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Abstract

In the year 2006, only 10 years after the steel- concrete composite bridge, Varby
bridge was built, fatigue cracks were found during an inspection. To further inves-
tigate the reasons and the potential danger of the cracks, an investigation under
the commission of the Swedish Transport Administration was issued in 2009. Af-
ter the detection of fatigue cracks, several measurements were carried out in order
to monitor the statical behaviour by the use of strain gauges at selected positions
along the bridge. The measurements from the strain gauges monitoring the global
behaviour were then used to calibrate an finite element model.

The present report is part of the research of understanding the behaviour of steel-
concrete composite bridges. Numerical analysis and model updating have been
used in order to understand and determine how different parameters affects the
strain range and the global behaviour. The numerical analysis and parameter study
were performed in the Finite Element software Abaqus and programming language
Python. The outcome of the parameter study was then used to perform the model
updating by the method of falsification in MATLAB.

The results from the parameter study and the model updating showed that the
measured strains could be reached with a wide range of parameter combinations.
Even with unreasonable parameter values, the measured strains were obtained. To
investigate the reason for this, a multiple linear regression analysis was performed
which showed that the strain range is strongly correlated to the Young’s modulus
of steel and concrete and also to the connector elasticity, which resembles the studs
in the real bridge.

Two different finite element models, with two completely different input parameter
values, obtain the same strain range for the global behaviour. It is therefore not
certain to assume that a model is accurate and valid based on the fact that the
predicted strain range from the finite element model is close to the measured strain
range since the global behaviour of a steel- concrete composite bridge can be mod-
elled by many different sets of parameters.

Author keywords: Model updating; Finite element method; Parameter study;
Abaqus; Falsification; Fatigue; Composite bridges; Monitoring; Measurements; Strain
range; Global behaviour
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Sammanfattning

Ar 2006, endast 10 ar efter att samverkansbron i stal och betong, Vdrbybron,
fardigstéllts, fann man utmattningssprickor under en inspektion. For att ytterligare
utreda orsakerna bakom sprickorna inleddes en utredning ledd av Trafikverket ar
2009. Efter upptéackten av utmattningssprickor placerades flertalet tojningsmétare
ut pa bron. De uppmaétta globala tojningarna anvindes sedan for att kalibrera en
finita elementmodell.

Den hér rapporten ar en del av forskningen i att forsta det globala beteendet for
en samverkansbro i stal och betong. Numerisk analys och modeluppdatering har
anvants for att forsta och faststédlla hur olika parametrar paverkar det globala be-
teendet. Den numeriska analysen och parameterstudien har utfoérsts i finita ele-
mentprogrammet Abaqus och programmeringsspraket Python. Utdata fran param-
eterstudien anvindes sedan for att utféra en modelluppdatering genom metoden
falsifiering som utfordes i MATLAB.

Resultaten fran parameterstudien och modeluppdateringen visade att dem upp-
mitta téjningarna kunde nds for ett stort antal parameterkombinationer. Aven for
orimliga parametervirden kunde dem uppmétta téjnignarna nas i modellen. For
att vidare studera detta gjordes en regressionsanalys som visade att t6jningsvidden
och parametrarna ar starkt korrelerade och att tojningsvidden ar linjart beroende
av parametrarna.

Tva olika finita elementmodeller, med tva helt olika val av parametrar ger samma
utslag pa tojningsvidden for det globala beteendet. Det ar déarfor inte sdkert att
anta att en modell ar giltig baserat pa att modellen kan uppnéd de uppmaétta t6jn-
ingsvidderna, eftersom det globala beteendet fér en samverkansbro i stal och betong
kan modelleras med flera olika parameterkombinationer.

Nyckelord: Modeluppdatering; Finita element metoder; Parameterstudie; Abaqus;
Falsifiering; Utmattning; Samverkansbroar i stal och betong; Faltméatningar; Téjn-
ingsvidd; Globalt beteende
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Chapter 1

Introduction

1.1 Background

The Varby Bridge, built in 1996, is located south of Stockholm and serves as a
highway bridge on the E4. The bridge has been under attention since the detection
of fatigue cracks during an inspection in 2006 [I]. To identify the reasons and the
potential danger of the cracks, an investigation under the commission of the Swedish
Transport Administration was issued in 2009 [2]. Several other investigations of the
bridge have been carried out since then in order to determine the reason/reasons
for the developed cracks and to prevent these from propagating further [3].

Ongoing research is carried out regarding Model updating in the field of dynamic
analysis were measurements are used in order to reach concordance with Finite El-
ement models.

This master thesis is part of the research of understanding the behaviour of steel-
concrete composite bridges using numerical analysis, measurements and model up-
dating in order to determine the important parameters affecting the global be-
haviour.

The outcome of this thesis will give a deeper understanding on how the strain range
varies in such a bridge by varying different parameters. Fatigue cracks are largely
dependent on the stress range, the maximum and the minimum stress in a load
cycle. Thus the important parts of the global behaviour of the bridge, to study
with varying parameters, are the lowest and highest stresses. This will give a better
understanding of how the stress range in a steel-concrete composite bridge changes
by varying the parameters. The strain range is related to the stress range through
the Young’s modulus of the material when studying uniaxial normal stresses and
since the Young’s modulus of the materials are varied in the parameter study, it is
more correct to study the strain range instead of the stress range.
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1.2 Approach

This thesis has been subdivided into four chapters. The first chapter contains a
brief introduction of this thesis, the aim and scope, and finally a review of previous
works regarding the Varby bridge.

The second chapter deals with the method used for this thesis. To investigate and be
able to run the parameter study which will consist of a large amount of simulations, a
fast model is of vital importance. A Finite Element model is created using the finite
element software Abaqus. When the model is fast and accurate enough compared
with measurements, a Python script is created to run the parameter study. The
script in Python is modified and compiled in such a way that it runs the solver in
Abaqus and writes the result from all the simulations to a text file. A MATLAB
script is then created to retrieve the desired results. The results are then interpreted
and a statistical evaluation is carried out by the method of falsification. Since the
model must be created in such a way that the parameters can easily be modified,
simulations of small scale models in the pre-modeling phase are necessary. The
general steps of this master thesis can be illustrated in figure This is of course
a general illustration of the process in this thesis and more of a guideline than a
rule.

Matlab and ‘

FE-modelin Python Model Parameter Statistical Results and
g Scriotni updating study evaluation Conclusions
‘ . Scriptning ‘ | |

Figure 1.1: A general illustration of the approach in this thesis.

1.3 Aim

The aim of this study is to carry out a statistical evaluation of the different pa-
rameters in a composite steel-concrete bridge in order to understand how much of
an impact each parameter has on the strain range. This is performed using nu-
merical analysis in the Finite Element software Abaqus. An finite element model
is created in such a way that it is possible to modify the code of the model using
programming software MATLAB and Python in order to make it more efficient to
run several simulations of the model with different values of each parameter. After
the statistical evaluation, using the method of falsification, it is possible to deter-
mine which parameter/parameters that is of importance for such a bridge. Some
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examples of the evaluated parameters are the Young’s modulus of the materials of
the bridge and the different characteristics of the bridge.

1.4 Scope
The scope of this thesis are defined by the following bullets:

e The bridge is modelled in the Finite element software Abaqus were different
structural element types are modeled in order to decrease the computation
time. The section of the bridge analyzed is in the second to last span where
strain gauges have been placed. The measurements used are from strain gauge
8 according to Figure The quantities used from the measurements are
strains of the main girders in the bottom flange.

e The passing vehicle, used for the measurements, is a lorry of known weight
according to figure [£.13] in section [£.3]

Several limitation is carried out throughout the report for different reasons, some
of them are:

o Beam elements used for the part of the bridge with less influence, section [4.2]
o Shell elements for the part of the bridge with greater influence, section [4.2]

e No plastic analysis

e No dynamic analysis

e Section profiles with average heights of web, section [1.2]






Chapter 2

Model updating

Model updating in the field of finite element modeling is the process of ensuring that
the finite element analysis results in a model that better reflect measured data than
the initial model. Essentially, finite element model (FEM) updating is a technique of
estimating parameters [4]. It is based on updating parameters which are uncertain
to get reasonable agreement between the experimental measured model and the
finite element model. The updated model can then be used for further analysis,
computation and even damage detection [5]. The approach is frequently used in
the field of mechanical engineering, aerospace engineering, et. al, and focusing
mainly on the application of the dynamical parameters such as the mode shapes
and the frequency response functions in the finite element model updating process
[6]. Static parameters are however more amenable to the modeling of complex
structures, hence static properties of structures are also widely studied such as
displacements and strains.

Essentially the model updating procedure can be described in three steps [7].

e Selection of 'responses’ as reference data, normally the measured data, such
as strains, frequencies and mode shapes.

e Selection of parameters to update, to which changes the selected responses
should be sufficiently sensitive and uncertain.

e Model tuning which is the iterative process of modifying the selected param-
eters based on the selected reference data.

2.1 Quasi-static Generalized Influence Line

Jingbo Liaoa, Guangwu Tanga, et, al. [6], made a study to further develop an
approach on finite element model updating based on the quasi-static generalized
influence line (QSGL).

The damages were simulated on three beams of different geometrical groove accord-
ing to figure to illustrate the induced local changes of the bending stiffness EI

5
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at the zone of the damage. The Young’s modulus for the beams were 2.76x103MPa.
The perfect model, without damage, model A, was then compared to the others.
The beams were subjected to a concentrated force to produce the deflection influence
line of the mid-span M. The obtained displacement of the damaged and undamaged
beam is shown in figure In both damage models, the minimal deflection values
derives from that of a perfect undamaged model. This is because of the decrease in
rigidity of the damaged models, which in turn gives good agreement with the an-
alytical results. For a 2-D beam element, different geometrical rectangular groove
results in a decrease in the moment of inertia, hence the grooves were modeled with
a equivalent bending rigidity. The equivalent bending stiffness was normalized by
the initial bending stiffness and was chosen as the updating parameter.

M
1206}
(A) perfect model
M
Eali] |ﬁEl | 120 120 &0
1 f = 1 &
1~ L 1
1200
(B) damaged model
42 % m s
* 2
1 —
(C) damaped model
15
— 13 15 |
—d
? 45 k- al | E ; 315
L=
undamaged 1 7% damagm 30%% damage

(D) cross-section

Figure 2.1: The perfect model A, the damaged model B and the damaged model C, units
in mm [0].

Eq. shows the updating function used in the report by Jingbo, Guangwu, et.
al.
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Figure 2.2: Deflection of the mid-span point M for the experimental model A, B and C

[6].

(1] — Initial infisenca line

Dedecionimim
Deflection{mm})
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Figure 2.3: Comparison of the initial, updated and measured influence lines for model B

and model C [6].

N Y (Zei — nZps)?
F.(x) = - 2.1

Where, N is the total number of influence line test points, M is the total number of
load steps, Z7; and Z; is the measured and calculated influence line, ; is a weight
factor of the ith test point.
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Table 2.1: Measured and updated bending stiffness of the damaged model B and C [6]. EI
in Nm? and Error in %.

Damaged zone Measured value EI Updating value EI ~ Error
Left side of model B 23.66 23.40 -1.10
Right side of model B 23.66 23.53 -0.56
Left side of model C 23.66 23.21 -1.94
Right side of model C 28.72 26.68 -0.17

The initial and updated values are presented in figure and table The results
demonstrated by Jingbo, Guangwu, et. al, shows that the updated finite element
model, with the updating function used, fits very well to the experimental model
and hence can be used in practical engineering fields, especially for bridges.

2.2 Implementation of model updating

There are a number of techniques of significance to consider in order to implement
a successful model updating method [7].

e It is important to understand that the finite element model for model updating
differs from a conventional finite element model such that it is important to
model the structure with as much detail as possible to represent the geometric
and structural form for the location that is of significance for the intended
parameters to be updated.

e The selected parameters should be sensitive to the selected response and must
be uncertain properties. Sensitivity analysis combined with sound engineering
is a good way to determine the sensitive parameters.

e Limited manual updating based on trial and error is necessary in order to
obtain suitable initial values of selected parameters as a starting point for
model tuning.



Chapter 3

The Varby Bridge

The bridge is a highway bridge spanning the northern part of Fittja Bay with a
length of roughly 255 meters. Designed between 1994 and 1996 by Rundquist Ar-
chitects the bridge consists of two parallel bridges having three lanes and a shoulder
on each bridge were the northern bridge is the one studied in this thesis. The to-
tal width of the northern bridge is 15 meters with a vertical clearance of 6 meters
for boats and the like. The bridge is a steel-concrete composite bridge supported
by seven supports carrying the longitudinal beams which in turn are carrying the
concrete deck having approximately 50.000 vehicle passing it every day. A photo of
the bridge is presented in figure The composite action is carried out by studs
welded to the flanges of the longitudinal beams connecting the concrete deck to the
girder. Figure [3.1] and shows the elevation and the cross section of the bridge.

TOTAL BROLANGD]25S.7 [
4.0 4

44.0M 44.0 1

38.0 M

1 )
G FARBANA 38.3 H 42,0 M

Figure 3.1:

Elevation of the bridge.
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Figure 3.2: Cross section of the bridge.

Figure 3.3: A photo of the Varby bridge.
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3.1 Measurements

After the detection of fatigue cracks, measurements have been carried out in order
to monitor the static behaviour in the web stiffeners [3]. Strain gauges have been
placed at selected positions and then used as calibration of a finite element model.
Two types of measurements have been carried out, one with a lorry of known weight
passing the bridge at different positions and the second is long-term measurements
over several days caused by random traffic [3]. The measurements used in this re-
port is of the first type in order to calibrate the finite element model.

To investigate the global behaviour, the strains of the bottom flange of the longitu-
dinal beams were monitored, strain gauge 4- and 8, according to figure The
measurements used in this report is the gauge monitoring the strains located at the
bottom flange of the longitudinal beam following grid D, gauge 8. The location of
the gauges at the main girder relative to the total bridge is in the second last span,
between span 5 and 6 as can be seen in figure [3.4b

The short term measurements for a vehicle of known parameters such as weight,
speed and position were carried out in June 2009. As the traffic was intense and
the bridge couldn’t be closed, the measurements were performed during night time
[2]. The vehicle used in the measurements can be seen in figure

3.2 Previous works

Several studies and investigations has been carried out regarding the Varby bridge
over the years. They have however almost exclusively been handling the issue of
fatigue. No investigation regarding the parameters affecting the global behaviour
of the bridge has been made in the past.

Three reports have been studied in more detail for this thesis;

The first one is from Projekt Engagemang in Stockholm [3] and concerns the mea-
surements carried out on the bridge. The report, giving the results from the mea-
surements is then used to calibrate a finite element model created and analysed by
Lulea University of Technology [§].

The third report is a FE-analysis of the Varby bridge, investigating the fatigue
cracks on the bridge, done by Chalmers University of Technology [9]. The report
states that a load positioned over a longitudinal beam results in high compressive
stresses, which combined with residual stresses from the welding on the web stiff-
eners results in a load cycle that could be the reason for the cracks. However the
authors also states that the interaction between the concrete deck and the steel
girder was not modeled correct in Abaqus in order to retrieve good and accurate
results.
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.\\._k

(a) The location of the strain gauges on the main girders, [3].

1 ! L) L) ! 1
D
c = T
gl Location of strain gauges
o 4and 8
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(b) The location of the strain gauges between span 5 and 6.

Figure 3.4
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Finite element model

4.1 Abaqus

Abaqus is a powerful engineering software using the Finite Element Method to solve
problems ranging from smaller linear simulations to complex and challenging non-
linear simulations. It is used for modeling all kinds of materials from metals, rubbers
and polymers to reinforced concrete, composites and geotechnical materials. It is a
general-purpose software and can not only solve stress/displacement problems but
other areas such as heat transfers, acoustics and fluid dynamics.

The software consists of two types, Abaqus/Standard and Abaqus/Explicit where
the first one, which is used in this report is used for solving linear and nonlinear
static/dynamic problems and the latter using explicit dynamic finite element for-
mulation and is used for modeling transient dynamic events such as impacts and
blast problems.

The software can be run from the CAE (Complete Abaqus Environment) which is
an interactive graphical environment that allows models to be created and edited
in a user friendly manner.

Another way to run Abaqus is to create the model trough the input file and send
it directly to the solver without having to use the CAE [13].

Implicit/Explicit

In general, a linear static problem, which is the case of this thesis, is preferably
solved by using the implicit method. However, for problems that can be solved
using both methods, it is important to understand the different characteristics of the
implicit and explicit procedure in order to be able to determine which method that is
appropriate for the given problem. The main difference between the two is that the
implicit method is a stiffness-based solution technique that is unconditionally stable
while the explicit method uses a conditionally stable explicit integration technique.
If the problem have difficulties converging because of various contact or material
complexities which will result in a large number of iterations, Abaqus/Explicit might

13
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be a choice to consider since such problems requires a large set of linear equations
to be solved in Abaqus/Standard. This is not the case for analyzing the global
behaviour of the Varby bridge, and therefore using Abaqus/Standard is the natural
choice for this thesis [13].

From Input to Output

As mentioned earlier, the input file contains a complete description of the model in
the form of lines of code. This is the communication between the solver in Abaqus
and the pre-processor CAE.

The input file is build up of two sections, the first is data defining the structure
being analyzed, and the second section contains information about history data,
defining what happens to the model, for example the load for which the response
of the structure is required. Having the model in the form of code in an input file
allows the user to modify the model trough a text file. This is one of reasons why
the authors of this report are using Abaqus. To do a parameter study in a complex
finite element model by manipulating the input file is vital. By using scripting, in
programming languages such as MATLAB and Python, it is possible to do iterative
steps and run large amount of simulations very effectively.

More about the parameter study, the MATLAB and Python scripting are presented
in their respective sections later in this report.

4.2 Use of elements

As previously stated in section the parameter study is one of the final steps
in this thesis. In order to have a fast and effective model, the choice of elements
is important. Depending on the type of element, the total simulation time can
change significantly. Different elements have different number of nodes and degrees
of freedom, and thereby more or less equations to solve. It is important to model
the bridge in such a way that elements with less nodes and degrees of freedom is
used at the locations where there are no or less influence for the strains at the point
of interest. This can be illustrated by a simple influence line at the point of the
location of the strain gauges 4 and 8, see figure [4.1

Figure shows the influence line for the bridge assuming a constant stiffness over
the spans. The spans of greater influence for the point of interest is the span where
the gauge is located and the spans to the left- and right of it. It is therefore suitable
to use beam elements for the spans where there are no or less influence and shell
elements for the span/spans with greater influence. The difference between the two
elements is described in detail in the next section.
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Influence line for the position of the Strain Gauges 4 and 8
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Figure 4.1: A simple influence line showing the strain at the position of the strain gauges.

Beam elements

Beam elements are preferably used for the spans with less influence on the result to
minimize computational time and are used for the main-girders for all spans along
the bridge except for the span where the strain gauges are located, i.e. span 5-6
where shell elements are used instead for the main girder. Beam elements are also
used for the crossbeams in all spans.

Beam elements are defined by a line, or a wire, as it is called in Abaqus, with a node
in each end. In a 3D beam, each node has 6 degrees of freedom, see figure [1.3] A
2D beam will in comparison to the 3D beam, only have translations and rotations
along the x and y axis while the 3D beam will also include the z axis. Since the
entire element is defined by a line, increasing the mesh will only increase nodes and
hence more degrees of freedom along the line [12].

Depending on whether the section integration is performed before or during the
analysis, different material definitions are required in Abaqus. In a linear-elastic
problem, the deformations are assumed to be small and the material properties is
therefore assumed to stay the same during the entire analysis. Thus the integra-
tion is performed before the analysis compared to a non-linear analysis with large
deformations not having a linear material behaviour, where the integration is an
iterative process during the analysis.

In an integration performed before the analysis the cross sectional geometry and
the material properties of the beam is assigned to the element, such as the Young’s
modulus F and Poisson’s ratio v. The input parameters used in the finite element
model is described in detail in section

The longitudinal beams in Varby Bridge are tapered and have varying heights of
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the web along the bridge, see figure This is modeled by defining different cross
sections between every crossbeam having a constant height calculated as an average
height of the longitudinal beam between two crossbeams. The flange thickness of
the longitudinal beams also varies along the bridge and are modeled with a constant
thickness between every crossbeam. The thickness of the flanges changes at joints
and an interpolated value is used in the model for those parts. The modelled girder
and the specific cross sectional values is presented in table Figure shows
the main girder together with the crossbeams in the finite element model.

_L - Er_l_v;,r,_,_rl——)-“"”ﬂ_‘r*”")L;ﬁ_f—"_A—LJ7(7i il

Figure 4.2: Tapered main girder.
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Figure 4.3: A 3D Beam element with 6 degrees of freedom, u,v and w being translations
and 0, 0,,0, rotations around their respective axis [12].

Main girder modeled with beam elements

For the main girder modelled with beam elements, a total of 28 different types
of I-beams are modelled with cross sectional values presented in table [£.1] with
notations according to figure [{.4lAs stated previously, all span except the span
between supports 5 and 6 are modeled with beam elements.
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Table 4.1: The cross sections of the longitudinal beams along the bridge. All values are

given in mm.

5T

Part Web Top flange Bottom flange
S1-F1 18.0x1718.50 20x700 32x900
F1-F2 18.0x1530.18 20x700 47x900
F2-F3 19.0x1530.00 20x700 47x900
F3-F4 19.0x1700.00 20x700 47x900
F4-B2 19.0x1840.00 42x700 50x900
B2-F5 20.0x1846.50 42x700 48x900
F5-F6 18.0x1709.00 20x700 39x900
F6-F7 18.0x1535.00 20x700 39x900
F7-F8 18.0x1538.50 20x700 39x900
F8-F9 18.0x1677.00 20x700 39x900
F9-B3 19.5x1816.50 37x700 44x900
B3-F10  19.5x1852.00 37x700 44x900
F10-F11 18.0x1708.50 20x700 42x900
F11-F12 18.0x1533.00 20x700 42x900
F12-F13 18.0x1537.00 20x700 42x900
F13-F14 18.0x1714.50 20x700 42x900
F14-B4  19.5x1852.50 38x700 46x900
B4-F15  19.5x1848.50 38x700 46x900
F15-F16 18.0x1705.50 20x700 42x900
F16-F17 18.0x1532.00 20x700 42x900
F17-F18 18.0x1538.50 20x700 42x900
F18-F19 18.0x1717.00 20x700 42x900
F19-B5  19.5x1853.50 38x700 46x900
B6-F25  19.5x1837.00 42x700 49x900
F25-F26 18.0x1693.00 20x700 46x900
F26-F27 18.0x1525.50 20x700 46x900
F27-F28 18.0x1529.00 20x700 46x900
F28-S2  18.0x1718.00 20x700 33x900
S B2 B SR R R e AR R
B ! b i !
| | | | |
: ELEVATIJ;‘TQ é o C)L = , = @ - ;;; . 7

Figure 4.4: FElevation of the longitudinal beams.
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Crossbeams modelled with beam elements

For the crossbeams, all modelled with beam elements, five different types of I-beams
are used with cross sectional values presented in table [£.2] The crossbeams for the
real bridge are positioned at varying heights along the bridge relative to the web
stiffeners. This is not possible to model for the crossbeams in the spans where the
main girders are modelled with beam elements since mean values are used between
crossbeams in these spans. This will however not have an affect on the strains in the
spans with the shell elements. Instead, only the crossbeams in the spans where the
main girders have been modelled using shell elements are placed at exact positions
since these could have an effect on the global behavior.

Table 4.2: The crossbeams modeled in Abaqus with notations according to figure @ Units
are given in mm.

Part Web  Top flange Bottom flange
S1,87 12x700 15x300 20x400
B2,B6 20x900 25x500 25x600
F2,F7 F12,F17, F22 F27 12x370 14x350 14x350
F4,F5F9,F10,F14,F15,F19,F20,F24,F25 12x710 14x350 14x350
F1,F3,F6,F8,F11,F13,F16,F18,F21,F23,F26,F28 12x540  14x350 14x350

(a) The longitudinal beams and the cross- (b) The longitudinal beams and the cross-
beams modeled with beam elements with a beams modeled with beam elements and with
mesh size of 500mm rendered profiles.

Figure 4.5
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Shell elements

For the main girder between support 5 and 6, where the strain gauges are positioned,
and hence the span of biggest influence, shell elements are used instead of beam
elements in the finite element model. Contrary to beam elements, shell elements
are defined by a surface. Each surface having different numbers of nodes depending
on the element used. In Abaqus, diferrent types of shell elements are available. For
conventional shell elements, (S4 and S4R), Abaqus uses thick shell theory, Mindlin
shell formulation with increasing shell thickness and uses discrete Kirchhoff shell
formulation with decreasing shell thickness. The quadrilateral shell element S8R, in
Abaqus uses a conventional thick shell formulation while the linear shell elements
S4 and S4R impose Kirchoff constraints numerically [13].

Mindlin shell elements with full integration are sensitive to locking with decreasing
thickness of the elements. The reason for this is that the shear energy term tends
to dominate the total potential energy. To avoid this, reduced integration can be
used to determine the total potential energy [12]. When connecting the web and
flanges, both modelled with shell elements, the possibility of incompatibility exists
where the in-plane rotational degrees of freedom of the flange-shell element and the
drilling rotational degree of freedom of the web-shell element are shared at the joint.
These incompatibilities are however negligible with refined mesh [14].

For detailed and further explanation of the finite element theory, the interested
reader can find several books on the subject.

Shell elements, just like 3D beam elements have 6 degrees of freedom in each node,
however since the geometrical appearance of the structure is modelled by surfaces
and not lines as in beam elements, increasing the mesh will create nodes over the
entire surface, hence longer computation time; see Figure [4.6] for the span with the
longitudinal beams meshed and modeled as a shell element compared to Figure [£.5a]

When assigning a thickness to a shell element it is limited to a surface, however the
bridge deck and the longitudinal beams have varying thickness along the span. This
is solved by creating partitions on the surface, dividing the surface into sub-surfaces
and then assign different thickness properties. Figure [4.7] shows the bridge deck
with the partitions in the finite element model and the real bridge deck. The bridge
deck and the longitudinal beam in the span of the strain gauges are modelled with
shell elements, their numerical values and geometry are presented under section [4.2]

Bridge deck modelled with shell elements

In order to model the correct stiffness of the concrete deck, the shell surface is
divided into a total of 39 parts in the longitudinal direction of the deck. This is
done, as mentioned earlier to vary the thickness. Each part is assigned with a
specific thickness to resemble the tapered shape of the real deck. Table presents
the numerical values of how the deck is modelled and the partitioning of the deck
is shown in figure [£.8]
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B

Figure 4.6: The longitudinal beams in the span modelled with shell elements and a meshsize
of 500mm.

B

L - ' (b) The bridge deck as it is modeled in
(a) The real appearance of the bridge deck. Abaqus.

Figure 4.7

A short study is done to see how much of an impact increasing divisions have on
the strains in the bottom flange, the results are presented in section [6.1
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Table 4.3: Numerical values of how the deck is modelled . Surface number 1 being the first
surface from the edge etc. All values are given in mm.

Surface number Surface width Slab thickness

1 170.0 185.0
2 170.0 355.0
3&39 400.0 420.0
4&38 282.5 179.0
5&37 282.5 197.0
6&36 282.5 215.0
7&35 282.5 233.0
8&34 282.5 251.0
9&33 282.5 269.0
10&32 282.5 287.0
11&31 282.5 305.0
12&30 282.5 323.0
13&29 282.5 341.0
14&28 350.0 350.0
15&27 350.0 350.0
16&26 330.0 343.0
17&25 330.0 329.0
18&24 330.0 315.0
19&23 330.0 301.0
20&22 330.0 287.0
21 3500 280.0

MIIIII-IIIIIIIIIIIIIIIIII

Figure 4.8: Surface numbers, 1 starting from grid C according to Fi zgure 5’
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Main girder modelled with shell elements

The part of the main girder between support 5 and 6 is modelled with shell elements
and is divided into a total of eight parts in order to resemble the tapered shape of
the beam. Similar to the concrete deck, it is necessary to divide the surfaces into
partitions in order to assign different thickness to shell elements created in one part.
Figure illustrates how this is modelled in Abaqus with respective values.

Foos 1338 7340 7400 7260 7340
— T g ) |
I
g ¢ 4 B ol i
b 6
Position Dimension [mm|]
1 1911
2 20
3 42x700
4 47x900
5} 20x700
6 38x900
7 47x700
8 50x900
9 18
10 20
11 1792
12 1631
13 1444
14 1635
15 1796
16 1903

Figure 4.9 & Table 4.4: Illustrating how the main girder in span 5-6 is modelled in
Abaqus.
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4.3 Supports and Loads

Supports

The bridge is modelled as a continuous bridge having 7 supports according to table
There are three different types of supports along the bridge; roller supports
free to move in the x and z directions, roller supports only free to move in the z
direction and fixed supports; fixed in all directions. The supports are placed at
the bottom flange of the main girder in the real bridge, to model this in the finite
element model, a point is created at the bottom flange to which the supports are
assigned. This point is then connected to the beam element through a rigid link,
see figure [4.11]

Table 4.5: The type of supports and their location along the bridge.

Support number Type of support north side Type of support south side

1 Roller in z,y Roller in x
2 Roller inz, y Roller in x
3 Roller in z,y Roller in x
4 Roller in x Fixed

5 Roller in z,y Roller in x
6 Roller in z,y Roller in x
7 Roller in z,y Roller in x

The north side being the girder following grid D and the south side following grid
C according to Figure

@@

6 ° & ¢ © ® ®

mmmmm

Figure 4.10: Blueprint showing a plan view of the main girder.

The shape of the supports are neglected in the finite element model since no local
effects close to the support are evaluated, only global effects fairly far from the near-
est support. Any influence of stress concentrations will have none or insignificant
effects on the strains in the bottom flange of the girder. The shape of the supports

are shown in figure

Loads

Since Abagaus is a general-purpose software it doesn’t have any built-in functions
for moving loads, therefore one must create such functions manually. A script in
MATLAB is created for this purpose, where the desired load is moving along a
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defined line over the bridge.

The weight of the lorry is simulated as 6 point loads where the point loads are the
loads at the wheels of the lorry as illustrated in Figure The lorry geometry
is depicted in figure Since no local effects are studied in close proximity to
the load, but instead the global strains in the bottom flange, the effect of load
distribution of the wheels are negligible. The loads are varied in the transverse
direction within 5 positions in the right lane. Each position is varied in both the
north- and the south direction with 250 mm from the initial position according to

Figure [I.T5]
/— Beam Element

: / Rigid Link

Support (Zero dimensional element)

Figure 4.11: The supports modelled with a eccentricity in Abaqus.

i e

Figure 4.12: The shape of the supports on the Varby Bridge.
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7,38 tons 14,26 tons

Figure 4.13: The lorry used for the passing over the bridge [8].

? 1400 C‘) 3900 ? 2300, 270 |, 2000 L
1 1 A A 7

Figure 4.14: Illustration of the lorry geometry [9].

. N
E ‘ l
18 |
[ B — - i_ i _i =
oo = S — ~ i
g —
[ Left lane [ Mid lane | Right lane Road side
- 1000 | ~ 3500 | ~ 3500 - 3500 2250
3 j

Figure 4.15: Illustration of how the load position in the transverse direction is varied.
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4.4 Connection and constraints

Since the bridge is modelled with various element types and having composite action
between steel and concrete, it needs to follow some conditions/constraints. There
are different types of connections in Abaqus, one of the most common one is the
Tie Constraint which connects two regions and fuse them together regardless if the
regions have dissimilar meshes so that there are no relative motions between them.

Two other common connections used in Abaqus are the Coupling Constraint which
constrain the motion of a single point on an element to the motion of a surface, and
the Spring connection. In the Coupling constrain, the single point is the master
and called the control point while the surface is the slave and called the constraint
region. A defined influence radius determine the points in the constraint region to
be included in the coupling.

Spring connections are used in Abaqus to model springs which connects two regions.
They can be modelled as both linear and non linear springs. These connections are
described in detail in the following sections.

Main girder

The main girder of the bridge is modeled as a combination of beam elements and
shell elements as stated in section When assembling the elements, a constraint
needs to be assigned in order to connect the two regions. The main girder is con-
sidered to be a continuous beam, with two different structural elements and it is
for that reason suitable to model a multiple point constraint to connect the two
parts. The control point is the end node of the beam elements connected to the
edges of the surfaces of the shell elements, see Figure This type of connection
is what sometimes in the finite element world is refereed to as a Spider connection,
resembling a web of a spider.

The beam elements are however modelled in the same part, sharing the same lines
and nodes. This generates a full constraint between the elements. Thus it is not
necessary to model further constraints, see Figure

Crossbeams in the span of the Shell Elements

The crossbeams are modeled with beam elements trough out the entire bridge. At
the spans where the main girder is modeled with shell elements, a connection needs
to be assigned in order to connect the two parts. This is done in the same way
as for the connection between the shell elements and the beam elements of the
longitudinal beams, using a multiple point constraint connecting the crossbeam to
the web stiffener of the longitudinal beam with an influence radius of 250 mm in
order to avoid including the nodes at the top and bottom flange in the connection.
Figure[4.17]shows an illustration of the connection resembling the bolted connection
of the web stiffener.



4.4. CONNECTION AND CONSTRAINTS 27

(a) Showing the multiple point constraint con- (b) Beam elements where main girders and
necting the beam elements to the shell ele- crossbeams are modelled in the same part, en-
ments of the longitudinal beams. suring full constraint.

Figure 4.16: The constraints between the beam elements and the shell elements of the
main girder.

Figure 4.17: The multiple point constraint between the crossbeams modeled with beam
elements and the web stiffener of the longitudinal beam modeled with shell elements with an
influence radius of 250 mm.

Interaction of steel- and concrete

The main girder of the bridge is connected to the bridge deck by composite action
using studs. The studs and the cross section is depicted in figure The com-
posite action can be modelled in various ways, but in order to have a fast model,
and a model easy to modify its parameters, the connection is modelled with linear
axial springs. The springs connect the main girder and the concrete deck which is
illustrated in figure [£.19a] They are modelled by using two different approaches;
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Connectors (CONN3D2) which can be seen in figure 4.19bland Engineering Springs
(SPRING2).

When using the SPRING2 approach in Abaqus, the springs are modelled in such
a way that they are very stiff in the y and z direction so that the only action that
is active is the slip action between the steel and concrete, i.e. the stiffness of the
spring in the x direction.

The other approach is to use connector elements, CONN3D2, where wires are cre-
ated between the mesh-nodes of the bridge deck and the longitudinal beams. The
wires are then assigned different properties, having rigid connections in the y and
z direction and a defined stiffness in the x direction.

Both methods are modelled by modifying the input file in Abaqus using MAT-
LAB. Since the springs are assigned to every mesh-node along the bridge it would
be time consuming to do this manually in the CAE, but it is also not possible in
Abaqus to assign springs and connections to mesh-nodes in the CAE, only to ver-
tices. Therefore by using MATLAB, a script is written in order to assign springs to
the mesh-nodes. Rotational springs are not necessary to model since the distance
between the linear springs are small enough to avoid any rotational action in be-
tween them.

To model and run a simulation resembling full interaction with no slip action, a
tied constraint connection is used between the main girder and the surfaces of the
bridge deck. To make sure that the two spring-models are working correctly, an
influence line for the model with springs is compared to one for the tie constraint
model. This is described in detail in (.11

B (TJL

—————

(a) Section showing the crossbeam and the (b) A closer look on the
two longitudinal beams with their studs, from longitudinal beams and
the blueprints. their studs.

Figure 4.18: The cross section of the main girder.

There are many other ways to model the interaction between the steel and the
concrete, but in order to not increase the computation time, since other ways to
model the slip action includes non linear behaviours, such as friction, the solution



4.4. CONNECTION AND CONSTRAINTS 29

with springs is used for this thesis.

Bridge Deck
S

Main Girder

(a) Awial springs in theory.

(b) Spring connectors (CONNS3D2) assigned to mesh nodes along the bridge deck.

Figure 4.19: The idea of axial springs resembling the slip action between the steel and the
concrete in the bridge.






Chapter 5

Parametric study

5.1 Parameters

The parameters used in the study are chosen based on the assumption that they
will have an influence on the global behaviour of a composite steel-concrete bridge.
There are many different types of parameters to study, it is however reasonable to
assume that certain parameters have a larger influence on the global behavior than
others, this thesis is focusing on the following four;

e The transverse load position.
¢ Young’s modulus for steel.
¢ Young’s modulus for concrete.

o Interaction of steel and concrete.

Transverse load positions

The load position in a traffic lane is variable and therefore the different sectional
forces which the load gives rise to differs from one load position to another. The
bridge model with the current assumptions may be valid for the load placed in a
certain load position where certain load effects are more pronounced than others.
The deck needs to be modelled with greater detail if the load is placed far away
from the main girder since the plate will need to carry the load to the main girders
and other effects than global bending may have a great influence in such a case. A
varying load position within the right traffic lane is evaluated to study its effect.
The choice of traffic lane is based on the assumption that the position of the vehicle
only generates global bending of a beam section and other effects such as plate
bending and shear lag is negligible. Thus the variation of the load position is fairly
close to the main girder.

31
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Young’'s modulus for steel

A large portion of the bridge is made out of steel, therefore the Young’s modulus
for the steel might be of great influence. Standards, such as the Eurocode, often
have a safety-factor of 1.0 when it comes to steel which indicates that the predicted
Young’s modulus for steel often is an accurate value [I5]. It doesn’t however have
to mean that the predicted value is 100% correct, hence a study to vary the Young’s
modulus for steel between 170 GPa and 220 GPa for a predicted value of 210 GPa
may have an influence on the global behaviour and therefore of interest to the study.
The Poisson’s ratio v, is held constant and a value of 0.3 is used for the steel.

Young’'s modulus for concrete

Another parameter that is of interest is the Young’s modulus for concrete. The
bridge deck is made out of concrete, but for concrete the safety-factor is often set
to a value of 1.5 in the standards [I6]. This indicates that the predicted value of
the Young’s modulus is not assumed to be of high accuracy. Test have shown that
the Young’s modulus often is higher on the site than the predicted value stated on
the blueprints [I7]. Thus a study to vary the predicted value of 32 GPa in a range
between 20 GPa and 50 GPa is of interest. The Poisson’s ratio v. is held constant
and a value of 0.25 is used for the concrete.

Interaction between the main girder and the bridge deck

In steel-concrete composite bridges, the interaction between the two are carried out
with studs. The slip action between the steel and the concrete has an influence
on the global behaviour. The interaction is, as mentioned earlier, modeled with
springs, and hence a study varying the spring stiffness constant k£ in the longitudi-
nal, x-direction, is of interest.

The upper and lower limits of k need to be known for the parameter study. This is
done by a separate study to see at which value the spring can be considered to be
100 % stiff, i.e. at which value the springs are resembling full interaction between
the steel and the concrete. A lower limit for the spring stiffness also need to be
determined where the slip action begins to have unreasonable proportions, this is
set to be roughly around 20% divergency from the strain range produced by the tie
constraint model. To do this, for the SPRINGZ2 connection, a load is applied at a
certain node on the concrete deck and the displacements for this node is compared
to the associated node in the steel beam. If the displacement between the nodes
differ by a reasonably small amount for a certain stiffness, the spring is considered
to be 100% stiff. The same is done for the lower value of the spring stiffness where
a 20% difference in displacement sets the lower value for the spring stiffness. The
springs in the other two directions, y and z, are set to a value high enough to re-
semble a fully rigid connection in these directions. This method of using springs did
however not reflect the desired behaviour and was therefore rejected as an option
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for modeling the slip action between the steel- and concrete.

For the CONN3DZ2 model, the value of the connector elasticity for which the influ-
ence line reaches full concordance with the tie constraint model is set to the upper
value. The lower value is set to a stiffness constant that generate a 20% divergency
from the tie constraint model. The connector elasticity in the x-direction is then
varied in an interval of 9 different values, while keeping the connector rigid in the
y and z direction.

The connector elasticity values are presented in section

5.2 MATLAB

In order to do iterative processes, such as writing long input files in Abaqus, MAT-
LAB is used. As mentioned in earlier sections, the springs in the model are assigned
to every mesh node which results in a large amount of springs. This is done by first
understanding how the mesh is created in Abaqus, how the mesh pattern alter with
changing geometry and how the pattern is affected by the use of different element
types. When this is known, the MATLAB script writes the corresponding section
in the input file for assigning springs to each mesh node, assigning springs between
nodes on the longitudinal beams and corresponding nodes on the deck being verti-
cally aligned to each other. Besides modeling the springs, MATLAB is also used to
run the statistical evaluation of the parameters.

5.3 Parametric study and Python scripting in Abaqus

Python scripting

Abaqus uses the programming language Python for scripting and have built-in
Python scripts that contain commands to define parameter studies and allows the
user to generate, execute and gather the results from the simulations in an effective
manner. This is done by creating a parametrized input file containing a parameter
definition and a parameter usage, developing a .psf file containing the script which
executes the parameter study [I3]. The Python script is presented in Appendix

Parameter variations

In the statistical evaluation, the simulations must include every possible combina-
tion of the varying parameters. The intervals and the number of samples within
each interval for the different parameters are presented in table The study of
the connector elasticity upper and lower limits resulted in the values presented in

table B.11
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Table 5.1: The samples of the parameter study.

Parameter Number of samples Interval
Young’s modulus for Steel 11 170 - 220 [GPa]
Young’s modulus for Concrete 11 20 - 70 [GPa]
Connector elasticity 9 le6-1e10 [N/m]
Load position 5 pos.

The simulations are performed with all the possible combinations for the parameters
with the load position fixed at one place at a time, five separate input files are created
for each load position in the traffic lane which results in 5,445 simulations in total
with a total CPU time of 136.125 hours.

5.4 Statistical Evaluation

The statistical evaluation of the results is carried out using the method of Fualsifica-
tion, which is a scientific method of model updating based on the philosophy that
models aren’t fully validated just by observations but can only be falsified. The
model updating part of the process is to reach concordance between the predicted
results, which is the outcome of the parameter study, and the observed results which
are the strains from the the strain gauges. The falsification part is then used to
determine which set of parameter values that are accepted [1§].

Model updating by the method of falsification

The evaluation of the parameters, using the method of falsification, can be formu-
lated as:

9(6:)Cp = yCo (5.1)

where ¢(0;) is, in the case of this report, the predicted result at the position of the
strain gauge for the n physical parameters 6 = [01, 605, ...,0,] and y is the observed
result, the measured strain. The C), factor is the model uncertainty factor while
the C, is a factor considering measurement errors which for electric strain gauges
can be assumed to have a log-normal distribution with unit mean and CoV of 3
percent [I9]. The model uncertainty factor, for designing purposes, C), is set to be
a log-normal distribution with a unit mean and CoV of 10% [I8]. For the finite
element model used in this report, it is however assumed that it will have a lower
uncertainty level and is therefore set to a CoV of 3%. If equation is rearranged,
it can be formulated as:
9(6;) Co

= (5.2)

with the quotient of the uncertainty factors being;
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Co
p

When C), and C, both are log-normally distributed, its parameters can be calculated
as;

X=X — A (5.4)

G=C+¢ (5.5)

where A and ¢? are the mean and variance for the logarithm of the random variables,
respectively. They can be calculated as:

C=1In(1+V? (5.6)

1
A= lnp + 5@“2 (5.7)

with g being the mean value and V' the coefficient of variation (CoV) [18].

Equation shows that the quotient of the predicted and the observed result can
be compared to the quotient of the uncertainty factors C;. The condition is that as
long as the predicting model, i.e. the finite element model, generate results giving
a quotient with the measurement equal to Cy, the model instance is accepted. The
relation of the right and the left hand side of equation [5.2]is tested by a conventional
hypothesis tests:

90 _ ¢, (5.8)
y
and
Hy: g(yei) £C, (5.9)

where H, being the null hypothesis and H 4 the alternative hypothesis.

Whether the null hypothesis is rejected or not depends on the statistical distribution
and its specified significance level which is for the lower and upper value set to the
area corresponding to «//2 in figure
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Density

Col Cp

Figure 5.1: Regions of rejection [18].

With o having a significance level between 5 and 10 percent.
The remaining parameters that have not been falsified are the population of values

which are capable of reflecting the observed result [I8]. The evaluation is performed
in MATLAB.
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Results and discussions

6.1 Model Refinements

Model checking

In order to make the model fast and effective yet accurate enough, several model
checks were made which are presented below.

Bridge deck

Since the studied load bearing action of the bridge is global bending, the thickness
variation along the deck far away from the main girder is of secondary importance.
Only the thickness variation a certain distance away from the main girder could
have an influence because a certain part of the deck will undergo global bending
together with the main girder. The thickness variation close to the main girder has
been studied where a deck with constant thickness equal to the thickness over the
flanges, have been compared to the original thickness variation. The result which
is shown in figure [6.1] shows that that the strain range difference is negligible, only
2 %.

Crossbeams

The connection between the crossbeams and the web stiffener were studied to see
if the rigidity of this connection could have an impact on the global strains. The
connection was modelled with rotational springs and the result is presented in figure
which shows that there is a negligible influence from varying the rigidity of the
connection, only 0.8 %.

37
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20 Comparison between varying and constant deck thickness

Constant
— — — Varying
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Figure 6.1: The difference between having constant and varying deck thickness.

Influence line showing the effect of rotational springs

1 Nm/rad
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Figure 6.2: The influence of having rotational springs.
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Comparison between the Connector- and Tie constraint model

To ensure that the model with connectors elements is working as desired, a com-
parison between a tie constraint model and model with rigid connector elements
in all directions was carried out. When the load was placed in the center of the
bridge, a difference of only 1.1% is obtained when comparing the strain range for
the tie constraint model with the connector model. This ensures that the connector
model is working as desired. When the load is getting closer to the longitudinal
beams, the difference between the two models increases, to a maximum value of 6.8
% when the load is placed above the main girder. This is because the tie constraint
is constraining the whole surface of the top flange which creates a stiffer connection
and therefore a lower strain range while the connector only constrains points along
the center of the top flange. The comparison of the two models, one with rigid con-
nector elements and a tie constraint model, shows that the model with connector
elements is valid. Influence lines between the two models, with the two different
load positions, are presented in figure
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Co%parison between Tie and Spring model for a moving load placed along centerline of bridge

o Strain

-10 . .
(o] 50 100 150 200
Distance/m

between the two models with a load placed at the center of the bridge deck.

250 300

(a) Difference

Cognparison between Tie and Spring model for a moving load placed above web of main girder

u Strain

-15 . !
100 150 200 250 300
Distance/m

(b) Difference between the two models with a load placed above the main girder.

Figure 6.3
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Time Efficiency
Mesh type

A study of the mesh was carried out where the influence of different mesh sizes were
evaluated. The quantity studied was the resulting influence line at the location of
the strain gauge. The final mesh and element type were chosen with consideration
to the result of the mesh study.

The mesh convergence study was carried out by keeping the mesh density constant
in the spans of less influence on the results and varying the mesh in the span of
interest. The mesh density in the spans of less influence is the coarsest possible for
both the girder beam elements and the deck shell elements, since the mesh density
in these spans have no influence on the strains in the span of interest. This was done
to save computational time. The mesh density in the span of interest was varied
between 500 and 125mm for the girder shell elements and the deck shell elements.

The analysis showed that using "S/R5" elements with a mesh size of .5m and linear
interpolation for the shell elements in the span of interest, was sufficient. For the
beams in the spans with less influence and the crossbeams in the span of interest,
"B31" element with linear interpolation and the coarsest mesh possible were used.
For the deck shell elements in the span with less influence, "S4R5" elements with
linear interpolation and the coarsest mesh possible was used. Influence lines for the
different mesh sizes are presented in figure [6.4]

Mesh Convergence for the Tie constraint model

Mesh size: 125mm
— — — Mesh size: 250mm
—— Mesh size: 500mm

1 Strain

[o] 50 100 150 200 250 300
Distance/m

Figure 6.4: Influence line for different mesh sizes.
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Time step convergence

The influence of the time step had a significant impact on the simulation time, hence
a time step convergence analysis was performed and showed that it was sufficient
enough with a time step of 5 in order to reach convergence. The resulting influence
lines for the different time steps are presented in figure [6.5

Time step convergence for mesh size 500mm and Tie constraint model

Time step: 1
— — — Time step: 5
——— Time step: 10

4 Strain

(o] 50 100 150 200 250 300
Distance/m

Figure 6.5: Influence line for different time steps.
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6.2 Studied parameters

The outcome from the parameter study and the statistical evaluation indicates that
the measured strains can be captured by the finite element model, even for unlikely
values of the parameters. This is expected in a composite bridge since the strain
distribution over the cross section is dependent upon the relationship between the
Young’s modulus of steel and concrete, and the amount of slip which is represented
by the connector elasticity. Thus, a low Young’s modulus for the steel in com-
bination with a high Young’s modulus for the concrete or vice versa could reach
the measured response. The same reasoning is true for the connector elasticity, a
more flexible connector produces higher strains than a stiffer one. This would then
require lower values of concrete and steel Young’s modulus to reach the measured
response.

The parameter study and accompanying statistical evaluation resulted in the follow-
ing plots and graphs. Figure shows that the behavior of the bridge is described
completely by the variation of the input parameters. The x-axis shows the quo-
tient between the predicted and the measured response while the y-axis shows the
density of parameter combinations that lie within a certain quotient. It seems that
the distribution of predicted strains from the finite element model centers around
the measured response. The number of parameter combinations that were rejected
were 2764 from an original selection of 5445.
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Figure 6.6: Distribution of results for all combinations.
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Connector elasticity

The study of the connector elasticity in the longitudinal direction which describes
the slip action between the concrete and steel shows that that the elasticity of
the connector centers around 1e8 N/m, which can be seen from figure This
means that the most likely value for the connector elasticity is roughly 1e8 N/m in
the bridge model, but all values of the connector elasticity reaches the measured
response. The the connector elasticity is here assumed to have a linear relationship
between force and displacement, the same need not be true if the connector elasticity
is described by a non linear relationship. This is only a representation of the slip-
action in the real bridge and is not an explicit value for the real slip resistance in
the interface between concrete and steel. The FE model of the bridge requires some
elasticity in the connector element to reach the measured response which indicates
that there could be some slip action in the real bridge.
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Figure 6.7: Initial and updated value for the connector elasticity for all possible combina-
tions.

The variation of the connector elasticity seems to have an effect when the values are
between le7 and 1e9 N/m as can be seen in figure which shows the distribution
of accepted and rejected strain ranges for all combinations with a certain connector
elasticity value, the y-axis shows the quotient between the predicted and measured
response. A higher stiffness than 19 N/m will not result in any change in strain
range. The same is true for stiffness values lower than 1e7. A detailed study of
the model uncertainty factor indicates that the connector elasticity is relatively
insensitive with respect to the modelling error within a range of 1 to 10 %, this
can be seen in figure The same can be said for the measurement error which
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does not have any effect on the outcome of the results within a range of 3 to 5 %
and can be seen in figure [6.80 Figure and [6.8D] shows the number of rejected
and accepted model instances. The y-axis shows the number of accepted model
instances for a certain value of the connector elasticity while the legend shows the
total number of rejected model instances with different values of the modelling
uncertainty factor in the case of figure or the measurement error for figure
m For these plots, the lowest curve is for a modelling uncertainty factor of 1 %
and a measurement error of 3 % respectively and increases upwards.

If the connector elasticity and transverse load position is fixed at 1e10 N/m and at 5
respectively, the distribution curve shifts to the left, see figure[6.10, when compared
to figure [6.6] which indicates that the model is to stiff because it generate lower
strain ranges for all combinations of parameters.
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(b) A detailed study of how the measurement error affect the
outcome of the results with a measurement error range within 5
to 3 %.

Figure 6.8
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Figure 6.9: The accepted and rejected strain range values for all combinations.
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Figure 6.10: Distribution of results for all combinations with a fized connector elactisity
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Young’s modulus, concrete

The study of the Young’s modulus for concrete shows, as can be seen from figure
that the concrete tends to a stiffness value of roughly 55 GPa, but as for
the connector elasticity all values of the Young’s modulus of concrete reaches the
measured response. The concrete class specified on the blueprints is K40 which
corresponds C35/40 according to the damage investigation report from Ramboll [20].
For concrete class C35/40, the Young’s modulus is 32 GPa [16]. The explanation
for the higher modulus could be that the concrete delivered to the site may have
a higher stiffness than what is specified on the blueprints in combination with the
fact that the concrete could have increased its stiffness over time.
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Figure 6.11: Initial and updated values for the Young’s modulus of concrete for all possible
combinations.

The distribution of strain range decrease with a higher Young’s modulus of concrete
as seen in figure The reason for this is that increasing Young’s modulus of
concrete results in a stiffer cross section, thus lower strains in the steel beams are
obtained. As for the connector elasticity, a detailed study of the model uncertainty
factor indicates that the Young’s modulus of concrete is relatively insensitive with
respect to modelling error. For the finite element model used in this report, the
modeling uncertainty is assumed to be between 1 and 5 %. For these values, as can
be seen in figure the predicted value of the Young’s modulus of concrete does
not change. This shows that the concrete stiffness is relatively insensitive within
this range. If however the modeling uncertainty is set to a range within 1 to 10 %,
the modulus change from 47-55 GPa. The measurement error does not have any
effect on the outcome of the results within a range of 3 to 5 %, seen in figure
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Figure 6.13: The accepted and rejected values strain range for all combinations.



6.2. STUDIED PARAMETERS 51

Young’s modulus, steel

From figure it can be seen that the most likely value for the steel Young’s
modulus is 190 GPa. This is lower than what is expected since the standards dictate
the Young’s modulus of 210 GPa should be used for steel [15]. This could indicate
that the Young’s modulus of steel may be lower than the predicted value. As for
the connector elasticity and the Young’s modulus of concrete, all values reaches the
measured response.
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Figure 6.14: Initial and updated values for the Young’s modulus of steel for all possible
combinations.

The distribution of strain range decrease with a higher Young’s modulus of steel,
see figure The reason for this is that increasing Young’s modulus of steel
results in a stiffer cross section, thus lower strains are obtained. Within a range of
1 to 10 percent for the model uncertainty, the predicted value of the steel Young’s
modulus varies between 190 - 205 GPa which can be seen For a range of
model uncertainty within 1 to 5 percent, which is assumed for the finite element
model, the steel Young’s modulus does not vary considerably. The measurement
error does not have any effect on the outcome of the results within a range of 3 to

5 %, see figure [6.15b
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Figure 6.16: The accepted and rejected values strain range for all combinations.
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Transverse load position

The study of the transverse load position within the right traffic lane shows that the
strain range is relatively insensitive to variations of the load position which can be
seen in figure No conclusions can be drawn regarding the load position since
the measured response is captured with all positions, with almost equal amount of
combinations for all positions, regardless of modeling uncertainty and measurement
errors which can be seen in figure [6.18a) and [6.18b]
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Figure 6.17: Initial and updated values for the Young’s modulus of steel for all possible
combinations.

In figure the distribution of strain range seems to decrease when the load is
moved towards the mid lane according to figure which is represented by load
position number 2 and 3. This is because the resultant load is moved further away
from the web of the main girder. When the load is moved from the initial position,
according to figure towards the roadside, which is represented by load position
number 4 and 5, the strain range increases. This is because the resultant load is
closer to the web of the main girder. The measurement error does not have any
effect on the outcome of the results within a range of 3 to 5 %.
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Figure 6.19: The accepted and rejected values strain range for all combinations.
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Sensitivity

Another reason for the occurrence of many parameter combinations that reach the
measured response could be that the parameters are insensitive. This can be seen by
studying figures and which shows that multiple values of each parameter
reaches the measured response even if all other parameter values are kept fixed for
a modeling error of 1 % and measurement error of 3 %. If all other parameters
are kept fixed then there is no correlation, and the reason why many values are
accepted is then that the parameters are insensitive.
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Figure 6.20: Initial and updated values for the connector elasticity when keeping all other
parameters fized.

If the same figures are studied for a measurement error of 1 % with the same
modelling uncertainty factor, figures and it is clear that only certain
values of the parameter reaches the measured response. A measurement error of 1
% is however not appropriate to use according to [1§].
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Figure 6.21
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parameters fized.
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Correlation

From the results, it can be seen that the measured response can be reached for all
the different values of the parameters, even unlikely ones. One explanation for this
is that the strain range is correlated to all the parameters. A closer study upon how
the strain range is influenced by varying different parameters is presented below.
The transverse load positioned is kept fixed at position 5 since no significant effect
was obtained for its variation.

Es and Ec for transverse load position 5 and a connector elasticity of 1€8 N/m

Es/GP:
20 25 30 35 40 45 50 55 60 65 70 i o

Ec/GPa

Figure 6.24: The relationship between the steel- and concrete Young’s modulus with a fixed
transverse load position and a connector elasticity of 1e8 N/m.

Figure [6.24] shows that an increasing steel Young’s modulus, with a fixed concrete
Young’s modulus, decrease the strain range. It is also apparent that the relationship
between steel Young’s modulus and the strain range is linear. The same holds for
the relationship between the concrete Young’s modulus and the strain range. If a
line is imagined, between points connecting approximately the same strain range
values, it can then be seen that for increasing concrete Young’s modulus, the steel
Young’s modulus must decrease in order to remain on the line, i.e. keep the same
strain range and vise verse. The same reasoning could be applied if the relationship
between the connector elasticity and steel/concrete Young’s modulus is studied
which is presented in figure
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Kx and Es for transverse load position 5 and a concrete Youngs modulus of 55 GPa
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(a) The relationship between the steel Young’s modulus and the
connector elasticity with a fixed transverse load position and a
concrete Young’s modulus of 55 GPa.

Kx and Ec for transverse load position 5 and a steel Youngs modulus of 205 GPa
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(b) The relationship between the concrete Young’s modulus and
the connector elasticity with a fixed transverse load position and
a steel Young’s modulus of 205 GPa.

Figure 6.25

To further investigate the correlation between the strain range and the different
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parameters, a multiple linear regression analysis with a confidence interval of 95%
was performed in MATLAB. As stated in section [6.2] it is only of interest to study
the connector elasticity between 1e7 and 1e9 N/m where the relation between the
connector elasticity and the strain range is linear. This equation is therefore only
valid for those combinations of parameters for which the values of the connector
elasticity lie between 1e7 and 1e9 N/m and are accepted by the model updating
process. The analysis resulted in the following equation:

Ac(kx,Ec, Es) = 233.52 — 8.73kx — 0.30E¢ — 3.33Fy (6.1)

The equation tells us that the strain range can be explained by a linear combination
of the parameters and a constant term, where kx is inserted in logl0, Es in GPa
and Ec in GPa. Equation has a Pearson coefficient R value of 0.98 which states
that the strain range is strongly linearly correlated to the parameters. The residual
vector 1 can be formulated as:

r=e—¢ (6.2)

where ¢ is the strain range vector obtained by equation [6.I]and £ is the strain range
vector predicted by the finite element model. The maximum value of r is 1.46 p
strain, which corresponds to 1.7 percent. This is the maximum deviation between
€ and &.






Chapter 7

Conclusions

The parameter study and accompanying statistical evaluation indicates that there
are multiple combinations of the parameters that reach the measured response, even
those that are unlikely, for example very low values of steel- and concrete Young’s
modulus.

The load position in the transverse direction is relatively insensitive to variation and
therefore all transverse load positions are accepted provided that they are relatively
close to the main girder.

Since the strain distribution over the cross section in the finite element model is
dependant upon the stiffness of the materials and the stiffness of the connector,
there are multiple combinations of the parameters that reach the measured response.
The results shows that there is a correlation between the strain range and these
parameters. The results also showed that the parameters were insensitive when
using the chosen interval to define accepted and rejected values. Therefore multiple
parameter sets will describe the global behavior. When creating a finite element
model and using measurements to calibrate the model, usually one is satisfied if
a certain set of parameters reaches the measured response. If this is fulfilled, a
conclusion could be that a correct model has been created, which then can be used
for design purposes or closer studies of local effects. However the results shows that
it is impossible to confirm that a correct set of parameters have been used, just by
comparing to measurements, if the bridge analyzed is a steel- concrete composite
bridge, since multiple parameter choices can reach the measured response.

Therefore, model updating needs to be performed if there is a need to find the
most likely parameters in the finite element model. If every important modelling
detail that has an influence on the global behavior of the bridge has been modelled
correctly, this will also give some indication of the values of the different parameters
in the real bridge. Nonetheless, if the values of the parameters in the real bridge
are of interest, material samples need to be examined.
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7.1 Further studies

In this report, only the static behaviour of the bridge has been considered. From the
results, it was shown that the strains describing the global behaviour were relatively
insensitive to the variation of the parameters. A different study where a dynamic
response is used to calibrate the model could be successful in isolating the finite
element model parameters, this study could perhaps focus on the eigenfrequencys
as the response.

Another approach would be to study a detailed sub-model to analyse local effects
and use local response variables in the model updating process. If the outcome
from this study manage to present a unique set of the most probable parameters
for which the value of the local response variable is reached, these parameter values
could then be used to check if the global behavior of the bridge also is fulfilled.
From there it could be concluded that a correct model has been obtained.
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Appendix A

Python Script

pars = ('kx’,'Ec’ Es’)
kx_ value = [1e6,316228el,1e7,316228e2,1e8,316228e3,1¢€9
,316228e4,1€10 |
Ec_value = [20e9,25e9,30€9,35€9,40e9,45€9,50€9,55€9,60e9,65
€9,70e9 |
Es_value = [170e9,175¢9,180¢9,185¢9,190¢9,195¢9,200¢9,205c9
,210e9,215€9,220e9]
inputFiles = ['VB1', VB2, 'VB3’, VB4’ 'VB5']
counter=0
for fileName in inputFiles:
for kxi in kx value:
for Eci in Ec_value:
for Esi in Es_ value:
counter=counter+1
k = ParStudy (par=pars, name = str (counter))
k.define (DISCRETE, par=pars)
k.sample (VALUES, par="kx’, values=(kxi))
k.sample (VALUES, par='Ec’, values=(Eci))
k.sample (VALUES, par='Es’, values=(Esi))
k.combine (MESH)
k.generate (template=fileName )
k.execute (ALL, execOptions="cpus=4")
k.output ( file=ODB, request=HISTORY)
for value in range(5,65,5):
k.gather(results = ’"Strains’,variable=’
E117 ;step=1,frameValue=value , elset="
InfluenceElement__Ch8 )
k.report (XYPLOT, file=fileName+str (
counter) ,results=’Strains ")
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