
Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Web Application Development

-a study on UML Web Application Extension

Examiner: Guohua Bai

Supervisor: Ulrika Sjöström

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Abstract

The complexity of Web sites are increasing and transforming into Web
applications that contain business logic, interactivity, transaction handling and
states. This phenomenon forces the Web developers to adapt more traditional
software engineering techniques to keep the Web applications error free,
maintainable, reusable, well documented etc.

Many Web developers do not use any engineering techniques at all and design
mainly to create as fashionable applications as possible with no regards on the
application’s functionality. This results in applications that are hard to maintain
and with poor functionality.

The purpose with this thesis was to see if the use of a more traditional software
engineering technique, namely the Unified Modeling Language with the newly
added Web Application Extension, resulted in a Web application with good design
regarding the maintainability of the application.

To investigate the maintainability of an application, the maintainability was further
divided into three sub criteria: extensibility, reusability and documentation. These
three criteria were then applied on a case study were a Web application was
designed. From the analysis of the final design, using the three criteria, the
maintainability was derived.

The result of the entire investigation showed that the UML WAE had a good
support for extensibility, fair support for reusability and very good support for
documentation. From these results the main conclusion was derived, that the use of
UML WAE resulted in good design regarding the maintainability.

However, the result is limited to our case study and the design created in that case.
The result may have been different if the three criteria had been applied on a
different case. Another aspect to consider is that the quality of a design is often
dependent on the knowledge of the persons that carry out the design.

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Acknowledgement

Special thanks to our supervisor Ulrika Sjöström, Department of Software
Engineering and Computer Science, at the Blekinge Institute of Technology. For
the guidance and help in the production of this thesis.

For insightful feedback, on our criteria and metrics, we thank Miroslaw Staron,
Ph.D. student at the Department of Software Engineering and Computer Science,
Blekinge Institute of Technology.

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Table of Contents

1 INTRODUCTION .. 1

1.1 BACKGROUND ... 1
1.2 DELIMITATIONS .. 2
1.3 HYPOTHESIS .. 2
1.4 UML WAE ... 3
1.5 MAINTAINABILITY .. 4
1.5.1 EXTENSIBILITY .. 4
1.5.2 REUSABILITY ... 6
1.5.3 DOCUMENTATION .. 6

2 WEB APPLICATIONS .. 8

2.1 WEB APPLICATIONS VS. CLIENT/SERVER APPLICATIONS 9

3 SYSTEM DEVELOPMENT .. 10

3.1 RATIONAL UNIFIED PROCESS .. 11
3.1.1 UML: A MODEL FOR ANALYSIS AND DESIGN ... 12
3.1.2 DEVELOPING WEB APPLICATIONS WITH UML WAE 14

4 EVALUATING UML WAE ... 18

4.1 PLANNING ... 18
4.1.1 HOW TO EVALUATE ACCORDING TO OUR CRITERIA 19
4.1.2 PARTICIPANTS PROFILE .. 22
4.1.3 DATA COLLECTING .. 23
4.1.4 CASE STUDY .. 24
4.2 CONDUCTING ANALYSIS AND DESIGN .. 26
4.2.1 DESIGN SESSIONS ... 26
4.2.2 WORKFLOW ... 26

5 RESULT ON EVALUATION OF UML WAE.. 28

5.1 EXTENSIBILITY .. 28

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

5.1.1 ANALYZING EXTENSIBILITY ... 30
5.2 REUSABILITY ... 31
5.2.1 ANALYZING REUSABILITY.. 31
5.3 DOCUMENTATION ... 33
5.3.1 ANALYZING DOCUMENTATION ... 33
5.4 CONCLUSION ... 35

6 DISCUSSION.. 36

6.1 VALIDITY AND RELIABILITY OF THE INVESTIGATION 36
6.2 MODEL FOR CLIENT/SERVER BUT NOT FOR THE WEB 37
6.3 EDUCATION ... 37
6.4 IS UML WAE THE BEST CHOICE?... 38
6.5 FUTURE STUDIES ... 38

7 LITERATURE .. 39

7.1 WEB SOURCES ... 40

APPENDIX 1 .. 41

APPENDIX 2 .. 47

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

1 Introduction

Following is the result of our Bachelor Thesis in Computer Science at the
Blekinge Institute of Technology written in the spring of 2002. Conducted by
Andreas Oskarsson, Tobias Norberg and Martin Kling from the class of 1999 in
Informationsystem.

This thesis targets an audience that work with Web application development. It is
also directed to an audience with interest in modeling or Web techniques.

The reason we chose Web application development as our topic was our curiosity
about the fact that none of us had ever heard of a special model language for Web
application development. There are several models and methods available for
Object-Oriented development, such as the Unified Modeling Language (UML) and
the Object Modeling Technique (OMT), but what about models for Web
application development?

1.1 Background

To find out more about what models Web developers use, or if they even use one,
we conducted a minor preliminary investigation in the initial phase of our work.

We emailed and asked 24 companies that work with Web development and we got
answers from ten of them. The answers varied, some of them used their own
models that they had created themselves, some used models like Windows DNA,
Model View or even brainstorming, but the majority did not use a model.

Why is that? It seemed to be a common opinion that there is not a need for
modeling when they are only developing Web applications. Someone said that
they just throw in the necessary components and make it work. Modeling was
considered overkill.

This feedback from the Web developers did not match with our belief that
modeling before programming software is important. Therefore, we will focus this
thesis on an examination of the Unified Modeling Language (UML) and to see if it

 1

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

is adaptable and usable for Web application development, and if the final result
using UML will be a good designed Web application.

1.2 Delimitations

This thesis is delimited to the analysis and design phases, with no attempt to
approach the realization or implementation phase, in a Web application
development process. We have analyzed and designed a Web application using
UML with an extension that is called Web Application Extension, from now on
simply referred to as WAE. It is further restricted to the variables we have chosen
to study.

1.3 Hypothesis

When developing Web applications the use of modeling languages is not obvious.
But we believe that modeling would improve the applications design and it will
therefore gain certain advantages. With this believe we have used UML when
developing a Web application and then analyzed the result to see if it resulted in
good design regarding to maintainability.

Our hypothesis is as follows:

The use of UML for Web application development will result in good design,
regarding to maintainability.

In our attempt to resolve this hypothesis we focused on the Web Application
Extension that exists to the modeling language UML. We have further divided the
term maintainability into three criteria: Extensibility, Reusability and
Documentation.

To help draw conclusions from our hypothesis we will answer the following
questions:

In what way does UML WAE support Extensibility?
In what way does UML WAE support Reusability?
In what way does UML WAE support Documentation?

 2

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

1.4 UML WAE

We will use UML WAE to model in our case study. WAE, an extension to UML,
was developed by Jim Conallen; the Web Modeling Evangelist at Rational
Software Corporation. The extension is specified in the book Building Web
Applications With UML. [Conallen]

We will use the UML WAE to analyze and design a Web shop that sells products
online. The Web shop will contain the following requirements:

• Show products
• Shopping cart
• Checkout point
• Administration functions
• Order handling

For a more detailed specification of the requirements, see 4.1.4 Case Study.

When we model with UML WAE we will use some of the model elements from
the standard UML notation in addition to those model elements that the Web
Application Extension offers. Following is a brief presentation on what model
elements we use and what we mean when we mention the following expressions.

Standard model elements

A Class is an element that is used in the standard UML but not in the extension.
We will not use class elements when we model but we may mention them in the
text. Instead of the class element we will use the elements available from the
extension.

A Package is a way to organize smaller related elements (such as classes) into
groups to increase the comprehension and to get a better view of the system.
[Larman]

 3

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Extension model elements

A Page is the extensions equivalent to a class in the standard notation. The Page
element is a Web page that can be in the form of either a server page or a client
page. The differences between these are that the client page is a Web page that the
client can view but a server page only resides on the server. [Conallen]

1.5 Maintainability

Maintainability aims to make a Web application easy to maintain. The system
should require, when it is implemented and in use, only minimal administration.
However when maintenance is required, it should be easy to carry out and take a
minimal amount of time. High maintainability can be achieved by a good original
design and architecture. [Booch]

Some examples of maintenance could for instance be how easy it is to transport
the system from one server to another, insert new functions and fix bugs without
problems and minimal alterations to the system.

In this thesis we focus on obtaining good design and we have specified this as a
high degree of maintainability. With maintainability we mean extensibility,
reusability and documentation. [Gillies] When we searched for qualities to
describe maintainability we came across several other qualities than those we
chose but extensibility, reusability and documentation were those that reoccurred
and were most emphasized.

1.5.1 Extensibility

The environment that an application works in is always evolving and demands
new functions and added capabilities from the application. To manage these
changes the design of the application must embrace extensibility. Extensibility
means that new capabilities, functions and modifications can be inserted in the
application without the need to modify in numerous places in the application.
[Kafura]

To measure the extensibility of the application the qualities coupling, cohesion and
generalization/specialization have been used.

 4

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Coupling

Coupling is a measure of how strong an association is between two pages or two
packages. A strongly coupled page relies on many other pages to perform tasks
and changes to one page may force changes in the all the interrelated pages.
Loosely coupled pages are preferable when designing for extensibility because
they do not rely on other pages and can more easily be extended without numerous
changes in other pages. [Larman]

Cohesion

Cohesion is a measure of how strongly the responsibility of a page or a package is
related and how the elements work together to complete tasks. A package with low
cohesion perform many unrelated tasks or perform too many, whereas a package
with high cohesion has strongly related responsibilities and does not perform too
many tasks. High cohesion in the pages and packages is preferable to keep the
maintainability and complexity comprehendible and to support extensibility.
[Larman] [Booch]

Generalization/specialization

Generalization is to find common properties among the software’s concepts and
try to organize them so that the software can work in the most general way
possible. One way to generalize is to transform the general concepts into
supertypes. From these supertypes, more specialized concepts (subtypes) can be
created and related. This activity supports extensibility by creating a hierarchy that
can easily be extended by new subtypes. [Larman] [Kafura]

In Web application development the ways to create these sorts of
generalization/specialization hierarchies are limited by the techniques that are used
to implement the application. However, most of today’s existing server script
languages support the creation and use of these hierarchies, in the form of
inheritance, but the stateless environment on the Web limits them. [Ratschiller]

Coupling, cohesion and generalization/specialization are evaluative qualities and
should be applied while considering all design decisions. For more information on
design patterns see Larman. These principals are, however, those we found to be
most supporting of our demands for extensibility.

 5

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

1.5.2 Reusability

Reusability is simply the ability of software artifacts (specifications, designs, or
source code) to be used again. Software reuse does not just mean recycling the
code itself into a new piece of software. In general, it can include any asset, such
as specifications, design models, and user documentation, whatever is necessary
when implementing or updating an application. [Poulin]

Reuse of existing tested and proven software components correctly can save both
time and money when developing new products. Reusing also decreases the
number of bugs and the demand of maintenance as that has already been done.
Designing systems with a high degree of reusability demands a design that allows
adaptation, because the developers cannot predict all scenarios in which the
software component will be reused. [Fournier]

Reuse can be divided into white-box and black-box reuse. The white-box strategy
is when a developer copies and modifies code from earlier implemented software.
This approach has according to Poulin limited benefits, because “the modified
component must undergo the same testing, configuration management,
maintenance, documentation, and all the other requirements” as if you had newly
programmed it. This means that white-box reuse only saves some time in the
development phase but not in the maintenance. [Poulin]

Black-box reuse is a more systematic kind of reuse because it must be more
planned and more thoroughly worked through. In black-box reuse no alterations to
the inserted component are allowed. If a modification is needed then it can be
made through inheritance and polymorphism but not in the reused code. Black-box
reuse saves a lot of effort in the development phase but also in maintenance.
[Poulin]

1.5.3 Documentation

Vice President of Rational Strategic Services Walker Royce states that “design
without documentation is not design.” [Royce] Why? Because the models are the
future documentation and they must be treated as valuables. Documentation seeks
to visualize analysis and design decisions to the maintainers of the system.
[Booch]

Documentation is essential but should not drive the process. Elements to be
documented are:

 6

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

• End-user documentation (not covered in this thesis)
• Analysis models
• Architectural visualizations
• Implementation documentation (not covered in this thesis)

The documentation can then be used when altering and updating the system.
Booch points out that documentation should be on a high-level basis not
containing semantics of each method on a “class-by-class” basis. [Booch] Another
essential quality to documentation is that it should have good traceability.

Traceability

Good traceability refers to the ability to easily follow and describe the initial
requirement to the final implemented code, in both a forward and a backward
direction. Good traceability should answer the question: In which parts of this
program is functionality X implemented? [Gotel]

 7

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

2 Web applications

When we are discussing Web applications we do not mean a static Web site like a
personal homepage. Chief scientist Grady Booch on Rational Software
Corporation describes a Web application as “much more dynamic, full of rich
content and capable of changing the state of the business as a result of user
interaction”. [Conallen]

A Web application is a site that has invoked business logic, interactivity,
transaction handling and states. [Ratschiller] [Conallen] The three components to
achieve this are a browser, a Web server, and an application server. Often a
database server is added to make the application more dynamic, see picture 2.1.
[Conallen]

A Web site does not ordinarily involve issues such as security and usability
factors. But Web application is a security risk, crackers can redirect your traffic
and take your clients credit card numbers and the like, so methods to secure the
application must be applied. [Ratschiller]

Picture 2.1 - Web application architecture

Web server/
Application server

PHP/ASP

HTML

Client pages

Server pages

Database

Client

 8

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

2.1 Web applications vs. Client/Server applications

Client/server describes the relationship between two computer programs, one on
the client’s computer and the other one on the server, in which the clients program
makes a request to the server’s program that fulfills the request. [Sullivan]

A Web application basically functions the same way, but with a browser and a
Web server. Instead of using an installed and licensed client program, Web
applications use a standard Web browser to connect to the server. [Greene]

In this report we define a Web application by the definition by Jim Conallen as a
Client/Server software software system that has, at a minimum, a browser, a Web
server, an application server and possibly also a database server.

There are however differences between a Web application and a Client/Server
application. GUI, structure, navigation, protocols, speed, security, techniques etc.
are issues that can differ, but although the overall differences is rather indistinct.
The applications have the same architecture, the functionality is basically the same
and they are used in many of the same situations. [Sullivan] [Conallen]

 9

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

53 System development

In the early 1990’s analysis was a small part of the traditional (non-Web) system
development process and consisted of about 25 percent of a projects total time.
[Hernbäck] Ten years later the analyze part had grown to about 50 percent which
clearly shows the development within this subject over the years.

The traditional Web page has been developed to be as fashionable as possible and
this approach has caused problems because of the lack of functionality analyzing.
Another aspect is that reuse and site maintenance are not considered, leading to
difficulties in making modifications but also takes away the possibility to reuse
parts of the application, saving time and money in the development process.
[Powell]

One earlier approach in Web application development was the Rapid Application
Development (RAD) process. The idea behind RAD was a prototype process
where you implement an application and revise it in several iterations until it has
passed the buyer’s evaluation. This approach often created poorly designed or
impossible to maintain pages. [Powell]

There are goals that developers should try to fulfill with a page. It should be
correct and error free, maintainable, reusable, robust and reliable, well documented
etc. [Eklund] [Powell] To achieve this you should use software engineering
techniques because Web sites are becoming more and more like traditional
software.

Planning should take about 50% of a Web application development project’s time
[Ratschiller] and aims to prevent spending time with programming on something
that would have needed more analyzing before implementation. Ratschiller and
Gerken conclude this in a great line: “Know your enemy - never underestimate
him.” [Ratschiller]

System development is a wide concept and there are many different views on the
system development process. Because of these views, several different
methodologies have emerged on how to handle the process. We will start to

 10

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

introduce one methodology called the Rational Unified Process (RUP) and
methodically narrow in on its analysis and design phase where UML often is used.

After presenting UML we will explain WAE that we are focusing on in this thesis.

5.13.1 Rational Unified Process

The Rational Unified Process (RUP) is a software engineering process developed
by Rational Software Company. RUP specifies that it is unrealistic to take a linear
approach in a software development process and that work must be done in an
iterative manner. The process is strongly use case driven which means that it puts
large effort into understanding how the system will be used. [Jacobson]

The Rational Unified Process can be attacked from two perspectives; a
management and one technical perspective. The managerial perspective has four
phases: interception, elaboration, construction and transition. When you have gone
through all the phases you have completed a cycle, which gives a new generation
of an executable software, and then the evolution goes on with new cycles.

The technical perspective of RUP is based on iterations and in picture 3.1 below
you can see that iterations end simultaneously with phases in the managerial
perspective.

To model and visualize the analysis, architecture and design phases RUP users
often use UML.

Picture 3.1 – RUP workflow

 11

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

5.1.13.1.1 UML: a model for analysis and design

UML stands for Unified Modeling Language and is a model on how to analyze
and design in a system development process. This process can be RUP driven
because RUP is especially well suited for the use of UML. [Jacobson] UML uses
an Object-Oriented approach and is suited for Object-Oriented programming
languages e.g. Java and Delphi.

The history of UML began in 1994 when Grady Booch, the creator behind the
Booch model and Jim Rumbaugh, who had created the Object Modeling
Technique (OMT), joined their models. Later the three amigos were formed when
Booch and Rumbaugh became accompanied by Ivar Jacobson, who earlier had
created the Object-Oriented Software Engineering model (OOSE). UML then
became adopted as a standard by OMG (Object Management Group) in January
1997.

Object-Oriented Analysis/Design

The use of UML consists of two parts: analysis and design. Analysis is performed
to find and describe objects and concepts in the problem domain. The design phase
is intended to define objects that will be implemented in an Object-Oriented
programming language. [Larman]

A UML process should be:

• “Use case driven”
• “Architecture-centric”
• “Iterative and incremental”

[Jacobson]

This means that use cases are used as a major part of the project e.g. for
establishing the systems behavior but also to communicate among the project’s
stakeholders. The process should use the system’s architecture as the primary
artifact in the process. An iterative and incremental process releases new and
improved executables. The process are also said to be risk-driven which means
that the process aims to eliminate the largest risks of the project’s success first.
[Jacobson]

 12

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Goals

The primary goal for modeling with UML is to construct a good application. But
to achieve this UML focuses on four points:

Visualize the system

The models will visualize how the system will become. UML specifications
include well-defined semantics, which allows one developer to draw a model, and
then another can interpret it unambiguously. [Jacobson]

Specifying the system

UML supports “building models that are precise, unambiguous and complete.”
This means that UML has clear guidelines of how the system’s model diagrams
will be created and how to interpret them. [Jacobson]

Constructing the system

UML supports both forward and backward engineering. Forward engineering
means that you can generate code in an Object-Oriented programming (OOP)
language from the diagrams created with UML. Backward engineering is the exact
opposite where you can recreate UML diagrams from OOP code. [Jacobson]

Document the system development process

The artifacts that a software development process will produce are requirements,
architecture, design, source code, project plans, tests, prototypes and releases.
[Jacobson]

Workflow

UML contains nine graphical presentation models:

1. Class diagram: shows a system’s static design view with classes, interfaces,
collaborations and relationships.

 13

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

2. Object diagram: shows some objects and their relationships at a particular
time.

3. Use Case diagram: shows the actors of the system and their relationships
with use cases.

4. Sequence diagram: shows messages between objects.
5. Collaboration diagram: focuses on the structural organization of objects

when sending and receiving messages.
6. Statechart diagram: shows the machine state
7. Activity diagram: shows a system’s flow between activities in a system.
8. Component diagram: shows organizations and dependencies between

components.
9. Deployment diagram: displays the configuration and dependent

components of run-time processing nodes.

The aim for using several diagrams is to look at the system from different
perspectives. [Jacobson]

5.1.23.1.2 Developing Web applications with UML WAE

For the use of UML in a Web application development process Jim Conallen have
constructed the WAE. The extension adds stereotypes, constraints and tagged
values to be used in the modeling.

A stereotype adds a new value to a model element. Stereotypes are shown with
guillements (« ») but can also be in the form of a new icon e.g. the stereotype
Client page has its own icon but Link is shown «link».

Home
Product

«link»

Picture 3.2 Shows how a client page (Home) is linked to another client page (Product).

 14

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Web application architecture patterns

A pattern describes a core solution to a common problem in the environment. Jim
Conallen writes: “An architectural pattern expresses a fundamental structural
organization schema for software systems.” [Conallen] There are many patterns
available for various situations depending on the technique and architecture, but
especially for Web applications Conallen describes the three following
architectural patterns. As with all patterns they can all be used on the same
architecture, but obviously on different parts and components.

Thin Web client

This pattern is mostly used when there is little knowledge of the client’s
environment. That means, just as the patterns name indicate all that the client
requires is a browser because all the business logic is executed on the server. This
is the most used pattern and is used on Web pages. [Conallen]

Thick Web client

Unlike the thin Web client with no business logic, this pattern is used for clients
with a significant amount of business logic executed on its computer. This can be a
client-side technique such as DHTML, Java-script, Java-applets, Active X etc.
[Conallen]

Web delivery

Situations when the browser acts as a delivery and container device for protocols,
instead of only HTTP, such as DCOM, then the Web delivery pattern should be
used. That means that it should be used for Web applications that support
distributed object systems. [Conallen]

Workflow with UML WAE

This is the workflow of the example Glossary ASP Application Sample Model,
presented by Jim Conallen in Building Web Applications With UML. In this
section we will shortly explain in what order the diagrams are used and what the

 15

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

meaning behind the models are. In Appendix 1 you can find the diagrams from our
development to compare with the following diagrams.

Top-Level Use Case View

Use cases are modeled to explain the systems behavior. It focuses on the
interaction between the system and its actors. An actor is named a describing name
e.g. Online Customer, the use case itself is also named, but here the name will
point to the use case’s goal. Use cases works with scenarios, there is always one
main scenario, but there can be several alternatives. One thing to remember when
you work with use cases is that there is no right or wrong, the structure can be
everything from the extreme strict to the opposite. [Conallen]

Compare with the use case diagram in the UML chapter (3.1.1).

Analysis model: Main diagram
Use case analysis shows a use case’s flow of events and the classes participating.
It also shows responsibilities, attributes and associations of the classes. The model
has three kinds of stereotyped classes:

• Boundary objects: interface between actor and system
• Entity objects: e.g. Customer, Product
• Control objects: processes, named activities

[Conallen]

Compare with the activity diagram in the UML chapter (3.1.1).

Analysis model: Use Case Sequence Diagram

The sequence diagram is an interaction diagram. It shows the interactions between
actor and system like in the use case diagram but now are the timeline emphasized
in the showing of messages. One important thing in modeling the sequence
diagram is that it is one diagram per use case, no more! [Conallen]

Compare with the sequence diagram in the UML chapter (3.1.1).

 16

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Sequence Diagram for the Use Case Realization

This sequence diagram shows the same information in a more object oriented
thinking than the first sequence diagram in the workflow. This means that it does
not only show methods but also their parameters and return types.

Compare with the sequence diagram in the UML chapter (3.1.1).

Server Components Package - Class Diagram

This diagram shows the methods connecting the application to a database. All the
access to the database goes through this package. [Conallen] This is not always a
database but contains interfaces to connect to other parts that are needed for the
functionality of the application.

Compare with the class and the object diagram in the UML chapter (3.1.1).

Web Pages Package – Class Diagram

This Class diagram consists of two different ways of modeling, the overview and
the detailed. The overview displays pages/scripts and the connections between
them. The detailed starts from the overview but adds attributes and methods.

Compare with the class and the object diagram in the UML chapter (3.1.1).

Main Component Diagram for Web Pages

This model shows the links between server pages in a navigational structure and
displays redirects, links and the like.

Compare with the component diagram in the UML chapter (3.1.1).

 17

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

64 Evaluating UML WAE

To evaluate UML WAE we have modeled a Web application using UML WAE as
modeling language. During the development work we have analyzed the resulting
design. The aspects we focused on are how the model solves the maintainability;
by this we mean documentation, reusability, and the ability to extend the
application.

We have also chosen to use some specific data collection methods collected from
the evaluation methodology described in Utvärderingsboken by Jan-Axel Kylén.
We found these methods to be useful when analyzing our workflow with UML
WAE. The specific methods are used to structure observations and interviews. The
methods consist of interview guides, reading guides and observation schemes.
[Kylén]

6.14.1 Planning

To be able to perform a successful evaluation we had to gain the necessary
knowledge about how to model Web applications with UML WAE. This was very
important because if we did not do it correct from the start, the end result would
not be correct.

Therefore we have read Building Web Applications by Jim Conallen, followed the
examples and discussed the various models until we got a good understanding of
all the steps and aspects of the extension. Preparing and planning for the
evaluation also included making a list of requirements for a fictional Web shop
that should function as a subject of examination for UML WAE and serve as a
base for the final evaluation.

 18

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

6.1.14.1.1 How to evaluate according to our criteria

Extensibility

To measure the extensibility we have chosen to evaluate coupling and cohesion on
the following levels:

• Coupling between the different packages
• Coupling between the different pages inside the packages
• Cohesion inside the different packages

To evaluate coupling we have chosen to do two different evaluations to measure
both the “outer” coupling between the different packages and the “inner” coupling
between the different pages inside the packages. To measure cohesion we
evaluated the cohesion inside the different packages.

We argue that these factors are of significant value to our thesis, because we have
modeled the requirements one by one, aiming to create independent packages with
high cohesion and low coupling between and inside them.

Coupling

To measure the coupling between the different packages we counted the number of
calls made from each package to other packages and then calculated an average
number. This average served as a base for evaluating if a package had low
coupling. [Stotts]

To measure the coupling between the different pages inside the packages we
counted the number of calls made from each page to other pages instead of
between packages and then calculated an average number. This average served as
a base for evaluating if a page had low coupling. [Stotts]

Cohesion

We assessed the cohesion inside the different packages by giving the current
package a score on a scale from 1 to 9 where 1 is the lowest, indicating low
cohesion. If an examined package handled many unrelated tasks it was awarded

 19

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

with the score 1, but a package that handled a single and unified task received a 9,
which indicated high cohesion. All packages are assessed and given a number on
the scale mentioned above and an average was calculated. [Stotts]

Generalization/specialization hierarchy

To measure this principle we investigated if there were any generalization/
specialization hierarchies and assessed if these attempts supported extensibility by
providing an easily extendable hierarchy. To assess the attempts we used the
following rule:

Is-a Rule: This rule can be used as an informal test by forming the statement
“Subtype is a Supertype.” [Larman] E.g. MySQL_DBConnection is a
DBConnection, where DBConnection is a supertype and MySQL_DBConnection
is a subtype of DBConnection. The result is presented in a simple Yes/No manner.

Reusability

Software reusability can be measured in the term of Lines of Codes (LOC). Poulin
uses the following formula to calculate reuse in percent:

Reused Software (LOC)

∗ 100 Total Software (LOC)
[Poulin]

As we have not implemented the design we could not calculate a value of how
much code that could be reused. Instead we measured reusability in two slightly
different ways. First what packages that could be reused and second what pages
that could be reused, by either this or another application.

Furthermore, the measurement was divided into black-box and white-box
reusability also according to Poulin. With black-box reuse we do not tolerate any
changes to the examined object. When measuring white-box reuse, we took into
calculation an estimate of the amount of modifications needed, to fit the examined
object to a new environment. Below follows the description of the formulas that
were used to produce a result in percent:

 20

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Black-box

Reused Packages
∗ 100 Total No. of Packages

Reused Pages

∗ 100 Total No. of Pages

White-box

Reused Packages
∗ 100 Total No. of Packages

Documentation

Diagrams

The diagrams should not be complex to read, the following criteria marks out good
documentation:

• Small detailed diagrams
• Large non-detailed diagrams
• Not written down semantics of each method on a class-by-class basis.
• Good traceability

[Booch]

Traceability

Traceability is defined as the ability to describe and follow a requirement through
the design. We have tested our documentation by the following criteria:

• Trace forward from requirements
• Trace backward to requirements [Jarke]

Reused Pages
∗ 100 Total No. of Pages

 21

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

All the requirements were traced from the initial top-level use case view diagram
and all the way through the various diagrams. Then we traced the requirements
backwards through the diagrams. We observed if the name and meaning of the
requirement remained unchanged, if the context was intact and if the transitions
between the chains of diagrams were understandable and easy to follow.

We have evaluated all the documentation criteria and assessed them by the
following grades:

F: Failed to support
G: Good support
VG: Very good support
*: Could not be measured

6.1.24.1.2 Participants profile

Because we had problems to even find companies that used models to design their
Web applications, we did not have any expectations to find any companies to
conduct our evaluation at. This made us to decide that we would carry out a
development process, using UML WAE, ourselves and evaluate it. The decision
was based on the estimation of our own knowledge and ability to perform a
development process in a correct way.

With this approach come certain risks, such as the difficulty to criticize the own
work and separate between the development and evaluation process. We are aware
of these risks and as an attempt to avoid them we have divided the work into two
roles, developer and evaluator. The evaluator’s role is mainly to supervise the
developers’ work and control that the development process is conducted in a
professional manner. The developers’ roles are to design the application without
consideration that the result is going to be examined afterwards.

The development team consisted of two persons. Both of the developers have
studied software engineering, with computer science as their major, for three years
or more. One of them has worked as a student assistant in Object-Oriented
programming and UML, the other is self-employed and manages a Web based golf
portal.

The evaluator has also studied software engineering, with computer science as a
major, for three years and has worked as a student assistant in Object-Oriented
programming. However, he has no prior experience with evaluating so the
evaluation knowledge is restricted to what we could find in the literature.
 22

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

When proceeding to the analysis of the result we left our previous roles as
developers and evaluator. All the participants now took the role as evaluator and
worked together to analyze the resulting design material.

All of the participants have prior knowledge of UML for non-Web application
development from courses taken at Blekinge Institute of Technology. We have
also experience of Web application development such as Web shops.

6.1.34.1.3 Data collecting

Diagrams

The diagrams that the modeling with UML WAE produced were our main source
of information. The diagrams were produced during the design sessions. Then we
discussed and revised them before we translated them into digital form. All the
conclusions in the result originate from these diagrams. See Appendix 1.

Observations and interviews

The data collecting of information through observations and interviews was
mainly the evaluator’s responsibility. He observed the developers during the
design sessions and conducted frequent interviews with the developers. These
frequent “controls” were made to inspect that the design process was conducted
properly. To his help he had two different tools: observation schemes and
interviews.

Observation schemes

The developers filled in diaries after every design session and handed them in to
the evaluator at the end of every week. The diaries were designed in a form that
made them useful in the analysis of UML WAE. The evaluator used the diaries to
raise questions that he could use in the interviews. Furthermore, the evaluator
participated on every design session and observed the work and the developers. An
example of a diary used can be found in the Appendix 2 (in Swedish).

 23

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Interviews

The interviews were conducted in two forms: interviews performed during the
design work and reviews performed after the design work was completed. The
interviews performed during the work occurred one time every week. The
evaluator used the issues brought up in the diaries to construct interview guides
that he could follow during the interview. After the design work was complete a
review was held with the entire group to discuss the process and result.

The structure of the diaries and main structure of the interviews was constructed
by us together but the evaluator determined their contents.

6.1.44.1.4 Case study

The Web shop we conducted the design with UML WAE on is a basic online shop
where customers can browse and buy products. There are also functions included
to support administration and order handling. The case study starts from five basic
requirements and finishes before the implementation phase.

List of requirements

We have categorized and specified the Web shops functions in the five following
groups:

Show products

Information: Product database

• Ability to list the products by their category
o Listing with name and price
o Listing with name, full description, price and image

• Ability to perform searches based on your own search criteria

 24

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Shopping Cart

Information: Product database

• Ability to add a product to the cart
• Ability to remove a product from the cart
• Ability to change the number of products in the cart

Check out point

• Ability to register an order
• Ability to supply the address details
• Ability to choose payment method
• Ability to choose fright/toll method

Administration

• Ability to add products
• Ability to change/edit products
• Ability to remove products
• Ability to logon
• Ability to logout

Order handling

• Ability to show orders
• Ability to change/edit orders
• Ability to logon
• Ability to logout

 25

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

6.24.2 Conducting analysis and design

When the requirements for the Web shop and the UML WAE preparations were
made we conducted the modeling phase, which then would be the foundation of
our evaluation and result.

6.2.14.2.1 Design sessions

The design sessions were carried out in small group rooms equipped with one
table, six chairs and a whiteboard. The sessions stretched for eight hours, per
session, with one-hour lunch breaks. Both developers and the evaluator
participated in all the design sessions.

The developers took turns to sketch the diagrams on the whiteboard and to write
them down on paper. One of the developers then had the responsibility to transmit
the diagrams into digital form. While the developers worked on the design the
evaluator observed and took notes.

6.2.24.2.2 Workflow

The developers decided to perform the design on one requirement at the time, and
follow that requirement through the entire development cycle before starting with
the next. The diagrams that visualize overviews over more than one requirement
were modeled last because we needed all the requirements to model the overview.
This workflow is similar to the iteration cycles that RUP uses.

Another decision that the developers took was to design according to the thin
client pattern mentioned in chapter 3.1.2 Developing Web applications with UML
WAE. This decision was made because the developers did not have any
knowledge of what platforms the clients will run the application on.

For every step in the process with the different diagrams the developers discussed
the situation and argued for different solutions. This led to small disputes but we
believe that it helped the process in a positive manner. If no questions had been
raised then the work would not have reached the same quality. We believe that
questioning and discussing the diagrams led to a better result than if we had agreed
the whole time.

 26

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

When all the diagrams were designed and completed we started to examine them
with our predetermined criteria. We started to examine the extensibility followed
by the reusability and finished with the documentation criteria. Applying our
metrics on the diagrams produced the result and we used all the diagrams in the
review process, to get the most accurate result possible.

 27

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

75 Result on evaluation of UML WAE

The presentation of the result is divided into the different criteria. Each criteria is
presented with data, analyze of data and a sub conclusion. The sub conclusions are
then analyzed and the final conclusion is derived.

7.15.1 Extensibility

Coupling between the different packages

Package: “Outer” couplings:
Login/out 2
Add products 2
Search 3
Edit 3
Database 4
Login/out 1
Order 3
Database 2
Homepage 5
Show categories 2
View products 5
Cart 5
Search 5
Checkout 2
Database 4

Total outer couplings: 14 + 6 +28 = 48
Packages: 15
Outer couplings per package: 48/15 = 3,2 couplings/package

 28

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Coupling between the different pages inside the packages

The inner couplings column specifies how many couplings a page has to other
pages. E.g. there are nine pages in our example that are only connected to one
other page.

Pages: “Inner” couplings:
9 1
16 2
7 3
6 4
6 5

Total inner couplings: 1*9+2*16+3*7+4*6+5*6=116
Pages: 9 + 16 + 7 + 6 + 6 = 44
Inner couplings per page: 116 / 44 = 2,6 couplings/package

Cohesion inside the different packages

Package: Result: Short motivation:
Login/out 5 Some other couplings
Add products 7 Handles its assignment
Search 8 Performs its duty and pass on the result
Edit 6 Uses an outside package
Login/out 7 Good but slightly small
Order 7 Handles its assignment
Homepage 3 Controller pattern
Show categories 6 Handles its assignment
View products 5 Depends on other packages
Cart 7 Large, but self-supporting
Search 4 Depending on view products
Checkout 7 Self-supporting

Overall package cohesion

5+7+8+6+7+7+3+6+5+7+4+7 = 72 total result
12 packages
72/12 = 6 average cohesion result
 29

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Generalization/specialization

Is-a rule

AdmProductCatalog is a DBHandler
Staff is a DBHandler
OrderCatalog is a DBHandler
ProductCatalog is a DBHandler

Although the names could have been more thought through the Is-a rule apply; all
the subclasses are DBHandlers.

7.1.15.1.1 Analyzing Extensibility

Low coupling

Our design resulted in low coupling with an average of 3,2 outer
couplings/package and 2,6 inner couplings/page. We argue this because with a
maximum of five couplings between the measured items and averages around
three we definitely consider the result to be low coupling both between packages
and the pages.

High cohesion

We assessed the cohesion in our diagrams to have the average 6 on the scale from
1 to 9. This is considered to be over the average and therefore high cohesion. The
packages we created were small and specialized on their part of the system and
were developed only to handle this.

Generalization/specialization

Only the general database connection class with its methods was used as a
superclass with subclasses handling specialized tasks specific for its package.
UML WAE supported modeling with hierarchies so the result is simply: Yes.

 30

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

In what way does UML WAE support Extensibility?

UML WAE supports Extensibility by the possibility to design for low coupling,
high cohesion and the creation of generalization/specialization hierarchies.

7.25.2 Reusability

Total numbers of pages: 42
Total numbers of server pages: 15
Total numbers of packages: 15

Black-box reuse

Packages 0
∗ 100 = 0 % 15

Pages 0
∗ 100 = 0 % 42

White-box

Packages 5
∗ 100 = 33 % 15

Pages 15
∗ 100 = 36 % 42

7.2.15.2.1 Analyzing Reusability

Black-box reuse

The strict rules for black-box ended in 0% reuse both for the packages and the
pages. However, this was almost expected because of the large effort needed to
achieve black-box reuse.

 31

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

White-box reuse

The white-box reuse seen over all the 15 packages were estimated to be 5 of these
and were calculated to 33%. In the 5 packages that we estimated could be reused
only small modifications have to be made, such as modifying or changing pages
that contain domain specific functionality. The other 10 demanded too much
alteration to be considered for reuse.

The white-box reuse of the pages was calculated to 36%. From all the pages (42
pages) we calculated that all the server-pages (15 pages) could be reused on a
similar application with a small amount of modifications. The changes that have to
be done to the server-pages are of smaller nature like changing variable names and
links to Web and server pages. The server pages have standardized functions and
are easily transformed to a different Web shop, if the programmer who
programmed them from the beginning did a good job.

The percentage 33% respectively 36%, is mainly a result of the application’s none
reusable client-pages. If the number of none reusable client-pages had been
smaller the percentage had been higher.

In what way does UML WAE support Reusability?

UML WAE supports Reusability due to the ability to white-box reuse. This thesis
was unable to clarify if UML WAE supports reusability regarding black-box reuse.

 32

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

7.35.3 Documentation

Diagram Small detailed

diagrams
Large non-
detailed diagrams

Not written down
semantics

Top-Level Use
Case View

G * G

Use Case Analysis G * VG
Use Case Sequence

Diagram
G * G

Sequence Diagram VG * G
Overview Class

Diagram
* VG G

Detailed Class
Diagram

* F G

Main Component
Diagram for Web

Pages

* VG G

Traceability

Grade: VG

7.3.15.3.1 Analyzing Documentation

UML WAE’s different diagrams generally got good grades based on our criteria
when evaluating the diagrams. They followed our guidelines with small detailed
diagrams, large non-detailed diagrams and not written down semantics with a few
divergences, but overall UML WAE obtained a grade slightly above G.

The models created with UML WAE are based on its function and grouped
together in a naturally form starting with simple use case diagrams and ending
with detailed class diagrams.

The model includes a large non-detailed diagram. This overview diagram shows
an overview over the whole system and serves as a map for the programmer. It
was easy to read and if you have studied the previous diagrams you can easily find
where the functions are.

 33

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

The detailed class diagram got a fail from us because it is large and detailed. But
that mark was based on our criteria and can be discussed. Before looking at the
detailed diagram you must have gone through the overview diagram closely before
so you can see the whole picture.

The UML WAE describes the application with non-written semantics, which
means that the pages/functions and their relationships are expressed in visual
diagrams, rather than in plain text.

This approach lowers the amount of unused documentation because written
documentation of semantics often remains unread. It is easier to get an overview
and understanding when looking at a whole diagram with the coupling,
relationship etc. rather than in writing.

Traceability

The given grade VG was our overall opinion of the diagrams’ traceability. The
UML WAE supplied good traceability in the documentation because the method
allowed the participants to get a grip on the functions of the coming software. The
method started with broad and easy models such as use cases that then naturally
and in a gradually manner transformed into more complex models. This made a
good transition from requirements to the final class diagram that was easy to
follow and develop from.

In what way does UML WAE support Documentation?

UML WAE supports Documentation by producing understandable, easy to read
and highly traceable diagrams.

 34

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

7.45.4 Conclusion

The use of UML for Web application development will result in good design,
regarding to maintainability.

Extensibility was supported through low coupling, high cohesion and the
possibility to create generalization/specialization hierarchies.

Reuseability was supported by the ability to apply white-box reuse. This thesis
was unable to resolve whether UML WAE supports black-box reuse.

The produced documentation was understandable, easy to read and had highly
traceable diagrams.

With our three criteria extensibility, reusability and documentation examined and
found to be in support, the conclusion is that the use of UML for Web application
development resulted in good design regarding to maintainability.

 35

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

86 Discussion

While writing this thesis several related issues, which did not quite fit in the report,
came up to discussion. Below these issues are discussed, but first our questions
and thoughts concerning our method and the validity and reliability of the result
are presented.

8.16.1 Validity and reliability of the investigation

Due to the lack of an appropriate investigation environment to conduct our thesis
in, we chose to perform a small design project of our own. The decision was taken
based on believes that we had the experience and knowledge to conduct a design
project in a professional matter on our own.

We chose to design a simple Web shop to test our selected criteria on. The design
of the Web shop took valuable research time and we had to limit the extent of the
example. This may have influenced the final result because of the limited test
material.

A better solution to this would be to perform our investigation on a real ongoing
design project where the developers use UML WAE. Then our focus could have
been on collecting the research data and evaluating it, and not spending valuable
time on designing.

Furthermore, our requirements are not formed exactly according to existing
methods. This is also a decision we took to save time. However, the requirements
are well thought through and serve their purpose and we do not think they affected
the result in a negative manner.

Concerning the validity of the result from the case study, we believe that the
maintainability, which was our goal to measure, was measured in a correct way.
This is stated on our criteria, and the metrics we used to measure them. Most of the
metrics were collected from different sources that handled object-oriented design
and most of them could be used without alterations in our case study. However,
some of them had to be slightly altered to function in our case study but we believe
that these alterations did not affect the result.

 36

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

8.26.2 Model for Client/Server but not for the Web

There is a major difference between a Web application and a Web site, but not
between a Web application and a Client/Server application. The paradigm of Web
applications is changing and the boundaries between Web applications and
Client/Server application are becoming less distinct. When examining the
underlying techniques and architectures you will see that many of the same
components exist and the ideas are the same. That is why it is strange that
modeling Client/Server applications is standard but not when developing Web
applications.

This following answer we got in the pre-study from one Web developer sums up
this old attitude towards modeling Web applications: It is only to throw in the
necessary components and make it work. So even now when Web sites are much
more like applications this mentality still seems to exist.

8.36.3 Education

As pointed out above, we believe the distinction between a Web application and a
Client/Server application is vague. That is why we question why modeling when
developing applications for the Webb is so unheard of, but when developing
Client/Server applications modeling is obvious.

One answer to that question could be that universities only teach their students to
model for Client/Server applications, not for Web applications. For instance our
own school BTH is a good example of this; UML and various other modeling
techniques such as ER-modeling have always been taught, used and carefully
examined in previous courses. But when we implemented a Web shop in HTML
and PHP with a MySQL database in the course “Web technologies” modeling was
barely mentioned.

Internet and its use with new Web applications of various forms, is still young and
are evolving every day. There are new techniques and standards for the Web
emerging constantly, so perhaps the computer science faculties at the universities
have not kept up with the pace?

 37

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

To consider the development of Web applications equally complex and important
as the development of Client/Server applications seems more up to date.

8.46.4 Is UML WAE the best choice?

In many cases we felt that the UML WAE itself neither supported nor overturned
some aspects.

For an example UML WAE will not provide its user with a reusable result; it is
more up to the developers to create reusable components. Conallen’s book does
not even mention reusability so the UML WAE workflow will not automatically
provide for it, but at the same time it will not prevent it either. If you as a
developer have knowledge about reusability you have the ability to create reusable
code with the UML WAE notation.

The same goes for low coupling and high cohesion. In his book Conallen advocate
both low coupling and high cohesion as good design patterns and he claims usage
of his model can contribute to achieve this. It is however up to the developers
designing the application to apply these patterns; the model itself can’t provide it
but only support and allow it, which UML WAE does.

Although UML WAE did not have all the features we might have wanted, it did
not either limit us so our overall judgment is positive. To say that UML WAE is
the best choice is impossible for us to say since we have not compared it with
other similar modeling languages, but it definitely is a good tool when modeling
for the Web.

8.56.5 Future studies

Interesting ideas for future studies in this area might be:

• To follow a “real” case study conducted by Web developers using UML
WAE

• To compare UML WAE with other similar models

 38

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

97 Literature

Booch, Grady. Object-oriented analysis and design with applications. Addison
Wesley, 1994.
ISBN: 0-8053-5340-2

Conallen, Jim. Building web applications with UML. Addison Wesley, 2000
ISBN: 0-201-61577-0

Eklund, Sven, and Hans Fernlund. Programkonstruktion med kvalitet –
projekthantering och ISO 9000. Lund: Studentlitteratur, 1998.
ISBN: 91-44-00626-8

Fournier, Roger. A Methodology for Client/Server and Web Application
Development. Prentice Hall, 1999.
ISBN: 0-13-598426-2

Gillies, Alan C. Software Quality. Chapman & Hall, 1992.
ISBN: 0-412-45130-1

Hernbäck, Jan, et al. Systempraktikan – en handbok i systemanalys. Malmö: Liber,
1990.
ISBN: 91-40-30927-4

Jacobson, Ivar, Booch, Grady, and Rumbaugh, James. The Unified Modeling
Language user guide. Addison Wesley, 1999.
ISBN: 0201571684

Kylén, Jan-Axel. Utvärderingsboken. Stockholm : Kylén, 1992.
ISBN: 9185652504

Larman, Craig. Applying UML and patterns. Prentice-Hall, 1998
ISBN: 0-13-748880-7

Poulin, S., Jeffrey. Measuring Software Reuse. Addison Wesley, 1997.
ISBN: 0-201-63413-9

 39

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Powell, Thomas A. Web design: the complete reference. Osborne/McGraw-Hill,
2000.
ISBN: 0-07-212297-8

Ratschiller, Tobias and Gerken, Till. Web application development with PHP 4.0.
Prentice Hall, 2000.
ISBN: 0-7357-0997-1

9.17.1 Web sources

Gotel, Orlena Ph.D. Contribution Structures for Requirements Traceability.
London, England: Imperial College, Department of Computing, 1995.
Available online 2002-05-12 at:
http://src.doc.ic.ac.uk/public/ic.doc/dse/viewpoints/olly_phd_thesis.ps.gz

Greene, Patrick. Available online 2002-03-06 at
http://www.xgenapplications.com/pro-con.htm published in January 2001

Jarke, Matthias Ph.D. Available online 2002-05-12 at
http://portal.acm.org/citation.cfm?doid=290133.290145
Published December 1998 in Communications of the ACM (Volume 41, Issue 12)

Kafura, Dennis Ph.D. Available online 2002-04-26 at
http://people.cs.vt.edu/~kafura/cs2704/oop.swe.html Published in June 1996

Royce, Walker. Available online 2002-04-15 at
http://www.therationaledge.com/content/feb_02/f_conventionalToModern_wr.html
Published February 2002 in The Rational Edge

Stotts, David. Associative Professor. University of North Carolina.
Available online 2002-05-13 at:
http://www.cs.unc.edu/~stotts/145/homes/audio/techman/desanal/design_analysis.
html

Sullivan, John Available online 2002-03-06 at
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211796,00.html
published Jul 29, 2001

 40

http://src.doc.ic.ac.uk/public/ic.doc/dse/viewpoints/olly_phd_thesis.ps.gz
http://www.xgenapplications.com/pro-con.htm
http://portal.acm.org/citation.cfm?doid=290133.290145
http://people.cs.vt.edu/%7Ekafura/cs2704/oop.swe.html
http://www.therationaledge.com/content/feb_02/f_conventionalToModern_wr.html
http://www.cs.unc.edu/%7Estotts/145/homes/audio/techman/desanal/design_analysis.html
http://www.cs.unc.edu/%7Estotts/145/homes/audio/techman/desanal/design_analysis.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci211796,00.html

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Appendix 1

The following is some design material derived from the work with UML WAE.

Top-Level Use Case View

 41

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Analysis model: Main diagram

 42

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Analysis model: Use Case Sequence Diagram

 43

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Sequence Diagram for the Use Case Realization

 44

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Server Components Package - Class Diagram

 45

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Web Pages Package – Class Diagram

 46

Department of Computer Science and Software Engineering
Bachelor thesis in Computer Science, spring 2002
Andreas Oskarsson, Martin Kling, Tobias Norberg

Appendix 2

Dagbok utvecklingsarbete

Datum: Vecka:
Namn:

1. Arbetsuppgift/uppgifter denna dag (Vilket/vilka diagram):

2 Vad har gått bra med tanke på modellens funktion och dina arbetsuppgifter?

2.1 Vad tror ni det beror på?

3 Vad har gått dåligt med tanke på modellens funktion och dina arbetsuppgifter?

3.1 Vad tror ni det beror på?

3.2 Hur skall det kunna undvikas/minskas?

4. Övriga observationer/anmärkningar?

Att tänka på maintainability, extensibility, reusability och documentation och
begränsningar i modellen.

OBS. Dagböckerna skall vara inlämnade till Tobias senast Fredag varje vecka
antingen skriftligt eller via mail! Dokumentet finns på ftp-servern.

 47

	Abstract
	Acknowledgement
	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Delimitations
	1.3 Hypothesis
	1.4 UML WAE
	Standard model elements
	Extension model elements

	1.5 Maintainability
	1.5.1 Extensibility
	Coupling
	Cohesion
	Generalization/specialization

	1.5.2 Reusability
	1.5.3 Documentation
	Traceability

	2 Web applications
	2.1 Web applications vs. Client/Server applications

	3 System development
	3.1 Rational Unified Process
	3.1.1 UML: a model for analysis and design
	Object-Oriented Analysis/Design
	Goals
	Visualize the system
	Specifying the system
	Constructing the system
	Document the system development process

	Workflow

	3.1.2 Developing Web applications with UML WAE
	Web application architecture patterns
	Thin Web client
	Thick Web client
	Web delivery

	Workflow with UML WAE
	Top-Level Use Case View
	Analysis model: Main diagram
	Analysis model: Use Case Sequence Diagram
	Sequence Diagram for the Use Case Realization
	Server Components Package - Class Diagram
	Web Pages Package – Class Diagram
	Main Component Diagram for Web Pages

	4 Evaluating UML WAE
	4.1 Planning
	4.1.1 How to evaluate according to our criteria
	Extensibility
	Coupling
	Cohesion
	Generalization/specialization hierarchy

	Reusability
	Black-box
	White-box

	Documentation
	Diagrams
	Traceability

	4.1.2 Participants profile
	4.1.3 Data collecting
	Diagrams
	Observations and interviews
	Observation schemes
	Interviews

	4.1.4 Case study
	List of requirements
	Show products
	Shopping Cart
	Check out point
	Administration
	Order handling

	4.2 Conducting analysis and design
	4.2.1 Design sessions
	4.2.2 Workflow

	5 Result on evaluation of UML WAE
	5.1 Extensibility
	Coupling between the different packages
	Coupling between the different pages inside the packages
	Cohesion inside the different packages
	Overall package cohesion

	Generalization/specialization
	Is-a rule

	5.1.1 Analyzing Extensibility
	Low coupling
	High cohesion
	Generalization/specialization
	In what way does UML WAE support Extensibility?

	5.2 Reusability
	Black-box reuse
	White-box
	5.2.1 Analyzing Reusability
	Black-box reuse
	White-box reuse
	In what way does UML WAE support Reusability?

	5.3 Documentation
	Traceability
	5.3.1 Analyzing Documentation
	Traceability
	In what way does UML WAE support Documentation?

	5.4 Conclusion

	6 Discussion
	6.1 Validity and reliability of the investigation
	6.2 Model for Client/Server but not for the Web
	6.3 Education
	6.4 Is UML WAE the best choice?
	6.5 Future studies

	7 Literature
	7.1 Web sources

	Appendix 1
	Top-Level Use Case View
	Analysis model: Main diagram
	Analysis model: Use Case Sequence Diagram
	Sequence Diagram for the Use Case Realization
	Server Components Package - Class Diagram
	Web Pages Package – Class Diagram

	Appendix 2

