-4 1.29e-1 9-3 3.36e-3 1.33e-3 5.39e-3 1.13e-4
210-160 -7.45e-7 -2.03e-3 2.03e-3 1.00e+0 7-5 1.08e-3 -9.69e-4 3.14e-3 5.88e-1
60-160 -2.25e-3 -4.28e-3 -2.15e-4 2.24e-2 9-5 1.60e-3 -4.36e-4 3.63e-3 1.96e-1
60-210 -2.25e-3 -4.28e-3 -2.14e-4 2.24e-2 9-7 5.12e-4 -1.54e-3 2.57e-3 9.58e-1

Table 6: Tukey’s Test on Parameter Experiment grouped by Trees and Attributes

time was omitted because it made up on average 2% of the total execution time,
so the figure more clearly visualizes how the greater contributor to execution time
was scaling.

Execution Time in Minutes

opm+KX

op m + X

Number Trees

X
+
—~ |
+
A
|
A (0}
(6}
Number Attributes
O1
A3
s
+7
X9

Figure 5: Graph of Execution Time in Minutes required for Building the Random
Forest Classifier with different parameters

Figure [6] plots the percentage of games that have not finished yet, which
shows how the classifiers become unreliable at higher game-times due to the lack
of instances. A high accuracy at early game-times is important to cover most
instances. The total area under each curve of correctly classified instances can be

Chapter 7. Analysis 16

deceiving because the number of instances at every minute drops quickly after 20.
By plotting the product of accuracy and "unfinished games", the area under that
plot becomes equal to the number of correctly classified instances (as shown in
fig.[7]), which better shows how many instances are correctly classified per minute.

Percent of Games

= Correctly Classified w/ RF 210 trees, 9 attributes}
= = Correctly Classified w/ RF Default Parameters

* =Unfinished Games

= = Majority Class Classifier

0 10 15 20 25
GameTime

Figure 6: Comparison of Random Forest with two different Parameters, Majority
Class and a line representing the number of unfinished games

Random Forest with Raw Data, 210 Trees and 9 Attributes

Percent of Games

= Correctly Classified * Unfinished Games

* * Unfinished Games

GameTime

Figure 7: Random Forest accuracy scaled with the amount of unfinished yet

As seen in table [3] the TRR doesn’t vary much between different parameters
in the RF classifiers and most increase in accuracy is due to the TDR. In fig.

this gap between the TDRs of the parameterized and default version of RF can be
clearly seen, and it also seems to suggest that the unreliability at high game-times
is also due to TDR. There is not much that differentiates Dire from Radiant, so
this result is unexpected and no explanation for it was found.

Percent

210 trees, 9 attributes TDR
------ 210 trees, 9 attributes TRR
* = « = Default TDR
= == = Default TRR

" GameTime

Figure 8: True Radiant Rate and True Dire Rate graphed from Random Forest
with default and 210 trees with 9 attributes

8. Conclusions

In this thesis many differently parameterized versions of the RF classification
algorithm were used to predict Dota 2 results using partial gamestate data without
hero lineups. The results achieved were better than expected but there is a lot
more that could have been done.

As seen in table |3| the best model had an average accuracy of 88.83%, which
is higher than expected because it was thought that there would be less of a
difference between the teams during the first 5 minutes to be used as a basis for
classification. However, as seen in fig. [f] the model is already correctly predict-
ing 82.23% of instances at that point. Due to a shortage of long games in the
replay set, it is hard to make any conclusive statements regarding the model’s
effectiveness on games longer than 35 minutes.

Given the results, it was concluded that partial game-state data can be used
to accurately predict the results of an ongoing game of Dota 2 in real-time with
the application of machine learning techniques. The execution time scaling when
training the model leaves room for a lot of possible improvements on the param-

17

Chapter 9. Future Work 18

eters of the model or the format of the data used.

9. Future Work

The results from the parameter exploration experiment were not sufficient to
conclude that a maximum of accuracy had been found in the parameter space
used. Due to time constraints the parameter space could not be expanded in
this thesis. Further testing with higher trees and attributes than 210 and 9 could
yield higher accuracy.

A higher accuracy could be achieved by using more data from replays, for
example: "Stun Duration on Enemies", "Healing Done/Received", or "Damage
Dealt to Heroes" etc. Even though hero lineups were intentionally not used in
this thesis it would probably increase accuracy as it has been successfully used to
predict results in previous works [6].

A possible improvement on the dataset would be to only use replays from
professional Dota 2 games, as the quality of play in those games would be higher
than those used in this thesis. The amount of such replays that are available
is much lower, and if the sampling is restricted to a single patch, it might be
difficult to acquire a large number of them. The replay set also lacked long games
and introducing a sampling bias towards longer games could have helped in that
aspect. About 1.5% of the downloaded replays were broken for unknown reasons,
if this error was dependent on aspects of the game it could have caused a slight
bias in the sampled dataset.

An understanding as to why there is such a discrepancy between True Dire
Rate and True Radiant Rate in table Bl was not reached in this thesis. There are
differences between the teams in Dota 2, but they are not great enough that this
result was expected.

Random Forest yielded the highest accuracy of the classifiers tested and be-
came therefore the focus of this thesis. The downside to this was that it is one
of the classifiers that are difficult to visualize and interpret. Using a classifier
that results in a more easily understood model could prove to be useful for un-
derstanding the balance of the game. Another way of improving the ease of
interpretation of the model would be to reduce the number of attributes using
attribute selection.

[1]
2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

References

A. Perea, Rationality in Extensive Form Games, 6th ed. Springer, 2001.

R. Aumann and S. Hart, Handbook of Game Theory with Economic Appli-
cations, 1st ed. Elsevier, 1992, vol. 1.

R. Bellman, “On the application of dynamic programing to the determination
of optimal play in chess and checkers,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 53, no. 2, p. 244, 1965.

A. Joseph, N. E. Fenton, and M. Neil, “Predicting football results using
bayesian nets and other machine learning techniques,” Knowledge-Based Sys-
tems, vol. 19, no. 7, pp. 544-553, 2006.

G. Synnaeve and P. Bessiére., “A bayesian model for plan recognition in rts
games applied to starcraft,” in Artificial Intelligence and Interactive Digital
Entertainment, 2011.

K. Conley and D. Perry, “How does he saw me? a recommendation engine
for picking heroes in dota 2,” 2013.

P. Yang, B. Harrison, and D. L. Roberts, “Identifying patterns in combat
that are predictive of success in moba games,” in Proceedings of the 9th
International Conference on the Foundations of Digital Games, 2014.

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. MIT press, 2012.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5-32,
2001.

R. Kohavi, “A study of cross-validation and bootstrap for accuracy estima-
tion and model selection,” in International Joint Conference on Artificial
Intelligence, vol. 14, no. 2, 1995, pp. 1137-1145.

D. M. Powers, “Evaluation: from precision, recall and f-measure to ROC,
informedness, markedness and correlation,” Journal of Machine Learning
Technologies, vol. 2, no. 1, pp. 37-63, 2011.

19

References 20

[12] K. Pearson, “X. on the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling,” The Lon-
don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,
vol. 50, no. 302, pp. 157175, 1900.

[13] R. A. Fisher, “On the "probable error" of a coefficient of correlation deduced
from a small sample,” Metron, vol. 1, pp. 3-32, 1921.

[14] D. C. Montgomery, Design and analysis of experiments, 8th ed. John Wiley
& Sons, 2012.

[15] B. S. Everitt, The Cambridge dictionary of statistics. Cambridge University
Press, 2002.

[16] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of ma-
chine learning techniques for phishing detection,” in Proceedings of the anti-

phishing working groups 2nd annual eCrime researchers summat, 2007, pp.
60-69.

[17] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised
learning algorithms,” in Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 161-168.

[18] R. Caruana, N. Karampatziakis, and A. Yessenalina, “An empirical evalua-
tion of supervised learning in high dimensions,” in Proceedings of the 25th
international conference on Machine learning, 2008, pp. 96-103.

[19] B. Efron, “Bootstrap methods: another look at the jackknife,” The annals of
Statistics, pp. 1-26, 1979.

[20] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123~
140, 1996.

[21] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2,
no. 3, p. 27, 2011.

7

[22] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, no. 3, pp. 273297, 1995.

[23] D. Meyer, F. Leisch, and K. Hornik, “The support vector machine under
test,” Neurocomputing, vol. 55, no. 1, pp. 169-186, 2003.

[24] G. H. John and P. Langley, “Estimating continuous distributions in bayesian
classifiers,” in Proceedings of the Eleventh conference on Uncertainty in ar-
tificial intelligence, 1995, pp. 338-345.

References 21

[25]

26]

27]

28]

29]

[30]

[31]

32]

133

[34]

I. Rish, “An empirical study of the naive bayes classifier,” in International
Joint Conference on Artificial Intelligence workshop on empirical methods in
artificial intelligence, vol. 3, no. 22, 2001, pp. 41-46.

R. E. Schapire, “The strength of weak learnability,” Machine learning, vol. 5,
no. 2, pp. 197227, 1990.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors),”
The annals of statistics, vol. 28, no. 2, pp. 337-407, 2000.

R. A. McDonald, D. J. Hand, and 1. A. Eckley, “An empirical comparison
of three boosting algorithms on real data sets with artificial class noise,” in
Multiple Classifier Systems, 2003, pp. 35—44.

Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Proceedings of the Second
Furopean Conference on Computational Learning Theory, 1995, pp. 23-37.

B. Martin, “Instance-based learning: nearest neighbour with generalisation,”
Master’s thesis, University of Waikato, 1995.

B. G. Weber and M. Mateas, “A data mining approach to strategy predic-
tion,” in IEEE Conference on Computational Intelligence and Games, 2009,
pp. 140-147.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters,
vol. 27, no. 8, pp. 861-874, 2006.

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591-611, 1965.

L. Olkin, Contributions to probability and statistics: essays in honor of Harold
Hotelling. Stanford University Press, 1960.

A. Raw Data Format

The format of the file is WEKAs ARFF format]l] and the data consists of 177
attributes. Every attribute is team based so data that is player specific is summed
for all players on that team. With the exception of MatchID, GameTime, and
Winner all attributes are paired, one for each team. For example, player kills
are recorded in two variables, Kills radiant and Kills_dire. The entirety of the
format consists of the following attribute sets for each team: kills, deaths, assists,
last hits, denies, runes used, net worth, tower kills, barracks destroyed, ancient hp,
roshan kills, and 76 attributes of items constructed from recipes. The majority
of items that are purchased without being built from recipes are usually acquired
only to eventually finish a recipe or sell later, and are therefore not as indicative
of item progression and omitted from the format. MatchID is only used when
constructing subsets of the instances, and removed before used in training or
validation of models.

B. TeamAdvantage Format

TeamAdvatange is a reparsing of the raw data file where every pair of attributes
related to the teams gets converted to a single attribute with the possible values
of Radiant, Dire, Initial, or Tie. It will either be Radiant or Dire if one of those
teams is in the lead, otherwise it will be initial if the attributes are unchanged or
tie if both teams are equal.

Example raw data: @attribute Kills radiant integer, @attribute Kills dire
integer. Gets converted into: @attribute KillsLeader Radiant, Dire, Initial, Tie.

C. Valve API usage

The url used was:
https://api.steampowered.com/IDO0TA2Match_570/GetMatchHistory/V001/7key=
<key>&skill=3&min_players=10&game_mode=1

In this URL the <key> is personal value which is acquired after accepting Valve’s
TOS?], "skill=3" is used to filter to very high skill games, "min_players=10" is
used to filter out games where the teams are not completely full and "game mode=1"
is used to filter so the games retrieve are of the game mode "All Pick".

Thttp://weka.wikispaces.com/ARFF| Accessed: 6-1-2015
2http://steamcommunity.com/dev/apiterms| Accessed: 6-1-2015

A

https://api.steampowered.com/IDOTA2Match_570/GetMatchHistory/V001/?key=<key>&skill=3&min_players=10&game_mode=1
https://api.steampowered.com/IDOTA2Match_570/GetMatchHistory/V001/?key=<key>&skill=3&min_players=10&game_mode=1
http://weka.wikispaces.com/ARFF
http://steamcommunity.com/dev/apiterms

D. Computer Specifications used for
time measurements

The computer used for the time measurements can be seen below:

CPU AMD Turion IT Dual-Core 64 bit 2 MB, 2.2GHz
Memory Kingston 16GB 1333MHz DDR3 ECC CL9
Harddrive 250 GB, 7200 RPM, SATA
Operating System FreeBSD

E. List of Average Game Lengths of
Validation Sets

The table presents a list of all average game lengths from 125 generated validation
sets in minutes.

22.45 | 22.74 | 22.63 | 22.61 | 22.59
22.56 | 22.42 | 22.59 | 22.90 | 22.76
2247 | 22.48 | 22.70 | 22.77 | 22.73
22.78 | 22.49 | 22.48 | 22.80 | 22.73
22.63 | 22.79 | 22.62 | 22.60 | 22.79
22.55 | 22.51 | 22.69 | 22.76 | 22.58
22.64 | 22.55 | 22.62 | 22.65 | 22.84
22.57 | 22.51 | 22.52 | 22.74 | 22.76
22.46 | 22.75 | 22.65 | 22.62 | 22.69
22.63 | 22.75 | 22.65 | 22.69 | 22.78
22.72 | 22.52 | 22.56 | 22.66 | 22.71
22.74 | 22,76 | 22.67 | 22.70 | 22.52
22.69 | 22.65 | 22.55 | 22.72 | 22.66
22.70 | 22.84 | 22.58 | 22.61 | 22.68
22.36 | 22.68 | 22.47 | 22.71 | 22.51
22.68 | 22.43 | 22.55 | 22.69 | 22.83
22.54 | 22.63 | 22.55 | 22.82 | 22.53
22.65 | 22.57 | 22.67 | 22.34 | 22.70
22.55 | 23.00 | 22.77 | 22.72 | 22.48
22.56 | 22.65 | 22.54 | 22.43 | 22.75
22.41 | 22.68 | 22.56 | 22.72 | 22.75
22.46 | 22.63 | 22.60 | 22.66 | 22.62
22.59 | 22.61 | 22.87 | 22.50 | 22.67
22.76 | 22.45 | 22.77 | 22.41 | 22.55
22.73 | 22.71 | 22.62 | 22.66 | 22.42

Table 7: Average Game Length of Validation Sets

F. Random Forest Per Minute
Summary

Default Parameters

Majority Class

Random Forest 210 trees, 9 attributes

GT | Inst. | Acc. TRR TDR GT | Inst. | Acc. TRR TDR GT | Inst. | Acc. TRR TDR

0 15004 | 53.29% | 68.38% | 32.66% 0 15132 | 58.91% | 58.91% | 0.00% 0 15231 | 53.44% | 65.53% | 36.79%
1 14988 | 60.63% | 78.14% | 36.71% 1 15117 | 58.90% | 58.90% | 0.00% 1 15219 | 63.14% | 78.48% | 42.03%
2 14983 | 66.78% | 81.04% | 47.28% 2 15100 | 58.90% | 58.90% | 0.00% 2 15209 | 69.45% | 79.19% | 56.06%
3 14956 | 71.77% | 83.51% | 55.72% 3 15057 | 58.97% | 58.97% | 0.00% 3 15181 | 74.58% | 82.24% | 64.02%
4 14852 | 76.38% | 86.24% | 62.84% 4 14957 | 58.99% | 58.99% | 0.00% 4 15073 | 79.15% | 85.31% | 70.62%
5 14732 | 78.90% | 87.75% | 66.75% 5 14836 | 58.96% | 58.96% | 0.00% 5 14943 | 82.23% | 87.26% | 75.28%
6 14584 | 81.79% | 89.25% | 71.50% 6 14681 | 59.16% | 59.16% | 0.00% 6 14793 | 84.68% | 89.17% | 78.44%
7 14457 | 84.44% | 90.97% | 75.43% 7 14558 | 59.23% | 59.23% | 0.00% 7 14658 | 86.84% | 90.51% | 81.74%
8 14278 | 86.20% | 91.61% | 78.75% 8 14356 | 59.21% | 59.21% | 0.00% 8 14464 | 88.52% | 91.56% | 84.33%
9 14051 | 88.08% | 92.94% | 81.34% 9 14129 | 59.32% | 59.32% | 0.00% 9 14238 | 90.53% | 92.66% | 87.56%
10 | 13778 | 89.98% | 93.91% | 84.53% 10 | 13856 | 59.45% | 59.45% | 0.00% 10 | 13937 | 91.66% | 93.55% | 89.00%
11 | 13497 | 91.41% | 94.58% | 87.01% 11 | 13599 | 59.53% | 59.53% | 0.00% 11 | 13636 | 93.05% | 94.56% | 90.92%
12 | 13206 | 92.37% | 95.49% | 88.02% 12| 13295 | 59.78% | 59.78% | 0.00% 12 | 13313 | 94.10% | 95.60% | 91.98%
13 | 12867 | 93.67% | 96.27% | 90.00% 13 | 12961 | 60.03% | 60.03% | 0.00% 13 | 12977 | 94.99% | 96.23% | 93.23%
14 | 12571 | 95.05% | 97.27% | 91.90% 14 | 12663 | 60.21% | 60.21% | 0.00% 14 | 12709 | 95.95% | 97.01% | 94.42%
15 | 12239 | 95.59% | 97.47% | 92.89% 15 | 12334 | 60.40% | 60.40% | 0.00% 15 | 12380 | 96.70% | 97.37% | 95.72%
16 | 11978 | 96.39% | 98.11% | 93.90% 16 | 12064 | 60.57% | 60.57% | 0.00% 16 | 12085 | 97.28% | 98.03% | 96.18%
17 | 11689 | 96.97% | 98.12% | 95.29% 17 | 11748 | 60.91% | 60.91% | 0.00% 17 | 11781 | 97.89% | 98.52% | 96.98%
18 | 11336 | 97.62% | 98.59% | 96.20% 18 | 11431 | 61.20% | 61.20% | 0.00% 18 | 11457 | 98.21% | 98.69% | 97.50%
19 | 10970 | 97.99% | 98.87% | 96.69% 19 | 11099 | 61.51% | 61.51% | 0.00% 19 | 11098 | 98.52% | 98.92% | 97.92%
20 | 10560 | 98.29% | 98.88% | 97.40% 20 | 10663 | 61.73% | 61.73% | 0.00% 20 | 10659 | 98.80% | 99.07% | 98.39%
21 | 10126 | 98.71% | 99.03% | 98.23% 21 | 10231 | 61.86% | 61.86% | 0.00% 21 | 10193 | 99.00% | 99.22% | 98.66%
22 | 9616 | 98.89% | 99.22% | 98.39% 22 19703 | 62.02% | 62.02% | 0.00% 22 | 9684 |99.14% | 99.32% | 98.87%
23 18973 |99.15% | 99.50% | 98.63% 23 19074 | 62.00% | 62.00% | 0.00% 23 | 9064 | 99.39% | 99.53% | 99.18%
24 | 8184 |99.55% | 99.73% | 99.27% 24 | 8275 | 61.89% | 61.89% | 0.00% 24 | 8293 |99.49% | 99.60% | 99.33%
25 | 7424 | 99.54% | 99.64% | 99.41% 25 | 7461 | 61.39% | 61.39% | 0.00% 25 | 7505 | 99.44% | 99.53% | 99.30%
26 | 6606 | 99.56% | 99.61% | 99.49% 26 | 6630 | 61.10% | 61.10% | 0.00% 26 | 6659 | 99.62% | 99.70% | 99.51%
27 | 5610 | 99.57% | 99.66% | 99.45% 27 15651 | 60.31% | 60.31% | 0.00% 27 | 5703 | 99.67% | 99.68% | 99.65%
28 | 4669 | 99.76% | 99.85% | 99.64% 28 | 4652 | 60.04% | 60.04% | 0.00% 28 | 4661 | 99.74% | 99.71% | 99.79%
29 | 3753 |99.89% | 99.95% | 99.81% 29 | 3735 | 59.14% | 59.14% | 0.00% 29 | 3763 |99.76% | 99.77% | 99.75%
30 | 2864 |99.86% | 99.88% | 99.84% 30 | 2871 | 58.76% | 58.76% | 0.00% 30 | 2861 |99.69% |99.75% | 99.59%
31 2089 |99.86% |99.91% | 99.78% 31 2072 | 59.46% | 59.46% | 0.00% 31 | 2067 |99.85% | 100.00% | 99.67%
32 | 1435 |99.79% | 100.00% | 99.55% 32 | 1421 | 58.13% | 58.13% | 0.00% 32 | 1392 | 99.93% | 100.00% | 99.84%
33 | 978 99.80% | 100.00% | 99.57% 33 973 56.01% | 56.01% | 0.00% 33 1949 |99.89% | 100.00% | 99.77%
34 | 670 99.85% | 100.00% | 99.69% 34 | 666 55.86% | 55.86% | 0.00% 34 | 643 | 99.84% | 100.00% | 99.67%
35 | 387 |99.48% | 100.00% | 98.97% 35 | 374 53.21% | 53.21% | 0.00% 35 1380 |99.74% | 100.00% | 99.43%
36 | 242 99.17% | 100.00% | 98.21% 36 | 245 57.55% | 57.55% | 0.00% 36 | 248 |99.60% | 100.00% | 99.11%
37 | 151 98.68% | 100.00% | 97.33% 37 | 137 | 61.31% | 61.31% | 0.00% 37 | 160 | 99.38% | 100.00% | 98.59%
38 |85 97.65% | 100.00% | 94.59% 38 |86 63.95% | 63.95% | 0.00% 38 | 98 98.98% | 100.00% | 97.44%
39 |40 95.00% | 100.00% | 84.62% 39 |41 78.05% | 78.05% | 0.00% 39 | 50 98.00% | 100.00% | 94.74%
40 |18 88.89% | 100.00% | 66.67% 40 |21 85.71% | 85.71% | 0.00% 40 |25 96.00% | 100.00% | 87.50%
41 |11 81.82% | 100.00% | 60.00% 41 |14 78.57% | 78.57% | 0.00% 41 |19 94.74% | 100.00% | 83.33%
42 |10 80.00% | 100.00% | 50.00% 42 |8 62.50% | 62.50% | 0.00% 42 |12 91.67% | 100.00% | 83.33%
43 |8 75.00% | 100.00% | 33.33% 43 |4 25.00% | 25.00% | 0.00% 43 |8 87.50% | 100.00% | 80.00%
44 |8 75.00% | 100.00% | 33.33% 4 |3 33.33% | 33.33% | 0.00% 4 |5 100.00% | 100.00% | 100.00%
45 |2 100.00% | 100.00% | 100.00% 45 10 NA NA 0.00% 45 |1 100.00% | NA 100.00%
46 |2 100.00% | 100.00% | 100.00% 46 |0 NA NA 0.00% 46 |1 100.00% | NA 100.00%
47 |2 100.00% | 100.00% | 100.00% 47 10 NA NA 0.00% 47 |1 100.00% | NA 100.00%

Table 8: Summary of Random Forest

eters

classifier per minute with different param-

	Abstract
	Acknowledgement
	Contents
	Introduction
	RelatedWork
	Background
	Dota 2
	Machine Learning
	Statistical Hypothesis Testing

	Objectives
	Research Questions

	Methodology
	Data Acquisition
	Data Parsing
	Preliminary Experiments
	Algorithms
	Results

	Training and Validation Subsets
	Experiments
	Parameter Exploration
	Random Forest Comparisons

	Evaluation

	Result
	Analysis
	Conclusions
	Future Work
	References
	Appendix Raw Data Format
	Appendix TeamAdvantage Format
	Appendix Valve API usage
	Appendix Computer Specifications used for time measurements
	Appendix List of Average Game Lengths of Validation Sets
	Appendix Random Forest Per Minute Summary

