
 
 
 

 
 
 
 
 
 

Statistical Modelling and the Fokker-Planck Equation 
 

 
 

 
 

Adesina Owolabi Abiona  
 
 
 
Thesis for the degree Master of Mathematical Modelling and Simulation 

10 credits (15 ECTS credits) 
 

 
May 2008 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Blekinge Institute of Technology 
School of Engineering 
Department of Mathematical Science 
Supervisor: Assistant Professor Claes Jogreus (Blekinge Institute of Technology) 

 
 



Statistical Modelling and the Fokker-Planck Equation 
 
 

ADESINA Owolabi Abiona  
 
 

Blekinge Institute of Technology 
Thesis Report 

 
 
 
 
 
 
 
 
 
 
 
 
 

Master's Thesis in Mathematical Modelling and Simulation, 15 ECTS credits 
 
 

Supervisor: Ass. Prof. Cleas Jogrues 
 
 

May, 2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mathematical Science 
School of Engineering 

Blekinge Institute of Technology 
Karlskrona, Sweden 

 
 
 
 



Acknowledgement 
 
 
Firstly, I want to thank God for grace and His unconditional privileged given to me to 

be able to accomplish this master programme successfully. 

 

My profound appreciation goes to my Supervisor Ass. Professor Claes Jogreus for his 

great assistance and advice throughout the entire period of writing this thesis. I cannot 

but say thank you sir. I want to use this opportunity to say a big thank you to Professor 

Nail Ibragimov, Professor Elisabeth Rakus-Adersson, Mrs. Raisa Khamitova and other 

lecturers of the great department for their priceless contribution and criticisms towards 

the success of this academic excellence. 

 

Finally, I really love to say thank you to my wife Bolanle Adesina, my brother in 

Canada Olugbenga Adesina and also the entire members of my family for their 

enormous support both in cash and in kind. I appreciate the effort of my friends and 

senior colleagues; Oluwaseyi Awoniyi, Oludele Ogundele, Awomewe Femi ,Damian 

Erewu, Oluwaseyi Adeyinka ,  Pastor and Mrs. Taiwo Ajayi and  host of others for all 

their assistance. 

 

I appreciate you all. 

 

 

Adesina Owolabi Abiona 

 
 
 
 
 
 
 
 
 
 

i 



ABSTRACT 
 
A stochastic process or sometimes called random process is the counterpart to a 

deterministic process in theory. A stochastic process is a random field, whose domain 

is a region of space, in other words, a random function whose arguments are drawn 

from a range of continuously changing values. In this case, Instead of dealing only 

with one possible 'reality' of how the process might evolve under time (as is the case, 

for example, for solutions of an ordinary differential equation), in a stochastic or 

random process there is some indeterminacy in its future evolution described by 

probability distributions. This means that even if the initial condition (or starting point) 

is known, there are many possibilities the process might go to, but some paths are 

more probable and others less. However, in discrete time, a stochastic process amounts 

to a sequence of random variables known as a time series. 

 

Over the past decades, the problems of synergetic are concerned with the study of 

macroscopic quantitative changes of systems belonging to various disciplines such as 

natural science, physical science and electrical engineering. When such transition from 

one state to another take place, fluctuations i.e. (random process) may play an 

important role. Fluctuations in its sense are very common in a large number of fields 

and nearly every system is subjected to complicated external or internal influences that 

are often termed noise or fluctuations. 

 

Fokker-Planck equation has turned out to provide a powerful tool with which the 

effects of fluctuation or noise close to transition points can be adequately be treated. 

For this reason, in this thesis work analytical and numerical methods of solving 

Fokker-Planck equation, its derivation and some of its applications will be carefully 

treated. Emphasis will be on both for one variable and N- dimensional cases. 
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Chapter 1 
 
1. Introduction 
 
Fokker-Planck equation was first used by Andriaan Daniel Fokker (1914) and Max 

Karl Planck (1917) to describe the Brownian motion of particles. To be acquainted 

with this equation, we shall later discuss briefly the Brownian motion of particle in its 

simplest form. Fokker-Planck equations are important stochastic PDE for describing a 

large number of physical processes. They describe how the probability distribution say 

P(x; t) describing the state of system evolves through time and a set of variables in 

phase space, x . A Fokker-Planck equation has the form 

 

);()(
2
1);()();( txPxxBxtxPxxAtxPt ∇∇+−∇=∂

∂   (1.1) 

 

However, there are countless ways of deriving Fokker-Planck equations for various 

processes. One common approach is to derive a FPE corresponding to a given 

Langevin equation by averaging over the noise (assumed to be white and Gaussian 

distributed) and constructing a Taylor expansion in powers of the noise [1]. Another 

approach is to expand a master equation in Kramers-Moyal expansion and truncate it 

to two terms [2]. One may also directly use the Markovian nature of a process to first 

derive a Chapman-Kolmogorov equation and then perform a Taylor’s expansion about 

small differences [3].     

                 

1.1 Background   
The origin of the name Fokker-Planck Equation is from the work of the famous 

Physicists Fokker and Planck where the former investigated Brownian motion in a 

radiation field and the latter attempted to build a complete theory of fluctuations based 

on it. The equation is also known as Kolmogorov forward equation because of 

Kolmogorov work in developing its rigorous basis [6]. FPE describes the time 1 
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evolution of the probability density function of position and velocity of a particle, and 

can be generalised to other observables as well. The equation was first used as a 

statistical description of Brownian motion of a particle in a fluid.  

1.2      Overview of Brownian motion 
It was observed that when small pollen grains were suspended in liquid or gas, the 

grains were found to be in a very animated and irregular state of motion. This was first 

investigated by Robert Brown in 1827. This observed phenomenon took the name 

Brownian motion. The motion is illustrated in Fig. 1.2. 

 

 Fig 1.2. Motion of a point undergoing Brownian motion  

 

 The mathematical model of Brownian motion has several real-world applications. An 

often quoted example is the stock market fluctuations. Another notable example is in 

the evolution of physical characteristic in the fossil record. The actual explanation of 

Brownian motion came in 1905 when Einstein brought out two major points to the 

solution of Brownian motion. 

•  The motion is caused by the exceedingly frequent impacts on the pollen grain of the       

continuously moving molecules of the liquid in which it is suspended. 

•  The motion of the molecules is so complicated that its effects on the pollen grain 

can only be described probabilistically in terms of exceedingly frequent statistically 

independent impacts. 

We should note here that each individual particle executes a motion which is 

independent of the motions of all other particles. We should also consider that the 

movements of one and the same particle in different time interval are independent 

process, as long as time intervals are not chosen too small.2 
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Here we introduce a time interval τ  and let the total number of particles be n  and the 

in x coordinates the particle will increase by an amount ∆ . In this case there is a 

frequency law for∆ ; the number of dn of particles experience a shift which is between 

∆  and ∆+d∆  can be expressed as 

 

 dn = nφ (∆ )d∆                                                                               (1.2.)  

where  

∫
∞

∞−
=∆∆ 1)( dφ                                       (1.3) 

We should note that φ  satisfies the condition that 

φ (∆ ) = φ (-∆ ).                                                                                              (1.4) 

 

To investigate the diffusion coefficient which depends on φ  , Let v = f(x, t) be the 

number of particles per unit volume, t+τ  be the  time difference , then the number of 

particles found at this interval between two planes perpendicular to x axis and passing 

through point x and x+dx. We obtain 

 

f(x, t+τ )dx = dx ∫
∞

∞−
∆∆∆+ dtxf )(),( φ      (1.5) 

Since τ  is very negligible we can set  

 

f(x, t+τ ) =f(x,t) + τ .
dt
df      (1.6) 

Therefore, 

f(x+∆ ,t ) = f(x,t) + ∆ +
∂

∂ .),(
x

txf 2∆ 2! 2

2 ),(
x

txf
∂

∂  +…  .        (1.7) 

If we continue in the expansion of the series, it obvious that ∆  contribute only small 

value, hence we obtain  

f + ∫
∞

∞−
=

∂
∂ (φτ
τ

ff
∆ ) ∫ ∫

∞

∞−

∆∆
∆

∂
∂

+∆∆∆
∂
∂

+∆ d
x

fd
x
fd )(

2
)(

2

2

2

φφ   (1.8) 

We obtain from equation (1.2.7) by taking into consideration3 

3 Statistical  modelling and Fokker-Planck Equation 
                                                



∫
∞

∞−

=∆∆ 1)( dφ    and setting ,)(
2

1 2

∫
∞

∞−

=∆∆
∆ Ddφ

τ
   (1.9) 

 

And keeping only the first and third terms of the right hand side, 

2

2

x
fD

t
f

∂
∂

=
∂
∂  … .                                                       (1.10) 

 

The above equation is known as the diffusion differential equation of diffusion where 

D is the diffusion coefficient. The equation (1.29) is also a special case of Fokker-

Planck equation which describe a very large class of very interesting stochastic 

processes in which the system has a continuous sample path. In this case, the particle’s 

position, if thought of as obeying a probabilistic law given by solving the diffusion 

equation (1.2.9) where t is continuous function of time but a random function. This 

leads us to consider the possibility of describing the dynamics of the system in some 

direct probabilistic way, so that we would have a random or stochastic differential 

equation for the path. This idea was initiated by Langevin with the famous equation 

that bears his name. 

Langevin’s equation was the first example of the Stochastic differential equation , a 

differential equation with a random term X and whose solutions is in some sense a 

random function. Each solutions of Langevin’s equation represent a different 

trajectory and using only properties of X i.e. is fluctuating force, measurable result can 

be derived. 

The general concept of fluctuations describable by such equation has developed very 

extensively in a very wide range of solutions. 

 

  
4 
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Chapter 2 
 

2. Derivation of Fokker-Planck Equation 
 

2.1 Overview 

 

Our derivation of Fokker-Planck starts with an expression of the distribution function 

known as Kramers-Moyal expression. In this equation, only the Kramers- Moyal 

coefficients can also be calculated for the non-linear Langevin equations. As a matter 

of fact, these coefficients vanish for n >= 3 for the Langevin equation with 

δ correlated Gaussian – distributed Langevin forces, and only the drift and diffusion 

coefficients enter in the distribution function equation. 

 

Hence, the Kramers-Moyal expression with a infinite number of terms stops after the 

second term. The equation then is Fokker-Planck equation or the Forward Kolmogorov 

equation.  

 

Suppose we let {X (t): t 0≥ } be a one dimensional stochastic process with  t1 > t2 > t3. 

We use P(X1, t1;X2, t2) to denote the joint probability distribution, i.e., the probability 

that X(t1) = X1 and X(t2) = X2, and P(X1; t1 | X2; t2) to denote the conditional (or 

transition) probability distribution, i.e., the probability that X(t1) = X1 given that X(t2) 

= X2, defined as P(X1, t1;X2, t2) = P(X1, t1 | X2, t2)P(X2, t2). We will assume X (t) is a 

Markov process, namely,  

 

P(X1, t1 | X2, t2; X3,t3) = P(X1, t1 | X2, t2)    (2.1) 

For any continuous state Markov process, the following Chapman Kolmogorov 

equation is satisfied i.e. 

P(X1, t1 |  X3,t3) = ∫ P(X1, t1 | X2, t2 ) P( X2, t2 | X3,t3)dX2 .  (2.2) 

In the following, we will assume that X(t) is time homogeneous:5 
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P(X1, t1 + s; X2, t2 + s) = P(X1,t1,X2, t2) ,   (2.3) 
 
 
So that X is invariant with respect to a shift in time. For simplicity of notation, we use 

P(X1, t1 –  t2 | X2) ≡  P(X1, t1 | X2, t2 ) .The derivation of the Fokker-Planck equation, a 

partial differential equation for the time evolution of the transition probability density 

function can then be derived . Let us briefly look at the Kramer- Moyal forward 

expansion. 

 
2.2 Kramers-Moyal Expansion 
 

These expansions are generally the same as the one used by Einstein to go from 

Kolmogorov equation to the diffusion equation. The use of this type of approximation, 

which effectively replaces a process whose sample needs not be continuous with one 

whose path are continuous. 

 

From the definition of the transition probability, say the probability density  W(x,t+τ ) 

at time t+τ  and the probability density W(x,t) at time t are connected by (τ >=0). 

 

Given, 

  

W(x,t+τ ) = ∫ ′′′+ xdtxWtxtxP ),(),|,( τ    (2.4) 

 

To derive an expression for the differential ttxW ∂∂ ),(  , we must know the transition 

probability P(x,t+τ | ), tx′ for small τ . 

First of all, we assume that we know all the moments (n>=1) 

i.e.  ][ xt
n

n tttxM ′=−+=′ )(|)()(),,( ξξτξτ   

                          = dxtxtxPxx n ),|,()( ′+′−∫ τ               (2.5) 
6 
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Where  xt ′=)(|ξ  means that at time t the random variable has the sharp value x′ . Let us 

now derive a general expansion of the transition probability as follows: 

Let xx ′−=∆ , the integrand in (2.4) can be expanded in Taylor series according to 

∫ ∆−∆−+∆+∆−=′′+ ),(),|,(),(),|,( txWtxtxPtxWtxtxP ττ  

                  = ).,(),|,()(
!
)1(

0
txWtxtxP

xn
nn

n

n

τ+∆+
∂
∂

∆
−∑

∞

=

  

 

Now inserting this expression in (2.4) and integrating over ∆  we will obtain  

 

[ ] ),(!/),,()(
1

txWntxM
x n

n

n
τ

∂
∂

−∑
∞

=

    (2.6) 

Note: The negative sign of the differential d xd ′−=∆ may be absorbed into the 

integration boundaries. We now assume that the moment nM  can be expanded into 

Taylor series with respect to )1( ≥nτ  

)(),(!/),,( 2)( τττ OtxDntxM n
n +=                                      (2.7) 

The term with 0τ  must vanish because for τ =0 the transition probability P has the 

initial value 

),(),|,( xxtxtxP ′−∂=′      (2.8) 

This then leads to vanishing moments (2.5). By taking into account only the linear 

terms in τ  we thus have 

,),(),(),(
1

)( WLtxWtxD
xt

txW
n

KM
n

n

∑
∞

=

=







∂
∂

−=
∂

∂                     (2.9) 

where the differential symbol acts on )(nD  and W (x,t). The Kramers- Moyal operator 

KML is defined by  

),()/(),( )(

1
txDxtxL n

n

n
KM ∑

∞

=

∂−∂=     (2.10) 

The equation (2.2.6) is called the Kramers-Moyal expansion.             
7 
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2.3 Derivations of FPE 

 
Let {X (t): t >=0} be a one dimensional stochastic process with t1>t2>t3 . We use 

),;,( 2211 tXtXP  to denote the joint probability distribution, i.e. the probability that 

11 )( XtX =  and  22 )( XtX =  and ),|,( 2211 tXtXP  to denote the conditional probability 

distribution i.e., the probability that 11 )( XtX =  given that 22 )( XtX = , defined as 

),;,( 2211 tXtXP = ),|,( 2211 tXtXP ),( 22 tXP . Let us assume that X (t) is a Markov process 

namely, 

=),;,|,( 332211 tXtXtXP ),|,( 2211 tXtXP      (2.11) 

For any continuous state Markov process, the following Chapman-Kolmogorov 

equation is satisfied i.e. 

 

∫=),|,( 3311 tXtXP 23,3222211 )|,(),|,( dXtXtXPtXtXP   (2.12) 

 

Likewise, we will also assume X(t) is time Homogeneous: 

 

=++ ),;,( 2211 stXstXP ),,,( 2211 tXtXP    (2.13) 

 

So that X is invariant with respect to a shift in time. For simplicity of use 

).,|()|,( 221,12211 tXtXPXttXP ≡−   

Now let us outline the derivation of the Fokker-Planck equation, a partial differential 

equation for the time evolution of the transition probability density function.. 

Consider, 

,)|,()( dY
t

XtYPYh
∂

∂
∫
∞

∞−
    (2.14) 

Where h(Y) is any smooth function with compact support. Writing  

t
XtYPXttYPdY

t
XtYP

t ∆
−∆+

=
∂

∂
→∆

)|,()|,(lim)|,(
0

  (2.15)     

 and interch8anging the limit with the integral, it follows that  
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=
∂

∂
∫
∞

∞−
dY

t
XtYPYh )|,()( [ ] .)|,()|,()(lim

0
dY

t
XtYPXttYPYh

t ∆
−∆+

∫→∆
 (2.16) 

Now applying the Chapman-Kolmogorov identity equation (2.13), the right hand side 

of equation (2.16) can be written as  

 









−∆

∆ ∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
→∆

dYXtYPYhdZdYXtZPZtYPYh
tt

)|,()()|,()|,()(1lim  (2.17) 

 

Interchanging the limits of integration in the first term of equation (2.17), letting 

ZY → in the second term, and using the identity 1)|,( =∆∫
∞

∞−

dYZtYP  ,we have     









−∆

∆ ∫ ∫
∞

∞−

∞

∞−
←∆

dYdZZhYhZtYPXtZP
tt

))()()(|,()|,(1lim
0

               (2.18) 

 

Taylor expanding h(Y) about Z gives 

 








 −
∆

∆ ∫ ∫ ∑
∞

∞−

∞

∞−

∞

=
←∆

dYdZ
n

ZYZhZtYPXtZP
t n

n
n

t 1

)(

0 !
)()()|,()|,(1lim                    (2.19) 

Defining the jump moment as 

 

∫
∞

∞−
→∆

∆−
∆

= dYZtYPZY
tn

ZD n

t

n )|,()(1lim
!

1)(
0

)(      (2.20) 

It follows that  

 

∫ ∑∫
∞

∞−

∞

=

∞

∞−

=
∂

∂

1

)()( .)()()|,()|,()(
n

nn dZZhZDXtZPdY
t

XtYPYh    (2.21) 

Integrating each term on the right hand side of the equation (2.21) by parts n times and 

using the assumption on h, after moving to the left hand side, it follows that 

[ ] 0)|,()()()|,()( )(

1
=








∂
∂

−−
∂

∂
∫ ∑
∞

∞−

∞

=

dZXtZPZD
Zt

XtZPZh n

n

n  9 (2.22) 
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Now because h is an arbitrary function, it is necessary that 

 

t
XtZP

∂
∂ )|,( = [ ])|,()()( )(

1
XtZPZD

Z
n

n

n∑
∞

= ∂
∂

− .   (2.23) 

 

We define the probability distribution function P(X,t) of X(t) as the solution of equation (2.23) 

with initial condition given by a δ -distribution at t = 0. In this case, 

P(X,t) )0,|,(),( 0XtXPtXP ≡  and we can as well write equation (2.23) as 

 

[ ],),()(),(
1

)(∑
∞

=








∂
∂

−=
∂

∂

n

n
n

tXPXD
xt

tXP    (2.24) 

With 

 [ ] 000
)( |)()(1lim

!
1)( =→∆

−∆+
∆

= t
n

t

n tXttX
tn

XD   (2.25) 

This commonly called the Kramers-Moyal expansion. Now if we assume 0)()( =XD n  

for n > 2, then we have the Fokker-Planck equation: 

 

[ ] [ ],),()(),()(),(
2

2

tXPXD
X

tXPXV
Xt

tXP
∂
∂

+
∂
∂

−=
∂

∂   (2.26) 

Where, V(X) )()1( XD≡ is the drift coefficient and D(X) 0)()2( >≡ XD is the diffusion 

coefficient, which can be written as 

 

V ( 0
0

2

00
0

0 |
);(

2
1)(,

);(
) == ∂

∂
=

∂

∂
= tt t

Xt
XD

t
XtX

X
σ    (2.27) 

Where angular brackets denote ensemble averaging 2σ  denotes the variance of X and 

);( 0XtX  denotes a realization with X (0) = 0X  . Any Stochastic process X (t) whose 

probability distribution function satisfies the Fokker-Planck equation is known 

mathematically as a diffusion process [7].  

 
 

10
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2.4 Fokker-Planck Equation in One Dimension 
 
 

Considering an equation of motion for the distribution function W (v, t) for one 

dimensional Brownian motion with one variable x: the general Fokker-Planck equation 

has the form 

 

]WxD
x

xD
xt

W )()( )2(
2

2
)1(

∂
∂

+


∂
∂

−=
∂
∂     (2.28) 

 

In the above equation D (2) (x) > 0 is referred to as diffusion coefficient and D (1) (x) is 

the drift coefficient. The drift and diffusion may also depend of time. There are some 

cases where the drift coefficient is linear and the diffusion coefficient is constant. 

Mathematically, equation (2.1.1) is a linear second order partial Differential equation 

of parabolic type and is also called forward Kolmogorov equation in most 

mathematical literature as early mentioned. 

 

2.5 Fokker-Planck Equation for N variables/ Several Dimensions 
 

The generalization of the equation (2.4) to N variables x1, x2,… xn   has the form 

 

]WxD
xx

xD
xt

W
ji

ji

N

ji
i

N

i
})({})({ )2(

,

2

1,

)1(

1 ∂∂
∂

+



∂
∂

−=
∂
∂ ∑∑

==

  (2.29) 

 

Note: The drift vector Di(1)  and the diffusion tensor Dij2 generally depend on N 

variables   x1, x2, …, xn    = ({x}) .The above equation ( 2.4) is an equation for the 

distribution function W({x},t) of N macroscopic variables {x} which may be variables 

of different kinds for instance position and velocity.  
11 

As earlier discussed, in the case of Brownian motion, the complete solution of a 

macroscopic system would consist in solving all the microscopic equations of the 
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system. Since this may be difficult, we use instead a stochastic description i.e. , we 

describe the system by macroscopic variables which fluctuate in a stochastic way. For 

a deterministic treatment we neglect the fluctuations of the macroscopic variables. 

Then equation (2.4) is equivalent to the system of the differential equations (i = 1…, 

N) 

})({),...,( )1()1(
.

xDxxDxdtdx iNiiii ===    (2.30)        

for the N macrovariables {x}. 

 

The Fokker-Planck Equation is of course not the only equation of motion for the 

distribution function. There are other equations such as Boltzmann equation and the 

Master equation. It is only that Fokker-Planck equation is one of the simplest 

equations for the continuous macroscopic variables. It usually appears for the variables 

describing macroscopic but small subsystems, like the position and velocity for the 

Brownian motion of a small particle, a current in an electric circuit, the electrical field 

in a laser. 

 

However, if the subsystem is larger the fluctuations may be neglected and thus one has 

a deterministic equation. In these cases where the deterministic equations are not 

stable, a stochastic description is then necessary for large systems.[8] 

By solving the Fokker-Planck equation one obtains distribution functions from which 

any averages of microscopic variables are obtained by integration. Since application of 

Fokker-Planck equation is not restricted to systems near thermal equilibrium, we may 

as well apply it to systems far from thermal equilibrium e.g. the laser. The FPE not 

only describe stationary properties, but also the dynamics of systems, if the appropriate 

time- dependent solution is used. 

 
12 
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Chapter 3 

3. Methods of Solutions of the Fokker-Planck Equation 

The Fokker-Planck equation, being a partial differential equation can be solved 

analytically only in special cases. A formal analogy of the Fokker-Planck equation 

with the Schrödinger equation allows the use of advanced operator techniques known 

from quantum mechanics for its solution in a number of cases. In many applications, 

one is only interested in the steady-state probability distribution f0(x), which can be 

found from f0(x) =0. The computation of mean-first-passage times and splitting 

probabilities can be reduced to the solution of an ordinary differential equation which 

is intimately related to the Fokker-Planck equation. [9]. 

For the purpose of this thesis work, we shall be concerned with some methods for 

solving Fokker-Planck equation and with its application and also look at some few 

examples. The analytical solutions shall be approached with few applications 

 

However, it is difficult to obtain solutions of Fokker-Planck equation especially if no 

separation of variables is possible or if the number of variables is large. Other methods 

such as computer simulations methods; numerical integration methods; analytical 

solution for certain model potentials for a one variable Fokker-Planck equation; matrix 

continued fraction solution for a two variable Fokker-Planck equation. All these are 

various methods and approach in solving the Fokker-Planck Equation and we are 

going to use one or two of the methods. 

 

3.1 Methods of Solution for one variable 
The method for solving the one variable Fokker-Planck equation with time- 

independent drift and diffusion coefficient.  

Suppose we assume )()2( XD >0 i.e.   From  
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(3.1) can also be written as  
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Where ),( txS  is the probability current. 

 

Note: Equation (3.1) and (3.2) can also be written as follows 
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This is a continuous equation for a probability distribution. Hence S is termed as a 

probability current. 

 

3.2 Normalization 
By a suitable transformation  )(xyyx =≡′  , the x-dependent diffusion coefficient can 

be transformed by an arbitrary constant D > 0.  

For one variable case, using this transformation below 
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Then the transformed drift coefficient takes the form 
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Hence, the transformed Fokker-Planck equation reads (D = const) 
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Where  W ′  is given by  

 

DWxDW
dx
dyWJW /)()2(

1

=





=⋅=′

−

   (3.11) 

Therefore, without loss of generality, we may treat the equation with constant 

diffusion, i.e. 
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Where S is the probability current.  In this case we have introduced the potential  

xdxDxf
x

′′−= ∫ )()( )1(      (3.13) 
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Because D is arbitrary, we may use D = 1. This normalization is however not very 

convenient if the low-noise limit D tends to zero ( 0→D  ) is considered and we 

therefore retain the constant D. 

 

3.3 Stationary Solution 
 

In the case of Stationary solution the probability current in equation ( 3.3) must be 

constant. Therefore, we should note that if the probability current vanishes at some x , 

the current must be zero for any x. Then for S = 0  
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Here, we can quickly integrate (3.3.1), yielding 
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Where 0N  is the constant of integration which has to be chosen such that stW  is 

normalized? 

In (3.15), if we introduced the potential 
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Note: But since )(xφ  is defined only up to an additive constant )2(ln D  term may be 

omitted. 
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Therefore, the probability current may be written as  
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In stationary state, where S is constant, then we have for arbitrary S  
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Note: One of the integration constant in equation (3.18) is determined by 

normalization i.e. 1)( =∫ dxxWst  , where others must be determined from the boundary 

conditions.  
3.4 Transformation of Variable 

 
The transformation of variable can be done in such a way that the transformed Fokker-

Planck equation can be solved analytically. The transformed coefficients are given by 

(3.2.1) and (3.2.4). The problem of finding such transformation is, however, as hard as 

solving the Fokker-Planck equation. This method is usually applied in opposite way. 

Here one starts with a Fokker-Planck equation whose solution is know e.g., the 

Fokker-Planck equation for an Ornstein-Uhlenbeck process. In this case if one obtains 

a nonlinear transformation of variables, a complicated Fokker-Planck equation which 

of course can then be solved [8]. 

 

3.5 Numerical Integration 
 

Numerical integration method is one way of performing a numerical integration on 

Fokker-Planck equation (3.20) and (3.21) below. 
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is to use instead of continuous variable {x} the discrete variables {n}, defined by 

iii nxx ∆=  ( no summation convention), with discrete times .tmtm ∆=  If the differential 

are then approximated by differences in a consistent way, solving the Fokker-Planck 

equation is reduced to iterating a difference equation. The difference equations must 

17 Statistical modelling and Fokker-Planck Equation 
                                                



be stable in the sense that the probability error does not increase faster than the 

probability itself, otherwise one does not obtain an approximate solution to the 

continuous Fokker-Planck equation [8]. It is also very crucial for the stability that the 

differentials are approximated by appropriate differences [11, 12, and 13]. 

 
 
3.6 WKB Method 
 
WKB theory is a method for approximating the solution of a differential equation 

whose highest derivative is multiplied by a small parameter ε. In our own case for very 

small diffusion coefficients one may use a WKB method. This method has been 

applied to diffusion in one dimensional and and multi-dimensional bistable potentials 

by Caroli et al. [14]. It essentially consists in the following. After indicating the 

smallest of the diffusion coefficient by a parameter ε >0 we insert in the Fokker-

Planck equation as follows:  
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The ‘ansatz’  
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This first order nonlinear partial differential equation is usually easier to solve than the 

Fokker-Planck Equation. The method of WKB is well known in quantum mechanics, 

where it is useful for describing the transition to classical mechanics, and in optics, 

where it is useful for describing the transition from wave optics to ray optics. We 
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should note that some care has to be taken for the application of WKB method. From 

the study of quantum mechanics [15] that at a classical turning point the WBK solution 

is not valid. Near these points the full Schrödinger equation must be used and this 

solution must then be matched with the WKB solutions. Ofcourse, in certain cases the 

Fokker-Planck equation can be transformed to Schrödinger equation, the same should 

also be true for the Fokker-Planck equation. [14]. 

 

3.7 Some examples and Solutions to Fokker-Planck Equation 

  
Example 1 

Let a stochastic process x(t) has an Ito differential equation 

 dWtxbdttxadx ),(),( +=      (3.25) 

 

Then the Fokker-Planck equation can be derived very easily. To do this derivation we 

first calculate the differential equation for the mean value of a function f(x). The SDE 

for f(x) is  
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Taking the averages on both sides gives the differential equation for the mean of f, 

which is  
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Or alternatively, 
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Now, Let us integrate by parts. Using the fact that ,0),(lim =±∞→ txPx we obtain  
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We know that the mean of f is given by, 
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So that the derivative of the mean can also be written as 
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Equating Equations (3.29) and (3.31), and realizing that they must be equal for any 

f(x), we have the Fokker-Planck equation for the probability density for x (t): 
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From the above Fokker-Planck equation (3.32), we can calculate the stationary 

solutions for P(x,t). If we recall that a stationary solution is one in which P(x,t) does 

not change with time. Often the stationary solution for a given set of boundary 

conditions is the density that P(x,t) will tend to as ∞→t . The equation for the 

stationary solutions is given by setting ttxP ∂∂ /),(  to zero in the Fokker-Planck 

equation. 
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Note that the Fokker-Planck equation may be written as  
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Where J(x, t) is defined as the relation between P and J given in equation (3.4) 

19 Statistical modelling and Fokker-Planck Equation 
                                                



It implies that J(x) is the probability current; J(x, t) is the rate at which probability is 

flowing across the point x at time t.  The equation for the stationary solutions i.e. (3.3) 

can therefore be written as  

 

0),(
=

∂
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x
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This means that  

J(x) = c      (3.36)       

for some constant c. Note here that the value of c will depend on the boundary 

conditions. If the particle is confined to a finite interval [ ]bax ,∈  then J (a, t) = J (b,t) = 

0. Thus J(x, t) will be zero everywhere in the interval. In this case the stationary solution is 

thus given by 
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For example if b constant (additive noise), then we have  

 

)()()( xP
b
xaxP

dx
d

=      (3.38)  

 

The solutions to (3.7.14) are trivial by separating the variables and then integrate. 

i.e.  

dx
b
xaxPxdP )()(/)( =   , integrating we have  
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Then the general solution will be given as  
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Where     Nec ≈   , therefore we have solution of the form 
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Example Case Two:  

 

Suppose the Fokker Planck equation (3.7.8) above with the diffusion equation     

dWtxbdttxadx ),(),( +=  has its coefficients a(x, t) and b (x.t) to be constant say:  

  a(x, t) = - 2 and b(x, t) =1. Then the diffusion equation becomes 

 

dx = -2dt + dW (t) Then the Fokker-Planck equation is  
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To get the general solution of equation (3.41) using separation of variables or using the 

Fourier transforms. If the system is in equilibrium, the derivative with respect to time 

equals to zero. 
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 Hence the Fokker-Planck equation is given by    
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)(xh′ = - )(4 xh  ,      
)(4)( xh
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Now integrating both sides we have, 
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Example case 3: 

 

Example of stationary solutions (Diffusion in a Gravitational Fields) 

Suppose a Brownian particle moving in a constant gravitational field is given by 

stochastic differential equation: 

).(tdWDgdtdx +−= , where the corresponding Fokker-Planck equation is 
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on the interval (a, b) with reflecting boundary conditions. The stationary solutions is 

given by setting J = 0, J (a) = J (b) i.e. 

0/)( =dxxdJ  Which has solutions J(x) = 0. Then, 
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 Separating of variables and integrating accordingly we have 
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This is trivial if we use separation of variable and integrate accordingly. 
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Therefore, 
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where N is the absorbed constant factor. 

Clearly, the solution is normalized on interval (a, b) only if a is finite, though b might 

not be infinite. The results indicate that the particles diffusing in a beaker of fluid will 

fall down and if the container is infinitely deep, the fluid will never cease falling. 
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Chapter 4 

4. Summary and Conclusions 
The importance of Fokker-Planck equation in stochastic differential equation; to be 

precised in the theory of Markov process gives the time evolution of the probability 

density function for the system. The results of the solutions indicate that there are a 

large number of exact results for single variable systems, which makes the separate 

treatment of the systems appropriates. 

 

However, proper construction of appropriate boundary conditions has been seen to be 

fundamentally important in both single and multivariable process. Results also show 

that most Fokker-Planck equation of one variable system shows trivial and exact 

results or solutions while in the case of many variables the results are not explicitly as 

in one variable system. 

 

We know from various examples that some Stochastic process describe by a 

conditional probability satisfying the Fokker-Planck equation is equivalent to the Ito 

Stochastic differential equation (SDE).We have also seen that Fokker-Planck equation 

is simply a second order parabolic partial differential equation which solutions need an 

initial boundary conditions. 

 

In general, mathematically stochastic systems can be modelled by stochastic map (in 

the time discrete case) and by Stochastic differential equation (SDE) in the continuous 

case. Furthermore, the stochastic equation of motion of a particle in an accelerator are 

very complicated and cannot be solved analytically, therefore the use of numerical 

scheme has to be adopted. Investigation reveals that the finite difference method used 

for the Fokker-Planck equation with two phased space variables with time have been 

performed in using extensive numerical simulations with finite elements for the Partial 

differential equation and the Monte Carlo simulations for the stochastic differential 

equation.25 
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The finite difference scheme is simple to implement and very flexible with respect to 

different boundary conditions and also easy to understand the physical meaning of 

each term in the scheme, therefore is a good example for solving more complicated 

and more realistic accelerator models such as higher dimensional problems, non-

Gaussian white noise perturbation of Ornstein-Uhlenbeck type and explicitly time 

dependent coefficients. 
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Notation, Symbols and Definition of some terms 
- FPE:  Fokker-Planck Equations 

- SDE:  Stochastic Differential Equation 

- W(t):   Wiener process 

- J(x):   Probability current in jump process 

- P(x1,t1;x2,t2;…):  Joint probability density 

- N    :   Normalization constant 

- WKB:   (Wentzel-Kramers-Brillouin) approximation    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
27 

 

 

 

27 Statistical modelling and Fokker-Planck Equation 
                                                



Bibliography 
 

[1] Robert Zwanzig. ‘Nonequilibrium statistical Mechanics’’, Oxford University 

Press,        2001 

[2] N.G. Van Kampen. Stochastic Process in Physics and Chemistry. Elsevier Science 

B.V; 4th Edition, 2003   

[3] John F.Brady. Introduction to suspension dynamics. 1998 DRAFT, used as course 

notes, Caltech, 2003. 

[4] A.D. Fokker, Ann.Phys (Leipzig) 42, 310(1915) 

[5] M. Planck. Sitzungsber. Press. Akad. Wiss. Phys. Math. Kl 325 (1917) 

[6] A. N Kolmogorov, Math. Ann. 104, 415-418 (1931) 

[7] C.W Gardiner. Handbook of Stochastic Methods, 3rd Ed, Springer Series, 2004 

[8] H. Risken. ‘The Fokker-Planck Equation- Methods of Solution and Applications’, 

Springer-Verlag Berlin Heidelberg New York, Second Edition, 1989. 

[9] Leo P. Kadanoff (2000). Statistical Physics: statics, dynamics and renormalization 

[10] Coffey, W .T, Kalmykov, Y.P, &Waldron, J.T. (2004) The Langevin Equation: 

With applications to Stochastic Problems in Physics, Chemistry, and Electrical 

Engineering.( World scientific, Singapore). 

[11] L.Collatz: Numerische Behandlung von Differentialgleichungen (Springer, Berlin 

1954) 

[12] G.E. Forsythe, W.R.Wasco: Finite-Difference Method for partial Differential 

Equations (Wiley, New York 1967) 

[13] G.D. Smith: Numerical Solutions of Partial Differential Equations (Oxford 

University Press, London 1965) 

[14] B. Caroli, C. Caroli, B. Roulet: J. Stat. Pys. 21,415 (1979) 

[15] A. Messiah: Quantum Mechanics, Volume I (North-Holland, Amsterdam 1966) p. 

234 
28 

 

  

28 Statistical modelling and Fokker-Planck Equation 
                                                



Appendix 

 

 

 

 

 

 
29 

29  
                                                


	Statistical Modelling and the Fokker-Planck Equation
	Adesina Owolabi Abiona
	Blekinge Institute of Technology
	Statistical Modelling and the Fokker-Planck Equation
	ADESINA Owolabi Abiona
	Blekinge Institute of Technology
	Master's Thesis in Mathematical Modelling and Simulation, 15 ECTS credits
	Supervisor: Ass. Prof. Cleas Jogrues
	Department of Mathematical Science
	Acknowledgement
	I appreciate you all.
	Adesina Owolabi Abiona
	ABSTRACT
	Contents
	Notations      27
	Chapter 1
	1. Introduction
	Chapter 2
	2. Derivation of Fokker-Planck Equation
	2.1 Overview
	2.2 Kramers-Moyal Expansion
	Given,
	Now inserting this expression in (2.4) and integrating over  we will obtain
	6F
	2.3 Derivations of FPE
	Taylor expanding h(Y) about Z gives
	Now because h is an arbitrary function, it is necessary that
	2.4 Fokker-Planck Equation in One Dimension
	2.5 Fokker-Planck Equation for N variables/ Several Dimensions
	The generalization of the equation (2.4) to N variables x1, x2,… xn   has the form
	Chapter 3
	3. Methods of Solutions of the Fokker-Planck Equation
	Note: Equation (3.1) and (3.2) can also be written as follows
	Then the transformed drift coefficient takes the form
	Example 1
	This means that
	Then the general solution will be given as
	Example Case Two:
	4. Summary and Conclusions
	The importance of Fokker-Planck equation in stochastic differential equation; to be precised in the theory of Markov process gives the time evolution of the probability density function for the system. The results of the solutions indicate that there ...
	However, proper construction of appropriate boundary conditions has been seen to be fundamentally important in both single and multivariable process. Results also show that most Fokker-Planck equation of one variable system shows trivial and exact res...
	We know from various examples that some Stochastic process describe by a conditional probability satisfying the Fokker-Planck equation is equivalent to the Ito Stochastic differential equation (SDE).We have also seen that Fokker-Planck equation is sim...
	In general, mathematically stochastic systems can be modelled by stochastic map (in the time discrete case) and by Stochastic differential equation (SDE) in the continuous case. Furthermore, the stochastic equation of motion of a particle in an accele...
	The finite difference scheme is simple to implement and very flexible with respect to different boundary conditions and also easy to understand the physical meaning of each term in the scheme, therefore is a good example for solving more complicated a...
	25F
	Notation, Symbols and Definition of some terms
	- FPE:  Fokker-Planck Equations
	- SDE:  Stochastic Differential Equation
	- W(t):   Wiener process
	- J(x):   Probability current in jump process
	- P(x1,t1;x2,t2;…):  Joint probability density
	- N    :   Normalization constant
	- WKB:   (Wentzel-Kramers-Brillouin) approximation
	Bibliography

