BLIND SOURCE SEPARATION USING FREQUENCY DOMAIN INDEPENDENT COMPONENT ANALYSIS

Okwelume Gozie Emmanuel
Ezeude Anayo Kingsley

THIS THESIS IS PRESENTED AS PART OF DEGREE OF MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Blekinge Institute of Technology
June, 2007
Abstract

The need for speech enhancement is very important, because of the acoustic environment we are living in, which is composed of noise and other atmospheric disturbances, and this makes it almost impossible to record a speech signal in pure form. In most of the mixed signals there is usually no information about each source such as its location and time distribution. In such situation the estimates of the original source signals is done based on the information of the received mixed signals, therefore the approach to be adopted in such cases to separate the signals must be one that does it blindly, thus the method Blind Source Separation is used in this work.

Our thesis work focuses on Frequency-domain Blind Source Separation (BSS) in which the received mixed signals are converted into the frequency domain and Independent Component Analysis (ICA) is applied to instantaneous mixtures at each frequency bin. Computational complexity is also reduced by using this method.

We also investigate the famous problem associated with Frequency-Domain Blind Source Separation using ICA referred to as the Permutation and Scaling ambiguities, using methods proposed by some researchers. This is our main target in this project; to solve the permutation and scaling ambiguities in real time applications using the method proposed by Minje et al in [12].

Our results show that this method works far better in an “offline” (i.e. simulated) mixtures than in real time applications and lastly we gave some suggestions on what can be done to improve the results.
Acknowledgement

With profound humility, we wish to express our gratitude to the Infinite One, the Almighty God, for all his benevolence, graces and blessing throughout our period of study in Sweden.

Our special thanks go to our advisor, Associate Prof. Nedelko Grbic for providing us an opportunity to work with him. He has been such a wonderful adviser, a motivator, a Teacher and a friend, who is always there with open hands to welcome us and to assist us in any difficulty despite his tight schedules.

We also wish to express our gratitude to program manager, Mikael Åsman, who is a good source of encouragement, and to all the staffs and members of the Department of Telecommunication and signal processing we thank you all.

We want to specially express our sincere appreciation to our parents for their perseverance, encouragement and most importantly their huge financial support throughout the journey of academic pursuit and also to our siblings for their words of encouragement and support.

And lastly to all our friends who supported us throughout the period of this work we say thank you so much.
Table of Content

Chapter 1
1.1 Introduction

Chapter 2
2.1 Fourier Transform
2.2 Short Time Fourier Transform
2.2.1 Overlap Save Method
2.2.2 Overlap Add Method

Chapter 3
3.1 Optimization Methods
3.1.1 Vector Gradient
3.1.2 Matrix Gradient
3.2 Learning Rules for Optimization
3.2.1 Gradient Decent
3.2.2 Natural Gradient

Chapter 4
4.1 Blind Source Separation
4.2 Independent Component Analysis
4.2.1 Statistical Independent
4.2.2 Non-Gaussian Distribution
4.3 Measures of Nongaussianity
4.3.1 Kurtosis
4.3.2 Negentropy
4.4 Maximum Likelihood Method
4.4.1 Probability Density Function of a Transformed Variable
4.4.2 The maximum likelihood of ICA model
Chapter 5

5.1 Frequency Domain Convolutive BSS/ICA 41
5.1.1 STFT / ISTFT Stage 41
5.1.2 ICA Stage 44
5.1.3 Permutation 47
5.1.4 ICA Based Clustering 48
5.1.5 Scaling 50

5.2 Results 52

Chapter 6

6.1 Conclusion 55

Reference 56
List of Figures

Fig.2.1: Illustration of Overlap-save method
Fig.2.2: Illustration of Overlap-add method
Fig.3.1: Contour map of assumed cost function.
Fig.4.1: Mixture of two speech sources
Fig.4.2: The schematic diagram of BSS for Convolutive Mixtures
Fig.4.3: Plot of Probability Density Function of some Gaussian distributions.
Fig.4.4: Different well known distribution together with their kurtosis measure
Fig.5.1: Block diagram of Frequency domain BSS/ICA
Fig.5.2: The Power Spectral Density of the sinusoidal signal before STFT
Fig.5.3: The Power Spectral Density of the sinusoidal signal after ISTFT
Fig.5.4: The PSD of ISTFT of the Sinusoidal Signal using Blackman window
Fig.5.5: The plot of the condition of a performance matrix.
Fig.5.6: The plot of hyperbolic tangent of complex number
Fig.5.7: The plot of hyperbolic tangent of parts of complex number
Fig.5.8: The plot of the source and estimated source using $f(z) = \tanh(z + iz)$ as ICA cost function.
Fig.5.9: The plot of the source and estimated source using $f(z) = \tanh(\text{Re}(z)) + \tanh(\text{Im}(z))i$ as ICA cost function.
Chapter 1

1.1 Introduction

Speech enhancement is very important for applications of speech processing and communications; in our daily environs we always encounter some kind of noise or disturbance. For example, it is very difficult to communicate with someone effectively in a train station or in a car moving at high speed. Therefore it will be imperative to study speech signals, noise and their mixtures in order to develop a technique that will effectively separate the signals or just extract the desired signal.

There are two basic types of interference considered in Speech enhancement studies, one is an interference that is uncorrelated with the desired speech signal and the other is the one that is correlated with the source otherwise known as reverberation or literally called “echo”. In order to achieve success in speech enhancement in form of speech separation and de-reverberation, it’s essential to use two or more microphones (microphone arrays) because it is very difficult to accomplish using only one microphone.

There are two major categories of speech separation technique using multiple microphones, they are;

- Beam Forming and
- Blind Source Separation (BSS).

Beam forming is a form of speech separation technique which enhances signal from one direction and attenuates signals from other directions, which means that a beamformer enhances only the speech source of interest and suppresses others. Traditional Beam forming technique has a back drop in the sense that it relies on the position of the speaker which is not always available for its performance. Also, errors are unavoidable when estimating the position of the speaker using microphone output analysis.

Blind source separation (BSS) is a form of speech separation technique which blindly estimates individual source components from their received mixtures at sensors. The estimation is performed without prior knowledge about each source location and time activity distribution. In its applications, like in speech enhancement, teleconferencing,
hearing aids etc, signals are mixed in a convolutive manner causing reverberation thereby making the Blind Source Separation (BSS) problem a difficult one. Our work dwells on the problem of Blind Source Separation.

Signals can be mixed instantaneously or in a convolutive manner. In instantaneous mixtures Independent Component Analysis (ICA) which is a major statistical tool for dealing with the BSS problem can be directly employ to separate the mixture, while in the later case, which our thesis work is dealing with, we employ the ICA/BSS technique using frequency domain approach.

In this method the mixture signals which are received as convolutive mixtures are first converted to Frequency domain and each of the frequency bins is treated as an instantaneous mixtures.

In our work, we considered only the independent sources and we assumed that the number of the sensors are more than or equal to the number of sources. It is important to note here that the methods we used have also been studied by scholars and researchers, which are listed in the references.

Chapter two discusses the basic and fundamental building block in Frequency domain ICA/BSS; the Short Time Frequency Transform, in chapter three the Optimization methods and most especially the derivation of the Natural Gradient Algorithm is discussed. Chapter four treats more on the Independent Component Analysis, its derivation and the chosen algorithm. In chapter five we show results of Frequency domain BSS/ICA and the last chapter provides the conclusion.
Chapter Two

2.1 Fourier Transform

The Fourier transform is one of several mathematical tools that is used in signal analysis, it involve the decomposition of the signal in terms of sinusoidal or complex exponential components, such representation is said to be in the frequency domain. The inverse of the transform will take back this representation to its original time domain form.

The mathematical definition of a continuous time Fourier transform is written as:

$$X(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x(t) e^{-i\omega t} \, dt$$ \hspace{1cm} (2.1)

where $x(t)$ is the original signal, $X(\omega)$ is the frequency domain of the signal, i is imaginary number, ω is the angular frequency and t is the time index.

The inverse of the continuous time Fourier transform is defined as:

$$x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} \, d\omega$$ \hspace{1cm} (2.2)

Considering a discrete time signal, another form of the Fourier transform is being used and it is referred to as the Discrete Time Fourier Transform. The mathematical definition is shown below:

$$X(k) = \sum_{n=0}^{N-1} x(n) e^{-2\pi i kn/N} \hspace{1cm} \text{for } k = 0, 1, \ldots, N-1$$ \hspace{1cm} (2.3)

where $x(n)$ is the original signal, $X(k)$ is the frequency domain of the signal, i is imaginary number, n is the time index.

And the inverse discrete time Fourier transform is defined mathematically by:
\[x(n) = \frac{1}{N} \sum_{n=0}^{N-1} X(k) e^{\frac{2\pi i kn}{N}} \quad \text{for } n = 0, 1, \ldots, N-1 \quad (2.4) \]

2.2 Short time Fourier Transform

From the above equations (if we are considering a continuous time signal) it can be seen that the Fourier transform assumes that the signal is analysed over all time, i.e. an infinite duration, which implies that there can be no concept of time in the frequency domain and likewise no concept of frequency changing over time. The two domains cannot be mixed together; they are orthogonal to each other.

But obviously there are signals whose frequency content changes over time, a typical example is a speech signal, which has pitch that rises and falls over time. The Fourier transform cannot show us these changes of frequency over time. The Short Time Fourier Transform, evaluates the frequency (and possibly the phase) change of a signal over time.

To achieve this, the signal is cut into blocks of finite length, and then the Fourier transform of each block is computed. To improve the result, blocks are overlapped using overlap add or overlap save method and each block is multiplied by a window that is tapered at its end points. For better understanding of this method, the overlap add method and overlap save method are discussed next.

2.2.1 Overlap save Method

In the overlap save method a long signal is broken into data blocks of size \(N = L + M - 1 \) (let’s assume that \(L \gg M \)) and the size of the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT) are of length \(N \), each data block consists of the last \(M - 1 \) data points of the previous data block followed by the \(L \) new data points to form a data sequence of length \(N = L + M - 1 \) [6]. In other words a consecutive pair of blocks of length \(N = L + M - 1 \) are overlapped by \(M - 1 \) data points. To begin the process the first \(M - 1 \) points of the first block is set to zero, afterwards an \(N \)-point DFT is computed for each data block, it can be noted that if these blocks (i.e. after computing DFT on each of them) are stacked as columns of a matrix,
the rows of this matrix represents the frequency content of the original signal in ascending order from top to down.

To get back the original signal, the N-point IDFT of each block is computed. Since the data record is of length N, the first M – 1 point is discarded, the L points are exactly the same as the original, the last M – 1 points of each data are saved and these points becomes the first M – 1 data points of the subsequent block as illustrated in Fig.2.1.
Fig. 2.1: Illustration of Overlap-save method
2.2.2 Overlap add method

To each data block we append \(M - 1 \) zeros and computes the \(N \) point DFT. Thus the IDFT yields data blocks of length \(N \) that are free of aliasing since the size of the DFT and IDFT is \(N = L + M - 1 \), the sequences are increased to \(N \) point by appending zeros to each block.

To concatenate the signal back to the original length, each last \(N - 1 \) points from each output block must be overlapped and added to the \(M - 1 \) points of the succeeding block, since each data block is terminated with \(M - 1 \) zeros [6]. Hence the name of this method, Overlap add. Fig.2.2 depicts an illustration.
Fig. 2.2: Illustration of Overlap-add method
These two methods are commonly used to “cut” the signal in chunks and reconstruct the signal after processing. The mathematical representation of Short Time Fourier Transform (STFT) is written as:

\[
X(\tau, f) = \sum_{r=-L}^{L} x(r-\tau)w(r)e^{-j2\pi fr}
\]

(2.5)

where \(f \in \{0, \frac{1}{L}f_s, \ldots, L - \frac{1}{L}f_s\} \) is a frequency, \(w(r) \) is a window that tapers smoothly to zero at each end and \(\tau \) is the new index representing discrete time.

Please note that the above equation is used when considering a discrete time signal, but for a continuous time signal the Short Time Fourier Transform is written as;

\[
X(\tau, \Omega) = \int_{-\infty}^{\infty} x(t)w(t-\tau)e^{-j\omega t} dt
\]

(2.6)

The graphical display of the magnitude of the Short Time Frequency Transform \(|X(\tau, \Omega)| \), is called the spectrogram of the signal. It is often used in speech processing, also the output of the STFT is invertible and that is the reason why the original signal can be recovered from it.
Chapter 3

3.1 Optimization Methods

One of our major tasks in this project is to use ICA to find the separating matrix which will be used to estimate the independent components. The separating matrix cannot be written as a function of received samples, whose value could be directly solved, instead the solution is based on cost functions also known as objective functions or contrast functions. The solutions of the separating matrix are found at the maxima or minima of these functions.

Optimization theory includes the study of the maximal and/or minimal values of a function, and the conditions for the existence of a unique maximal or minimal value. An example of an optimization problem is that of finding the minimum of a scalar function or objective function and where the minimum is located. Assuming that this objective function say \(g(x) \) is differentiable, the conditions for finding a local and global minimum are:

\[
\begin{align*}
\bullet \quad & \frac{d g(x)}{dx} = 0 \\
\bullet \quad & \frac{d^2 g(x)}{dx^2} > 0
\end{align*}
\]

It’s important to note that these conditions **must** be fulfilled in order to define a stationary point as a local minima, because without the second condition, fulfillment of the first condition could be either a maxima, a minima or even an inflection point. Stationary point refers to solutions of objective function that satisfied the first equation, but to find the **Global** minimum; that is, value or values where the function achieves its smallest value; the objective function must be evaluated at each stationary point and the smallest is selected.

In a case where the objective function \(g(x) \) can be shown to be strictly convex there is at most one solution to the equation (3.1) and this solution corresponds to the global minimum of \(g(x) \). A function \(g(x) \) is strictly convex over a closed interval \([a, b]\) if, for any two points \(x_1 \) and \(x_2 \) in \([a, b]\) and for any scalar \(\alpha \) such that \(0 \leq \alpha \leq 1 \) then
When the objective function depends on a complex variable say \(z \) and it is differentiable (i.e. analytic) then finding the stationary points of \(g(x) \) is the same as in the real case; find the derivatives, set it to zero and then solve for the locations of the extrema (i.e. maximals and minimals). Of particular interest is when the function is not differentiable, unfortunately in contrast to functions of real variable, many of the functions that we want to minimized are not differentiable. A very good and common example is the simple function \(g(z) = |z|^2 \). Although it is clear that \(g(z) \) has a unique minimum that occurs at \(z = 0 \), this function is not differentiable [2].

The problem is that \(g(z) = |z|^2 = zz^* \) is a function of \(z \) and \(z^*(\text{conjugate}) \) and any function that depends on the complex conjugate \(z^* \) is not differentiable with respect to \(z \). The complication can be resolved with either of two methods; the first is to express the objective function in terms of the real and imaginary parts \(z = x + jy \) and minimize \(g(x, y) \) with respect to those two variables.

This approach is unnecessarily tedious but will yield the solution. A more elegant solution is to treat \(z \) and \(z^* \) as independent variables and minimize \(g(z, z^*) \) with respect to both \(z \) and \(z^* \). For example, if we write \(g(z) = |z|^2 \) as \(g(z, z^*) = zz^* \) and treat \(g(z, z^*) \) as a function of \(z \) and keep \(z^* \) constant then,

\[
\frac{dg(z)}{dz} = z^* \quad (3.4)
\]

Where as if we treat \(g(z, z^*) \) as a function of \(z^* \) with \(z \) constant, then we have

\[
\frac{dg(z)}{dz^*} = z \quad (3.5)
\]

Setting both derivatives equal to zero and solving this pair of equations we see that the solution is \(z = 0 \). [2]

3.1.1 Vector Gradients

Another situation is when the objective function depends on a vector–valued quantity \(x \) the evaluation of the function’s stationary points is a simple extension of the scalar-
variable case. For a scalar function of \(m \) real variables \(f(x) = (x_1, x_2, \ldots, x_m) \), assuming that the function is differentiable, this involves computing the gradient, which is the vector of partial derivatives defined by

\[
\frac{\partial f}{\partial x} = \begin{bmatrix}
\frac{\partial f(x)}{\partial x_1} \\
\vdots \\
\frac{\partial f(x)}{\partial x_m}
\end{bmatrix}
\]

(3.6)

The gradient point is the direction of the maximum rate of change of \(f(x) \) and it is equal to zero at the stationary points of \(f(x) \). Hence the aforementioned condition for a point \(x \) to be a stationary point of \(f(x) \) must be satisfied, which is

\[
\frac{df(x)}{dx} = 0
\]

(3.7)

For this stationary point to be the minimum the Hessian matrix \(H_x \) must be positive definite i.e.

\[
X \cdot H_x \cdot X \succ 0 \quad \text{for all } x
\]

The Hessian matrix is the second-order gradient of a function, in other words second-order derivatives with \((i,j)^{th}\) element as

\[
\frac{\partial^2 f}{\partial x^2} = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_m} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_m \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_m^2}
\end{bmatrix}
\]

(3.8)

If \(f(x) \) is strictly convex, then the solution is unique and is equal to the global minimum.
It’s is easy to see that the Hessian matrix is always symmetric. The Jacobian matrix, of \(f(x) \) with respect to \(x \) which we will later use is given by:

\[
\frac{\partial f}{\partial x} = \begin{bmatrix}
\frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_1} \\
\frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_2} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial x_n} & \cdots & \frac{\partial f}{\partial x_n} \\
\end{bmatrix}
\] (3.9)

Thus the \(i^{th} \) column of the Jacobian matrix is the gradient vector of \(f_i(x) \) with respect to \(x \).

3.1.2 Matrix gradient

Assuming we have a scalar valued function \(g \) of the elements of an \(m \times n \) matrix \(W \) in analogy with the vector gradient, the matrix gradient means a matrix of same size \(m \times n \) as the matrix \(W \), whose \(ij^{th} \) element is the partial derivative of \(g \). We can write it as:

\[
\frac{\partial g}{\partial W} = \begin{bmatrix}
\frac{\partial g}{\partial W_{11}} & \cdots & \frac{\partial g}{\partial W_{1m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial g}{\partial W_{n1}} & \cdots & \frac{\partial g}{\partial W_{nm}} \\
\end{bmatrix}
\] (3.10)

3.2 Learning Rules for Optimization

Let us look at the rules (or algorithms) of finding the extrema points of a cost function. Although the vector that minimizes the cost function may be found by setting the derivatives of the cost function equal to zero as earlier said, another approach is to search for the solution. There are many search method and we are going to point out few.

20
3.2.1 Gradient descent

This is an iterative procedure that has been used to find the extrema values of functions long since before the time of Newton. Let us consider in more detail the case when the solution is a vector w; the matrix case goes through in the same way.

The basic idea behind this method is that we minimize the cost function say $\zeta(w)$ by starting from some initial point value $w(0)$, then computing the gradient of $\zeta(w)$ at this point and moving in the direction of the negative gradient or the steepest descent by a suitable distance. This procedure is repeated at the new point, this is continued until it converges, which in practice happens when the Euclidean distance between two consecutive solutions, that is $\|w(t) - w(t-1)\|$ goes below some small tolerance level.

Thus the learning rule update is

$$w(t) = w(t-1) - \alpha(t) \frac{\partial \zeta(w)}{\partial w} \quad (3.11)$$

With the gradient taken at the point $w(t-1)$, while the parameter $\alpha(t)$ often refers to the step size, or the learning rate, gives the length of the step in the steepest descent which always point in the negative gradient.

Geographically we can view the graph of the function $\zeta(w)$ as equivalent of mountain terrain, so the gradient descent learning rule means that we are always going down the hill in the steepest direction.

The major disadvantage of this method is that it always leads to the closest local minimum instead of a global minimum, unless the function $\zeta(w)$ is strictly convex. That is when we have one local minimum which is also the global minimum. Non-quadratic functions may have many local minimal values; therefore good initial values are important in initializing the algorithm [5]. It’s important to also note that the choice of an appropriate learning rate is essential, because too small a value will lead to slow convergence while too large a value will lead to overshooting and instability which prevents convergence altogether.
For better understanding of the idea, let us assume that the contour plot of the cost function $\zeta(w)$ is as shown in Fig. 3.1

Fig. 3.1: Contour map of assumed cost function.

From the illustration we can see there are three extrema, two local minima and one global minimal. If we choose our initial value in the direction of the gradient vector, we will surely end up with one of the local minimum, which is not the optimal solution. Base on this it’s important to be very careful when choosing our initial values say $w(0)$ as earlier mentioned.

3.2.2 Natural Gradient

We saw the disadvantage of Gradient descent; unless the cost function is quadratic, it may not lead to the global minimum in non-quadratic function which may have more than one extrema. As earlier said, it points in the opposite direction of the gradient in an Euclidean orthogonal coordinate system. Orthogonal mean that the coordinates are perpendicular to each other.
Amari reports in [13,14], that parameter space is not always Euclidean but also has Riemannian metric structure. In this case the Gradient descent does not give the steepest direction of the target function; instead the steepest direction is given by the **Natural gradient**. Since we are mostly concerned with ICA learning rules, we will constrain ourselves to the case of nonsingular matrix also know as invertible matrix (i.e. matrices with existing inverse) which are very important to ICA. Amari also added that these matrices (i.e. nonsingular) have a Riemannian structure with a convenient computable natural gradient.

Let’s assume that the function is \(\zeta \) and \(\partial W \) be a small deviation or minimization of a matrix from \(W \) to \(W + \partial W \), under the constraint that the square norm \(\|\partial W\|^2 \) is a constant.

One of the major requirements is that at any step in gradient algorithm for minimization of a function, there must be a direction of the step and the length of the step. Keeping this length constant the optimal direction is search for [8].

Introducing an inner product at \(W \) by defining the square norm of \(\partial W \) as:

\[
\|\partial W\|^2 = \langle \partial W, \partial W \rangle_W \quad \text{(3.12)}
\]

And by multiplying \(W^{-1} \) from right, we mapped \(W \) to \(WW^{-1} = I \) i.e. identity matrix and \(W + \partial W \) is mapped to

\[
(W + \partial W)W^{-1} = I + \partial W W^{-1} = I + \partial X. \quad \text{(3.13)}
\]

where \(\partial X = \partial W W^{-1} \).

It means that a deviation \(\partial W \) at \(W \) is equivalent to a deviation \(\partial X \) at \(I \).

Amari argues that due to the Riemannian structure of the matrix space, it requires that metric is kept invariant, that is, the inner product of \(\partial W \) at \(W \) is equal to the inner product of \(\partial WZ \) at \(WZ \) for any \(Z \).

\[
\langle \partial W, \partial W \rangle_W = \langle \partial WZ, \partial WZ \rangle_{WZ} \quad \text{(3.14)}
\]

Putting \(Z = W^{-1} \) then \(WZ = I \) and if the inner product at \(I \) is define as

\[
\langle \partial W, \partial W \rangle_I = \sum_{i,j} \left(\partial W_{i,j} \right)^2 = \text{trace}(\partial W^T \partial W) \quad \text{(3.15)}
\]

then equation (3.14) can de deduced to

\[
\langle \partial W, \partial W \rangle_W = \langle \partial WW^{-1}, \partial WW^{-1} \rangle_I = \text{trace}\left((W^T)^{-1} \partial W^T \partial WW^{-1} \right) \quad \text{(3.16)}
\]
Amari finally shows that keeping this inner product constant, the largest increment for
\(\zeta(W + \partial W) \) is obtained in the direction of the natural gradient which is
\[
\frac{\partial \zeta}{\partial W_{\text{nat}}} = \frac{\partial \zeta}{\partial W} W^T W
\] (3.17)

It then means that the usual Gradient descent at point \(W \) must be multiplied from right by the matrix \(W^T W \) and this gives the Natural Gradient learning rule update at point \(W(t) \) as follows:

\[
W(t) = W(t-1) - \alpha(t) \frac{\partial \zeta}{\partial W} W^T W
\] (3.18)

Amari pointed out that Natural Gradient learning rule is fisher efficient, implying that it has asymptotically the same performance as the optimal batch estimation of parameters. Natural Gradient can be used in many applications like statistical estimation of probability density function, multilayer neural network, blind signal deconvolution, blind signal separation, etc and it is the algorithm we used.
Chapter 4

4.1 Blind Source Separation

Blind source separation (BSS), is a technique for estimating individual source components from their mixtures at sensors. This is called blind because, the estimation is done without prior information on the sources, that is their spatial location and time activity distribution; and on the mixing function, i.e. information about the mixing process. The problem has become increasingly important in the area of signal and speech processing due to their prospective application in speech recognition, teleconferencing, hearing aids, telecommunications and medical signal processing, etc. In these applications, signals are mixed in a convolutive manner, at times with reverberation otherwise literary called echo. This makes blind source separation a very difficult problem. Very long Finite Impulse Response (FIR) filters of several thousand taps will be needed to separate acoustic signals mixed in such manner. [1]

Many scholars and researchers have been studying the problem of Blind Signal Separation and numerous ways have been proposed to solve the problem. Recently attention has been drawn to Independent Component Analysis (ICA), which is a very important statistical tool for solving the BSS problem.

As earlier said, the aforementioned applications involve convolutive mixtures of the sources. If they were mixed instantaneously, without any delay, solving the problem with ICA would have been far much easier. We would have just applied instantaneous ICA and that would separate the sources (this will be shown later) although with the problem of scaling and permutation ambiguities.

Due to filtering imposed on sources by their environments, difference between the sensors and propagation delays, what we always observe in real world applications like the aforementioned applications are convolved signal. We need to extend the Blind Source Separation using Independent Components Analysis technique so that it will be applicable to the convolutive mixtures. There are three major approaches of solving the convolutive mixtures using ICA/BSS as enumerated in [1] by Makino et al, which all have some advantages and disadvantages.
First is the Time domain BSS, where ICA is directly applied to the convolutive mixtures. This achieves a good result once the algorithm converges, but it is computationally expensive because we are dealing with convolution operations.

The second is the Frequency domain BSS, where the convolutive mixtures are first converted to Frequency domain, then ICA is applied to each frequency bin, which is seen now as instantaneous mixtures, since convolution in time domain is equal to multiplication in frequency domain. This method is simple but the problem of permutation and scaling is even greater than in the Time domain BSS since different frequency bands may have different permutation and scaling.

The third approach uses both the time domain and frequency domain. Here the filter coefficients are updated in the frequency domain, but the nonlinear functions for evaluating independence are applied in the time domain. This approach does not have the permutation problem, because the independence of the separated signals are evaluated in time domain, but the time spent in switching between the time domain and the frequency domain is non negligible. [19]

From these three approaches, the second is better in terms of computational demand, but the problem of permutation and scaling has to be resolve as earlier mentioned.

Let us imagine that there are two (2) people in a room speaking simultaneously, let us denote the signal emitted from Speaker1 with $S_1(t)$ and Speaker2 with $S_2(t)$ correspondingly, and there are two microphones placed at different locations in the same room. These microphones will produce two time signals which we can called $X_1(t)$ and $X_2(t)$, where t is the time index. Each of these recorded signals is a sum of the speech signals from the two speakers, because each microphone is “hearing” the two speakers at the same time. We could express this as a linear equation as shown below

![Fig.4.1: Mixture of two speech sources](image-url)
\[X_1(t) = a_{11} \otimes S_1 + a_{12} \otimes S_2 \]
\[X_2(t) = a_{21} \otimes S_1 + a_{22} \otimes S_2 \]
(4.1)

Where \(\otimes \) represents convolution, \(a_{ij} \) are some parameters that depend on the distances of the microphones from the speakers and on the room properties, these parameters are referred to as the room impulse response.

This scenario is normally refer to as the cocktail-party problem, it would be very useful if the original speech signals \(S_1(t) \) and \(S_2(t) \) could be estimated. What it then means is that if we knew the values of \(a_{11}, a_{12}, a_{21} \) and \(a_{22} \) (i.e. the impulse response) we could easily solve the linear equation above with any of the classical methods available, but not knowing these values is the main problem and even make it a difficult one. Independent Component Analysis (ICA) can be used to estimate these values and allow us to separate the two original signals \(S_1(t) \) and \(S_2(t) \) from their mixtures \(X_1(t) \) and \(X_2(t) \).

\[
\begin{bmatrix}
 s_1(t) \\
 \vdots \\
 s_N(t)
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 a_{11}(t) & \cdots & a_{1N}(t) \\
 \vdots & \ddots & \vdots \\
 a_{M1}(t) & \cdots & a_{MN}(t)
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 x_1(t) \\
 \vdots \\
 x_M(t)
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 w_{11}(t) & \cdots & w_{1M}(t) \\
 \vdots & \ddots & \vdots \\
 w_{N1}(t) & \cdots & w_{NM}(t)
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 y_1(t) \\
 \vdots \\
 y_N(t)
\end{bmatrix}
\]

Fig.4.2: The schematic diagram of BSS for Convolutive Mixtures

The above diagram shows how the blind source separation for convolutive mixtures can be formulated. Assuming we have \(N \) source signal \(s_i(t) \) that are mixed and observed at \(M \) sensors as \(x_j(t) \), thus mathematically we can write:

\[x_j(t) = \sum_{i=1}^{N} \sum_{l=0}^{L} h_{jl}(l) s_i(t-l) \]
(4.2)

Where \(j,i \) represent the impulse response from source \(i \) to sensor \(j \).

It’s always assumed that the number of sources \(N \) is known or can be estimated and the number of sensors \(M \) is equal to or greater than \(N; \ M \geq N \). The mixed signal \(X \) is
passed through the separation system which consists of finite impulse response (FIR) filters $w_{ij}(l)$ of length l to produce N separated signals $y_i(t)$ as the output. Thus;

$$y_i(t) = \sum_{j=1}^{M} \sum_{l=0}^{L-1} w_{ij}(l)x_j(t-l) \quad i = 1, \ldots, N \quad (4.3)$$

The separation filters, $w_{ij}(l)$ should be estimated blindly, i.e., without any knowledge of the source signal $s_i(t)$ or $h_{ji}(t)$ the mixing function.

4.2 Independent Component Analysis

Independent Component Analysis is a powerful higher order statistical technique used to separate independent sources that were linearly mixed together through a medium and received at several sensors.

Let us assume that we observe N linear mixtures $x(t)_1, x(t)_2, \ldots x(t)_N$ of M independent components.

$$x_j = a_{j1}s_1 + a_{j2}s_2 + \ldots + a_{jN}s_N \quad \text{for } j = 1, 2, 3, \ldots, M \quad (4.4)$$

As earlier said in chapter 1, the number of sensors is usually greater than or equal to the number of sources ($M \geq N$).

In the general ICA model the time index is not used because we assumed that each mixtures x_j as well as independent components s_k are random variables instead of proper signals [5].

It is convenient to use vector-matrix notation instead of the sums as shown above, let \mathbf{x} denote the random vector whose elements are the mixtures x_1, \ldots, x_M and let \mathbf{s} denote the random vector with elements s_1, \ldots, s_N. Let \mathbf{A} denote the matrix with elements a_{ij}.

The mixture model using the vector-matrix is written as $\mathbf{x} = \mathbf{A}\mathbf{s}$ or graphically as
This ICA model is a generative model because it describes how the observed data are generated by a process of mixing the components \(s_j \). It’s important to recall that all we observe and know is the random vector \(x \) and we estimate the inverse \(A \) and \(s \) using it alone. This can’t be achieved without some general and fundamental assumptions which are:

i) We assumed that the components \(s_j \) (i.e. the sources) are statistically independent between each other

ii) And that the Independent components must have non Gaussian distribution (At most one source may have Gaussian distribution).

4.2.1 Statistical Independence

The concept of statistical independence can easily be explained with an example. Let us assumed that \(y_1 \) and \(y_2 \) are scalar valued random variables, \(y_1 \) and \(y_2 \) are said to be independent if the information of the value of \(y_1 \) does not give any information of the values of \(y_2 \) and likewise, information of the values of \(y_2 \) does not give any information of \(y_1 \). It’s important to note that we are referring this to the sources \(s_j \) alone and not the mixtures \(x_i \), which generally are highly dependent.

In probability theory, independence can be defined by the probability densities. Let \(P_1(y_1) \) denote the Marginal Probability Density Function (i.e. the probability density function when \(y_1 \) is considered alone) and let \(P(y_1, y_2) \) denote the Joint Probability Function (i.e. considering \(y_1 \) and \(y_2 \) together).

Then

\[
P_1(y_1) = \int P(y_1, y_2) \, dy_2
\]

Likewise

\[
P_2(y_2) = \int P(y_1, y_2) \, dy_1
\]
We say y_1 and y_2 are independent if and only if the Joint Probability Density Function can be factorised in the following way:

$$P(y_1, y_2) = P_1(y_1)P_2(y_2)$$ \hspace{1cm} (4.8)

In other words two events are statistically independent if the probability of their occurring jointly equals the product of their respective probabilities.

4.2.2 Nongaussian Distribution

Another fundamental restriction or assumption in ICA is that the independent component must be nongaussian or at most may have one Gaussian distribution, for Independent Component Analysis to be possible\[5,7,8\]; this is because of the joint probability densities of Gaussian random variables are completely symmetric. Moreover for Gaussian random variables mere uncorrelatedness implies independencies and thus any decorrelating representation would give independent components. Nevertheless if not more than one of the components are Gaussian it is still possible to identify the nongaussian independent components as well as the corresponding columns of the mixing matrix. In other words without nongaussianity, estimation of the ICA model is not possible at all.
4.3 Measures of Nongaussianity

Since nongaussianity is important in estimation of ICA models thus there is need for a quantitative measure. Let us look at some measures of nongaussianity, their advantages and disadvantages.

4.3.1 Kurtosis

Kurtosis is a parameter that describes the shape of a random variables’ probability distribution function. It can also be used to measure nongaussianity of a random variable, because a Gaussian distribution (which sometimes is refer to as normal distribution) has a normalized kurtosis equal to zero, in other words Mesokurtic.

Since Gaussian distribution have normalized kurtosis equal to zero, it can be used as a reference point to know distributions that are below Gaussian distribution (subgaussian, they have negative kurtosis) in other words Platykurtic and those that
are above Gaussian distribution (supergaussian, these have positive kurtosis) otherwise called Leptokurtic. A leptokurtic distribution has a more acute “spiky” shape around zero, this means, a higher probability than a Gaussian distribution near the mean; and a “long tail”; this entails a higher probability than a Gaussian distribution at the extreme values. A good example of a leptokurtic distribution is the Laplace distribution.

A platykurtic distribution has a “flatter peak” around mean, this implies a lower probability than Gaussian distribution near the mean; and “small tail” (that is lower probability than a Gaussian distribution at the extreme values. A typical example of a platykurtic distribution is the Uniform Distribution.

![Fig.4.4: Different well known distribution together with their kurtosis measure, D= Laplace Distribution, S=hyperbolic Secant Distribution, L= logistic Distribution, N= Normal Distribution, C= Raised Cosine Distribution, W=Wigner Semicircle Distribution, and U= Uniform Distribution [10].](image)
Using statistical terms the Normalized Kurtosis of a standard variable y is defined by:

$$kurt(y) = \frac{E\{y^4\}}{E\{y^2\}^2} - 3$$ \hspace{1cm} (4.9)

This shows that Kurtosis is simply a normalized version of the fourth moment $E\{y^4\}$.

Some properties of kurtosis are;

If x_1 and x_2 are two independent random variables, then

$$kurt(x_1 + x_2) = kurt(x_1) + kurt(x_2)$$ \hspace{1cm} (4.10)

and

$$kurt(\alpha x_1) = \alpha^2 kurt(x_1)$$ \hspace{1cm} (4.11)

The simplicity both in computation and theory of these properties makes kurtosis widely used to measure non-Gaussianity in ICA but, it has some drawbacks in practice, when its value has to be estimated from a measured sample. Its major hindrance is that kurtosis can be very sensitive to “far away” data; its value may depend on only a few observations in the “tail” of a distribution which may be erroneous or irrelevant data. This makes kurtosis not a robust measure of non-Gaussianity [5].

4.3.2 Negentropy

Another important measure of non-Gaussianity is Negentropy. It is a short word for “Negative Entropy” which from its name, is based on Entropy. To continue with negentropy it is important to understand the meaning of Entropy, which is a basic concept in information theory.

Entropy of a random variable as defined by [5] can be interpreted as the degree of information that an observation of a random variable gives. It is a measure of the uncertainty associated with random variables, in other words the more random, unpredictable and unstructured the variable is, the larger its entropy.

The entropy of a discrete random variable x is defined as:

$$H(x) = -\sum_{i=1}^{n} P(x = a_i) \log_2 P(y = a_i) = E_x(I(x))$$ \hspace{1cm} (4.12)

Where a_i is the possible values of x

$I(x)$ is the information content or self – information of x which is itself a random variable

$P(x = a_i), P(y = a_i)$ is the probability density function.
This definition can also be extended to the continuous random variable; in this case it’s often referred as *Differential Entropy*. Assuming we have a continuous random variable y, the differential entropy is written as;

$$ H(y) = -\int f(y) \log_2 f(y) dy $$

(4.13)

where $f(y)$ is the probability density function of y.

One of the fundamental rule of thumb in information theory is that a Gaussian Variable has very large entropy among all random variables of equal variance. This means that Gaussian distribution is very random, disorganised and unstructured distribution and this implies that entropy can be used to measure nongaussianity.

So, to measure a nongaussianity of a variable that will give us zero for a Gaussian variable and non negative for nongaussian variable, we use *Negentropy* which can be defined for a standard variable y as:

$$ J(y) = H(y_{gauss}) - H(y) $$

(4.14)

where y_{gauss} is a Gaussian variable of the same covariance matrix as y.

Negentropy is a very good measure of nongaussianity, but not with a setback which is difficulty in computation. Estimating negentropy requires an estimate of the probability density function, so simple approximations of negentropy are very helpful.

A well known computational and simple approximation of entropy of a standardised *(i.e. zero mean and unit variance)* random variable is

$$ J(y) = \frac{1}{12} E\{y^3\}^2 + \frac{1}{48} kurt\{y^2\} $$

(4.15)

Now, since we assumed that the random variable is standardised, that is zero mean and unit variance, the first term on the right hand side of the above equation is equal to zero when the random variable has a symmetric distribution which is often the case. Then this approximation will be equal to square of the Kurtosis, thereby putting us in the same problem as mention in the last subsection, which is non-robustness of measure of nongaussianity.

Another approach described in [5] is based on the maximum – entropy principle, here the higher order approximation is replaced with the expectation of general non-quadratic functions or “non-polynomial moments”. The polynomial function y^3 and y^2
can be replaced by any other functions G^i (where i is an index not exponent), the method then gives a simple way of approximating the negentropy based on the expectation $E\{G^i\}$ [5]. So, the new approximation the becomes

\[
J(y) = \left[E\{G(y)\} - E\{G(v)\} \right]^2
\]

for one quadratic function G,

where v is a Gaussian variable of zero mean and unit variance.

Now, in choosing the function G one has to be careful so as to:

1. get an approximation better than (4.15)
2. not to get a kurtosis based approximation.

Therefore choosing G we need to be sure that practical estimation of $E\{G^i(y)\}$ should not be practically difficult and should not be too sensitive to the outliers (outliers is a statistical terms for extreme values of data). Secondly $G(y)$ must not grow faster than the quadratic function of y i.e. $|y|^2$.

The choices of G that have proved very useful according to [5,7,8] are:

- \[
G_1(y) = \frac{1}{a_i} \log \cosh(a_i y)
\]

- \[
G_2(y) = -\exp\left(-\frac{|y|^2}{2}\right)
\]

Where $1 \leq a \leq 2$ is a suitable constant, often taken equal to one, this gives a very good compromise between kurtosis and Negentropy [5,7,8].

4.4 Maximum Likelihood Method

In order to understand ICA by Maximum likelihood (ML), it is important to understand some basic terms in Estimation Theory which maximum likelihood belongs to.

Estimation theory aims at extracting from noise corrupted observations, information or data of interest. Assuming that there are t scalar measurements say $x(1), x(2), \ldots, x(t)$ containing information about n quantities that we which to estimate say u_1, u_2, \ldots, u_n. These quantities u_i are called parameters, they can be represented as a vector $\mathbf{u} = [u_1, u_2, \ldots, u_n]^T$, so also the measurements
\[x = [x(1), x(2), \ldots, x(t)]^T, \text{ where } T \text{ means transpose of the vector.} \]

Generally, the estimator of the parameter vector, represented as \(\hat{U} \), is a vector function by which the parameters can be estimated from the measurements, so mathematically we can write it as:

\[\hat{U} = f(x_n) = f(x(1), x(2), \ldots, x(t)) \quad (4.19) \]

Or individually we can write it as:

\[\hat{u}_i = f_i(x_i) \quad (4.20) \]

The numerical value of an estimator \(\hat{u}_i \) is called the estimate of \(u_i \).

There are numerous examples of estimators like method of moments, least squares, Bayes, maximum likelihood, to name but a few but here we are dealing with maximum likelihood.

Maximum likelihood estimator assumes that the priori information or density of the distribution is known or assumed known. It has some asymptotic \((\text{asymptotic in the sense that the more the variables the better the result)}\) optimal properties \((\text{which are its consistency and efficiency)}\) that makes it a robust and desirable choice of estimation. The maximum likelihood estimate of a parameter \(U \) \((\text{represented as } \hat{U}_{ML})\) is the value of the estimate that maximizes the likelihood function of the measurement just as its name implies.

The likelihood function, which can be likened to the joint probability function of the measurements assuming that the measurements are independent, is given as:

\[L(x(1), x(2), \ldots, x(t) | u_1, u_2, \ldots, u_n) = L = \prod_{i=1}^{t} P(x(i); u_i, u_2, \ldots, u_n) \quad (4.21) \]

Taking the logarithm of the above equation we have

\[\ln L = \sum_{i=1}^{t} \ln P(x_i; u_1, u_2, \ldots, u_n) \quad (4.22) \]

Maximum likelihood estimates are obtained by maximizing \(L \) or \(\ln L \), by maximizing \(\ln L \) which is much easier than \(L \), the maximum likelihood estimate of \(U \) are the simultaneous solutions of \(n \) equations such that:

\[\frac{\partial \ln L}{\partial u_i} = 0 \quad \text{for } j = 1, 2, \ldots, n \quad (4.23) \]

Now, that we have a little background knowledge of maximum likelihood estimates, in order to derive the ICA algorithm using maximum likelihood estimator we also
need to have a review of the probability density caused by a linear transform to a standard variable.

4.4.1 Probability Density Function of a Transformed Variable

Assuming we have 2 random variables X and S of n dimensional, that are related as follows:

$$X = AS$$

(4.24)

for which the inverse

$$S = A^{-1}X$$

(4.25)

exist and is unique, then the probability density $P_s(X)$ of X can be obtained from the Probability Density Function (PDF) $P_s(S)$ of S as shown below:

$$P_s(X) = \frac{1}{|\text{det} \, J_g(A^{-1}(X))|} \, P_s(A^{-1}(X))$$

(4.26)

Where J_g is the Jacobian matrix, that is:

$$J_g(X) = \begin{bmatrix}
\frac{\partial g_1(X)}{\partial x_1} & \cdots & \frac{\partial g_s(X)}{\partial x_1} \\
\vdots & \ddots & \vdots \\
\frac{\partial g_1(X)}{\partial x_n} & \cdots & \frac{\partial g_s(X)}{\partial x_n}
\end{bmatrix}$$

Since the transformation $X = AS$ is linear and nonsingular, then the equation (4.26) can be reduced to:

$$P_s(X) = \frac{1}{|\text{det} \, A|} \, P_s(A^{-1}(X))$$

(4.27)

4.4.2 The Maximum Likelihood of ICA Model

Based on equation (4.27) above which is the PDF of a linear transformation and being aware of our ICA generative model

$$x = As$$
The PDF of the mixture vector \mathbf{x}, $P_\mathbf{x}$ can be written as:

$$P_\mathbf{x}(\mathbf{x}) = |\det \mathbf{C}| P_\mathbf{s}(\mathbf{s}) \quad (4.28)$$

This can also be written as:

$$P_\mathbf{x}(\mathbf{x}) = |\det \mathbf{C}| \prod_i \hat{P}_i(s_i) \quad (4.29)$$

Where $\mathbf{C} = \mathbf{A}^{-1}$ since \mathbf{A} is nonsingular, P_i denotes the densities of the independent components. Recalling that $\mathbf{s} = \mathbf{A}^T \mathbf{x} = \mathbf{C} \mathbf{x}$, we can write equation (4.29) as follows:

$$P_\mathbf{x}(\mathbf{x}) = |\det \mathbf{C}| \prod_i \hat{P}_i(c_i^T \mathbf{x}) \quad (4.30)$$

Assuming \mathbf{x} are N observations which of course are statistically independent of each other, then the likelihood denoted by L (please note that at this juncture that we need to find the likelihood on which we base the calculation of the Maximum likelihood) can be obtained as the product of these densities evaluated at the N points. This is evaluated as a function of \mathbf{C}

$$\ln L(\mathbf{C}) = \prod_{j=1}^{N} \prod_i P_i(c_i^T x(j)) |\det \mathbf{C}| \quad (4.31)$$

As earlier said it is easier and more practical to use the logarithm of the likelihood, based on this we can rewrite equation (4.31) as

$$\ln L(\mathbf{C}) = \sum_{j=1}^{N} \sum_i \ln P_i(c_i^T x(j)) + N \ln|\det \mathbf{C}| \quad (4.32)$$

It is important to note that taking logarithm of likelihood does not make any difference in the location of the optimum value, since the maximum of logarithm, $\ln L(\mathbf{C})$ is obtained at the same point as the maximum of the $L(\mathbf{C})$. The base of the logarithm does not make any difference although natural logarithm is preferred.

Equation (4.32) can further reduced as follows

$$\frac{1}{N} L(\mathbf{C}) = M \left[\sum_i \ln P_i(c_i^T \mathbf{x}) \right] + \ln|\det \mathbf{C}| \quad (4.33)$$

Where M is an average computed from the observed sample i.e. mean over N samples.
Performing maximum likelihood estimation in practice, we need an algorithm to perform the numerical maximization of the likelihood function, from (chapter 3), the gradient of the log likelihood function in equation (4.33) can be written as:

\[
\frac{1}{T} \frac{\partial \ln L}{\partial \mathbf{C}} = \left[(\mathbf{C}^T)^{-1} \right] + g(\mathbf{C}\mathbf{x})^T \tag{4.34}
\]

Or in the gradient descent learning rule form:

\[
\mathbf{W}(t) = \mathbf{W}(t-1) - \alpha \left((\mathbf{C}^T)^{-1} + g(\mathbf{C}\mathbf{x})^T \right) \tag{4.35}
\]

The Natural gradient method simplifies the maximization of the likelihood and it makes it better conditioned. To derive the natural gradient ICA algorithm we multiply the second part of the above equation (4.35) by the matrix \(\mathbf{C}^T \mathbf{C} \) from right just as earlier shown in the optimization chapter, thus we have:

\[
\mathbf{W}(t) = \mathbf{W}(t-1) - \alpha \left((\mathbf{C}^T)^{-1} + g(\mathbf{C}\mathbf{x})^T \right) \mathbf{C}^T \mathbf{C} \tag{4.36}
\]

and this reduces to

\[
\mathbf{W}(t) = \mathbf{W}(t-1) - \alpha \left(\mathbf{I} + g(\mathbf{s})^T \right) \mathbf{C} \tag{4.37}
\]

But we still have a problem and that is the density distribution of the independent components which we don’t know but we have to assume a model. Since we know that speech signals have a distribution close to Laplacian distribution and that the derivative of \(\tanh \) function is close to it, we may choose that:

\[
g(\mathbf{s}) = \tanh(\mathbf{s}) \tag{4.38}
\]

If we write that

\[
g(\mathbf{s}) = -\frac{\partial P(\mathbf{s})}{\partial \mathbf{s}} \tag{4.39}
\]

where

\[
P = \frac{\partial g}{\partial \mathbf{s}} \tag{4.40}
\]
then

\[P_t(s) = \frac{\partial \tanh(s)}{\partial s} = 1 - \tanh(s)^2 \]
\[(4.41) \]

\[\frac{\partial P_t(s)}{\partial s} = \frac{\partial^2 \tanh(s)}{\partial s^2} = -2 \tanh(s)(1 - \tanh(s)^2) \]
\[(4.42) \]

\[g(s) = -\frac{2 \tanh(1 - \tanh(s)^2)}{1 - \tanh(s)^2} = 2 \tanh(s) \]
\[(4.43) \]

At the optimum \(C = W\) and we use \(W(t-1)\) as \(C\), so ICA Natural gradient learning rule update is shown below as

\[W = W(t-1) - \alpha[I - 2 \tanh(s)s^T]W(t-1) \]
\[(4.44) \]

Please note that the constant 2 may be removed when using the update rule. Thus the resulting algorithm is recapitulated as

ICA Natural Algorithm

Given \(M\) mixed signals \(x(1), x(2), \ldots, x(m)\) of length \(L\)

- Step 1: Initiate \(W\) to the identity matrix \((m \times m)\)
 set \(m = 1\)
- Step 2 : Calculate the output \(s(m)\) that is the independent components,
 \(s(m) = Wx(m)\)
- Step 3 : Update \(W\) as \(W = W(t-1) - \alpha[I - 2 \tanh(s)s^T]W(t-1)\) until convergence.
Chapter 5

5.1 Frequency Domain Convolutional BSS/ICA

Our work is summarized in the block diagram shown below, the convolved signal (observed signals) is first passed through the Short Time Fourier Transform (STFT), thereby converting it into frequency domain. The mixed frequency bins are then passed through the unmixing network to get the separated frequency bins; we thereafter pass it through the permutation and scaling stage. Afterwards is the Inverse Short Time Fourier Transform (ISTFT) which converts the separated frequency bins in into separated time domain signal.

5.1.1 STFT and ISTFT Stage

In section 4.1 we mentioned that frequency domain BSS/ICA is preferable when considering the computational demand. In first stage of the frequency domain BSS/ICA method; the time domain multivariate signal $x_i(n)$, sampled at a frequency f_i are converted into frequency domain $x_i(f;\tau)$ L–point STFT.

Fig.5.1: Block diagram of Frequency domain BSS/ICA
\[x_j(f, \tau) = \sum_{r=-\frac{L}{2}}^{\frac{L}{2}} x_j(\tau + r) \text{win}(r) e^{-j2\pi f r} \] (5.1)

where \(f \in \left\{ 0, \frac{1}{L} f_s, \ldots, \frac{L-1}{L} f_s \right\} \) is a frequency, \(\text{win}(r) \) is a window that tapers smoothly to zero at each end and \(\tau \) is the new index representing time. Note that in the equation (5.1) the length \(L \) is divided by 2, this is because in Fourier transformation half of the length of the transformation is repeated and flipped. So what we have in the second half of \(L \) is the mirror image of the first half.

So, the problem is converted into the task of demixing an instantaneous mixture at each frequency bin,

\[x_j(f, \tau) = \sum_{i=1}^{N} h_{ji}(f) s_i(f, \tau) \] (5.2)

Where \(h_{ji}(f) \) is the frequency response from source \(i \) to sensor \(j \) and \(s_i(f, \tau) \) is the frequency domain time series signal of \(s_i(t) \) obtained by using same \(L \) point short time Fourier transform. The equation above can be rewritten using vector notation thus,

\[x(f, \tau) = \sum_{i=1}^{N} h_i(f) s_i(f, \tau) \] (5.3)

Where \(x = [x_1, x_2, \ldots, x_M]^T \) is the vector of mixed samples and \(h_i = [h_{i1}, \ldots, h_{iM}]^T \) is the vector of the frequency response from source \(s_i \) to all \(M \) sensors.

In our work we use the recorded signal available from [17], it was recorded with two talking microphones (sampled at 16kHz) in a normal office room with a loud music in the background. The distance between the speaker, cassette player and the microphones is about 60cm in a square constellation.

We wrote short time Fourier transform and inverse short time Fourier transform programs in Matlab and to be sure that these programs were working correctly, we ran them on a sinusoidal signal with a frequency of 2kHz, sampled at 10kHz frequency. The power spectrum of the signal was estimated before short time Fourier transform as show in the Fig. 5.2 below;
Fig. 5.2: The Power Spectral Density of the sinusoidal signal before STFT

After STFT and consequently ISTFT the power spectrum of the output was also estimated as shown in Fig. 5.3 below.
These plots confirmed that our STFT and ISTFT Matlab programs are working properly.

Altering the length of the FFT (and IFFT) used in short time Fourier transform (and Inverse short time Fourier transform) we found out that it does not affect the signal after reconstruction, also the block length does not have any effect on the signal after reconstruction, but a short length will give a better time resolution during the processing (i.e. after STFT) while a long one will give a better frequency resolution as mentioned in [3].

5.1.2 ICA Stage

We have discussed much on ICA and the derivation of the Natural gradient algorithm. The output of this stage is the unmixing network shown in the block diagram of our work (see figure 5.1). We wrote natural gradient ICA algorithm program in Matlab before we run the program on the frequency bins of the mixtures, we tested it on instantaneous mixtures of two sequences of Laplacian distribution with variance equal
to two, zero mean and the length equal to ten thousand. The mixing matrix A is a 2-by-2 matrix with a full rank (i.e. the matrix is invertible).

We check the performance of ICA separation by plotting the condition (the condition number of a matrix is a measure of stability or sensitivity of a matrix to numerical operations, matrices with condition number near one is said to be well conditioned) of the performance matrix during training. The performance matrix,

$$ P = W \times A $$

where W is the separation matrix, should be equal to a, possibly rescaled and permuted identity matrix. It then means that the condition number of the performance matrix should tend towards one during the training.

The plot of the condition number is show in Fig.5.6 below;

Fig.5.5: The plot of the condition of a performance matrix.
Fig 5.5 above confirmed that our natural gradient ICA algorithm program is working in order.

Since we are using the hyperbolic tangent as our cost function in the ICA algorithm as earlier said in the previous chapter, we have to consider that the outputs of the STFT (that is the Fourier Transform) are complex variables. In [11] it is showed that due to the singularities at these points \(\left(k + \frac{1}{2} \right) \pi \), for \(k = 0, 1, \ldots \), the hyperbolic tangent is undefined. This will introduce numerical problems and seriously hinder convergence (See Fig.5.7 below).

![Fig.5.6: The plot of hyperbolic tangent of complex number [11]](image)

He argued that it’s better to use hyperbolic tangent separately on the real and imaginary parts of the complex variables as

\[
 f(z) = \tanh(\text{Re}\{z\}) + \tanh(\text{Im}\{z\})i.
\]

(5.4)
Fig. 5.7: The plot of hyperbolic tangent of parts of complex number [11]

From the plots shown above, it can be seen that it's better to use the later. To evaluate the effect of these two cost functions, we simulate “offline” mixtures of two speech signals, a male and a female voice available from [18] (after separating the Instantaneous mixtures). The simulated mixture matrix is given as

$$A(z) = \begin{bmatrix} 1 + 0.7z^{-1} + 0.2z^{-2} & 0.1 + 0.1z^{-1} + 0.6z^{-2} \\ 0.5 + 0.1z^{-1} + 0.1z^{-2} & 1.5 + 0.5z^{-1} + 0.1z^{-2} \end{bmatrix}$$ \hspace{1cm} (5.10)$$

The power spectral density of one of the sources (the female) was estimated before the mixing. The frequency bins from STFT of the simulated mixtures were passed through ICA using the cost function $f(z) = \tanh(z + iz)$ and later, the other cost function $f(z) = \tanh(\text{Re}(z)) + \tanh(\text{Im}(z))$ was used. The plots of the PSD of the estimated sources for each cost function are shown below.
Fig. 5.8: The plot of the source and estimated source using $f(z) = \tanh(z + iz)$ as ICA cost function.

Fig. 5.9: The plot of the source and estimated source using

$$f(z) = \tanh(\text{Re}(z)) + \tanh(\text{Im}(z))z$$

as ICA cost function.
Based on the figures above Fig.5.8 and Fig.5.9, it can be deduced that the effect of the two cost functions are not always different since the two plots are almost the same. In our study we decided to use \(f(z) = \tanh(\text{Re}(z)) + \tanh(\text{Im}(z)) \) as our cost function for complex value ICA and apply it independently to each frequency bin obtained from a short time Fourier transform of the inputs. From these we obtain one complex valued unmixing matrix for every frequency bin.

5.1.3 Permutation

Since at each frequency bin we are applying ICA algorithm for an instantaneous mixtures, it is possible that the frequency components of the same source are recovered with arbitrary other. This result in permutation ambiguity and can lead us to a wrong reconstruction of the spectrum of the recovered sources.

There are many methods developed by researcher to mitigate this problem, but the fact is that they have some disadvantage. The methods and their set back as also enumerated by [12] are as follows:

- Using correlations between envelopes of band-passed signal, but it’s setback is that it is not robust since misalignment at a frequency is propagated through consecutive frequencies [1,9].
- Direction of arrival (DOA) estimation or localization approach as termed by Sawada et al in [1,9] is based on the basis vectors from the inverse of the separation matrix. This method lacks preciseness since the evaluation is based on approximation of the mixing system.
- Imposing constraints on demixing filter such as smoothing, gives a good result but only in a simple case, it cannot be used when mixing filter length is too long.
- Sawada et al [1,9] used both the correlation and localization method to form what he called Integrated method, but this increases the complexity and computational demand.
- In [12], Kim uses a method of grouping the vectors of estimated frequency responses into clusters in such a way that each cluster contains frequency responses associated with the same source. He did this grouping, otherwise called clustering, by applying ICA on estimated frequency responses. Kim argued that this method works well and does not require any prior information.
such as the geometric configuration of microphones arrays or distances between the sources and microphones.

Of all these methods and many other methods that have been proposed by many researches and are not mentioned here, the ICA based clustering by [12], looks simpler and less computational demanding, and in our approach to solving the permutation problem we used the method. Let us now look at the procedure to this approach.

5.1.4 ICA Based Clustering

Supposed that the complex valued ICA algorithm converge on each of the frequency bin, outputting the unmixing matrix, thus we have $\mathbf{y}(f, \tau) = \mathbf{W}(f)\mathbf{x}(f, \tau)$. Calculating the pseudo inverse \mathbf{W}^+ (which is reduced to the inverse \mathbf{W}^{-1} if $N = M$, just as in our case) of \mathbf{W} we have

$$\mathbf{A} = [a_1, a_2, \ldots, a_N] = \mathbf{W}^{-1}$$

(5.6)

where $a_i = [a_{i1}, a_{i2}, \ldots, a_{im}]^T$ are the columns of the inverse of the separating matrix \mathbf{W} otherwise called the basis vectors. This inverse is also the estimated mixing matrix. [1,12] thus the sensor sampled vector $\mathbf{x}(\tau)$ can be represented by a liner combination of basis is vectors

$$\mathbf{x}(f, \tau) = \sum_{i=1}^{N} a_i(f)\mathbf{y}_i(f, \tau)$$

(5.7)

We then construct a data matrix $\tilde{\mathbf{X}}$ from the basis matrix \mathbf{A} of each frequency bin,

$$\tilde{\mathbf{X}} = \left[\begin{array}{ccccc} A_1 & \cdots & \cdots & A_L \end{array} \right]$$

(5.8)

where $A_k = \mathbf{A}\left(\frac{(k-1)f_s}{L}\right)$.

The ICA algorithm is then applied on $\tilde{\mathbf{X}}$ to the get the following decomposition

$$\tilde{\mathbf{X}} = \tilde{\mathbf{A}}\tilde{\mathbf{S}}$$

(5.9)

Where $\tilde{\mathbf{A}}$ is a complex $m \times n$ matrix denoting the ICA basis matrix and $\tilde{\mathbf{S}}$ is a complex $n \times nL$ denoting the encoding variable matrix associated with $\tilde{\mathbf{X}}$ (Please note that this is not the sensor signal)
Clustering (that is grouping into cluster of the basis vector, so that each cluster will contain frequency response associated with the same source) is then done by considering absolute values of encoding variables that represent the contribution of basis vectors. Like in our case where N = 2, if we consider a point \(\tilde{x}_i \) we have two basis vectors \(\tilde{a}_1, \tilde{a}_2 \) and associated encoding variables \(\tilde{s}_i = [\tilde{s}_{1,i}, \tilde{s}_{2,i}]^{T} \). \(\tilde{x}_i \) is assigned to cluster1, if \(|\tilde{s}_{1,i}| > |\tilde{s}_{2,i}| \) and is assigned to cluster2 otherwise. Since N = 2, it means that two consecutive data points \(\tilde{x}_i \) and \(\tilde{x}_{i+1} \) cannot be in the same cluster, so if \(\tilde{x}_i \) is in cluster one then \(\tilde{x}_{i+1} \) should be in cluster two.

From these clusters, we pick the columns based on the frequency, that is assuming we are considering the first frequency bin, we pick the first columns form each of the cluster to form a matrix, invert it to get back the unmixing matrix and then multiply with the first frequency bin of the mixture to get the separated source.

5.1.5 Scaling

Before the signal is recovered (i.e. before the inverse Fourier transform), we try to resolve the scaling problem using the method in [1, 9]. Here Sawada et al multiplied the diagonal values of the basis matrix with the separation matrix for each frequency bin. The reason behind this method is that the product of this multiplication will be a matrix with a normalized diagonal. And this will normalize the separated outputs for each frequency. Before applying this method, we tested it on the ICA outputs of instantaneous mixture from [18], listening to the sound output, before and after applying this method, prove that this method actually works well.

Afterwards the ISTFT is then applied to recover the signal from frequency domain (see subsection 5.1.1).
5.2 Results

In this section we present results to evaluate the performance of our approach on artificial or “offline” mixtures.

The “offline” mixtures we use are mixtures of two speech signals, a male and a female voice available from [18] (after separating the Instantaneous mixtures). The simulated mixture matrices are given as follows;

\[A_1(z) = \begin{bmatrix} 23 & -5 \\ 17 & 19 \end{bmatrix}, \]

\[A_2(z) = \begin{bmatrix} 0.2 - 1.8z^{-1} & 1 + 0.45z^{-1} \\ 1 + 1.2z^{-1} & 0.4 - 0.9z^{-1} \end{bmatrix}, \]

\[A_3(z) = \begin{bmatrix} 1 + 0.7z^{-1} + 0.2z^{-2} & 0.1 + 0.1z^{-1} + 0.1z^{-2} \\ 0.1 + 0.1z^{-1} + 0.1z^{-2} & 1 + 0.5z^{-1} + 0.1z^{-2} \end{bmatrix}, \]

and

\[A_4(z) = \begin{bmatrix} 1 + 0.3z^{-1} + 0.5z^{-2} + 0.1z^{-3} & 0.1 + 0.2z^{-1} + 0.4z^{-2} + 0.8z^{-3} \\ 0.1 + 0.3z^{-1} + 0.5z^{-2} + 0.2z^{-3} & 1 + 0.7z^{-1} + 0.9z^{-2} + 0.3z^{-3} \end{bmatrix} \quad (5.10) \]

The first mixture matrix \(A_1(z) \) is for instantaneous mixing while \(A_2(z), A_3(z), A_4(z) \) involve filtering with filter order of 1, 2 and 3 respectively.

The simulated mixtures were passed through the stages of our BSS/ICA approach. In order to investigate the performance of ICA based clustering method for solving permutation (which we used in our work).

The performance in terms of Signal to Interference Ratio (SIR) we used is based on the method proposed by Parra et al in [20], where he defined the SIR for a signal \(s(t) \) in a multipath channel \(H(w) \) to be the total signal powers of the direct channel versus the signal power coming from the cross channels

\[SIR[H, s] = 10 \log \left(\frac{\sum_\omega \sum_i |H_i(\omega)|^2 \langle |s_i(\omega)|^2 \rangle}{\sum_\omega \sum_{i\neq j} \sum_j |H_{ij}(\omega)|^2 \langle |s_j(\omega)|^2 \rangle} \right) \quad (5.11) \]

Note that \(\langle f(x) \rangle \) represents the sample average of \(f(x) \).
He added that in a case where the channel responses and the signals are known, the expression can be calculate directly by using the sample average over the available signal and then multiply the powers with the given direct and cross channel responses while in the case of unknown channel responses and signals, the direct powers (i.e. the numerator) and the cross powers (the denominator) can be estimated by using alternating signals. Using the earlier, the results for the four different mixtures we had is shown in the Table 5.1 below.

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Input SIR</th>
<th>Output SIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Mixture</td>
<td>4.6696</td>
<td>5.9425</td>
</tr>
<tr>
<td>2nd Mixture</td>
<td>4.2865</td>
<td>4.8829</td>
</tr>
<tr>
<td>3rd Mixture</td>
<td>3.9270</td>
<td>3.9117</td>
</tr>
<tr>
<td>4th Mixture</td>
<td>3.7984</td>
<td>3.7982</td>
</tr>
</tbody>
</table>

Table 5.1: SIR of the mixtures in dB.

Based on these results, it can be deduced that the algorithm works better on the first mixture (an instantaneous mixture) which has the highest difference value of SIR between the input and output, than the other mixtures (convolutive mixtures). The result also shows that as the order of the filter increases, there is a decrease in performance. This means that the algorithm will not work better in real time application where the channel has a very complex frequency response and long taps.
Chapter 6

6.1 Conclusion

In our thesis work, we have studied and implemented the Frequency domain Blind source separation, using Independent Component Analysis, which can be used in applications like teleconference, hearing-aids etc. This is a very attractive method in solving convolutive mixture signals, which is the only form of mixtures applicable in real time applications. We looked at the formulation of the Independent Component Analysis algorithm based on higher order statistics which lead us to talk about some statistical terms. The frequency domain ICA requires that the time domain mixture signal be transformed into Frequency Domain and this is done with Short Time Fourier Transform (STFT). This gave us an edge to study the Short Time Fourier Transform (STFT), its methods, applications and benefits.

Of course the study of Frequency Domain BBS/ICA didn’t just go without difficulties and problems, the most prominent one is the familiar problem with Frequency domain BSS/ICA and that is the permutation and Scaling alignment problem which is our main target in this work to resolve. We looked at different methods some researchers have used to mitigate the problem, and applied one of them in our approach.

Our result shows that the method proposed by Minje et al in [12] for permutation resolution works well on “offline” or artificial mixture. The scaling resolution method proposed by Makino et al also works well.

We will finally recommend that more work should be done in the permutation problem (with more regards to speed and simplicity) and to increase the speed of convergence of the ICA algorithm, methods like the FastICA [5, 7, 9] should be considered.
References

