Förbättrad vakuumentätning mot kabeln under plastextruderingsprocessen

Improved vacuum seal to the cable during the plastic extrusion process

Malin Fredriksson
Sammanfattning

Detta examensarbete handlar om att ta fram en konstruktion som ger förbättrad vakuumtätning mellan ett blyöverdrag och ett plastöverdrag på kabel under plastextruderingsprocessen. Denna rapport är en del av kursen MSGC17 för högskoleingenjörer i maskinteknik.


Konstruktionsarbetet har delvis utförts CAD-programmet Creo Parametrics 2.0. Konceptgenerering har framkommit mestadels genom att studera processen ute i fabrik för att komma fram till möjliga koncept som skulle kunna appliceras i de tre nuvarande extruderingsmaskinerna. För att välja materialet som i konstruktion ska vara i kontakt med kabeln har materialvalet följt Ashbys metod och utförts med hjälp av materialvalprogrammet CES-edupack.

Resultatet av arbetet blev en tätning bestående av två axialtätningar och två tunna skivor i stål där en gummipackning i materialet polyuretan är fastklämd. På ena sidan av de tunna stålskivorna sitter styrstöd för att centrera kabeln.. Hela konstruktionen kläms sedan fast mellan två stålskivor som redan finns i infästningen till extruderingsmaskinen.

Slutsatsen som kan dras om arbete är att konstruktionen uppfyller de krav och önskemål som satts av uppdragsgivaren och att det är en lämplig lösning på problemet. Det som återstår är att tillverka en prototyp för provning och utvärdering. Samt en eventuell mer noggrann dimensionering av konstruktionen.
Abstract
This thesis is about developing a design that provides improved vacuum seal between a lead coating and a plastic coating during plastic extrusion processes of cables. This report is a part of the course MSGC 17 for Bachelor Engineers in mechanical engineering.

The work is performed at Nexans Norway AS in Halden where they have a production of high voltage cables for sea- and offshore industry. A problem they face is that they do not get enough good seal at the attachment to the plastic extrusion machine. They want to achieve a vacuum between a lead coating on the cable and a plastic coating of the cable for plastic extrusion, which is something they do not achieve today. The thesis is thus to come up with a design that provides better sealing against the cable.

The work involves a construction part with the phases of product development processes. The phases include: project planning, feasibility study, product specification, concept generation, evaluation/plan selection, Layout/design, detail design, final design and choice of materials.

The construction work has been carried out with CAD application Creo Parametrics 2.0. Concept generation has mainly been done through studying the process out in the factory in order to come up with possible concepts that could be applied in the three current extrusion machines. To select the material for the construction, which is in contact with the cable, a material selection process has been applied using the Ashby's method and carried out with the assistance of CES edupack materials selection program.

The result of the work became a seal, consisting of two axial seals and two thin slices of steel where a rubber gasket in material polyurethane is clamped. On one side of the thin steel discs is guide support to center the cable. The whole design is later forced together between two steel plates that is already present in the attachment to the extrusion machine.

The conclusion that can be drawn about the work is that the design complies with the requirements set by the client and that its an appropriate solution to the problem. What remains is to produce a prototype for testing and evaluation. As well as a possible more accurate sizing of the construction.
Innehållsförteckning

Sammanfattning......................................................................................................................... 2

Abstract........................................................................................................................................ 3

1. Inledning ..................................................................................................................................... 6
   1.1 Bakgrund ................................................................................................................................. 6
   1.2 Problemformulering .................................................................................................................. 6
   1.3 Syfte ......................................................................................................................................... 6
   1.4 Målsättning ............................................................................................................................... 6
   1.5 Avgränsningar ......................................................................................................................... 6

2. Genomförande .......................................................................................................................... 7
   2.1 Förstudie .................................................................................................................................. 7
      2.1.1 Tätning ............................................................................................................................... 7
      2.1.2 Vakuumtätning .................................................................................................................... 7
      2.1.3 Plastextruderingsprocess .................................................................................................. 7
      2.1.4 Kabelins upphävning ........................................................................................................ 8
      2.1.5 FRIktion ............................................................................................................................ 9
   2.2 Problemspecifikation .............................................................................................................. 9
   2.3 Kravspecifikation .................................................................................................................... 9
   2.4 Materialval .............................................................................................................................. 10
   2.5 Konceptgenerering ................................................................................................................ 10
   2.6 Konceptval ............................................................................................................................. 10
   2.7 Layout/detaljkonstruktion ...................................................................................................... 10
   2.8 Beräkningar ........................................................................................................................... 10

3. Resultat ....................................................................................................................................... 11
   3.1 Projektplanering .................................................................................................................... 11
   3.2 Förstudie ................................................................................................................................ 11
      3.2.1 Materialegenskaper ......................................................................................................... 11
   3.3 Materialvalsprocess .............................................................................................................. 12
      3.3.1 Problemformulering ......................................................................................................... 12
      3.3.2 Meritvärde ........................................................................................................................ 12
      3.3.3 Sållning .............................................................................................................................. 12
      3.3.4 Rangordning ..................................................................................................................... 12
      3.3.5 Information om det bästa materialet ............................................................................. 14
      3.3.6 Tillverkningsmetod ......................................................................................................... 14
   3.4 Konceptgenerering .............................................................................................................. 14
      3.4.1 Koncept 1 ........................................................................................................................ 14
      3.4.2 Koncept 2 ........................................................................................................................ 15
      3.4.3 Koncept 3 ........................................................................................................................ 15
   3.5 Konceptval ............................................................................................................................. 16
   3.6 Slutkonstruktion ................................................................................................................... 17
   3.7 Beräkningar ........................................................................................................................... 18

4. Diskussion ................................................................................................................................... 19

5. Slutsats ........................................................................................................................................ 21

6. Tackord ....................................................................................................................................... 22

Referenslista ................................................................................................................................. 23
Bilaga 1..................................................................................................................24
Bilaga 2..................................................................................................................25
Bilaga 3..................................................................................................................26
Bilaga 4..................................................................................................................27
Bilaga 5..................................................................................................................28
Bilaga 6..................................................................................................................29
Bilaga 7..................................................................................................................30
1. Inledning

1.1 Bakgrund

1.2 Problemformulering
Hitta en konstruktionslösning med rätt material som ger bättre vakuumtätning under plastextruderingsprocessen och som klarar av tio dagars konstant produktion.

1.3 Syfte
Syftet med examensarbetet är att få bättre vakuumtätning mot kabel vid plastextruderingsprocessen.

1.4 Målsättning
Målet är att konstruera och hitta rätt material för en tätningslösning som gör att infästningen till plastextruderingsmaskinen klarar av tio dagars produktion.

1.5 Avgränsningar
Ett kostnadsförslag för en färdig produkt kommer inte tas med i detta arbete, då tillverkningen kommer ske efter tidsramarna för detta examensarbete. Konstruktionsförslaget med dess materialval ska vara till grund för en kommande prototyp som ska användas för vidare detaljutveckling där toleranser och passning kan komma att behöva justeras för att passa in i nuvarande extruderingsmaskiner.
2. Genomförande

Detta examensarbete utförs enligt de faser som ingår i en produktutvecklingsprocess. De faser som ingår i denna process är: förstudie, produktspecifikation, konceptgenerering, utvärdering/konceptval, detaljkonstruktion, slutkonstruktion och materialval (Johannesson et al. 2013).


2.1 Förstudie

För att få en inblick i problemet så utfördes en noggrann undersökning av de ingående processerna. Processerna vakuumtätning och plastextruderingsprocessen studerades ute i produktionen hos Nexas där handledaren förklarade hur de gick till. Information om hur en kabel är uppbyggt studerades genom internetsökning och förklaring av handledaren på företaget. Informationen om olika typer av tätningar undersöktes. Det mest givande sättet att få information om problemet var att intervjua de operatörer som jobbar vid processen och en processingenjör som har stor inblick i flertalet processer som en kabel går igenom. Friktion är en viktig egenskap att ta reda på för att se om ett material kommer att tåla den nötning som kan uppstå. Detta är något som har studerat via internetsökning.

2.1.1 Tätning


2.1.2 Vakuumtätning


2.1.3 Plastextruderingsprocess

Vid plastextruderingsprocessen åker kablarna genom plastextruderingsmaskinen där en småplast med en temperatur som enligt Östbye1 ligger på 200 °C träs på kabeln som sedan åker genom en hälprofil för att få sin rätta tjocklek (Jarfors et al. 2010). Vid Nexans i Halden finns tre olika storlekar på plastextruderingsmaskiner med olika typer av hälprofiler som byts ut beroende på vilken storlek på kabel som ska produceras.

---

1 Glenn André Östbye processingenjör Nexans, intervju den 2015-02-04
2.1.4 Kabelns uppbyggnad

![Diagram av en PEX-kabel](image)

**Figur 1.** En PEX-kabel från Nexans med dess uppbyggnad

En Umbilicalkabel kan vara utformad på massor av olika sätt, i figur 2 ses några olika typer av Umbilicalkablar som tillverkas på Nexans (Nexans 2015d). Som ses i figur 2 består dessa kablar består av en mängd mindre kablar för olika typer av överföring så som ström- och signalöverföring. Umbilicalkablar består av många sorts kabel som omringade omrings av rör i rostfritt stål för telekommunikationsöverföring. Även denna kabel är uppbyggt i olika lager som växer för varje process.
Figur 2. Olika typer av Umbilical kablar som tillverkas på Nexans

2.1.5 Friktion
Friktion är en viktig faktor för att veta om materialet kommer klara de påfrestningar som det utsätts eller inte. Det är inte en materialegenskap utan ett motstånd mot glidning mellan två kroppar i detta fall bly och polyuretan. Olika material i kontakt med varandra har olika friktionskoefficienter, metall mot gummi har friktionskoefficienten $\mu_k = 0.3$ vid glidning och stål mot stål har friktionskoefficienten $\mu_k = 0.03-0.25$ medan gummi mot asfalt har friktionskoefficienten $\mu_k = 0.5-0.8$ (Miun, 2015).

2.2 Problemspecifikation
Projektet började med ett möte med uppdragsgivaren Nexans Norway AS där processansvarig Glenn Östbye och utvecklingsansvarig Helge Hovland gav en bra bild av vad problemet och vilket mål som fanns med projektet. Mötet resulterade i en tydlig bild av problemet och en bra bild över de krav och önskemål som den nya konstruktionen ska ha.

2.3 Kravspecifikation

### Funktionella krav
- Ska klara av 10 dagars konstant produktion
- Enkel att montera i infästningen till den nuvarande plastextruderingsmaskinen
- Ska vara flexibel att den kan röra sig i den riktning som kabeln kommer in i infästningen
- Konstruktion ska klara av de monteringskrav som ges av Nexans

### Icke-funktionella krav
- Konstruktionen ska vara så enkel som möjligt
- Konstruktionen ska ritas upp i CAD så att konstruktionen enkelt kan anpassas till olika storlekar

2.4 Materialval
Materialval för konstruktionen av infästningen till extruderingsmaskinen utfördes med Ashbys metod (Ashby, 2011) för att identifiera möjliga material att tillverka konstruktionen av. Utifrån den metoden

Kriterier som materialen bör uppfylla är:

- Hög hållfasthet
- Motstå utmattnings
- Låg styvhet
- Klara friktion som uppstår i kontakten med bly
- Får ge repor på blyöverdraget

För att sälla bort material som passar mindre bra för konstruktionen så gjordes en rangordningen av de bästa material som baserades på de viktigaste egenskaperna hos materialen utifrån de kriterier som var satta. Rangordningen ordnades i en numrerad tabell.

2.5 Konceptgenerering

Konceptgenereringen framkom genom att studera processen ute i produktionen. Genom att se vilka problem som fanns i nuvarande process uppkom förslag på olika koncept som skulle kunna fungera för processen. Efter att ha specificerat de krav som konstruktionen och dess material behöver uppfylla gjordes konceptgenereringen utifrån dessa med hjälp av brainstorming.

För att spara tid så skissades de olika koncepten upp med papper och penna och diskuterades med anställda på företaget för att sedan modelleras i CAD.

2.6 Konceptval

Efter konceptgenereringen som genererade i tre möjliga konstruktionslösningar var det dags att välja det bästa konceptet. För att göra detta gjordes först en tabell som beskriver för- och nackdelar för de tre olika koncepten. Det räckte inte med för att ta det slutliga beslutet om vilket koncept som är lämpligast, så för att slutligen besluta om vilket koncept som kommer att fungera bästa användes en relativ elimineringsmatris där koncepten som inte uppfyller kraven sorteras bort.

2.7 Layout/detaljkonstruktion

Det bästa koncept modellerades i CAD-programmet PTC Creo Parametric. Måtten på konstruktionen är ritade efter uppmätta mätt på infästningen på de tre olika extruderingsmaskinerna som Nexans har i sin produktion. Skulle det felas något i måtten så är det bara att gå in och ändra i CAD-modellen. Ritningar för de olika delarna har gjorts och även en sammanställningsritning.

2.8 Beräkningar


Hållfasthetsdata och materialdata har hämtats från programmet CES-Edupack (Michael F. Ashby, 2011).
3. Resultat

3.1 Projektplanering


3.2 Förstudie

Vid förstudien som bestod av litteraturstudier, diverse internetsökningar, intervjuer av arbetarna vid processen samt eget studerande ute vid processen framkom att konstruktionen måste kunna följa kabelns rörelse. Den måste kunna vara rörlig eller vara töjbar utan att deformeras plastiskt.

3.2.1 Materialegenskaper


![Molekylstruktur för en typisk elastomer.](image-url)
3.3 Materialvalsprocess

Materialvalet sker för utformningen av den konstruktionsdel som kommer komma i kontakt med blytöverdraget som kabeln har innan den kommer in i plastextruderingsmaskinen. Materialvalsprocessen följer den process som är beskriven i boken "Materials Selection in Mechanical Design" (Michael F. Ashby, 2011).

3.3.1 Problemformulering

Funktion: Material ska vara tålbart och användas som tätning mot kabeln innan plastextruderingsprocessen.

Mål: Minimera vikten.

Restriktioner: Ska tåla: friktionen som uppstår mellan blyt och det valda materialet, tåla värme upp till 40°C. Ska ha låg styvhet och goda hållfastighetsegensper.

Målfunktion: \( m = B^*L^*T^*\delta \)

Där B=bredd, L=längd, T=tjocklek och \( \delta \)=densitet

Fria variabler: Material och tjocklek (T)

3.3.2 Meritvärde

Styvhet: \( S = \frac{C_1^{*}E^*L}{L^*} \)

Meritvärde 1: \( M_1 = \frac{12S}{C_1^{*}B} * \frac{BL^2}{E^{1/3}} \frac{\delta}{E^{1/3}} \)

Maximerat meritvärde: \( M_{1,max} = \frac{E^{1/3}}{\delta} \)

Hållfasthet: \( \tau_f = \frac{M * Z}{L} \)

Maximerat meritvärde: \( M_{2,max} = \frac{\tau_f^{1/2}}{\delta} \)

3.3.3 Sållning

\( \text{Log}M_2 = \text{Log}M_1 + \text{Log}C \)

För att bestämma kopplingskonstanten C behövs meritvärdena \( M_1 \) och \( M_2 \). Utifrån restriktionerna som angetts och dessa värden på \( M_1, M_2 \) och C kan lämpliga material fås med hjälp av materialvalsprogrammet CES-Edupack (Michael F, Ashby, 2011).

3.3.4 Rangordning

Det material som CES-Edupack, (figur 4) gav som lämpliga material var följande, se Tabell 1.
Tabell 1. Bästa materialen enligt CES-edupack med viktiga egenskaper

<table>
<thead>
<tr>
<th>Material</th>
<th>Sträckgräns (MPa)</th>
<th>Töjning (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butyl rubber</td>
<td>2-3</td>
<td>400-500</td>
</tr>
<tr>
<td>Silicone elastomers</td>
<td>2,4–5,5</td>
<td>80-300</td>
</tr>
<tr>
<td>Carbon black reinforced styrene butadiene rubber</td>
<td>16-23</td>
<td>320-550</td>
</tr>
<tr>
<td>Ethylene vinyl acetate</td>
<td>12-18</td>
<td>730-770</td>
</tr>
<tr>
<td>Natural rubber</td>
<td>20-30</td>
<td>500-800</td>
</tr>
<tr>
<td>Polychloroprene</td>
<td>3,4-24</td>
<td>100-800</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>25-51</td>
<td>380-720</td>
</tr>
<tr>
<td>Polysoprene rubber</td>
<td>20-25</td>
<td>500-550</td>
</tr>
</tbody>
</table>

De två viktigaste egenskaperna som materialet är att det ska hög sträckgräns och stor töjning, där av sätts sträckgräns på y-axeln och töjningen på x-axeln i materialvalsprogrammet. Den absolut viktigaste egenskapen av dessa är att ha hög sträckgräns. Rangordningen utfördes efter dessa två kriterier eftersom det var krav på att materialet måste ha hög sträckgräns för att tåla de belastningar som uppstår utan att deformeras och vara elastiskt så att det kan anpassa sig efter hur kabeln rör sig. Rangordningen ses i tabell 2.

Tabell 2. Rangordningen för de bästa materialen som uppfyller kraven bäst.

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>2</td>
<td>Natural rubber</td>
</tr>
<tr>
<td>3</td>
<td>Polysoprene rubber</td>
</tr>
<tr>
<td>4</td>
<td>Ethylene vinyl acetate</td>
</tr>
<tr>
<td>5</td>
<td>Carbon black reinforced styrene butadiene rubber</td>
</tr>
<tr>
<td>6</td>
<td>Polychloroprene</td>
</tr>
<tr>
<td>7</td>
<td>Silicone elastomers</td>
</tr>
<tr>
<td>8</td>
<td>Butyl rubber</td>
</tr>
</tbody>
</table>
Utifrån rangordningen ses att polyuretan är det lämpligast materialet att ha mot kabeln.

Friktion som uppstår mellan bly och polyuretan är något som skulle behövas mätas för att se om materialet kommer att hålla. Det är något som inte varit möjligt att göra. Gummi i kontakt med bly har friktionskoefficienten \( \mu_k = 0,3 \) vilket är ett värde som är betydligt mindre än om man jämför gummi mot asfalt som har friktionskoefficienten \( \mu_k = 0,5 - 0,8 \) vilket är det som däck på en bil får utstå. Jämför man stål mot stål så är friktionskoefficienten mellan 0,03-0,25 vilket är lägre än för metall mot gummi. Ett antagande är ändå att polyuretan kommer klara den friktion som uppstår mot bly.

### 3.3.5 Information om det bästa materialet
Polyuretan är det lämpligaste materialet för konstruktionen. I tabell 3 ses några betydande egenskaper för materialet.

**Tabell 3. Materialdata för polyuretan**

<table>
<thead>
<tr>
<th>E-modul (GPa)</th>
<th>Sträckgräns (MPa)</th>
<th>Brottgräns (MPa)</th>
<th>Töjning (%)</th>
<th>Min. temp. (°C)</th>
<th>Max. temp. (°C)</th>
<th>Pris (kr)</th>
<th>Densitet (kg/m(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,002-0,03</td>
<td>25-51</td>
<td>25-51</td>
<td>380-720</td>
<td>-73,2 - 23,2</td>
<td>66,9-89,9</td>
<td>38,2-41,9</td>
<td>1135</td>
</tr>
</tbody>
</table>

### 3.3.6 Tillverkningsmetod
Tillverkningsmetoderna för elastomeren polyuretan är vanligtvis formgjutning, strängsprutning, formsprutning eller rotationsgjutning (Carpenter 2002).

### 3.4 Konceptgenerering
Konceptgenereringen bestod av att ta fram olika tänkbara lösningar, vilket gjordes genom först skiss och sedan i CAD. Tre olika koncept togs fram. Det tre olika koncepten beskrivs mer noggrant nedan.

#### 3.4.1 Koncept 1
Koncept 1 visas i figur 5

![Figur 5. Koncept 1 bestående av en](image)

Det första konceptet är en specialformad gummitätning som kläms fast mellan två stålskivor som sitter i extruderingsmaskinen. Kabeln kommer in från höger och in i den hålformade cylinder där hålets storlek är utformat efter tjockleken på kabeln. Detta koncept har samma material för hela konstruktionen och ska bestå av en elastomer med bra töjningsförmåga för att kunna följa kabelns rörelse.
3.4.2 Koncept 2
Koncept 2 visas i figur 6.

![Figur 6. Koncept 2](image)


3.4.3 Koncept 3
Koncept 3 visas i figur 7.


3.5 Konceptval

Vid valet av koncept jämfördes för- och nackdelar med de tre koncepten. I tabell 4 ses för- och nackdelar med koncepten.

<table>
<thead>
<tr>
<th>Koncept</th>
<th>Fördelar</th>
<th>Nackdelar</th>
</tr>
</thead>
</table>
| 1       | • Enkel att montera och byta ut  
          • Enkel tillverkning  
          • Billig att tillverka | • Kan användas enbart vid viss diameter på kabel för att ge god tätning  
          • Utmattnings kan uppstå då tötningen som uppstår kan bli för stor  
          • Kan gå sönder om kabeln inte är centrerad när den kommer in |
| 2       | • Enkel att montera och byta ut  
          • Elastisk och kan anpassa sig bra efter kabeln  
          • Hållbar och följsam | • Svår att utföra  
          • Måste specialbeställas |
| 3       | • Följsam konstruktion som följer kabeln på ett bra sätt.  
          • Enkel att montera  
          • Håller länge  
          • Lätt att endast byta ut gummpackningen | • Består av många olika delar som kan gå sönder |

För att slutligen komma fram till val av koncept gjordes en elimineringsmatris (Johannesson et al. 2013), se tabell 5.
Elimineringskriterier:

(+)
Ja
(-)
Nej
(?)
Mer information krävs
(!)
Kontroll produktspec

<table>
<thead>
<tr>
<th>Koncept</th>
<th>Lösar huvudproblem</th>
<th>Uppfyller det krav som ställs</th>
<th>Passar företag</th>
<th>Realisbar</th>
<th>Lätt att tillverka</th>
<th>Bra hållbarhet</th>
<th>Beslut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 5. Elimineringsmatris för val av koncept.

Efter att ha använt elimineringsmatrisen och diskussion med uppdragsgivaren så ansågs koncept 3 vara det bäst alternativet. Så valet föll därför på koncept 3.

3.6 Slutkonstruktion

Det valda konceptet för konstruktionen sammanställdes i CAD med hjälp av programmet Creo Parametric 2.0, se figur 8. En sammanställningsritning finns i bilaga 6. Det är en sak som skiljer sig från konceptgenereringen, det är att istället för att ha en stålskiva i mitten används två tunna stålskivor så det blir lättare att få fast elastomertätningen. Själva funktionen för denna konstruktion är att när kabeln kommer i kontakt med justerstöden rör sig de fyra axiatätningar i den riktning som kabeln rör sig. Stålskivorna trycker fast tätningen i polyuretan rör sig på så vis efter hur kabeln kommer in i extruderingsmaskinen och utsätts inte för några större krafter som kan göra att tätningen spricker. De fyra axiatätningar som används i konstruktionen är standardtätningar som finns på marknaden.

Figur 8. Den slutliga konstruktionen för det valda konceptet.
3.7 Beräkningar


![Diagram](image)

**Figur 9.** Utbökningen för en konisk stålrorrmast
4. Diskussion

Projektets arbetsgång har fungerat bra. Genom att ha följt de faser som ingår i en produktutvecklingsprocess så har arbetet blivit mer strukturerat. Det var viktigt att göra en projektplan och en WBS-karta för att få en bra bild om vad som ska vara med i rapporten. Utifrån dessa kunde ett preliminärt ganttschema med preliminära datum göras vilket har varit en viktig del för att få saker klara i tid.

Det metoder som använts under projektets gång har fungerat bra. Det har gått att få fram de resultat som behövts för att komma fram till en slutlig konstruktion. Samarbetet med uppdragsgivaren Nexans har fungerat bra. De gav en bra bild av problemet från början och har gett en bra bild om hur kabeltilverkning går till. Nexans hade inga specifika krav på hur konstruktionen skulle vara utformad utan gav mest information om vad som ska klara av. Koncepten som togs fram gjordes genom att noggrant studera i processen ute i fabriken för att se vad nuvarande konstruktion inte klarade och hur möjliga lösningar skulle fungera och implementeras i deras infästning till plastextruderingsmaskinen. Även handledaren på Karlstads universitet gav bra tips vid konceptgenereringen.


Axialtätningarna som används är standardtätningar som går att beställa från ett flertal leverantörer. Det valda konceptet diskuterades även med handledare vid universitetet att inga beräkningar behövs göra utan att det kommer klara de belastningar som uppstå.

Materialvalet som gjordes för det material i tätningen som ska vara i kontakt med kabeln känns relevant för ändamålet. På grund av att materialet inte får repa kabeln har plaster endast varit av intressen. Härda material kan orsaka repor på blyöverdraget som kan skada kabel så att den inte fungerar korrekt. Efter informationssökning visar även att de flesta elastomerpackningar som ska tåla stora belastningar ofta består av materialet polyuretan.

Det återstår en del arbete för att säga om konceptet på konstruktion och materialvalet kommer att fungera optimalt ute i fabrik. En prototyp behöver tillverkas utifrån de ritningar som har gjorts för att testa och utvärdera om det är en lämplig lösning. Leverantörer för de olika komponenterna i tätningen måste kollas

Eftersom däck på bilar karar den friktion utan att slitas ner allt för snabbt så borde polyuretan packningen klara kravet att hålla för tio dagars konstant produktion.

Något som också återstår att göra är att mäta ännu noggrannare och justera eventuella mått och toleranser på konstruktion för att den ska passa de tre nuvarande extruderingsmaskinerna, detta efter att prototypen har testas och utvärderats.
5. Slutsats

Syftet med examensarbetet var att komma fram till en lämplig konstruktion som ger bättre tätning mellan de två skikten, det vill säga bly- och plast överdragen i kabeln. Utifrån de krav och önskemål uppdragsgivaren hade är det valda konceptet för konstruktionen en lämplig lösning på problemet. Materialvalet föll på att använda polyuretan som material som ska vara i kontakt med blyöverdraget på kabeln och verkar vara ett passande material för ändamålet då det ofta används som material i packningar som klarar stora belastningar.

Det som återstår att gör är att tillverka en prototyp för provning och utvärdering. Samt att eventuellt göra en mer noggrann dimensionering av konstruktionen för att den ska passa optimalt i nuvarande extruderingsmaskiner.

Diskussion med leverantörer och eventuella priser på tillverkningskostnad är något som behöver undersökas vidare.
6. Tackord
Referenslista

Böcker


Elektroniska dokument


Dataprogram


Creo Parametric Academic Edition (Version 2.0) [Datorprogram]
Bilaga 1
Projektplan

Bakgrund


Nexans har en typ av produktion som ständigt kräver förändringar och förbättringar av produktionsutrustning, eftersom mestadels av deras leveransprojekt av kablar är specifikt utförda efter kundernas behov. Det uppkommer därför ständigt nya uppgifter så som att lösa tekniska problem som identifierats under dels under förberedelserna för produktionen och under produktionen. Ett problem som Nexans har är att de inte får tillräckligt bra vakuumätning mellan bly och ett av plastskiktet i deras kablar. Själva problemet bygger på att infästningen till plastextruderingsmaskinen inte klarar av belastningen som kabeln utsätter den för utan den spricker och på så sätt blir inte vakuumätningen optimal.

Uppdragsgivaren Nexans vill ha ett konstruktionsförslag och ett materialval på konstruktionen som klarar av tio dagars produktion.

Syfte
Syftet med examensarbetet är att undersöka möjligheten att hitta en konstruktionslösning som håller för att få bättre vakuumätning mot kabeln under plastextruderingsprocessen som gör att den karar av tio dagars produktion.

Mål
Målet med examensarbetet är att hitta en konstruktion med rätt material som gör att infästningen till plastextruderingsmaskinen klarar av tio dagars produktion.

Problemformulering
Hitta en konstruktionslösning med rätt material som ger bättre vakuumätning under plastextruderingsprocessen och som klarar av tio dagars konstant produktion.

Kravspecifikation

Funktionella krav
• Ska klara av 10 dagars konstant produktion
• Enkel att montera i nuvarande extruderingsmaskin
• Ska vara flexibel att den kan röra sig i sidled beroende på hur kabeln kommer in i infästningen

Icke-furonktionella krav
• Konstruktionen ska vara så enkel som möjligt
• Konstruktion ska klara av de monteringskrav som ges av Nexans
• Konstruktionen ska ritas upp i CAD så att konstruktionen enkelt kan anpassas till olika storlekar
Bilaga 2

WBS
Bilaga 3
Ganttschema

![Gantt-schema](image-url)

- Informationssökning
- Problemförståelse
- Konceptgenerering
- Konceptval
- Konstruktion
- Materiaval
- Slutarbete
- Rapportskrivning

Dagar att arbeta
Bilaga 4
Organisationsschema

Roll: Projektledare
Namn: Malin Fredriksson
Adress: Frödingshöjd 14
656 37 Karlstad
Telefon: 073-0270083
E-post: malin_fredriksson_10@hotmail.com

Roll: Uppdragsgivare: Nexans Norway AS
Namn: Helge Hovland
Adress: Knivsöveien 70
P.O. Box 42
1751 Halden
Telefon: +47 69 17 31 77
E-post: helge.hovland@nexans.com

Roll: Handledare Nexans
Namn: Glenn André Östbye
Adress: Knivsöveien 70
P.O. Box 42
1751 Halden
Telefon: +47 94 50 39 11
E-post: glenn_andre.ostbye@nexans.com

Roll: Handledare Karlstads Universitet
Namn: Mikael Åsberg
Adress: Universitetsgatan 2
651 88 Karlstad
Telefon: 054-700 21 14
E-post: mikael.asberg@kau.se

Roll: Examinator Karlstads Universitet
Namn: Nils Hallbäck
Adress: Universitetsgatan 2
651 88 Karlstad
Telefon: 054-700 21 15
E-post: nils.hallback@kau.se
Bilaga 5
Riskanalys

Tabell 6. Riskanalys.

<table>
<thead>
<tr>
<th>Riskbeskrivning</th>
<th>S</th>
<th>K</th>
<th>R</th>
<th>Föreslagen åtgärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidsplan överskrids</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>Satsa på framtung process. Kontinuerlig uppdatering av tidsplan.</td>
</tr>
<tr>
<td>Ej uppnår målen</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>Fokusera på specifika mål genom att göra avgränsningar.</td>
</tr>
<tr>
<td>Konkurs hos företaget</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>Fortsätt sträva mot att målen uppfylls.</td>
</tr>
<tr>
<td>Bristande kompetens</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>Ta hjälp av specialister på området.</td>
</tr>
<tr>
<td>Rapport ej klar i tid</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>Arbeta kontinuerligt med rapporten.</td>
</tr>
<tr>
<td>Konstruktionsfel</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>Kontrollera konstruktionen.</td>
</tr>
<tr>
<td>Förlorad dokumentation</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>Spara via nätet.</td>
</tr>
</tbody>
</table>

Bedömningssystem:

Låg risk: 1-8
Medelrisk: 9-15
Hög risk: 16-25

S = sannolikhet
K = konsekvens
R = riskfaktor
Bilaga 6
Sammanställningsritning för valt koncept
Bilaga 7
Beräkningar för extruderingsmaskin 1

Utbjöjning

\[ F = \frac{EL^3}{3EI} \left( \frac{I_u}{R_s} - \frac{I_i}{R_u} \right) \]

\( I_u \) = träghetsmoment för Ru

\( I_i \) = träghetsmoment för Ru

Storleken på konstruktionen

Givet:

\[ R_s = 50 \text{ mm} \]
\[ R_u = 70,5 \text{ mm} \]
\[ r_s = 50 \text{ mm} \]
\[ r_u = 67,5 \text{ mm} \]

\[ 250 \text{ mm} \]

Vid beräkning av \( F \):

Givet: Kabelns vikt \( m = 70 \text{ kg} \)
\[ g = 9,82 \text{ m/s}^2 \]

\[ F = mg = 70 \cdot 9,82 = 687,4 \text{ N} \]

Träghetsmoment:

\[ I_u = \frac{\pi (R_u^4 - R_s^4)}{64} = \frac{\pi (70,5^4 - 50^4)}{64} = 8,25 \cdot 10^{-3} \text{ m}^4 \]

\[ I_i = \frac{\pi (r_u^4 - r_s^4)}{64} = \frac{\pi (67,5^4 - 50^4)}{64} = 7,12 \cdot 10^{-3} \text{ m}^4 \]

Utbjöjning:

\[ f = \frac{EL^3}{3EI} \left( \frac{I_u}{R_s} - \frac{I_i}{R_u} \right) \]

\[ = \frac{687,4 \cdot 0,25^3}{3 \cdot 0,1 \cdot 8,25 \cdot 10^{-3} \left( \frac{0,05^3}{0,05^3 + 0,025^3} \right)} - 7,12 \cdot 10^{-3} \left( \frac{0,05^3}{0,05^3 + 0,025^3} \right) = 2,409 \text{ m} \]
Beräkningar för extruderingsmaskin 2

utbäjning

storlek på konstruktionen:

Givet:

\[ R_u = 35 \text{ mm} \]
\[ R_b = 32 \text{ mm} \]
\[ R_0 = 37 \text{ mm} \]
\[ L = 300 \text{ mm} \]

Beräkning av \( F \):

Givet: Kabelns vikt \( m = 90 \text{ kg} \)

\[ g = 9,82 \text{ m/s}^2 \]

\[ F = mg = 90 \times 9,82 = 883,8 \text{ N} \]

Träghetsmoment:

\[ I_u = \frac{\pi (R_u^4 - R_b^4)}{6} = \frac{\pi (96^4 - 25^4)}{6} = 1,66 \times 10^{-6} \text{ m}^4 \]

\[ I_i = \frac{\pi (R_u^4 - R_0^4)}{6} = \frac{\pi (87^4 - 72^4)}{6} = 1,49 \times 10^{-6} \text{ m}^4 \]

Utbäjning:

\[ f = \frac{F L^3}{3E \left( \frac{R_0}{R_u} - \frac{R_b}{R_u} \right)} = \frac{883,8 \times 0,3^3}{3 \times 0,016 \times 10^{-6} \left( \frac{0,073}{0,09} \right) - 1,49 \times 10^{-6} \left( \frac{0,09^2}{0,08^2} \right)} = 3,229 \text{ m} \]
Beräkningar för extrueringsmaskin 3

Utnejning:

Storlek på konstruktionen:

Beräkning av kraften $F$:

Givet kabelns vikt $m = 150$ kg

$g = 9,82 \, m/s^2$

$F = mg = 150 \cdot 9,82 = 1473 \, N$

Trehjulsmoment:

$I_a = \frac{\pi}{6} \left( R_a^4 - r_a^4 \right) = \frac{\pi}{6} (157,5^4 - 154,5^4) = 5,35543 \cdot 10^{-6} \, m^4$

$I_i = \frac{\pi}{6} (r_a^4 - r_e^4) = \frac{\pi}{6} (154,5^4 - 147,5^4) = 5,64814 \cdot 10^{-6} \, m^4$

Utnejning:

$f = \frac{FL^3}{3E \left( \frac{R_e}{R_a} - I_i \frac{r_e}{r_a} \right)}$

$= \frac{1473 \cdot 0,43}{3 \cdot 0,016 \cdot 10^{-9} \left( 5,35543 \cdot 10^{-6} \left( \frac{0,154}{0,1575} \right) - 5,64814 \cdot 10^{-6} \left( \frac{0,1475}{0,1545} \right) \right)}$

$= 6,60 \, m$