&

Ak
FKTHS

VETENSKAP
3% OCH KONST o

Bt

KTH Information and
Communication Technology

SIS
BRI OOF
LOMPLER

SUIEMLE

Generic Distribution Support for Programming
Systems

Erik Klintskog

A Dissertation submitted to
the Royal Institute of Technology
in partial fulfillment of the requirements for
the degree of Doctor of Technology

June 2005
The Royal Institute of Technology

School of Information and Communication Technology
Department of Microelectronics and Information Technology

TRITA-IT LECS AVH 05:03
ISSN 1651-4076
ISRN KTH/IMIT/LECS/AVH-05/03-SE

and

SICS Dissertation Series 39
ISSN 1101-1335

ISRN SICS-D-39-SE

© Erik Klintskog, 2005

To Malin, Hedda, Tilde and Estrid

ii

Abstract

This dissertation provides constructive proof, through the implementation
of a middleware, that distribution transparency is practical, generic, and
extensible. Fault tolerant distributed services can be developed by using
the failure detection abilities of the middleware. By generic we mean that
the middleware can be used for many different programming languages and
paradigms. Distribution for each kind of language entity is done in terms of
consistency protocols, which guarantee that the semantics of the entities are
preserved in a distributed setting. The middleware allows new consistency
protocols to be added easily. The efficiency of the middleware and the ease
of integration are shown by coupling the middleware to a programming
system, which encompasses the object oriented, the functional, and the
concurrent-declarative programming paradigms. Our measurements show
that the distribution middleware is competitive with the most popular dis-
tributed programming systems (JavaRMI, .NET, IBM CORBA).

1ii

Acknowledgments

I would like to start by showing my gratitude to my supervisor professor Seif
Haridi for his guidance and encouragement throughout this whole process.
Seif introduced me to distributed programming in general and Mozart in
particular and always engaged me in interesting and challenging research
issues. Another person that has been of outmost importance for my work
is Per Brand. Per has been acting as a supervisor, a mentor, and a close
friend to me.

The work presented in this dissertation would not have been possible
without the help of Zacharias El Banna. Not only was Zacharias a gifted
colleague, he also became a close friend of mine. Another person that
deserves gratitude from me is Anna Neiderud. The work we conducted
together on the Mozart system was invaluable for my later research.

This dissertation builds heavily on the experiences from the Mozart
project collected at the Distributed Systems Laboratory (DSL) at SICS.
Therefore, I would like to thank the developers of Mozart. Particularly,
I would like to thank Konstantin Popov and Andreas Sundstrom for the
work we did together. In addition, I would like the members of DSL for
creating such an productive environment, thanks goes to Dragan Havelka,
Sameh El-Ansary, Fredrik Holmlund, Per Sahlin, and Nils Franzen.

Ali Ghodsi and Lars-Ake Fredlund have been most helpful during the
writing of this dissertation. The feedback I received from them on structure,
style, and language was invaluable for the final result. Moreover, I would
like to show my gratitude to Sverker Janson, Frej Drejhammar, and Vicki
Carlgren for proof reading later versions of my dissertation. I would like
to thank my employer, SICS, for letting me pursue this work. The friendly
and warm atmosphere at the SICS Uppsala office, where I spent most of my
time, provided by Per Mildner, Markus Bylund, Stina Nylander, certainly
simplified my every day research.

Finally, I would like to thank my wife Malin for her profound support
during this process. Without her, I would never have finished this disser-
tation. I thank my parents for raising me to believe in my self and I thank
my sister Ingrid for being such a great sister. Moreover, I thank my three
daughters Hedda, Tilde, and Estrid for making every day life so wonderful.

v

List of Papers

This dissertation is composed of the following papers. In the summary they
will be referred to as papers A through H.

A Erik Klintskog, Zacharias El Banna, Per Brand and Seif Haridi. The
DSS, a Middleware Library for Efficient and Transparent Distribution
of Language Entities. In Proceedings of HICSS’37, Hawaii, USA,
2004.

B Erik Klintskog, Zacharias El Banna, Per Brand and Seif Haridi. The
Design and Evaluation of a Middleware Library for Distribution of
Language Entities. In 8 Asian Computing Conference, Mumbai,
India, 2003.

C Erik Klintskog, Valentin Mesaros, Zacharias El Banna, Per Brand
and Seif Haridi. A Peer-to-Peer Approach to Enhance Middleware
Connectivity. In OPODIS 2003: 7" International Conference on
Principles of Distributed Systems, Martinique, France, 2003.

D Zacharias El Banna, Erik Klintskog and Per Brand. Securing the DSS
Technical Report T2004:14, Swedish Institute of Computer Science,
SICS, November 2004.

E Erik Klintskog, Per Brand and Seif Haridi. Home migration using a
structured overlay network. To be submitted for review.

F Erik Klintskog, Anna Neiderud, Per Brand and Seif Haridi. Frac-
tional Weighted Reference Counting. In Proceedings of Euro-Par
2001, Manchester, England, 2001.

G Erik Klintskog. Internal Design of the DSS. Technical Report T2004:15,
Swedish Institute of Computer Science, SICS, 2004.

H Erik Klintskog. Coupling a Programming System to the DSS, a Case
Study. Technical Report T2004:16, Swedish Institute of Computer
Science, SICS, 2004.

vi

Contents

1 Introduction
1.1 Distributed Systems

1.1.1
1.1.2
1.1.3

Benefits of Distributed Systems
Challenges
Transparencyo oo

1.2 Programming Languages for Distributed Systems

1.2.1
1.2.2
1.2.3
1.24

Distributed Programming Languages
The Underlying Network
Implementing Transparent Distribution
Distributed Programming System

1.3 Motivation and Thesis
1.4 Contribution

1.4.1
1.4.2
1.4.3
144

Scientific Contribution
Proof of Concept
Evidence of Impact
My Contribution

1.5 Organization of the Dissertation

2 An Overview of Distributed Programming Systems
2.1 Distributed Programming Systems

2.1.1
2.1.2
2.1.3
2.14
2.1.5

Java-RMI L.
JavaParty o000
Globe
Erlang o o
Mozart

vii

N O R W w Ny

18
19

25
27
27
29
29
30
30

21.6 Oblig
217 Manta
2.2 Distribution Support Systems
2.2.1 Messaging Oriented Middleware
222 CORBA o
2.2.3 Web Services
224 Dot NET
2.2.5 Software Distributed Shared Memory: InterWeave
2.3 Conclusion e

Architecture of the Distribution SubSystem

3.1 Design Decisions 0.
3.1.1 The Integrated Approach
3.1.2 Properties of Targeted Programming Languages .

3.2 The Abstract Entity Model
3.2.1 Distributed References
3.2.2 The Abstract Entity
3.2.3 Abstract Entity Interfaces
324 Abstract Threads
3.2.5 Different Types of Abstract Entities

3.3 Distribution Strategy Framework
3.3.1 The Coordination Network
3.3.2 Sub-protocols
3.3.3 Implemented Sub-protocols
3.3.4 Examples of Consistency Sub-protocols
3.3.5 Referentially Secure Coordination Networks

3.4 Messaging Layer
3.4.1 First-Class Node Reference Model
3.4.2 The DSite Interface
3.4.3 Internals of the Messaging Layer

The Programmer’s view of the Distribution SubSystem

4.1 Practical handling of Failures
4.1.1 Failed Coordination Networks
4.1.2 Time Lease and Partitioning

viii

49
50
50
52
54
54
59
61
63
64
66
67
69
70
74
79
79
80
81
82

ix

4.2 Decentralized Distribution Support 87
4.2.1 Bootstrapping a Distributed Application 87
4.2.2 Establishing Connections 88
4.2.3 Finding a Relocated Coordinator 89

4.3 Validating the Approach 90
4.3.1 Integrating the DSS with a Programming System . . 90
4.3.2 Evaluation 0. 91
4.3.3 Summaryo e e e e 92

Summary of the Papers 95

5.1 Paper A 95

52 Paper B 96

53 Paper C 97

54 PaperD 98

55 Paper E 99

56 PaperF 100

5.7 Paper Go 101

58 Paper H 101

Experiences and Conclusions 103

6.1 The Distribution SubSystem in Perspective (Lessons Learned)103
6.1.1 History 0. 104
6.1.2 The Importance of Abstractions 105
6.1.3 The Concept of an Abstract Entity 106
6.1.4 In Search for the Third Abstract Entity 107

6.2 Related Work oo 108
6.2.1 Abstract Entity Model 108
6.2.2 Coordination Networks 110
6.2.3 Protocol Choice. 111

6.3 Future Worko 112

6.4 Conclusion e 115

Chapter 1

Introduction

This dissertation presents the design, implementation, and evaluation of
the Distribution SubSystem (DSS), a middleware which provides efficient
distribution support for programming languages. It supports the object
oriented, the functional, and the declarative-concurrency paradigms. The
development time of a distributed programming system can be significantly
reduced by the use of the DSS. The distribution support provided by the
DSS is customizable and efficient, which in turn results in efficient and
functionally comprehensive implementations of distributed programming
languages.

The contributions of the dissertation can be summarized as: (i) A pro-
gramming paradigm independent interface based on an abstract model of
language entities. (ii) A framework for consistency protocols which simpli-
fies the development of new protocols and allows for fine grained customiza-
tion of protocol properties. (iii) The design and implementation of an ef-
ficient messaging layer which allows for traversal of firewalls and handling
of mobile processes. (iv) The development of protocols and methods which
makes it possible to build decentralized and self-organizing distributed ap-
plications. As a proof of concept, the middleware has been integrated with
to the multiparadigm programming system Mozart, which implements the
functional, the declarative-concurrent and the object oriented programming
paradigms.

This chapter presents the background and motivation for this disser-

1

2 1.1. DISTRIBUTED SYSTEMS

tation. The first section describes distributed systems in general. The
second section describes distribution support on the level of programming
languages. Thereafter, a section devoted to motivating the work and the
thesis follows. The chapter is concluded with a section that presents the
contributions of this dissertation.

1.1 Distributed Systems

Computers of today are typically members of some sort of network. Con-
sequently, the resources an application can harness are not necessarily re-
stricted to one computer. Instead, an application can make use of a large
set of resources located at many different computers.

A set of interconnected autonomous processes, referred to as nodes, con-
stitutes a distributed system. Nodes are hosted by computers (sometimes
referred to as machines) interconnected by a network that allows the nodes
to exchange information. It is possible that more than one node of a dis-
tributed system reside on the same computer. If all nodes of a distributed
system resides at the same computer (with potentially many processors),
some of the characteristic challenges related to distributed systems are re-
duced, thus in such case, it is more correct to talk about a parallel or a
concurrent system. Moreover, a system that consists of one single node is
called a centralized system.

The rather general description of a distributed system as a set of in-
terconnected nodes is inspired by Gerard Tel [126]. In this dissertation,
we devote ourselves to realize a more restricted definition, described by
Tanenbaum and van Steen. They state that for a system of nodes to clas-
sify as being a distributed system, the existence of autonomous nodes is
transparent to users of the system:

“A distributed system is a collection of independent computers
that appears to its users as a single coherent system.” [122]

A distributed system that adheres to this description appears to its users
as a single computer system. A distributed system that appears as a single
system is sometimes said to provide a single system image (SSI) [25]. As

CHAPTER 1. INTRODUCTION 3

noted by Tel [126], and described below, realizing this vision is a daunting
task, if at all possible. Still, systems that realize this vision, even just
partially, are simpler to use, maintain, and program than systems that do
not provide the vision of a single system.

1.1.1 Benefits of Distributed Systems

The deployment of the Internet, cheap communication hardware, and the
increased efficiency in computer hardware has made distributed systems so
ubiquitous that users seldom recognize that they use a distributed system.
Distributed systems are developed with a purpose to provide a service a
centralized system cannot provide. Here we present a non-exhaustive list
of reasons and motivations for why distributed systems are useful.

The interconnected property of a distributed system allows nodes to
exchange information. Similarly, users of a distributed system can use the
system to exchange information, exemplified by email and instant messag-
ing systems such as ICQ !. The interconnected property also allows resource
sharing, i.e. a node of a distributed system can access and make use of re-
sources present at other nodes. Resources can be anything from physical
devices such as sensors or printers to conceptual units such as a compute-
server or an information storage facility. The latter type of resource leads to
a further argument for distributed systems, the possibility to acquire com-
putation power, and increase performance over a centralized application.
A distributed system, if carefully designed, can handle node failures while
still providing service, thus providing high availability. This is in contrast
to a centralized system that is extremely vulnerable to failures, i.e. loss of
the single node prevents further service.

1.1.2 Challenges

The challenges of developing distributed systems are related to their dis-
tribution properties. The nodes of a distributed system are connected by
a network and communicate by message passing. Since remote resources
are accessed by message passing, accessing a remote resource takes con-

"http://www.icq.com

4 1.1. DISTRIBUTED SYSTEMS

siderably more time than accessing a local resource. The overhead in time
caused by the messaging is called latency. Since the latency varies over time
and between nodes of a distributed system, it is hard or even impossible to
facilitate an exact global notion of time, i.e. a distributed system lacks a
global clock.

A distributed system is subject to node failures. A node can be unavail-
able because of problems in the underlying network, because the machine
that hosts the node has stopped, or because of a deliberate or non-deliberate
halt. Unavailability of some of the nodes that make up a distributed system
is called partial failure [118]. Any information and resources solely located
at failed nodes are unavailable to the nodes that remain in the distributed
system [23]. The latency in the underlying network makes it hard to differ-
entiate between a failed node and a node to which communication currently
takes a long time.

The final challenge related to distributed systems is to make them scal-
able. We adhere to the definition by Clifford Neuman [93] where he defines
three dimensions of scalability. (i) A distributed system can be scalable in
the sense that the number of nodes can grow without notable degradation
of its performance. (ii) A distributed system can be scalable in terms of ge-
ographic stretch, that is, nodes can lie far apart. (iii) A distributed system
can be administratively scalable, meaning that the system can span multi-
ple administrative domains without becoming administratively impractical.

The challenges described stem from the desire that a set of intercon-
nected nodes should provide the appearance of one single system. Ideally,
it should be possible to develop a distributed system without considering
details such as where data is located and how data is represented at differ-
ent machines, and still achieve the same level of performance, scalability,
and reliability as if all details of the distributed system were taken into
consideration.

1.1.3 Transparency

A distributed system spans multiple machines interconnected by a network.
Managing and using such a system is complicated if the underlying struc-
ture has to be taken into consideration. In order to simplify the usage of a

CHAPTER 1. INTRODUCTION 5

distributed system, the physical distribution of machines and resources are
typically hidden from the user, the distributed system is said to be trans-
parent if it appears to its users as a single computer system. Note that the
definition by Tanenbaum and van Steen of a distributed system is accord-
ing to Tel a transparent distributed system. Take the World-Wide-Web
as an example, disregarding whether the contents of a webpage is located
at one web-server or at multiple web-servers (unless one of the servers is
unavailable), the contents are automatically downloaded and presented in
a browser to the user. A non-transparent example would be to require the
user to explicitly download the contents of a webpage, item for item, by
explicitly connecting using the IP address of the destination server by using
the version of the HTTP protocol supported by the web server hosting the
content.

Transparency is a multifaceted property, taxonomies over the different
dimensions of transparency can be found in the literature [122, 126, 35].
Here we have chosen to present a subset which is of interest for this disser-
tation.

A system that hides differences in how data is represented and accessed
at different nodes is said to provide access transparency. If data can be ac-
cessed without having to know its physical location, location transparency
is provided. A system that is both access and location transparent is often
said to provide network transparency. A distributed system that allows
resources to move between nodes without affecting how the resources are
accessed implements migration transparency. Replication of data to nodes
of a distributed system is a technique used to increase scalability and per-
formance. If single replicas can be accessed as if there were just one instance
of the data the system is said to implement replication transparency. Fi-
nally, a distributed system that hides that nodes fail, i.e. partial failures,
provides failure transparency. Failure transparency is one of the hardest
transparency properties to achieve, while access and location transparency
is rather straightforward to implement, at least when not considering efhi-
ciency.

6 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

Computer A Computer B Computer V

Middleware

Operating Operating Operating
System System System

Network

Figure 1.1: A distributed system of three computers, connected by an un-
derlying network. On top of the (network) operating system is a middleware
layer. The middleware hides details of the underlying network and provides
the appearance of one system to the application programmer.

1.2 Programming Languages for Distributed Sys-
tems

Programming distributed applications as such is commonly done using a
toolbox of abstractions. Typically a toolbox provides a high-level model of
nodes and links that hides details of the underlying services. Almost all
operating systems present today allow inter-machine communication and
are thus sometimes called network operating systems. A network operat-
ing system does not per se hide the heterogeneity of a distributed system,
instead primitives are provided for communication, i.e. sockets [119], and
for remote access for resources, for example telnet and rlogin. The primi-
tives provided are typically only access transparent by the use of standard
protocols.

The abstractions provided by a network operating system do not pro-
vide the appearance of a single coherent system. Middleware [12] is an
approach to overcome the limitations in the operating system, providing a
platform on top of the operating system for the development of distributed

CHAPTER 1. INTRODUCTION 7

applications, see Figure 1.1. The purpose of the middleware is to provide a
higher level of services than provided by the operating system. Typically, in
the form of abstractions which provide location and access transparency. As
depicted in the figure, middleware often provide the image of one system.
More advanced middleware typically also provide replication and failure
transparency.

A more high level type of tool for development of distributed appli-
cations is a programming language with integrated distribution support.
Distribution services are integrated into the programming model of a pro-
gramming language, allowing development of distributed systems using pro-
gramming constructs well known to the programmer. Development of a
distributed system is then done similarly to how a centralized system is
developed, and consequently simplified, resulting in a shorter development
time for distributed applications.

1.2.1 Distributed Programming Languages

The purpose of a distributed programming language is to minimize the
complexity of distributed system development. This is achieved by allow-
ing, as far as possible, development of distributed applications as if they
were concurrent centralized applications.

We need to distinguish between a programming language and its im-
plementation. The implementation of a programming language is called a
programming system. A programming system can, for instance, consist of a
compiler and a set of libraries as in the case of GCC [48]. A programming
system can also be a compiler, a set of libraries and a virtual machine, as
in the case of the Mozart [90] Java [52], and the Erlang [42] programming
systems. Similar to the separation of a programming language from its im-
plementation in the centralized case, we differentiate between a distributed
programming language and its implementations, distributed programming
systems.

The goal of the Emerald [96] system nicely summarizes the purpose of
a distributed programming system: “The primary goal of Emerald [20, 19]
is to simplify distributed programming through language support while pro-
viding acceptable performance and flexibility both in local and distributed

8 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

node — 1 node — 1 node — 1
(s j
1
T)

data structure C data structure C

(a) (b)

Figure 1.2: One program hosted by a centralized (a) and a distributed
system (b). The figure depicts a distributed system that is both location
and access transparent. The two threads thread-1 and thread-2 can access
the data structures A and B in the distributed case similarly as in the
centralized case.

environments.” [96]. For a programming language based on threads and
data structures, distributed language support means that threads of a pro-
gramming system interact via operations on referred data structures, in-
dependently of the physical location of the threads. Figure 1.2(a) depicts
an application consisting of two threads that share two data structures,
A and B. Figure 1.2(b) depicts the same application distributed over two
nodes. The two threads still, conceptually, share the data structures A
and B as if the threads were located at the same process. Manipulation
of the data structures by one of the threads is visible to the other threads
in a similar way as in the centralized setting. Interaction between threads
located at different nodes of a distributed system can with this model of
shared data structures be treated similarly as interaction between threads
in a centralized application.

For the remainder of this dissertation we will use the notion of a lan-
guage entity to denote an instance of a data structure or a data type. The
concept of a language entity is independent of programming paradigm and
includes not only data structures, but also constructs such as classes and
procedures. Moreover, a language entity can be a complex structure such
as a data structure that encompasses other data structures. For example,

CHAPTER 1. INTRODUCTION 9

consider a vector of strings, which can be seen as one language entity that
refers a set of other language entities. Or the vector can be seen as one
language entity that encompasses the strings. The concept of a language
entity does not restrict distribution of information to the granularity en-
forced by the programming model, but supports tailoring the granularity
such that the unit of distribution matches the access patterns of the data.

From an implementation point of view we differentiate between a dis-
tributed language entity and a local language entity. A distributed language
entity is referred from multiple nodes (by threads or other constructs that
can hold references). Independently of how the distributed language entity
is realized, there exists only one logical instance. The data structures A
and B in Figure 1.2(b) are considered distributed language entities and
data structure C' is a local language entity. A language entity that is
distributed under access, location, and replication transparency is said to
provide single-instance equivalence [55], moreover, the language entity is
said to be distribution transparent. Disregarding how a language entity is
physically distributed, it should provide the same behavior. The semantics
of an invocation on a distributed language entity should not differ if the
language entity is located in the same process or at another process. More-
over, whether the language entity is replicated or not should not alter its
semantics.

Distributed Language Entities

The programming model we assume is based on threads that communicate
by accessing and manipulating language entities. A thread that holds a ref-
erence to a distributed language entity should be able to interact with the
entity as if referring to a local language entity. Consider Figure 1.2(a) and
1.2(b), in both cases, if thread-1 makes the data structure A point to data
structure C, thread-2 should be able to refer C' by accessing A. Of course,
this scenario assumes that data structure A can be made to point to other
data structures and that data structure A allows access to what it points
to. In a centralized setting, this is implemented by representing data struc-
tures as single instances in physical memory. All threads of a process (or
node according to our notation) have access to the same physical memory
and can thus observe modifications performed by other threads. Nodes of a

10 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

Distributed language entity

single instance

multiple instances

operation passing

state passing

operation passing state passing

[/ |

RMI RPC single writer/ . .
‘mobile object multiple reader functional shipping

Figure 1.3: A taxonomy over distribution support of language entities with
the purpose of achieving single-instance equivalence.

distributed application do not share physical memory, thus, threads located
at different nodes cannot directly access the same instance of a distributed
language entity. A protocol is required for threads to make use of refer-
ences to distributed language entities as if the distributed language entity
was a centralized language entity. Such a protocol is commonly called a
consistency-protocol (see Section 1.2.1 for a discussion about consistency).
However, we use the more general notion of a distribution strategy. A distri-
bution strategy describes how operations on a distributed language entity
are resolved in a distributed system, such that the appearance of one logical
instance of the language entity is maintained.

Figure 1.3 depicts a taxonomy of different types of distribution strate-
gies that can be used to maintain single-instance equivalence for a lan-
guage entity. The different strategies can be further classified into either
single-instance or multiple-instances types. The single-instance type of dis-
tribution strategies are identified by maintaining one single instance of the
language entity at some of the nodes in the distributed system. One pos-
sibility is to pass operations to the instance of the language entity, Java
RMI [89] and DEC RPC [17] are examples of this type of distribution
strategy. Another possibility is to move the instance to where operations
on the language entity are performed. This type of distribution strategy
is commonly called mobile state and is the distribution strategy used for

CHAPTER 1. INTRODUCTION 11

objects in Mozart [132] and Aleph [65].

The right sub-tree of Figure 1.3 depicts the family of distribution strate-
gies that maintain multiple instances of a language entity. As opposed to
the single-instance type of distribution strategy, multiple instances exist of
the same conceptual language entity. Typically threads perform operations
on local instances. It is the role of the distribution strategy to ensure that
the local instance is in a coherent state. One benefit of multiple-instance
distribution strategies is that reading a local instance usually can be done
without coordinating with other instances (or replicas) of the language en-
tity. In addition, a multiple instance distribution protocol is potentially
more robust to failure than a single-instance distribution strategy.

The challenge of multiple-instance distribution strategies is to keep the
instances (or replicas) in a coherent state such that single-instance equiva-
lence is maintained. Multiple-instances distribution strategies can be fur-
ther characterized in how instances are updated, either by passing a new
state description or by passing the operation to each instance. The state
passing approach calculates the result of an operation at one location, typ-
ically at the node where the operation was performed by a thread. The
new state of the language entity is sent to all instances to ensure that they
describe the same state. Single-writer/multiple reader protocols [81] are
examples of state passing multiple-instances distribution strategies. An
operation passing distribution strategy keeps the replicas in a consistent
state by performing every operation on each replica. Thus, instead of pass-
ing a new state description to each replica, a description of the operation is
passed to and performed on each replica. Functional-shipping in ORCA [10]
and in Manta [85] are two examples of such a distribution strategy. The ap-
proach is based on the observation that descriptions of operations generally
can be expressed in fewer bytes than a language entity state description.
However, the model is restricted in that operations must be side effect free.
Consider what would happen if an operation is performed on 20 replicas
and the operation is “send a document to a printer”.

Figure 1.4 depicts the scenario from Figure 1.2 on a more detailed level.
Language entity A is distributed by a single-instance operation passing dis-
tribution strategy (RPC). The instance is located at node-1. The location
of the single instance is called the home of the distribution strategy. The

12 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

node — 1 node — 2

)

remoting protocol roxy A
data structure A |~ proxy
N _———
i _
data structure B | replication Protocol data structure B

data structure C

Figure 1.4: Data structures A and B distributed by the operation-moving
and state moving approach.

home maintains an instance of the language entity that operations can be
performed on. On any other node than the home, a reference to the lan-
guage entity is represented by a proxy [113]. The role of the proxy is to
pass operations to the home and wait for results of operations.

Language entity B is distributed by a multiple-instance state passing
distribution strategy (single-writer/multiple-reader). Instance of B exist at
both node-1 and node-2. An operation performed on any of the instances
representing B are executed by the calling thread at the local instance. If
the operation results in a change of the state of the local instance, the new
state is distributed to every instance representing the distributed language
entity. For a node to acquire exclusive write access to the state every other
instance has to be made unusable, this is called invalidation. It is the task of
the distribution strategy to ensure that the instance is complete or complete
enough such that the operation can be performed exactly as if the instance
was a local language entity. Note that the instance is only required to be
complete when an operation is actually executed on it. Typically, to en-
sure single-instance equivalence, a distribution strategy that supports local
execution of operations suspends threads that try to perform an operation
until the instance is in a complete and coherent state.

A distribution strategy that keeps replicas in a consistent state, no mat-
ter how, requires some type of arbitration to control access to the different

CHAPTER 1. INTRODUCTION 13

instances that represent the distributed language entity. The arbitrating
functionality can be distributed among the nodes that hold references to a
distributed entity. More commonly, the arbitrating functionality is located
at a dedicated node, similar to the home of the operation moving approach.

Maintaining Single-Instance Equivalence

The purpose of a distribution strategy is to maintain single-instance equiv-
alence for a shared language entity. Obviously, maintaining single-instance
equivalence is straightforward for any strategy that maintains only one in-
stance of the language entity (e.g. RPC and mobile state). However, for a
distribution strategy that coordinates multiple replicas the single-instance
equivalence can be violated if manipulations and access of the different
instances are not properly coordinated.

First, consider a language entity distributed by a strategy that main-
tains multiple instances of the entity and updates the instances by sending
new state descriptions. The language entity is represented by an instance
at each node holding a reference. An operation on the entity is performed
on the local instance. The operation does not have to be passed to a home
as in an RPC protocol. Messaging is avoided when an operation on the
language entity does not alter the state of the entity. We say that the oper-
ation reads the state of the entity. Following an operation that manipulates
the state of the entity, called a write, the new state must be propagated
to every instance of the entity. Due to delays in the network, the updates
will not be reflected instantaneously in all instances. If no precautions are
taken, different instances of the same language entity will be in different
states at the same time. Concurrent writes from multiple processes can be
observed in different order at two instances, i.e. different instances of the
same conceptual language entity are potentially incoherent. For example,
consider the two threads in Figure 1.4. Assume that thread 2 first updates
the state of data structure B and then updates the state of data struc-
ture A. Since data structure B is distributed using a replication type of
distribution strategy, thread I can first read the new value of A and later
read the old value of B, something not possible at node-2. Consequently,
single-instance equivalence is broken, in practice there exist two instances
of data structure B in this scenario. The role of a distribution strategy is

14 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

to ensure that this does not happen, that incoherence does not occur.

A consistency model [1] can be seen as a description of how incoherent a
single instance of a distributed language entity can be. On one hand, a re-
strictive consistency model, that permits little or no incoherence, restricts
the concurrency in the system. On the other hand, a looser consistency
model supports a high degree of concurrent invocations on the local in-
stances. The drawback is that causally related reads at different nodes of a
particular language entity can return different values (see example above).
In addition, a more restrictive model generally requires more coordination
between instances of a distributed language entity, thus a more bandwidth
consuming and complex protocol. Below we discuss a subset of the existing
consistency models of interest for distributed programming systems.

The atomic consistency model respects a global happened-before order
between reads and writes. In other words, based on the notion of global
time, a read of an instance should always return the effect of the last write.
However, since achieving global time in a distributed system is costly, the
atomic consistency model is impractical and is seldom used but for some
special cases of distributed data.

A programming language is typical concurrent and threads concurrently
access and manipulate the same language entities. The model of data ma-
nipulation is based on a notion of conceptually happened-before and not on
time. The programming model allows an operation on an entity to be inter-
leaved with two consecutive operations performed by another thread on the
same entity. If it is necessary that two operations are not interleaved, the
programmer instead explicitly synchronizes [123] when needed, for example
using a lock. The sequential consistency model, defined by Lamport [81],
encompasses the description of consistency of a concurrent programming
language: “The result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and the operation
of each individual processor appears in this sequence in the order specified
by its program”. For a detailed description of the consistency models we
direct the reader to [122, 35]. Here we make use of examples of processes
that manipulate data items to show the difference between the consistency
models. R(X)v and W(X)v denote read and write operations to variable
X with value v.

CHAPTER 1. INTRODUCTION

15

P1: W(X)a

P2: W(X)b

P3: R(X)b

P4: R(X)b

()

Pl: W(X)a

P2: W(X)b

P3: R(X)b R(X)a
P4: R(X)a R(X)b

(©

P1: W(X)a

P2: W(X)b

P3: R(X)b

P4: R(X)a RX)b
(b)

Pl: WX)a W(X)c

P2: W(X)b

P3: R(X)b

P4: R(X)c RX)a

(@

Figure 1.5: Four processes operating on one distributed data item X: (a)
atomic consistency, (b) sequential consistency, (c) processor consistency,
and (d) violating processor consistency (and thus also sequential and atomic

consistency).

16 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

The operations on the variable X in Figure 1.5(a) are atomic consistent.
Process P3 and P4 read the latest written value b. Figure 1.5(b) is an
example of sequential consistency but not atomic consistency. Process P/
reads the value a after P2 has written the value b to X. This is not allowed
in atomic consistency, but allowed in sequential consistency. The read
operation of a is seen as if it had logically happened before the write of
b to the variable X. Figure 1.5(c) is not atomic nor sequential consistent.
P3 and P4 here observe the order of the two writes in different order,
something that is not allowed in sequential consistency (and thus neither
in atomic consistency).

The processor consistency model is weaker than sequential consistency,
but nicely models asynchronous messaging in a system that experiences
delay, it is sometimes referred to as FIFO consistency [104]. In short, the
model guarantees that writes from one process are globally observed in
the same order, but not that writes from different processes are globally
observed in the same order. Consequently, Figure 1.5(c) is processor con-
sistent, while Figure 1.5(d) is not since P4 reads the writes of P1 in the
reverse order.

The three consistency models described above continuously maintain a
particular coherence model. This has the advantage that shared data is
always in a known coherent state, disregarding whether the data is used or
not. If the distributed data is not used, keeping it in a coherent state is
costly and simply a waste of bandwidth. The release consistency [50] and
entry consistency [13] models are designed to overcome the above limita-
tions. The two models are based on the notion of locks. Only when a lock
is taken is the data guaranteed to be in a coherent state. Writes of data
items while not holding the lock are not seen at other processes but only
at the process where the update was performed. Any changes to the data
are propagated after the lock has been released. If reads and writes of a
distributed language entity are properly protected by locks, the two consis-
tency models are equal to sequential consistency. Release consistency and
entry consistency differ in that release consistency uses one lock for every
distributed data structure of a system, while entry consistency supports
multiple locks that monitor one or more data structures.

CHAPTER 1. INTRODUCTION 17

Distribution Strategies

An interesting observation is that different distribution strategies guaran-
tee the same consistency model, e.g. both RMI and mobile state ensure
sequential consistency. Thus, the semantics of a distributed language en-
tity is not affected by choice of distribution strategy, as long as the strategy
maintains the required consistency model. Changing between distribution
strategies that adhere to the same consistency model maintains the func-
tional properties of the language entity while altering the non-functional
properties [108]. The functional property of a language entity is the service
it provides. The non-functional property is how the service is provided.
Security, fault tolerance, latency and bandwidth consumption are usually
considered non-functional properties. As an example, an operation mov-
ing distribution strategy like RMI [89] requires a communication channel
between the proxy and the home. Whether the channel to the home node
is encrypted or not does not change the functionality of the remote ob-
ject. However, it greatly affects the security of single remote operations.
Encryption of the channel is a non-functional property.

The quote below nicely states why a distributed programming system
should also support different types of replication distribution strategies:

“To maintain these copies [information manually replicated at
multiple processes| in the face of distributed updates, program-
mers typically resort to ad-hoc messaging protocols that embody
the coherence and consistency requirements of the application
at hand. The code devoted to these protocols often accounts for
a significant fraction of overall application size and complexity,
and this fraction is likely to increase.” [84]

It is of great importance that a distributed programming system offers
a large suite of distribution strategies to choose from when distributing an
application [124, 111, 109]. If not, ad-hoc protocols will eventually be devel-
oped at application level to tune performance. Such solutions are generally
not available outside the application. In addition, writing such protocols
is a time consuming task that takes focus and resources from application
development. The purpose of middleware is to remove the burden of im-

18 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

plementing network abstractions from the application developer, thus the
service offered should be comprehensive enough.

1.2.2 The Underlying Network

The nodes of a distributed system are interconnected by an asynchronous
network. For the remainder of this document, unless otherwise stated, we
will assume Internet as the underlying network. In theory, the network
is fully connected. Any two nodes can communicate by message passing
disregarding their physical location. In practice this is not always true, as
will be discussed later. On top of this core functionality, abstractions in the
form of channels are provided. TCP is an example of such an abstraction.
The channel abstraction hides details of message passing, including resend-
ing of lost or corrupted messages. The service is connection oriented and
provides in-order delivery of messages. In addition, the channel abstrac-
tion can provide some type of monitoring mechanism that tells the status
of a channel, e.g. connected, congested, destination-lost etc. Unfortunately
some of the properties of the underlying network cannot be hidden, such as
latency, since message delivery is not instantaneous. Depending on many
factors, like the current network utilization, the physical distance between
two nodes, and the size of the message, it will take a certain amount of
time before a message sent to a node reaches its destination.

Despite the initial assumption on full connectivity, connectivity over In-
ternet is in practice not always symmetric. Barriers in the form of adminis-
trative domain boundaries hinder connectivity. The possibility to establish
a channel in one direction does not necessarily imply that a channel can
be established in the opposite direction. This is commonly caused by NAT
(Network Address Translation) and/or firewalls. For example, that node A
is connected by channels to nodes B and C' does not necessarily imply that
a channel can be established between B and C. Moreover, the address of
a node is not necessarily persistent during its lifetime and can change over
time.

Secure communication over the underlying network is yet another chal-
lenge. In general, it cannot be assumed that all nodes of the network
are friendly. Communication between two nodes that is routed over the

CHAPTER 1. INTRODUCTION 19

network can often be eavesdropped on by a malicious node. Moreover,
malicious nodes can masquerade as being legitimate to acquire secret in-
formation. Encryption and authentication techniques can reduce the risk
of information leakage to malicious nodes. Still, mistakes caused by the
human factor, both during the development and the use of a distributed
system can cause security “holes”. These holes can be utilized by adver-
saries to cause harm to a distributed application.

In summary, the network environment, typically the Internet, is in the-
ory fully connected, but in practice is not. Communication is asynchronous,
subject to latency, and inherently not secure. In addition, little support for
discovering link or node failure is provided.

1.2.3 Implementing Transparent Distribution

Ultimately, a distributed programming system should make programming
a distributed application very much like programming a single processor
application. If this is true, development, testing and deployment can be
done in a controlled environment, i.e. at one machine, thus greatly sim-
plifying development of distributed applications. For this to be true, the
transparency must be functionally complete. That is, every first class data
structure of a programming language must provide the same semantics
when used in a distributed setting as when used centrally.

A distributed programming language that fails in providing transparency
provides two computational models, one for centralized computing and one
for distributed computing. This is inconvenient and also potentially danger-
ous. A distributed programming language that offers special constructs for
distributed computing that syntactically resemble the constructs for cen-
tralized computing, but differ in their semantics, provides two models of
language entities that look similar but behave differently. Such a program-
ming model is hard to use and easily confuses the developer. In practice,
a program developed, tested and proven to be correct at one machine, can
contain errors that are hard to find when deployed in a distributed setting
due to changed semantics of single language entities.

From the above discussion it is clear that transparent distribution is
a beneficial property. However, it has been argued that transparent dis-

20 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

tribution is not possible to achieve [135], partial failures being the prime
argument. Another argument is that hiding the underlying network results
in inefficient applications [47]. Here we show that by introducing a concept
of control, transparency can be provided, despite the two earlier arguments
against transparency. Or, as pointed by Geihs, total transparency is not
required [49] as long as the functional aspects of a programming system are
preserved.

Partial Failures

Any distributed system deployed over a network is subject to failures.
Nodes of the system become inaccessible because of node and link fail-
ures called partial failures. Partial failures are especially problematic in a
system that provides a single system image, such as a distributed program-
ming system that provides distribution transparency. Parts of the system
are unavailable and any services located at the failed nodes are no longer
available. This is clearly different from a centralized system that offers an
all-or-nothing failure model, the system either provides service or the sys-
tem does not. One approach to handle partial failures would be to impose
an all-or-nothing failure model on a distributed system: if one node goes
down, the whole system is taken down. However, such an approach would
result in a system that scales poorly, as the chance that one of the nodes
of the system fails increases with the size of the distributed system.

Another approach is to accept that a distributed system is exposed to
partial failures and try to allow for the failures in the programming model.
By exposing information to the programming level, actions can be taken to
minimize the effect of failures and the application can continue to provide
service. For example, consider how a person who searches information
on the web handles a failed server. If the searched for web-server does not
respond, another server is contacted that might provide the same or similar
information [28]. We advocate that the same model should be provided
when programming distributed applications, encompassing the benefit of
partial failures: the whole application has not failed.

A distributed language entity is said to have failed when its associated
distribution strategy has failed. In turn, a distribution strategy fails when
one or more nodes necessary for the correctness of the protocol has failed.

CHAPTER 1. INTRODUCTION 21

For example, if the home node of a remote object fails, the remote object
fails. Failure of entities should preferably be exposing to the program-
ming level such that the application can react to the failure. Example of
methods of signaling failed entities are throwing exceptions at invoked, or
asynchronous signaling when a failure is experienced [110].

Efficiency

The choice of distribution strategies for the language entities of a dis-
tributed application is the dominant factor when considering the efficiency
of an application [76, 8, 111]. To realize efficient distributed applications,
the amount of interprocess communication and interprocess synchroniza-
tion should be kept to a minimum. Because of the overhead of remote
operations, operations should preferably be done locally. Consider a single-
writer /multiple-readers distribution strategy: if the associated language
entity is only read, the distribution strategy produces no messages. On the
other hand, if the language entity is only updated, all replicas will be con-
stantly invalidated and later updated. In such a case a remote execution
type of distribution strategy is probably preferable.

A distributed programming system that transparently distributes lan-
guage entities without the possibility to alter distribution strategies is
known to hinder development of efficient applications [73]. Instead we
argue that transparency should be relaxed, to a certain degree, and that
a distribution strategy should be assigned on single language entity basis.
This allows the programmer to assign a distribution strategy to a language
entity based on expected usage pattern. If control over the distribution
strategy can be introduced as an orthogonal aspect into a programming
language, a distributed language entity may still be treated as a local lan-
guage entity.

1.2.4 Distributed Programming System

Taking the view that a distributed programming system is a programming
system integrated with a distribution support unit allows us to present
a taxonomy of different distribution support techniques. Three different
types of distribution support are recognized according to how a program-

22 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

ming system can be designed or adapted to host the distribution service.
Hybrid systems can combine two (possibly all three) of these approaches.
Moreover, a system that adheres to one approach can be used to implement
another approach. Still we believe that a system can be predominantly clas-
sified as being of one type, with possibly some elements of another type.

The three approaches presented here bear some similarities to the taxon-
omy over distribution and concurrency support for object systems presented
by Briot et al in [23]. Our taxonomy is organized from the perspective of
transparent distribution support for open distributed systems. Further-
more, we are not only concerned with object oriented systems, but take
a wider look at distribution support and also include other programming
language paradigms.

The three identified models of distribution describe distribution support
at three different levels of a programming system: (1) the Shared Memory
Approach provides distribution from a level below that of the programming
system, (2) the New Entities Approach augments the programming system
on the application level, (3) the Integrated Approach extends a program-
ming system from within.

The Shared Memory Approach

In this approach the nodes of a distributed application share a virtual
memory space, similar to how multiprocessor-single-memory systems are
organized. Conceptually each process reads from and writes to the shared
memory as if the memory was local to the process. In practice, each node
locally stores a replica of the shared memory; access to the shared memory
is done on the local replica. A consistency protocol is executed to keep the
replicas at the different nodes in a consistent state. For reasons of efficiency,
the granularity of sharing is typically memory pages. To further improve
performance, weaker consistency models than sequential consistency are
commonly used, e.g. release consistency or entry consistency. A general
assumption behind the shared memory approach is that sharing processes
are part of a single concurrent program, running over homogenous hard-
ware. The replication protocols used are communication intensive and re-
quire low latency and high bandwidth between the nodes of an application,
i.e. typically over a bus or local LAN.

CHAPTER 1. INTRODUCTION 23

It is generally recognized that shared memory distribution support
works well for some access patterns of shared data, but shows pathological
performance degradation for other patterns [31]. The lack of information
about program structure, i.e. data structures, at the level of distribution is
the prime limitation of the Shared Memory model. This results in poor per-
formance for distributing programming systems based on a structured pro-
gramming model [70]. Furthermore, the model handles remote execution
poorly and is primary limited to replication-type of distribution. Tread-
marks [4] and InterWeave [84] are examples of systems that implement the
shared memory approach.

The New Entities Approach

In this approach the programming system is extended using constructs
available in the programming language, with data types and data structures
that can be distributed. Typically, the original programming model is not
altered, nor can it be distributed. A programming system extended by the
approach results in a system that provides two programming models. The
old model, that cannot be distributed and is primary used for centralized
computing and the add-on to the old model that commonly resembles the
old model syntactically, but differs in that it can be distributed. In effect,
the approach makes a distinction between what is distributable and what
is not distributable.

The advantage of the approach is that it makes it easy to implement
and maintain a distributed programming system. Implementing the ap-
proach can be done at the application level, using the target programming
system as platform. Moreover, access to the programming system inter-
nals is not needed. Thus development and maintenance can be done in
a high-level programming environment. Dissemination is potentially sim-
plified. If the programming system is operating system independent, the
distribution support becomes operating system independent. The reason
for the simplicity, the add-on characteristic, is also the major drawback
of the approach. A programming system distributed by the new entities
approach is a programming system with two programming models: one for
centralized computing (the original set of language entities) and one for
distributed computing (the new set of language entities).

24 1.2. PROGRAMMING LANGUAGES FOR DISTRIBUTED SYSTEMS

The new entities approach is well suited for object oriented systems.
The new entities are here represented by base classes. A user defined class
is made distributable by inheriting from the distributable base class. Java
RMI [89] is the prime example of an object oriented programming system
that makes use of the new entities approach.

The Integrated Approach

The integrated approach can be seen as the middle ground between the
shared-memory and extended-entity approaches. Distribution support is on
the level of language entities, or more precisely, on operations on language
entities. Implementing distribution support using the integrated approach
requires modifying the programming system on the level of entity opera-
tions. Ultimately, if every operation on every language entity is supported
for use in a distributed setting, the model supports potentially efficient
transparent distribution of most of the programming system’s language
models.

The requirement to intercept operations on language entities and the
requirement to interact with language entities is a potential drawback of
the integrated approach. To be able to implement distribution support
using the integrated approach, access to the target programming system
internals is required. This is in difference to the new entities approach,
which by definition can be constructed as an add-on to a programming
system.

However, the model supports distribution of every language entity of
a programming system, i.e. one single programming model for both local
and distributed language entities. Whether a language entity is distributed
or not can easily be expressed as a property. A language entity can start as
a local entity and later be turned into a distributed language entity. Later
still, the language entity can be made local (if possible without violating
single-instance equivalence). Disregarding the status of a language entity
(distributed or local) the language entity provides the same interface to the
programmer. If associated with a distribution strategy that preserves the
semantics, a distributed language entity provides the same semantics to the
programmer as the local variant. Thus, the model can be used to imple-
ment a programming system that provides a common programming model

CHAPTER 1. INTRODUCTION 25

for local and distributed language entities. Mozart and Erlang are two dis-
tributed programming systems that are implemented using the integrated
approach.

Distribution support on the level of language entity operations caters for
efficiency. Context information regarding an operation on a language entity,
i.e. read only or update of the entity state, can be used to optimize interac-
tion with the associated distribution strategy. Moreover, since interaction
between the programming system level and the distribution support level
is not by reads and writes of memory (as in the shared memory approach),
but by operations, operation passing protocols can easily be implemented
(see Section 1.2.1).

1.3 DMotivation and Thesis

From the previous section it should be clear that the realization of a dis-
tributed system is challenging not least because of the properties of the
underlying network. We believe that many of the problems associated with
distributed programming can be ascribed to limitations in the tools used,
i.e. the distributed programming systems themselves:

“The increasing complexity of distributed software systems in
the absence of corresponding advances in software technology
fuel a perennial crisis in software.” [6]

How to distribute the object oriented paradigm is understood. The al-
gorithms necessary to implement objects that can be accessed from multiple
nodes are known; examples are remote method invocation and mobile state
protocols. Still, few object oriented systems exist that implement program-
ming models that provide transparent distribution. Java and C# are two
examples of object oriented systems that provide two programming models,
one for local and one for distributed objects. Except for a few research sys-
tems such as JavaParty [99] and Emerald [96], transparency does not seem
to be the target of object oriented systems. CORBA and web-services are
two attempts to standardize distributed object systems (remote objects)
that focus on interoperability between different programming languages,
and not on transparent distribution of objects.

26 1.3. MOTIVATION AND THESIS

We claim that even though distribution of the object oriented paradigm
attained a lot of interest, the subject is far from fully explored. Other pro-
gramming paradigms, such as the functional and the declarative-concurrent
paradigms [133], have just partly been explored. We believe that the so-
lution to “.. the absence of corresponding advances in software technol-
ogy ...” can be found in these and future, less explored, programming
paradigms. To explore distributed programming using object oriented and
other paradigms, new distributed programming languages and coordina-
tion mechanisms must be developed. The distributed logic variable [59]
of Mozart for instance, that supports simple coordination of threads lo-
cated at different nodes, is one example. The idempotent property of pure
functions in Haskell [61], to create fault-tolerant remote execution [131], is
another example. The possibility to distribute closures caused by lexical
scoping introduced in Obliq [27] is yet another example of programming
language constructs that was useful in a distributed setting.

This dissertation builds on the experiences from the distributed pro-
gramming system Mozart [90]. Mozart showed that transparent distri-
bution support could be achieved efficiently for a programming language.
However, the monolithic nature of the implementation made maintenance
and further development extremely time consuming. In addition was the
distribution support in Mozart tightly integrated with the programming
system, reuse of the distribution support code was impossible.

The goal of this dissertation is to provide generic tools in the form of
distribution support for programming systems. The tools should not be re-
stricted in what types of programming constructs can be supported, both
constructs from the object oriented and constructs found in currently non-
or poorly-supported programming paradigms should be supported. With
such a tool at hand, we can compare the different models and evaluate and
classify them according to what types of distributed programming prob-
lems they fit best. This will increase the number of available distributed
programming systems and create knowledge of new efficient programming
constructs for distributed programming.

To realize the vision of a generic tool of programming systems distri-

bution support, distribution support should be clearly separated from the
programming system implementation in the form of a middleware. The

CHAPTER 1. INTRODUCTION 27

middleware must provide a functionally complete model of distribution.
That means that all language entity types found in the target program-
ming languages should be supported. Moreover, the distribution support
should be reasonably efficient to increase acceptance from application de-
velopers. In addition, the distribution support must provide features neces-
sary for real-world applications, including automatic memory management
and handling of network/node failures. Last, the tool must be simple to
integrate with a programming system. This is summarized in our thesis:

Efficient multi-paradigm programming language distribution-support
can be provided by a middleware.

1.4 Contribution

This dissertation covers the design, implementation and evaluation of a
Distribution SubSystem (DSS) middleware which is described by a num-
ber of research papers. The main contribution of the dissertation is, first,
the design of a middleware that is complete enough to be used as a tool
for creating efficient distributed programming systems offering transparent
distributed programming models. Second, the middleware is designed to
be coupled to, and integrated with, programming systems. The design of
the interfaces of the middleware significantly reduces the effort of realizing
a distributed programming system, compared to writing dedicated distri-
bution support.

The efficiency of the middleware and the ease of integration are shown
in an experiment where the middleware is coupled to a programming sys-
tem. The resulting distributed programming system has shown good per-
formance compared to other systems. We present evidence of the impact
of the work presented in this dissertation on the research community in the
form of published papers and use of the middleware as a tool for further
research.

1.4.1 Scientific Contribution

The dissertation presents the design and implementation of a middleware
for generic distribution support based on the notions of language entities,

28 1.4. CONTRIBUTION

threads, and their interaction. The novel concept of an abstract entity is
presented. The abstract entity is based on the observation that different
language entities, implementing different semantics in a localized compu-
tation, can be correctly distributed using the same type of distribution
support. Objects of different languages (Java, C++, Ruby) even though
semantically different can usually be distributed using the same distribu-
tion strategy. RMI is a good example of that. The differences that are
of importance for distribution are captured in concepts of abstract entity
types. Creating a distributed programming system is reduced to mapping
language entities to the correct abstract entity types. The abstract entity
interface makes the middleware generic, in that it can be coupled to any
programming system.

A new approach to efficient distribution support of language entities is
presented in a framework of protocols that implement distribution strate-
gies. The functionality of a distribution strategy is separated into different
aspects, called sub-protocols. A distribution strategy is composed of multi-
ple sub-protocols. This design results in freedom of choice of sub-protocols.
In addition, the clear separation of concerns simplifies extending the suite
of protocols. Without this division, providing the functionality possible by
sub-protocol composition as monotonic protocol implementations would re-
sult in a combinatorial explosion. The framework has made it simpler to
realize numerous different distribution strategies, and thus implement effi-
cient distributed applications.

The middleware design is fully decentralized and does not rely on ex-
ternal services. Nodes self-organize to facilitate services commonly located
at dedicated servers, such as directory and yellow-page information. Since
the middleware is not dependant on any infrastructure of services deploy-
ment of distributed applications is simplified. Firewall traversal, support
for mobile nodes, and support for mobile language entities are examples
of the services provided by the nodes of a distributed application. Tech-
niques from the peer-to-peer domain are used. We show how structured
and unstructured overlay network techniques can be used in a distributed
programming system setting.

CHAPTER 1. INTRODUCTION 29

1.4.2 Proof of Concept

A middleware that implements generic distribution support for program-
ming systems has been developed, the Distribution SubSystem (DSS). The
DSS, is fully functional and implements the contributions described above.?.

As proof-of-concept, the DSS has been coupled to an existing imple-
mentation of the multi-paradigm programming system Mozart which en-
compasses both the object oriented paradigm, the functional paradigm and
the declarative concurrent (data-flow) paradigm. Mozart, even when not
coupled with the DSS, implements transparent distribution of the data
structures of the programming language Oz. In our experiment we have
replaced the existing distribution layer of Mozart with the DSS. The re-
sult, the DSS extended Mozart version called OzDSS, can thus be com-
pared with the original tightly integrated distribution support of Mozart.
0zDSS is surprisingly efficient; the middleware approach only imposes an
overhead in the range of a few percent. A significant benefit of OzDSS is
that it supports customization of distribution strategy (of a large set) on a
language entity level, something that is not possible in Mozart, which em-
ploys fixed distribution strategy for each language entity. The fine grained
customization possible in OzDSS supports improvements in efficiency for
some applications in the order of magnitudes compared to static allocation
of distribution support [76].

1.4.3 Evidence of Impact

An implementation of the DSS middleware has been available for use as a
research platform since autumn 2002.

e The programming system Mozart has been coupled to the DSS mid-
dleware resulting in the OzDSS [76, 74] system 2. The OzDSS system
shows that a distributed programming system created using the DSS
can be efficient and provide a comprehensive distributed program-
ming model.

2The implementation is freely available and can be downloaded from
http://dss.sics.se/
3available for down load from http://dss.sics.se/

30 1.5. ORGANIZATION OF THE DISSERTATION

e An early version of the DSS has in an experiment been coupled to
the .Net platform [91]. The objects of C# where successfully dis-
tributed using the abstract entity interface of the DSS and the reflec-
tive message-sink [103] interface of .NET.

e In close collaboration with researchers at UCL in Belgium the DSS
has been extended with a communications infrastructure that can
handle asymmetric connectivity [75].

e The success of the OzDSS prototype has initiated a project at UCL
that will replace the distribution support in the official release of the
Mozart system with the DSS. This is currently ongoing work being
conducted by Boriss Meijas.

e The DSS is used as a functional component in one of the demonstra-
tors for Pepito http://www.sics.se/pepito, a Fifth Framework EU
FET project. In the same project a Java interface has been developed
on top of the DSS middleware by researchers in Lousanne, making
the distribution model presented in this thesis available to the Java
community.

1.4.4 My Contribution

From an initial document that described the vision of generic distribution
support [22] jointly written by Per Brand, Seif Haridi, Konstantin Popov,
and myself, I have realized the vision in the form of the design of the DSS.
I have been the main author of all but one of the papers included in this
dissertation. A more detailed description of the contributions by me to
each included paper can be found in Chapter 5. The implementation of the
DSS middleware has been a joint effort by Zacharias El Banna and me.

1.5 Organization of the Dissertation

This Dissertation is based on eight papers: four peer-reviewed, one to be
submited for review, and three technical reports. The papers are found as
appendices. Chapters 2, 3, 4, 5, 6 serve as an introduction and overview

CHAPTER 1. INTRODUCTION 31

to the research presented in the attached papers. Chapter 2 presents an
overview of existing approaches to distributed programming systems and
to distribution support systems. The architecture of the DSS is described
in Chapter 3. The resulting middleware is presented from a programmers
point of view in Chapter 4. Chapter 5 introduces the attached papers
and presents a short overview of how each single paper contributes to the
overall design and description of the DSS. The dissertation is concluded in
Chapter 6, which summarizes and highlights important experiences from
the work on the DSS and also points at further research directions.

32

1.5. ORGANIZATION OF THE DISSERTATION

Chapter 2

An Overview of Distributed
Programming Systems

This chapter gives an overview of systems that provide distribution support.
We differentiate between distributed programming systems and distributed
support systems. The distributed programming systems are compared ac-
cording to completeness and transparency of their distributed programming
model. Distribution support systems are considered from the perspective
of using them as tools to create programming systems. For distribution
support systems we have chosen to consider completeness in the distribu-
tion model as well as the convenience of integrating the system with a
programming system.

For the purpose of this dissertation, interoperability between different
programming languages is not considered. Ideally, code written in different
programming languages can be executed at separate nodes connected as
a distributed system. The appearance of one single system, without any
language barriers, is achieved by providing access transparency through
the use of the distributed objects. Programming language interoperabil-
ity is important for applications that cannot be developed in one single
programming language. However, our ultimate goal is to provide a middle-
ware that can be used to create a distributed programming system based
on any existing programming system. The first step towards this goal is to
create distributed programming systems that can connect nodes executing

33

34 2.1. DISTRIBUTED PROGRAMMING SYSTEMS

Design Target Environment
Approach Cluster | LAN | Internet
Integrated Erlang Obliq Mozart
New entities || JavaParty | Java RMI | Manta, Globe

Table 2.1: Situating the presented distributed programming systems

the same programming language. Programming language interoperability
is considered as future work.

2.1 Distributed Programming Systems

For a programming system to classify as a distributed programming sys-
tem distribution support should, to some degree, be integrated into the
programming model of the programming language. Another definition of
a distributed programming system is that distributed programs can be de-
veloped, to various degrees, without considering the distribution of data
structures and threads, i.e. transparency.

Of the large number of existing distributed programming systems [102,
120, 131, 89, 10, 88, 80, 140, 66, 127, 96, 38], we have chosen a subset
that is developed either by the new entities or the integrated approaches
described in Section 1.2.4. Since the shared memory approach is intended
for a cluster of homogenous workstation environments, we have deliberately
not included any distributed programming system based on that approach.
In addition we have chosen to differentiate between systems designed for
clusters, LANs, and the Internet. Table 2.1 depicts the systems chosen and
what type of network environment and design approach they are intended
for.

To reason about different types of distributed programming systems we
look at how well integrated distribution is into the programming model,
i.e. how transparent the programming model is. For practical reasons,
the distribution support must provide a comprehensive service, therefore
we look at how functionally complete the distribution support is. Sec-
tion 1.1.3 describes the concept of transparency in distributed programming

CHAPTER 2. AN OVERVIEW OF DISTRIBUTED PROGRAMMING

SYSTEMS 35
Distributed Transparency
Programming Network Replication
System transparency | transparency
Java RMI partly no
JavaParty partly yes
Globe partly yes
Erlang fully -
Mozart fully yes
Obliq fully yes
Manta no -

Table 2.2: Implemented transparency of the surveyed systems.

systems. According to the description found in Section 1.2.3, we exclude
failure transparency in our requirements for a distributed programming
system. Instead we argue that a distributed programming system should
detect and report failures to the programmer and is therefore considered a
completeness property. Table 2.2 summarizes how transparent the different
evaluated systems are according to the following requirements:

Network transparency allows access to distributed language entities
without explicitly considering their location and their exact represen-
tation.

Replication transparency means that replication of data is supported
with preserved semantics. That is, single-instance equivalence is pre-
served even if local access of replicated data is allowed.

We use completeness to describe the service provided in the non-functional
domain. For a distributed programming system to be useful as a tool for
writing distributed applications that are deployed on the Internet, it should
fulfill as many of the completeness requirements as possible. Table 2.3
summarizes the completeness of the evaluated systems according to the
following requirements:

36 2.1. DISTRIBUTED PROGRAMMING SYSTEMS

Failure Detection is a requirement to be able to develop distributed ap-
plications for networks that experience failures. A distributed pro-
gramming system must first detect and differentiate between different
link and node failures. Second, failures must be reported to the pro-
gramming level such that actions can be taken at application level,
see Section 1.2.3.

Internet Communication puts demands on the communication support
of a distributed programming system. For a distributed programming
system to qualify as being capable of handling Internet type of com-
munication it should be able to establish and maintain connections
in the face of temporary loss of connectivity, node migration and
asymmetric connectivity, see Section 1.2.2.

Choice of Distribution Strategy for single language entities is the key
to efficient distributed applications, as described in Section 1.2.3. Dif-
ferent distribution strategies should be provided, and ideally, it should
be possible to implement new distribution strategies.

Dynamic Reference Handling is necessary for scalability of a distributed
application. Only nodes that have an interest in a particular dis-
tributed language entity should participate in the consistency proto-
col of the entity. Nodes should learn about new distributed language
entities by reference passing. In addition, distributed language en-
tities should be garbage collected when no longer referred from any
nodes.

2.1.1 Java-RMI

Java [52] has become a de facto standard for modern object-oriented dis-
tributed language design. The language model is extended with distribution
support by the serializable and the Remote Method Invocation (RMI)
interfaces [89]. Distribution support is integrated into the programming
model using the new-entities approach. Thus, an ordinary Java object can-
not be sent over the network. Only annotated objects can be used in a
distributed setting. The two types of distributable objects, serializable and

CHAPTER 2. AN OVERVIEW OF DISTRIBUTED PROGRAMMING

SYSTEMS 37
Distributed Completeness
Programming || Failure Internet Reference | Distribution
System detection | communication | handling strategies
Java RMI simple no yes no
JavaParty simple no yes yes
Globe simple no yes yes
Erlang simple no no no
Mozart advanced yes yes no
Obliq no no yes no
Manta no no no no

Table 2.3: Implemented completeness features of the surveyed systems.

remoting, alter the semantics of objects when used in a distributed setting.
A serializable object is sent by value when transferred over the network,
resulting in an uncoordinated replica of the original object. A remoting ob-
ject, on the other hand, is passed by reference, preserving single-instance
equivalence.

Java-RMI serves as a good example of the limitations of the new-entities
approach. Only annotated objects can be used in a distributed setting, net-
work transparency is only supported for a subset of the language entities.
In addition, a design decision in Java has affected the programming model.
Replicated objects are supported over the serializable interface, while repli-
cation transparency is not supported. In addition, support is missing for
programming constructs such as feature access and reentrant locking [24].
Limitations in the distribution support of Java RMI make the system un-
suitable for Internet type of distributed applications. Only one type of dis-
tribution strategy is supported, remote execution of methods on stationary
objects. Node and link failures are detected, but there is no differentiation
made when reported to the programming level. Still, the dynamic nature of
Java that supports replacement of software modules and the choice of the
new-entities approach make it possible to extend or replace the distribution
support code [57, 101].

38 2.1. DISTRIBUTED PROGRAMMING SYSTEMS

2.1.2 JavaParty

JavaParty is an efficient implementation of Java RMI for cluster environ-
ments. Of the many systems that improves the Java RMI model [128, 127,
43, 66, 39], JavaParty [99] is one of the more comprehensive systems. Java
Party has been developed over many years with the goal of providing an
efficient and coherent implementation of the remote object model of Java
RMI. The system uses the new entities approach.

The serializing routines of Java RMI are reworked together with the re-
mote execution code to increase performance [92]. Replication transparency
that is lacking in Java is provided in JavaParty [63]. In addition, the con-
cept of logical thread identities are introduced [62], allowing for reentrant
locking and control of threads in a distributed setting. Distributed objects
in JavaParty are not restricted to remote execution, but can be distributed
by different distribution strategies, including different types of replication
and mobile state.

In summary, JavaParty has the characteristic limitations in transparency
associated with the new-entities approach, only a subset of the language
entities are supported under network transparency. In contrast to the orig-
inal Java-RMI implementation, replication transparency is provided. The
system targets clusters and thus provides no support for Internet communi-
cation, one of our requirements for a complete system. The failure detection
and reporting is similar to Java RMI.

2.1.3 Globe

The Java based system Globe [9] targets wide area computing. Globe is
built on the observation that certain properties of how an application ac-
cesses shared data should be reflected in the choice of distribution support.
This is presented to the programmer as the ability to specify the distribu-
tion behavior on object basis. Various aspects of an object’s distribution
strategy can be specified, including different types of replication protocol,
fault tolerance and security.

Globe fulfills many of the requirements for a complete distribution pro-
gramming system. However, the comprehensive distribution support is
integrated into Java using the new entities approach. The remote objects

CHAPTER 2. AN OVERVIEW OF DISTRIBUTED PROGRAMMING
SYSTEMS 39

interface is replaced with the distributed objects interface, thus Globe has
the same limitations when it comes to transparency as Java RMI.

2.1.4 Erlang

Erlang [42] is a functional and concurrent programming language primar-
ily designed for telecom applications [5]. The language model supports
processes that communicate by message passing. Concepts of distributed
programming are elegantly included into the programming model [138].
Processes can communicate by message passing disregarding their physical
location, i.e. network transparency.

The target environment, clusters of workstations, is reflected in limita-
tions in the implementation of distribution support Erlang. Until the most
recent version of Erlang a system of Erlang virtual machines could consist
of a maximum of 256 nodes. In addition, the messaging implementation is
not designed for the Internet. The failure detection does not differentiate
between link and node failures.

The Erlang system is implemented by the integrated approach and the
high degree of transparency is ascribed to this. Erlang serves as a good ex-
ample of how a programming model without shared state can give network
transparency.

2.1.5 Mozart

Mozart [90] is an implementation of the multi-paradigm programming lan-
guage Oz [133] that simultaneously implements the functional, declarative-
concurrent and object oriented programming paradigms. Mozart is de-
signed for concurrent programming and provides an efficient implementa-
tion of threads, together with logic variables from the declarative-concurrent
paradigm for data-flow synchronization.

Distribution in Mozart is implemented using the integrated approach
and supports network transparency for all language entities found in the
language Oz. Shared state abstractions, asynchronous message passing
abstractions and data-flow abstraction, are supported by different proto-
cols [59, 132]. In addition, Mozart implements various kinds of replication
of immutable data structures and thus supports replication transparency.

40 2.1. DISTRIBUTED PROGRAMMING SYSTEMS

Distribution support in Mozart is designed for the Internet. The run-
time system differentiates between link and node failures. Moreover, asyn-
chronous connectivity can to a certain degree be handled. The model of
distributed language entity references fulfills the dynamic reference han-
dling requirement. Different language entity types are assigned different
distribution strategies. However, there is no support for changing distri-
bution strategy on a single language entity basis. Nor is process migration
supported.

2.1.6 Oblig

The distributed programming system Obliq [27] was, different from most
other existing distributed programming systems, explicitly designed for dis-
tribution. Obliq was developed with the purpose of exploring how trans-
parency could be included into the programming model of an object ori-
ented programming language. The programming model is object oriented
with the addition of lexical scoping, i.e. the possibility to dynamically cre-
ate closures of data and code in runtime. Obliq implements network trans-
parency for the complete programming model. Objects are distributed by
the remote execution distribution strategy, which also support migration
of objects. The immutable closures are replicated under replication trans-
parency.

Obliq is built on top of the object oriented distributed programming sys-
tem Modula-3 [18], which provides support for distributed objects. Obliq
is implemented using the integrated approach. The use of Modula-3 fa-
cilitated the implementation of completeness of the distributed program-
ming system. Modula-3 supports remote method invocation and automatic
garbage collection of distributed objects. Still, Obliq lacks support for han-
dling link or node failures. In addition, the distribution strategy is fixed for
the different language entities. These limitations in completeness probably
stem from limitations in the Modula-3 implementation.

Apart from being one of the first distributed programming languages to
provide full network transparency at the programming level, the approach
taken for implementing the system deserves extra focus. Instead of develop-
ing dedicated distribution support for Oblig, an existing system, Modula-3

CHAPTER 2. AN OVERVIEW OF DISTRIBUTED PROGRAMMING
SYSTEMS 41

network objects, was used. This relieved the development process from the
challenges of developing distribution support. Instead, focus could be put
on developing the programming model.

2.1.7 Manta

Manta [86] is a cluster computing system based on Java. Instead of dis-
tributing the model of the programming language, the Manta distributed
programming system introduces the concept distributed objects. A dis-
tributed object is at creation replicated to all nodes of a distributed appli-
cation. The replicas are kept consistent by method shipping described by
the operation-passing multiple-instance model in Section 1.2.1. A method
invoked on a distributed object is passed to, and executed at each replica,
and is required to be to be side-effect free. To avoid side effects, a dis-
tributed object is not allowed to refer to other distributed objects.

For an object to be distributed it must be annotated. The programming
model does not support transparency since local objects are differentiated
from distributed objects. This is intentional as the Manta developers argue
for the strength of non-transparency when developing efficient distributed
applications [73]. Transparency is intentionally discarded in favor of effi-
ciency.

Manta is implemented using the integrated approach. Communication
primitives are provided by the Panda [15] middleware. The implementation
of Manta is shown to be stable and efficient. However, the implementation
fulfills few of our requirements for a complete system. Manta is designed
for high-performance cluster computing. The distributed object protocol
is built on the assumption of a low latency communication medium. No
garbage collection exists for distributed objects. Finally, no support exists
for detecting or reporting node or link failures.

2.2 Distribution Support Systems

In this section we present a selection of middleware that are of potential
interest for use as distribution support systems. We have chosen systems
that represent different paradigms of distribution support.

42 2.2. DISTRIBUTION SUPPORT SYSTEMS

Distributed Supports
Suport System | Mutables | Immutables | Streams
MoM no no yes
CORBA yes no partly
Web Services no no no
DotNET yes yes no
Interweave yes yes yes

Table 2.4: Expressiveness in distribution support of the surveyed distribu-
tion support systems.

The different paradigms are considered from how expressive their dis-
tribution support is. We use expressiveness to describe how well the distri-
bution support provided matches the language entities of a programming
system. For a system to be expressive, integrating it with a programming
system should require little translation between distribution support units
and language entities. To be able to reason about distribution support sys-
tems expressiveness, we look at how well three typical language entities are
supported. The results are summarized in Table 2.4 and the three types of
language entities are described here:

Mutables are data structures whose state can be altered, examples are
the state of an object, or the value of a vector element.

Immutables are data structures whose state cannot be altered after cre-
ation. Classes in Java and atoms in declarative languages are exam-
ples of immutable.

Streams are data structures that describe a producer/consumer behavior.
A producer adds items to the stream and the consumer reads items
from the stream as items become available. Messaging abstraction
like ports in Erlang is an example of stream type language entities.

Middleware that implements node to node messaging can be used to
augment any programming system with distribution support. However, to

CHAPTER 2. AN OVERVIEW OF DISTRIBUTED PROGRAMMING
SYSTEMS 43

simplify development of distributed programming systems, the provided
distribution support should at least directly support the above three types
of language entities. The expressiveness of the different distribution support
systems is our primary focus in the evaluation, but we also to some extent
discuss the different systems completeness, according to the classification
found in Section 2.1.

2.2.1 Messaging Oriented Middleware

Message Oriented Middleware (MoM) is a family of middleware that pro-
vide network transparent messaging abstractions. Messaging abstractions
can be point-to-point as in the Message Passing Interface (MPI) or be
of group communication type [105, 67]. With few exceptions, MoMs are
designed with the focus on providing good performance and a high de-
gree of customization. Performance can be measured as delivery time of
a message [21], the size of a message or the number of times a message
is copied between different internal buffers. Customization is commonly
implemented by component systems, where communication protocols are
constructed of sub-components [46, 45, 16]. In addition, there exists MoMs
that provide relocation transparency, that is, connectivity can be provided
even if nodes physically migrate [117, 141, 98].

MoMs are messaging wise complete. Typically they target multiple
areas of communication, from high-speed intra-cluster communication to
location-independent communication. However, the distribution service
provided is restricted when considering the demands for an expressive dis-
tribution support system. Only the stream type of language entity is di-
rectly supported. Any other type of distribution support must be explicitly
programmed on top of a MoM.

2.2.2 CORBA

The Common Object Request Broker Architecture (CORBA), is the spec-
ification of a distributed object system [97] that focuses on programming
language interoperability. Different object oriented programming languages
can use CORBA as an interoperability fabric. Remote objects is the usual
technique to implement distributed objects in CORBA systems, although

44 2.2. DISTRIBUTION SUPPORT SYSTEMS

implementations exists that provide replicated objects [34]. The CORBA
standard is comprehensive, and can be seen as a wish-list of every func-
tionality and conceivable operation that is possible with remote compo-
nents [103]. The sheer amount of functionality that has to be imple-
mented for a distributed programming system to be CORBA compliant
is a strong argument against CORBA. However, C++ implementations,
such as TAO [80], exist that can be used as generic distribution support
middleware.

Classifying CORBA according to expressiveness and completeness is
complicated since CORBA is a specification, and not an implementation.
Moreover, numerous implementations exist, that extend the CORBA defi-
nition in various directions. Here we try to look at the specification only.
Distribution support is based on objects, thus the mutable type of language
entity is supported. Asynchronous, unreliable messaging is supported in the
standard. Thus, to a limited extent, the stream type of language entity can
be supported, with the requirement that the messaging is made reliable.
However, no support exists for replication of data structures.

The CORBA specification is designed for interoperability and solves
integration of different applications by remote execution. How replication
or migrations of objects are handled is not defined in the specification.
Thus, a basic CORBA system does not fulfill the completeness requirement
of different distribution strategies for a language entity.

2.2.3 Web Services

Web Services [134] are an attempt to standardize application to application
communication over the Internet. The unit of interaction is a service that
has a known network location and exposes an interface of operations it
can perform. Interaction between services is done by remote invocation
using the SOAP (Simple Object Access Protocol) standards [115], with
data encoded in XML (eXtensible Markup Language) [40]. The use of
these standards makes it possible for different systems to interact, thus
achieving interoperability.

A service, the unit of distribution, is a different concept than a language
entity. The model is explicitly client/server oriented in that a SOAP object

CHAPTER 2. AN OVERVIEW OF DISTRIBUTED PROGRAMMING
SYSTEMS 45

models a server, its functionality is described in WSDL (Web Service De-
scription Language). SOAP objects are stateless; invocations on a SOAP
object should not change the object state.

Similarly to CORBA, web services are a standard. Looking at the stan-
dardization only, we find that web services have poor support for mutable
language entities, the services are stateless. In addition, the standard fails
to fulfill the completeness requirements of detection of link failures. HT'TP
does not differentiate between link and node failures. In addition, no sup-
port for distributed resource management in the form of garbage collection
is described. In summary, web services are a framework for developing
loosely coupled Internet applications, not for developing distributed pro-
gramming systems.

2.2.4 Dot NET

The purpose of the .Net framework [88] is to provide a platform for object
oriented programming over the Internet [44]. Automatic loading of objects
and component descriptions at runtime is implemented as core functional-
ity by the platform. The model of distribution, remote objects, supports
both intra .Net distribution and seamless interaction with SOAP objects.
Consequently a remote object can either exist at another node executing
the .Net framework or be a SOAP object residing at a web-server.

Central in the .Net platform is the common language runtime (CLR).
CLR implements core functionality such as memory management, thread
management, remoting and management of language security. The CLR
executes annotated byte code. Any programming language that is compiled
into CLR byte code can be executed on the .Net platform. In addition to
the core functionality, the .Net platform implements a class library available
to any program compiled for the CLR.

To use the .Net platform as a generic distribution platform requires
a programming language to be compiled to CLR byte code and executed
on the .Net platform. As long as the model of a programming language
matches the model provided by .Net, this is a viable approach. However,
the platform is strongly geared towards statically typed, object oriented
programming languages.

46 2.2. DISTRIBUTION SUPPORT SYSTEMS

Distribution support is object oriented and resembles the model of
JavaRMI. Two types of distributed objects are supported, remote objects
and replicated objects. In addition asynchronous messaging is supported.
Consequently, the provided distribution support can handle the three types
of language entities required for a system to be expressive. However, the
implementation is incomplete. Link and node failures are treated as one
type of failure. Only one type of distribution support exists for distributed
objects. Despite the limitation in completeness, the .Net platform is inter-
esting because of its high degree of customization [8§].

2.2.5 Software Distributed Shared Memory: InterWeave

Software Distributed Shared Memory(S-DSM) systems are primarily geared
towards parallel computation over clusters of workstations located at a sin-
gle LAN [4]. The type of distribution support, a shared virtual memory
among the processes of the distributed system, fits programming languages
such as C and FORTRAN. Still, the model has been applied to other pro-
gramming languages, for example Java [140]. InterWeave [33] is a system
that attempts to provide the S-DSM model of distribution for a wider group
of programming languages and in other distributed environments than clus-
ters of workstations.

Sharing memory between processes demands a common memory repre-
sentation, thus S-DSM systems have traditionally been targeting homoge-
nous systems, i.e. processes executing on the same type of hardware, on the
same operating system. Interweave is designed to overcome this restriction
associated with the S-DSM approach. The distributed shared memory is
represented in a machine independent format. The machine independent
structuring is on the level of primitive types, such as integers, pointers
and floats. A layer between the application and the memory translates the
generic format into a machine or software specific format [125].

A problem related to the S-DSM approach is false sharing [130] that
stems from granularity differences between application data structure size
and block size of shared memory. To overcome the problem of false sharing,
InterWeave supports distribution of dynamically sized, fine-grained mem-
ory blocks called segments [33]. To further minimize false sharing, a second

CHAPTER 2. AN OVERVIEW OF DISTRIBUTED PROGRAMMING
SYSTEMS 47

level of memory access is provided, called views [31]. A view allows ma-
nipulation of parts of a segment and thus minimizes memory dependencies
between different processes. Two processes can simultaneously access the
same segment using non-overlapping views. InterWeave supports the defi-
nition of distribution strategy per segment and new distribution strategies
can be added to the InterWeave system.

The concept of segments, views, and customizable distribution strate-
gies for each view fulfills the completeness requirement of multiple distri-
bution strategies. Despite these novel features of an S-DSM, InterWeave
shares many of the limitations found in traditional S-DSM when it comes to
Internet type distribution support. No support exists for failure detection
or for proper reference maintenance. However, the distribution support is
expressive. The appearance of a shared memory is provided. Any lan-
guage entity that can be implemented in a single processor memory can be
directly implemented in the distributed memory provided by InterWeave.
Consequently, InterWeave supports the three different types of language
entities that were required for a system to be expressive.

2.3 Conclusion

From the survey above we conclude that few of the systems implement
transparency and a complete distribution model. This, we believe, is be-
cause of the sheer complexity of developing distribution support for a pro-
gramming system. A natural approach would be to make use of an existing
distribution support system. Again, none of the distribution support sys-
tems discussed is expressive enough to be coupled to arbitrary programming
systems and provide a distribution support service complete enough for In-
ternet type of distributed computing. The systems that exist are either
specialized for a certain programming paradigm or not suited for the In-
ternet. It is this limitation in complete distribution support for Internet
applications this thesis remedies, the need for a generic distribution sup-
port system that can be easily coupled to any programming system and
provide distribution support that can be deployed over Internet.

48

2.3. CONCLUSION

Chapter 3

Architecture of the
Distribution SubSystem

To show the feasibility of our thesis “Efficient multi-paradigm programming
language distribution-support can be provided by a middleware.” we have
designed and implemented the Distribution SubSystem (DSS) which pro-
vides efficient distribution support for programming systems. The DSS
interface is based on abstract representations of programming language
constructs, by abstract representations for language entities, operations on
language entities, and programming system level threads. By using the
DSS, development of a distributed programming system is reduced to con-
necting language entities and threads in the programming system with their
abstract counterparts in the DSS. g This chapter presents an overview of
the DSS middleware. References in the text point the reader to more elab-
orate descriptions found in the attached papers. Section 1.2.4 presents the
background to the design of the DSS, including our assumptions and the
reasons for choosing the integrated approach. Internally the DSS is struc-
tured in three layers, see Figure 3.1. Section 3.2 describes the abstract
entity layer, which provides a generic data structure interface. Section 3.3
describes the coordination layer, which is responsible for coordinating move-
ment of operations on, and replication of language entities according to a
given consistency model. The different types of distribution strategies are
implemented by this layer. Section 3.4 describes the messaging layer which

49

50 3.1. DESIGN DECISIONS

abstract entity layer

| abstract entity |

coordination layer -
coordinator

messaging layer

Figure 3.1: Internal layout of the DSS. The three conceptual layers are
depicted together with the key component(s) of each layer

provides communication support for the middleware. The messaging layer
handles nodes joining, leaving, and failing. Moreover, the layer is prepared
for custom implementations of services such as connection establishment
and failure detection.

3.1 Design Decisions

This section describes some of the design decisions of the DSS. The reason
for the choice of type of distribution support is discussed. Assumptions on
the targeted programming systems are also presented.

3.1.1 The Integrated Approach

Three different design approaches to distribution support for a program-
ming system were presented in Section 1.2.4: the new entities approach,
the integrated approach, and the shared memory approach. In order to
argue for the approach chosen in the development of the DSS, the three ap-
proaches are compared side by side. The comparison is done with respect
to three properties that we have identified as important for programming

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 51

system distribution support. First, how well does the approach support
transparent distribution, which is equal to access, location, replication and
migration transparency for the whole programming model. Second, to what
degree is programming language level structuring preserved in a distributed
setting, which is necessary to support instrumentation in the domain of
non-functional properties on a single language entity basis. Third, how
easily can an implementation of the distribution support be coupled to an
existing programming system. Table 3.1 summarizes the findings.

Transparency: The shared memory and the integrated approaches both
can support transparent distribution for every data structure of a
programming language. The shared memory approach provides an
easy to integrate and use distribution support model, if the memory
is shared, every data structure, disregarding type or semantic model,
is shared. The integrated approach requires the implementation of
explicit distribution support for all data types of a programming sys-
tem, but supports fine grained specialization of distribution behavior.

The add-on property of new entities approach hinders complete inte-
gration with the target programming language. Consequently, com-
plete transparency is hard to achieve. As previously mentioned, the
new entities approach usually renders two programming models, one
for local computation and one for distributed computation.

Data structuring: The shared memory approach provides unstructured
distribution support on the level of reads and writes to a shared mem-
ory, thus, application level structuring is not reflected at the level of
distribution support. While this may work well for unstructured data,
it has been shown that this limitation results in inefficient distribu-
tion of programming systems that are based on stronger, e.g object
oriented, structuring principles [70].

Both the integrated and the new entities approaches provide distribu-
tion models based on language entities and supports simple realization
of multiple distribution strategies for each single language entity.

Integration with a programming system: Unless the programming
system provides reflective and introspective support that makes it

52 3.1. DESIGN DECISIONS

Design Requirement
Approach Transparency | Data Structuring | Integration
New Entities no yes simple
Shared Memory yes no simple
Integrated yes yes complicated

Table 3.1: Comparision of the three distribution support approaches

@ condition / action @

Figure 3.2: Notation for state diagrams.

easy to inspect the state of single language entities, the integrated
approach requires fundamental rewrites of the programming system.
The new entities and the shared memory approaches are, however,
simple to integrate with an existing programming system.

The DSS supports the integrated approach. However, the DSS is sup-
posed to provide a generic service, and the integrated approach does not
cater for simple integration with a programming system. Thus, one of the
primary challenges in the design of the DSS is the interface to programming
systems. The interface must be specialized enough to capture programming
system structuring and generic enough that the middleware can be coupled
to different programming systems. While integrating a programming sys-
tem with DSS can be expected to require considerable effort, the goal is
minimize this effort.

3.1.2 Properties of Targeted Programming Languages

Ideally, the DSS should support all types of programming systems. This
includes different implementations of programming languages of the same
programming paradigm and implementations of programming languages
that supports multiple programming paradigms.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 53

step / operation(OP, thisId) to Entity
operation(OP, thId) / Res = OP(State)
done(Res) to thld

Wait for
operation

done(Res) / -

Thread Entity

Figure 3.3: The interaction between a thread and a language entity modeled
as a system of concurent units communicating by message passing.

We will use state transition diagrams to model the interaction of various
entities. A state transition diagram is a finite state automaton. It consists
of a finite set of states and transitions between the states. An entity starts
in an initial state, and changes state as a result of a transition. A transition
takes place when a message is received and a guard condition is true. As
a result of a transition, messages can be sent and the internal state of the
entity can be changed. Figure 3.2 shows the graphical notation. Each circle
represents a state. Arrows between the circles represent transitions.

The DSS provides distribution support for programming languages which
have threads (one or more). Threads execute instructions which result in
operations on language entities. Figure 3.3 shows the state diagrams de-
scribing the interaction between a thread and a language entity. Internally,
the thread maintains a program counter pointing to the current instruc-
tion. Some instructions make the thread perform operations on language
entities. An operation on a language entity may or may not alter the state
of the entity and may or may not return a value. In our model, an opera-
tion always returns a result. An operation not returning a result would be
modeled as returning an empty result.

To enable efficient distribution support, the programming language
should be reference secure. Reference passing should be explicit. A thread
can only access data structures it has either created or received a reference
to from another thread. A thread cannot guess or forge a reference to a
data structure. A distributed programming system that is reference secure

54 3.2. THE ABSTRACT ENTITY MODEL

can make a clear distinction between distributed data structures and local
data structures. In a distributed programming language which is not refer-
ential secure, every data structure is potentially available to any thread of
a distributed system. The distribution model required for such a program-
ming language is a distributed shared memory, and not a middleware that
supports the integrated approach.

3.2 The Abstract Entity Model

This section describes one of the main contributions of this dissertation, the
interface of the DSS to a programming system. The interface is designed to
simplify integration of data structures to distribution strategies and in the
same time support detailed customization of non-functional properties. A
key challenge for the DSS is the degree of specialization and expressiveness
of the API. A more generic interface makes the middleware useful for a
larger set of applications, but typically requires code that adapts an ap-
plication to the middleware. A specialized interface, on the other hand,
that on a detailed level models particular constructs makes it simple for a
restricted set of applications to make use of the middleware. The DSS API
simultaneously targets the properties of a generic and a specialized API.
Many different programming systems should be supported and in addition,
integration with the DSS should require little adaptation code.

3.2.1 Distributed References

The distribution model offered by the DSS is based on distributed lan-
guage entities and references to distributed language entities. References
are passed between nodes as a result of operations on distributed entities,
arguments to operations on distributed language entities, or by explicit
bootstrapping of a distributed system. A node learns of language entities
by reference passing and maintains a set of references to distributed lan-
guage entities referred to from the node. How the set is calculated depends
on the type of programming system. For example, in a programming sys-
tem that implements threads but no global variables, the set of distributed
language entities is the union of distributed language entities referred from

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 55

the threads at the node.

A remote reference is represented at a node by an instance of the dis-
tributed language entity, called a local entity instance. The local entity
instance acts as a proxy for the distributed language entity, implement-
ing the appearance of an ordinary language entity is similar to fragmented
objects [87] and truly-distributed objects in Globe [9]. An instance is cre-
ated when a reference is received and removed when the reference to the
distributed language entity is no longer needed at a node.

Guarded Replication

To maintain single-instance equivalence for a distributed language entity
represented by multiple local instances, uncoordinated reads and writes of
local instances should be prevented. To coordinate operations performed
on local entity instances, which represent one distributed language entity, a
conceptual guard is attached to each instance. The guard intercepts opera-
tions on the local entity instance and consults the DSS on how the operation
should be resolved. We call this model guarded replication. The guarded
replication model simultaneously supports both remoting and replication
types of distribution strategies, see Section 1.2.1.

Figure 3.4 depicts the thread model found in Figure 3.3 enhanced by
a guard. The language entity model is the same, a guard is introduced
and the thread is extended with new states. Whenever a thread performs
an operation on an entity, it has to query the guard associated with the
language entity. The result from the guard tells the thread how to proceed.
The model of the guard presented in Figure 3.5 is an abstraction. The
purpose of the model is primary to show the interaction between the thread
and the guard. How the guard decides to allow local access for a calling
thread or to suspend a calling thread will be discussed in greater detail
throughout this chapter.

The guarded replication model separates the distribution status from
the state of the language entity and makes it possible to regard it as a
non-functional property. The same representation suffices for a language
entity whether local or distributed. A local language entity is connected
to a guard that is in the Local state which always return doLocal. A
local language entity is turned into a distributed language entity by an

56 3.2. THE ABSTRACT ENTITY MODEL

step | doOperation(OP, thid) to Guard

doLocal

operation(OP, thisId) to Entity Wait for
- operation

!

suspended

Figure 3.4: The state diagram for a thread that is extended to handle
guarded replicated language entities.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 57

doOperation(OP, thid) / doLocal to thid

/ azIeqo[s

|
doOperation(OP, thid) / doLocal to thid

- / doLocal to thid

Distributed
doOperation(OP, thid)

suspend to thid

remoteDone(Res) to thid

Figure 3.5: The state diagram for a guard.

58 3.2. THE ABSTRACT ENTITY MODEL

operation called globalization. Globalization turns the guard into the state
Distributed. A distributed language entity becomes a local entity by an
operation called localization which turns the guard into the Local state.

Implementing Guards

To clarify the guard concept we will consider different implementation tech-
niques used to realize guard constructs. We identify two requirements when
realizing a guard, both related to efficiency:

1. The overhead imposed by the guard when performing an operation
on a local language entity should be low.

2. The overhead of performing an operation locally on a distributed
language entity should be low compared to performing an operation
on a local entity.

If the first requirement is not met the overhead of distribution sup-
port will affect interaction with purely local language entities. Given that
the non-distributed part of an application is typically larger than the dis-
tributed part, the effect of an inefficient guard implementation results in
an inefficient programming system.

If the second requirement is not met it will be hard to realize efficient
distributed applications. Different types of replication schemas typically
supports consistent local access of language entities [55, 54]. If the overhead
on operations on a distributed language entity is high, the benefit of local
access diminishes. A coarse-grained model or a model where just a few
dedicated language entities are distributable is not necessary affected, since
fewer accesses to distributed language entities are performed and the guards
are invoked seldom.

Locating distributed language entities at read/write protected virtual
memory pages similarly to how shared memory systems detect access of
shared memory solves requirement I [125]. However, the virtual memory
page approach is expensive when accessing a distributed language entity
since every access will result in a signal that halts the process. Moreover,
unless virtual memory pages are of variable size it is hard to remove the
guard when localizing a distributed language entity.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 59

Another approach to implementing the guard is to explicitly annotate
each language entity with a flag that indicates the distribution status of the
entity. It has been shown that this is an efficient approach in programming
systems which make use of tagged pointers, such as Mozart, Lisp, and
Erlang [99, 32]. However, a requirement is that an extra tag can be added
to the tagging scheme. For an alternative encoding it has been shown, in an
extension to GnuJava [41], that adding an extra word to every object that
is checked at method invocation incurs an overhead in the range of only
tens of percents. A special type of flags is present in the .NET platform in
the form of message sinks [103]. At creation, an object can be associated
with an interceptor object, called a message sink. Any method call on an
object with an interceptor is first directed to the interceptor which can
choose to discard the operation or let the operation through to the object.
Unfortunately, despite the elegance of the message sink model, experiments
revealed that it imposes a high overhead [91], thus not fulfilling requirement
1 nor 2.

3.2.2 The Abstract Entity

In order to provide distribution support for a programming system, the DSS
should provide distribution support for the language entities found in the
programming system. Most high-level programming languages offer a wide
range of language entities. The union of all different language entities found
in existing and future programming systems is very large. In addition, two
language entities from two different programming languages might have the
same name but from a programming point of view be semantically different.
Objects, as found in different object oriented programming languages are
examples of language entities that on a high level of abstraction describe the
same type of entity, but on a more detailed level can differ considerably.
For example, an object in Java and an object in C++ both have state
and methods. However, the Java object is prepared for threads and can
implement synchronized methods, something that the C4++ object does not
provide. However, from the distribution point of view, those differences
can, to a large degree, be abstracted out and we are left with a smaller
number of abstract entity types. Despite the differences between C++

60 3.2. THE ABSTRACT ENTITY MODEL

Language Language Language Pr ogramming
Entity Entity Entity System

. Abstract Protocol

\:l Entity Abstractions

Middleware

Replication — 2

—
!
=
g
<
o
2
&
~

Remote — 1

Remote — 1 \:|
Replication — 1
Replication — 2

| Remote — 1 |
| Replication — 1 |
| Replication — 2 |

—
o
it
-~
=5
s

(c)

Figure 3.6: Alternative distribution strategy abstractions: (a) distribution
strategies directly exposed, (b) distribution strategies classified according

to distribution model (c) distribution strategies classified according to type
of language entities supported.

and Java objects, the two objects can both be distributed using the same
mechanisms, such as a remote execution type of protocol. The abstract
entity model captures exactly this, not on the level of language level data
structuring such as objects, but on the level of semantic behaviors.

To explain the abstract entity model, we give an overview of different
possibilities of language entity distribution support. We use an example in
which one language entity can be distributed equally well by three different
distribution strategies, one remoting strategy (remote-1) and two different
replication protocols (replication-1 and replication-2). The actual choice of
distribution strategy is decided in runtime. We assume that some mediating
glue-code has to be written to couple the language entity to the middleware.

One possibility is for the middleware to expose the distribution strate-
gies directly, as in Figure 3.6(a). In this case explicit code for each existing
distribution strategy has to be written. In addition, the glue code is re-
quired to translate between operations on the language entity and explicit

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 61

protocol operations for each eligible distribution strategy.

An alternative is to present distribution strategies classified according
to type of distribution model (see Section 1.2.1). The distribution strategies
are organized according to distribution type, see Figure 3.6(b). The two
replication protocols (replication-1 and replication-2) can be exposed in one
interface since they both provide read replica and write replica operations.
Functionality is introduced in the middleware that translates from abstract
protocol operations to proper protocol operations. The required glue code
has been reduced since instead of supporting three different distribution
strategies, two classes of distribution strategies are supported.

Continuing along this line of reasoning, we can raise the level of ab-
straction closer to the language entity. Given the observation that the
three distribution strategies can be used to correctly distribute the lan-
guage entity, there must be a common ground between the strategies. The
abstract entity describes just this common ground, see Figure 3.6(c). One
interface hides all eligible protocols for the language entity. Instead of writ-
ing multiple snippets of glue code, mediation between distribution support
and language entity is done inside the middleware. Interaction with the
abstract entity is done using operations that express the type of manip-
ulation. The complexity associated with translating language operations
into protocol operations is moved into the middleware, in the form of an
abstract entity abstraction, resulting in a thinner glue layer.

The abstract entity model caters to extendibility. Consider adding a
new distribution strategy to the scenarios in Figure 3.6. In case (a) a new
piece of glue code has to be written. Unless the new distribution strategy
belongs to the already supported classes of distribution support, the glue
has to be extended in case (b) as well. However, in the case of an abstract
entity, the extension is completely internal to the middleware.

3.2.3 Abstract Entity Interfaces

The abstract entity is the implementation of a guard. It is the responsibility
of the programming system to direct operations to the abstract entity, and
it is the abstract entitys responsibility to decide how an operation will be
resolved. An abstract entity provides a number of operations that express

62 3.2. THE ABSTRACT ENTITY MODEL

interaction of a shared data structure, called abstract operations. Similarly
to how multiple language entities can be classified into the same kind of
distribution support, multiple data structure operations can be classified
into one abstract operation. For example, to efficiently distribute an object
two types of distribution support is required: (i) for methods that alter
the state of the object and (ii) for methods that access the state without
altering it. This is expressed by the abstract entity interface by providing
two types of abstract operations, one for altering data and one for just
accessing data.

An abstract operation does not implement the actual operation of the
language entity. Instead, an abstract operation is the means to tell the dis-
tribution strategy that a language level operation should be performed on
the distributed language entity according to the guarded replication model
described in Figure 3.4. The abstract operation type guides the distribution
strategy on how the language level operation should be executed, for a more
in detail discussion about abstract operations see attached paper A and B.
In addition to abstract operations, the abstract entity interface defines a
set of callbacks, necessary for executing operations remote, or transferring
the state of a distributed language entity between different entity instances.
The callbacks are defined and discussed in attached paper A and B.

Figure 3.7 depicts a state diagram describing the abstract entity. Note
that in reality the abstract entity is a stateless interface. The decision of
how an operation is to be executed is taken by the associated distribution
strategy. In addition, the model is a simplification in that it can handle
only one thread at a time and that the abstract entity has a notion of its
state, Skeleton means that no operations can be performed on the local
entity instance, while Complete means that operations can be performed.
This information is in reality found in the distribution strategy associated
with the abstract entity. An abstract operation performed on the abstract
entity in a the complete state immediately returns doLocal. If the abstract
entity is in the skeleton state, an abstract operation results in suspension
of the calling thread. Depending on the distribution strategy the thread
is either later told to do the operation locally, or handed the result of the
operation. The distOp messages indicate state changes in the associated
distribution strategy.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 63

distOp & Susp.member(thid) / resume(Res) to thid)

AN

Skeleton
suspended:thid

disOp / installState(S) to Entity , doLocal to thid

(abstractOp(op, thid) / doLocal to thid) ||
(distOp / execute(op, opld) to Entity) ||
(distOp / retreiveState to Entity)

distOp / installState(S) to Entity

(abstractOp(op, thid) / suspend to thid, Susp += thid

Figure 3.7: The state diagram for an abstract entity

Figure 3.8 depicts the state diagram for a language entity adapted to
the abstract entity model. It has been extended with the three new opera-
tions, executeOperation, installState, and retreiveState. Sequence
diagrams which describe the interaction between a thread and a distributed
language entity, distributed using the abstract entity model can be found
in both paper A and B. Diagrams are presented for both local access,
state-passing local access, and remote access. In addition paper A presents
pseudo code for an array mapped to an abstract entity. Attached paper H
describes how language entities of Mozart are coupled to abstract entities.
The implementation of abstract entities and the interfaces are described in
attached paper G.

3.2.4 Abstract Threads

The DSS API supports an abstraction of threads, called abstract threads.
An abstract thread serves two purposes. First, it is used to enable commu-
nication from an abstract entity with a programming system thread, that is

64 3.2. THE ABSTRACT ENTITY MODEL

(installState(S)/ State = S) ||
(retreiveState / state(S) to Abstract Entity)
(doOperation(op, thid) / Res = op(State) , opDone(Res) to thid)
|| (executeOp(op) / Res = op(State) , execDone(Res) to Abstract Entity)

Figure 3.8: The state diagram for a language entity exteneded with inter-
afces required by an abstract entity

resume a suspended thread when the operation has been executed remotely
or when the operation can be executed locally. Second, the abstract thread
gives a programming system thread a globally unique identity, necessary
to implement location transparency for remote operations [62, 137]. In-
ternally in the DSS, an abstract thread is represented by a global thread
identity, called a global thread in attached paper G. For example, to pre-
serve location transparency for an RPC the thread that executes the body
of an RPC must have the same logical identity as the thread that called
the RPC. To maintain the logical identity of a thread that performs remote
operations it is necessary to properly implement constructs that are based
on thread identities. A reentrant lock is an example of a construct that
requires preservation of logical thread identities.

3.2.5 Different Types of Abstract Entities

A key observation for efficiency in distributed systems is that language
entities that do not change their state can be replicated [93, 79, 64, 124].
Language entities that change their state can also be replicated, but to pro-
vide single-instance equivalence, the replicas have to be kept in a consistent
state. This observation is central in the abstract entity model. Different
interaction models are explicitly represented as abstract entity types. Each
abstract entity type comes with a set of eligible distribution strategies.
Moreover, the abstract entity types implement different abstract operation
interfaces. Below follows the three abstract entity types currently sup-
ported by the DSS.

Mutable Abstract Entity This type of abstract entity has two ab-
stract operations. Update indicates that the state is to be altered while

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 65

access means to read. The mutable abstract entity is preferably used by
language entities that supports destructive updates, e.g. objects. Exam-
ple of eligible distribution strategies for the mutable abstract entity are:
remote-execution, mobile state [132], and read/write invalidation [81].

Immutable Abstract Entity Language entities that have static state,
called immutables, can safely be distributed by replication. For efficiency
reasons, immediate replication of the state of an immutable is not always
the most optimal strategy [64]. The immutable abstract entity hides the
replication strategy behind the access abstract operation. The DSS im-
plements three different replication strategies for immutable data [112].
First, the immediate-replication distribution strategy which replicates a
data structure every time a reference to it is received. Second, the eager-
replication strategy which replicates only if no instance of the data struc-
ture exists at the receiving node. If an instance exists, no new instance
is created and no description of the data structure is passed between the
two nodes. Third, lazy-replication, which replicate the language entity first
when the entity is read. Note that no coordination of the different replicas
is required, since they do not change their state. Thus, after a replica has
been constructed, no abstract entity is required. Examples of immutable
data structures can be found in most programming languages, atoms in
functional languages are one example, and strings in Java are another ex-
ample.

Transient Abstract Entity The transient abstract entity describes the
middle-ground between the mutable and immutable abstract entities. It
starts in a mutable state, in which it can be updated by the append abstract
operation. The mutable property can be terminated by the bind abstract
operation. The name, transient, reflects the possibility to translate from
mutable to immutable. One use of the transient abstract entity is to de-
scribe a stream to which items can be written. In addition the stream can
be closed, and no more items can be written to it. The transient abstract
entity is used to efficiently represent logic variables [59], futures [71, 83]
and previous mentioned stream abstractions.

66 3.3. DISTRIBUTION STRATEGY FRAMEWORK

3.3 Distribution Strategy Framework

It is generally recognized that the choice of distribution strategy dominates
the overhead for a distributed entity [76, 8, 111], see Section 1.2.1 and
attached paper B. Here we try to illustrate the impact the choice of dis-
tribution strategy has on the overhead by a short example. Consider two
processes A and B such that process B refers to an array initially located
at A. If B accesses only one element of the array once, a remote execution
protocol is the best choice. However, if B accesses the array multiple times,
there is a point where it is more beneficial to replicate the array at B, de-
spite how efficient marshaling or messaging techniques are used. Attached
paper B discusses the importance of being able to choose distribution strat-
egy for a distributed language entity motivated by presented results from
evaluations of different distribution strategies.

The abstract entity interface of the DSS provides support for multiple
distribution strategies. Within the functional bounds of an abstract entity
there is a range of possibilities in choice of distribution strategy that be-
comes a tuning space; the best strategy depends on the application and the
pattern of use.

The DSS is designed to simplify development and implementation of
new distribution strategies. First, the abstract entity interface abstracts
interaction between the programming system and the DSS. Thus, a dis-
tribution strategy does not communicate directly with a language entity,
but with DSS defined interface routines. Second, internally, the DSS hosts a
framework that divides distribution strategy functionality into sub-protocols.
This division is based on the observation that distribution strategies often
share the same functional components, such as a distributed garbage col-
lector and the notion of a home. This has in our model been explicitly
modeled as sub-protocols.

The sub-protocol framework captures the right level of abstraction, in-
dicated by the large sub-protocol suite implemented in the DSS, see at-
tached paper B. For example, implementation of the pilgrim protocol [56]
in the DSS required a minimal effort, primarily because of the separation of
concerns in the sub-protocol framework. By implementing the pilgrim pro-
tocol in the framework, functionality such as mobile home and distributed

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 67

garbage collection where automatically added to the protocol. These issues
where not addressed in the original description of the protocol. Devel-
opment of a new sub-protocol does not create just one new distribution
strategy, but a large number of new strategies (all combination of existing
sub-protocols combined with the new sub-protocol).

3.3.1 The Coordination Network

The nodes of a distributed application form virtual networks on top of
the underlying network, caused by the distributed entities referred from
the nodes. Such a virtual network is called a coordination network. A
coordination network consisting of four nodes is depicted in Figure 3.9.
The network includes the reference set, defined as every process that holds
a reference to a language entity (nodes A, B, and C in Figure 3.9) and the
home of the distributed language entity. At the home of a coordination
network the distributed language entity is represented by a coordinator. In
Figure 3.9, the coordinator is located at node D. Recall that the notion of
a generic home for distribution strategies was introduced in Section 1.2.1.

The coordinator is a special entity in a coordination network that imple-
ments an arbitrating functionality for the distribution strategy. Examples
are keeping information about the current location of a mobile object, or
maintaining the set of read copies of a read/write invalidation distribu-
tion strategy. The coordination network maintains the invariant that every
reference holder, called a proxy, can communication with the coordinator.

The coordination network is dynamic in its configuration. As refer-
ences to a distributed language entity are passed between processes, new
processes join the coordination network, and the reference set grows. Lo-
cal loss of interest in a distributed language entity causes nodes to leave
the coordination network, and the reference set shrinks. The size of the
reference set is used to define the distribution status of a language entity.
A language entity that has a reference set of size one is a local entity and
reference set of size two or larger makes a language entity distributed.

A language entity starts as local, it is referred from one process only,
and the reference set is of size one. By passing a reference to a remote node,
the language entity becomes distributed. At this point the reference set is

68 3.3. DISTRIBUTION STRATEGY FRAMEWORK

node A node C

programming system programming system

Entity Entity

Instance Instance

programming system

Instance

node B node D

Figure 3.9: A coordination network that spans 4 nodes (A-D). Node D is
member of the coordination network, even though it does not hold a proxy.
This could for example be a remote object that is only referred from remote
nodes, and not referred locally. The reference set consist of nodes A to C
since no reference exists from node D.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 69

of size two and the coordination set of size three, including the coordinator.
The coordinator is created when a reference to a local entity is passed over
the network, the entity is globalized. Later, if the size of reference set
reaches one the coordinator can be removed, and the language entity is
localized. .

Maintaining a correct view of the reference set is hard in the face of
network and node failures. If a node that holds a reference is terminated
without being removed from the reference set, the coordination network
will never be dismantled. To handle this, the DSS makes use of time-lease
based distributed garbage collection algorithms that can handle network
failures and node failures [26, 53, 121].

3.3.2 Sub-protocols

The DSS implements a framework for distribution strategy development
based on division of functionality into three sub-domains; each sub-domain
is realized by a sub-protocol type. Each sub-protocol type implements a
well defined service and together the three sub-protocol types provide the
services necessary for a distribution strategy. Interfaces between different
sub-protocol types make it possible to freely combine instances of the three
sub-protocol types to implement dedicated distribution strategies. The
three sub-protocol types are:

Consistency sub-protocol The functional-property of the distribution
strategy, access to a distributed language entity under single-instance-
equivalence is implemented by this sub-protocol. It is the consistency
sub-protocol that interacts with the abstract entity and the program-
ming system level language entity.

Coordination sub-protocol The sub-protocol implements two services,
a location service of the coordinator, and migration primitives. The
location service provides location transparent message passing from a
proxy to the coordinator. The migration primitives allow relocation
of a coordination network’s coordinator from outside the DSS.

Reference sub-protocol Implements the distributed garbage collector
that ensures that the coordination network is dismantled when the

70 3.3. DISTRIBUTION STRATEGY FRAMEWORK

Consistency sub—protocol Entity Consistency !

Coordination sub—protocol Refe bbrotocol Support Protocols |

Figure 3.10: The internal organization of the different sub-protocol types.
The coordination and the reference sub-protocols provide a support service
for the consistency sub-protocol.

size of the reference set reaches one.

The three sub-protocol types together implement a distribution strat-
egy. Figure 3.10 shows the organization of the different sub-protocols. The
consistency sub-protocol provides the entity consistency services to the ab-
stract entity. The coordination and the reference sub-protocols implement
support for the consistency sub-protocol. The different sub-protocol types
are described in attached paper A and B. Attached paper G describes the
implementation of the coordination framework, and shows the interfaces of
the different sub-protcol types.

Each sub-protocol is defined as two units, a home-unit and a remote-
unit. The home-units of the three sub-protocols implements the coordinator
and the remote-units the proxy. Interaction between a remote- and home-
unit of a particular sub-protocol is defined by the sub-protocol implemen-
tation. Interaction between home- or remote-units of different sub-protocol
types are defined by C++ interfaces, presented in attached paper G.

3.3.3 Implemented Sub-protocols

The DSS provides multiple consistency strategies, of both remoting and
replication type. The set of available reference sub-protocols includes most
reference counting type of distributed garbage collection algorithms [77,

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 71

14, 114, 100]. In addition, time lease based algorithms handling loss of
proxies because of network and/or node failures are also implemented [53].
The DSS implements a novel framework for combining different types of
distributed garbage collection algorithms [78] which is used to combine the
Fractional Weighted Reference Counting algorithm presented in attached
paper F' with a time-lease algorithm. One stationary and two mobile coor-
dinator sub-protocols have been implemented. One of the mobile coordina-
tor protocols uses a classical forward pointer protocol to locate a migrating
coordinator [114]. A more interesting approach, also implemented in the
DSS and presented in attached paper E, is to make use of a distributed di-
rectory service implemented by a structured peer-to-peer overlay network
to keep track of the current location of the coordinator.

Two of the 14 implemented protocols are presented in attached paper E
and F. Here the different protocols are introduced together with pointers to
where the protocols are described. The following consistency sub-protocols
are implemented in the DSS.

Mobile state The protocol uses a token which is passed between the prox-
ies in the coordination network. The proxy holding the token has sole
access to the state of the distributed language entity. Migration of
the token is controlled by the home-unit located at the coordinator.
The base protocol as described in [132], was refined for better fault-
detection.

Pilgrim A mobile state protocol inspired by the work in [56]. The proxies
of the coordination network which needs to read or write to state of
the distributed language entity form a ring. The token is constantly
passed from proxy to proxy in one direction over the ring. A proxy
gets sole access to the state of the distributed entity when the token
is received and is supposed to pass the token to the next member of
the ring when any operations on the state are completed. The role
of the home-unit is to maintain the ring so that a proxy can find
a member of the ring to connect to. The protocol outperforms the
mobile state protocol in the special case when a small set of proxies
reads and writes frequently to the state.

Read/write-invalidation The protocol maintains two types of tokens,

72 3.3. DISTRIBUTION STRATEGY FRAMEWORK

multiple read tokens and a single write token. The write token gives
the proxy holding it sole access to the state of the distributed entity.
Holding the read token allows a proxy to read the state of the dis-
tributed entity. The home-unit ensures that there is either one write
token or a set of read tokens. When switching between token types,
the existing tokens are said to be invalidated. The protocol is inspired
by protocols presented in [81].

Remote execution The protocol is an implementation of the traditional
RPC protocol. A proxy sends operations to the home unit which
returns the result to the proxy.

Once only The protocol implements a one-shot broadcast service over the
coordination network. Any of the proxies can initiate a broadcast that
will reach every proxy, including the initiator. After one broadcast
has been sent, no more broadcasts can be sent. This protocol is a gen-
eralization of the distributed unification protocol used for distributed
logic variable in Mozart [59].

Replication The protocol implements lazy replication. When a proxy is
created, it acts as a placeholder. The proxy can perform one oper-
ation, retrieve a state description of the associated distributed lan-
guage entity. Description and evaluation of the implementation can
be found in [112]. The protocol is similar to the replication protocols
presented in [64].

The following reference sub-protocols are implemented in the DSS. Note
that different reference sub-protocols can be combined to form more ad-
vanced distributed garbage collection algorithms [78].

Fractional Weighted Reference Counting An efficient reference count-
ing protocol allowing references to be sent between nodes without the
need for any third party communication. The protocol is described
in attached paper F.

Time Lease A variant of the classic time-lease algorithm which can handle
failure of proxies of the coordination network, and still detect when
the reference-set becomes empty.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 73

Reference Listing The home-unit maintains an explicit list of the proxies
in the reference set [114]. When a reference is passed to a node, the
node must be inserted into the set of existing proxies. Moreover, as
proxies leave the reference set, the home-unit has to be informed.

Reference Counting A simple distributed reference counting algorithm
which is based on the regular reference counting technique, adapted to
the distributed environment [82]. The algorithm has a small memory
footprint, but requires messages to be sent to the coordinator when
new references are passed between nodes.

The coordination sub-protocol provides location-transparent access from
proxies to the coordinator. A discussion about different techniques to main-
tain location-transparent access to a mobile coordinator is presented to-
gether with an evaluation of different techniques in attached paper E. The
following coordination sub-protocols are implemented in the DSS:

Stationary The location of the coordinator is fixed to the node where the
coordinator is created and each proxy statically know the location of
their coordinator.

Forward Chaining The coordinator can be migrated to nodes holding a
proxy. When migrating, a pointer is left at the node migrated from,
pointing to the new location. Each proxy keeps a pointer to the last
known coordinator location. Messages to the coordinator are sent
to the last known node. If the coordinator has migrated, a message
sent to the coordinator is routed over the pointer(s) pointing to more
recent locations. The protocol is inspired by the forward chaining
algorithm presented in [114].

DKS Directory The protocol is based on the directory-service approach
(see attached paper E), realized by the structured peer-to-peer system
DKS [2]. The DKS system is used to store the current location of
a coordinator, updated at migration. Each proxy maintains a last
known coordinator location which is used when communicating with
the coordinator. If the coordinator has migrated, the DKS system

74 3.3. DISTRIBUTION STRATEGY FRAMEWORK

is queried for a more recent location. The algorithm is presented in
attached paper FE.

To emphasize the expressiveness of the model, consider the many possi-
ble distribution strategies which can be created using the above presented
protocols. By combining the instances of the three different sub-protocol
types we can get 6 * 5 * 3 = 90 different distribution strategies, this by
just implementing 14 sub-protocols. In this calculation the possibility to
combine reference sub-protocols is not taken into account. Comparing the
work necessary for implementing 90 distribution strategies versus 14 sub-
protocols should be a strong argument for the coordination framework of
the DSS.

3.3.4 Examples of Consistency Sub-protocols

The interaction of a thread and a distributed language entity is shown in
the form of sequence diagrams in attached papers A and B. The interaction
is described on the level of implementation in attached paper G. In order to
complement those descriptions, we present the state diagrams for two con-
sistency sub-protocols, read /write invalidation and remote execution. Each
protocol is described as two state machines, one for the remote unit that
executes at a proxy and one as a home-unit executing at the coordinator.
In order to simplify the descriptions, we have deliberately left out failure
handling from the protocol descriptions.

The descriptions are interesting in that they depict the interaction
of the threads and the entity instance at the programming system level.
No information about internal structuring of neither language entities nor
threads exist at the level of the consistency sub-protocol. The two proto-
cols represent different classes of distribution strategies, the single-instance
operation-passing and the multiple-instances state-passing type and show
two ways to interact with the programming system from the DSS.

Read/Write Invalidation

The protocol maintains two types of tokens. One write token and a set
of read tokens. There can at most be one write token in a coordination

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 75

network or as many read tokens as there are proxies. However, the write
token can not exist simultaneously with read tokens. The two types of
tokens provide different capabilities. Holding a read token allows for local
reads of a distributed entity’s state. Holding the write token allows for both
read and writes operations on the local instance of a distributed language
entity.

The home-instance of the sub-protocol is responsible for maintaining
the invariant that there is at most one type of tokens in the coordination
network. Switching from one type of token to the other type is called
invalidated, since all read tokens are invalidating when going from read to
write, similarly, the write token is invalidated when going from write to
read. The state-transition diagram for the home unit is depicted in Figure
3.11. The home-unit maintains four values:

W pointer to the node holding the write token.
R a list of nodes holding read tokens.

Q a queue of requests from proxies in the coordination network for either
a read or write token.

S a pointer to the current state of the distributed language entity.

The remote-unit is responsible for ensuring consistent read and write
access to the state of a local language entity instance. Threads interact with
the remote instance by read and write operations, modeled as messages.
The remote-instance interacts with the programming system by resuming
threads, installing entity state descriptions, and retrieving entity state de-
scriptions. Figure 3.12 depicts the state diagram of the remote-instance.
The remote-unit maintains two values:

S a queue of threads suspended when trying to do either read or write
operations.

O a list of ongoing operations conducted by threads at the programming
system level.

76 3.3. DISTRIBUTION STRATEGY FRAMEWORK

RT

RS
wS
IWIW

InvalidateWrite

WIR = write(N) / invalid to all in R, Q+=N
WIW = write(N)/Q+=N, invalid to W
WS =writeN)/ Q+=N

InvalidateRead

RI =read(N)/Q+=N, invalid to W
RS =read(N) / Q+=N
RT =read(N)/ readToken(S) to N, R+=N

IWIW = invalidWrite(s) & Q.len < 1 & Q.1 isWrite / writeToken(s) to Q.1, invalid to Q.1, Q-=Q.1

IWWT = invalidWrite(s) & isWrite(Q.1) & Q.len ==1 / writeToken(s) to Q.1, W=Q.1, Q = nil

IWIR = invalidWrite(s) & containsWrite(Q) & Q.1 isRead / S = s, readToken(s) to all in untilFirstRead(Q),
Q—=untilFirstRead(Q)

IWR = invalidWrite(s) & containsNoWTrite(Q) / S = s, readToken(s) to all in Q, Q=nil

IRN = invalidRead(N) & length(R) > 1 /R—=N
IRIW = invalidRead(N) & length(R) == 1 & length(Q) > 1 / writeToken(S) to Q.1, invalid to Q.1 Q—=Q.1
IRWT = invalidRead(N) & length(R) == 1 & length(Q) == 1 / writeToken(S) to Q.1 Q-=Q.1

Figure 3.11: State diagram for the home-unit of the read /write invalidation
consistency sub-protocol.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 77

InvalidateWrite
‘WaitRead

InvalidateRead
WaitWrite

DW

DR

RS = read(th)/S+=th, suspend to th
RR = read(th)/S+=th, suspend to th, readToken to Home—unit
RL = read(th)/O+=th, doLocal to th

WS = write(th)/S+=th, suspend to th
WR = write(th)/S+=th, suspend to th, writeToken to Home—unit
WL = write(th)/O+th, doLocal to th

DW = done(th) & O.len > 1/0-=th / O-=th, writeToken(s) to
Home—unit

DN = done(th) & O.len > 1/ O—=th

DR = done(th) & O.len == 1 / O-=th , readToken to Home—unit

TR = readToken(S) / installState(S) to Entity, O = S.readers,
S—=0, doLocal to all O
TW = writeToken(S) / installState(S) to Entity, O =S,

TnvalidateRead h
WaitRead-WaitWrite S=nil, doLocal to all O

IR = invalidate & O.len == 0/ readToken to Home—unit
IW = invalidate & O.len == 0/ writeToken(s) to Home—unit
IS =invalidate & O.len>0/—

Figure 3.12: State diagram for the remote-unit of the read/write invalida-
tion consistency sub-protocol.

78 3.3. DISTRIBUTION STRATEGY FRAMEWORK

CD msg(load, thid, node) / execute(load, thid, node) to Home

Figure 3.13: The state diagram for the home-unit of the remote execution
consistency sub-protocol.

Remote Execution Protocol

The remote execution sub-protocol implements a generic single-instance
operating-passing protocol. The protocol can be used to realize both RPC
and RMI. The protocol is simple compared to the Read /Write invalidation
protocol, and shows the strength of the coordination framework model.
The single-instance of the language entity is collocated with one dedicated
remote-unit. That remote-unit has the status complete. Every other proxy
has the status incomplete. Operations performed on an entity instance
associated with a proxy whose remote-instance is in the incomplete status
are transported to the proxy with complete status and executed there.
Messages are sent from proxies in the incomplete status to the home-unit
of the consistency sub-protocol.

The home-unit of the remote-execution consistency sub-protocol acts
as a relay unit. It has a pointer to the node where the complete proxy
can be found, usually at the same node as the coordinator. The home-unit
accepts one type of message forward, which is sent to the complete proxy.
The state-transition diagram for the home unit is depicted in Figure 3.13.
The home-unit maintains one value:

C a pointer to the node where the proxy with status complete can be
found.

The status of a remote unit, complete or incomplete, is defined when it
is created. Interaction with the remote-unit is done by the write operation.
If the unit is in complete status, the operation is executed locally, otherwise
remotely. The state-transition diagram for the remote-unit is depicted in
Figure 3.14. The remote-unit maintains one value, only used by the instance
in a complete state:

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 79

(send(m, th) / msg(load, thid, node) to Coordinator, suspend to thid) ||
(opDone(res,thid) || remoteDone(res) to thid

@ remote/—
Start
(_ Homelnstance)< home/=

(send(load, thid) / dolocal to thid) ||
(execute(load, thid, node) / opld = HT.add(this#node) , doOp(load, this, opld) to Entity) ||
(opDone(Res, opld) / thid#node = HT.get(opId) , opDone(Res, thid) to node)

Figure 3.14: The state diagram for the remote-unit of the remote execution
consistency sub-protocol.

HT a hash table maping operation identities to pairs of a thread and a
node.

3.3.5 Referentially Secure Coordination Networks

In order to maintain referential security each coordination network is as-
signed a unique non-forgeable identity. A reference to a coordination net-
work, required to be a member of a coordination network, can only be
obtained by delegation from a process that is itself a member of the coor-
dination network. Intra-coordination network messages are authenticated
using the identity of the coordination network.

3.4 Messaging Layer

The messaging layer of the DSS provides a channel based communication
mechanism for the coordination layer based on first class node references.
The network abstraction hides issues regarding reliable delivery, serializa-
tion, failure detection, authentication, and encryption. Bidirectional chan-
nels are, as needed, automatically established to other nodes. Message
passing is asynchronous, reliable and FIFO with respect to a bidirectional
channel. To further simplify networking the messaging layer detects, clas-
sifies and reports failures on the first class node references.

80 3.4. MESSAGING LAYER

Networking is inherently dependent on the applications deployment en-
vironment. First, communication primitives are usually operating system
specific or virtual machine specific. To simplify the integration into pro-
gramming systems, the messaging layer supports custom implementations
of the low-end communication functionality. Second, connection establish-
ment and failure detection is dependant on the network environment of
an application. Consider the difference between machines located on a
LAN and machines spread over the Internet. In the first case there are
no firewalls, latencies are short, and node failures can be detected at the
network level. The Internet case includes firewalls, processes that change
their addresses, potentially very high latencies, and no reliable method to
detect node failures. To cope with a multitude of network environments,
connection maintenance (establishment and failure detection) is located in
a second customizable module. This software design makes the messaging
layer deployable in different environments.

3.4.1 First-Class Node Reference Model

Communication in the DSS is based on first class representations of nodes,
in the form of node references. A node reference is used both as a channel
for sending messages to the physical node it represents and as an identity.
At any point in time a node holds a number of node references to other
nodes, called the known set. During the lifetime of a distributed application,
references to nodes are passed between nodes, thus the known set of a node
potentially changes. At any one time a node needs to communicate with a
subset of the nodes referred from the known set, this subset is also subject
to change. It is possible that a node will never communicate with a subset
of the nodes in the known set. A mark and sweep garbage collector is used
to detect when node references are no longer needed as identity tokens or
as communication channels.

Apart from being a channel to the node, a node reference also maintains
information regarding the accessibility of the node. The nodes referred from
the known-set are constantly monitored, and their accessibility is abstractly
represented by a three state model. A state change of a node reference is
automatically reported to higher layers where action can be taken. The

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 81

three states are:

No-problem. The node can be reached.

Communication-problem. The node is not accessible. However, it is
possible, but not certain, that the node will be accessible again.

Crash-failure. The DSS-node has crashed and will never again be reach-
able from any DSS-node in the network.

Note that communication-problem is local to one node while crash-
failure is global to all nodes of a distributed system. The local property
of communication-problem makes it possible that parts of the nodes of a
distributed system can communicate with a node that other parts of the
same distributed system finds to be in a communication-problem state, a
network partitioning has taken place. The global and monotonic property
of crash-failure makes it possible to assume that no node can communicate
with a node that is in the crash-failure state. It is possible that some of
the nodes of a distributed system classifies a given node as being in the
communication-problem state while others classifies the node as being in
the crash-failure state.

Note that the use of the crash-failure state requires a failure detector
that can correctly detect this state. This has been shown to be impossi-
ble in a system of processes communicating asynchronously [30]. However,
there exists circumstances where it can be correctly detected, e.g. a node
can potentially detect that another node located at the same machine has
terminated, and sometimes even correctly detect that another node on the
same LAN has terminated. Consequently, unless a reliable failure detec-
tor is provided, communication-problem will be the prevailing failure state
associated with nodes that has crashed /terminated. As described in Sec-
tion 3.4.3 the messaging layer is designed such that custom failure detectors
easily can easily be added.

3.4.2 The DSite Interface

Node references are represented by DSite objects that act as proxies for the
processes they represent. The DSite implements a seamless communication

82 3.4. MESSAGING LAYER

interface and can be passed by reference between processes. Complicated
tasks such as establishment, monitoring and termination of connections are
hidden behind the asynchronous messaging interface provided by a DSite.
A DSite provides one interfaces for passing messages to the process it repre-
sents and one interface for inquiring the status of the process it represents.
The messaging layer is a standalone middleware that is primary de-
signed to provide a messaging service for the DSS, but is general enough
to be used as a standalone messaging component. The sub-protocols of
the coordination network use the DSite objects for communication and for
identification. It is the sub-protocols that define the known set.

3.4.3 Internals of the Messaging Layer

The abstract node references in the form of DSite objects greatly simplify
sub-protocol implementation in the coordination layer. The separation of
messaging from failure detection/reporting caters for separation of con-
cerns. However, maintaining the functionality of the DSite requires con-
siderable support from the messaging layer. The messaging layer is the,
in lines of code, single largest sub-component of the DSS. We will here
highlight some of the features of the messaging layer.

Each DSS process is identified by a globally unique identity maintained
by the messaging layer. The identity of a process is separated from its
address; this is an important requirement [116] for supporting mobile pro-
cesses. The identity of a node is static and guaranteed to be unique. Instead
of representing addresses according to a given standard (e.g. IP number
and port) an address is represented as a function of how to establish a
connection to the process. Thus, a DSite that represents a process consists
of an identity and a function that establishes a connection. The address
function is subject to customization and can be changed during the lifetime
of a process.

The separation of address from identity is explicitly represented in the
design. The tasks of I/O handling and connection maintenance are located
in separate modules. The connection module is responsible for establishing
connections and detecting problems on established connections. Interfacing
towards the operating system is delegated to the communication module.

CHAPTER 3. ARCHITECTURE OF THE DISTRIBUTION SUBSYSTEM 83

Both modules are represented by well defined interfaces to facilitate custom
implementation. The design of the messaging layer is described in attached
paper C.

Inter-DSS process communication is made secure by non-forgeable DSite
instances together with encrypted channels. To establish contact with a
DSS-node, a correct DSite instance is required. Making DSite references
non-forgeable prevents processes from connecting to a DSS-node without
holding a correct reference to that process, i.e. knowing or guessing the
physical address is not enough. Furthermore, a correct reference to a given
DSS-node can only be created by a DSS-node itself. Other nodes learn of
a DSS-node (in the form of a DSite) by reception of DSite references. En-
cryption of the communication channel prevents eavesdropping on commu-
nication between DSS nodes, and allows safe distribution of non-forgeable
node-references in the form of DSites. Attached paper D further describes
security aspects of the DSites.

84

3.4. MESSAGING LAYER

Chapter 4

The Programmer’s view of
the Distribution SubSystem

This chapter describes the DSS from the point of view of a user of a
distributed programming system developer. Section 4.1 describes failure
handling in a programming system integrated with the DSS. Section 4.2
describes the standalone and decentralized properties of the DSS middle-
ware. Finally, an overview of the evaluation of the DSS is presented in
Section 4.3. Attached paper H presents the integration of the program-
ming system Mozart with the DSS on the level of C++.

4.1 Practical handling of Failures

This section presents some practical aspects of handling failures in a dis-
tributed programming system integrated with the DSS. The DSS is de-
signed to provide location, access, and replication transparency, but not to
provide failure transparency. Failures affecting the functionality of the DSS
are exposed to the programming system level, thus the decision of how to
handle a given failure is delegated to the programming system.

85

86 4.1. PRACTICAL HANDLING OF FAILURES

4.1.1 Failed Coordination Networks

Section 1.2.3 and 1.2.3 presents the failure model implemented by the DSS.
Failure of a node in the coordination network can fail the consistency sub-
protocol which in turn prevents further interaction with a distributed lan-
guage entity. Similarly to how nodes in a distributed system can fail, dis-
tributed language entities can fail.

The DSS detects node failures, and classifies the impact of a node failure
on the existing proxies. The failure model used to describe DSites is used
to describe the status of a coordination network:

No-problem. The coordination network functions correctly.

Communication-problem. The coordination network does not function
correctly. It may be the case that the coordination network later will
function correctly.

Crash-failure. Nodes necessary for the functionality of the coordination
network has crashed, the network will never be able to provide service.

The DSS reports changes in failure status of the coordination networks
the existing proxies belongs to. An example of how to handle fault call-
backs based on a notion of watchers [110] is presented in attached paper H.
A watcher consists of a condition and an action and is associated with a
distributed entity. The condition describes on which types of fault callbacks
the action should be triggered on. The action is represented as a program-
ming fragment, typically a procedure. At a fault callback that matches
the condition en a fault callback the action is executed and the watcher is
removed. The model is inspired by the fault model of Mozart [110].

4.1.2 Time Lease and Partitioning

Reference based distributed garbage collection algorithms are vulnerable
to failures. Failure of a node holding a reference or loss of a message
containing a reference prevents future reclamation of the data the algorithm
manages. Time lease is a simple algorithm which overcomes these problems.
The algorithm is based on a notion of leases which has to be periodically

CHAPTER 4. THE PROGRAMMER’S VIEW OF THE DISTRIBUTION
SUBSYSTEM 87

renewed. Each reference, both at a node an in a message, is a lease. For a
lease to be renewed, a message has to be sent to the home-unit for a lease
renewal request. A lost reference will not issue a lease renewal, and thus
not prevent reclamation of the managed data.

Link failures can temporarily prevent a reference to renew its lease. If
the link failure disappears and the managed data has been removed during
the link failure, the reference becomes a dangling reference. The DSS is
able to detect dangling references. A dangling reference is reported to the
programming system as a special type of crash-failure.

4.2 Decentralized Distribution Support

A design decision of the DSS is that a distributed application should be self
contained. This means that the services required to maintain the abstract
entity distribution model should be present on the DSS nodes that make
a distributed application. Thus, the DSS does not require the existence of
any external services such as directory services or class repositories as in
Java, Globe [7], and CORBA.

We believe that this independence on external services simplifies devel-
opment and deployment of small to medium scale applications. Moreover,
if large applications are developed, the DSS does not prevent the usage of
external services. This section describes three design choices that make the
DSS provide a decentralized service.

4.2.1 Bootstrapping a Distributed Application

Distribution models based on distributed language entities can use dis-
tributed language entities to introduce new distributes entities. For exam-
ple, a method of a remote object can return a reference to a new remote
object, thus initiate a new contact between callers and callees. This model
of language entity dissemination requires an initial distributed entity. Nat-
urally it cannot be used to connect two nodes that does not share any
distributed entities. This problem of how to connect processes that do
not share any channel of communication and is commonly called the boot-
strapping problem. In systems like Java and CORBA, dedicated directory

88 4.2. DECENTRALIZED DISTRIBUTION SUPPORT

services located at known and fixed addresses are used. In the DSS we have
chosen a solution that does not require any dedicated services.

A reference to a distributed language entity consists of a description
of how to construct the language entity instance and a reference to the
coordination network of the distributed language entity. Such distributed
language entity references are automatically passed between processes as a
result of the operations on distributed language entities. In addition, the
DSS supports writing distribute language entity references to secondary
storage. A distributed language entity references can be written to disk
and passed between processes. This mechanism is expressive enough to
implement both directory services, and capability based ticket mechanisms
such as in Mozart.

4.2.2 Establishing Connections

Asymmetric connectivity caused by fire-walls and /or network address trans-
lators (NAT), is a hindrance to connection establishment on the Internet.
Connectivity is asymmetric when a connection can be established in one
direction but not in the other. It is an administrative problem that has yet
not been properly addressed.

Machine migration, be it physical or conceptual, can force a node to
change its address. That is, the machine changes its address and the node
must change its address as well, at least if we assume the de facto protocol
of Internet, TCP. Until the information of the new address of a node has
propagated in the distributed system, a node that changes address mani-
fests itself as asymmetric connectivity. The nodes of the distributed system
cannot establish connections to the node that has changed address, but the
migrated node can connect to the nodes of the system.

Traditional solutions to the asymmetric connectivity problem includes
rendezvous servers [98] and administratively opening firewalls for dedicated
traffic. However, we propose using paths in the overlay network that is
automatically created by the coordination networks of a distributed appli-
cation. The network consists of established connections created to provide
the connectivity requirements of the coordination network. The overlay
network can sometimes show higher connectivity than the underlying net-

CHAPTER 4. THE PROGRAMMER’S VIEW OF THE DISTRIBUTION
SUBSYSTEM 89

work. Even if it is impossible to establish a connection from node A to
node B, there might exists a connection from node C' to both A and B
that if discovered could be used. In attached paper C we describe how a
Gnutella [107] like flooding algorithm can be used to find paths of existing
connections between two DSS nodes. This is an example of the strength
of separating process identity from address. The flooding algorithm can be
used to find indirect paths between nodes as well as discover the proper
address of processes whose machines have changed their addresses.

4.2.3 Finding a Relocated Coordinator

A coordination sub-protocol which supports migration of the coordinator
can be used to relocate a suboptimal located coordinator. A suboptimal
located coordinator is known to render pathological performance for some
replication protocols [36, 68, 94]. Moreover, a coordinator can be relocated
when its current process is to be taken down. Disregarding the reason to
migrate a coordinator, it is a requirement that the proxies of the coordina-
tion network are able to discover the new location of the coordinator.

Different techniques exist for locating migrating entities. The use of a
home for keeping the current location of a coordinator is ruled out because
of the dependency on the home. Forward pointing techniques is simple to
implement, old coordinator locations points at more recent locations [114].
However, the pointers from old locations must all be present for old refer-
ences to the mobile entity to be valid, thus causing strong dependencies on
availability of old coordinator locations. Another approach is to make use
of external services such as directory services or distributed data bases [7]
to keep information about the current location of the coordinator. This
approach, even though shown to be efficient and reliable, requires a ded-
icated, external infrastructure not really applicable to small and medium
sized applications.

Instead, we make use of a structured peer-to-peer overlay system [3]
that is inherently fault tolerant, self organizing and scalable. The struc-
tured peer-to-peer system DKS [2] is used to distribute the contents of a
directory service over the nodes of a distributed application. Thus, in-
stead of relying on an external service, the nodes themselves become the

90 4.3. VALIDATING THE APPROACH

service. Information regarding the current location of a migrating coordi-
nator is stored in the directory service. The solution is further described
in attached paper E.

4.3 Validating the Approach

To validate the applicability of the design, the DSS has been coupled to
the multi-paradigm programming system Mozart [90]. The DSS has also
been used to implement distribution support in the form of a C++ library,
according to the new entities approach. The library was primary developed
to explore how the abstract entity model confined with POSIX threads [69].

Integrating a programming system with the DSS was done to evaluate
the generality and completeness of the middleware design. Moreover, to
validate the efficiency of the design (and its implementation); the two DSS
based system are compared against other distributed programming systems.
Since most programming systems of today offer some means to achieve
distribution, it is possible to measure the cost of incorporation of the DSS
to a programming system.

4.3.1 Integrating the DSS with a Programming System

The multi-paradigm distributed programming system Mozart is an inter-
esting subject for integration with the DSS. If the multi-paradigm pro-
gramming model can be supported, programming systems which adheres
to just a subset of the paradigms supported by Mozart could make use
of the DSS. Moreover, since Mozart already implements a well maintained
distribution support library, the DSS extended version of Mozart can be
compared to the original Mozart to evaluate the overhead of the DSS ap-
proach. In the evaluation we looked at how well the programming model
could be distributed and if the resulting system was reasonable efficient.
The Mozart version coupled to the DSS is called OzDSS (this relates to
the programming language Oz that Mozart implements). Implementation
of OzDSS first required removal of the native distribution support imple-
mented by Mozart. The language entities and threads of Mozart had to be
extended with interfaces which allowed for interaction with the DSS. Sur-

CHAPTER 4. THE PROGRAMMER’S VIEW OF THE DISTRIBUTION
SUBSYSTEM 91

prisingly, the resulting implementation has fewer interaction points with the
DSS than the original native distribution support had with the program-
ming system. The language entities where associated with abstract entities
that correctly distributed the semantics of the language entities. The ab-
stract entity model was expressive enough to handle the data structures
found in the language Oz. A new concept was introduced in OzDSS that
was not present in Mozart, annotation of distribution strategy. The clean
interface between the programming system and the DSS made it possible
to enable distribution for some language entities that where not supported
in Mozart. The integration is described in detail in paper H. The coupling
was done by two persons, both had expertise in the DSS, but only one had
experiences with the internals of Mozart, and the first prototype was up
and running within a couple of months.

The Mozart system is implemented by a virtual machine which provides
services such as light weight threads and garbage collection. Moreover,
programming language level entities in the virtual machine are explicitly
represented as C+-+ objects which have introspective properties. In order
to broaden the evaluation and see how the DSS can work as a distribution
support library the C++4DSS prototype was developed. C++DSS imple-
ments a data structure library on top of the DSS which supports distributed
programming in C++4. Moreover, C4++DSS makes use of OS-level POSIX
threads.

4.3.2 Evaluation

Evaluation of the DSS is simultaneously an evaluation of the implementa-
tion and an evaluation of the presented approach to distribution support.
By showing that the implementation is efficient, we indicate that the ap-
proach can be implemented efficiently, and thus is viable. To evaluate both
design and implementation we have conducted three different evaluations.
First, the performance of the DSS, how fast the middleware can send mes-
sages is measured. Second, the impact on the performance of a distributed
application when the distribution strategy can be changed. Third, how
much overhead does the DSS library impose on a programming system
compared with a native closely implemented solution.

92 4.3. VALIDATING THE APPROACH

The basic messaging mechanism of the DSS, excluding the encryption
mechanism, imposes an overhead of 26% compared to raw sockets. This is a
small overhead when considering the difference in the abstraction provided
by a DSite and a socket. The benchmarks are described in detail in attached
paper B.

Remote invocation has been used when testing the performance of dif-
ferent distributed programming system. For object oriented system remote
invocation is equal to a remote method invocation. The overhead of the
DSS was measured by executing an Oz program that performed remote ex-
ecution on Mozart and OzDSS. The overhead was surprisingly small, only
10 % compared to the performance of Mozart. This figure must be seen in
the light of OzDSS, two components coupled by a glue layer, and Mozart,
one optimized distributed programming language. Comparing the perfor-
mance of OzDSS with other distributed programming systems reveals that
the library is efficient. Different versions of Java are more than 3.5 times
slower, and .Net remoting is almost 6 times slower. See attached paper H
for a more elaborate description of the benchmark.

To evaluate the benefit of being able to choose distribution strategy for
distributed language entities, a concurrent distributed Oz application was
used. A set of threads, physically distributed over a set of processes, concur-
rently manipulates a set of mutable language entities. The application was
used to evaluate distribution strategies for different configurations of num-
ber of nodes and number of threads per process. The test shows that the
difference in performance between a distribution strategy that “matches”
the usage case and one that does not is in the order of magnitudes. The
benchmarks are described in detail in attached paper B.

4.3.3 Summary

The evaluation of the DSS middleware indicated that the design is sound
and that it is possible to implement the design efficiently. Moreover, cou-
pling the middleware to a programming system, either according to the
integrated approach or new entities approach, results in an efficient and
highly customizable distributed programming systems. The resulting pro-
gramming systems showed better performance than any of the well known

CHAPTER 4. THE PROGRAMMER’S VIEW OF THE DISTRIBUTION
SUBSYSTEM 93

systems such as Java and .NET.

The middleware was successfully integrated with the Mozart program-
ming system and did not require expertise in programming system internals.
The coupling was finished within months, compared to the development of
the distribution support for Mozart that was an ongoing activity from 1996
to 1999 involving up to 5 persons working simultaneously. The abstract
interface provided by the DSS was generic enough to capture the semantics
of the language entities of the multi-paradigm programming language Oz.
Thus, the DSS can support the functional, the declarative-concurrent and
the object oriented paradigms.

Finally, the choice of distribution strategy was shown to be the domi-
nant factor when optimizing a distributed application. This indicates that
our approach to allow choosing distribution strategy on single entity level
is crucial for high performance distributed computing.

94

4.3. VALIDATING THE APPROACH

Chapter 5

Summary of the Papers

This chapter introduces the papers included in this dissertation. Each paper
is summarized and its relation to the realization of generic distribution
support for programming systems is explained.

5.1 Paper A: The DSS, a Middleware Library for
Efficient and Transparent Distribution of Lan-
guage Entities

Erik Klintskog, Zacharias El Banna, Per Brand and Seif Haridi.
The DSS, a Middleware Library for Efficient and Transparent
Distribution of Language Entities. In Proceedings of HICSS 37,
Hawaii, USA, 2004.

The paper describes the design and implementation of the DSS on a
conceptual level. The Focus of the paper is on the DSS’s interface to a pro-
gramming system. The abstract entity model is introduced together with a
description of the abstract operations interface. The interaction between a
programming system thread and an abstract entity is explained by exam-
ples. Finally, an example of how a simple data structure is coupled to an
abstract entity is presented in pseudo C++ code. Moreover, the internals
of the DSS is briefly described. Elements of the coordination layer and the

95

96 5.2. PAPER B

messaging layer are introduced. This paper presents an overview of the
DSS and serves as an introduction to our approach to generic distribution
support.

My Contribution The design and development of the abstract entity
model and the distribution strategy framework was done by me, with
help from Zacharias El Banna. The paper was jointly written by me and
Zacharias El Banna under supervision from Per Brand and Seif Haridi.

5.2 Paper B: The Design and Evaluation of a Mid-
dleware Library for Distribution of Language
Entities

Erik Klintskog, Zacharias El Banna, Per Brand and Seif Haridi.
The Design and Evaluation of a Middleware Library for Distri-
bution of Language Entities. In 8" Asian Computing Confer-
ence, Mumbali, India, 2003.

The second paper describing the DSS focuses on the support for effi-
cient distribution support by choice of distribution strategy. The paper
contributes an evaluation of the DSS implementation and the DSS ap-
proach. The OzDSS system is introduced and benchmarked in respect to
basic messaging and capability to handle different types of distribution sce-
narios. More precisely, the ability to distribute language entities over vari-
ous numbers of nodes and various degrees of concurrency (i.e. threads per
process) is measured. The evaluation clearly shows that the right choice
of distribution strategy for a distributed data structure can improve the
performance in the order of magnitudes compared to a protocol that does
not match the use case of a data structure.

The paper can be seen as a complement to paper A, together the two pa-
pers give a complete description of the DSS on a conceptual level. However,
still the messaging layer has only been briefly described. The evaluation
of the DSS shows that the DSS is efficient and indicates that the ability
to choose distribution strategy is the most important factor when creating
efficient distributed applications.

CHAPTER 5. SUMMARY OF THE PAPERS 97

My Contribution. The development of the OzDSS system was primary
done by me. The Oz applications used to evaluate the performance of the
0zDSS system was written by me. The paper was jointly written by me,
Zacharias El Banna and Per Brand, under supervision from Seif Haridi.

5.3 Paper C: A Peer-to-Peer Approach to En-
hance Middleware Connectivity

Erik Klintskog, Valentin Mesaros, Zacharias El Banna, Per Brand
and S. Haridi. A Peer-to-Peer Approach to Enhance Middle-
ware Connectivity. In OPODIS 2003: 7" International Confer-
ence on Principles of Distributed Systems, Martinique, France,
2003.

Providing a single system image over a set of nodes that communicate
over the Internet requires connectivity between the nodes. However, ad-
ministrative domains, such as NATs and firewalls hinder connectivity. In
addition, processes can change their network addresses and thus hinder con-
nection establishment until the new network address has been propagated
in the distributed system. This paper shows how message flooding can be
used to find indirect communication paths in the implicit overlay network
created by a distributed application. The model is based on unique node
identifiers together with volatile network address information for each node
of a distributed system.

The internals of the messaging layer of the DSS is described with fo-
cus on the modular design which supports simple customization for various
environments, both operating system and networks. An example of a cus-
tom connection maintenance module is presented; the example implements
message flooding over existing connections between processes. The imple-
mentation is compared to a raw socket application to measure the overhead
imposed by the functionality of the messaging layer when it comes to mes-
saging.

Apart from DSS specifics, the paper contributes insights into how pro-
cesses self organize into a stable system in the presence of partial failures.

98 5.4. PAPER D

Together with paper A and paper B the paper gives a conceptual descrip-
tion of the DSS, from the programming system interface down to the op-
erating system interface.

My Contribution. The idea of using peer-to-peer techniques to achieve
higher connectivity was originally mine. The design of a peer-to-peer con-
nection establishment protocol was done by me and Valentin Mesaros. The
implementation in the DSS was done by Valentin Mesaros under my super-
vision. The messaging layer is designed by me and jointly implemented by
me and Zacharias El Banna. The paper is a joint work primary by me and
Valentin Mesaros, with help from Zachrias El Banna and Per Brand. The
work was supervised by Seif Haridi.

5.4 Paper D: Securing the DSS

Zacharias El Banna, Erik Klintskog and Per Brand. Securing
the DSS. Technical Report T2004:14, Swedish Institute of Com-
puter Science, SICS, November 2004.

The model of distributed language entities supported by the abstract
entities of the DSS is referentially secure. A reference to a distributed
language entity cannot be forged or guessed; only by proper delegation can
a thread acquire access to language entities originating at remote processes.
Referential security is a requirement for secure distributed applications.
By programmatically restricting access to distributed language entities to
trusted nodes, a distributed application can be made secure. However, for
this to be true, referential security must be supported on the level of the
implementation. This paper describes how the DSS is made secure, how
the referential secure model is preserved in a distributed setting.

Different types of attacks are described together with the means to
prevent them. For instance, a process can attempt to acquire unauthorized
access to a coordination network and thus access information that by the
language security-model it should not have. Alternatively, the process can
merely try to disrupt the service of a coordination network of which it is
not a member.

CHAPTER 5. SUMMARY OF THE PAPERS 99

Extensions required to the DSS to cope with the identified security
breaches are presented on the level of design and implementation. A secure
messaging layer, with non-forgeable process references, secure connection
establishment protocols, and encrypted communication channels, is the key
to secure data distribution system. The paper shows how the messaging
layer presented in paper C' is made secure according to the latter proposed
extensions.

My Contribution The design of the security support for the DSS was
done by Zacharias El Banna and me. The implementation was primary
done by Zacharias El Banna. The paper was written by Zacharias El Banna
and me under the supervision of Per Brand.

5.5 Paper E: Home migration using a structured
overlay network

Erik Klintskog, Per Brand and Seif Haridi. Home migration
using a structured overlay network. To be submitted for review.

Any home-based protocol in general and the coordination network in
particular are vulnerable to loss of the home or a suboptimal placed home.
A natural solution is to allow migration of the home to move from nodes
that are to be shut down or to nodes that are better located. However, the
challenge is to locate the home after it has moved. The paper describes the
design and implementation of a migrating home protocol that makes use of
a structured peer-to-peer system, the DKS, to implement a distributed di-
rectory service which stores correct home locations. The solution presented
is DSS specific, but could easily be applied to any home-based protocol.

The structured peer-to-peer overlay system DKS is integrated in the
DSS middleware and is provided as a basic service to the sub-protocols
of the coordination layer. The DKS system is used to organize the nodes
of a distributed application such that a highly available, fault tolerant,
distributed directory service is realized.

100 5.6. PAPER F

In addition, the paper shows the strength of the sub-protocol model.
Only one new coordination sub-protocol is needed to be able to migrate
the coordinator. This can be used in conjunction with all the existing
consistency, and reference sub-protocols to provide an additional large set
of useful distribution strategies.

My Contribution. The idea to make use of a structured peer-to-peer
system to store locations of mobile homes was mine. The design and devel-
opment of the DKS based home migration protocol was done by me. The
paper was written by me with help from Per Brand, and supervised by Seif
Haridi.

5.6 Paper F: Fractional Weighted Reference Count-
ing

Erik Klintskog, Anna Neiderud, Per Brand and Seif Haridi.
Fractional Weighted Reference Counting. In Proceedings of
Euro-Par 2001, Manchester, England, 2001.

The paper presents a scalable version of the Weighted Reference Count-
ing distributed garbage collection algorithm, called Fractional Weighted
Reference Counting (FWRC). The FWRC algorithm introduces no extra
messages when references to distributed data structures are passed between
processes. The FWRC is implemented in the coordination framework of
the DSS and complemented with a time-lease mechanism, resulting in an
efficient distributed garbage collector which tolerates failures.

My Contribution The original idea of improving Weighted Reference
Counting was mine. The design and initial implementation in the Mozart
system was done by me and Anna Neiderud. The implementation in the
DSS was done by Zacharias El Banna, under my supervision. The paper
was jointly written by me and Anna Neiderud, under supervision from Seif
Haridi and Per Brand.

CHAPTER 5. SUMMARY OF THE PAPERS 101

5.7 Paper G: Internal Design of the DSS

Erik Klintskog. Internal Design of the DSS. Technical Report
T2004:15, Swedish Institute of Computer Science, SICS, 2004.

This technical report is solely dedicated to the implementation of the
DSS middleware with focus on the design of the abstract entity interface
and the coordination layer. Key concepts are highlighted and described, on
the level of C++ classes. Examples from paper A and paperB that where
described on a conceptual level are revisited and described at the level of
the C++ implementation.

This paper, together with the conceptual description found in paper A,
paper B and paper C, gives the complete picture of the DSS. This pa-
per shows how the concepts are realized in practice. The paper is not a
straightforward interface description, but puts the focus on how selected
classes of the middleware interact to provide service.

My Contribution I wrote the technical report. The described imple-
mentation was jointly done by me and Zacharias El Banna.

5.8 Paper H: Coupling a Programming System to
the DSS, a Case Study

Erik Klintskog. Coupling a Programming System to the DSS,
a Case Study. Technical Report T2004:16, Swedish Institute of
Computer Science, SICS, 2004.

The technical report describes the integration of the DSS to the pro-
gramming system Mozart. The result, OzDSS, is described in detail. Essen-
tial when coupling a programming system to the DSS is how the internal
model of threads and language entities are mapped to the abstract enti-
ties of the DSS. The model of threads and language entities of Mozart
is described at a detailed level to explain the design choices made when
developing the code that couples the DSS to Mozart.

102 5.8. PAPER H

Similarly to the description of the DSS found in paper G the description
is on the level of C++ classes. Thus the description is a complement to
the conceptual descriptions of how to couple a system to the DSS found
in paper A and paper B. To show the challenges associated with different
thread implementations, the C++DSS system is introduced. C+-+DSS is a
C++ library which uses the DSS to implement different types of distributed
language entities in the form of C++ classes. Mozart emulates threads,
thus there is no risk of multiple threads accessing the DSS simultaneously.
C++DSS, on the other hand, makes use of POSIX threads, thus simultane-
ous access to the DSS from multiple POSIX threads can happen. The fun-
damental differences in how threads are treated in a system that emulates
threads (Mozart) to a system that make use of native-threads (C++DSS)
is discussed.

The paper is concluded by a performance comparison between the OzDSS
system and other distributed programming systems. We see that the OzDSS
system outperforms “industry grade” Java-RMI and Java-CORBA imple-
mentations.

My Contribution I wrote the technical report. The OzDSS system was
primary designed and implemented by me. C++4DSS was jointly developed
by me and Zacharias El Banna. The evaluation of different distributed
programming systems was done by Zacharias El Banna with help from me.

Chapter 6

Experiences and Conclusions

The attached papers which are included in this dissertation contain dis-
cussions and conclusions, however, those discussions are restricted to the
subject of each paper. In this chapter we discuss the work presented in
this dissertation on a higher level. Section 6.1 describes the DSS from a
software development perspective. Section 6.2 is devoted to related work
and presents comparision of key issues of the design of the DSS to what is
provided by other systems. Future work is presented in Section 6.3. The
dissertation is concluded in Section 6.4.

6.1 The Distribution SubSystem in Perspective
(Lessons Learned)

The DSS project has lasted three years and along the way we have acquired
a fair amount of experience. The project has in some sense been going on
for a longer time if the experiences contributed from Mozart are accounted
for. In this section we highlight some of the experiences we have acquired
and some design choices we have faced during the design and development
of the DSS.

103

6.1. THE DISTRIBUTION SUBSYSTEM IN PERSPECTIVE (LESSONS
104 LEARNED)

6.1.1 History

The idea of generic distribution support for programming systems origi-
nates from the successful implementation of transparent distribution sup-
port for Mozart [60]. Distribution support for Mozart was tightly inte-
grated in the runtime system. After extending the language entities of
the programming langue Oz with distribution capability, the focus swerved
towards system aspects, such as failure handling, failure detection, and ef-
ficient messaging. The reason for the choice of focus was twofold. First, to
be able to deploy dynamic distributed applications over Internet messaging
had to be robust. Second, which actually was the inspiration to this dis-
sertation, the tight coupling between the distribution and the Oz virtual
machine made working on any level but the messaging level complicated.
Distribution strategies where tightly integrated in the virtual machine. Ex-
tensive knowledge in the Mozart virtual machine internals was required to
work, develop and maintain the distribution support.

The lessons learned from the Mozart system was, with financing from
Microsoft, formulated into the report An Architecture for Distributed Pro-
gramming Platforms [22]. The report presented the vision of a middleware
that provides transparent distribution with control of non-functional as-
pects. The vision would later be realized as the Distribution SubSystem.

Within the two projects Pepito (Peer to Peer in Theory and Prac-
tice) [129], and PPC (Peer to Peer Computing), the model was refined into
a design that finally lead to the implementation of the DSS middleware.
Despite the origin as apart of the Mozart system, surprisingly little code
could be reused. The tight coupling of the distribution support in Mozart
to the virtual machine made technology transfer, except for the messaging
layer, impossible. Even the messaging layer had tight couplings to Mozart,
but some parts where generic enough to be used!. The requirement for a
programming system independent interface resulted in the abstract entity
model. Years of arrested ideas, because of the practical impossibility to
work on the level of distribution protocols in Mozart, resulted in a com-
ponent based framework for consistency protocols. The framework let us

!There are a less than 500 lines of the 25000 lines of C++ code in the DSS retained
from the Mozart implementation.

CHAPTER 6. EXPERIENCES AND CONCLUSIONS 105

experiment with different protocol choices; finally we could easily imple-
ment and integrate new protocols, since the DSS allows development of
consistency protocols without altering the interface to the programming
system.

6.1.2 The Importance of Abstractions

The purpose of network transparency is to hide the underlying network from
the application programmer. Ultimately, how an application is deployed,
on one machine or over multiple machines, should not change the behavior
of the application. As pointed out in Section 1.2.3, we neither believe full
transparency to be possible nor wanted for applications that are intended to
execute in Internet. Instead we argue for a model which introduces control
over non-functional aspects of distribution and reveals selected details of
the network to the programmer. However, network information should not
be exposed in its rawest form; instead it should be filtered and classified.
Ultimately, the programmer who uses a distributed programming system
should be able to reason about a distributed system on an abstract level.
As far as possible, the DSS tries to hide errors. However, at a certain
point, the errors that stems from failures at the networking level cannot be
concealed, instead the errors are reported to the programming level. Each
of the three internal layers of the DSS classifies detected errors into failures
exposed to higher layers. A failure at a lower layer is reported as an error
to a higher layer. For example, given that one of the channels established
by the messaging layer is lost because of a network failure. This is an
error, the processes the channel is connected to is currently unavailable.
The error is classified into a failure of a DSite object and reported to the
coordination layer. The proxies and coordinators are checked to see if they
are affected by the failed DSite. If the functionality of the coordination
networks which the proxies and coordinators are members of are affected
by the failed DSite, the error has caused a failure. Each proxy whose
coordination network has failed reports an error to the abstract entity layer.
The abstract entity reports the failure at the coordination layer as an error
to the programming level as a failed language entity. At programming
system, the error is experienced as a failed language entity which may or

6.1. THE DISTRIBUTION SUBSYSTEM IN PERSPECTIVE (LESSONS
106 LEARNED)

may not cause an error in the application. The strength of this model is
that the programming level will only be informed of network problems that
affect the distributed language entities to which the process refers.

Internally, the DSS is structured by at least one explicit object per
conceptual layer (messaging, coordination, abstract entity). The sequence
described above, from discovered network perturbation to report language
entity failure requires at least one object indirection per conceptual level.
This structuring implies a certain overhead, compared with applications
that perform socket communication only; the DSS imposes an overhead
of approximately 100% compared to a simple C++ program which com-
municates over raw sockets. However the explicit internal structuring of
the middleware caters to separation of concerns. The service provided by
the messaging layer has greatly simplified development of the coordination
layer. Moreover, the division of a distribution strategy into sub-protocols
has simplified development of sub-protocols. The overhead is insignificant
in the light of the functionality provided by the DSS, especially when the
0zDSS is compared to other distributed programming languages. More-
over, as shown in attached paper B the dominant factor for efficient entity
distribution is in many cases not messaging speed, but a well chosen dis-
tribution strategy.

6.1.3 The Concept of an Abstract Entity

A prime requirement of the DSS was to support multiple distribution strate-
gies for a single language entity. For example, given a distributed object, it
should be possible to choose between remote execution and different kinds
of replication protocols. The development of generic language entity dis-
tribution support was an incremental procedure which finally resulted in
the abstract entity and abstract thread model. At an early stage, distri-
bution support was presented as abstractions of the distribution strategies.
Interaction between a language entity and the distribution strategy was
conducted by protocol operations, “send a remote request” or “transfer the
state” to this process. This design was ruled out as being too low-level
and would have made integration to a programming system complicated.
Instead a more abstract type of distribution support was developed based

CHAPTER 6. EXPERIENCES AND CONCLUSIONS 107

on a notion of consistency models, which finally resulted in the abstract
entity model.

6.1.4 In Search for the Third Abstract Entity

Three types of abstract entities are implemented, the mutable, the im-
mutable and the transient abstract entity. The mutable and immutable ab-
stract entities where derived from the language entities in target languages
and known consistency protocols. However, there were both language enti-
ties and protocols that were not described by the immutable and mutable
abstract entities. Asynchronous messaging abstractions, such as ports in
Mozart and processes identifiers in Erlang, were one example. Futures and
data flow variables, found in Mozart and in some functional languages, was
another example. Neither the mutable nor the immutable abstract entities
are an ideal match for distributing these language entities. The mutable
abstract entity could of course be used use to program the required be-
havior at the glue layer. However, this would violate the whole idea of an
abstract entity, to cater to simple integration between distribution support
and language entities.

The data flow variable starts as unbound which means that it has no
value. The variable can be bound to a value o making it indistinguish-
able from o. After binding, the variable is said to be bound or determined.
This monotonic behavior, first starting as a mutable and after being bound
becoming an immutable, describes a middle ground between the two hith-
erto identified abstract entity types. The new abstract entity was called
transient. To cater to streams we extended the transient abstract entity
with an asynchronous update operation. The resulting abstract entity is a
construct which can be updated asynchronously, until the value is fixed (or
bound). With the three abstract entities the model is expressive enough to
efficiently distribute entities from the object oriented, the functional, and
the declarative concurrent programming paradigms.

108 6.2. RELATED WORK

6.2 Related Work

An overview of existing systems is already presented in Chapter 2, instead
of repeating the discussion, this section highlights important details of the
DSS and compares them to what exists in other systems. Focus is on the
Abstract Entity model, the explicit notion of a coordination network and
the framework of sub-protocols which supports custom protocol implemen-
tation. This related work section serves as a complement to the related
work sections found in the attached papers. Here, we try to provide a
greater view of the technology found in the DSS, while the related works
in the papers focus on the contributions of the particular paper.

6.2.1 Abstract Entity Model

The abstract entity, or in a more general term, the abstract entity model
represents the interface between a protocol and a language entity. We
will in this section compare the abstract entity model with other interface
models between distribution support systems and programming systems.
Other models will be compared with the prominent features of the abstract
entity model: (1) a distributed language entity is represented by conceptual
equal instances at each process that refers the entity. (2) the interface
supports both remote and local access, i.e. functional shipping and various
replication protocols can be used over the same interface. To simplify
coupling, (3) different semantic interfaces are provided.

FOG [51], a language extension to C++ implements distributed ob-
jects in the form of fragmented objects [87]. Similarly to the abstract entity
model, a fragmented object is physically distributed to each process which
refers to the object. How a fragmented object is kept consistent is open to
customization, the distribution strategy is defined by a per object replace-
able connective-object. The two models, fragmented objects and abstract
entities are similar in their purpose, to separate interface from implementa-
tion and thus achieving code reuse. However, the two interface models differ
in target languages. Fragmented objects solely targets the object oriented
programming systems, and thus only supports the mutable abstract entity.
Globe, discussed in the Chapter 2, implements an object model similar to
fragmented objects. The proxy instance of Globe [8] resembles the abstract

CHAPTER 6. EXPERIENCES AND CONCLUSIONS 109

entity both in the service provided and in internal structuring. One object
implements the interface to the programming system object. No assump-
tion is made on distribution strategy, however, the authors argue strongly
for replication. Similarly to the distribution support of fragmented-objects
only objects are supported. Globe, FOG/C++, and the DSS provide sim-
ilar type of distribution support, physically distributed language entities
that can be kept consistent with different distribution strategies. The DSS
differs in that it is a general support system and not a distributed pro-
gramming system; moreover, the abstract entity model is not restricted to
distributed object only.

POEMS [136] is a distributed programming system strongly oriented
towards clusters-of-workstations that has a construct similar to abstract
entities. Distribution is on the level of objects. A distributed object is
replicated at each process of the cluster. Each replica is a complete object,
and operations can either be executed remotely or locally. How an oper-
ation is resolved is defined by a load-balancing strategy. The distributed
object interface of POEMS implements some of the functionality the ab-
stract entity implements. However, the model is solely devoted to objects,
and thus does not show any of the generality found in the abstract entity
model.

Actor [6] is a middleware which separates distribution aspects from
the functionality by the use of policies. A policy describes a distribution
strategy, but not its implementation. The model is similar to the model
described in Figure 3.6(a) on page 60, thus on a lower level of abstraction
than the abstract entity model.

The TACT toolkit [139] is a middleware which provides distribution
of a data store on the level of data structures. The system provides an
interface construct called a conit, which similarly to the abstract entity has
no knowledge of the internal structure of programming system data. The
two systems differ in the type of distribution support provided. The DSS
strives for transparency by distribution under stronger consistency models,
while TACT strives for efficiency by distribution under weaker consistency
models.

To our knowledge, no system represents semantically different distribu-
tion support as the abstract entity model does, i.e. mutable, immutable

110 6.2. RELATED WORK

and transient. Immutable data is usually just replicated between processes
of a distributed system. However exceptions exists, Java Party system
identifies immutable objects [63], the DISCWorld [64] system identifies the
need to pass immutable data structures by reference, and replicate on need-
to-use basis. Moreover, the Emerald [19] programming system allows an
object to be annotated as immutables and thus freely replicated among
the nodes that hold references to it. However, immutability is just a hint
and not a property enforced by the runtime system, different replicas can
intentionally or unintentionally diverge.

6.2.2 Coordination Networks

The concept of a coordination network is often non-existing in systems
which are restricted to remote execution distribution support [89]. Refer-
ences to data structures are represented as proxies [113] whose only purpose
is to direct operations to the data structure, much similar to RPC [17].
However, systems which distribute data structures by replication require
knowledge of every replica to keep each replica in a consistent state when
the value of the distributed data structure is changed.

Coordination networks can either be static or dynamic. A static coor-
dination network has a fixed number of participants, known at creation. A
dynamic coordination network shrinks and grows as nodes joins and leaves
the network. The DSS maintains dynamic coordination networks. DSM
systems [95, 37|, which execute on clusters of workstations, typically have
static coordination networks. The nodes which refers a memory page is the
nodes of the cluster, known when the application starts.

The protocols executed in the coordination networks of the DSS all
shares the notion of a home or a coordinator. The protocols which keep
replicas in a consistent state are similar to the home-based protocols im-
plemented by the DSM systems [95, 29, 125]. As shown above, remote
execution protocols can also be expressed as a set of proxies and a home,
thus both RPC [17] and JavaRMI [89] implement the notion of a home.
However, the abstract representation of a home in the form of a coordi-
nator is unique to the DSS. The coordination-protocol model implemented
by the DSS separates the notion of a home from the task of keeping a dis-

CHAPTER 6. EXPERIENCES AND CONCLUSIONS 111

tributed data structure consistent. This allows keeping migration of data
structure state orthogonal to migration of the home. Similarly to DSM sys-
tems which supports migration of the home [95, 68, 37] the DSS implements
sub-protocols that migrate the coordinator of a coordination network.

6.2.3 Protocol Choice

The “one-size-fits-all” argument does not hold for data structure distribu-
tion support [72]. There exists not one protocol which provides distribu-
tion support for any arbitrary data structure with acceptable performance.
Performance includes functional and non-functional properties, where the
latter includes fault-tolerance, security, response-time (i.e. latency), band-
width utilization, memory utilization and number of messages.

Traditionally, distribution strategy is assigned to data structures based
on type. Java RMI [89] is one example of this, objects are distributed
remote execution only?. Even though Mozart [60] implements different dis-
tribution strategies, each language entity is statically assigned one distri-
bution strategy. This simple approach results in inflexible system because
the type of a data structure does not necessary reflect how the data struc-
ture will be used. InterWeave [33] overcomes this limitation by allowing
for assignment of distribution patterns, not based on type, but on expected
usage pattern. However, as pointed in [23], allowing for custom protocol
allocation can result in unpredictable semantics.

The Javanaise [57] system allows custom implementations of consistency
protocols for distributed objects. An Object is replicated and kept consis-
tent by a read-write-invalidation protocol. The system supports custom
implementations of consistency protocols. The model is limited in compar-
ison to the DSS in that it does not support remote execution. Moreover,
no support is provided to simplify protocol development, such as the sub-
protocol framework of the DSS.

Customization of consistency protocols is built into the design of Khaz-
ana [29] a DSM system which allows nodes to join and leave at runtime.

2In fact, an object can by inheritance be defined as serializable or remoting. However,
we do not consider the replication possible by serialization to be a proper distribution
strategy.

112 6.3. FUTURE WORK

Consistency of memory page replicas is separated from the actual repli-
cation mechanism. Thus custom consistency models can be implemented
to, primarily, capture different non-functional aspects of distributed shared
memory. The DSS and Khazana show similarities in that both systems
are programming system independent, and support customization, but dif-
fers considerably in the interface to the programming system. The DSS
provides distribution support over abstract entities which capture single
data structure semantics, Khazana on the other hand provides just shared
memory pages.

Constructing protocols of sub-components is common for point to point
protocols, as well as for group communication protocols. The Horus sys-
tem [106] is the prime example of protocol composition. However, in differ-
ence from the sub-protocol composition in the DSS which is concerned with
high level issues as garbage-collection and home-location, the components
of Horus provide encryption, ordering of messages, and fragmentation of
large messages.

6.3 Future Work

This dissertation has shown that, by the use of the DSS, distribution sup-
port on the level of programming language data structures can be provided
by a generic middleware; however, the work presented here is just a first
step in the direction of generic distribution support. To further evaluate
the approach described in this dissertation the DSS should be coupled pro-
gramming systems. This section presents future research direction related
to the DSS middleware.

Couple other Programming Systems to the DSS

We have shown how the DSS is integrated to a programming system which
is based on a virtual machine. How to couple the DSS to the compiler
of a programming system has not been explored. Conceptually, the two
approaches to integration should be the same, but most likely there are
practical considerations.

As compiler techniques and hardware gets more efficient, programming

CHAPTER 6. EXPERIENCES AND CONCLUSIONS 113

system development is no longer solely restricted to programming languages
such as C and C++. .NET is a generic platform for object oriented pro-
gramming languages, and Java has been used as target platform for dis-
tributed programming language projects [58, 11]. Both Java and .Net have
attractive features such machine independent byte-code instructions sets,
automatic memory management and support for threads. Integration of
the DSS into Java and .Net is probably the preferable approach to support
distributed programming language development in the future. It would be
beneficial to implement the features of the DSS in Java or a .Net language

(read C#).

Security

Attached paper D presents initial work being done on securing the DSS.
This work focused on protecting a distributed system from attacks by main-
taining reference security in a hostile environment. This is the first step
towards realizing secure distributed programming systems. Concepts of se-
curity should be introduced on the level of single distributed language enti-
ties. One possibility we see is that security is included in the sub-protocol
framework as a fourth dimension. This would enable defining the security
properties for a distributed language entity as a non-functional property.

Programming a DSS-Enabled System

The DSS offers novel features when it comes to customization of distri-
bution strategies for language entities. This opens a new dimension to
the programmer. How the possibility to customize should be exposed in
a convenient way to the programmer. What are the abstractions needed
to simplify development of efficient distributed applications using the full
strength of the DSS.

Automate Customization of Distribution Strategy

The abstract entity model is unique in its flexibility. The abstract entity
interface allows customization of the protocol which implements coherent
distribution of a data structure at runtime. No matter what protocol is

114 6.3. FUTURE WORK

chosen, the abstract entity guarantees a certain consistency model. The
abstract entity interface simplifies coupling of a programming system, very
little has to be known about how to distribute data. Just the semantics
of the data has to be known. However, when customizing the distribution
strategy for a distributed entity the model provides little in the form of
abstractions or classifications. Instead of expressing the type of distribution
support required, the abstract entity interface requires specification of the
particular protocols to be used.

Quantifying non-functional properties of distribution support have been
tried in other distributed systems [136, 72]. Following this approach, the
choice of distribution strategy would then be expressed by parameters that
describe the wanted degree of security, acceptable latency, bandwidth us-
age, and fault tolerance. Internally, a composition of sub-protocols are put
together to match the demands. This model would relieve the programmer
of a distributed application from learning and understanding the behavior
of each sub-protocol component.

Programming Language Interoperability

The DSS middleware component makes no assumption on the internal
structuring of a programming system it is coupled to. Distribution support
is on the level of abstract entities and operations on the abstract entities.
An abstract entity represents a language entity which can be interacted
with according to a semantic model. The different types of abstract enti-
ties are basic data types found in programming languages. The abstract
entity model could be used, similarly to how the object abstraction is used
in CORBA, as means for language interoperability. This would probably
require a conceptual layer on top of the DSS which specifies interaction in
more detail, something similar to the IDL of CORBA.

Are there more than three Dimensions?

The sub-protocols framework the DSS implements describes a distribution
strategy in three dimensions. The benefits of the model should be clear.
It supports extendibility because of simple sub-protocol development and
expressiveness due to the composition of sub-protocols into distribution

CHAPTER 6. EXPERIENCES AND CONCLUSIONS 115

strategies. We do not believe the non-functionality to be restricted to just
three dimensions. Clearly, the model would benefit from instrumentability
in the security dimension. This question, can a distribution strategy be de-
scribed as separation in more than three dimensions, requires a considerable
research effort.

Formalize the DSS

This dissertation has mainly presented practical and experimental work. A
future area of work would be to formalize the DSS internals and interfaces.
A proper formalization of the abstract entity interface could be used as a
basis to prove that a particular language entity can be distributed using a
particular abstract entity. Formalization of the consistency sub-protocols
of the coordination network is necessary to show that an abstract entity
provides its defined service.

6.4 Conclusion

This dissertation has described the design and implementation of a middle-
ware which provides distribution support for programming systems. The
middleware, called the Distribution SubSystem (DSS), has been coupled to
the multi-paradigm programming system Mozart and C++. The Mozart
coupling, called OzDSS is realized according to the integrated approach,
and the C++ coupling, called C++DSS, according to the new entities ap-
proach. The DSS and the OzDSS distributed programming system have
shown that our thesis is sound:

Efficient multi-paradigm programming language distribution sup-
port can be provided by a middleware.

On a more detailed level we have shown that, to support the thesis, the
implemented middleware is generic and is efficient. Generic implies that the
middleware can be used to support distribution for multiple programming
models or paradigms. Generality is provided by the abstract entity model
that can express distribution support for three types of language entities,
that is mutable, immutable, and transient language entities.

116 6.4. CONCLUSION

Two factors contributed to make the DSS efficient. First, the efficient
messaging layer of the DSS. Second, the freedom in choosing distribution
strategy on the language entity level, which makes it possible to choose the
most optimal distribution strategy for a given language entity. Taken to-
gether, the two factors make the DSS efficient, as shown in the performance
evaluations of the middleware.

With the purpose of showing the soundness of the design and implemen-
tation of the DSS, the DSS has been used to distribute the multi-paradigm
programming language Oz. Successfully coupling the DSS to Mozart, a
programming system which implements the programming language Oz,
shows that (1), the DSS can be used to distribute a programming system,
(2) the DSS can handle both the object-oriented, the functional and the
declarative-concurrent programming paradigm, (3) the coupling of Mozart
to the DSS, OzDSS, is an efficient distributed programming language which
provides distribution support. The system is efficient when compared to
other systems, and implements novel features such as indirect routing to
traverse fire-walls. Moreover, the programming system provides a novel
feature in that the distribution strategy can be chosen at runtime on single
language entity basis.

The OzDSS system shows that a distributed programming system based
on the DSS middleware results in a highly customizable system, which is a
strong argument for generic distribution support.

Bibliography

[1]

2]

S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29(12), 1996.

Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi. Dks
(n, k, f): A family of low communication, scalable and fault-tolerant
infrastructures for p2p applications. In 8rd IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid 2003), 2003.

Luc Onana Alima, Ali Ghodsi, and Seif Haridi. A framework for
structured peer-to-peer overlay networks. In LNCS volume 3267 of
the post-proceedings of the Global Computing, 2004.

C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel. Treadmarks: Shared memory computing
on networks of workstations. IEEE Computer, 29(2), 1996.

Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams.
Concurrent Programming in Erlang. Prentice-Hall, second edition,
1996.

Mark Astley, Daniel Sturman, and Gul Agha. Customizable middle-
ware for modular distributed software. Communications of the ACM,
44(5), 2001.

Arno Bakker, E. Amade, Gerco Ballintijn, Thor Kuz, P. Verkaik,
I. van der Wijk, Maarten van Steen, and Andrew S. Tanenbaum.
The globe distribution network. In Proceedings of the USENIX An-
nual Conference, 2000.

117

118

BIBLIOGRAPHY

8]

[10]

[11]

[16]

Arno Bakker, Maarten van Steen, and Andrew S. Tanenbaum. From
remote objects to physically distributed objects. In Proceedings of
the 7th IEEE Workshop on Future Trends of Distributed Computing
Systems, 1999.

Arno Bakker, Maarten van Steen, and Andrew S. Tanenbaum. From
remote objects to physically distributed objects. In Proceedings of
the 7th IEEE Workshop on Future Trends of Distributed Computing
Systems, 1999.

Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen
Langendoen, Tim Riihl, and M. Frans Kaashoek. Performance evalu-
ation of the Orca shared-object system. ACM Transactions on Com-
puter Systems, 16(1), 1998.

Jorge Luis Victria Barbosa and Adenauer Corra Yamin.
Holoparadigm: a multiparadigm model oriented to develop-
ment of distributed systems. In 9th International Conference on
Parallel and Distributed Systems, 2002.

Philip A. Bernstein. Middleware: A model for distributed system
services. Commun. ACM, 39(2), 1996.

Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon.
The midway distributed shared memory system. Technical report,
Carnegie Mellon University, 1993.

D. I. Bevan. Distributed garbage collection using reference counting.
In PARLE (2), 1987.

Raoul Bhoedjang, Tim Ruhl, Rutger Hofman, Koen Langendoen,
Henri Bal, and Frans Kaashoek. Panda: A portable platform to sup-
port parallel programming languages. In Proceedings of the USENIX
Symposium on Ezperiences with Distributed and Multiprocessor Sys-
tems, 1993.

Ken Birman, Robert Constable, Mark Hayden, Jason Hickey,
Christoph Kreitz, Robbert van Renesse, Ohad Rodeh, and Werner

BIBLIOGRAPHY 119

[17]

[18]

[19]

Vogels. The horus and ensemble projects: Accomplishments and lim-
itations. In DARPA Information Survivability Conference and Expo-
sition (DISCEX 2000), 2000.

A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.
In Proceedings of the ACM Symposium on Operating System Princi-
ples, 1983.

Andrew Birrell, Greg Nelson, Susan S. Owicki, and Edward Wobber.
Network objects. Softw., Pract. Ezxper., 1995.

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distributed
and abstract types in emerald. IEEE Transactions on Software En-
gineering, 13(1), 1987.

Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Ob-
ject structure in the emerald system. SIGPLAN Not., 21(11), 1986.

Luc Boug, Jean-Franois Mhaut, and Raymond Namyst. Efficient
communications in multithreaded runtime systems. In Parallel and
Distributed Processing. Proc. 3rd Workshop on Runtime Systems for
Parallel Programming (RTSPP ’99), 1999.

Per Brand, Seif Haridi, Konstantin Popov, and Erik Klintskog. An
architecture for distributed programming platforms. Internal SICS
report, 2001. URL: http://dss.sics.se/.

Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. Concur-
rency and distribution in object-oriented programming. ACM Com-
puting Surveys, 30(3), 1998.

G. Brose, K. Lohr, and A. Spiegel. Java does not distribute. In
Technology of Object-Oriented Languages and Systems, 1997. TOOLS
25, 1997.

R. Buyya, T. Cortes, and H Jin. Single system immage(ssi). The
International Journal of High Performance Computing Applications,
2001.

120

BIBLIOGRAPHY

[26]

[27]

[28]

[29]

[33]

[34]

[35]

Pei Cao and Chengjie Liu. Maintaining strong cache consistency in
the world wide web. IEEE Transactions on Computers, 47(4):445—
457, 1998.

Luca Cardelli. A language with distributed scope. In Conference
Record of POPL ’95: 22nd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages., 1995.

Luca Cardelli and Rowan Davies. Service combinators for web com-
puting. IEEE Trans. Software Eng., 25(3), 1999.

John B. Carter, Anand Ranganathan, and Sai Susarla. Khazana:
An infrastructure for building distributed services. In International
Conference on Distributed Computing Systems, 1998.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for asynchronous systems. In PODC, 1991.

D. Chen, C. Tang nad B. Sanders, S. Dwarkadas, and M. Scott.
Exploiting high-level coherence information to optimize distributed
shared state. In Proc. of the 9th ACM Symp. on Principles and
Practice of Parallel Programming, 2003.

DeQing Chen, Alan Messer, Dejan S. Milojicic, and Sandhya
Dwarkadas. Garbage collector assisted memory offloading for
memory-constrained devices. In 5th IEEE Workshop on Mobile Com-
puting Systems and Applications, 2003.

DeQing Chen, Chungiang Tang, Xiangchuan Chen, Sandhya
Dwarkadas, and Michael L. Scott. Multi-level shared state for dis-
tributed systems. In ICPP’02, 2002.

Gregory Chockler, Danny Dolev, Roy Friedman, and Roman Viten-
berg. Implementing a caching service for distributed corba objects.
In Middleware, 2000.

Randy Chow and Theodore Johnson. Distributed Operating Systems
& Algorithms. Addison Wesley, 1997.

BIBLIOGRAPHY 121

[36]

[39]

[40]

[41]

[42]
[43]

Jae Woong Chung, Kyu Ho Park, and Daeyeon Park. Moving home-
based lazy release consistency for shared virtual memory systems. In
1999 International Conference on Parallel Processing, 1999.

Jae Woong Chung, Kyu Ho Park, and Daeyeon Park. Moving home-
based lazy release consistency for shared virtual memory systems. In
International Conference on Parallel Processing, 1999.

Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for
Objective-Caml. In First International Symposium on Agent Sys-
tems and Applications (ASA’99)/Third International Symposium on
Mobile Agents (MA’99), 1999.

M. Dahm. Doorastha: a step towards distribution transparency. In
JavaGrande, 2000.

W. A. Domain. Extensible markup language (xml). http://
www.w3c.org/XML.

Frej Drejhammar. Flow Java: Declarative Concurrency for Java.
Licentiate thesis, Royal Institute of Technology, Stockholm, Sweden,
2005. TRITA-IT-LECS AVH 04:15.

Ericsson AB. Open source erlang.

K. E. Kerry Falkner, P. D. Coddington, and M. J. Oudshoorn. Imple-
menting Asynchronous Remote Method Invocation in Java. Technical
Report DHPC-072, 1999.

D. Q. M. Fay. An architecture for distributed applications on the
internet: Overview of microsoft’s .net platform. In 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003), 2003.

Ronaldo A. Ferreira, Christian Grothoff, and Paul Ruth. A transport
layer a straction for peer-to-peer networks. In 3rd IEEE International
Symposium on Cluster Computing and the Grid (CCGrid 2003), 2003.

Jeffrey M. Fischer and Milos D. Ercegovac. A component frame-
work for communication in distributed applications. In Proceedings

122 BIBLIOGRAPHY

of the 14th International Parallel and Distributed Processing Sympo-
stum (IPDPS’00), 2000.

[47] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Under-
standing Code Mobility. IEEE Transactions on Software Engineering,
24(5), 1998.

[48] The GCC Team. The gnu compiler collection. Web page, 2002. URL:
http://gec.gnu.org/.

[49] Kurt Geihs. Middleware challenges ahead. IEEE Computer, 34(6),
June 2001.

[50] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B.
Gibbons, Anoop Gupta, and John L. Hennessy. Memory consistency
and event ordering in scalable shared-memory multiprocessors. In

ISCA, 1990.

[51] Yvon Gourhant and Marc Shapiro. Fog/c++: A fragmented object
generator. In Proceedings of the USENIX C++ Conference, 1990.

[52] Mark Grand. Java Language Reference. O’Reilly & Associates, Inc.,
981 Chestnut Street, Newton, MA 02164, USA, January 1997.

[53] Cary G. Gray and David R. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In SOSP,
1989.

[54] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The
dangers of replication and a solution. In SIGMOD Conference, 1996.

[55] Rachid Guerraoui and Andr Schiper. Software-based replication for
fault tolerance. Computer, 30(4), 1997.

[56] H. Guyennet, J-C. Lapayre, and M. Trehel. Distributed shared mem-
ory layer for cooperative work application. In Proc. of the 22nd Con-
ference on Local Computer Networks (LCN’97), 1997.

[57] D. Hagimont and D. Louvegnies. Javanaise: distributed shared ob-
jects for Internet cooperative applications. In Middleware’98, 1998.

BIBLIOGRAPHY 123

[58]

[59]

[60]

[61]

[62]

Michael Hanus. Distributed programming in a multi-paradigm declar-
ative language. In Principles and Practice of Declarative Program-
ming, 1999.

S. Haridi, P-V. Roy, P. Brand, M. Mehl, R. Scheidhauer, and
G. Smolka. Efficient logic variables for distributed computing. ACM
Transactions on Programming Languages and Systems, 21(3), 1999.

Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Pro-
gramming languages for distributed applications. New Generation
Computing, 16(3), 1998.

Haskell. Haskell language resources, December 2002.
http://www.haskell.org.

Bernhard Haumacher, Thomas Moschny, Jrgen Reuter, and Walter F.
Tichy. Transparent distributed threads for java. In 5th International
Workshop on Java for Parallel and Distributed Computing in con-
Junction with the International Parallel and Distributed Processing
Symposium (IPDPS 2003), 2003.

Bernhard Haumacher and Michael Philippsen. Exploiting object lo-
cality in JavaParty, a distributed computing environment for worksta-
tion clusters. In CPC2001, 9th Workshop on Compilers for Parallel
Computers, 2001.

K. A. Hawick, H. A. James, and J. A. Mathew. Remote Data Access
in Distributed Object-Oriented Middleware. Technical report, 1998.

Maurice Herlihy and Michael P. Warres. A tale of two directories:
implementing distributed shared objects in Java. Concurrency: Prac-
tice and Ezperience, 12(7), 2000.

Ophir Holder, Israel Ben-Shaul, and Hovav Gazit. Dynamic layout
of distributed applications in fargo. In International Conference on
Software Engineering, 1999.

124

BIBLIOGRAPHY

[67]

[68]

[69]

[70]

[71]

[72]

Hung-Yun Hsieh and Raghupathy Sivakumar. On transport layer
support for peer-to-peer networks. In Proc. of the 3rd International
Workshop on Peer-to-Peer Systems (IPTPS), 2004.

Weiwu Hu, Weisong Shi, and Zhimin Tang. Home migration in home-
based software DSMs. In Proc. of the 1st Workshop on Software
Distributed Shared Memory (WSDSM’99), 1999.

IEEE Computer Society. Portable Operating System Interface
(POSIX)—Amendment 2: Threads Eztension (C Language). 345 E.
47th St, New York, NY 10017, USA, 1995.

Suresh Jagannathan and Richard Kelsey. On the interaction between

mobile processes and objects. In Seventh Heterogeneous Computing
Workshop, 1998.

H. A. James and K. A. Hawick. Data Futures in DISCWorld. In Proc.
of High Performance Computing and Networks (HPCN) Europe 2000,
2000.

Bo Norregard Jorgensen, Eddy Truyen, Frank Matthijs, and Wouter
Joosen. Customization of object request brokers by application spe-
cific policies. In IFIP/ACM International Conference on Distributed
systems platforms, 2000.

Thilo Kielmann, Philip Hatcher, Luc Boug, and Henri E. Bal. En-
abling java for high-performance computing. Communications of the
ACM, 44(10), 2001.

E. Klintskog. Coupling a programming system to the DSS, a case
study. Technical Report T2004:16, Swedish Institute of Computer
Science, SICS, 2004.

E. Klintskog, V. Mesaros, Z. El Banna, P. Brand, and S. Haridi.
A peer-to-peer approach to enhance middleware connectivity. In
OPODIS 2003: 7" International Conference on Principles of Dis-
tributed Systems, 2003.

BIBLIOGRAPHY 125

[76]

[77]

[78]

[80]

[81]

[82]

[83]

[84]

[85]

Erik Klintskog, Zacharias El Banna, Per Brand, and Seif Haridi. The
design and evaluation of a middleware library for distribution of lan-
guage entities. In Advances in Computing Science - ASIAN 2003,
2003.

Erik Klintskog, Anna Neiderud, Per Brand, and Seif Haridi. Frac-
tional weighted reference counting. In LNCS 2150, 2001.

Erik Klintskog, Anna Neiderud, and Zacharias El Banna Per
Brand Seif Haridi. Component-based distributed garbage collection.
http://dss.sics.se, 2002.

Kenji Kono, Kazuhiko Kato, and Takashi Masuda. Smart remote
procedure calls: Transparent treatment of remote pointers. In Inter-
national Conference on Distributed Computing Systems, 1994.

Fred Kuhns, Douglas C. Schmidt, and David L. Levine. The design
and performance of a real-time i/o subsystem. In IEEE Real Time
Technology and Applications Symposium, 1999.

L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
1979.

C.-W. Lermen and Dieter Maurer. A protocol for distributed refer-
ence counting. In Conference Record of the 1986 ACM Symposium
on Lisp and Functional Programming, 1986.

B. Liskov and L. Shrira. Promises. Linguistic support for efficient
asynchronous procedure calls in distributed systems. In In Proceed-
ings of the SIGPLAN’88 Conference on Programming Language De-
sign and Implementation, 1988.

S. Dwarkadas M. L. Scott, D. Chen and C. Tang. Distributed shared
state. In Intl. Workshop on Future Trends in Distributed Computing
Systems, 2003.

Jason Maassen, Thilo Kielmann, and Henri E. Bal. Efficient repli-
cated method invocation in java. In Java Grande, 2000.

126 BIBLIOGRAPHY

[86] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema, Henri E. Bal,
and Aske Plaat. An efficient implementation of java’s remote method
invocation. In Principles Practice of Parallel Programming, 1999.

[87] Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and
Marc Shapiro. Fragmented objects for distributed abstractions. 1994.

[88] Microsoft Corporation. Microsoft ~ .net development.
msdn.microsoft.com/net/, 2002.

[89] Sun Microsystems. Java remote method invocation specication, rev.
1.50, 1998.

[90] Mozart Consortium. http://www.mozart-oz.org.

[91] Anna Neiderud. Implementing transparent remoting for .net us-
ing the distribution subsystem. Internal SICS report, 2002. URL:
http://dss.sics.se/.

[92] Christian Nester, Michael Philippsen, and Bernhard Haumacher. A
more efficient RMI for java. In Java Grande, 1999.

[93] B. Clifford Neuman. Scale in distributed systems. Readings in Dis-
tributed Computing Systems, 1994.

[94] M. C. Ng and W. F. Wong. Orion: An adaptive home-based soft-
ware distributed shared memory system. In Seventh International
Conference on Parallel and Distributed Systems (ICPADS’00), 2000.

[95] M. C. Ng and W. F. Wong. Orion: An adaptive home-based soft-
ware distributed shared memory system. In Seventh International
Conference on Parallel and Distributed Systems (ICPADS’00), 2000.

[96] Hutchinson Norman C, Rajendra K. Raj, Andrew P. Black, Henry M.
Levy, and Eric Jul. The Emerald programming language. Technical
Report 87-10-07, Seattle, WA (USA), 1987.

[97] Object Managament Group. The common object request broker:
Architecture and specification, revision 2.4.2. OMG Document
formal/00-02-23, 2001.

BIBLIOGRAPHY 127

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

C. Perkins. Mobile IP: Design Principles and Practices. Addison-
Wesley, 1997.

Michael Philippsen and Matthias Zenger. JavaParty — transparent
remote objects in Java. Concurrency: Practice and Ezperience, 9(11),
1997.

José M. Piquer. Indirect reference counting: a distributed garbage
collection algorithm. In PARLE’91—Parallel Architectures and Lan-
guages Europe, 1991.

Kordale R., Krishnaswamy V., Bhola S., Bommaiah E., Riley G.,
Topol B., Torres-Rojas F., and Ahamad M. Middleware support for
scalable services. In Proceedings of the Fourth International Work-
shop On Community Networking, 1997.

P. W. Trinder R. F. Pointon and H-W. Loidl. The design and im-
plementation of Glasgow Distributed Haskell. In Lecture Notes in
Computer Science, 2001.

Ingo Rammer. Advanced .Net Remoting. Apress, 2002.

M. Raynal and A. Schiper. A suite of formal definitions for consis-
tency criteria in distributed shared memories. In Proceedings Int Conf
on Parallel and Distributed Computing (PDCS’96), 1996.

Robbert Van Renesse, Kenneth P. Birman, Bradford B. Glade, Katie
Guo, Mark Hayden, Takako Hickey, Dalia Malki, Alex Vaysburd, and

Werner Vogels. Horus: A flexible group communications system.
Technical Report TR95-1500, 23, 1995.

Robbert Van Renesse, Kenneth P. Birman, Bradford B. Glade, Katie
Guo, Mark Hayden, Takako Hickey, Dalia Malki, Alex Vaysburd, and

Werner Vogels. Horus: A flexible group communications system.
Technical Report TR95-1500, 23, 1995.

M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella net-
work: Properties of large-scale peer-to-peer systems and implications
for system design. IEEE Internet Computing Journal, 6(1), 2002.

128

BIBLIOGRAPHY

[108]

[109)]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Bert Robben, Bart Vanhaute, Wouter Joosen, and Pierre Verbaeten.
Non-functional policies. In Proceedings of the Second International
Conference on Meta-Level Architectures and Reflection, 1999.

Lus Rodrigues. The road to a more configurable and adaptive com-
munication and coordination support. In 9th IEEE International
Workshop on Future Trends of Distributed Computing Systems (FT-
DCS 2003), 2003.

Peter Van Roy. On the separation of concerns in distributed pro-
gramming: Application to distribution structure and fault tolerance
in Mozart. World Scientific, Tohoku University, Sendai, Japan, July
1999.

Giovanni Russello, Michel R. V. Chaudron, and Maarten van Steen.
Exploiting differentiated tuple distribution in shared data spaces. In
Euro-Par, 2004.

Per Sahlin. Efficient distribution of immutable data structures in the
distributed subsystem middleware library. Master thesis, available
for download from http://www.sics.se/Sahlin.

M. Shapiro. Structure and encapsulation in distributed systems: The
proxy principle. In 6th International Conference on Distributed Com-
puter System, 1986.

Marc Shapiro, Peter Dickman, and David Plainfoss. SSP chains:
Robust, distributed references supporting acyclic garbage collection.
Technical Report 1799, inria, 1992.

J. Snell and K. MacLeod. Programming Web Applications with
SOAP. O Reilly, 2001.

A. Snoeren, H. Balakrishnan, and M. Kaashoek. Reconsidering inter-
net mobility. In 8" Workshop on Hot Topics in Operating Systems,
2001.

BIBLIOGRAPHY 129

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Alex C. Snoeren, Hari Balakrishnan, and M. Frans Kaashoek. Re-
considering internet mobility. In Proc. 8th Workshop on Hot Topics
in Operating Systems (HotOS-VIII), 2001.

Paul Stelling, Cheryl DeMatteis, Ian T. Foster, Carl Kesselman,
Craig A. Lee, and Gregor von Laszewski. A fault detection service for
wide area distributed computations. Cluster Computing, 2(2), 1999.

W. Richard Stevens. UNIX Network Programming. Prentice Hall,
1990.

Volker Stolz and Frank Huch. Implementation of port-
based distributed haskell. http://www-i2.informatik.rwth-
aachen.de/Research/distributedHaskell/ i 2001.ps.gz.

Sun Microsystems. Jini distributed leasing specification — revision
1.0.1, 1999.

Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, 2001.

Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, 2001.

C. Tang, D. Chen, S. Dwarkadas, and M. Scott. Integrating remote
invocation and distributed shared state. 2004.

Chungiang Tang, DeQing Chen, Sandhya Dwarkadas, and Michael L.
Scott. Efficient distributed shared state for heterogeneous machine
architectures. In ICDCS’03, 2003.

Gerard Tel. Introduction to Distributed Algoritms. Cambridge Uni-
versity Press, 1994.

E. Tilevich and Y. Smaragdakis. Nrmi: Natural and efficient mid-
dleware. In Proceedings of the 23rd International Conference on Dis-
tributed Computing Systems, 2003.

Eli Tilevich and Yannis Smaragdakis. J-orchestra: Automatic java
application partitioning, 2002.

130 BIBLIOGRAPHY

[129] PEPITO PEer to Peer: Implementation and TheOry.
http://www.sics.se/pepito.

[130] Josep Torrellas, Monica S. Lam, and John L. Hennessy. False sharing
ans spatial locality in multiprocessor caches. IEEE Trans. Computers,
43(6), 1994.

[131] P. Trinder, R. Pointon, and H. Loidl. Runtime system level fault
tolerance for a distributed functional language. In Proceedings of
Scottish Functional Programming Workshop, SFP’00, 2000.

[132] Peter Van Roy, Per Brand, Seif Haridi, and Raphaél Collet. A
lightweight reliable object migration protocol. In Internet Program-
ming Languages, ICCL’98 Workshop, 1999.

[133] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming. MIT Press, March 2004.

[134] W3C. Web services activity. http://www.w3.org/2002/ws/.

[135] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note
on distributed computing. In Mobile Object Systems: Towards the
Programmable Internet. Springer-Verlag: Heidelberg, Germany, 1997.

[136] Jie Wei, Cai Wen Tong, and Stephen John Turner. A parallel object-
oriented system - its dynamic load balancing strategies and imple-
mentation. In HPC' Asia, 2001.

[137] Danny Weyns, Eddy Truyen, and Pierre Verbaeten. Distributed
threads in java. Sci. Ann. Cuza Univ., 11, 2002.

[138] C. Wikstrom. Distributed programming in erlang. In Proceedings of
the First International Symposium on Parallel Symbolic Computation

(PASCO’94), 1994.

[139] Haifeng Yu and Amin Vahdat. Design and evaluation of a contin-
uous consistency model for replicated services. In Proceedings of
Fourth Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2000.

BIBLIOGRAPHY 131

[140] Weimin Yu and Alan L. Cox. Java/DSM: A platform for hetero-

geneous computing. Concurrency - Practice and Experience, 9(11),
1997.

[141] Victor C. Zandy and Barton P. Miller. Reliable network connections.

In Proceedings of the eighth annual international conference on Mobile
computing and networking, 2002.

132 BIBLIOGRAPHY

133

Swedish Institute of Computer Science

SI
01

02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

CS Dissertation Series
: Bogumil Hausman, Pruning and Speculative Work in OR-Parallel PROLOG, 1990.

Mats Carlsson, Design and Implementation of an OR-Parallel Prolog Engine, 1990.

Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SANDRA, 1990.

Dan Sahlin, An Automatic Partial Evaluator for Full Prolog, 1991.

Hans A. Hansson, Time and Probability in Formal Design of Distributed Systems, 1991.

Peter Sjodin, From LOTOS Specifications to Distributed Implementations, 1991.

Roland Karlsson, A High Performance OR-parallel Prolog System, 1992.

Erik Hagersten, Toward Scalable Cache Only Memory Architectures, 1992.

Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and General Logic, 1993.

Mats Bjorkman, Architectures for High Performance Communication, 1993.

Stephen Pink, Measurement, Impl; tation, and Optimization of Internet Protocols, 1993.

Martin Aronsson, GCLA. The Design, Use, and Implementation of a Program Development System, 1993.
Christer Samuelsson, Fast Natural-Language Parsing Using Ezplanation-Based Learning, 1994.

Sverker Jansson, AKL - - A Multiparadigm Programming Language, 1994.

Fredrik Orava, On the Formal Analysis of Telec ication Protocols, 1994.

Torbjorn Keisu, Tree Constraints, 1994.

Olof Hagsand, Computer and Communication Support for Interactive Distributed Applications, 1995.
Bjorn Carlsson, Compiling and Ezecuting Finite Domain Constraints, 1995.

Per Kreuger, Computational Issues in Calculi of Partial Inductive Definitions, 1995.

Annika Waern, Recognising Human Plans: Issues for Plan Recognition in Human-Computer Interaction, 1996.
Bjorn Gambck, Processing Swedish Sentences: A Unification-Based Grammar and Some Applications, June

1997.

22:
23:
24:

Klas Orsviarn, Knowledge Modelling with Libraries of Task Decomposition Methods, 1996.
Kia H66k, A Glass Box Approach to Adaptive Hypermedia, 1996.
Bengt Ahlgren, Improving Computer Communication Performance by Reducing Memory Bandwidth

Consumption, 1997.

25:
26:
27:
28:
29:
30:
31:
32:

Johan Montelius, Ezploiting Fine-grain Parallelism in Concurrent Constraint Languages, May, 1997.

Jussi Karlgren, Stylistic experiments in information retrieval, 2000

Ashley Saulsbury, Attacking Latency Bottlenecks in Distributed Shared Memory Systems, 1999.

Kristian Simsarian, Toward Human Robot Collaboration, 2000.

Lars-Ake Fredlund, A Framework for Reasoning about Erlang Code, 2001.

Thiemo Voigt, Architectures for Service Differentiation in Overloaded Internet Servers, 2002.

Fredrik Espinoza, Individual Service Provisioning, 2003.

Lars Rasmusson, Network capacity sharing with QoS as a financial derivative pricing problem: algorithms and

network design, 2002.

33:
34:
35:
36:
37:
38:

Martin Svensson, Defining, Designing and Evaluating Social Navigation, 2003.

Joe Armstrong, Making reliable distributed systems in the presence of software errors, 2003.
Emmanuel Frecon, DIVE on the Internet, 2004.

Rickard Coster, Algorithms and Representations for Personalised Information Access, 2005

Per Brand, The Design Philosophy of Distributed Programming Systems: the Mozart Experience, 2005
Sameh El-Ansary, Designs and Analyses in Structured Peer-to-Peer Systems, 2005

