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ABSTRACT

This dissertation is about how Monte Carlo simulation can be used to analyse
electricity markets. There are awide range of applications for simulation; for
example, players in the electricity market can use simulation to decide
whether or not an investment can be expected to be profitable, and authorities
can by means of simulation find out which consequences a certain market de-
sign can be expected to have on electricity prices, environmental impact, etc.

In the first part of the dissertation, the focus is which electricity market
models are suitable for Monte Carlo simulation. The starting point is a defini-
tion of an ideal electricity market. Such an electricity market is partly practi-
cal from a mathematical point of view (it is simple to formulate and does not
require too complex calculations) and partly it is a representation of the best
possible resource utilisation. The definition of the ideal electricity market is
followed by analysis how the reality differs from the ideal model, what con-
sequences the differences have on the rules of the electricity market and the
strategies of the players, as well as how non-ideal properties can be included
in a mathematical model. Particularly, questions about environmental impact,
forecast uncertainty and grid costs are studied.

The second part of the dissertation treats the Monte Carlo technique itself.
To reduce the number of samples necessary to obtain accurate results, vari-
ance reduction techniques can be used. Here, six different variance reduction
techniques are studied and possible applications are pointed out. The conclu-
sions of these studies are turned into a method for efficient simulation of
basic electricity markets. The method is applied to some test systems and the
results show that the chosen variance reduction techniques can produce equal
or better results using 99% fewer samples compared to when the same system
is simulated without any variance reduction technique. More complex elec-
tricity market models cannot directly be ssimulated using the same method.
However, in the dissertation it is shown that there are paralels and that the
results from simulation of basic electricity markets can form a foundation for
future simulation methods.
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Chapter 1

INTRODUCTION

Starting in the 1980s, but primarily since the end of the 1990s, there has been
aglobal trend to restructure electricity markets in order to promote competi-
tion;! the intent is of course to utilise the resources more efficiently. Due to
the restructuring, the conditions for electricity trading have of course changed
radically, which naturally has impacts on the usage of the power system. Be-
sides, a number of new players have appeared in the restructured electricity
markets. All in al, this means that the need for analysis methods and plan-
ning tools has increased, at the same time as the old models no longer really
reflect al aspects of the reality. It can therefore be said without exaggeration
that research within the field analysis and simulation of electricity marketsis
more necessary now than ever before.

Simulation of electricity market is also the theme of this dissertation. | have
studied rules which are used or could be used in different electricity market
designs and tried to analyse which consequences the rules will have for the
eectricity trading. Moreover, | have formulated mathematical models which
can be used to simulate el ectricity markets using so-called Monte Carlo meth-
ods. A Monte Carlo simulation is simply a sample survey investigating how
the electricity market will work in a number of more or less randomly chosen
scenarios. From the results of these samples, conclusions may be drawn about
the expected behaviour of the electricity market. The advantage of a Monte
Carlo simulation is that it is straightforward to include models of different
market designs and the strategies used by the players of the el ectricity market.
A disadvantage is that it may require a lot of computations to gain areliable
answer. Therefore, | have also studied and further devel oped various mathe-
matical tricks, which can increase the efficiency of a Monte Carlo simulation.

1. In everyday speech it is common to use the term “deregulation” when opening a
market to competition. However, thisword is somewhat misleading, since it gives
the impression that the electricity trading should be controlled by less rules than
before—actualy, it israther the opposite.
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Figurel.1 Monte Carlo simulation and analysis of an electricity market. The figure
shows the inputs and outputs of a Monte Carlo simulation of an electricity
market. The outputs of the simulation describe the consequences of choos-
ing a particular design of the electricity market. These consequences can
be studied in a separate analysis (which is not part of the actual simula-
tion) to determine how good or bad certain measures can be expected to

be.
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1.1 PROBLEM DESCRIPTION

In order to simulate an electricity market, it is necessary to have a mathemat-
ica model, which includes the properties of the power system as well as the
behaviour of the players who are involved in the electricity market. (I there-
forefind the term “ power system simulation”, which sometimesis used, to be
a little bit to narrow too describe this kind of simulation; hence, | prefer the
phrase “€electricity market simulation”.) The objective of simulating an elec-
tricity market is to study how a change will affect the system, for example
concerning electricity prices, reliability or environment. In this section |
intend to describe what constitutes an electricity market simulation, and
explain some of the terminology, which | will use when | later address the
details of modelling and simulation. Finally, | will also comment upon the
efficiency reguirements the simulation method has to fulfil in order to have
any practical value.

Satic Electricity Market Simulation

Figure 1.1 provides an overview of how to perform a basic study of an elec-
tricity market using Monte Carlo techniques. The two main elements are the
simulation itself and the analysis of the simulation results. The simulation
shows how the electricity market can be expected to operate under given con-
ditions. This simulation may be performed several times, using different
designs of the power system and the rules governing the electricity trading.
The results of different simulation runs can then be compared in the follow-
ing analysis. In this analysis, we must also consider some other parameters
which are not directly associated to the simulation itself.

To simulate the expected behaviour of an electricity market it is necessary
to determine how it will behave in every possible situation. | have chosen to
introduce the designation scenario for a particular situation, where both the
available resources, the demand and other factors controlling the electricity
trading are known. In any eectricity market these conditions are varying
more or less randomly, which means that there is an infinite number of possi-
ble scenarios.

I will here take the opportunity to emphasise that all random events in the
electricity market are represented by different scenarios. A scenario cannot in
itself include any random factors, but al scenarios are deterministic—if the
same scenario should occur twice then the outcome will be exactly the same
in both cases.?

The conditions of a particular scenario are described by a number of param-
eters, which |—not very imaginative—designate scenario parameters. Each
scenario parameter is arandom variable, the probability distribution of which
is known and part of the input to the simulation. Exactly which scenario

Problem Description 3
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parameters there are depends on the chosen model, and | will provide more
detailed examples later in this dissertation; in this chapter al the scenario
parameters are collected into the random vector Y.

The simulation requires that there is a mathematical model of the electricity
market. In thismodel there are several constants having the same value for all
scenarios. These constants | refer to—once again quite unimaginative—as
model constants and in similarity to the scenario parameters, the model con-
stants constitute inputs to the simulation. We may see the model constants
and the structure of the moddl itself as a mathematical function, g, which
shows how the electricity market responds to a certain scenario.®

The output of the simulation shows how the electricity market will behave
in each possible scenario. Several conceivable characteristics can be studied,
as for example resource usage and prices. Depending on which properties we
want to study, we may define a number of result variables. For now, | assume
that all result variables are collected into one random vector, X. As for the
scenario parameters, the result variables are random variables, but the major
difference is that the probability distribution of the result variables is
unknown, before the system has been simulated, as the result variables are a
complex function of the scenario parameters. The relation between them is
described by the electricity market model:

When analysing the results of the electricity market simulation it is gener-
aly not practical to consider every possible chain of events (i.e., al possible
outcomes of the result variables) in detail. It is preferably to have simple,
comprehensible measures, which in a more easy-to-grasp way describe the
most important consegquences of a particular electricity market model. Most

2. This definition is not self-evident, so let me give a small example to avoid misun-
derstandings. Assume that there is a power system with a certain load and a cer-
tain generation, which coversthisload. In other words, everything in the gardenis
lovely, but then a serious overloading occurs in an important transmission line. If
there is at this moment an alert operator in the control room and this operator
immediately comes to decision about the appropriate countermeasures, the power
system can cope with the disturbance. Conversely, if the operator is on a coffee
break or for some reason does not manage to take the right actions in time, then
extensive disturbances come up.

The above situation may seem like an example that the same scenario can result
in two different outcomes, but actually my definition means that the two possible
events constitute two different scenarios! The two scenarios are differentiated by a
scenario parameter which either takes the value “ alert operator” or “sleeping oper-
ator (who probably should have a darn good explanation at hand when the boss
comes around and wants to know why half the nation just has gone black)”.

3. The electricity market model g is generally so complex that it can only be defined
indirectly from the solution to one or more optimisation problems; cf.
section 3.2.2.

4 Problem Description



Chapter 1: Introduction

a) Asingletransmission line with a transmission capability of 25 MW. This alter-
native yields an expected operation cost ETOC =2 889 a/h and the risk of
power deficit LOLP = 0.181 %.

b) Double transmission lines with a total transmission capability of 50 MW. This
alternative yields an expected operation cost ETOC = 2 629 a/h and the risk of
power deficit LOLP = 0.166 %.

Figure1.2

Example of analysis of an electricity market. Assume that it should
be investigated whether it is profitable to increase the interconnec-
tion between areas A and B in the system above. Panel a shows the
result of simulating the present situation and panel b shows the
result if the transmission capability has been increased between the
two areas. (The details about the simulation of these two alterna-
tives are further described in section 9.3.) Thanks to the expansion
there will be better possibilities to dispatch the power plants of the
two areas, which apparently causes the total operation cost (indi-
cated by ETOC) of the system to decrease, at the same time as the
reliability (indicated by LOLP) increases.

The value of the new transmission line is thus determined by the
differences between the two alternatives. The operation cost is
expected to decrease by about 2.3 M@ per year and the time for
power deficit is expected to decrease by about one hour and fifteen
minutes per year. By comparing these benefits to the investment
costs, it can be determined whether or not it is profitable to increase
the transmission capability.

Problem Description
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straightforward is to define a number of key values, which | prefer to desig-
nate system indices, which can be used to compare different alternative elec-
tricity markets. The system indices are in practice various statistical measures
(generally expectation values) of the result variables. Hence, it can be said
that the actual objective of an electricity market simulation is to determine

E[X] = E[9(V)]. (12
In figure 1.2 an example is given of how to use system indices—in this case
expected operation cost (ETOC) and the risk of power deficit (LOLP)—to
analyse the value of increasing the transmission capability of an interconnec-
tion. Further definitions of system indices are given in section 3.2.2.

Dynamic Electricity Market Simulation

In the static electricity market simulation described above it was presupposed
that the probability distribution of the scenario parametersis not just known,
but also constant over time. In the short run, thisisafully reasonable assump-
tion, but in the long run the conditions of the electricity trading will change,
since the demand of the consumers may increase, new power plants and
transmission lines can be built, the legislation may gradually change, etc.

A static electricity market simulation is quite a straight-forward task,* but if
we want to study how the probability distributions of the scenario parameters
vary in the long run, the task becomes a lot more complicated. In some cases
the distribution of the scenario parameters change as a result of external con-
ditions; for example, the demand of electric energy is highly depending on
the general social development. In other cases—and now things get realy
tricky—the changes depend on the result variables. The producersin an elec-
tricity market can for example be assumed to hold back investments in new
power plants until the prices of the electricity market have reached such lev-
els that the investment is considered profitable, which means that the availa-
ble generation capacity (which is a scenario parameter) will depend on the
electricity prices (which are result variables). | refer to this feed-back
between the probability distributions of the result variables and the scenario
parameters as market dynamics (see figure 1.3).

When | theoretically analyse the function of an éectricity market, | will
sometimes refer to certain rules as having “market dynamic effects’—in
those cases | have the above described problem in mind. However, in the
models and methods | describe in this dissertation | only study static electric-

4. | dare not use the word “simple” in this context, because— as it hopefully will be
clear from the remainder of this dissertation—neither this kind of simulation is a
trivial task, but it takes good methods and quite a number of computations to per-
form asimulation.

6 Problem Description
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scenario parameters o result variables
Electricity market model

a) Satic electricity market simulation: the probability distribution of
the scenario parameters are independent of the result variables.

scenario parameters o result variables
Electricity market model

Market dynamics

b) Dynamic electricity market simulation: the result variables affect
the probability distribution of the scenario parameters.

Figure1.3 The difference between static and dynamic electricity market simulation.

ity market simulation. Eventually, the issue of how to appropriately manage
market dynamic effects in an electricity market ssimulation has to be investi-
gated, but that is something which | have had to leave to future research.

Efficiency Requirements

If simulation of electricity markets should be of any practical value, some
requirements have to be made on the simulation method. Naturally, the most
important requirement is that the simulation is based on mathematical models
which include al important aspects of the electricity trading and the physical
properties of the power system, but it is also important that a simulation can
be performed within reasonabl e time. Even though the most simple case may
reguire only two simulations to evaluate a certain measure (as the example in
figure 1.2), we must in practice be prepared that there are considerably more
possible options to be evaluated. Moreover, it is likely that there is some
uncertainty in the input data of the simulation; therefore, we may want to per-
form sensitivity analysis by varying the assumption of the behaviour of the
players or the probability distributions of the scenario parameters. All in all,
we can assume that a complete survey of a particular eectricity market
requires dozens or even hundreds of separate simulations. If every simulation
took aweek, it would be likely that other, less sophisticated, methods of anal-
ysis would be chosen. The objective when developing simulation models of
electricity markets should therefore be that a simulation preferably should not

Problem Description 7
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need more than an hour (and absolutely not more than 24 hours) to be run.

The second requirement we have on the simulation tools is that the preci-
sion of the system indices must be sufficient. The difference between two
aternatives can be subtle, and it would of course not be acceptable if the
uncertainty of the system index calculation is larger than the difference to be
determined.

1.2 RELATED RESEARCH

Simulation of electricity market has been studied for some decades and a
number of simulation methods have been developed. Below follows a short
overview of methods related to my research.

Analytical Methods

The classical method to simulate electricity markets is probabilistic produc-
tion cost simulation (PPC). This method was first presented in [45] and [48]
respectively and have later been further developed by several authors; nowa-
days, PPC isincluded in most text books on power system planning (e.g. [11,
31, 32, 34]). In short, the method is based on the usage of an electricity mar-
ket model having only two scenario parameters: available total generation
capacity, G, and total load, D. To simplify the calculations, these two sce-
nario parameters are combined into one single, by introducing the notion
equivalent load, which is defined as the real load plus outages in generation
capacity, i.e., ED = D + G—G (where G isthetotal installed capacity of the
system). The duration curve of the equivalent load can be determined using a
so-called convolution formula. As there is only one probability distribution
now, the system indices can be calculated directly using the definition of
expectation value:

o0

E[g(V)] ~ E[g*(ED)] = [Fep(x)dx, (13)
0

where g* is a simplified model of the system g. The simplified model only
takes the equivalent load as input.

To perform a probabilistic production cost simulation it takes a large
number of quite ssimple calculations—in other words, a perfect task for com-
puters. The advantage of the method include that thereis no uncertainty about
the accuracy of the performed calculations.® The disadvantage is that the
method presupposes a very simplified model of the electricity market, where
only random variations of load and available generation capacity are consid-

8 Related Research
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ered. Attempts have been made to expand the PPC model to include the trans-
mission system as well (see for example [51]), but the calculations become
significantly more complicated than in the original method—actually so com-
plicated that as far as | know, this kind of methods has never been used in
practice. That somebody should be able to include additional details, as for
example the rules of environmental protection, market power and other fea-
tures of modern electricity markets, seems extremely unlikely. The more
complicated electricity market model we wish to use, the more scenario
parameters it takes and the harder it becomes to formulate and solve analyti-
cal expressions of E[g(Y)].

Another interesting idea to anaytically simulate electricity markets has
been proposed by Hobbs and his co-workers [53, 54]. The method is based on
determining overestimates and underestimates of E[X]:

Ay < E[X] < my,. (1.4

Using an iterative process, my and my are successively refined until the gap
between them is less than the desired accuracy. This is a brilliant idea, but
according to what | have heard from Hobbs himself, the method turned out to
be difficult to apply to larger systems.

The challenge of an electricity market simulation is that we simultaneously
determine several system indices, for example operation costs and reliability.
If only reliability is of concern then there are several analytical methods
available (see for example [16, 19]). Thiskind of calculationsis however not
in focus of this dissertation.

Monte Carlo Simulation

The expectation value of X is according to the definition equal to the mean of
a number of samples, when X is distributed exactly according to the density
function, fy. The Monte Carlo method is based on theideathat even though a
series of samplesis not distributed exactly according to the density function,
itislikely that the deviation is rather small—at least if the number of samples
is large. The mean of an arbitrary number of samples should therefore be
approximately equal to the expectation value:

n

ED ~my=  3x, (19
i=1

5. A reservation isthough that generally (1.3) is solved numerically, which of course
causes minor errors. If we just choose sufficiently short step size, the numerical
errors will be negligible, but it has of course a cost in the form of increased com-
putation time.

Related Research 9
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where xy, ..., X, isanumber of samples of X (see chapter 8). In an electricity
market simulation a sample is obtained by x; = g(y;), wherey; is the value of
the scenario parametersin scenarioi.

The advantages and disadvantages of the Monte Carlo method are more or
less the opposite compared to probabilistic production cost simulation: there
will be some inevitable uncertainty in the result, because it is based on aran-
dom selection, but on the other hand, we can use arbitrarily complicated el ec-
tricity market models.

A special problem of Monte Carlo methods is that performing a simulation
might become very time-consuming. The time to compute the outcome of a
scenario, i.e., X = g(y;), will increase as the complexity of the used model
increases. Besides, it may take a large number of scenarios to keep the uncer-
tainty of the final results within acceptable levels. To reduce the number of
scenarios per simulation it is possible to use so-called variance reduction
techniques. An overview of earlier works in this field is given in section 9.2,
when | present my own view on which the good sides and the drawbacks of
different variance reduction techniques are when simulating electricity mar-
kets.

An example of an application of Monte Carlo simulation is the multi-area
power scheduling model (EMPS-model), which has been developed by Nor-
wegian SINTEF and is frequently used in the Nordic countries. The primary
difference between the EMPS-model and the simulation method | describe in
this dissertation is that | assume that the scenarios are randomised according
to agiven praobability distribution, whereas in the EMPS-model scenarios are
created using a data base of historical hydrological years [50, 52].°

1.3 MAIN CONTRIBUTIONS

A method to simulate an €electricity market has two basic components. an
electricity market model and an algorithm to perform the probability calcula-
tions necessary to describe the expected behaviour of the electricity market.
The central theme of this dissertation is about both these problems.
Concerning €electricity market models | have defined a basic electricity mar-
ket model, an ideal electricity market, which can be used to simulate smple
electricity markets. By studying the conditions which have to be fulfilled on
an idea electricity market, it is possible to identify a number of non-ideal
properties of real electricity markets. | have chosen some important non-ideal
properties and analysed what is the cause of the difference between an ideal

6. The scenarios are defined by hydrological years, because the EMPS-model is
mainly focused on modelling the hydro power system in detail; the remainder of
the electricity market is more or less represented by model constants.

10 Main Contributions
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and a non-ideal eectricity market, | have provided an overview of the
market designs which could be introduced to manage non-ideal proper-
ties in an electricity market and how the strategies of the players are
affected, and | have suggested mathematical models of the different mar-
ket designs and strategies.

Concerning the probability calculations, | have studied how Monte Carlo
techniques can be applied to electricity market simulation. In that respect |
have primarily studied so-called variance reduction techniques. Much of
these studies have revolved about a method called “stratified sampling”.
Some of my results on stratified sampling are rather general and could be of
interest also to other problems than electricity market simulation; amongst
these are the cardinal error (which occurs when the samples are not appro-
priately distributed between different strata) and the strata tree (a tool to
efficiently and systematically define strata). Moreover, | have developed a
systematic procedure to simulate electricity markets without energy stor-
age or other important time constants—I refer to this as simulation of short
scenarios—and shown that we obtain a significant efficiency gain com-
pared to not using variance reduction technigues. Simulation of long sce-
narios (i.e., when there are energy storage facilities or other important time-
depending factors) is more complicated, but | have shown how the theory of
short scenarios can be useful also when simulating long scenarios.

1.4 OVERVIEW OF THE THESIS

The research | have performed as a Ph.D. student has more or less revolved
around three problems. Two of these—choice of electricity market model and
choice of simulation methods—have already been described earlier in this
chapter. In addition to that, | have spend time on a solution algorithm for the
optimisation problem which arises when simulating certain electricity mar-
kets. The result of this work was the NNP algorithm, which is described in
detail in my licentiate thesis[7] and which from considerationsto space is not
further described in this work.’

In the first part of the dissertation, | try to provide a general picture of the
operation of electricity markets, and how they can be modelled. In chapter

7. That | nevertheless mention the NNP agorithm is because | would like to give a
piece of advice to any reader who perchance currently is planning a doctoral
project: focus on the central problems and watch out for sidetracks! Although the
NNP algorithm was successful in the meaning that it is efficient compared to more
general optimisation algorithms [135], | must now afterwards conclude that it
would have been more appropriate to use commercial software instead; thus, |
would have had more time to study electricity market models and simulation
methods.

Overview of the Thesis 11
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two | give agenera description of the principles for electricity trading, while
| at the same time define important terms which will be used in later chapters.
Thefirst step of the actual modelling isto consider the simplest possible €l ec-
tricity market (and by that | mean the simplest possible from a simulation
point of view), which | have chosen to call an ideal electricity market. My
definition of the notion ideal electricity market is given in chapter three,
where | also present a mathematical model of ideal electricity markets. Using
the ideal electricity market as a start point, it is then possible to identify a
number of non-ideal properties which may appear in rea electricity markets.
I have chosen a number of problemswhich | find important and analysed why
the reality is non-ideal, which rules there are (or could be) to manage these
problems, and | have suggested how the basic ideal electricity market model
can be updated to model different rules and how the strategies of the players
are affected. The non-ideal properties that | have chosen to study closer con-
cern environment issues (chapter four), forecast uncertainty (chapter five)
and grid costs (chapter six). Besides, there are some more brief analyses of
additional market imperfectionsin chapter seven.

The second part of this dissertation treats the Monte Carlo technique itself,
which basically is about how to choose which scenarios should be analysed in
the electricity market model. In chapter eight a general description of sam-
pling and variance reduction techniques can be found. In the following two
chapters | describe how to practically perform aMonte Carlo simulation of an
electricity market in an efficient manner. In chapter nine | consider electricity
markets where the time perspective is short. This kind of electricity markets
are quite straightforward to simulate, and it is here that | have been most suc-
cessful to demonstrate considerable efficiency gains by using variance reduc-
tion techniques. Simulating el ectricity markets with along time perspectiveis
more complicated and | have not had time to investigate this field as thor-
oughly. In chapter ten | provide an overview of which problems have to be
solved and my ideas about how to solve them.

In the last part of the dissertation there is a concluding chapter, where |
partly try to summarise my results and partly point out areas where further
research would be useful. After this chapter some appendices follow, with
short summaries of important mathematical definitions and theorems, and an
analytical method to calculate the risk of power deficit in a two-area system.
A list of abbreviations and an overview of the notation | use follow after the
appendices—those readers who wish to study my electricity market models
(i.e., chapters three to seven) in more detail are recommended to first have a
look at the general notation. Finally, there are literature references and an
index.

12 Overview of the Thesis



Chapter 2

BACKGROUND

Electric energy is quite a difficult good. Firstly, electric energy cannot be
stored, but must be generated in the same moment it is consumed.! Asiit is
impossible for the producers to know exactly when the consumers are going
to use the energy they bought, it is necessary that al electric power systems
are equipped with technical systems which automatically balance production
and consumption. Secondly, electric energy cannot be distributed in just any
way; it takes a grid system connecting producers and consumers. In theory
each producer could build an own power distribution grid, but in practice
such parallel grids would be unprofitable. All producers and consumers are
therefore forced to share a common grid.

An €electricity market cannot work unless these problems are managed,
which requires that rules are defined to control the responsibilities of each
player and to determine the procedures of the electricity trading. However, it
isin no way so that there is only one possible design for the rules of the elec-
tricity market. In this background chapter | intend to provide a genera
description of the fundamental features of different trading arrangements, and
to introduce important notions which will be used in the following chapters,
when different challenges to the electricity market are studied more in detail.
However, | must emphasise that the objective of this chapter is not to describe
all possible ways of organizing an electricity market. What it is all about isto
define a general terminology, which is needed when discussing and compar-
ing different arrangements.

| will also point out that the notions introduced in this chapter are my own.
By and large, | try to use generaly accepted notions, but in some cases so
many designations flourish for similar features, that | have found it easiest to
invent my own vocabulary.

1. What we in everyday life consider as storage of electric energy actualy stores
some other form of energy, which however readily can be transformed into elec-
tric energy. For example, a battery stores chemical energy and the reservoir of
hydro power plant stores mechanical energy (potential energy).
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Goods

The primary good to be traded in an electricity market is naturally electric
energy. As technical systems manage the balancing between production and
consumption, the trading cannot be performed in real time. It is necessary to
introduce trading periods instead, the duration of which can be chosen arbi-
trarily.2 Selling electricity is equivalent to supplying a certain amount of
energy to the grid during a certain trading period and buying electricity is cor-
respondingly the same as extracting a certain amount of energy from the grid
during a certain trading period.

When the players in the electricity market trade in this manner, the average
production and consumption during a trading period will be in balance, but
they have no responsibility for the instantaneous balance. This responsibility
is given to a system operator instead. The task of the system operator can
vary depending on the rules of the electricity market, but a minimum require-
ment is that the system operator makes avail able the technical systems neces-
sary for the function of the power system, and that the system operator
assures that the system is operated safely. The system operator can in some
cases also be a grid owner or act as market operator, i.e., to supply trading
places where other players can do business.

Besides trading electric energy, there might be a number of side markets. It
may for example be about markets for ancillary services (i.e. when the system
operator rather than building necessary technical systems under their own
auspices, they buy the services from other playersin the electricity market) or
markets which are used to lead the players of the electricity market in adesir-
able direction, for example towards more environmentally benign e ectricity
generation. The side markets which are of interest to electricity market smu-
lation will be more closely described in the following chapters. Below follow
further details about the trading of electrical energy.

The Ahead M arket

By the ahead market | refer to the trading which occurs before the actual trad-
ing period. The ahead market includes among other things trade with price
insurances and other financial derivatives, which | however will not further
describe in this dissertation.® The ahead trading which is of interest is rather
something which |—lacking a better designation—call the “physical trad-

2. Most common are half-hour periods (used for example in England-Wales, Aus-
traliaand New Zealand [14, 27, 29, 30]) and one-hour periods (used for example
in the Nordic countries, Spain and the U.S. [14, 20, 26, 43]).

3. Examples of financial derivatives are given in among others[15, 23, 37].
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a) Mertically integrated electricity market.
The consumers are forced to buy from
the local power company. The power
companies may trade freely.

Power pool buy from the pool.

b) Centralised electricity market. All pro-
ducers must sdll to the centralised
‘ power pool and all consumers must

c) Bilateral electricity market. All players
may trade freely.

P - Producer C - Consumer R - Retailer

Figure2.1 Three ways of structuring an electricity market.

ing”. Actually, thistrading is also a purely financial agreement; if, for exam-
ple, aproducer cannaot produce in accordance with the sales of the ahead mar-
ket the physical delivery will be taken care of by the system operator (using
the real-time market), while the producer is forced to trade in the post market
to fulfil the undertaking from the ahead market. | will return to these proce-
dures later in this chapter.

There are, according to my opinion, three basic ways to structure the ahead
market.* Figure 2.1 provides the general lay-out of the three main types. The
oldest form is the vertically integrated electricity market, where each power
company combines the roles of producer, retailer, grid owner and system
operator. (The designation verticaly integrated actually refers to that the
companies manage all steps of the power delivery.) Each company has afran-
chise for one or more geographical areas, where they have a monopoly of

4. Unfortunately, there is a countless number of different definitions and designa-
tions of electricity markets and it is not uncommon to see different authors intro-
ducing different designations for what is essentially the same thing. For example,
compare how electricity markets are classified in [21] and [24].
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retailing; the consumers of a vertically integrated electricity market has no
possibility to choose supplier, but must buy from the local power company.
To prevent the power companies from taking advantage of their monopoly,
the activities are regulated; hence, it is stated which electricity prices they
may charge and which other responsibilities they have.

As the power companies of the verticaly integrated electricity market do
not compete, they can decide themselves how to solve the technical issues of
safe system operation in the best manner. To reduce the operation costs they
can also get involved in trading with each other in those cases when a power
company has unused production capacity which is cheaper than the power
plants of the other companies. It is even possible for the power companies to
jointly plan the operation of all power plantsin the system.® However, some-
times there are difficulties also in the trading between verticaly integrated
companies. An example is when two companies trade, but have no direct
electric connection to each other’s grids; the trading will take place via the
grid of a third company instead, which causes losses (and possibly other
inconveniences) for the third company, which therefore wants to be compen-
sated.

The advantage of a vertically integrated electricity market is that simpler
technical solutions can be used when one company manages all parts of the
power system, and the investment in generation, transmission and distribu-
tion may be coordinated. The obvious disadvantage is that there will not be
the same pressure to improve the performance as when several companies
compete for the favours of the consumers. Hoping to increase the efficiency
of electricity markets, a global restructuring process was initiated during the
late 20th century. In the restructured electricity markets the verticaly inte-
grated companies are divided, so that competitive activities (production and
possibly retailing) are separated from monopolies (system operator and grid
owners).

Among the restructured electricity markets we can distinguish centralised
and bilateral electricity markets. Characteristic of a centralised electricity
market is that producers and consumers may not trade directly. The producers
have to submit their sales bids to a central power pool, which is managed by
the system operator. In some cases the consumers (maybe represented by a
retailer) also submit purchase bids to the power pool,® whereas in other cases
the system operator forecasts the load during the trading period and buys the
same amount from the power pool; thus, the system operator serves asretailer
for all consumers.” For each trading period the pool either determines an elec-

5. Cf. for example the Swedish production optimisation (which existed before the
restructuring in 1996) where the major power companies reported their variable
production costs and then the total operation cost of the involved companies was
minimised [15].

6. An example of this arrangement is the Spanish electricity market [20].
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tricity price for the whole market or a number of different electricity prices,
which each apply to a part of the market.

In abilateral electricity market the system operator has a more supervising
role. The players do not have to trade through a power pool, but may sell and
purchase freely (all transactions must however be reported to the system
operator, so that after the trading period it is possible to control that the play-
ers have fulfilled their undertakings). Thereis no official electricity price, but
generally there is a power pool aso in bilateral electricity markets and the
price of the pool serves as a guideline to those players trading bilaterally.

As the players may trade freely in a bilateral electricity market, a business
opportunity opens up for pure retailers (which are often referred to as inde-
pendent traders). Their ideaisto buy power directly from the producers or the
power pool and sl it on to the consumers. It might appear asif theseretailers
were just unnecessary, price increasing middlemen—and in the worst case
this might actually be true—but they can also supply important functions to
the electricity market. Primarily the existence of retailers means larger free-
dom of choice for the consumers, resulting in increased competition com-
pared to if retailing was run by producers only. The increased competition
may not just apply to the electricity price, but it is also possible that enterpris-
ing retailers offer better service (for example more employees answering the
telephones at the customer service) or specia electricity products (such as for
example power produced in environmentally benign power plants). The
retailers may also take over part of the risks (both towards producers and con-
sumers) by offering stable prices during longer periods than one trading
period.

The Real-time M ar ket

The real-time market includes the trading which occurs during a trading
period. A real-time market is needed for several reasons. One is that power
plants selling to the ahead market may fail and have to be replaced by other
generating units. Moreover, when trading in the ahead market it is difficult
for many playersto predict how much they actually will produce or consume.
Thisis for example the case for wind power plants, where the available gen-
eration capacity depends on the wind speed, which is hard to predict even just
afew hours ahead [96], or retail ers whose customers have so-called take-and-
pay contracts, which means that the customer may consume any amount of
power up to a specified limit. Finally, it is not certain that the ahead market
has taken enough consideration to the limitations of the common grid, which
may force the system operator to redispatch production and consumption so

7. This is for example how the electricity market of England-Wales was operated
between 1990 and 2001 [30, 69].
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that the grid is operated safely.

There are two ways of organizing the real-time trading. The first variant is
to establish a regulating market, which means that the players normally
decide themselves how much to produce or consume, but if necessary the sys-
tem operator asks a certain player to change the production or consumption.
The second variant is that the system is centrally dispatched by the system
operator and the other players are obligated to follow the instructions of the
system operator.

Let us start by studying how a regulating market works. During the trading
period the system operator will whenever necessary activate bids submitted
to the regulating market, so that safe operation is maintained to the least pos-
sible cost. Two kinds of bids can be submitted to the regulating market. When
down-regulating the system is supplied with less energy than agreed upon in
the ahead market (thus, a producer carries out down-regulation by reducing
the production, whereas a consumer carries out down-regulation by increas-
ing the consumption). Down-regulation means that the player buys regulating
power from the system operator and a down-regulation bid must therefore
state how much the player can down-regulate (in MW) and the maximal price
(in &/MWh) which the player iswilling to pay for the regulating power. Sim-
ilarly, up-regulation means that the player sells regulating power to the sys-
tem operator, i.e., an up-regulation bid states how much the player can up-
regulate and the minimum price for which the player iswilling to sell regulat-
ing power. Unlike the bids to the ahead market, regulation bids are not just
financial but physical undertakings—the system operator measures genera-
tion and load and may control that activated regulation bids really have been
carried out within time.

The pricing of the regulating market can either be different for each acti-
vated bid or there may be uniform prices for up- and down-regulation respec-
tively. Separate pricing means that those players buying regulating power pay
exactly the price they stated in their down-regulation bid and the players sell-
ing regulating power get paid as much as they stated in their up-regulation
bids. Using this pricing scheme the players will—provided that the competi-
tion is good—not be able to make any profits from the real-time trading; for
example, a producer will buy regulating power at the same price as it would
have cost to produce it (cf. figure 2.2b) and will when selling receive just as
much to cover the production cost (cf. figure 2.2c). Such arrangements are
not very attractive neither for producers nor consumers; it implies that they
submits bids out of public duty or that they are simply forced to submit bids
whenever possible. To make a regulating market more appealing it is possible
to use marginal pricing instead, which means that a down-regulation price is
defined, which is equal to the lowest price among the activated down-regula-
tion bids, and an up-regulation price, which is equal to the highest price
among the activated up-regulation bids. All activated bids will then obtain
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Figure2.2 Principles of pricing in a regulating market. In this example there are seven
power plants with increasing variable production costs. The planned produc-
tion according to panel a has been sold in the ahead market, resulting in the
indicated system price.

Each producer now submits bids to the regulating market. The power plants
which can down-regulate are willing to pay a price not exceeding their vari-
able production cost (otherwise buying regulating power isaloss). In a simi-
lar way, the power plants which can up-regulate are only willing to do so if
they get paid at least as much as their variable production costs.

In panels b and ¢ regulating power is traded using separate prices (corre-
sponding to the upper and lower limits respectively of the submitted bids). In
panel d and e uniform down- and up-regulating prices are used instead. The
first activated regulating bids now receive a more favourable price than the
variable production cost.

19



Chapter 2: Background

these regulating prices. Thus, a producer may for example buy regulating
power to a price which is less than what it would have cost to produce the
same amount in an own power plant (cf. figure 2.2d) or may sell regulating
power to a price which is higher than the production cost cf. figure 2.2e).8

Central dispatch is straightforward to carry out in a centralised electricity
market (but it is also possible to consider bilateral transactions; this is for
example donein the PIM market in north-eastern USA [26]), because the sys-
tem operator aready has access to the preferences of the players in the form
of their bids to the ahead market. To give the players the possibility of cor-
recting bids based on mistaken forecasts, the players may be allowed to adjust
their bids before the real-time trading, but the system operator may then
reguire that they can provide a reasonable explanation why they change their
bids.® In regular intervals, e.g. every fifth minute, the system operator per-
forms an economic dispatch, the result of which is announced to the produc-
ers and consumers, who act according to this plan.10 For each dispatch phase
there will be a price (which may differ in different parts of the system); these
prices are called real-time prices and can be used in two ways. In for example
the national electricity market in Australiaall trading use real-time prices and
the ahead market isin practice just a basis for the price forecast supplied by
the system operator [27]. On the other hand, in several parts of the U.S. the
prices are used as a basis for the pricing in the post market [13, 26].

The Post Market

Asitisimpossible to know aready at the time of the ahead trading what will
happen during a certain trading period, it is inevitable that smaller or larger
deviations will occur between the planned trading and what actually is traded.
The post market is necessary to compensate for these deviations and to make
sure that somebody pays for all energy supplied to the system during a trad-
ing period. However, al players do not need to take responsibility themselves
for the differences between ahead trading and what is actually produced and
consumed, but it is possible to introduce certain balance responsible players.

8. It is actually possible to combine the two pricing schemes. An example of thisis
the Nordic electricity market, where the regulating bids activated to maintain bal-
ance between production and consumption are paid uniform up- and down-regula-
tion prices, whereas those bids activated to prevent a part of the grid to be
overloaded (so-called counter trading—see section 6.2) receive separate prices.

9. Thisisthe arrangement in for example the national electricity market of Australia;
however, an exception is that consumers may decrease their consumption without
notifying the system operator [27].

10. It is however not necessary that all consumers are part of the dispatch. Regular
residential consumers may for example consume as much as they wish; the system
operator will estimate their consumption and include it as a firm load in the dis-
patch.
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Different pricing schemes for the post market. Players have positive
imbalance when supplying more energy during the trading period than
they have extracted. The system price refers to the electricity price in
the ahead market, whereas up- and down-regulation prices refer to the
prices of the regulating market (corresponding to the real-time price if

central dispatch is used).
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Being balance responsible is a purely financial undertaking and the balance
responsible player does not need to be a producer or consumer, but may act as
an agent for others.

When atrading period is ended the system operator can compile how much
the balance responsible and his or her clients have actually produced and con-
sumed, as well as how much they have bought or sold in the ahead and real-
time markets. This will ailmost certainly result in a deviation between sup-
plied and extracted energy. The balance responsible players then have to
trade at the post market to settle this imbalance. Players having positive
imbalances (i.e., they have supplied more energy than they have extracted)
sell balance power to the system operator. If there is a negative imbalance
instead then the player has to buy balance power from the system operator.

The price of the balance power is generaly related to the prices used during
the real-time trading and as usual there are several variants. The question is
partly whether average pricing is used (as for example in Denmark, England-
Wales and Spain [36]) or marginal pricing (as for example in Australia, Fin-
land, Norway and Sweden [27, 36, 39]), and partly whether or not separate
prices are used for buying and selling balance power. A one-price system
means that all balance power is bought and sold for the same price (thisisthe
case in for example Australia, Norway, Spain and Germany [27, 36]),
whereas a two-price system means that there are separate prices for negative
and positive imbalances respectively (this is the case in for example Den-
mark, Finland, Sweden and England-Wales [36, 39]).

An overview of the principles for one-price and two-price systemsis given
in figure 2.3. If the real-time trading has required both up- and down-regula-
tionsthen it must first be decided the direction of the net regulation during the
trading period; if the system operator has bought more regulating power than
they have sold then the trading period counts as up-regulation and vice versa.
In a one-price system the up-regulation price is used for al balance power
during up-regulation periods (figure 2.38) and the down-regulation price is
used during down-regulation periods (figure 2.3b). If the real-time market
uses central dispatch rather than a regulating market, the real-time price is
used instead of up- and down-regulation prices.

The two-price system means that a less favourable price is given to those
players who are assumed to be the cause of the activation of regulating bids.
During an up-regulation period those players who have not supplied enough
energy, i.e., which have negative imbalances, must pay the up-regulation
price (which is higher than the price in the ahead market), while the players
having positive balance receive the same price as in the ahead market
(figure 2.3c). During down-regulation on the other hand, those players having
positive imbalance are assumed to have caused the need for regulation and
therefore are getting paid the down-regulation price (which is less than the
ahead market price), while the other players receive the same price as in the
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ahead market (figure 2.3d). This approach can aso be applied to real-time
prices originating from a central dispatch; if the real-time price is higher than
the ahead market price then there has been an up-regulation period and vice
versa,

Using a one-price system a balance responsible having an imbalancein “the
right direction” (i.e., positive imbalance when the system has a net up-regula-
tion and negative imbal ance when the system has a net down-regulation) may
buy or sell balance power to a price more favourable than in the ahead mar-
ket, which means that there in some cases will be profitable to have an imbal-
ance. Thus, the one-price system introduces a possibility to intentionally
obtain an imbalance, but it is hard to see how a player systematically could
take advantage of this possibility. However, the one-price system means that
the costs decrease for those being balance responsible of unpredictable pro-
duction or consumption, because the cost of the occasions when the player
has an imbalance in “the wrong direction” is to some extent compensated by
the income of the occasions when the player has an imbalances in “the right
direction”. In atwo-price system it is never possible to make any profits from
an imbalance, which results in higher costs for the balance responsible play-
ers, who accordingly can be assumed to feel more pressure to keep their own
balancein every trading period.

Finaly, it can be mentioned that there are some other variants of pricing
balance power. It might for example be desirable to compromise between a
wish to motivate the balance responsible players to keep their balance and a
wish to not disadvantage players having difficulties predicting or regulating
production and consumption. Such a compromise is to use a two-price sys-
tem, where those players having imbalance in “the right direction” will not
receive a price as favourable as the corresponding regulating price, but still
better than the price of the ahead market (for example a mixed price system
asin figure 2.3e). It is also possible to refrain from punishing lesser imbal-
ances by an unfavourable price (so-called dead-band; see figure 2.3f). 1

11. A dead-band has been introduced on trial in Sweden since November 2003 [35].
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Chapter 3

THE IDEAL
ELECTRICITY MARKET

Aswe al know, the word ideal has several meanings; hence, the notion ideal
eectricity market can be given severa interpretations. An ideal electricity
market can be considered a mathematical simplification of real electricity
markets, in the same spirit as ideal transistors and ideal resistors are simpli-
fied mathematical models of physical components. It is also possible to use
the word ideal in the sense “something to strive for”; as the ideal electricity
market per definition maximises the benefits to the society, it can be used asa
benchmark when evaluating different options to design areal electricity mar-
ket. When | first used the notion in my licentiate thesis [7] | favoured the
former interpretation (mathematical simplification), but nowadays | find the
|atter interpretation the most interesting.

Inthefirst part of this chapter | provide a definition of ideal electricity mar-
kets, and then | analyse which requirements have to be fulfilled in order to
consider an electricity market as ideal. In the second part of the chapter there
follows a description of a basic, mathematical model of ideal electricity mar-
kets. The idea of this model is of course that it should be useful for Monte
Carlo simulation.

3.1 PREREQUISITES

A modd of an electricity market has two main components; partly an
assumption of how the players of the electricity market behave and partly a
model of the power system. Theterm ideal electricity market does not refer to
any specific design of the electricity market, but | have chosen a general defi-
nition which can be applied to restructured as well as verticaly integrated
electricity markets.

Definition 3.1. An electricity market isideal if it maximises the
benefit to the society while considering the physical limitations
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of the power system.

The important thing of the definition is the assumption that al players act in
such a manner that the benefit to the society is maximised; the power system
model (which sets the physical limitations) can on the other hand be chosen
quite freely, without making the electricity market non-ideal.

If an electricity market should be ideal, four main conditions must be ful-
filled. An idea electricity market should have perfect competition, perfect
monopolists, perfect information and perfect grid tariffs. In practice, a
number of assumptions are concealed behind these headings; some of these
assumptions may even fit under more than one heading.! Below | will specify
the requirements in more detail, but first we should have a closer look at what
is meant by “benefit to the society” in definition 3.1.

It should maybe be pointed out that | do not intend to provide a complete
mathematical derivation of the requirements of an ideal electricity market;
the objective of this presentation is to introduce important notions and to
describe fundamental relations. A more strict mathematical analysis of ideal
markets in general can be found in textbooks on microeconomics, e.g. [137,
139, 140].

3.1.1 Social Benefit

It would probably be hard to find someone who does not agree with the state-
ment that an ideal electricity market should maximise the benefit to the soci-
ety, but opinions will most likely differ as soon as the natural follow-up ques-
tion “What is really beneficia to the society?’ is asked. In economics it is
common to use the notion total surplus as an indicator of the social benefits.”
The total surplus is the sum of the surplus for every player in the market.
Assume that there is a market price A for a certain good. The surplus of pro-
ducer p is equal to the income from selling g, units minus the production
cost, i.e.,

PS, = %0 — Cp(p), (3.1)

The surplus of consumer cisequal to the benefit of consuming g, units minus
the purchase cost:

CS: = Be(de) — A (3.2

1. The premier reason why | still continue to use these four main assumption is that
they look really striking when the term ideal electricity market should be summa-
rised.

2. Thisfootnote has been added to maintain the footnote numbering in pace with the
Swedish edition.
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Thus, the total surplusis

This expression can be rewritten as

TS= ¥ B (0 + x(; . ch) _ gcp(qp). (3.4)

To simplify (3.4) weintroduce

q = total turnover of the market = ch = Z“qp,

B(qg) = total benefit of all consumption = ZBC(qC),

C(q) = total cost of al production = ;Cp(qp),
which yields
TS= B(o) - C(0). (39

If the total surplus should be maximised then it is practical to study the
derivative of B(q) and C(q). MB(q) = dB(qg)/dq is the marginal benefit func-
tion, i.e., it states how much the total value increases if the total consumption
isincreased by one unit. A more convenient designation for MB(q) is demand
curve, because the function describes the relation between demanded quantity
and the market price. The demand curve corresponds to the consumers' will-
ingness to pay, sinceit is reasonable to assume that a consumer is not willing
to pay more for increased consumption than the consumer’s benefit increases.
MC(qg) = dC(qg)/dg is equal to the marginal cost function, which states how
much the total production cost will increase when the production is increased
by one unit. The function MC(q) is generally referred to as supply curve,
because it describes the relation between produced quantity and market price.
In general, the supply curve corresponds to the variable production costs of
the producers.

Thetotal surplus, TS, corresponds to the area between MB and MC, because

g g g
TS= jMB(x)dx—jMC(x)dx = I(MB(X)—MC(X))dx. (3.6)
0 0 0

If we start at the turnover zero and let g increase, this area will increase as
long as MB > MC, i.e,. until we reach the turnover g* (cf. figure 3.1). Then
the area becomes “negative” and TSwill decrease again. Apparently, the total
surplus is maximised at the turnover g*, where marginal value of consump-
tion equals marginal cost of production. A natural market price will be A* =
MB(g*) = MC(g*), as both consumers and producers require this price to
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—— P quantity
q* 10 000

Figure3.1 Maximizing the total surplus. In the example we have MB = 140 — ¢/50

and MC = g/50 — 60 for q > 4 000. The total surplusis maximised at the
turnover g* = 5 000 and the market price isthen A* = 40.

trade the quantity g*.

There is an obvious disadvantage of this definition of the social benefits; it
isassumed that all benefits and al costs can be measured in money. Both pro-
duction and consumption may however cause conseguences which are hard
to put a price tag on, because they depend on our mora values. How much
are we for example willing to pay for beautiful nature and biological diver-
sity? What is the value of ahuman life? Moreover, in some casesit is not just
hard to quantify the social benefits, but we must also consider how the sur-

plus is distributed. Although most of us accept that not everybody can have

the exact same amount of welfare, there is some kind of limit to which differ-
enceswe can accept.3 When studying how TSis affected by different measure
it isthus necessary to interpret the results with some care.

3. For example, assume that there is amarket where afat, white director in the indus-

trialised country Land gains a surplus of 20 000 =, while 1 000 farmers in the
developing country Nchi gain asurplus of 1 @ each, which yields atotal surplus of
21 000 =. Suppose that this market was changed so that the distribution became
10 000 = for the director and 10 = each for the farmers. As a consequence of this
redistribution the director has to cut down his consumption of golf clubs, liquor
and cigars, whereas the farmers now afford to send their children to school, so that
they may learn how to read and write. Even though the total surplusin the latter
caseisjust | 20 000 g,* | think that most people would be inclined to agree that the
benefit to the society nevertheless are larger than in the original distribution.

* All right, the example is somewhat exaggerated, because it could be possible to

assign avalueto children being able to read and write. If thisvalue would be let us
say 1o and each farmer family has three kids then the total surplus would be
23000 =; hence, the total surplus corresponds to the subjective valuation of the
benefit to the society again. But ability of reading and writing is difficult to put a
price on and therefore tends to be neglected in the fancy charts of al bean
counters.

28
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Astheideal electricity market according to the definition is maximizing the
benefit to the society, it is assumed that the socia benefits actually can be
measured. In an ideal electricity market, there is no indistinctness such as
those mentioned above, but all consequences of the decisions of the players
can be assigned a monetary value, which can be included in the total surplus,
TS

3.1.2 Perfect Competition

Perfect competition can be described as a state where the players by them-
selves act in such a way that the benefit to the society are maximised. A
number of constraints have to be fulfilled to achieve thisideal condition, both
concerning the good to be traded and how the players should behave.* Here
follows a short overview of these requirements, without any special order.

We can start by assuming that the players are rational (which means that
they will always try to maximise their own benefits) and that they are free to
trade with each other if they want so (i.e., the players decide themselves how
much they want to buy or sell and for which price). The free trade a'so means
that it is possible for new playersto enter the market if there are unused busi-
ness opportunities.

The players maximise the benefit to the society, without any central coordi-
nation, if the individual players benefits coincide with the social benefits.
Consider a player who has such a small share of the market that regardless of
how much they choose to produce or consume, the market price is not
affected, provided that the rest of the market continues to maximise the bene-
fit to the society. Such a player is referred to as a price taker, because the
player has to accept the price offered by the market. A price taking producer
maximises the individual benefits by increasing the production until the mar-
ginal costs correspond to the market price (see figure 3.2).

The situation for consumers is somewhat more complicated and we have to
differentiate between private goods and public goods. Private goods are such
goodsthat arerival. A meat ball isagood example of a private good; if | con-
sume a meat ball (i.e, eat it) then nobody else can consume the same meat
ball. If there is no rivalness, the good is public instead. Street lighting is a
classical example of apublic good; mewalking on alit up street does not pre-
vent other consumers to enjoy the benefits of the same lighting.> Whether a
goad is public or private influence how the individual benefit of a consumer
relate to the total benefit of the whole market. The difference isillustrated in
figure 3.3. Concerning private goods the situation of the consumersis similar
to that of the producers; they have to accept the market price and choose to

4. This footnote has been added to maintain the footnote numbering in pace with the
Swedish edition.
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consume so much that the marginal benefit is equal to the market price.

Asfor private goods the benefit to the society is maximised if the marginal
benefit of consuming another unit of a public good equals the marginal pro-
duction cost. The difference is that the consumers in this case do not choose
how much they consume—since all consumers receive the same amount of
the public good—nbut the question is how much each consumer is willing to
contribute to the procurement of the public good. The prablem is that it might
be very profitable for aconsumer not to contribute at all and let the other con-
sumers pay the costs. Consumers reasoning in this way are referred to as free
riders. If al consumerstry to be free riders, the public good will not be pro-
cured, even though it very well could have been optimal for the public wel-
fare.® Therefore, free markets are poor at supplying public goods. During the
years, several methods to solve this dilemma have been proposed;’ however,
a closer study of these is beyond the scope of this dissertation. Let us just
summarise that the most common methods to supply public goods are to
appoint a specia player (mostly a public authority) to be responsible for pro-
duction of the public good, or by charity from individual players. In an ideal
electricity market it is assumed that all goods are either private or that there
is some player which somehow makes sure that sufficient quantities of the
public good is procured to maximise the benefit to the society.

Let us now return to the assumption that all players are price takers. There
are two explanations why the market price does not change very much when
the price taker changes his or her turnover. Thefirst is that price takers are so
small that they only see a small fraction of the total demand and supply

5. There is a certain ambivalence between private and public goods. One and the
same good may sometimes be public, while it under different circumstances
becomes private. There is for example a practical limit to how many people who
can consume the same street lighting, because it is not possible to squeeze in any
number of peoplein the light of a street light.

6. This can be illustrated by elaborating an example from [139]: Consider ten
remotely located real estates, which can only be reached by one way. Assume that
it costs 100 = to plough the way when it has been blocked by snow in the winter,
and that each of the rea estate owners value the benefit of being able to get
through on a ploughed way to 20 =. It is up to the individual real estate ownersto
call the snow plough and whoever calls will have to pay the bill. Each owner thus
faces the choice of either calling the snow plough and pay 100 = for a benefit of
20 1, which clearly is not profitable, or to not call, which does not convey any
costs, but in the best case resultsin a benefit of 20 @ (if somebody else calls). If all
real estate owners try to individually maximise their benefit nobody will call for
the snow plough, even though the total benefit is larger than the cost. A solution
which is both beneficial to al real estate owners and fair would be that they each
paid 10 @ for having the way ploughed; then everybody would make a profit of
10 &,

7. General descriptions of different methods are found in both [139] and [140]. Any-
one interested in areally in-depth analysis of the problem can tackle [136].
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price Figure3.2  The situation of a price taking producer.
A The figure shows the marginal cost curve
] of one of the producers in figure 3.1. The
MC, producer’s choice of production level, g,
has clearly just a very small impact on the
market price; A(q;) is approximately equal
to the market price A* which maximised
ax ] () the total surpl us (this presupposes that all
: other players in the market produce and
consume so that the total surplus is max-
imised). Apparently the surplus of the pro-
ducer is maximised if the output g;* is cho-
sen, in which case the marginal cost of the
producer is equal to the market price A*.
If the producer chooses a larger output
then the costs will not be covered and if
less is produced, a possible profit is
missed.

100

: — quantity
50

price price

A A

100 1 100

MB. MB
—r————— P quantity —T —r— P quantity
10

5000
a) Individual demand curves of the b) Total demand of a private good.
consumers.
price . . .
Figure 3.3 Demand curves for private and public
A goods respectively. In this example there
are 1 000 consumers in the market, each
having identical individual demand curves
according to pand a. If the good in ques-
tion is private then all consumers will
receive the same market price; the total
demand curve will therefore be the “ hori-
zontal sum” of the individual demand
curves, as shown in panel b. If it is a pub-
lic good instead, each consumer will
receive the same quantity; the total
MB demand curve will then be the “ vertical
————» quantity sum’ of the individual demand curves,
10 which gives a total demand curve as in
c) Total demand of a public good. panel c.

100 000 A
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price price
MCH
1004
o Tr— .- MB - MB" (market power)
A MC : MB" (perfect competition)
T T : — quantity ————— quantity
4000 g* 50
a) Thesituation of the price setter. b) The situation of a price taker
depends on the actions of a price set-
ter.

price

T T T T T |> quantlty
5000
c) Total demand and supply for the whole market.

Figure3.4 The consequences of market power. The demand curve in this example is
thesame asin figure 3.1, i.e., MB = 140 — ¢/50. The total supply functionis
also the same as in figure 3.1, but in this case there is a dominating pro-
ducer having the supply curve MC' = 20 when g’ € [0, 4 000] (panel a) and
100 small producers, which each have the supply curve MC"” = 20 + 2q",
g’ € [0, 50] (panel b). The large producer is a price setter; when this pro-
ducer decreases the production, the market price increases. The producer
maximises the profit by reducing the output from 4 000 (which is the pro-
duction level which would be chosen if market power is not exercised) to
3 000. Admittedly the producer will loose income corresponding to the area
marked by diagonal linesin area a, but on the other hand there is an extra
profit—corresponding to the shaded area—for the remaining production.

The small producers are price takers, because regardless of how much
they produce, it will hardly influence the market price. These producers
maximise their profits by choosing the output for which their marginal costs
equal the market price. In total, these small producers will produce
1 500 unitsif the large producer has an output of 3 000 units. The resulting
market price is higher than the market price at perfect competition, A*, as
illustrated in panel c.
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respectively. If the player has a magjor share of the market, the player becomes
a price setter instead. The actions of a price setter has a clear impact on the
market price, even if the rest of the market is perfectly competitive (cf.
figure 3.4). A price setter is said to have market power. If a player chooses to
utilise having market power then that player can increase his or her surplus,
but the total surplus of the market will decrease. The one exercising market
power will thus gain on behalf of all other players. In anideal electricity mar-
ket it is assumed that there is no market power or that the players who have
market power refrain fromusing it.8

The other explanation that price takers do not influence the market price is
that if a price taker tries to change the market price in a favourable direction
(from the price taker’s point of view) then there will be a business opportu-
nity for a competitor. If for example a price taking producer reduces the pro-
duction, there will be a competitor whose marginal production cost was
dightly above the market price, but who now gets the possibility to produce
in place of the supposed price manipulator. This requires of course that the
two producers really are competing with each other.? If several small players
choose to cooperate in a cartel, they will behave as one large player and with
that achieve market power. Formation of cartels is—as abuse of market
power—controlled by legidation. In the ideal electricity market it is assumed
that there are no cartels.

A final assumption which hasto be fulfilled if the players by their own will
should strive to reach the equilibrium (g*, A*) is that there may not be any
externalities. An externality appears when a transaction between a producer
and a consumer does not just involve these two, but is also causing benefits or
costs to a third party.1 If the players only compare the market price to their
own benefits and costs respectively, some players may choose a turnover

8. Withholding market power may seem as a contradiction to the assumption that all
rational players maximise their own benefit. However, in many marketsit isille-
ga to abuse a dominating position; thus, taking advantage of market power
includes arisk of unpleasant consequences and then it might be more rational to
refrain.

9. It is also required that the difference in margina production cost does not differ-
entiate too much between the two producers. If the price difference would be large
then even avery small producer might be large enough to exercise market power.
This prerequisite is therefore a part of the earlier assumption that no players exer-
cise market power.

10. An externality may hence be either something beneficial (external income) or
something unfavourable (external cost). The construction of hydro power plantsis
an example of an activity which cause both external costs and external incomes.
The costs are related to the environmental impact and could for example be less
income from fishing and tourism. The income is related to the possibility of con-
trolling the water flow downstream the power plant, which may produce a more
even water flow; hence, conditions improve for agriculture and irrigation.
Besides, therisk of floods is decreased.
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Figure3.5 The consequences of external costs. Consider the same market as in the
earlier figures, but assume that there are three groups of players: produc-
ers (i), consumers (ii) and others (iii). The consumers marginal benefit
function is MB;; = 140 — ¢/200. Unfortunately their consumption is to the
detriment of the other players, who therefore have the marginal benefit
function MB;;; = —3¢/200. Thus, the total marginal benefit is the same asin
figure 3.1. The supply curveis also the same asin the earlier examples.
If the consumers only consider their own benefits the market price will be
A = 100 which yields a total consumption g = 8 000. Due to the fact that the
consumers disregarded the external costs the total consumption will thus be
larger than when the public welfare is maximised. In a similar manner, an
external income would have resulted in a too low consumption instead.

which is too high or too low compared to how they would have behaved
under perfect competition (cf. figure 3.5). To cope with this problem the
externalities must be made visible to the players of the market, i.e., they must
be internalised. In an ideal electricity market it is assumed that all costs and
incomes are inter nalised.

How well do the above described assumptions of an ideal electricity market
correspond to reality? With suitable legidation it is not particularly hard to
give the playersthe possibility to trade freely. Further, electric energy isapri-
vate good, so the electricity trading should not have problems with free rid-
ers. In areal electricity market, there are however also some public goods.
Among those are for example the grid, which is studied more closdly in
chapter 6.

Electricity generation is an activity with large economics of scale and it is
therefore natural that an electricity market is dominated by a few large com-
panies. Hence, there isin reality a significant risk of market power, which |
briefly comment in section 7.1. Electricity generation also causes externali-
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Figure 3.6 Equilibrium price of a profit maximizing monopolist. Consider the same
market as in figure 3.1, but assume that all production is controlled by a
monopolist. This producer will not increase the production over the level
where the marginal revenue, MR = dR/dq, where R = MB(q)-q, is equal to
the marginal production cost, MC. The result is apparently a market price
which is higher than the price when the public welfare is maximised, A*.

tites. Most of them are related to the environment. A more thorough discus-
sion of externalities, eectricity markets and environment is provided in
chapter 4.

3.1.3 Perfect Monopolists

A monopolist is a player who solely controls all production (or in rare cases
all consumption). A monopolist has per definition extreme market power and
if the monopoalist chooses to use this power, the market price will be higher
and the total surplus less than what would have been obtained in a perfectly
competitive market (cf. figure3.6). In an ideal electricity market it is
assumed that any monopolist in the market is not profit maximizing, but altru-
istically tries to maximise the benefit to the society. Such monopolists | refer
to as perfect monopolists.

There are two reasons why | include perfect monopolists in my definition
of an ideal electricity market. The first is that the power companiesin a verti-
cally integrated electricity market have monopoly, and by introducing the
idea of perfect monopolist | want to emphasise that also vertically integrated
electricity markets could be ideal. The other reason is that some functionsin
an electricity market should be operated by a monopolist even in restructured
electricity markets.

If we start by investigating the first reason, we may ask ourselves why we
should at all bother to restructure electricity markets. Why make things diffi-
cult by organizing a competitive market if it works as well with a planned
economy, where one or more perfect monopolists run the electricity supply?
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In theory, there is certainly no difference between perfect competition and a
perfect monopolist, but in practice there are several organisational difficulties
with monopolies. A price taker in a perfectly competitive market does not
require a large administration to make decisions which maximise the public
welfare; all the price taker has to do is basically to compare the market price
to the own marginal benefit or marginal cost.

Running a monopoly is a more difficult task. Firstly, the monopolist must
as stated above act in such away that the benefit to the society is maximised,
but regardless of how good the intentions of the monopolist are, it istoo easy
for the organisation to eventually forget about the social benefits and start pri-
oritizing the benefits of the organisation itself—and then in particular the
very personal benefits of the leaders of the organisation.™* Thereisalso arisk
that the monopolist has a different view of the social benefits than the rest of
the society—the term “benefit to the society” is as mentioned earlier not com-
pletely unambiguous. But even if the monopolist actualy triesto behave as a
perfect monopolist, it is difficult to control centrally a complete market. It is
not unusual that the monopolist creates a complicated and inefficient
bureaucracy, which cannot control the market in such a way that the benefit
to the society is maximised.1?

There is however no law of nature which yields that a monopolist must be
inefficient. An open, democratic organisation with a clearly specified objec-
tive of its activities can very well be considered a perfect monopolist. Like-
wise should a monopoly run by a cooperative, making the customers of the
monopoly its owners, be able to fulfil the requirements of a perfect monopo-
list.

My other reason for including the term perfect monopalists is that in some
cases it is preferable to have a monopoly compared to even the most perfect
competitive market, since there are so-called natural monopolies, i.e. markets
where one single firm can supply al possible levels of output to a cost less
than what would be obtained by several competing firms[137]. This situation
can arise if there are high fixed costs and low variable costs. An example is

11. The history offers a number of tragic examples of this; maybe the most clear one
is the oppression and exploitation of the own population executed by the Soviet
elite.

12. Again the Soviet Union is an almost over-explicit example. As pointed out in
[142] they had in the 1930’s a ssimple planned economy, which could be control-
led by asingle ministry of industry. This centrally controlled economy could man-
ufacture heavy industrial products (i.e., the kind of products usable to win world
wars), but could hardly produce light industrial products which improve the qual-
ity of life for ordinary people. In the 1950’s the number of ministries of industry
had grown to 40, but still they could not produce food, housing or consumer prod-
ucts in such quantities that the standards of living could reach the same level as
the Western World—in spite of a ruthless usage of resources and raw materials,
with sometimes devastating consegquences for the environment.
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the construction of a bridge crossing a river. If the bridge has sufficient
capacity to allow all possible traffic to pass then there is no efficiency gain to
be made by building a competing bridge next to the first one. In this case the
fixed costs (i.e., the cost of building the bridge) are high, whereas the opera-
tion costs (the cost of passing the bridge) is practicaly negligible. The new
bridge would just increase the fixed costs; the variable costs—which decide
the market price—would not be affected by the competition. In an electricity
market, transmission and distribution grids are examples of natural monopo-
lies. The grid is however of such importance to the electricity market, that |
will discuss the grid pricing under its own heading (see section 3.1.5).

3.1.4 Perfect Information

The players can only trade in an optimal way if the information they base
their rational decisions on is correct. In the ideal electricity market it is
assumed that all players have exact knowledge of all parameters of signifi-
cance to their decisions. We say that the players have perfect information.
We could restrict ourselves to acknowledging that perfect information is a
necessary condition for an electricity market to be ideal, but it might be inter-
esting to study afew details about what this really means.

The players need for information depends both on the market structure as
well asthetechnical properties of the good which istraded. If the demand and
supply are relatively constant over time, there will be a rather stable market
price, and al the individual players need to do isto compare the market price
to their own benefits and costs respectively. Consider for example a product
like a car; it is not very difficult to get an overview of how much a car of
some particular quality should cost. Given this price the producers can decide
if they manage to deliver a corresponding car to that price and the consumers
can compare the benefits of owning such acar to the cost of purchase. In such
amarket it is fully possible for the players to collect information which rea-
sonably can be considered as perfect.

For other goods—not the least electric energy—there are considerable vari-
ations in both supply and demand, even in the short run, which makes it
harder for the players to determine the market price at a given moment. In
those cases the market structure will have alarger importance. If the market is
designed as some kind of auction (i.e., the players submit bids to some
authority, which then decides either to accept or reject bids and sets the
prices) then the central authority coordinating the market will assuredly need
extensive information, but that information is obtained from the bids of the
players. The individual players do not need to know anything more than their
own preferences. A centralised electricity market is designed in this way. On
the other hand, in a bilateral electricity market, the individual players will
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reguire alot more information, because they have to make their own forecasts
about how the market price will vary. A good forecast requires good knowl-
edge of the market and the behaviour of the other players.

If a good can be stored, there will be two consequences; partly the market
price becomes more stable, because variations in supply and demand can be
evened out using the storage. At the same time, those players who can store
the good need good forecasts about the future, as they otherwise cannot opti-
mise the usage of their storage facilities. The possibility to store is thus a fac-
tor which creates a demand of forecasts about the future.

Predicting the future is of course an extremely difficult task and it is safe to
say that as soon as the players of an electricity market need forecasts, perfect
information becomes an impossibility. Studies of how forecast uncertainties
affect the electricity market are therefore a pressing problem, which | will
treat in more detail in chapter 5.

A specia information problem is when some players have asymmetric
information, i.e., when some players have access to more extensive or more
reliable information than others. For example, the seller of a used car knows
more about the condition of the car than the buyer does. 13 The sdller thus has
better information about his or her marginal cost than the buyer has about the
marginal benefit, which may cause them to settle a price which favours the
seller. By this means, part of the consumer’s surplus is transferred to the
seller, but the total surplus is not affected. However, it could also be possible
that the buyer makes such an incorrect assessment that he or she buys a car
that would not have been sold if the buyer had known the state of the car—in
this case the total surplus has been affected. Hence, asymmetrical information
may lead both to redistribution of the total surplus, but in the worst case the
total surplus will decrease, too. In an electricity market asymmetrical infor-
mation could for example occur if different players have access to forecasts
of different quality. This kind of problems is however nothing | will study
more closely in this dissertation.

3.1.5 Perfect Grid Tariffs

A specia property which differs an electricity market from a general market
isthat all electricity trading has to be performed using a common grid. The
conseguences of this fact could be included in the earlier described prerequi-
sites of perfect competition, perfect monopolists and perfect information, but
| find it quite natural to summarise the analysis under an own heading.

First we may observe that the grid is a natural monopoly. The cost of build-

13. It should be noted that it is not always the seller that has an information advantage
towards the buyer. For example, anyone taking out a life assurance probably
knows his or her own health better than the insurance company.
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ing grids are far higher than the operation costs; therefore it is very unlikely
that there would be any benefit to the society if parallel grids were built in
order to introduce competition. That the grid is a natural monopoly does how-
ever not mean that it has to have one owner; different parts of the grid can be
owned by different players, aslong as each player has aloca monopoly. This
ownership structure is for example found in Sweden, where the transmission
grid is owned by the state utility Svenska kraftnét, whereas the distribution
grids are owned by several different companies.

An electric grid is a complex technical system, where a number of parame-
ters, e.g. frequency, voltage and currents, musts be kept within certain limits
in order to keep the system going. That thisis doneis of course afundamental
necessity to have an electricity market at al. In the ideal electricity market it
is assumed that all players behave so that safe operation of the system is
maintained. Exactly how it is arranged to fulfil this requirement is not speci-
fied in detail; safe operation can be maintained spontaneoudly of all players
or because there is a system operator who has the authority to order other
players to take appropriate actions when the safety of the system is at hazard.

Naturaly, it costs to build and operate a grid and this cost must be included
when the total surplus is determined. In an electricity market we therefore
have

TS=B(q) - C(q) — Cy(a), (3.7)

where Cy are the costs of the grid. The turnover maximizing the public wel-
fare, g*, isthus given by

MB(q*) = MC(g*) + MCT(q"), (38

which means that the marginal cost of transmitting the quantity g* over the
grid, somehow hasto be passed on to the grid users, so that they can compare
their marginal benefits to the marginal transmission costs. We may say that
the electricity trading causes external costs and the grid tariffs are amethod to
internalise them. In the ideal electricity market it is assumed that the grid
owners charge perfect grid tariffs, which provides the players of the electric-
ity market correct signals about how the grid should be used to maximise the
benefit to the society.

Safe operation is in this dissertation equivalent to keeping a stable fre-
guency in the system (i.e., to keep balance between production and consump-
tion) and not exceeding the transmission capability of any interconnection.
These questions will be discussed in section 5.1. In chapter 6 other operation
costs of the grid will be treated; besides, some comments on maintenance and
investment costs are given.
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3.2 MODELLING

A nice property of ideal electricity markets is that they are easily modelled.
Given certain conditions, i.e., what | refer to as a scenario, the players of the
ideal electricity market will behave so that the benefit to the society is max-
imised. A scenario in an ideal electricity market can therefore be analysed by
solving an optimisation problem in the following form:

maximise benefit to the society (3.99)
subject to physical limitations of the power system. (3.9b)

| call this kind of optimisation problem a scenario problem.2* Notice that the
time perspective of the scenario problem is not specified. We may just aswell
let the scenario problem correspond to the problem of maximizing the benefit
to the society in the short run as in the long run. In the short run al resources
and the demand are given, whereasif the scenario should maximise the social
benefitsin the long run, we have to consider market dynamics, asfor example
that new production and transmission resources may be added to the system
and old units can be shut down. In this dissertation | will not treat market
dynamics any further, but it isimplied that all models consider maximisation
of the benefit to the society given the existing resources.

The modéelling in itself islimited to finding a proper model to represent the
constraint “the physical limitations of the power system”. We may choose
any level of details we want. The models described below are intended to be
used for Monte Carlo simulation of electricity markets and then it is desirable
to keep the number of variables down in each scenario problem, since the
computation time of an optimisation problem is not a linear function of the
problem size; atwice as large problem will therefore take more than twice as
long to solve.™® Thus, a model having twice as large scenario problems will
take considerable longer time to simulate, because thousands of scenarios
have to be analysed, and it is therefore important to try to simplify the models
as much as possible—of course provided that we do not remove such features
which have amajor impact on the behaviour of the e ectricity market.

14. An dternative to formulating a scenario problem is to introduce separate optimi-
sation problems for each producer and consumer; these player problems are then
related to each other by one or more balance constraints which apply to the entire
market. At the end of the day, we will end up with the same optimality conditions
regardless of which aternative we have chosen. When studying non-ideal electric-
ity markets it might be more straightforward to formulate player problems than an
overall scenario problem; examples of such cases are found in chapters 4 and 6.

15. The complexity of different optimisation algorithm is amost a science in itself.
Aninsight of thetopicisgivenin[132].
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3.2.1 Power System M odel

The choice of power system model is primarily depending on the objective of
the model. In areally detailed model of a power system, a so-called instanta-
neous value model, all components are modelled using a mixture of differen-
tial and algebraic equations. Such a model requires of course immensely
intensive calculations (it may be so that it takes two hours of computationsto
study what happens in the system during ten seconds— see for example [28])
and if it is possible we prefer to use simpler models. Such asimplificationisa
fundamental frequency model, where the models of some components are
simplified so that part of the differential equations are replaced by algebraic
equations [22].

If it is not necessary to study power system dynamics then it is possible to
use aload flow model. This model uses rms values for voltage and currents,
which enables us to get rid of all differential equations and just use a non-lin-
ear system of eguations to represent the power system. A further simplifica-
tion of the load flow model are so-called DC load flow models, where the
voltage regulation is neglected and only active power is considered.'® DC
load flow are often used when the power system model is just a part of an
economic analysis.!’ In spite of all simplification, the DC flow model still
requires a large number of variables to represent the state of all buses of the
power system. Consequently, we are forced to solve very large optimisation
problems if we want to use this kind of models to study individual scenarios
in an electricity market simulation. Therefore, | think that the model which is
most appropriate for Monte Carlo simulation, is a so-called multi-area model.

In a multi-area model the real grid is simplified by joining several buses
into “equivalent buses’ (which we for the sake of simplicity refer to as
“areas’). We also develop equivalent models of power plants, transmission
lines, load etc. (further details about this will follow below). The final result
is a model with a comparatively limited number of variables. The price we
have to pay is of course having aless detailed model. The decreased level of
details does not have to be restricted to the power system model, but may also
affect the economical model. If for example several power plants, which in
reality have separate owners, are joined to a single equivalent it is no longer
possible to study the surplus of individual producers, but only the sum of the
surplus of all producers. This kind of restriction is however fully acceptable
in most cases.

Over the years several multi-area models have been proposed, for example
[65, 66, 69, 70, 71].18 The differences between different multi-area models

16. For clarification, load flow models are sometimes referred to as AC load flow as
contrast to DC load flows. Both models are described in basic textbooks on power
system analysis, e.g. [32, 34].

17. Seefor example [12, 115, 121].
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Figure3.7 Example of a piecewise constant approximation
of continuously varying load.

are about whether the problem formulation is linear or non-linear, how trans-
mission losses are modelled or if they are neglected, if energy storage facili-
ties (for example hydro reservoirs) are modelled, and if the need for reserves
is considered.'® At the end of the day, the objective of the simulation and the
data available decides which model to use. | have chosen to present here a
rather general model of an ideal electricity market, which should be appropri-
ate in most contexts and which later can be modified to include non-ideal
properties. My model is afurther development of the model presented in [69,
70]; the difference is that | use a more general expression for transmission
losses and | have added energy limited power plants to the model. Below
details follow of how different parts of the power system are modelled.

Time

In a scenario we study an electricity market for a certain period of time. The
conditions of the electricity trading varies continuously; the available capac-

18. It should be noted that many authors use the designation “multi-area model”
although they use a DC flow model, which might not be completely incorrect, but
nevertheless causes some confusion. Personally, | prefer to make a strict differ-
ence between these two notions.

19. If the reserves are considered, the multi-area model do not correspond to an ideal
electricity market, because there is no need for reserves if perfect information is
available.
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ity of power plants and the grid may decrease due to failures, the available
generation capacity in some power plants isweather dependent, the operation
costs may depend on varying fuel prices, consumers increase and decrease
their consumption, etc. However, scenarios having continuously varying sce-
nario parameters are impracticable to analyse in digital computers and we are
therefore forced to use some kind of approximation. It is common to use
piecewise linear function, i.e., each scenario is divided into a number of time
periods (which do not have to have the same length) and each scenario
parameter is considered constant within each of the time periods (cf.
figure 3.7). To emphasise that a piecewise constant approximation is used,
we may use the unit MWh/h (average power) rather than MW (instantaneous
power).

The piecewise constant approximation causes two kinds of errors. The first
isthat it is often incorrect to use the period mean of a scenario parameter as
input to afunction, because in the general case we have

T T
h(% !) p(t)dt} - % !, h(p(t))dt. (3.10)

However, linear functions will produce the same result regardless of whether
the period mean is used or if we take the mean of the instantaneous value.
Thus, the impact of this error depends on how we have chosen to model the
electricity market. It is fully possible to use completely linear models, but
unfortunately quadratic functions are necessary if transmission losses
between the areas of a multi-area model should be realistically modelled (cf.
[67]).

The second error which can arise is that although the period mean is less
than a limit, this does not signify that the instantaneous value is below the
limit during the entire period. Thus, there is a certain risk that important
events in the system are not detected, as for example when the load exceeds
the available generation capacity.

The total duration of a scenario can be chosen more or less arbitrarily. Two
main options can be distinguished, and | refer to them as short and long sce-
narios rekepectively.20 In a short scenario we study just a single time period,
which means that al scenario parameters are constant during the entire sce-
nario. To reduce the impact of the two errors described above, it is desirable
that the time period of the short scenario is as short as possible—when the
duration of the time period approaches zero the period mean approaches the
instantaneous value. In most cases there is nothing preventing us from letting
short scenarios correspond to an infinitesimal time period.?

20. In other literature—e.g. [46]—the designations “non-sequential” and “ sequential”
simulation are found; they have more or less the same meaning.
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The disadvantage of short scenarios is that they represent a “snap-shot”,
and it is unknown what has happened earlier in the system and which expec-
tations the players have about future events. If there is some sort of energy
storage in the system then the players of the electricity market must continu-
ously decide whether they should use the stored energy now or save it and
sell it for a higher price at some later occasion. Time constants, for example
the start-up time of large thermal power plants or the delay time from the clo-
sure of the ahead market until the actual hour of delivery, may cause deci-
sions to seem optimal at one point of time, but at alater time they turn out to
have undesirable consequences. Such a time depending course of events is
hard to simulate using short scenarios. To overcome this, we are forced to use
long scenarios, which includes all scenarios comprising more than one time
period.

Errors due to incorrect mean values are inevitable for long scenarios, but
we cannot use too short time periods, as the scenario problem then becomes
to large. The choice of the duration of each time period istherefore a trade-off
between how much computer power we have access to (i.e., how large sce-
nario problems we can manage) and how large errors we find acceptable. The
most appropriate compromise is probably varying from system to system, but
since at least the load shows large variations within a day it seems reasonable
that the time periods should not be less than one hour long. The most natural
choice is according to my opinion to let the time periods coincide with the
trading period of the simulated electricity market.??

In the model, we refer to periods by using the index t. Symbols with too
many indices can however be hard to read; therefore, | leave out the period
index in general reasoning, where the period division is of no large impor-
tance. Likewise, the period index is unnecessary in all models of short scenar-
ios.

Non-dispatchable Power Plants

The available generation capacity of non-dispatchable power is aways
depending on some factor beyond human control. Among the non-dispatcha-
ble power sources are example wind power (where the generation capacity
depends on the wind speed), hydro power without reservoirs (where the gen-
eration capacity depends on the water flow passing the power plant) and pho-
tovoltaics (where the generation capacity depend on the insolation).

The designation “non-dispatchable” might be misleading, because it is

21. The exceptions include simulating so-called market splitting (see section 6.2),
because the market during transmission congestion periods will be split during an
entire trading period.

22. If amore detailed model of the real-time trading is to be used, it will however be
necessary to use time periods shorter than the trading periods (see section 5.1).

a4 Modelling



Chapter 3: The Ideal Electricity Market

actually possible to decrease the generation in these units by spilling power.
However, thisis never done in reality unless absolutely necessary to maintain
safe operation of the power system, because the variable operation cost in
non-dispatchable power plantsis so low, that it is aways more economical to
reduce the generation in some other power plant.

Generaly, it is assumed that the variable operation cost is zero in non-dis-
patchable units and their most significant feature is then the available genera-
tion capacity in a certain moment. In the general case, the available genera-
tion capacity of any area may be summarised into a single equivaent unit,
with the available capacity W,,.

Energy Limited Power Plants

The energy limited power plants have more or less the same properties as
non-dispatchable power plants, but with one major exception: these power
plants have the possihility to store energy for future use. By that means, there
are larger possibilities to control the power plants, as surplus energy can be
stored during those times when the available generation capacity is larger
than the power output needed, and vice versa. It can be noted that all non-dis-
patchable power plants can be turned into energy limited power plants by
adding an appropriate energy storage; a hydro power plant becomes energy
limited if it is provided with a hydro reservoir, wind power and photovoltaics
can be connected to batteries, etc.

Several energy limited power plants can be merged into an equivaent
power plant. Each equivalent power plant, r, is characterised by having a cer-
tain available capacity, H, , acertain inflow to the energy storage, Q; 1, and
a certain maximal storage capacity, M, ;. If the inflow is larger than the
available generation capacity at the same time as the storage is full, it is then
necessary to spill energy from the storage; this option is represented by its
own variable, § ;. It is aso possible to introduce a cost function Cyy; (Hy 1),
but since energy limited power plants generally have negligible operation
costs, | assume in this dissertation that the operation cost can be omitted.

As a scenario cannot be infinitely long, it is necessary to somehow model
how the energy storage facilities of the system have been used before the start
of the scenario, which is done by assuming that the initial state, M, o, is
known for each energy storage. Moreover, it must be considered that the
players of the electricity market base their actions on what will happen in the
future (seen from the viewpoint of the scenario). They will therefore make
sure that they have saved some energy in each energy storage at the end of the
last period of the scenario. This can either be modelled by assuming the final
contents, M, 1, to be known in advance, or by defining a benefit function,
Bwmr(Mr 1), which is included in the objective function. The choice between
these two options is arbitrary, since a particular value of stored energy will
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result in a particular stored energy and vice versa.?3 | have chosen to use pre-
determined final contents, because the objective function then becomes a lit-
tle bit shorter.

A very important assumption when modelling energy limited power plants
isthat there may not be any couplings between the energy storage facilities of
two equivalent power plants, as this would make the scenario problem much
more complicated to solve. If we for example consider hydro power plantsin
a river system, electricity generation in one power plant causes the energy
storage, i.e., the reservoir contents, to increase in the next power plant down-
stream. Therefore all hydro power plants in the same river system must be
treated as an equivalent power plant.

It is not an easy task to obtain equivalent models of energy limited power
plants. There are several factors that make the calculations complicated. For
example may the efficiency of a power plant be depending on the contents of
the energy storage (for example, the efficiency of ahydro power plant depend
on the head, which in its turn depend on how much water there isin the reser-
voir). The varying efficiency makes it hard to determine exactly how much
energy a storage actually contains at a given moment. Besides, couplings
between different power plants (as for example the above mentioned hydro-
logical couplings between hydro power plants) make it difficult to identify
clear-cut available capacity, maximal energy storage, etc.2*

Thermal Power Plants

A thermal power plant generates electricity by combustion of some fuel,
which is assumed to be available in unlimited amounts.?®> The combustion
process can be controlled so that the thermal power plant generates a certain
desired output. The operation cost partly consists of costs which depend on
how energy is produced—primarily the fuel cost—and partly of the cost to
start the power plant. The latter cost varies alot depending on which technol-
ogy is used. When starting a diesel generator set it is more or less immedi-
ately ready for power generation, whereas a coal-fired condensing power
plant may take several hours of heating the boiler—which obviously requires
a certain amount of fuel—before it is ready to be operated. Detailed model-
ling of the start-up costs require the usage of integer variables [90] and that is
something we want to avoid in the multi-area model. Optimisation problems

23. But in exceptional cases the relation between stored energy and its value is not
entirely unambiguous.

24. Actually, calculation of equivalents for power plants with energy storage facilities
is aresearch project in its own. Some initiatives have been taken at KTH to study
equivalents for hydro power.

25. If the access to fud is limited then thermal power plants are also considered
energy limited.
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Figure 3.8 Equivalent unit of power plants with different operation
costs. The figure above shows a number of power plants
having small capacity compared to the total capacity. The
difference in marginal generation cost between any power
plant and the next more expensive power plant is also
small. In this case the power plant might be represented by
a single equivalent unit with a linearly increasing marginal
generation cost. The approximation is indicated by a dot-
ted line in the figure.

including integer variables are generaly more complicated to solve than
problems with just continuous variables, hence—and this is important for
Monte Carlo simulation—they take more time to solve.?® Therefore, for the
time being we neglect the impact of start-up costs (I return to this question in
section 5.2).

Several thermal power plants located in the same area can be merged into
an equivalent power plant. In this respect it is appropriate that the involved
power plants have approximately the same operation cost. It is however aso
possible to consider a number of smaller power plants as an equivaent unit,
as long as there is an equivalent cost function which is a sufficiently good
approximation of the price difference between the power plants (cf.
figure 3.8). Each equivalent unit, g, is represented in the multi-area model by
an available generation capacity, (_39, and acost function, Cgy(Gg).

The Grid

The grid can be divided in atransmission part (high voltage linesfor transfer-
ring power over long distances) and a distribution part (low voltage lines
extending to the consumers). What counts as transmission and what counts as
distribution varies from case to case and is primarily depending on the size of

26. Cf. [125], chapter 9.

Modelling 47



Chapter 3: The Ideal Electricity Market

the considered power system.?’

The transmission grid is only represented by interconnections between the
areas. Between any two areas there may only be one interconnection in each
direction and these interconnections are characterised by a certain available
transmission capability, P, ,, and a certain loss function, L, (P, ). Itis
assumed that the players of the electricity market have complete control of
the flow between the areas, as long as the transmission capability is not
exceeded. This is a fully acceptable approximation for high-voltage DC
(HVDC), because the transmission on these linesis controlled by power elec-
tronics.AC lines are not controllable to the same extent. If thereisan AC grid
where power is injected as some buses and extracted from others, the power
flows will be distributed according to physical laws. The resulting power
flow on each line can be determined using load flow calculations [32, 34], but
such calculations are desirable to exclude from the multi-area model. It is
preferable to try to find loss functions which approximately resemble the
losses which would be obtained if aload flow was performed. In the same
manner, we must choose the transmission capability between the areas so that
it corresponds to the maximal flows which are possible without having unac-
ceptable currents or voltages in aload flow. Determining appropriate approx-
imations for amulti-areamodel by comparison to aload flow model isacom-
plicated task and further research is necessary within this area.?®

The distribution grid is neglected in the multi-area model, which means that
all grid limitations within the areas are disregarded. The distribution losses
can either be completely ignored or included in the price insensitive load in
each area. In the latter case, it is necessary to obtain an approximate function
for the distribution losses; the results of the study in [67] indicate that the
internal losses can be approximated as a function of theload in the area.

L oad

There is generally no reason to distinguish between individual consumers;
they can be merged into “ equivalent consumers’ in asimilar manner as when
we introduce equivalent power plants. When identifying these demand curves
it is appropriate to differ between price insensitive load, D, and price sensi-
tive load, A, because they have to be treated somewhat differently in the
model.

Price sensitive load is represented by a benefit function, B,c(Ao), and a

27. Infor example Sweden lines having a voltage of 220 kV or more are considered as
the transmission grid, whereas in a small local or regional grid as for example
Kigomaregion [7] the transmission grid consists of 33 kV lines.

28. Cf. for example [67], in which approximation of loss functions was studied, and
[68], which discusses calculation of transmission capability.
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a) Supply curve of the power plant G, and demand curve of the load A. At the
electricity price 80 a/MWh both production and consumption are equal to

750 MW.
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b) The load has been divided into a price insensitive load, D =1 000 MW,
and two fictitious power plants, G, and G; respectively, which correspond
to load reductions. The figure above shows the total supply curve (solid
line) of the power plant G; and the two fictitious power plants (the supply
curve of each power plant isindicated by dashed lines). The demand curve
of the price insensitive load isjust a vertical line; the load does not change
regardless of the price.

As can be seen, the electricity price is still 80 8/MWh, at which
G1 =750 MW, G, = 250 MW and Gz = 0 MW. The price sensitive load is
determined by A = D — G, — Gz = 750 MW. The solution is thus the same
asinpanel a.

Figure3.9 Example of modelling price insensitive load. In this electricity market
there is one power plant, G4, and one price sensitive load, A. In the
upper figure the supply and demand curves of the two players are
shown. The lower figure shows the supply and demand curves, when
the load has been divided in a price insensitive part, D, and two ficti-
tious power plants, G, and G3.
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maximal consumption Ac. A load being price insensitive means that the con-
sumers are willing to pay any price for their consumption, which would imply
that the benefit of their consumption isinfinite. Therefore, it isnot possible to
define a benefit function Bp(D,) for price insensitive load. The solution isto
assume that the electricity market always tries to supply the price insensitive
load—we could say that price insensitive load is considered as one of the
physical limitations of the electricity market. As there is no guarantee that
there is always sufficient capacity available to cover the price insensitive
load, it is necessary to introduce a possibility to disconnect a part of the price
insensitive load. In the multi-area model this possibility is represented by a
special variable for disconnected load, U,,, and a corresponding cost function,
Cuc(Uy). This cost function does not have to correspond to the social cost of
disconnected load (such a cost function could be very hard to identify), but
can be chosen arbitrarily as long as it is aways preferable to use the most
expensive power plant of the system than to disconnect load.

Some simulation methods are based on the assumption that the available
resources are compared to given, price insensitive load. This is however not
an obstacle to including price sensitive loads too, because a price sensitive
load can always be rewritten as a price insensitive load and afictitious power
plant representing load reductions (cf. figure 3.9).

3.2.2 Mathematical Formulation

The benefit, cost and loss functions used in the scenario problem of an ideal
electricity market are assumed to be quadratic functions, i.e., functionsin the
following form:

h(X) = o + BX + 1. (3.12)

The resulting optimisation problem can be considered a non-linear network
problem and can be solved using the NNP algorithm [7] or some other, more
general, solution method for non-linear optimisation problems [135]. To
guarantee that there is a unique solution, it is required that the problem is con-
vex; consequently, there will be some conditions on the parameters o, § and
v of the different functions. These conditions are however quite simpleto ful-
fil (cf. the definitions in appendix A) and | will therefore refrain from
describing the details about convexity in this presentation. Thoseinterested in
the convexity requirements of a multi-area model are referred to [7].

To make the mathematical model of anideal electricity market more reada-
ble I have chosen not to rewrite the problem as a network problem. | have
tried to use a notation which hopefully clarifies the relation between the
assumptions behind the model and the mathematical expressions. A complete
overview of the notation isfound on p. 278ff.
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Objective Function

The ideal electricity market by definition maximises the total surplus. As it
has been shown earlier, thisis equivalent to maximizing the value of al con-
sumption minus the cost of all generation and the transmission costs. In the
above described multi-area model the transmission costs are only represented
by the cost of the electrical losses of the interconnections; hence, there is no
reason to differentiate generation intended to be sold to consumers and gener-
ation intended to cover transmission losses.

In addition to the value of consumption and the cost of generation we have
another term in the objective function of a scenario problem, because we
needed to add cost functions for disconnection of price insensitive load. The
compl ete objective function therefore looks like this:

T

maximise ZT[ > Bac t(An ) - ZCGg t(Gg ) => Cyc (U, t)]

t=1 “ceC, ceCp
(3.12)

Constraints

In an idea electricity market it is assumed that the system is operated in a
safe way, i.e., that frequency, voltages and currents are within certain limits.
Voltages and currents in different parts of the grid are not explicitly consid-
ered in the multi-area model, but are part of the transmission capability and
the loss functions. Neither the frequency is explicitly modelled, but to keep
the frequency around the nominal value, balance between production and
consumption is required; this balance has to apply to each area of the system.
In plain language, aload balance constraint can be formulated as

total generation + import = export + price sensitive load
+ priceinsensitive load — disconnected load
in each area and time period. (3.13a)

Rewriting this constraint with all optimisation variables in the left hand side
yields

ZGg,t+ZHr,t+Wn,t+ Z(Pm,n,t_l-m,n,t(Pm,n,t))

geGn reR, meP._m
=2 At 72 Pamtt 2 Uct = 2 Pe
ceC, meP,,, ceCp ceCp

vneN,t=1.. T (313b)

When there are energy limited power plants in the system, it must be con-
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sidered that the energy storage has physical limits and cannot be used just
anyhow. Thereis an energy balance, which in words can be expressed as

New energy storage =
old energy storage + inserted energy — extracted energy
in each storage and time period. (3.14a)

Rewriting this constraint with all optimisation variables in the left hand side
yields

Mr,t_Mr,t—1+TtHr,t+Sr,ter,tv erR,tzl,...,T. (314b)

Limits

Neither resources nor demand can be infinite; therefore, there must always be
an upper limit to each optimisation variable. The upper limit of spillage from
an energy storage is however unnecessary to determine; spillage is never
worth striving for and will therefore be minimised; hence, in practice it isjust
the lower limit of the spillage which has any significance. The limits of the
optimisation variables are thus the following:

0<Ag (< Act, VeceCyt=1,..,T, (3.1539)
0<Gy < Gy 1, vgeGt=1,..,T, (3.15h)
O<H, < Hr’t, VreR,t=1,...,T, (3.15¢)
0<M, (<M, 4, VreR,t=1,...T, (3.15d)
0<Ppmt< 'Sn,m,p vinmePt=1..T, (3.15¢)
0<S 4 VreR,t=1,....T (3.15f)
0<Ug <D¢ ¢ VeceCp, t=1,..,T, (3.150)
0< Wy ¢ < Wy 1, vneN,t=1,..., T (3.15h)

Input and Output of the Scenario Problem

A scenario corresponds to certain given conditions, which mathematically are
described by a number of scenario parameters. The designation scenario
parameter might be somewhat confusing, since the scenario parameters actu-
aly are random variables, although their probability distributions are known
(cf. section 1.1). When generating a scenario, an outcome is randomised for
each scenario parameter. Then the scenario problem can be formulated
according to the general description above, while al constants of the scenario
problem are given by the outcome of a particular scenario parameter. The
final result is a deterministic optimisation problem.
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Even though all constants of the scenario problem thus are scenario param-
eters, it might be observed that some scenario parameters hardly are random
variables, as they gain the same value in al scenarios. | refer to this kind of
scenario parameters as model constants. To this category belongs for example
the area division. In most cases also the benefit and cost functions are
assumed to be the same for al scenarios. The boundary between “real” sce-
nario parameters and model constants is thus something that at the end of the
day is decided by the designer of the multi-area model.

The behaviour of the electricity market in a given scenario is described by a
number of result variables, which are random variables with unknown proba-
bility distributions. When the scenario praoblem has been solved, the optimal
values of the variablesin the scenario problem show how the market behaves;
hence, the solution to the scenario problem is a set of outcomes of the result
variables. All inall, these result variables give a detailed picture of the behav-
iour of the electricity market, but in many cases we prefer to study more gen-
eral result variables, which can be introduced by defining new result variables
as functions of the old ones. Such important general result variables are for
example the following:

Definition 3.2. Thetotal operation cost, TOC,” is the sum of the
operation cost in all power plants during the entire scenario, i.e.,

T
TOC= T3 Caq Gy o).
t=10¢€ G

Definition 3.3. The result variable LOLO indicates if it has
been necessary to disconnect any consumers in the system, i.e.,
whether or not there has been a power deficit. For asingle period

we get
0 if YU =0,
ceCp
LOLO, =
1 if YU, >0
ceCp

Thus, LOLO is a binary variable in short scenarios. In long sce-
narios, LOLO becomes a weighted average of the LOLO; for
each time period:

29. This footnote has been added to maintain the footnote numbering in pace with the
Swedish edition.
30. Loss Of Load Occasion.
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|
S LOLOT,

—t=1
LOLO = T .

2T
t=1
Definition 3.4. The energy not served, ENS,31 is the mean of the
load which could not be supplied due to power deficit, i.e.,

Y (T YU )

ENS:t:]_ _Cl_ECD

2T

t=1
Additional result variables which are relevant to a particular smulation (for
example individual loss of load variables in each area) may be defined in a
similar manner.

As stated in section 1.1, the objective of the simulation is to determine the
value of a number of system indices, which can be used to compare different
options. The most common system indices are in a mathematical sense the
expectation value of some result variables. Some examples of system indices
and the underlying result variables are listed in table 3.1. For the remainder of
this dissertation | will focus on the first two system indices, ETOC (the

Table 3.1 Some interesting systemindices in a multi-area model.

Result variable System index Unit Interpretation
TOC ETOC = E[TOC] o/h Expected operation cost.
LOLO LOLP = E[LOLO] % Risk of power deficit.
ENS EENS= 8 760-E[ENS | MWh/year | Unserved energy.
Eiot® EE = 8 760-E[E;] ton/year | Expected emissions
Gy EGy = E[G] MWhh | Expected generation
Pom EPn, m=E[Pn, ml MWHh/h | Expected transmission
Lot EL = E[Lyod MWh/h | Expected losses

a.  Ineach thermal power plant we assume that there is an emission function
Egg(Gy) (cf. [75]); Eyot isthe sum of the emissions of all power plants. It is possi-
ble to define separate emission functions for different hazardous sub-
stances—carbon dioxide,sul phur dioxide,nitrogen oxides, etc.—but it may also
be preferable to weight all emissionsinto a single emission index.

31. Thisfootnote has been added to maintain the footnote numbering in pace with the
Swedish edition.
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expected total operation cost) and LOLP (the loss of load probability, i.e., the
risk that some consumer involuntarily hasto reduce his or her consumption.).

The attentive reader may now ask if the most important system index—the
benefit to the society, which is to be maximised by the ideal electricity mar-
ket—has disappeared from the analysis. Thisis not the case, but | have taken
the liberty of forestalling the difficulty to determine a clear-cut definition of
the benefit to the society in a real electricity market. In a completely ideal
electricity market, we assumed that all benefits and all costs can be measured
and summarised into atotal surplus, TS. In practice, thisworks only for small
fictitious examples (such as those | use in chapters 4-6), where the numerical
values can be chosen rather than determined. For example, in redlity the
social cost of disconnected load is very difficult to determine and the same
is—even more—valid to the costs of environmental damage due to different
emissions.

Thus, when simulating real electricity markets we are forced to replace TS
by severa system indices, where those costs which are hard to estimate are
separated from directly quantifiable benefits and costs.32 In this way, the sim-
ulation results become more transparent, which should make it easier for the
decision makers who ultimately will consider the results.®3

32. In general | assume that the load is price insensitive, which means that the benefit
of consumption is infinite. Maximizing the total benefit minus the total cost is
then equivalent to minimizing the cost; the lower the operation cost, the higher the
total surplus. It is by the way also possible to use ETOC as a measure of the
directly quantifiable costs when the load is price sensitive, because a price sensi-
tive load can be divided in a price sensitive part and one or more fictitious power
plants—in this case the generation cost of the fictitious power plants should be
included in TOC.

33. Assume that two options have been simulated, and in the first case the result was
ETOC = 1000 Ma/year, LOLP = 0.09% and considerable emissions of green
house gases, while in the other case the result was ETOC = 1 100 Mo/year, LOLP
= 0.08% and almost zero emissions. In which case is the public welfare the larg-
est? To answer this question, we have to value the risk of power deficit and the
environmental impact, and this should clearly be indicated in the data presented to
the decision-maker.
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Chapter 4

ELECTRICITY
MARKETSAND
ENVIRONMENT

Today, fossil fuels account for a major share of the world's energy supply.*
Meanwhile, combustion of fossil fuels causes some of the most serious envi-
ronmental problems of our time, for example acidification and global warm-
ing [72, 83]. If we should achieve the vision of a sustainable develop-
ment—i.e., “a development that meets the needs of the present without
compromising the ability of future generations to meet their own needs’
[79]—a changeover to renewable resources is necessary. This changeover
will have a huge impact on the electricity markets of the world, because two
thirds of all electricity is generated from fossil fuels [88] and this share hasto
be significantly reduced. Besides, electricity consumption might increase asa
conseguence of phasing out fossil fuelsin other sectors, for example if petrol
cars are replaced by electric cars, where the fuel is produced by electrolysis of
water.

To create a sustainable development, the players of the electricity market
must consider the real costs of electricity generation, i.e., the external costs
caused by damage to our common environment must be internalised. In this
chapter | will describe different methods to internalise environmental costs
and how these methods can be applied to electricity markets. | will focus on
such methods which actually are used in real electricity markets. However, |
have chosen not to go into details of some methods which might work, but in
reality are not used.?

1. Intheyear of 2001 almost 80% of the world total primary energy supply was from
fossil fuels[88].

2. An example of such a method which | do not intend to study any further is algo-
rithms for simultaneously minimizing the generation cost and emissions (see for
example [74, 77]). In a centralised electricity market it would be possible to
require that the production bids not only state a quantity and price, but also the
size of the generation will cause. The central power pool could then consider both
generation cost and emissions when deciding which bids to accept. Anyway, asfar
as | know, such a scheme has never been applied in redlity.
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Figure4.1 Example of external costs. Consider a market where there are three groups
of players: producers (i), consumers (ii) and others (iii), The marginal cost
of the producers is MC; and the marginal benefit function of the consumers
is MB;;. Unfortunately, consumption of the good of this market causes dam-
age to the other players, which therefore have the marginal benefit function
MB;;;. The total marginal benefit is MB = MB;; + MB;j;;. The intersection
between MB and MC; yields the turnover which maximises the total surplus,
g* =5 000, but if the consumers only consider their own marginal benefit,
MB;;, the turnover becomes g = 8 000 instead.

We can identify two main groups of solutions to problems regarding exter-
nalities: private responses (when the involved players by themselves try to
manage the situation) or government responses (when the authorities some-
how regulate activities causing externalities).2 The first two sections of this
chapter deal with different variants of these two options. The chapter is ended
by adiscussion of the credibility for different solutions.

4.1 PRIVATE RESPONSE

It is often difficult for a market economy to manage externalities, because the
consumers do not get correct price signals of the social cost of their consump-
tion (cf. figure 4.1). Being difficult is however not the same thing as being
impossible, and sometimes the market may by its own find a solution which
is maximizing the benefit of the society, even when there are externalities
present. In this section | will investigate whether private responses can man-
age environmental problems caused by electricity generation.

3. Cf. [137], section 18.2.
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Figure4.2 Equilibrium after merging producers and other players. The marginal
cost curve of the merged firmis MC = MC; — MB;;; and the producers's
surplus is about 381667, which can be compared to the surplus
480 000 for the producer and —213 333 for the others, if they do not
merge (cf. figure4.1). Thus, the sum of the surplus is higher in the
merged firm.

Negotiationsand Mergers

The third party who is affected by an external cost does not haveto sit silently
and accept the situations, but can take actions to increase the own benefit.
One way to internalise an external cost is that the party who suffers damage
merge with the producers® and form a single firm, in which the negative ben-
efit of the third party will then be clearly visible in the accounts. An example
of amerger isshown in figure 4.2.

Unfortunately, it is not always easy to merge companies. A wide range of
practical difficulties may impede mergers. | will not investigate those any fur-
ther, but just conclude that a firm internalizing an environmental problem as
global warming would have to include more or less all the electricity produc-
ers and farmers of the world, as well as a few other industries—in other
words, not avery realistic solution.

An dternative to players merging is that they negotiate. A simple example
is two persons, A and B, sitting in the same room. A does not like cigarette
smoke and values the decreased benefit if B smokes a cigarette to 10 g,
whereas B values the benefit of smoking a cigarette to 5 o. If B takes out a

4. Or take over the company, if the producer is not interested in a merger.
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cigarette, it would be possible for A to offer him or her for example 6 @ to
refrain from lighting the cigarette. The result should be beneficial to both par-
ties compared to if B actually smoked the cigarette, as A pays 6 @ to avoid a
“cost” of 10 @ and B receives 6 @ instead of an “income” of 5 a.

Although negotiations have the possibility to direct the resource utilisation
in such amanner that the benefit to the society is maximised even in presence
of externdities, there are plenty of situations where negotiations will not
solve the problem or cannot be performed at all.® Firstly, there are moral
issuesto be discussed—isit really righteous that the one subject to a pollution
should have to pay to avoid the external cost or isit the polluter who should
pay? Secondly, it must be possible to identify the opponent if any negotia-
tions are to take place. A forest owner whose trees have been damaged by
acidification cannot possibly identify which of all possible pollutersit is who
has damaged the trees. If severa forest owners try to avoid this problem by
consolidating and reaching a bargain so that the total emission of acidifying
pollutants diminishes, then there will be a free-rider problem, as there are
costs of organizing negotiations of this size. The forest owner who does not
contribute to the negotiations will nevertheless obtain the benefits of reduced
emissions that are the results of the negotiations. Finally, incomplete informa-
tion may cause the results of the negotiations to become suboptimal or—in
worst case—the negotiations may aready in advance be condemned futile
and never come off.

Electricity Disclosure

Externalities arise when consumers only compare their own marginal benefits
to the direct marginal costs of the producers, without regarding how any third
parties are affected. It should however not be taken for granted that neither
consumers nor producers behave in this way, because moral values can make
us voluntarily internalise external costs. An example of how moral values
affect our behaviour is social conventions. Consider the example in [137]
how children are taught not to litter, which in economic terms can be
described as the individual cost of taking the litter to the closest dustbin is
less than the external costs implied of all neighbours if the trash is just
dumped in the nature; hence, using the dustbins instead is beneficia to the
society.

The environmental debate of the last decades has made many consumers
willing to pay a higher price for goods if that avoids or at |east decreases the
external costs. It is therefore reasonable to assume that if consumers in an
electricity market are offered the possibility to choose which kind of electric-
ity they want to buy, then the demand for electricity generated in environmen-

5. See [137], p. 605f.
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tally benign power plant will increase.®

Let us assume that there in an electricity market are E different electricity
products, where one is “grey power” (i.e., electricity from unspecified power
plants) and the other correspond to a particular mix of different power
sources.” There is some player who guarantees that the system is supplied at
least as much energy from a certain power plant as the consumers of the dis-
closed electricity products have demanded. The surplus, i.e., the energy
which was not specifically demanded by a consumers, isincluded in the grey
power.

The balance between production and consumption of an electricity product
isvalid for a certain accounting period, which can be chosen arbitrarily. The
shorter the accounting period, the harder it will become for non-dispatchable
power plants to sell disclosed power. It is common to choose quite a long
accounting period, for example a year. If a scenario comprises the periods

, T then the scenario is divided in A accounting perlods A ={1,
ST AT+ L oo Tohy oo AR ={TaLg + 1, ., T2

We now introduce the set Mq to denote the equival ent power plants which
contribute to electricity product e. The requirement to produce sufficient
amounts in these power plants is modelled as an extra constraint to the sce-
nario problem. To make this constraint at |east somewhat more readable, we
neglect that a particular electricity product might require a certain mix of the
power sources in questi on.? We then get the following constraint:

ZTt[ 2 Wn et 2 Hr +ZGg,j>Z 2 Thc v
teA ‘neM, reM, ge M, te AjceCq
ve=1 .. Ea=1..A (4.2

where C,, are the equivalent consumers who demand electricity product e.

Eco-labelling

It is difficult for an individual consumer to collect enough information to be
able to account for the environmental impact of a product in a purchase deci-
sion. A common solution is therefore that a larger organisation (for example
an international body like the Nordic Council or the EU, or private associa-

6. Cf.[73].

7. However, some claim that such freedom of choice fools the consumers, because
for example electricity from wind power plants cannot be separated from coal
power. Thiskind of objections are treated in section 4.3.

8. The most simple choiceis of course A=1and A; ={1, ..., T}, i.e., each scenario
comprises exactly one accounting period.

9. It would for example be possible to offer the consumers an electricity product con-
sisting of 80% hydro power and 20% wind power.
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tions as the Swedish SNF and KRAV) collects environmental information
about different products and conveys this knowledge in form of different kind
of eco-labels. Another possibility is of course to have a legidation that states
which information a producer must supply about the products.10 However,
from the consumers point of view, it is probably more comfortable to let a
few easily identified labels control your purchases, instead of scrutinizing the
declarations of contents whenever you go shopping.

Eco-labelling of electricity works in the same manner as disclosure of elec-
tricity, but there will be just two electricity products—grey power!! and eco-
labelled power—instead of E products.

4.2 GOVERNMENTAL RESPONSES

If a market economy cannot cope with externalities, public authorities can
intervene and establish rules that force the players of the market to utilise the
resources in such a manner that the benefit to the society is maximised.
Regardless of how theintervention is done, it isrequired that perfect informa-
tion is available, if the benefit to the society should be maximised. The
responsible authority must know which external costs there are and their ori-
gin. In practice, thisinformation can be very hard to collect, because the rela-
tion between human activities and environmental damages is complex. It
might be hard to value the costs of an environmental damage and in some
cases it might also take a long time before the environmental damage even
can be confirmed by science—and then it might already be too late to take
actions.

With perfect information, different rules will achieve the same resource
allocation and consequently the same total surplus (the surplus of individual
players may however vary depending on the chosen solution). Without per-
fect information, it is likely that the consequences of different rules will dif-
fer, because the information need varies depending on the chosen solution.
Rules which are based on information which can be estimated with reasona-
ble accuracy have better basic conditions to become efficient than rules,
which require assumptions about large amounts of uncertain data.

It is not necessary that all parameters controlling the environment rules
must be kept constant, but it is possible for the legislator to change the rules if
new information about the external costs becomes available. It is aso reason-
able that the rules are quite simple to fulfil by the way of introduction, and

10. Compare to the legislation in the U.S., where all provisions are provided with
detailed nutrition facts.

11. In Sweden some people use the phrase “ful-el”, which is a language construction
akin to “ful-6l” (bad beer). | guess an English counterpart could be “bad power”.
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then gradually the requirements are increased until the objective of a sustain-
able power system (from environmental point of view) is achieved. It is how-
ever extraordinary important that there is a clear plan how to achieve the
objective and that the authorities really support the system. If someone should
be interested in investing in environmental friendly power generation, which
is depending on a particular rule, then it must be possible to rely that thisrule
will last long enough for the investment to pay back.

421 Restrictions

A simple method to regulate external costs due to environmental impactsisto
restrict the activities causing environmental damage. A restriction can be
expressed in many ways, for example as atotal ban of certain power sources,
a limitation of the number of power plants or as a cap on the external cost
each power plant may cause.

Prohibition

A total ban isjustified if a certain power source causes external costs which
are completely unacceptable. In extreme cases it is obvious that it is benefi-
cial to the society if a particular activity is banned,'? but in many cases it is
difficult to determine what is right and what is wrong. This can partly be
caused by incomplete information, but sometimes the problem might be that
the environmental impact is hard to value, making it difficult to unambigu-
ously define the social benefit (cf. section 3.1.1). An example of such a diffi-
cult judgement is nuclear power—some countries alow nuclear power,
whereasin others nuclear power plants are forbidden due to the external costs
in the shape of environmentally hazardous waste and the risk of severe acci-
dents.

When the external costs are significant, but not entirely unacceptable, a
limit to the number of power plants can be imposed instead of atotal ban. An
example of thisisthe Swedish ban on exploiting hydro power in the four riv-
ers Vindeldlven, Pite dlv, Kalix dv and Torne-Muonio dlv.

In those cases when valuation issues determine the size of the external cost,
it can be argued that if a majority of the population supports a ban then it is
reasonable—but far from certain—that the ban is beneficia to the society.
For example, the external cost of exploiting the Swedish rivers would prima-
rily be the loss of unspoiled countryside and such a cost is extremely hard to
value—at the end of the day it is about the subjective judgement of each indi-

12. Who would for example be willing to alow nuclear waste to be left on the closest
refuse dump?
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vidual. As there is stable political mgority supporting the decision not to
exploit the rivers, it seems reasonable to assume that the benefit of not
exploiting the rivers as perceived by the Swedish people, is larger than the
value of a hydro power expansion. If conditions would change and the value
of building new hydro power plants increases, it is possible to make a demo-
cratic decision to abolish the prohibition. Thus, it seems reasonable that this
decision actually maximises the benefit to the society, both in the short and
the long run.

There are however also examples where it is considerably more difficult to
determine whether or not a democratic decision will maximise the benefit to
the society. Assume for example that a solid majority in a country thinks that
electricity generation in nuclear power plants should be allowed, but in each
part of the country there is a just as solid majority opposing the storage of
nuclear waste in the vicinity. How should the social benefits be maximised in
this country, by allowing nuclear power and forcing some part of the country
to receive the waste, or by banning nuclear power?

If it is hard to determine what is optimal concerning prohibitions, it is at
least simple to include bans in an electricity market simulation. If a certain
power source is prohibited then the supply side of the electricity market is
affected, but otherwise the market operates as usual. Therefore, the same sce-
nario problem can be used asin an ideal eectricity market.

Emission Caps

Prohibitions can be formulated more precisely for such externaities which
are easier to measure. It is possible to grant the power plants concessions for
certain emissions, for example by alowing a power plant to emit at most a
specified amount of pollution per MWh generated. Another variant isto put a
limit on the emissions from a particular facility during a year, regardless of
how much is produces. The latter aternative makes it more profitable to
invest in emission reductions, since it then becomes possible to increase the
electricity generation.

Thiskind of emission caps are quite simple to administrate, but the legisla-
tor requires quite alot of information, which might be hard to obtain, to direct
the electricity market towards a resource allocation maximizing the total sur-
plus. It must be known how large the total emissions can be without causing
external costs higher than the benefit of the generated el ectricity. Moreover, it
must be known how much electric energy is produced in total in order to set
the limit of the emissions per MWh. Another complication is that the cost of
investing in reduced emissions might vary from power plant to power plant,
i.e., the cost of the sametotal level of emissions varies depending on in which
power plants measures are taken. To minimise the cost, the authorities must
basically set separate emission caps in each power plant. Finally, all caps
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must be updated every time the conditions of the electricity market changes,
for example if new power plants are built.

Thus, it can be very hard to maximise the benefit to the society using emis-
sion caps. However, this kind of rules should not be totally condemned; if
there is for example an immediate environmental problem and quick actions
have to be taken, emission caps can be the action which are most easy to
implement and which are the fastest to show any results.

The modelling of emission caps is not very complicated. If the emissions
are limited per MWh generated then only the supply side of the electricity
market is affected, but not the electricity market model. If the emission cap is
a cap to the emissions of a particular facility then special emission constraints
have to be added to the scenario problem. Assume that period t, ..., T is
divided into a number of accounting periods in the same manner as for dis-
closed electricity (see page 61) and that during each accounting period the
permitted emissions are EGg, a for each equivalent power plant. In the equiv-
aent power plant g and accounting period a we get the emission constraint

Y Eeg t(Cg ) =g a<Egg a (4.2)
te Aa

where Egg, Gy, ¢) is an emission function, A, is the set of scenario time peri-
ods belonging to accounting period a, and ‘¥, , are the excess emissions.
Any power plant who exceeds its emission cap is subject to some form of
sanction, which is represented by a cost function Cyq 5(‘¥g o). The total
sanction cost should be included in the objective function:

A

Z Z C‘Fg, a(\Pg, a) 4.3

a=1geG

where A is the number of accounting periods of the scenario.

Tradable Emission Rights

A somewhat more advanced form of limitation is when the legislator only
determines the total emissions which can be accepted without causing too
much environmental harm. Then, the market itself determines how the per-
mitted emissions should be divided by the generating units. This is done by
introducing emission rights, which give the owner permission to let out a cer-
tain amount of a certain substance during a certain accounting period, for
example one ton carbon dioxide per year. The emission rights are tradable as
any other good. By this means, the legislator does not need to determine
where the environment investments should produce the largest benefit—these
decisions are transferred to the producers themselves. If power plant A wants
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to increase the el ectricity generation, but lacks sufficient emission rights, they
can either reduce the emissions per MWh in the own facility or buy emissions
rights of the owner to power plant B, if it would be less expensive to accom-
plish the corresponding emission reduction in that power plant instead.

When introducing a system of tradable emission rights, it must somehow be
decided how the emission rights initially should be distributed, which can be
doneintwo ways. The most simpleisthat the government owns al emissions
rights at the start, and that they are auctioned to the market. The other method
is to distribute the emission rights by “grandfathering” /2 which means that
the players are granted emission rights proportional to their emissions during
the last years. The total surplus is not affected by the choice between these
two methods, but the distribution is more important to individual players.
Those who are granted less emission rights than they need are subject to an
extra cost for either reducing emissions or for buying more emission rights.
Correspondingly, a surplus of emission rights means an extra income. If the
emission rights are sold by auction, all players are subject to extra costs,
while the government makes a nice profit. Grandfathering has very different
consequences for the players—for example, those players who have aready
performed environment investments are disadvantaged—and it can be hard to
agree on what is afair distribution of the emission rights.

Anyone emitting environmentally hazardous substances without having the
corresponding emission rights is subject to a penalty fee. The level of this
penalty fee is of course important to make the system work well; if the pen-
aty feeistoo low then there will be arisk that too many players choose not to
obtain emission rights and just pay their penalties instead. Hence, the penalty
fee constitutes a price cap to the emission rights, but this can be avoided by
repaying the collected penalty fees to those players who possess the emission
rights; the value of an emission right is then equal to the value of not paying
the penalty fee plus an expected refund.

Today, there are systems for trading SO,- and NO,-emissions in some
states of the U.S. According to [85], the system has resulted in considerable
emission reductions from the electricity generation and the costs have been
significantly less than predicted. The EU is planning to introduce tradable
emission rights for greenhouse gases starting 2005 [87].

Let us now consider how to include tradable emission rightsin the electric-
ity market model. The largest challenge is the pricing of the emission rights
market, because the price is not just depending on the electricity market, but
also on the needs of other industries to obtain emission rights.’* The models
described in [76, 78] do not consider this possibility; the trading of emission

13. Thisfootnote has been added to maintain the footnote numbering in pace with the
Swedish edition.

14. It is of course conceivable that the tradable emission rights only concerns electric-
ity producers, but that is for example not the case with the EU proposal [87].
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rightsisrestricted to players within the el ectricity market. Here, | will suggest
a basic model, which also includes players outside the electricity market. In
the basic model it is assumed that there is perfect competition in the emission
rights market and that the players have sufficient information to know how
many emission rights they should buy. To simplify the derivation of the
model | use an electricity market, which is not divided in areas and each sce-
nario comprises one time period coinciding with the accounting period of the
emission rights.1®

We start by studying a producer problem. The objective function is to max-
imise the income minus the production cost of the electricity as well as the
cost of the emissions. The constraint is that the emission should be equal to
the purchased emission rights, Ay, plus the excess emission subject to pen-
alty fees, ‘. Thus, the producer problem reads as follows:

maximise AGg— CGg(Gg) —CAg—By'¥y (4.9
subjectto  Egy(Gg) —Ag—Yg=0, (4.49)
0<Gy< Gy, (4.4b)
0<Ag, (4.4c)
0< Vg (4.4d)

The electricity price A and the emission right price ¢ are given, because the
producer is considered a price-taker. The penalty fee of excess emissions, By,
is defined by the authorities.

The consumers behave exactly asin an ideal electricity market, i.e., they try
to maximise their surplus at a given electricity price:

maximise  Bpg(Ad) —AA. (4.5
subjectto  O0< A < Ac. (4.59)

The surrounding world is treated as a single player, whose objective func-
tion is to maximise the benefit of the purchased emission rights. This benefit
could be considered a function of both the number of purchased emission
rights and the electricity price; when electricity prices are low the production
cost of some industriesis reduced, which might result in increased output and
alarger benefit of obtaining emission rights. Let us neglect this kind of com-
plications in this example, so that the player problem of the surrounding
world issimplified to

15. Nothing essential in the following reasoning would change if these simplifications
were not done. The differenceisthat it would be necessary to summarise the emis-
sion over each accounting period in the same manner as in (4.2). The formulae
would then be harder to read, which | find unnecessary when the model is out-
lined.
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maximise Bg(®) -0 (4.6)
subjectto 0<O. (4.6a)

For the market as a whole we have that the production and consumption of
electric energy must be in balance, and the total number of purchased emis-
sion rights may not exceed the emission cap, E. Together with the optimality
conditions of the player problems (4.4)-(4.6) we get a system of equations
and inequalities defining how the players will behave:'®

3 A= 3Gy =0, (4.78)
ceC geG

SAg +O=E, (4.7b)
geG
MCaq(Gg) + 1 qME4(Gg) = 1., if Gy=0, (4.7¢)
MCqy(Gg) *+ 1gMEgy(Gg) = 1. if0<Gy< Gy (47d)
MCgqy(Gg) + 1gMEg4(Gg) < A, if Gy = Gg, (4.7¢)
g if Ag=0, (4.7f)
=14 if Ag>0, (4.79)
By > 1g if Wy =0, (4.7h)
By =1g if wy>0, (4.70)
MB,(AQ) < A, if A.= 0, (4.7)
MByc(AQ) = 2, ifO<A<Ac, (47K
MBA(AQ > A, if Ac = Ac. 4.71)
MB,(A) <&, if@=0, (4.7m)
MB,(A) = &, if ©>0. (4.7n)

The interpretation of these constraints is that the producers in their marginal
cost function must count both the marginal cost of the electricity generation
and the emissions.!” The latter is set by the individual emission right value of
the producer, 14 (dual variable of the constraint in the producer problem), and
the marginal emissions. The emission right value is normally equal to the

16. In this system of equations and inequalities we also have the constraints and the
variable limits of (4.4)-(4.6), but | have chosen not to repeat them, to at least
somewhat shorten the enumeration of the optimality conditions. Besides, it can be
noted that the conditions (4.7a)-(4.7n) correspond to the optimality conditions of
an aggregated optimisation problem, which in this case is a ssmple quadratic pro-
gramming problem.
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market price of emission rights, which in its turn is determined by the sur-
rounding world. If the demand for emission rights should become large
enough to force somebody to pay penalty fees then the market price is equal
to the penalty fee, asindicated by (4.7i).

In figure 4.3 | provide some example scenarios showing how an electricity
market is affected by tradable emission rights. Power plant 1 has higher mar-
ginal production costs than power plant 2, but the emissions per MWh are on
the other hand lower. Regardless of the size of the emission cap, producer 2
can increase the surplus by investing in equipment reducing the emissions,
but the investment is of course only profitable if the surplus increaseis larger
than the investment cost. The profitability of the investment depends on the
price of emission rights, which in its turn depends on both the total emission
cap and the demand of the surrounding world. The emission right trading will
thus have dynamic effects on both the electricity market and other markets.
Anyone who wants to study the consequences of emission right trading in
detail will thus haveto collect quite alot of data.

The total surplus specified in figure 4.3 does not include the externa cost.
Intable 4.1 1 have calculated the total surplusfor some different values of the
true marginal damage caused by the emissions, MD. For comparison, | have
also calculated the total surplus in an ideal eectricity market, where MD is
internalised in the production costs of the power plants. The ideal electricity
market is as expected always more efficient, but the difference is sometimes
small. Notice that the efficiency of different emission caps vary depending on
the environmental damage caused by the emissions. When MD is low, the
higher emission cap provides better results, while the lower emission cap
apparently limits the emissions too much. For higher values of MD, the lower
emission cap is preferable, whereas the higher allows too large emissions.

| have no intention to model market dynamics in this dissertation, but let us
nevertheless have a look at the willingness to invest in the ideal electricity
market and the non-ideal electricity market with tradable emission rights
respectively. Theideal electricity market maximises the benefit to the society,
i.e., aninvestment is carried out if it resultsin an increase of the total surplus
which is larger than the investment cost. In table 4.2 it is shown how the total
surplus in an ideal electricity market is affected if the emissions of power
plant 2 are reduced from 3 ton/MWh to 2 ton/MWh. The larger the marginal
damage caused by the emissions, the more profitable the investment
becomes. In the non-ideal electricity market the investment is carried out if
the cost for producer 2 is less than the producer’s increased surplus. In the

17. For comparison we may observe that the cost of the emissions do not have to be
the same as the cost of emissions in an ideal electricity market. Here the marginal
cost of emissionsis equal t0 1MEg4(Gg), whereasin an ideal electricity market it
would be MD(E;q) MEgy(Gg), where MD(E) isthe marginal damage of the totel
emissions, i.e., the marginal external cost.
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s Gy = 200
Ca1(Gy) = 12G, +0.05G2

]

Eci(Gy) = Gy G, = 200 h
Eﬁ_ﬁlcez(e‘z) = 8G, +0.0sG3
Ego(Gy) = BegaG, (see below

_ M B, (A) = 120A-0.25A2

Be(©) = 140 —0.0102

Scenario parameters

Emission cap, E [ton] 1000 1000 800 800
Emissions in power plant 2, Bggo
[ton/MWh] 3 2 3 2

Electricity price, A [¢/MWh] 23.29 20.46 28.00 25.08
Emission right price, £ [o/ton] 181 0.34 4.40 372
Consumers

Consumption, A [MWh] 193.41 199.08 184.00 189.85

Value of consumption, B,(A) [@] 13857.38 | 13981.32| 13616.00| 13771.15

Purchase cost, A-A [9] 450535 | 407341| 515200 4760.75

Surplus, CS[7] 9352.03| 9907.91| 8464.00| 901139
Producer 1

Electricity generation, G; [MWh] 94.82 81.23 116.00 93.54

Electricity income, A-G4 [d] 2208.83| 166210| 3248.00| 2345.66

Generation cost, Cg1(Gy) [8] 158746 | 130469| 2064.80| 1559.93

Emission right cost, {-Eg1(G4) [¢] 171.80 27.50 510.40 348.25

Surplus, PS; [#] 449,57 329.92 672.80 437.47
Producer 2

Electricity generation, G, [MWh] 98.59 117.85 68.00 96.31

Electricity income, A-G, [9] 229652 241131 1904.00| 2415.10

Generation cost, Cg,(Gy) [4] 1274e69| 1637.16 77520 | 123422

Emission right cost, {-Egy(Go) [[] 535.87 79.78 897.60 717.13

Surplus, PS; [4] 485.97 694.37 231.20 463.75
Surrounding world

Emissions, © [ton] 609.42 683.08 480.00 513.84
Total emissions of the electricity market,

Ec1(Gy) + Ega(Gy) [ton] 390.59 310.27 320.00 286.15
Tota surplus,

BA(A) = Cg1(Gy) — Ca(Gy) [A] 10995.24 | 11039.48 | 10776.00| 10979.63

Figure4.3 Example of tradable emission rights. The first producer has a dlightly higher
generation cost, but lower emissions than the second producer. The ability to
compete of the first producer is increased when the emission cap is reduced,
because the emission rights become more expensive. The second producer
can improve the ability to compete by investing in reduced emissions.

Notice that the total surplus does not include the costs caused by the emis-
sions. Thus, it depends on the evaluation of the external costs, which solution
is going to maximise the benefit to the society (cf. table 4.1).
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Table 4.1 Short-termtotal surplus of the scenariosin figure 4.3.

Emissions from True marginal damage, MD [s/ton]
Emission cap, E [ton] | Ppower plant 2,
Bega [ton/MWh] 1 2 3 4 5

Ideal electricity market? 3 10614 | 10215 | 9843 | 9498 | 9181
1000 3 10605 | 10214 | 9823 | 9433 | 9042

800 3 10456 | 10136 | 9816 | 9496 | 9176

Ideal electricity market® 2 10725 | 10418 | 10121 | 9833 | 9554
1000 2 10723 | 10406 | 10089 | 9772 | 9455

800 2 10691 | 10405 | 10119 | 9832 | 9546

a

In the ideal electricity market there is no tradable emission rights, but the true

margina damage of emissions are included in the cost functions of the power

plants.

Table 4.2 Profitability of investing in reduced emissions.

True marginal damage, MD [g/ton]

1 2 3 4 5

Increased surplusin an ideal electricity market?| 111 204 278 335 373
Increased surplus of producer Pl

Emission cap E = 1000 ton 208 208 208 208 208

Emission cap E =800 ton 233 233 233 233 233
Isthe investment profitable if the cost is 200 o?

Ideal electricity market No Yes Yes Yes Yes

Emission cap E = 1000 ton Yes | Yes | Yes | Yes | Yes

Emission cap E =800 ton Yes | Yes | Yes | Yes | Yes
Isthe investment profitable if the cost is 220 o?

Ideal electricity market No No Yes Yes Yes

Emission cap E = 1000 ton No No No No No

Emission cap E =800 ton Yes | Yes | Yes | Yes | Yes
Isthe investment profitable if the cost is 240 o?

Ideal electricity market No No Yes Yes Yes

Emission cap E =1000ton No No No No No

Emission cap E =800 ton No No No No No

a. Determined by comparing thetotal surplus according to table 4.1 when the emis-

b.

sionsin power plant 2 amount to 3 ton/MWh and 2 ton/MWh respectively.

Determined by comparing the total surplus of producer 2 according to figure 4.3

when the emissions in power plant 2 amount to 3 ton/MWh and 2 ton/MWh

respectively.
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table, it is shown how the surplus of producer 2 is changed. Noticethat in this
case the profitability is not depending on MD, but on the price of the emission
rights, which indirectly can be controlled by the choice of emission cap.
Therefore, in some cases the investment will be profitable in both the idea
and non-ideal electricity market, whereas in others the results will differ. The
example illustrates the importance of choosing the right levels of the parame-
ters controlling the trading (primarily the emission cap, but also the penalty
fee of excess emissions), to achieve an efficient resource usage both in the
short and the long run.

4.2.2 Feesand Subsidies

The problem of externalitiesis, as has already been pointed out, that the play-
ers of the market do not get correct economic signals about the consequences
of their actions. By introducing fees and subsidies corresponding to the exter-
nal costs and incomes respectively, it can be assured that the price signals
reach the players. To maximise the benefit to the society, the fee must be set
so that it corresponds to the external costs at the optimal turnover.18 To find a
correct value of the feeit is required that the supply, demand and externalities
are known and can be valued. It should therefore be very hard for an authority
to determine the exactly right fee; the best one can hope for is that they get it
approximately right. Moreover, whenever a large change occurs in the mar-
ket, the fees must be updated (cf. figure 4.4).

From a modelling point of view, fees and subsidies are not very difficult,
because they directly modify the cost and benefit functions of the players.
There are however a'so some more sophisticated methods to introduce fees
and subsidies for externalities. These methods require a somewhat more
detailed analysis, which follows below.

“Feebate” Systems

One way of avoiding the difficulty of determining exact values of the external
costs when an environment fee is introduced, is to create a “feebate” system,
i.e., acombination of fees and rebates. The fee is proportional to the amount
of emissions during a certain accounting period, for example a year. These
fees are however not just transferred to the public treasury, but are repaid to
the producers according to their share of the total output. The parameters
which must be decided by the authorities are then just the fee itself and the
accounting period to be used. The system will then create a pressure for the

18. Correspondingly, subsidies should equal the marginal external costs at the optimal
turnover.
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Figure4.4
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q* 10 000

b) The supply curve when new production capacity has been

added, but the fee is still 75 o/unit.

Conseguences of introducing a fee per unit produced. The figures above
show the marginal benefit of consumption (MB;;) and the marginal bene-
fits of the consumers and the third party (MB). In panel a the supply
curveisthe sameasin the earlier examples (see figure 4.1), but for each
unit produced the producer has to pay a fee of 75 o/unit. Thanks to the
fee, the market will find an equilibriumwhere the turnover is maximizing
the benefit to the society. It can be noted that the total income of the fees
islarger than the total external cost.

In panel b the supply curve has changed, as new production capacity
with low marginal cost has been added. The new optimal turnover is
5500 units, but if the fee is not increased, the turnover becomes 5 800
units. Sill, a slightly incorrect fee results is preferable compared to the
turnover which would be the result if there was no fee at all.
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producers to reduce their emissions, because those producers who have less
than average emissions per generated MWh will receive more than they have
paid. They will in other words have a competitive advantage compared to
those power plants who cause larger emissions; the higher the fee, the larger
the advantage.

Aslong as the investment costs are low, a producer can make a good earn-
ing by reducing the emissions. Feebate systems therefore can have a large
impact as they are introduced, but when the most cost efficient investments
have been done, it becomes hard to improve any further. Thisis for example
visible in the Swedish environment fee for emission of nitrogen oxides from
power plants. The system was introduced in 1992 and during thefirst year the
nitrogen oxide emissions per MWh decreased by 20%. Since then, the
decrease rate has gradually declined; in total, the emissions per MWh
decreased by 40% between 1992 and 2000 [146]. An advantage of the system
is however that the incentive to reduce the emissions never disappears com-
pletely; a player who quickly incorporates new, inexpensive emission reduc-
ing technology before the competitors will always have an advantage. The
risk is of course that this pressure to reduce emissions results in excessive
investments compared to what is optimal for the society.

To derive a model of feebate systems | make the same simplifications as
when | analysed tradable emission rights, i.e., | consider an electricity market
having one area and one time period, which coincides with the accounting
period.1® A producer will try to maximise the income of the electricity market
and the rebate minus the production cost and the fee. We then get the follow-
ing producer problem:

maximise  AGg + pGy — Cy(Gg) — BeEgy(Gy), (4.8)
subjectto  0<Gy< G, (4.83)

where Bg isthe fee and p is the rebate per MWh generated.
The consumer problem isthe same asin an ideal electricity market, i.e.,

maximise  Bac(Al) —AA, 4.9

subjectto O0< A < Ac. (4.99)

For the market as a whole applies that the production and consumption of

electric energy must be in balance, and the total rebate should equal the total

fees. Together with the optimality conditions of the player problems (4.8) and

(4.9) we get a system of equations and inequalities defining how the players
will behave:

19. The mativation of these simplifications are—just as before—to make the formulae
more readable; there are no technical obstacles of modelling multi-area problems
or longer time periods.
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S A~ 3G, =0, (4.108)
ceC geG
P Gy = B Egg(Gy): (4.10b)
geG g€ Gy
MCoqy(Gq) + BEMEgg(Gg) —p = 4, if Gg=0, (4.10c)
MCoqy(Gg) + BEMEgg(Gg) —p = 1, if0<Gy< Gy,  (4.100)
MCg4y(Gg) + BeMEgy(Gg) —p <, if Gy = Gy, (4.10¢)
MB,(Ad) < A, if A, =0, (4.10f)
MBc(AQ) = A, if0<A.<Ac,  (4.10g)
MBA(AQ) > A, if Ao = Ac. (4.10h)

These conditions say that the marginal cost of the producers is modified
depending on how their marginal emissions relates to the competitors. Those
who are below the average will have BEMEy(Gy) < p; at the end of the day,
the consequence of the feebate system is thus a subsidy of these power plants.
Those paying the subsidies are the power plants who cause larger marginal
emissions. Again, we can notice that the marginal cost of the producers differ
in this case compared to an ideal electricity market.2!

Intable 4.5 | provide some example scenarios illustrating the consequences
of a feebate system in a small electricity market. Power plant 1 has higher
marginal production costs than power plant 2, but the emissions per MWh are
on the other hand lower. Regardless of the environment fee, producer 2 can
increase the surplus by investing in equipment reducing the emissions, but the
investment is of course only profitable if the surplus increase is larger than
the investment cost. The higher the fee, the larger the surplus increase when
reducing the emissions. Thus we can conclude that the size of the fee has a
market dynamic effect, as it influences the willingness to invest.

Thetotal surplus specified in figure 4.5 does not include the external costs.
Intable 4.3 | have calculated the total surplus for some different values of the
true marginal damage caused by the emissions, MD. For comparison, | have
also calculated the total surplus in an ideal electricity market, where MD is

20. In this system of equations and inegualities we also have the constraints and the
variable limits of (4.8) and (4.9), but | have chosen not to repeat them, to at least
somewhat shorten the enumeration of the optimality conditions. Besides, it can be
mentioned that in this case | have not been able to aggregate the player problems
into a single scenario problem, but that has no practical importance. We simply
have to develop a specia algorithm to find the solutions to (4.10a)-(4.10h). The
NNP agorithm [7] may serve as an example of how to design such algorithms.

21. Cf. footnote 17.

Governmental Responses 75



Chapter 4: Electricity markets and Environment

s Gy = 200

CGl(Gl) = 12G, +0.05G?
i Ec1(Gy = G 3

L

M B, (A) = 120A—0.25A2

(_.;2:200

Csa(G,) = 8G, +0.05G3
Ego(Gy) = BegoG, (see below

Scenario parameters

Environment fee, Bg [o/ton] 2 2 4 4

Emissions in power plant 2, PBggo

[ton/MWh] 3 2 3 2

Electricity price, A [¢/MWh] 20.00 19.01 20.73 20.00
Rebate, p [a/MWNh] 4.00 3.10 7.19 4,00
Consumers

Consumption, A [MWh] 200.00 200.18 198.54 200.00

Value of consumption, B,(A) [@] 14 000.00 | 1400359 | 13970.27 | 14 000.00

Purchase cost, 1-A [9] 4000.00| 3985.58| 411573| 4000.00

Surplus, CS[q] 10000.00 | 10018.01| 9854.53| 10 000.00
Producer 1

Electricity generation, G; [MWHh] 100.00 90.09 119.27 100.00

Electricity income, A-G4 [d] 2000.00| 179369| 2472.47| 2000.00

Total rebate, p-Gq [9] 400.00 279.27 858.04 600.00

Generation cost, Cg1(Gy) [8] 1700.00| 1486.89| 214251| 1700.00

Totdl fee, Bg'Eg1(Gq) [7] 200.00 180.18 477.08 400.00

Surplus, PS; [#] 500.00 405.89 710.92 500.00
Producer 2

Electricity generation, G, [MWh] 100.00 110.09 79.27 100.00

Electricity income, A-G, [9] 2000.00| 2191.89| 1643.27| 2000.00

Total rebate, p-Go, [9] 400.00 341.27 570.28 600.00

Generation cost, Cg,(Gy) [4] 1300.00| 1486.71 948.35 | 1300.00

Total fee, Bg-Ego(Gy) [A] 600.00 440.36 951.24 800.00

Surplus, PS; [4] 500.00 606.09 313.96 500.00
Total emission, Eg1(Gy) + Ego(Gy) [ton] 400.00 310.27 357.08 300.00
Totd surplus,

BA(A) — Cg1(Gy) — Caa(Gy) [A] 11000.00 | 11029.99 | 10879.41| 11 000.00

Figure4.5

Example of a feehate system. The first producer has a slightly higher genera-

tion cost, but lower emissions than the second producer. When the environ-
ment feeisincreased by 1 o&/MWh, the ability to compete of the first producer
increases. The other producer can improve the ability to compete by investing
in reduced emissions.

Notice that the total surplus does not include the costs caused by the emis-
sions. Thus, it depends on the relation between the external costs and the
environment fee, Bg, which solution is going to maximise the benefit to the
society (cf. table 4.3).
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Table 4.3 Short-termtotal surplus of the scenarios in figure 4.5.

Environment fee, e ir:)]\l/vszr ngrf] IOZm True marginal damage, MD [s/ton]
[sfton] Bez [toVMWH] | 1 2 3 4 5
Ideal electricity market? 3 10614 | 10215 | 9843 | 9498 | 9181
2 3 10600 | 10200 | 9800 | 9400 | 9000
4 3 10522 | 10165 | 9808 | 9451 | 9094
Ideal electricity market® 2 10725 | 10418 | 10121 | 9833 | 9554
2 2 10720 | 10409 | 10099 | 9789 | 9479
4 2 10700 | 10400 | 10100 | 9800 | 9500

a. Intheideal dectricity market there is no tradable emission rights, but the true
margina damage of emissions are included in the cost functions of the power
plants.

Table 4.4 Profitability of investing in reduced emissions.

True marginal damage, MD [g/ton]
1 2 3 4 5
Increased surplusin an ideal electricity market?| 111 204 278 335 373
Increased surplus of producer Pl
Environment fee Bg = 2 ofton 106 106 106 106 106
Environment fee Bg = 4 ofton 186 186 186 186 186
Isthe investment profitable if the cost is 50 &?
Ideal electricity market Yes Yes Yes Yes Yes
Environment fee Bg = 2 a/ton Yes | Yes | Yes | Yes | Yes
Environment fee Bg = 4 n/ton Yes Yes Yes Yes Yes
Isthe investment profitable if the cost is 150 o?
Ideal electricity market No Yes Yes Yes Yes
Environment fee Bg = 2 a/ton No No No No No
Environment fee Bg = 4 a/ton Yes Yes Yes Yes Yes
Isthe investment profitable if the cost is 250 o?
Ideal electricity market No No Yes Yes Yes
Environment fee Bg = 2 n/ton No No No No No
Environment fee Bg = 4 w/ton No No No No No

a. Determined by comparing thetotal surplus according to table 4.3 when the emis-
sionsin power plant 2 amount to 3 ton/MWh and 2 ton/MWh respectively.

b. Determined by comparing the total surplus of producer 2 according to figure 4.5
when the emissions in power plant 2 amount to 3 ton/MWh and 2 ton/MWh
respectively.
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internalised in the production costs of the power plants. The ideal electricity
market is as expected always more efficient, but the difference is sometimes
small. It can be noted that the larger the difference between the environment
fee and MD is, the larger the difference between the ideal and non-ideal elec-
tricity markets becomes.

| have no intention to model market dynamicsin this dissertation, but let us
nevertheless have a look at the willingness to invest in the ideal electricity
market and the non-ideal electricity market with a feebate system. The ideal
electricity market maximises the benefit to the society, i.e., an investment is
carried out if it results in an increase of the total surplus which is larger than
the investment cost. In table 4.4 it is shown how the total surplusin an ideal
electricity market is affected if the emissions of power plant 2 are reduced
from 3 ton/MWh to 2 ton/MWh. The larger the marginal damage caused by
the emissionsis, the more profitable the investment becomes. In the non-ideal
electricity market the investment is carried out if the cost for producer 2 is
less than the increased producer surplus. In thetable, it is shown how the sur-
plus of producer 2 is changed. Notice that in this case the profitability is not
depending on MD, but on by the size of the fee. Therefore, in some cases the
investment will be profitable in both the ideal and non-ideal electricity mar-
ket, whereas in others the results will differ. The example illustrates the
importance of choosing the correct fee to achieve an efficient resource usage
both in the short and the long run.

Tradable Green Certificates

To decrease the environmental impact of the electricity market, it is of course
necessary to build more environmentally benign power plants. The snag is
that environmentally benign electricity generation generally is more expen-
sive than dirty ditto (otherwise the environmentally benign power plants had
been built already before people even started to worry about the environ-
ment). One method to improve the competitiveness of the environmentally
benign power plants is to force the other producers to pay for the environ-
mental damage they cause, for example by introducing tradable emission
rights. However, an alternative is to subsidise environmentally benign power
plants. To begin with, this might seem objectionable, because the subsidies
decrease the electricity price and in that way the consumers get incorrect sig-
nals about the real cost of the electricity they consume. However, this can be
avoided by letting the consumers pay for the subsidies.

Tradable green certificates?® are used to subsidise certain kinds of power
plants by giving the consumers a certain quota, which states how large share
of their consumption which must originate from the chosen “green” power
plants. To verify that the consumers fulfil their obligation, green certificates
are issued, where each certificate corresponds to 1 MWh energy generated in

78 Governmental Responses



Chapter 4: Electricity markets and Environment

one of the selected power plants. The certificates can then be traded in a sep-
arate certificate market. The result for the producers is that the owners of the
certified power plants are subsidised; each MWh is not only sold at the ordi-
nary electricity market, but they also obtain a green certificate to be sold in
the certificate market.

The trading of green certificates does not have to be continuous; the quota
is defined for a certain accounting period (e.g. one year). After the end of the
accounting period, the control authority makes a settlement where the number
of green certificates necessary to fulfil the quota are cancelled. Those con-
sumers who do not possess enough certificates at the time of the settlement
will have to pay a penalty feeinstead.

The definition of which power plants are granted certificates is essential
both to the involved players, but also for the possibility to maximise the ben-
efit to the society. The green certificates will for example not guide the devel-
opment in the right direction if investmentsin a certain power source are ben-
eficia to the society, but these power plants are neither certified nor capable
of competing on their own in the electricity market.

The parameters controlling the green certificate trading are the quota, the
penalty fee, the duration of the certificates and the accounting period. The
guota is of course very important, because it determines the demand of the
certificates. It is possible to—as in the Swedish system—have different quo-
tas for different consumer categories and to increase the quota from year to
year. The penalty fee will in practice constitute a price cap, because it can be
assumed that the consumers rather pay the penalty fee than buy certificates if
the penalty fee is less than the certificate price. However, it is possible to
repay the penalty fees to those consumers who fulfilled their quota, which
makes it interesting to buy certificates evenif the priceis higher than the pen-
alty fee—this is done for example in England-Wales.23 The duration of the
certificates is important for the pricing in the certificate market. If the certifi-
cates are only valid for one accounting period, there will be a price pressure
downwards—those producers who do not manage to sell their certificates
will not get any extraincome at all. If the certificates can be saved for coming

22. The terminology may vary depending on the national legislation—for examplein
Sweden the term “electricity certificate” is used rather than green certificates
(probably due to some unfathomable political reason). | have chosen the term
green certificates, because it is the most common in internationd literature (see
for example [80, 81, 82, 84, 144]) and it also emphasises the difference between
green certificates, which are used to support environmentally benign power plants,
and capacity certificates, which are used to support reserve power plants (i.e.,
such power plants which are mostly used during peak load periods and which are
so rarely dispatched that they have difficulties covering their fixed costs; see for
example[18] for further details about capacity certificates).

23. In October 2002 the average price of green certificates in England-Wales was
£47.13 although the penalty fee was not larger than £30 [144].
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accounting periods, we may expect a price pressure upwards instead, because
those producers who do not think that they are paid enough can save the cer-
tificates until the prices increase.?* There is also another possibility for the
regulator to control the certificate price, and that is to introduce a redemption
price of the certificates. This means that the authorities will buy the certifi-
cates to a certain guarantee price, which will constitute a floor to the certifi-
cate price in the same way as the penalty fee works as a price cap.

Apparently, there are many aspects to be considered when modelling trada-
ble green certificates. Though the subject is interesting, a complete model
would be too extensive and | will limit myself to presenting a basic model,
which will demonstrate the general principles. Asin the earlier examples of
this chapter, | will study an electricity market having only one area and each
scenario comprises one time period, which coincides with the accounting
period of the certificates.?® Moreover, | assume that the certificate market is
perfectly competitive, that the penalty fee is known in advance, that there is
no floor to the certificate price and that both producers and consumers of
green certificates have perfect information about supply and demand in the
certificate market. Finaly, | assume that the electricity market is static, i.e.,
no new certified power plants will enter the market during an accounting
period. The last assumption differs my basic model from the model suggested
in [81], which will have consequences for the pricing of the certificates. | will
return to thisissue below, but let usfirst have alook at the model | suggest.

We start by studying the producer problem of a certified power plant, the
generation of which | designate by G’ (the plus sign indicates that the gener-
ation of power plant g is certified). Asusual, the objective function isto max-
imise the income, which partly are due to the electricity market and partly due
to the certificate market, minus the generation cost:

i + + +
maximise XGg + &G_g - CGg(Gg) (4.11)
subjectto  0< Gy < Gg» (4.114)

where & is the certificate price. Due to the perfect competition, all producers
are price takers; hence, & is a parameter to the producer in the same way as
the electricity price A.

24. Thistrend has been seen in the Swedish certificate market. The average price dur-
ing the period May 1, 2003 (when the certificate trading started) until November
16, 2003, was about 210 SEK/MWh according to dstatistics from SvK
(https://elcertifikat.svk.se/), athough the penalty fee of the accounting period May
2003 to April 2004 cannot exceed 175 SEK/MWh. The explanation is probably
that during the following accounting period the maximal penalty fee is increased
to 240 SEK/MWh [86].

25. And the reason for these simplifications is as before to make the formulae more
readable; there would be no difficulties to model multi-area problems and several
time periods.
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Those producers who are not certified behave asin anideal electricity mar-
ket, except that they do not internalise the external costs of their emissions.
Thus, their producer problems read as follows:

maximise Gy — Cgy(Gy) (4.12)
subjectto  0<Gy< Gg. (4.12a)

The consumers maximise the benefit of their electricity consumption minus
the cost of purchase, which includes both the electricity price, the cost to buy
certificates and any penalty fees. As a constraint, the quota must be covered
by the number of purchased certificates, I'¢, plus consumption subject to the
penalty fee, E. If the quota is designated k., we get the following consumer
problem:

maximise  Bag(Ad —AA;— &l —PB=Ec (4.13)
subjectto  KA.—T'c—E.=0, (4.1338)
0< A< Ac, (4.13b)
0<T,, (4.13¢)
0<E,. (4.13d)

For the market as a whole applies that the production and consumption of
electric energy must be in balance. Moreover, the consumption of green cer-
tificates may not be larger than the generation. To formulate this condition,
we introduce the slack variable, Q, unused certificates. Together with the
optimality conditions of the player problems (4.11)-(4.13) we get a system of
equations and inequalities defining how the players will behave:28

A~ 3Gy =0, (4.143)
ceC geG

Y Ie-Y Gy -Q=0, (4.14b)
ceC geGt

MCgy(Gg) &2 1, if G =0, (4.14c)
MCgy(G§) =& =1 if0< G < Gy (4.14d)
MCgq(Gg) —E <1 if Gg = Gy, (4.14¢)

26. In this system of equations and inegualities we also have the constraints and the
variable limits of (4.11)-(4.13), but | have chosen not to repeat them, to at least
somewhat shorten the enumeration of the optimality conditions. Besides, it can be
noted that the conditions (4.14a)-(4.14q) correspond to the optimality conditions
of an aggregated optimisation problem, which in this case is a simple quadratic
programming problem.
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MCoqy(Gg) = 1., if Gy=0, (4.14f)
MCoqy(Gy) = 1., if0<Gy< Gy,  (4.149)
MCoqy(Gg) <1, ifGy=Gy  (4.140)
MBc(Ag) < 2 + ki if A, =0, (4.14i)
MBiao(Ag) = A + ke, ifO<A < Ac,  (4.14)
MBo(Ad) > A + ke, if Ao = Ac, (4.14K)
£2 K, if ,=0, (4.141)
£ =xg if I, >0, (4.14m)
Bz > Ko, if £, =0, (4.14n)
P= = e, if 2.>0, (4.140)
£20, if Q=0, (4.14p)
£=0, if Q> 0. (4.140)

The interpretation of these conditionsis that the marginal cost of the certified
producers equals the marginal cost of the generation minus the certificate
price. The other producers behave as in an ideal electricity market. The con-
sumers must include both the electricity price and their individual certificate
value, k. (dua variable of the constraint in the consumer problem), when
deciding how much they are to consume. The individua certificate value is
normally equal to the market price of the green certificates, which in its turn
is either equal to the penalty fee (if the certified generation is less than the
total quota of the consumers) or equal to zero (if there is a surplus of certifi-
cates).

The last observation above is interesting, because it means that the certifi-
cate price will toggle between two extreme values if there is perfect competi-
tion in the certificate market and the duration of the certificates is limited.
This means that the quota must be higher than the certified generation we
actually are striving for, since the moment the certified generation exceeds
the quota the subsidy disappears. Hence, we are back to square one, i.e., the
environmentally benign power plants cannot compete with other power
plants. In figure 4.6 | provide some examples of scenariosillustrating this sit-
uation. In the example, a number of small hydro power plants are certified,
and there are also two larger, non-certified producers. When the quota of the
exampleis 10% it is not profitable to double the capacity of the certified gen-
eration, because that would force the certificate price down to zero. However,
if the quota is increased to 20% investing in more certified power plants
could be profitable, provided that the investment cost is less than the increase
of the producers’ surplus.
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s Gy = 200

CGl(Gl) = 12G, +0.0sG?
L Ec1(Gy) = G

L

M B, (A) = 120A-0.25A2

Coa(G,) = 8G, +0.05G2
Eg(G,) = 3G,

Gz= 200

A (see below)

Scenario parameters
Quota, k [%] 10 10 20 20
Penalty fee, By [//MWh] 30 30 30 30
Ma_meal certified generation,

H [MWwh] 15 30 15 30
Electricity price, A [//MWh] 19.05 18.64 18.77 18.009
Certificate price, & [//MWh] 30.00 0.00 30.00 30.00
Consumers

Consumption, A [MWHh] 195.01 202.73 190.45 191.82

Purchased certificates, I' [MWh] 15.00 20.27 15.00 30.00

Penalised consumption, = [MWHh] 4.59 0.00 23.09 8.36

Value of consumption, B,(A) [d] 13914.00| 1405269 | 13786.31| 13819.63

Electricity cost, L-A [9] 3731L19| 377811 | 357535 3470.16

Certificate cost, §-T [9] 450.00 0.00 450.00 900.00

Penalty cost, By -Z [7] 137.73 0.00 692.73 250.91

Surplus, CS 9595.08| 10274.58 9 068.24 9 198.56
Certified producers

Generation, H" [MWHh] 15.00 30.00 15.00 30.00

Electricity income, AH? [=] 285.68 559.09 281.59 542.73

Certificate income, T[] 450.00 0.00 450.00 900.00

Surplus, PSeert [] 735.68 559.09 731559 | 144273
Other producers

Generation, G; + G, [MWh] 180.91 172.73 175.45 161.82

Electricity income, A-(G1 + Gy) [d] 344550 | 3219.01| 3293.75| 2947.44

Generation cost,

Cc1(Gy) + Cxa(Gy) [9] 258730 | 243314 248416| 223282

Surplus, PSsy, [9] 858.22 785.88 809.61 694.63
Total emissions,

Ec1(Gy) + Ega(Gy) [ton] 401.82 385.45 390.91 363.64
Total surplus,

BA(A) = Cg1(Gy) — Ca(Gy) [A] 11326.70| 1161955 | 11302.15| 11586.81

Figure4.6 Example of tradable green certificates. In this example the hydro power is
certified, as it does not cause any emissions. If the quota is increased, the
profitability of the certified power plantsincrease too.

Notice that the total surplus does not include the costs caused by the emis-
sions. Thus, it depends on the evaluation of the external costs, which solution
is going to maximise the benefit to the society (cf. table 4.5).
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Table 4.5 Short-termtotal surplus of the scenarios in figure 4.6.

Certified True marginal damage, MD [/ton]
Quota, k [%] generation,
H [Mwh] 1 4 >
Ideal electricity market? 15 10936 | 10564 | 10219 | 9902 | 9612
10 15 10925 | 10523 | 10121 | 9719 | 9318
20 15 10911 | 10520 | 10129 | 9739 | 9348
Ideal electricity market? 30 11248 | 10903 | 10586 | 10296 | 10 033
10 30 11234 | 10849 | 10463 | 10078 | 9692
20 30 11223 | 10860 | 10496 | 10132 | 9769

a. Intheideal eectricity market there is no tradable green certificates, but the
true marginal damage of emissions are included in the cost functions of the

power plants.

Table 4.6 Profitability of investing in increased certified generation.

True marginal damage, MD [©/ton]

1 2 3 4 5

Increased surplusin an ideal electricity market®| 312 339 367 394 421
Increased surplus of certified producersb

Quotak = 10% —4 -4 -4 4 4

Quotak = 20% 884 884 884 884 884
Isthe investment profitable if the cost is 200 o?

Ideal electricity market Yes Yes Yes Yes Yes

Quotak = 10% No No No No No

Quotak = 20% Yes Yes Yes Yes Yes
Isthe investment profitable if the cost is 400 o?

Ideal electricity market No No No No Yes

Quotak = 10% No No No No No

Quotak = 20% Yes Yes Yes Yes Yes
Istheinvestment profitableif the cost is 600 &?

Ideal electricity market No No No No No

Quotak = 10% No No No No No

Quotak = 20% Yes Yes Yes Yes Yes

a. Determined by comparing the total surplus according to table 4.5 when the certi-
fied generation is 15 MWh and 30 MWh respectively.

b. Determined by comparing the surplus of the certified producers according to
figure 4.6 when the certified generation is 15 MWh and 30 MWh respectively.
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It isjustified to question whether or not the pricesin area certificate mar-
ket will toggle between extreme values in this manner. According to for
example [80, 81, 82] the certificate price can be determined by the long-run
production cost (i.e., all costs—investment, operation and maintenance, and a
risk reward to the investor—during the life time of the power plant divided by
the total output) of the certified power plants which are commenced during
the accounting period. | am however not quite convinced that this reasoning
is valid, because the power plants which were already in operation at the
beginning of the accounting period and those entering later are in the same
position; they have already had expenses for the investment and if the priceis
not high enough to cover the investment costs, they must at least try to mini-
mise the losses. If there is a surplus of certificates, the competition will force
the certificate price down to the minimum level. If there is a deficit of green
certificates instead, there is no reason, neither for new nor old power plants,
to ask for a price much less than the penalty fee. There are however many fac-
tors which may influence the pricing, for example incomplete information
(the players do not know whether there will be a surplus or deficit of certifi-
cates), market power or longer duration of the certificates than one account-
ing period. More detailed studies of the pricing in certificate markets should
be necessary.

If we return to the example in figure 4.6, the external costs are not included
in the figure, but in table 4.5 | have calculated the total surplus for some val-
ues of the true marginal damage caused by the emissions, MD. For compari-
son, | have aso caculated the total surplus in an idea electricity market,
where MD is internalised in the production costs of the power plants. The
ideal electricity market is as expected always more efficient, but the differ-
ence is not particularly large when MD is low, whereas the difference islarge
when MD is higher.

| have no intention to model market dynamicsin this dissertation, but let us
nevertheless have a look at the willingness to invest in the ideal electricity
market and the non-ideal electricity market with tradable green certificates.
The ideal electricity market maximises the benefit to the society, i.e., an
investment is carried out if it results in an increase of the total surplus which
is larger than the investment cost. In table 4.6 it is shown how the total sur-
plus in an ideal electricity market is affected when the certified generation
increases by 15 MWh. The larger the marginal damage caused by the emis-
sions is, the more profitable the investment becomes. In the non-ideal elec-
tricity market the investment is carried out if the cost of the certified producer
is less than the increased producer surplus. In the table, it is shown how the
surplus of the certified producer is changed. Notice that in this case the profit-
ability is not depending on MD, but on the price of the green certificates,
which indirectly depends on the quota. Therefore, in some cases the invest-
ment will be profitable in both the ideal and non-ideal electricity market,
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whereas in others the results will differ. The example illustrates the impor-
tance of choosing the right levels of the parameters controlling the trading
(quota, penalty fee, duration of certificates, etc.) to achieve an efficient
resource usage both in the short and the long run.

4.3 CREDIBILITY

Even actions that are necessary to protect the environment usually cause dis-
content in some places—there is aways some party who is subject to
increased costs or looses a source of income, and which therefore prefers that
everything went on as before. Unfortunately, there are countless arguments
for those who want to oppose environmental protection rules; the environ-
mental impact of a particular activity can be denied or played down, it can be
questioned whether a certain action will result in the desired improvements of
the environment, etc. To rebuff these kinds of arguments it is important that
all actionstaken to protect the environment are credible.

It goes without saying that regardless of which rules are introduced, they
must be applied consequently; if exceptions are made for some producers or
consumers credibility is lost—in practice, the result is that environmentally
hazardous activities are subsidised. In this section | will therefore focus on
two other credibility issues, namely whether or not it is possible to disclose
eectricity, and what may happen in an electricity market where there is both
trading of eco-labelled electricity and green certificates.

The Owner ship of a M egawatt-hour

Asall electricity trading takes place in acommon grid it isin practice impos-
sible to track the generated electric energy from producer to consumer. This
fact is frequently used to discredit players who on their own initiative try to
consider external costs when choosing e ectricity supplier. For example, con-
sider this letter to the editor of the Swedish engineering newspaper Ny Teknik
concerning a petrol station offering hydrogen produced using electricity from
wind power:

“Inthe articleit is stated that this electricity is generated by awind power plant
outside Malmo. | doubt the veracity of this claim—it isasfar as| know purely
blather, with intent to intimate that the hydrogen should be ‘green’. The elec-
trolysis is most likely performed at the petrol station, athough this is not
clearly stated. It would be madness to have a specia electric line between the
wind power plant and the petrol station. The truth is of course that the power is
taken from the grid...”

There are other debaters who like thiswriter do not think that a consumer can

86  Credibility



Chapter 4: Electricity markets and Environment

be said to consume particular electricity generation, but that everybody con-
sumes the same mixture of power sources. Such claims might be physically
correct, but are nevertheless misleading.

To explain why, it is most simple to use a metaphor. Consider a ssimple
water market, which is less complicated than an electricity market, but has
similar properties. The consumers get their water from a large tank and the
producers supply water by pouring it into the common tank. There is also a
system operator who makes sure that there is a sufficient amount of water in
the tank. Hence, a consumer must not get water exactly at the same time as
the producer deliversthe water; the trading impliesthat if the consumer getsa
bucket of water then the producer at some time will have to fill up the tank by
the same amount of water.

Now assume that there are two consumers, A and B, in this water market.
The supplier of consumer A fetches fresh water from a spring in the forest,
whereas consumer B has chosen a supplier who fetches the water out of a
dirty pool next to an industrial estate. As all water is mixed in the tank, both
consumers will drink the same mixture of spring water and filth. Does this
mean that they are equally good consumers? Thisis assuredly a philosophical
question, but | can hardly imagine that somebody is prepared to give an
affirmative answer—consumer A is paying for agood product being supplied
to the system, whereas consumer B is paying for an inferior product.
Although different water qualities cannot be physically separated, A should
nevertheless be accounted the right of the fresh water. In the same manner |
think it is natural that consumers in an electricity market who are paying a
producer to supply environmentally benign electricity to the grid, also should
be able consider themselves the consumers of that electricity.

A problem which we should look out for, when physical delivery and eco-
nomical agreements do not follow each other, is double counting, i.e., when
several players claim the right to the same environmental improving action. If
we assume in the water market metaphor, that A and B consume the same
amount of water per year, then the water will consist of 50% spring water and
50% filthy water. Assume that B on account of this claims to be consuming
50% spring water, while A claims that he or she consumes 100% spring
water. If both were right, the water would consist of 75% spring water, which
we know is not the case. Double counting can arise in an electricity market in
asimilar manner, for example if the share of environmentally benign produc-
tion is considered in some contexts and the share of environmentally benign
consumption in others.

Naturally, any regulation allowing for double counting looses alot of credi-
bility. Besides, statistics which have been distorted by double counting may

27. The letter is from Ny Teknik, no 40, October 1, 2003, p 38. The letter was origi-
nally written in Swedish.
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give the impression that an environmental problem is smaller than it redly is.
There are therefore very good reasons to |ook out for double counting and to
make sure that the rules of the electricity market clearly define who should be
accounted the right of an action improving the environment.

Green Certificates and Eco-labelling

Sometimes green certificates and eco-labelled electricity are presented as two
different products. The aim of both systems is however the same; environ-
mentally benign power plants should be paid more, so that they better manage
to compete with other power plants. Therefore, my opinion isthat it is unfor-
tunate to separate the two systems, because it may lead to double counting.

Let us start by observing that certified electricity and eco-labelled electric-
ity does not necessarily have to be the same thing, because the legislator and
the eco-labelling organisation may have different views on which power
plants to support. This is quite in order—it is even an advantage, because it
gives the consumers a larger freedom of choice, if it should be so that one or
the other choose an unfortunate definition of what constitutes environmen-
tally benign electricity generation. Let us now consider a smplified electric-
ity market, where there are four power sources representing the four possible
combinations of eco-labelling and certification; large-scale hydro power and
wind power are eco-labelled, small-scale hydro and wind power are certified,
and the other producers are neither eco-labelled nor certified.

The criteria for eco-labelled electricity states that at most 80% may origi-
nate from large-scale hydro power and at least 20% must be from wind
power. The demand of eco-labelled electricity is 20 TWh/year and as the
wind power is more expensive than large-scale hydro power, we assume that
this means that those offering eco-labelled electricity will generate 16 TWh
hydro energy and 4 TWh wind energy. The quotain the green certificate sys-
tem is 10%. The production cost of both certified power sources are assumed
to be the same, which implies that if the demand for certificates increases by
1 TWh then the wind power will account for 0.5 TWh of that increase and the
small-scale hydro for the remaining 0.5 TWh.

Assume that eco-labelled electricity and green certificates are treated as
separate products. This means that all consumers, regardless of whether or
not they have chosen eco-labelled electricity, must go to the certificate market
and purchase certificates corresponding to their quota, as shown in
figure 4.7a. The power plants which are both eco-labelled and certified will
have extra income both when selling the electricity to a higher price (in the
market for eco-labelled electricity) and then another extra income when the
certificates are sold. It is hard to see thisin any other way than that the pro-
ducers are paid twice for the same thing. In a similar manner, the environ-
mentally aware consumers are subject to two extra cost increases; first, they
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Large-scale Wind Small-scale Other
hydro power Ind power hydro power producers
7 TWh cert. 3 TWh cert.
74 TWh elec.
4TWhdec. [ 13Twhd 3Twhel

16 TWh elec.

Electricity - Certificate

market Ordinary market

glectricity trad

2 TWh cert.

Quota Quota

a) Eco-labelled electricity separated from green certificate trading.

wind Small-scale Other
hydro power Ind power hydro power producers
4 TWh dlec. 4 TWh cert. 4 TWh cert.
+ 4 TWh cart 72 TWh elec.
4TWh dec. £ 4 TWheleg
16 TWh elec.
Electricity ) Certificate
Ordinary
market electricity trad market
Eco-labelled
glectricity trad
20 TWh elec.
+4TWh cert. 80 TWhelec.
Aware Other
consumers consumers
2 TWh cert. 2 TWh cert. 8 TWh cert.
Quota Voluntary cancellation Quota

b) Eco-labelled eectricity including the green certificates assigned to the eco-labelled
power plants.

Electricity market with both eco-labelled electricity and green certifi-

cates. In this example it is assumed that the eco-labelled electricity con-

sists of 80% large-scale hydro power and 20% wind power, while wind

power and small-scale hydro power are certified. The quota is 10%.

Figure4.7
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voluntarily pay alittle bit extrafor eco-labelled electricity and secondly, they
have to pay extrafor the green certificates.

Assume that the two systems were integrated instead, i.e., when a consumer
buys eco-labelled electricity, the deal includes all certificates the producer
obtained for the part of the generation which is also certified. If the eco-
labelled electricity consists of a lesser share certified generation than the
guota, the aware consumers will still have to buy some certificates from the
certificate market. But if the share is higher—as it is in our example—then
the aware consumers receive more certificates than required to fulfil the
quota. This situation is shown in figure 4.7b. If the certificates are valid
longer than one accounting period there has to be a possibility to voluntarily
cancel the surplus certificates, otherwise the consumer can sell the certifi-
cates in the free certificate market and then we are back to a similar situation
asinfigure4.7a.

The difference between the two examples is primarily that the wind power
in figure 4.7b cannot simultaneously be sold in the market for eco-labelled
electricity and the certificate market. The demand of electricity which is both
eco-labelled and certified therefore increases when the systems are inte-
grated, which is an obvious advantage. But at the same time, the electricity
generation in power plants which are certified but not eco-labelled increases,
and it is not self-evident how the organisation behind the eco-label should
respond to this. If they consider certified but not eco-labelled electricity to at
least be preferable to electricity generation which is neither certified nor eco-
labelled then it is better to integrate the systems. On the other hand, if they
think that the certification of these power plants is a severe mistake, then it
might be better to accept a decreased demand of eco-labelled electricity while
decreasing the undesired, certified electricity. In this case separate systems
are preferable—if you are prepared to justify the arising double counting.

Finally, | would like to remark that my example is somewhat exaggerated,
because | assume that increased demand for certificates is divided equally
among eco-labelled generation and generation without the labelling. Hope-
fully, the environment organisation and the legislator share a more common
view of which power plants should be supported, which means that increased
demand for certificates mostly resultsin increased generation in power plants
which are favoured by both systems. My personal view is therefore that eco-
labelled electricity and tradable green certificates should be integrated to
avoid the systems being questioned due to double counting. If for some rea-
son green certificates are issued to directly improper power plants (for exam-
ple such power plants which are not very environmentally benign or which
could manage without support) it is more appropriate to lobby for a change of
the definition of green power plants, than to oppose the whole green certifi-
cate trading system.
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Chapter 5

FORECAST
UNCERTAINTY

In an idea electricity market all players have perfect information, which
means that they do no have to make any assumptions about future events, but
they know exactly what future awaits them.! The playersin areal electricity
market do not have it as easy, because there is always some uncertainty in
forecasts of the future.

We may compile a simple time scale describing the time perspective for
different kinds of decisions (seefigure 5.1). The time perspectiveis of impor-
tance to which forecasts are necessary, how accurate the forecasts are, and the
consequences of incorrect forecasts. In one end we find decisions which are
related to the operational security of the system. Here the time perspective is
very short; quick decisions have to be made in order to maintain stability of
the system; therefore, technology is more important than economy. In the
other end the situation is the opposite. Here technology is hardly alimitation,
but the question is which investments are profitable. These decisions are
characterised by a great deal of forecast uncertainty.

| will in this chapter have a closer ook on how to model the consequences
of players planning their actions based on partly uncertain information. | will
in this respect study three of the time perspectives mentioned in figure 5.1:
control, short-term planning and long-term planning. Forecast uncertainties

Short-term Long-term Expansion

technology Control olanning planning planning economy
Securi onds, W;:QLJ:ES ’ V\(/j:glf years, for
v minutes ' S decades uncertainty
days months

Figure5.1 Time perspective in power system planning.

1. More precisely, if afuture event is represented by arandom variable, it is not suf-
ficient to know the probability distribution of the random variable to have perfect
competition, but we have to know its outcome.
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in expansion planning will not be addressed, because the models | work with
are intended for that purpose—trying to incorporate into the model how the
eectricity market is affected by the model itself seems like the beginning of a
complicated circle argument.

5.1 CONTROL

In a power system, frequency, voltage and power flows must in every
moment be kept within certain safety limits. If we fail to do that, more or less
serious disturbances will follow, and in the worst case the system might col-
lapse. It may take days before the system has recovered from such a severe
disturbance and the social cost may be enormous.?

There are many small changes which immediately affect the operation of a
power system and may cause disturbances if they are not compensated by
appropriate actions. Examples of such changes are consumers increasing or
decreasing their consumption, non-dispatchable power plants changing gen-
eration due to the weather and failures in power plants. Obvioudly, it is
impossible to know in advance when a change will occur and it is therefore
necessary to install automatic control systems, which rather than forecasting
changes, quickly respond to deviations and correct them before they become
too large.

Voltage Control

To explicitly model voltage control in an electricity market would require far
more detailed models than a multi-area model, which would not be very
appropriate for aMonte Carlo simulation (cf. section 3.2). On the other hand,
thereis no direct need for a detailed model of the voltage control, because the
practical consequences of the forecast uncertainty are quite small. Aswe can-
not anticipate when afailure will occur, we need to keep such marginsin the
system that it can cope with a sudden failure in a line; thus, the available
transmission capability between the areas of the system is dightly less than
what would had been the case with perfect information. This impact is mod-
elled indirectly when determining the transmission capability between the

2. During 2003 magjor blackouts occurred in north-eastern USA (including parts of
Canada), in southern Sweden (including parts of Denmark) aswell asin Italy. It is
hard to assess the costs of these blackouts, but in Sweden for example the costs
were estimated to about 500 MSEK [38]. This number is probably rather too
high—for comparison, it can be mentioned that during the spring 1998 central
Auckland was befallen a black-out lasting several weeks, since the four transmis-
sion lines supplying power to the city had failed. The social cost was estimated to
60 MNZD per week according to [141].
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areas. The voltage control also affects the losses of the system, because the
active power losses dightly increase if more reactive power is transferred
simultaneously. The increase is however quite marginal and it is justified to
assume a constant reactive power when determining the loss functions.

The voltage control causes only small direct operation costs, which are due
to internal losses in the components used to control the voltage. There are
also indirect costs, since the voltage control influences the losses. Both these
costs are however marginal and it is fully reasonable to neglect them. Hence,
the costs of voltage control consist more or less only of the investment and
mai ntenance costs of the equipment used for voltage control—these costs can
be considered part of the general costs to build grids (cf. section 6.3).

Frequency Control

As soon as there is an imbalance between generation and consumption, the
frequency of the system will be affected; the frequency decreases when gen-
eration is less than the load and vice versa. To compensate the imbalances
which continuously occur dueto small changesin load and generation in non-
dispatchable power plants, automatic control systems are used to govern the
generation of particular power plants. These contral systems are divided in
primary and secondary control, which roughly correspond to the proportional
and integrating parts of aPl controller.

The primary control stabilises the frequency by increasing or decreasing the
generation when the system frequency changes. All power plants participat-
ing in the primary control have control systems measuring the system fre-
guency and governing the power plant output; the relation between the gener-
ation of a power plant, G and the system frequency, f, can be written as

G= GO — R(f — fo), (51)

where fq is the nominal frequency and R is the speed-droop characteristics
(expressed in MW/HZz). To alow a power plant to participate in the primary
control, the nominal generation, Gy, must be less than installed capacity, so
that there is a marginal to increase the generation if the frequency should
decrease. It must also be larger than zero, so that there is a marginal to
decrease the generation when the frequency increases.

Intheideal electricity market it isthe electricity price and the marginal cost
of the power plant which determine how much each power plant should pro-
duce,® but in reality there are some power plants where the generation is

3. Unfortunately, there is some confusion of ideas in this area, as we in the Nordic
countries use the term secondary control for manually activated reserves. | have
here chosen to use a more internationally practicable terminology, in accordance
with [36].
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partly controlled by the frequency instead. Hence, there will generally be a
difference compared to the operation cost in an ideal electricity market. How
large this difference is depends on which power plants participate in the pri-
mary control. Thisisinitsturn depending on technical properties of different
power plants, i.e., how easy they are to control and which extra operation cost
the control will cause.®> However, we are dealing with relatively small devia-
tions, as the share of the installed capacity which is part of the primary con-
trol is quite small. In the Nordel area, where the total installed capacity
amounts to about 83000 MW, the norma primary control reserve is
+600 MW.6 If we choose to neglect the primary control completely in the
electricity market model, the error should not be too large. A more realistic
aternative is simply to exclude the primary control reserves from the availa-
ble generation capacity; in a rea tight situation, load will be disconnected
before the primary control reserve is the last unused generation capacity of
the system.’

If we want to model the consequences of primary control more in detail, the
following assumptions can be made. The primary control increases the total
operation cost, TOC, because the power plants participating in the primary
control sometimes generate even though the marginal cost is higher than the
electricity price, and sometimes are not used although the marginal cost is
less than the electricity price. The impact on TOC varies from scenario to sce-
nario, but over alonger time period, these variations should even out. There-
fore, it seems reasonable to determine an approximate cost function to set
aside a certain part of the available generation capacity for primary control. In
the electricity market model we may then differ between generation capacity
intended for selling energy to the ahead market, Gg’t (thermal power plants)

4. If the marginal cost is higher than the electricity price, the power plant will not
generate anything, the power plant will generate its available capacity if the elec-
tricity price is higher than the marginal cost of the last MW, otherwise, marginal
cost and electricity price should be equal (cf. the examples of producer problems
given in chapters 4 and 6).

5. A power plant will generally have one or more maximal efficiency points. Deviat-
ing from these levels of generation—which is inevitable when frequency controls
generation—means lesser efficiency and hence higher marginal production cost.

6. In total there are 91 000 MW generation capacity in the Nordic countries, but Ice-
land (1500 MW) maintain their own frequency and western Denmark
(7 000 MW) is part of the central European UCTE area[40, 44].

7. To maintain a stable frequency there has to be a primary control reserve—it is not
possible to adjust continuously the balance between production and consumption
by disconnecting load. If the available capacity of the Nordic countries is
83 000 MW and the load was allowed to increase to 82 900 MW there would be a
really awkward situation if the load increased by another 100 MW or if 100 MW
generation capacity was lost. The frequency would then continue to decrease, as
there would not be any reserves left, and we would run the risk of atotal collapse
of the system.
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and HF . (energy limited power plants), and generation capacity reserved for
the primary control, GF”t and Her £ 8 The objective function of the scenario
problem (3.12) is changed so that it includes both the costs of the planned
generation and the costs of the primary control:

maximise ZTt[ Z BAc, t(AE, t) _ZCGg, t(Gg, D)~ Z C(P;g’ t(GgF;, t)
t=1 “ceC, geG geG

_Zcﬁr,t(HEt)_ ZCUc,t(Un,t)) (52

~-r

Notice that the objective function (5.2) contains two different kinds of cost
functions: Cgg, (Gg, ) refers to the generation cost for physical delivery of a
certain average power Gg, while ng’t(Gg’ ) and CR, t(H'rD’t) refer to the
cost to set aside a certain capacity for the primary control reserve.

The requirements of maintaining a sufficient primary control reserve, R;, in

the system is represented by a constrai nt:°

SGE+YHP =R,  Vt=1..,T (5.3)
geG reR

Finally, the limits of the power generation (3.15b, 3.15¢) are replaced by the
following constraints:

GEt+Gf<Ggr. VgeGt=1..,T, (5.4)
H'r:,t+HrP,tSHr,t, vreR,t=1,...,T. (5.5)

When using the above modifications of the scenario problem, it will also be
necessary to update the definitions of the result variables. For example, the
costs of the primary control should be included when calculating TOC. The
conseguences of the other main result variable—loss of load occurrence,
LOLO—depends on which kind of model that is used. In a short scenario, the
scenario problem only include one time period. This time period can be cho-
sen arbitrarily; therefore, a short scenario may be interpreted as observing the

8. The non-dispatchable power plants cannot be used for primary control and it is
therefore not necessary to divide their available capacity in this manner. In those
cases when some power plants have not been equipped with the control systems
necessary to participate in the primary control then this can either be modelled by
excluding the optimisation variables th and HP ¢ of these power plants, or by
setting the corresponding cost functions so high that these power plants will never
be used for primary control reserves.

9. It is possible to replace (5.3) by separate constraints for the primary control
reserve in each ares, if that should be desirable.
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electricity market in a particular moment. If instantaneous values of available
generation capacity and load are compared, it is possible to determine directly
if load shedding will occur or not. In practice, we have to—as mentioned
above—consider that load shedding cannot be used for primary control and
that due to security reasons, load will be disconnected already when the load
exceeds the generation capacity which is not part of the primary control.

In a long scenario, loads (and to some extent generation capacities) are
average values for each period (cf. section 3.2.1). Comparing two average
values to determine if the generation capacity is sufficient is quite naturally
hazardous, but a simple interpretation is that if the average of the marginal
cost controlled generation is sufficient to cover the average load then the
power plants of the primary control can manage the peaks when the instanta-
neous load exceeds the average load. This interpretations seems quite reason-
able if the average values are calculated using relatively short time periods,
for example an hour. If this interpretation is accepted, we may either choose
to exclude the primary control reserve from the available generation capacity,
or we can use the division between planned generation and reserves accord-
ing to (5.2)-(5.5).

When a disturbance has been compensated by the primary control, there
will still be a frequency error; the primary control restores the balance
between production and consumption which prevents the frequency from
continuing to decrease or increase, but it does not return the frequency to its
nomina value. Therefore, another automatic control system—the secondary
control 1°>—can be installed. The system collects measurements of system fre-
guency, generation in power plants, power flows in transmission lines, etc.,
and then transmits new reference values, Gy, to the control systems of the
power plants participating in primary control. The objective is to return the
frequency to its nominal value, maintain desired transmission between differ-
ent parts of the power system and minimizing the operation cost by governing
the generation of the involved power plant to such levels that the best effi-
ciency is achieved [34]. Unlike primary control, which is an essentia func-
tion of all power systems, secondary control is not a necessity, but the same
function can be achieved by manually activated reserves (see below).

Since the secondary control governs the same generation reserves as the
primary control, it has similar consequences for operation cost and other
result variables. The possibility to include some economic optimisation in the
secondary control may cause the total cost of the automatic frequency control
to decrease, which should be considered if cost functions of primary control
are included in the model, as described above.

10. Often referred to as Automatic Generation Control (AGC).
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Manual Reserves

The generation capacity which is set aside for automatic frequency control is
not unlimited and must therefore gradually be relieved to alow the system
sufficient margins to be able to manage new changes in production or con-
sumption. Therelief is performed by the system operator, who manually acti-
vates regulation actions using the real-time market (see chapter 2).

Activating reserves may cause an extra cost compared to if perfect informa-
tion had been available, for example if we are forced to use more expensive,
but easily started power plants instead of slower units. Using similar argu-
ments as those used above concerning frequency control, we may claim that it
is not unreasonable to approximate the costs of the manual reserves as afixed
cost per scenario (which of course may vary when studying different alterna-
tive designs of the electricity market).'*

If desirable, it is possible to introduce more detailed models of manualy
activated reserves too. To do this, each scenario has to be divided in several
parts. In the first part, which | prefer to call the market problem,? the trading
in the ahead market is simulated. The same kind of models are used in the
market problem as in an ordinary scenario problem; the differenceisjust that
some inputs represent the forecasts of the players and not the true outcome. It
may also be so that some physical limitations which are normally included in
the scenario problem are not included in the market problem, becauseit isthe
responsibility of the system operator to manage them.13

The actions of the system operator, i.e., the trading in the real-time market,
are simulated in the next part of the scenario: the redispatch problem.* In
the redispatch problem all physical limitations are considered (because the
system operator has to do that in order to maintain safe operation of the sys-
tem). Moreover, no forecast values are used as input, because it can be
assumed that during a trading period the system operator will have sufficient
information to know what is going on in the system. To make this assumption
more justified, it is possible to use a shorter period length in the redispatch
problem than in the market problem. For example, if the ahead market uses a
period length of one hour, we could divide the redispatch problem in twelve
five minute periods. The disadvantage of this procedure is that it takes a sig-
nificantly larger computational effort to analyse each scenario.

Let Gg and AF denote the resulting trading in the ahead market (i.e., the

11. Exactly how to perform these calculations is a challenge, which | happily leave to
other researchers.

12. In [12] the term “market dispatch” was used.

13. An example of such aphysical limitation which might be omitted from the market
problem is transmission limitations. More about that in section 6.2.

14. In [12] the term “congestion redispatch” was used. | have left out the word con-
gestion, as we here do not simulate just congestion management, but al the real-
time trading.
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solution to the market problem), while GR and AR represent the actual oper-
ation during a certain period of the real-time trading. The difference between
these (i.e., the performed regulation actions) are denoted by Ga, Gé, Al and
Ag. The introduced symbols relate to each other as follows:

GF —GR if GF > GR,
9 o if GF <GR,
GR-GF if GF < GR,
cgr=4 9 9 9 (5.6b)
9 o if GF > GR,
AF — AR if AF> AR
Ab=4 ¢ F e (5.60)
0 if Ag < A(F:Q,
AR_AF if AF < AR
INER e (5.6d)
0 if AE > AE?.

As described in chapter 2, the real-time trading can either be performed
using central dispatch, where the system operator decides how each power
plant and controllable load should be operated, or using a regulating market.
The modelling of central dispatch is more straightforward, so let us start with
that model. To simplify the presentation—a redispatch problem can be very
complex if al physical limitations of the power system are considered—we
neglect any connections between different points of time (as for example that
power plants cannot increase or decrease their generation at any rate). Moreo-
ver, assume that the scenario parameters which might change between the
ahead market and the real-time market is limited to the price insensitive load
and the available generation capacity of the power plants. If a multi-area
model is used for the power system, safe operation means that there should be
balance between production and consumption in each area, without exceed-
ing any limitations. In the central dispatch, the system operator tries to max-
imise the benefit of consumption minus the cost of generation, while
considering the physical limitations; hence, they solve the following multi-
area problem:

maximise z BAc(AR) — z CGg(Gg) —ZCUC’ {(Ue ) (5.7)
ceC, geG ceCp

subjectto S GR+AWR+ M (P =Ly (P ) =

geG, meP, m
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=S DR-YU+SAR+SP | VneN, (579

ceCp CeCDn ceC, meP,

]

0< AR < Ac, VceC, (5.7h)
0<GE < GE, vgeG (570
0<Pym<Pnm vV (n,m) eP,
(5.7d)
0<U <D}, vVceCp (5.7€)

It could be expected that a model of a regulating market is more compli-
cated than the above optimisation problem, but fortunately central dispatch
and a regulating market are in practice equivalent. Assume that al players
submit bids to the regulating market, that there is perfect competition and no
player has any extra regulating costs.'® If regulation bids are paid the same
price as stated in the bid (see figure 2.2) the cost of the system operator can
be written as

CL(AY) = B, (AF)—B,(AR). (5.80)

Similarly, the benefit of the system operator when selling regulating power is
equal to

Bby(GY) = Cgqg(Gh)—Cpy(GR), (5.99)
BL,(A}) = B, (AR) =B, (AF). (5.9b)

Hence, the objective function of the system operator should be to

I I ! 0 0
maximise Z (BGg(Gg) - CGg(Gg)) +
geG

Y (BL(AD ~Crel(AD)). (5.10)

~ -

This objective function is also valid if uniform pricing is used in the regulat-

15. Such costs can arise as a consequence of aplayer being forced to deviate from the
optimal operation plan. A hydro power producer who down-regulates might risk
to fill the reservoir and become forced to spill water, which means that a future
income is lost. Another example is a thermal power plant, which was planned to
generate its maximal capacity during four hours. If down-regulated, the start-up
cost of the power plant must be divided over a smaller total generation and then
there will be arisk that the price of the ahead market will not cover both the varia-
ble operation cost and the start-up cost.
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ing market; the system operator will still try to use the down-regulation bids
which pays the best price for regulating power, etc.

The nice part is that the objective functions of (5.7) and (5.10) are equiva
lent. The proof is simple and is based on the observation that a single player
cannot simultaneously regulate up-wards and down-wards. Thus, the produc-
ers can be divided in two groups, G; and G,, where the first group are the pro-
ducers who down-regulate in the optimal solution, while the producers in the
second group up-regulate. The producers who do not regulate at all can be
distributed arbitrarily between the groups. With a similar division of the con-
sumers we find that the optimal value of the objective function (5.10) can be
written as

Z(Bég(Gé)—C g(GT))+Z(B (AD (A ) =

geG ceC

=ZB g(G ) — ZC g(G )+ZB C(AE)—ZCXC(A@, (5.11)
geGy geG, ceC ceC,

because the cost and benefit functions (5.8a)-(5.9b) are equal to zero, when
the corresponding variable is equal to zero. If we now substitute the defini-
tions of the cost and benefits functionsinto (5.11), we get

3" (Cg(GE) = Cgy(GR)) =3 (Cag(GR) ~ Cay(GE)) +

ge Gl ge 62
+Z (BAC(A(B) - BAC(AE)) — Z(BAC(AE) - BAC(A(B)). (5.12)
ceCy ceC,

The results of the ahead market are as mentioned earlier input to the redis-
patch problem; all terms concerning the ahead market are constants and can
be removed from the objective function:

3 Byc(AR) + 3B, (AR = 3 Cy(GR) =3 Cy(GR) =

ceC ceC, geG, geG,
={61UG,=GC;UCy=C} = T B, (AR -3 Cy(GR), (5.13)
ceC geG

which is the same expression asin (5.7). Since we have the same constraints
(safe operation of the system), the two optimisation problems are equivalent.
Thus, both central dispatch and regulating markets are most simple to simu-
late by solving an ordinary multi-area problem, but using the real-time values
of available generation capacity and price insensitive load etc. If some play-
ers cannot or do not want to regulate their generation or load then the corre-
sponding variables in the multi-area problem, GR and AR, are replaced by
constants corresponding to the trading in the ahead market, i.e., Gg and AE
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WF =55 Cea(Gp) = 9Gg
CenlGW=66n [ty GF =145
Gf =300

h e .
A DF =600 ' Corv(Gry) = 12Gky L
Gy =100 ,[DIU

Cec(Ge) = 15G¢
GE =0

Redispatch problem
1 2 3 4 5 6

Consumers

Consumption, D [MW] 550| 570 580| 610| 630| 610
Wind power producer

Available capacity, WR [MW] 30 50 70 70 68 60

Generation, W [MW] 30 50 70 70 68 60
Combined heat and power producer

Available capacity, GRy [MW] 100| 100| 100| 100| 100| 100

Generation, GEV [MW] 100 100| 100| 100| 100| 100
Producer A

Available capacity, GR [MW] 300| 300 300| 300| 300| 300

Generation, Gﬁ [MW] 300| 300 300| 300| 300| 300
Producer B

Available capacity, GR [MW] 150| 150| 150| 150 0 0

Generation, G§ [MW] 120| 120| 110| 140 0 0

Activated up-regulation, G} [MW] 0 0 0| 30 0 0

Activated down-regulation, GB [MW] 25 0 10 0 0 0
Producer C

Available capacity, GR [MW] 150| 150| 150| 150| 150| 150

Generation, GR [MVV] 0 0 0 0| 150| 150

Activated up—regulatlon GE IMW] 0 0 0 0| 150 0

Activated down-regulation, Gé [MW]] 0 0 0 0 0 0
Result variables

Total operation cost, TOC [d] 680| 680| 665| 710| 875| 875

Unserved power, ENS[MWh] 0 0 0 0 2 0

Loss of load, LOLO 0 0 0 0| Ue 0

Figure5.2 Example of simulating manual reserves. The scenario above is divided in a
market problem and six ten-minute redispatch problems. The result of the
ahead market is shown in the top figure. The generation of the combined heat
and power plant is determined by the heat production; therefore no regula-
tion bids have been submitted from this plant. The other dispatchable power
plants submits regulation bids and the result of the redispatch problems are
displayed above. As can be seen in the table, both load and wind power gen-
eration deviate from the forecasted values. Besides, a failure occurs in the
power plant of producer B after 40 minutes. The result variables of the entire
scenario are TOC = 4 485 o, ENS=2 MWh and LOLO = 1/6.
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(cf. the example in figure 5.2). It should also be possible to include extrareg-
ulating costs by modifying the cost and benefit functions of the redispatch
problem, but | will not consider that problem in this dissertation.

Based on the solutions of the redispatch problems, the values of result vari-
ables as TOC and LOLO can be calculated. If we want to study the surplus of
different players, we may also determine real-time prices and imbalances
according to the pricing schemes described in chapter 2.

5.2 SHORT-TERM PLANNING

By short-term planning | refer to the process when the players of the electric-
ity market make detailed plans of how much to produce, consume and trade.
The time perspective is short—it is about hours and days—and is ultimately
decided by technical factors (for example how long time it will take to start
up a power plant) and the design of the electricity market (for example how
long time that will pass from the closure of the ahead market to the actual
hour of delivery).

Planning isin practice the same as solving an optimisation problem; thereis
a goa which we want to achieve, while we have to consider certain limita-
tions. The multi-area problem, which we use to analyse how the electricity
market will behave, corresponds to a simplified short-term planning problem.
The difference between the model and the reality is that in real short-term
pl anrll(isng, more detailed models are used for power plants and the power sys-
tem.

If perfect information was available, the players would follow their short-
term plans and if the multi-area problem is accepted as a tol erable approxima-
tion of the short-term planning problem, we may say that the scenario prob-
lem exactly reflects the behaviour of the electricity market. In reality, there
will always be small deviations to the short-term planning, due to forecast
errors. The question is how to include these deviations in the scenario prob-
lem.

Sart-up Times

All power plants require some preparation from the moment we decide to
start them before they actually are ready to generate power. In many cases the
preparation time is negligible; for example, starting a diesel generator set just

16. For example, in the scenario problem a river system with several hydro power
plantsis represented by one single equivalent power plant, whereasin a short-term
planning problem we would normally consider the hydrological couplings
between individual power plants (cf. for example [94]).
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means pressing a button, the engine starts and the generator is synchro-
nised—a sequence which normally would not take more than a minute. How-
ever, large thermal power plants differ in this respect, because they have a
boiler which must be heated to its operational temperature before any elec-
tricity generation is possible and this process may take up to a couple of hours
[31].

When perfect information is available, the start-time will be compensated
by starting the power plant sufficiently in advance. Therefore, the availability
of apower plant only depends on the technical reliability when simulating an
ideal electricity market. The technical reiability is however very hard—if not
impossible—to calculate theoretically; hence, we use statistical models based
on historical datafrom the power plant or similar units.

If a power plant due to forecast errors has not been started in time, the con-
sequences will be the same as if the power plant had been subject to a techni-
cal error: the generation capacity is not available when needed. The most
straightforward method to model the impact of forecast errors in the short-
term planning of power plants with significant start-up times is therefore to
include both technical errors and planning mistakes in the statistics used to
calculate the availability of the power plant.

Forecast errors can also result in starting a power plant, even though it later
turns out it was not needed. As some fuel is used for starting the power plant,
this kind of planning mistakes cause an extra cost to the owner of the power
plant. | hardly think this cost is particularly large and it seems reasonable to
use operational logs to estimate an average annual cost of “unnecessary”
starts. This cost can then be treated as a fixed operation cost when analysing
the results of an electricity market simulation.

Balance Responsibility

Generation in a power system must always be adjusted to the continuous var-
iations of the load. As described in section 5.1, it takes automatic control sys-
temsto solve thistask, and it would be unreasonabl e to require that each play-
ers maintained his or her own balance in each moment. Therefore, frequency
control is considered a part of the infrastructure of the electricity market and
it isthe duty of the system operator to supply this function. The responsibility
of the system operator is however just short-term; eventually anyone who is
selling 1 MWh electric energy must either generate or purchase 1 MWh. It is
therefore normally required that each player should maintain balance within
each trading period, while the system operator is responsible for events
within the trading period.

To persuade the players to keep their balance, some players are appointed
balance responsible, which means that they have a financial responsibility for
any imbalance. A closer description of the notion balance responsibility and
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how to settle imbalances is found in chapter 2. In this context it is sufficient
to establish that forecast errors in the short-term planning will result in the
balance responsible players always having larger or smaller imbalances. With
afew exceptions, imbalance means increased costs to the balance responsible
compared to if perfect information had been available.

The cost of the balance responsibility is however varying between different
players. According to [39], the relative costs of balancing power, i.e., the cost
of the balance responsibility divided by the total load, are lower for larger
balance responsible players than for the smaller players. Among the explana-
tionsit is mentioned that large suppliers having many kinds of customers will
have relatively smaller load variations as the individual load variations of the
consumers will to some extent even out each other; hence, it becomes easier
to produce good demand forecasts. Moreover, large players can afford to
have 24-hours staff and can therefore continuously revise and correct their
demand forecasts. Another difference, which is not mentioned in [39], is that
some players also have difficulties in predicting their generation. Thisis par-
ticularly the case for wind power producers, for whom it is not unthinkable
that a forecast just a few hours ahead will miss the actual outcome by
100%.7

Asfar as| canjudge, the cost of the balance responsibility will however not
have any impact on the short-term behaviour of the players; hence, there
should not be a need to include this kind of forecast errors in the scenario
problem. However, this kind of costs will of course have dynamic effects on
the market, because they have an influence on which investments are profita-
ble and how the competition in the electricity market will develop in the long
run.

5.3 LONG-TERM PLANNING

Long-term planning is primarily a question for owners of energy limited
power plants, because they want to use the stored energy in such a manner
that they get paid as much as possible. Other producers may however require
long-term forecasts too, for example to plan when to perform major mainte-
nance works.

17. Thisispartly dueto the difficulty of making good wind forecasts, but a so because
the relation between wind speed and wind power generation is highly non-lin-
ear—asmall error in the forecasted wind speed may result in avery large error in
the forecasted wind power generation. Cf. [96], part 2.
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M aintenance Planning

Occasionaly, preventive maintenance has to be performed in power plants,
which means that the power plant during a longer, continuous time period
will not be available for power generation.’® Unlike corrective maintenance,
it is however possible to plan when to perform preventive maintenance and
the choice is of course to perform the maintenance during a period when the
cost of stopping the plant is as low as possible, which normally means trying
to perform preventive maintenance during those periods when electricity
prices are low. It is however not guaranteed that the correct period is chosen,
as there is an uncertainty in the forecasts of future electricity prices. If a
power plant is stopped at an inappropriate time, the total operation cost of the
system will increase compared to if perfect information had been available.

Modelling preventive maintenance offers no larger problems. The owners
of the power plants stop their power plants when they expect low pri ces.1®
Thus, there will be a correlation between those scenario parameters which are
of large importance to the price (for example load or inflow to the energy
storage facilities of the system) and the availability of the power plants. For-
tunately, it isfully possible to manage correlated random variablesin aMonte
Carlo simulation. We may for example use the separation of different time
periods described in section 9.2.2.

Seasonal Planning

The owner of an energy limited power plant will of course try to use the
available energy at those occasions when they get paid the best prices, while
they also must consider that the energy storage facilities have limited capac-
ity. These players need forecasts which extend a shorter or longer time into
the future, depending on the relation between the storage capacity and the
total inflow. The time span can be months or years—for example, in the Nor-
dic system there are hydro reservoirs which can store about 120 TWh, which
is to be compared to the average hydro power generation of about 195 TWh
per year [40]. In a smaller system, it might just be necessary to store a few
days or weeks generation. Regardless of the relevant time perspective, |
have chosen to use the term seasonal planning for the problem of determining
along-term operation plan of an energy limited power plant.

18. Transmission lines must aso be maintained sometimes, which will have similar
consequences as maintenance of power plants—I will therefore not consider grid
maintenance under a specia heading.

19. Meanwhile, they must of course have make sure that not too many power plants
are maintained at the same time.
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Figure5.3

Example of an event tree. The nodes of the tree represent the occasions
where decisions are made—the decisions are represented by a vector of
decision variables, x; ¢ All nodes in the same level of the tree belong to the
same step, where each step normally represents a certain point of time.
Between each step random events occur, the outcome of which (y; o are
represented by new branches starting in the node. Each branch is associ-
ated to a particular probability, n; . The difficulty of building an event tree
is to choose the discrete outcomes (y; s, 7 ) in such a manner that a suffi-
ciently good approximation of the underlying stochastic process, { Y}, is
obtained. Notice that an event tree does not have to be symmetrical, but itis
possible to have different detail levelsin different parts of the tree.

It is obvious that the better the desired approximation, the more branches
will be required in the tree. Moreover, the appropriate number of branches
depends on the number of elements in the vector Y;. An event tree can in
other words become immensely large when representing fairly accurately
the development of multiple random variables during a longer time
period—it is common to talk about “ the curse of dimensionality” .

To perform a seasonal planning, we need a mathematical model represent-
ing the forecast. What we have got is a number of random variables, which
we for the sake of simplicity collect in one vector, Y. These variables will
vary over time; thus, the future is represented by a stochastic process { Y}.
When planning, we must somehow consider all possible outcomes of this sto-
chastic process. A common method isto build an event tree,2° which approx-
imately represents how the outcome of different variables varies over time

20. Another term for event tree is “scenario tree”. To avoid confusion to a scenario in
a Monte Carlo simulation of an electricity market, | prefer the designation event
tree, although scenario tree is probably more frequently used in scientific litera-

ture.
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(cf. figure 5.3). It is not asimple task to build an event tree; cf. [92, 93, 97].

Given an event tree, it is possible to formulate a so-called stochastic pro-
gramming problem (SP problem), which basically means that the objectiveis
to maximise an expectation value, while considering future developments:

maximise expected profit, (5.149)
subject to all possible future developments. (5.14b)

The large challenge about solving SP problems is the size of the problem
itself—we have a vector of decision variables for each node in the event tree,
and each decision variable corresponds to an optimisation variable in the SP
problem. Several methods to solve stochastic programming problems—both
general and with specific application to hydro power planning—have been
suggested in for example [89, 95, 124], but the fact remains that even when
using a brilliant algorithm, solving stochastic programming problems is a
time consuming task. To make things worse, the solution of a season plan-
ning problem is something perishable. In practice, just the variables of the
first step of the event tree are actually used as decision variables, because
when the second step is reached, it islikely that improved forecasts are avail-
able; making it desirable to modify the event tree accordingly. In practice, a
new SP problem is solved before each period. The actua operation plan will
be determined by a series of successive season plannings, as illustrated in
figure 5.4.

One way of simulating the consequences of forecast errors would be to imi-
tate the actual process of successive season plannings. Such a solution would
however not be appropriate for Monte Carlo simulation, because it would
mean that for each scenario we have to build a number of event trees and
solve the corresponding SP problems; hence, each single scenario would
require a tremendous computational effort before any values of TOC, LOLO
and other result variables are obtained

A more convenient solution is to only model the consequences of the sea-
son planning of energy limited power plants. Shortly, we may say that the
forecast uncertainty sometimes results in players storing more energy than
they would have done with perfect information, whereas in other cases they
will store less energy. Another way of saying the very same thing is to state
that sometimes the energy value will be overestimated and sometimes it will
be underestimated. The deviations between forecasted energy value and the
energy value if perfect information had been available can be considered ran-
dom.?! Such random deviations can be accomplished by adding another term
to the objective function of the scenario problem (3.12):

21. Though, possibly they might be correlated to some of the other scenario parame-
ters.
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Figure5.4 Practical long-term planning. Given the forecast of a player (in the figure
represented by an event tree) a seasonal planning is performed. This planis
then used by the player to decide what to do in the first period. However, in
the next period, new information has appeared; the future is therefore repre-
sented by an up-dated event tree. From this event tree, a new season planning
is performed, the result of which is used to determine the actions of period
two. This procedure is then repeated for each period.

—z T,.Chyr.((H; D, (5.15)
t=1

where Cyy, ((H; o) = By, (H; ¢ is afictitious cost function for the electricity
generation in energy limited power plants. That the cost function isfictitious
means that it is only meant to be used to modify the behaviour of the electric-
ity market compared to if perfect information had been available; thus, it
should not be included when cal culating TOC!

The fictitious cost functions impact on the solution of the scenario problem
can be illustrated by studying the optimality conditions. Let v, ; denote the
dual variable of the energy balance constraint (3.14b) of energy storage r,
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period t. The physical interpretation of v, , is the energy value,? i.e., the
marginal production cost of the most expensive thermal power plant (or sacri-
ficed marginal benefit in the case of voluntary load reductions) which can be
relieved using the stored energy. Moreover, we let A, ; denote the electricity
price during the period t in the arean, where the energy limited power plant is
located; the electricity priceis given by the dual variable of the corresponding
load balance constraint (3.13b) divided by the period length T;.

In the case of perfect information, i.e., when the scenario problem is formu-
lated as in chapter 3, we get the following optimality conditions with respect
to stored energy, M

Vr’ t < VI’, t—1 if Mr’ t = 0, (516a)
Vr’t: Vl',t—l |f OS Mr’tS Mr,t' (516b)
Vr,tz Vr,t—l |f Mr,t: mr,t. (5160)

These conditions state that if the energy storage is empty, the energy value
must be less than or equal to the energy value of the proceeding period; other-
wise, it would have been better not to empty the storage. Correspondingly,
the energy value must be equal or increase if it should be profitable to com-
pletely fill up the storage. Normally, when the energy storage is neither com-
pletely empty or completely full, the energy value remains the same from one
period to another.

Concerning the electricity generation, H, {, we get the following optimality
conditions:

7\.n' t < Vr’ t if Hr’ t = 0, (517a)
A, t= Vit ifO<H, (< H, 4, (5.17b)
M t 2 Vit if Hy ¢ = Hr,t- (5.17¢)

The conclusion of the above conditionsis that the energy limited power plant
should not be used if the electricity price is less than (or sometimes equal to)
the energy value. If on the other hand the electricity price is higher than the
energy value then the power plant should be operated at maximal capacity.
Finally, the generation can be chosen arbitrarily when electricity price and
energy value are equal.

If we include (5.15) in the objective functions, the optimality conditions
concerning stored energy remain the same. However, the conditions of the
electricity generation, H, {, change:

At < Vet Brt if H (=0, (5.18a)
)\,n’tz\/r,t‘i' Br,t |f OS Hr,tg Hr,t’ (518b)

22. Concerning dispatchable hydro power, the term water valueis used.
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Areal
G = 100

h

Areal
Load, D; [MWHh/h] 100 130 120
Generation, G [MWh/h]
With perfect information 49.96 50.86 50.56
With forecast errors 47.67 50.53 53.18
Electricity price, Aq [¢/MWHh]
With perfect information 149.96 150.86 150.56
With forecast errors 147.67 150.53 153.18
Area?2
Load, D, [MWh/h] 50 60 60
Inflow, Q [MWHh] 150 100 120
Storage contents, M [MWh]
With perfect information 6000 6049.71| 6009.93| 6000
With forecast errors 6 000 6047.39| 6007.28| 6000
Generation, H [MWh/h]
With perfect information 100.29 139.78 129.93
With forecast errors 102.61 140.12 127.28
Energy value, v [¢/MWHh]
With perfect information 148.45 148.45 148.45
With forecast errors 148.11 148.11 148.11
Deviation -2 0 3
Electricity price, A, [¢/MWh]
With perfect information 148.45 148.45 148.45
With forecast errors 146.11 148.11 151.11
Transmission
Transmitted power, P, 1 [MWh/h]
With perfect information 50.29 79.78 69.93
With forecast errors 52.61 80.12 67.28
Losses, L [MWh/h]
With perfect information 0.25 0.64 0.49
With forecast errors 0.28 0.64 0.45

Figure5.5 Example of simplified simulation of long-term forecasts errors. The table
above shows the solution of the same scenario assuming perfect and
incomplete information respectively. The energy storage at the end of
period 3 is assumed to be set in advance in both cases.
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An,t2 Ve e+ Brt it Hp = Hy . (5.18¢)

Theinterpretation of these conditionsis similar to the one for (5.17a)-(5.17c),
but the difference is that the factitious marginal cost f,  serves as a modifier
of the energy value. The fine point isthat B,  isnot adual variable, but a sce-
nario parameter. By randomizing a number of values of B, ; we will have
electricity prices which vary around a certain energy value. An example is
shown in figure 5.5. Notice that the variations in the model using random
deviations are not centred around the same energy value as obtained with per-
fect information, which is due to that ZBr, t# 01in the example.

Thus, introducing random deviations of the energy valuesin order to simu-
late the consequences of errors in the long-term forecasts does not have to
make the scenario problem difficult to solve. However, the model presumes
that we have a known probability distribution of the deviations and that this
probability distribution is chosen so that the consequences are approximately
the same as if successive season plannings were performed. Determining an
appropriate probability distribution is thus a intricate problem, and further
research is required to produce practically applicable methods.
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Chapter 6

GRID COSTS

Unlike most other goods, al electricity trading has to pass through an infra-
structure, which is common to al playersin the market. It istechnically diffi-
cult to identify and register individual transactions in the common grid.
Therefore, the grid can be considered a public good, because all players have
access to the services provided by the grid. Moreover, grids are natural mo-
nopolies, since it would not be profitable to build parallel, competing grids.
As described in section 3.1 both these phenomena result in a risk of ineffi-
cient utilisation and decreased benefit to the society. Therefore, it is not self-
evident how to design rules, which forces the players of the electricity market
to use the grid in away which is maximizing the benefit to the society.

The costs of the grid can be divided into three parts. Firstly, we have the
continuous operation, which means that in every moment the available trans-
mission resources should be utilised in the best possible way. To achieve this,
those players who use the grid should pay variable grid tariffs reflecting the
losses caused by the players. This issue will be further discussed in
section 6.1. On those occasions when the transmission capability is insuffi-
cient, the most valuable transactions must be prioritised. Two different meth-
ods for so-called congestion management are described in section 6.2.

Secondly, the grid must be maintained, which leads to questions about
which level of maintenance is optimal and how the costs should be divided
among the users. Thirdly, the grid must be reinforced and expanded in pace
with increasing consumption and when new consumers and producers wish to
be connected to the grid. Maintenance and grid expansion are briefly treated
in section 6.3.

6.1 COST OF LOSSES

All transmission of electric energy causes losses. The costs of these losses are
paid by the grid owner, who then must pass them on to the users of the grid;
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N

L(P) = 1074p2 §:§
P [MW] P [MW] P [MW] L [MW]
0 0 0 0
100 0 100 1
0 200 200 4
100 200 300 9

Figure6.1 The problem of loss allocation. There are two players, | and I respectively in
the example above, and both want to inject power at node A and extract it at
node B. If just one of the players used the interconnection, they would cause
losses of 1 and 4 MW respectively. The sum of the individual losses is how-
ever not equal to the losses when both players use the interconnection simul-
taneoudly, due to the non-linear nature of the losses. The question is how
large losses each player has caused in the latter case. There is no natural
answer.

otherwise, |osses become an external cost, which causes decreased total sur-
plus (cf. section 3.1.2). It is however not obvious how the grid users should
pay the costs of the losses, because there is no unambiguous method to decide
how large losses a particular player has caused. It is atechnical challenge to
measure continuously how the players use the grid (i.e., how much and where
they inject energy and how much and where they extract energy). Besides,
the physical laws are such that even if it was known how much each player
transferred through the grid, it would in most cases not be possible to associ-
ate a certain loss to a specific transaction. Generally, there are several ways
from apoint of injection to the point of extraction, and it is extremely compli-
cated to determine in afair way which transactions takes which way through
the grid. But even if we overcame this problem, there would still be difficul-
ties, as the losses are not a linear function of the transmitted power. This
means that the losses when power is transferred between two nodes of the
grid will vary depending on what other players are doing (cf. figure 6.1).

In spite of all these problems, isit possible to identify a perfect loss price?
The ideal electricity market maximises the benefit to the society, so let us
study under which circumstances that goal is achieved. For the sake of sim-
plicity, we only consider one line and we assume that the rest of the grid is
already used in the best possible way. The question is thus which transmis-
sion from a certain node n to another node m will maximise the benefit to the
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society including the cost of the losses caused by the transmission. The total
surplus when transmitting P,, ,, MW from node n to node mis

TSnm = Bm(F’n, m) - Cn(Pn, m) - Cm(l—(Pn, m)) (6-1)

In this expression B,(P,, 1y is the value of consuming P,, ,, MW in node m,
Cn(Pn, m) isthe cost of injecting P, ,, MW in node n and C(L(P,, 1)) isthe
cost of supplying node m enough power to cover the transmission losses. The
surplus of the interconnection between the nodes is maximised when

MBm(Pn, m) - MCn(Pn, m) - MCm(L(Pn, m))'ML(Pn, m) =0. (6-2)

If we assume that all players are price takers, the marginal costs and the mar-
ginal benefits should equal the electricity price. In this case we must appar-
ently have different electricity pricesin the two nodes:

An=MC(Py, ), (6.33)

Am = MCrr(L(Py, ) = MB(Pp, ). (6.30)
The relation between the two node prices can be written as

Am—"n = Ay ML(Pp, - (6.4)

Since electricity prices as well as marginal losses are larger than or equal to
zero, the electricity price in the importing node m must be higher than the
electricity price of the exporting node n, which seems natural. It isinteresting
that the price difference, which corresponds to the perfect loss price, depends
both on the size of the marginal losses and the price paid to compensate
losses. Both these quantities are varying continuously; thus, in redlity it is
impossible to determine the perfect loss pricesin advance.

Depending on which method we choose to manage the cost of losses, we
will have different deviations between the perfect loss prices and the real,
non-ideal prices. To evaluate these deviations and determine their impact on
the total surplus, the same system can be simulated both using perfect loss
prices and pricing according to some other method. As far as | known, no
such studies have been made on real systems, but the principles have been
demonstrated for asmall fictitious system in [103]. In the following sections |
will describe three methods to cover the cost of losses, and simple simulation
models of the different methods.

Internalised Cost of L osses

In a centralised electricity market it is the system operator who decides how
the power system should be operated and which prices should be applied. The
other players revea their preferences by submitting bids, which are used by
the system operator to perform an economic dispatch. If the system operator
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then includes the losses, for example by solving an optimal power flow prob-
lem or a multi-area problem, the economic dispatch will result in price differ-
ences between different parts of the system. We may consider the loss price
to be internalised in the node or area prices which are obtained in this kind of
electricity market.

Although internalised cost of losses have al the qualitiesto achieve an opti-
mal usage of the resources, far from al centralised electricity markets have
utilised this possibility. It rather seems like it is most common to use post
alocation of transmission losses, which | will study in more detail later in this
chapter. But there are examples of eectricity markets where the losses are
internalised in the electricity price, for example the national electricity market
of Australiaand in New Zealand, although they do use simplified loss models
[27, 29].

Simulating internalised cost of losses is straightforward; the same eco-
nomic dispatch tool is used as the one used by the system operator. It can
however be difficult to evaluate how well a certain economic dispatch algo-
rithm corresponds to the perfect loss prices. By and large, the price differ-
ences between node or area prices will correspond to the loss prices accord-
ing to (6.4). There are however two factors which may cause minor
deviations: one is that the dispatch might be based on a somewhat simplified
power system model and the other is that the dispatch is not updated in real-
time. The first problem can be studied by comparing the results of a particular
dispatch algorithm with those of another algorithm, which is using a more
detailed power system model. The impact of the length of the trading period
is preferably studied by comparing how the same algorithm behaves if the
length of the trading period is reduced by for example 50%. However, if the
comparison should be fair, the frequency control should be included in the
simulation (see section 5.1), because shorter trading periods will not only
result in reduced costs of losses, but also a decreased need for frequency con-
trol.

Feed-in Tariffs

In abilateral electricity market, loss pricing is more complicated, because the
electricity price is determined by the producers and consumers themselves,
which prevents the system operator from directly internalising the cost of
losses in the same way as is possible in a centralised electricity market. The
cost of losses rather has to be internalised indirectly, which the system opera-
tor can do by charging the grid users for the losses they cause.! One method

1. For the sake of simplicity, | assume that the system operator is aso the grid
owner. Nothing essential would change in the reasoning if these functions are
divided between severa players.
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to cover the cost of losses is to introduce a feed-in tariff. In each connection
point, a feed-in tariff is specified, which states how much the grid users will
have to pay for each MWh inserted at the node. The method is straightfor-
ward to apply and works both on bilateral electricity markets and centralised
electricity market, where for some reason the costs of losses are not internal-
ised in the economic dispatch.

The feed-in tariffs of the different nodes can be either positive or negative.
Positive feed-in tariffs mean that the grid users have to pay for injection,
whereas extraction is rewarded by the system operator. Negative tariffs work
the other way around; the system operator pays for injection and requires
payment for extraction.? Some grid users will in other words get paid for
using the grids, which at a cursory glance might seem odd, but thereisasim-
ple technical explanation: if energy is injected to a net importing node then
the import will decrease; hence, the losses will also decrease. The payment
received by the grid user is thus a reward for decreasing the losses. In a net
exporting node it is instead extraction which results in decreased | osses.

It is possible to choose the feed-in tariffs so that they provide the same
results as perfect loss prices. Let t,, denote the feed-in tariff in node n. A price
taking producer connected to this node will then solve the following player
problem:

maximise  AGg— Cgy(Gg) —tnGy, (6.5

subjectto  0<Gy< Gg. (6.59)
The optimality conditions of this problem are

MCqy(Gg) = A — 1y, if Gg=0, (6.68)

MCqy(Gg) =% —1p, if 0< Gy < (_Bg, (6.6b)

MCqy(Gg) <A -1y, if Gg= C_Sg. (6.6¢)

A positive feed-in tariff will as already mentioned result in an income for a
consumer, which gives us the following player problem:

maximise  Bag(Ao) + thAc —AA, (6.7)

subjectto  0< A < Ac, (6.79)
and the optimality conditions

MBc(Ag) S A —1, if Ac=0, (6.89)

MBc(Ag) = A — 1, if 0<A:< Ac, (6.8b)

2. If desirable, it is of course possible to define extraction tariffsin asimilar way; the
extraction tariffs simply get the opposite sign of the feed-in tariffs. Within the
Nordel area, feed-in tariffs have been chosen, although Svenska kraftnét uses the
more neutral “energy tariff” in their price list [112].
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MBA(Ad) = A —1p, if Ao = Ac. (6.80)

We see that the feed-in tariff acts as a modifier of the system price (i.e., the
eectricity price of the whole market). As the feed-in tariff varies from node
to node, we will in practice have separate node prices for each part of the
grid. If the node prices are to be equivaent to the perfect loss prices then we
must choose feed-in tariffs according to (6.4), i.e.,

A=) =(—-tp)—(A- Tm)'MLn, m(Pn, ms (6.9)
which can be rewritten as
A1,
Tm:x_l_MLn,m(Pn,m). (6.10)

Apparently there is a certain degree of freedom when choosing the feed-in
tariffs, because the perfect loss prices only determine the difference between
the tariffs of two nodes. Some node in the system has to be appointed refer-
ence node; then all feed-in tariffs of the other nodes can be calculated in rela-
tion to the reference node. Assume that node n is the reference node and that
the feed-in tariff of the reference node has been chosen to t,, = 0. It then fol-
lows from (6.10) that

_ A - . _MLn, m(Pn, m)
1_M|—n, m(Pn, m) 1—MLn, m(Pn, m)

Tm= A (6.12)
The feed-in tariff can thus be written as the electricity price multiplied by a
sensitivity coefficient. As node misimporting from the reference node when
Pn. m> 0, the sensitivity coefficient must be negative (injection decreases the
losses, extraction increases them).

Feed-in tariffs are used in the Nordic electricity market.> Sensitivity coeffi-
cients have been calculated for each point of connection to the Nordic main
grid and for four different periods (peak load workdays, peak load other days,
low load workdays, low load other days). The sensitivity coefficients show
how much injection in a certain point affect the total Nordic losses, which
corresponds to the term =MLy, (P, /(1 -MLy, (P, ) in (6.11).% Each
period is also associated to an electricity price, which is based on the price
which the Nordic system operators pay for loss energy; these prices corre-
spond to A in (6.11). Sensitivity coefficients and electricity prices are updated
regularly,5 but will of course pretty often deviate more or less from the per-
fect loss prices.

When simulating feed-in tariffs, we must include the tariffs in the player
problems of producers and consumers, as shown above. Moreover, a player

3. Seefor example [112].
4. The calculation of the sensitivity coefficients are described in more detail in [104].
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problem has to be formulated for the system operator. As the system operator
generally is not allowed to own production facilities, they have to buy the loss
energy from other players. These purchases can be managed in several ways;
among others, the system operator could sign a take-and-pay contract with a
retailer® or perform the purchase in the real-time market. A detailed model of
the different options for loss energy purchases would be alittle bit too exten-
sive for this presentation, so | will restrict myself to assuming that the system
operator has perfect information and therefore can buy all losses in the ahead
market, paying the same electricity price, A, as al other players. The system
operator will of course try to minimise the cost of the losses, while buying as
much loss energy as required to maintain the balance between production and
consumption in each part of the system:

minimise A ZLn m(Pa. m) (6.12)
(n,m)eP
subject to ZGQ(X) +Z(Pm,n_|‘m, n(Pm n)
geG, meP, _m
—ZAC(X) - ZPn’ m=0, vneN, (6.129)
ceC, meP, _m
0<Py m<Pnm v (n,m) e P. (6.12b)
The optimality conditions of (6.12) looks as follows:
A MLn’ m(Pn, m —Hm(1— MLn’ m(Pn, m) tr, 20
if Ph,m=0, (6.133)

A MLn, m(Pn, m) — Hm(1- 'V”-n, m(Pn, m) tu, 20
ifO<Py m<Ppm (6.13b)

A MLy (P m) =B =MLy (P ) + 1y 20

if Po,m= P m (6.13¢)

The market price, A, is given by the link between the player problems of the

5. However, the Nordic system operators have somewhat different desires concern-
ing how often the feed-in tariffs should be up-dated. Norway prefersto update the
tariffs at least once a year, whereas Finland and Sweden prefer stable feed-in tar-
iffs, which are updated about every third year [111].

6. A take-and-pay contract means that the consumer may consume any amount of
power up to acertain limit. The consumption does not have to be constant, but can
vary during the duration of the contract, as long as the maximal power is not
exceeded. Cf. [25], p. 34f.
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system operator, producers and consumers, i.e., that the total production
should be balanced by the total consumption (including the loss purchases of
the system operator):

> Gy= Y A=Y Ly (P = 0. (6.14)

geG ceC (nnmyeP

The market balance constraint, the optimality conditions of the producer,
consumer and system operator problems, (6.6a)-(6.6c), (6.8a)-(6.8c) and
(6.13a)-(6.13c), as well as the variable limits and constraints of these prob-
lems form a system of equations and inequalities, the solution of which
describes how the system will be used.” A detail in this context is that the
area balances (6.12a) and the market balance are linearly dependent. We
therefore have to fix the dual variable i, in some area.® On the other hand,
the dual variables have no practical usage and we may quite as well disregard
(6.13a)-(6.14) and not bother to compute ..

A simple example of how feed-in tariffs influence an electricity market is
given in figure 6.2. The example shows that it does not matter which node is
selected as reference node; as long as the difference between the feed-in tar-
iffs corresponds to the perfect loss price, the market will behave in the same
way as an ideal electricity market. The only difference between different
choices of reference node is the system price, which is adjusted up- or down-
wards so that the practical price (system price minus feed-in tariff) remains
the same. However, if the difference between the feed-in tariffs deviate from
the perfect loss price, the practical prices change and with that the production
and consumption. In the figure, a scenario is shown where the difference
between the feed-in tariffs is too small, which results in an increased trans-
mission between the areas. This favours the producers in the exporting node
and the consumers of the importing node. In total there will be a small
decrease of the total surplus.

7. The same solution can also be obtained using the iterative method described in
[103]. In brief, the method starts from a market problem, where producers and
consumers can trade freely. From this trade, the system operator chooses the
power flows Py, ,, to minimise the losses. Now a new market problem can be
solved, where the system operator enters as a consumer, buying energy corre-
sponding to XL, . As a result, the demand increases; hence, the market price
increases too. The new trading results in changes in the power flows, which
causes new losses. We may continue to iterate in this manner until the values of A
and Py, 1, has converged.

8. This is a recurrent phenomenon of so-called transport problem. Cf. for example
[132], p. 253.
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Node A
$ Coa(Gp) = 66G, +0.01G; oy
Boa(Ap) = 160A, —0.05A%

Node B

LCGB(GB) = 68Gg +0.02G3
,H]IH B.g(Ag) = SAB—O.OSA?

L(P) = 10-4P2

Scenario parameters Ideal
Feed-in tariff A, T [//MWh] electricity 0 10 9
Feed-in tariff B, g [//MWh] market -10 0 0
Electricity prices
System price, A [2/MWh] 90.00 100.00 99.39
Node A, Ap [&/MWHh] 90.00
Node B, Ag [2/MWNh] 100.00
Consumersin node A
Consumption, A [MWh/h] 700.00 700.00 700.00 696.06
Marginal benefit, MBAa(AA) [&/MWh] 90.00 90.00 90.00 90.39

Surplus,* Baa(Ap) + ol —AA [2/h] 24.500.00 | 24 500.00 | 24 500.00 | 24 225.06
Producersin node A

Generation, Gy [MWH/h] 1200.00| 1200.00| 1200.00| 1219.69
Marginal cost, MCga(Gp) [&/MWh] 90.00 90.00 90.00 90.39
Surplus,*
AGp—Cga(Gp) —taGa [2/N] 14 400.00 | 14 400.00 | 14 400.00 | 14 876.54
Consumersin node B
Consumption, Ag [MWH/h] 1275.00| 1275.00| 1275.00| 128l.06
Marginal benefit, MBg(Ag) [¢/MWh] 100.00 100.00 100.00 99.39

Surplus,* Bpg(Ag) + tgAg — AAg [/h] 81281.25 | 81281.25 | 81281.25 | 82 055.88
Producersin node B

Generation, Gg [MWH/h] 800.00 800.00 800.00 784.85
Marginal cost, MCgg(Gg) [/MWHh] 100.00 100.00 100.00 99.39
Surplus,*
AGg — Cgp(Gg) — 1gGg [#/h] 12 800.00 | 12 800.00 | 12 800.00 | 12 319.70
System operator
Transmission, Py g [MWh/h 500.00 500.00 500.00 523.63
Losses, L g(Pa, ) [MWh/h] 25.00 25.00 25.00 27.42
Slerl us,** TA(GA —AA) +
‘EB(GB - AB) - }"LA, B(PA, B) [n/h] 2 500.00 2 500.00 2 500.00 1987.40
Totd surplus,

B(Ap) + B(Ag) — C(Gp) — C(Gp) [#/h] 135 481.25| 135 481.25| 135 481.25| 135 464.38

* Intheideal electricity market the node prices (L5 and Ag) are used instead of the
system price. No feed-in tariffs are used; hence, tp = 15 = 0.
** Intheideal electricity market the system operator buys Py g MWh/hin node A
and sellsPy g —La g(Pa, 8) MWh/hin node B, which yields the surplus
Ag(Pa 8 —La, B(PA, B)) —2APA B-

Figure 6.2 Example of an electricity market using feed-in tariffs.
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Post Allocation of Transmission L osses

When using feed-in tariffs, the losses are charged in advance (in the sense
that the loss prices are announced before each trading period—the actual pay-
ment can be done at a later occasion). The opposite, i.e., when prices are
determined after the trading period, is also practicable in both bilateral and
centralised markets. The principle is simple; after each trading period, the
system losses are known and each player is made responsible for a certain
share of the losses. In practice, the losses are thus treated as consumption in
the balance of each player and are paid to market price or the price of balanc-
ing power, which in its turn is based on the market price.®

The problem of post alocation is that there is no self-evident method to
determine which player caused a certain loss (cf. figure 6.1). There are a
number of alternative methods of calculation to be used (see for example [99,
101, 102, 106, 107]) and it is just to choose the one, which is considered to
give the most desirable signals to the grid users. Please notice that “desirable
signals’ is a very subjective judgement in this context, because the different
methods may have widely differing impacts on different players (cf. [101]).
Although post alocation of transmission losses thus always can be criticised
for disadvantaging some player, the method is used in many electricity mar-
kets. Two examples are Spain and England-Wales [100, 105].

The choice of loss allocation algorithm does not affect the actual operation
of the system (unless the players include forecasts of their share of the losses
in their player problems; more about that later in this section), but only the
financial transactions between different players; therefore, | find it unneces-
sary to summarise al methods here and | restrict myself to demonstrating the
principle of how to simulate them. As example | have chosen proportional
allocation, because it is the most simple method.’® In proportional allocation
half of the losses are allocated to the producers and the other half to the con-
sumers. Within the groups, each player receives a share corresponding to
their share of the total production and consumption respectively, i.e.,

G
Log = Slio— (6.150)
K

keG

9. Cf. chapter 2.
10. Which does not mean necessarily mean that it is the best method—rather the
opposite according to [101].
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1 A

c ™ éLtot

L, £ (6.15b)
Ay
keC
The trading in the ahead market is simulated in the same way as for feed-in
tariffs, if it is assumed that the players’ behaviour in the ahead market is not
affected by the cost of losses they will receive later. Thus, we may use the
same model as for feed-in tariffs, but with the difference that all t,, are set to
zero.

An example of post allocation of transmission lossesis given in figure 6.3.
Theinput is the same as in the example of feed-in tariffs, which enables us to
make direct comparisons. Apparently, post allocation produces a lower total
surplus than the feed-in tariffs, even if the feed-in tariffs deviate somewhat
from the perfect loss price—the difference would however obviously be
smaller if a worse choice of feed-in tariffs had been made. Notice that post
alocation produces the same total surplus regardless of which loss allocation
method we have chosen; if we change the loss alocation, there will just be a
redistribution of the cost of losses between different players, but the sum will
remain the same.

With feed-in tariffs we have already seen that there is a theoretica possibil-
ity to achieve the same public welfare as an ideal electricity market, and we
may wonder if this also applies to post allocation. Assume for example that
the players should include an expected cost of lossesin their player problems,
so that for example the producer problem would be formulated as

maximise  AGg— k(pGgGg —Cy(Gy), (6.16)
subjectto  0< Gy < Gg, (6.16a)

where the parameter gy is the producer’s expected share of the losses. If the
producer should expect 1.-pgg4 to be equal to the feed-in tariff, ,,, in figure 6.2
then we would get the same result for feed-in tariffs and post alocation.
However, it is impossible to fulfil this condition for al players, as long as
they have at least approximately correct forecast about the loss alocation; the
total cost of the grid usersislessin post allocation compared to using feed-in
tariffs. The difference is that in post alocation the grid users pay an average
price corresponding to the system operator’s cost of losses, whereas feed-in
tariffs are marginal cost based pricing, which generates a surplus to the sys-
tem operator (cf. figures 6.2 and 6.3). Post alocation of losses therefore lacks
the possibility to be as efficient as an ideal electricity market. The method
may however be more efficient than poorly chosen feed-in tariffs.
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Node A
? Coa(Gp) = 66G, +0.01G oy
Boa(Ap) = 160A, —0.05A%

L(P) = 10-4P2

Byg(Ag) = 227.5A4

Node B
Csp(Gg) = 68Gg + 0.026%

AN

Ll
.

Ideal Proportional
electricity loss
market alocation

Electricity prices

System price, A [&/MWh] 94.00

Node A, Ap [&/MWh] 90.00

Node B, Ag [&/MWh] 100.00
Consumersin node A

Consumption, Ap [MWh/h] 700.00 660.03

Allocated losses, Ly [¢/MWh] 0.00 9.05

Surplus,* Bya(Ap) —MAp+ Lyp) [2/0] 24 500.00 20 930.79
Producersin node A
Generation, Gy [MWH/h] 1 200.00 1399.86

Allocated losses, Lga [8/MWHh] 0.00 18.69

Surplus,* M(Ga— Lga) —Cea(Ga) [9/h] 14 400.00 17 839.28
Consumersin node B
Consumption, Ag [MWHh/h] 1275.00 1335.03

Allocated losses, Lyg [&/MWh] 0.00 18.31

Surplus,* Byg(Ag) —AM(Ag + L,g) [0/h] 81281.25 87 39357
Producersin node B

Generation, Gg [MWH/h] 800.00 649.93

Allocated losses, Lgg [2/MWh] 0.00 8.68

Surplus,* M(Gg — Lgg) —Cer(Gp) [9/h] 12 800.00 7632.53
System operator

Transmission, Py g [MWh/h 500.00 739.83

Losses, L g(Pa, g) [MWh/h] 25.00 54.73

Surplus** [o/h] 2 500.00 0.00
Total surplus,

Baa(Ap) + Bag(Ag) — Coa(Ga) — Car(Gp) [#/h] 135481.25 133 796.17

* Intheideal electricity market the node prices (L, and Ag) are used
instead of the system pride.

** Intheideal electricity market the system operator buys Py g MWh/h
innode A and sells Py g —La g(Pa, 8) MWh/hin node B, which
yleIdS the Slerl us }\’B(PA, B— LA, B(PA, B)) - XAPA, B In the case of
post alocation of the losses, the system operator receives exactly as
much as they have paid for the losses.

Figure6.3 Example of an electricity market using post allocation of trans-

mission losses.
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6.2 CONGESTION MANAGEMENT

A well designed grid should normally have sufficient transmission capability
to accommodate all desired transactions. Thus, during normal operation the
grid isapublic good—one player using the grid is not blocking the possibility
of the other players to use the grid. Under certain conditions, for example
when the grid is heavily loaded or if there are disturbances in important trans-
mission lines, some parts of the grid will reach their capacity limit. The avail-
able transmission capability through these cuts must then somehow be
rationed.

There are several methods to solve this so-called congestion management
problem; figure 6.4 provides some examples. The different methods can be
divided in market based and other solutions [108]. The core of the market-
based solutionsis that the transmission capability through a congested cut isa
private good, i.e., if one player is using a part of the available capacity then
the available capability for other players is decreased.™* In other words, the
transmission capability can be efficiently distributed by somehow allowing
the players to buy and sell transmission capability to each other. The two
basics principles of a market based solution are counter trading and market
splitting. These two methods are described in more detail below.

In the other methods, it is not the players valuation of the transmission
capability which decides which transmission should be given priority, but
some other criterion. It might of course be possible to find advantages with
such methods, but there is also an obvious risk that the total surplus is
decreased (this is for example the case in figure 6.4). As there seemsto be a
genera agreement that market-based congestion management is preferabl e 12
| have chosen not to model the other methods.

Market Splitting

One of the basic conditions of a free market is that the players can trade
freely, Thisis obviously not the case when there are congestion problems and
therefore it seems natural to consider the areas on both sides of the congested
cut as two separate markets, where each market has its own electricity price.

11. The transmission capability of agrid is thus an example of agood which is partly
public and partly private. Cf. chapter 3, footnote 5.

12. The EU has for example stated that “Network congestion problems shall be
addressed with non-discriminatory market based solutions which give efficient
economic signals to the market participants and transmission system operators
involved.” [109]
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Area A

[ )
L Ce(G) =100G  B,,(A,) = 1107,
I

G = 500 A1 =

Bas(Ap) = 120A, Ll
L IV Bas(Ag) = 130A3

A3z = 150

Consumer ?g:gt Period of validity
1 1/6 10:00 1/6 10:00 - 1/6 11:00
1/1 9:00 1/1 0:00 - 31/12 24:00
3 1/6 11:00 1/6 10:00 - 1/6 11:00
Generation Consumption
Method Actions [MWHH] [MWHH]
G Ay Ay Ag
Market Consider the two areas as separate mar-

splitting Kets* 250 150 | 0 | 100
Counter The system operator pays the consumers
trading in area B to decrease their consumption
until the transmission capability is not
exceeded.*

Pro rata All consumers in area B have to decrees
their consumption by the same share.
First come, | The consumers who submit their pur-
first serve | chasebidsfirst are prioritised.

Type of Long-term contracts are prioritised before
contract short-term contracts.

250 150 | O 100

250 150 | 50 | S0

250 150 | 100 | O

250 150 { 100 | O

* More elaborate examples of market splitting and counter trading are found in fig-
ures 6.5-6.7.

Figure6.4 Examples of congestion management. If the transmission capability was not
limited, the electricity price would be 100 &/MWh and all three consumers
should consume their maximal load, i.e., A; = A, = Az = 150 MWHh/h. Due to
the limitation, the consumption in area B must be decreased to 100 MWh/h.
The table above briefly describes some methods to achieve this. The solution
which maximised the benefit to the society is to prioritise the consumption
which has the highest marginal benefit, i.e., As. The two market based solu-
tions, counter trading and market splitting, result in this solution, whereas
the other methods produce a lower total surplus.
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This basic idea can be implemented in some different ways.® Sometimes
congestion actually occurs on the border between two markets (this is for
obvious reasons most common concerning international interconnections)
having different system operators, different trading periods, different trading
arrangements, etc. On each side of the congested cut, there will be a separate
electricity price, A, and A, according to the rules valid for each market. If
we neglect the losses and assume that the player who owns the interconnec-
tion is a price taker in both markets then the owner will try to maximise the
income of buying power at one market and selling it at the other:

maximise  (An—Am)Pn m+ (An—=2Ap)Pm n (6.17)
subjectto  0<Pp < Pp (6.17a)
0<Pmn< Pyp. (6.17b)

The above player problem is not at all depending on who the owner is of the
right to use the interconnection—it does not have to be the grid owner who
trades via the interconnection, but the transmission right might be distributed
using various kinds of auctions [108]. However, the surplus of individual
players will be affected by how the transmission rights are made available.

The producers and consumers behave as usua; they try to maximise their
profits given the price of the area where they are located:

maximise  AnGy — Cgy(Gy), (6.18)

subjectto  0<Gy< Gg, (6.183)
and

maximise  Bpc(Ad —AnAc (6.19)

subjectto  0< A < Ac. (6.193)

If the congestion accurs in the middle of an electricity market, adivision in
separate market prices can be enforce by introducing price areas. A condition
isthat all trading between the price areas is performed at a power pool (trad-
ing within aprice areamay still be bilateral). The price areas must be defined
before the trading is started in the power pool, which however is not a practi-
cal problem, as there is no need to change the price area division unless the
grid is expanded or some other major change occurs. Each bid submitted to
the power pool should state in which price area injection or extraction will
occur. The power pool accepts the bids maximizing the total surplus consid-
ering the transmission limitations between the price areas. In other words, the
power pool solves amulti-area problem, where each price area corresponds to

13. Sometimes different forms of market splitting are considered as separate meth-
ods—see for example [108, 110]—but | prefer to see them as variants of the same
method.
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an area of the multi-area problem. In the following analysisit is assumed that
the power pool does not consider the transmission losses between the price
areas. If all producers and consumers are price takers, they will bid their real
cost and benefit functions, which yields the following optimisation problem:

maximise ZBAC(AC)— ZCGg(Gg) (6.20)
ceC geG

subject to ZGg+ me,n = ZAC+ an,m’
geG, meP, ceC, meP,_,

vneN, (6.20a)
0< A< Ac, VcelC, (6.20b)
0< Gy < Gy, vgeG, (6.20c)
0<Py m<Ppm v (n,m) e P. (6.20d)

It can be noted that regardless of whether there are two or more completely
separate markets, asin (6.17)-(6.19), or if there is one market divided in sev-
eral price areas, asin (6.20), the optimality conditions will result in the same
system of equations and inequalities, showing what the trading of the ahead
market will become:4

G+ P =Y A+ P VneN, (6.21a)
geG, meP, ., ceC, meP,_,
MCqq(Gg) = A, if Gy=0, (6.21b)
MCoqy(Gg) = Ay if0<Gy< Gy (6.210)
MCoqy(Gg) < Ay if Gy = Gy, (6.21d)
MB,(AJ) < if A= 0 (6.21€)
MBac(Ad) = A, ifO<A.<Ac, (621f)
MBac(Ag) = Ap if Ag= Ac, (6.21q)
Dy = Dy if Py m=0, (6.21h)
Ay = Ay if 0<Ppy < F’n’m,
(6.21i)
Doy < Ay if Pom= P (621))

The interpretation of (6.21a)-(6.21j) is quite trivial. Each price area will

14. The constraints and variable limits of (6.17)-(6.19) and (6.20) respectively is aso
included in the optimality conditions, but has been left out to somewhat shorten
the enumeration of the optimality conditions.
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Area A

LCGA(GA) = 20G, + 0.05G2
Ga = 250 =
,m:m A AA 100

Baa(Ap) = 50A4 -

AreaB
*Cop(Gp) = 24GB+O.05G§ )

Gg = 250 Ao — e )
A = 200
]

Bag(Ap) = 50Ag

AreaA AreaB
Electricity price, A [&/MWHh] 34 40
Generation, G [MWHh/h] 140 160
Consumption, D [MWHh/h] 100 200
Transmission, Py g [MWh/h] 40

Figure6.5 Example of market splitting. The economic results of the different players are
shown infigure 6.7.

have its own area price. If an interconnection is not fully utilised then the
price will be the samein both areas; if desirable, the two areas may be seen as
one. In those cases when the power flow between two areas reaches the max-
imal value, there will be alower area price in the exporting area and a higher
price in the importing area.

Market splitting cannot solve all congestion problems, because the method
only affects the interchange between the areas; internal limitations within a
price area have to be solved with another method (which in practice means
counter trading if market based solutions are to be used). This problem can be
avoided by using noda pricing, i.e., by letting each connection point to the
grid become a separate price area.

There is also an information problem, because the area prices are deter-
mined in the ahead market. Here there are some practical differences depend-
ing on how the market splitting is accomplished. If there are separate mar-
kets, the player who owns the transmission right must be able to predict the
electricity prices on both sides of the interconnection to be able to trade in
such a manner that the interconnection is used in the best possible way. We
do not have the same problem in acentral power pool, because the decision of
how to use the transmission lines is made simultaneously as the prices are
determined in each area. Common for both methods is however that it is not
possible to account for changes which occur after the closure of the ahead
market. There isin other words a certain risk that the market is split although
it later turns out that there was no congestion and vice versa. To consider this
uncertainty in the simulation, the real-time market has to be simulated, as
described in section 5.1.
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An example of market splitting is provided in figure 6.5. Each area corre-
sponds to a price area. In area A there is a surplus of inexpensive generation
capacity, but due to the transmission limitation only 40 MWh/h can be trans-
mitted to area B. The result of the ahead market is therefore a lower electric-
ity pricein area A and ahigher pricein area B.

Counter Trading

If counter trading is used, the system operator chooses which transactions
should be prioritised when there are congestion problems. Those players who
have the |east benefit from using the congested interconnection are persuaded
to change their production or consumption. At the exporting side, a power
plant can decrease the generation or a consumer can increase the consump-
tion; in both cases the net export is reduced. At the importing side, the net
import should be reduced, which can be done by increasing the generation in
apower plant or by decreasing the load of a consumer.

To madify the production and consumption in different parts of the system,
the system operator uses the real-time market.® In theory each up regulation
on the importing side should correspond to an equally large down regulation
on the exporting side, but in practice it is common to combine counter trading
and frequency control. If for example the frequency istoo low, it is sufficient
to perform an up regulation on the importing side. By that means, we both
solve the congestion problem, while supplying more generation, which
makes the frequency increase.

Obviously, counter trading can be performed in real-time, which of course
increases the possibilities to utilise the grid in the best possible way; we are
not only eliminating the risk that forecast errors influence the congestion
management, but we also gain the possibility to redistribute production and
consumption during a part of a trading period, if the congestion problem
should only appear during a shorter time. Moreover, counter trading can be
applied to congestion problems everywhere in the system and the method can
be used both in bilateral and centralised electricity markets.

To simulate counter trading, we use the same model as for manually acti-
vated frequency control reserves (see section 5.1). Simulating the real-time
trading in detail will however in many cases be unnecessarily detailed. The
model can then be simplified by assuming that the players in the ahead mar-
ket have perfect information about what will happen during a trading period,
and that generation and consumption do not deviate more from the ahead

15. Sometimes, counter trading is differentiated between the case when the system
operator may order regulation actions and when they have to use aregulating mar-
ket. Thisisfor example the case in [108, 110], but | prefer to consider them astwo
variants of the same method.
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Area A

' Coa(Ga) = 20G, +0.05G3
Ga =250 an = 100 I
Baa(An) = 50A

AreaB
*Cop(Gp) = 24GB+0.05G§ )

Gg = 250 Ao — e )
A = 200
]

Bag(Ap) = 50Ag

Area A AreaB

Market problem
Generation, GF [MWH/h] 170 130
Consumption, DF [MWHh/h] 100 200
Transmission, Py g [MWh/h] 70
Electricity price, A [¢/MWHh] 37
Redispatch problem
Producers

Generation, GR [MWh/h] 140 160

Activated up-regulation, GT [MWh/h] 0 30

Activated down-regulation, GV [MWh/h] 30 0
Consumption, DR [MWh/h] 100 200
Transmission, Pa g [MWh/h] 40
Up-regulation price, AT [s/MWh] 37 40
Down-regulation price, At [e/MWh] 34 37

Figure 6.6 Example of counter trading. Theresult of the trading in the ahead market isa
transmission of 70 MWh/h between the two areas, but the transmission capa-
bility is just 40 MWh/h. The system operator has to activate a down-regula-
tion of 30 MWh/h in area A and an equally large up-regulation in area B.
The player who is willing to pay the highest price when purchasing regulat-
ing power is activated in area A, i.e., the producer. In area B, it is the player
who will require the least payment when selling regulating power, who is
activated; here too, regulating the generation is preferable.

The economic results of the different players are shown in figure 6.7.

trading than what can be managed by the automatic frequency control.
Hence, we will only need one redispatch problem per trading period and the
same input is used in the redispatch problem as in the market problem—the
difference isthat in the market problem we disregard the transmission limita-
tions, whereas we include them in the redispatch problem. By comparing the
solutions of the two problems, we can determine which regulation actions
have been performed and which regulating power prices should be applied.
An example of this simulation method is shown in figure 6.6. In the market
problem, the players trade freely, without considering the transmission limi-
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tation between the two areas. The result is a transmission which exceeds the
available capability by 30 MWh/h. Asthe consumersin the example are prac-
tically price insensitive, the only solution is to decrease generation in area A
by 30 MWh/h and increase it by the same amount in area B.

Impact on Individual Players

Generdly, | focus on the benefit to the society in this dissertation, when |
analyse different market designs. If we assume perfect information and com-
pare market splitting and counter trading, we find that they produce the same
total surplus in the short run. The explanation is that the same producers and
consumers, whose trading over congested interconnections is not accepted
when the market is split, will be performing up- and down-regulation in the
counter trading (presuming that all players active in the ahead market also
participate in the real-time trading and that they do not change their bids). In
each scenario, we will end up with exactly the same production and consump-
tion, regardless of which method has been used for congestion management;
hence, the total surpluswill of course be the same. | will not prove this claim,
but the reader has to be content with the verification provided by the example
in figure 6.7. | would however like to point out some interesting observations
about how the choice between market splitting and counter trading affects
individual players.

Let us study an electricity market, which due to congestion problems has
been divided in N price areas. We assume that congestion only appears
between price areas, i.e., there are no internal congestion problems within any
price area. Also assume that the losses are negligible and that all players are
price takers. In each area there is a cost function for the supply, denoted
Con(Gp). Thereis also a benefit function for the demand, but to simplify the
reasoning, we assume that the demand is constant and equal to D,,. The ben-
efit of consumption is given by Bp,(D,) = BpnDn, Where the parameter Bp,, is
chosen so that the marginal benefit of consumption is aways larger than the
most expensive power plant of the system. Basically, this assumption is
equivalent to assuming that the load is not price sensitive—the difference is
that if the load would be really price insensitive then Bp(D,,) would be infi-
nite and when the benefit of consumption is not well-defined, the calculation
of the total surplus would be misleading. The validity of the reasoning is not
affected by the assumption, because price sensitive load can aways be mod-
elled as price insensitive load combined by a fictitious power plant, corre-
sponding to load reductions (see section 3.2.1).

_ Between the different price areas thereis a physical transmission capability,
Pp, m- If the transmission is exceeding this limit, counter trading will be
applied up to a certain limit, B, ,, and then the market will be split. The
ahead market results in an area price, A, in each price area; the exact area
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prices depend on Py, , and By, ,, but are of no importance in this reasoning.

The counter trading is assumed to be performed in aregulating market and
all trading in the ahead market is passed on to this regulation market, without
any additional regulation costs.1® Moreover, there is an up-regulation price
kg, which is paid to all activated up-regulation bids in the area, and a down-
regulation price, ¥, which is paid to al activated down-regulation pricesin
the area. The exact regulating prices do not have any further importance
either.

Let us now study the surplus of each player. To ssmplify the notation, | use
the symbol

2

m;

to denote summation over all nodes m which are importing from another
node n. In a similar manner, the index m, is used to denote the nodes which
are exporting to node n.

The consumers in this example are in practice not price sensitive and will
therefore not submit any bids to the regulating market. The consumers’ sur-
plus in each area is therefore the value of consumption minus the purchase
cost, i.e.,

CS$, = Bpn(Pn) = 2nDn = BonPn — AnDp. (6.22)

The incomes and costs of the producers originate both from the trading in
the ahead market and the trading of regulating power. Let us study these
terms separately. The power sold in each price areais equal to the consump-
tion within the area plus the total export from the area minus total import to
the area, where the total export and import correspond to the physical trans-
mission capability plus counter trade. All trading in the ahead market isusing
the area price and the income can thus be written as

AGE = anDn 3 Prm* By m) = (Pmon* By n)J. (6.23a)
m, mg

The producers also gain income from selling regulating power to the system
operator. The counter trading means that the system operator needs to buy
regulating power in the importing price area. The price of this regulating
power is equal to the up-regulation price; hence, the income of the producers
is

16. By thisis meant that if a producer for example has a power plant with the genera-
tion capacity 100 MW, where 60 MW is sold in the ahead market, the producer
will submit an up-regulation bid of 40 MW and a down-regulation bid of 60 MW
to the regulating market.
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Figure6.7 Comparison of counter trading and market splitting. If no counter trading is
used (B g = 0) then the solution of figure 6.5 is obtained. Unlimited coun-
ter trading yields the sameresults asin figure 6.6.

Scenario parameters

Maximal counter trading, By g [MWHh/h] 0 20 0
The market
System operator

Income of salesto the ahead market,

Ag(Pa B+ By g) [9/h] 1600| 2280 0
Income of sold regulating power, A% - AGK [o/h] 0| 680| 1020
Cost of purchase from the ahead market,

Ap(Pa g+ By g) [o/h] 1360| 2160 0
Cost of buying regulating power, A} - AGL [a/h] 0| 800| 1200
Surplus, MS[a/h] 240 0| -180

Total surplus, TS[a/h] 12100 | 12 100 | 12 100

Area A

Areaprice, A [¢/MWh] 34 36 37

Down-regulation price, Ax [&/MWHh] — 34 34

Consumers
Consumption, D [MWHh/h] 100 100 100
Value of consumption, 50D [2/h] 5000| 5000| 5000
Purchase cost, Ap:Da [9/h] 3400| 3600| 3700
Surplus, CS, [2/h] 1600| 1400| 1300

Producers
Sdlesin the ahead market, G, [MWHh/h] 140| 160| 170
Generation, GR [MWHh/h] 140| 140| 140
Down-regulation, Gx [MWHh/h] 0 20 30
Income from sales in the ahead market, A ,G [o/h] 4760| 5760 | 6290
Generation cost, Cga(GR) [0/h] 3780| 3780 | 3780
Cost of buying regulating power, L% - G [2/h] 0| 680| 1020
Surplus, PSy [2/h] 980| 1300| 1490

(continues next page)

MGh =13 By o (6.23b)
me

In the exporting price area, the system operator is selling regulating power to
down-regulation price. The producers cost of buying regulating power is

X%Grﬁ = X%Z Bn’ m (6.23c)
m

Finally, we have the generation cost of the producers, whichis
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Figur 6.7 (cont.)

AreaA
' Coa(Ga) = 20G, +0.05GF

Ga =250 Aa = 100“

Baa(Aa) = 50Ap

AreaB
*Cop(Gp) = 24Gg+0.0G3 ¢y

Gg =250 .- S
A = 200
L )

Bag(Ag) = 50Ag

Scenario parameters
Maximal counter trading, Ba g [MWHh/h] 0 20 0
AreaB
Areaprice, Ag [8/MWHh] 40 38 37
Up-regulation price, A [&/MWHh] — 40 40
Consumers
Consumption, Dg [MWHh/h] 200 200 200
Value of consumption, 50Dg [9/h] 10000 | 10 000 | 10 000
Purchase cost, Ag:Dg [9/h] 3400| 3600| 3700
Surplus, CSz [a/h] 6600| 6400| 6300
Producers
Sdlesin the ahead market, G§ [MWHh/h] 160| 140| 130
Generation, G§ [MWHh/h] 160| 160| 160
Up-regulation, G [MWH/H] 0 20 30
Income of sales in the ahead market, A5G [a/h] 6400 5320 4810
Income of sold regulating power, }Lg . Gg [=/h] 0 800 | 1200
Generation cost, Cgg(GR) [a/h] 5120 | 5120| 5120
Surplus, PSg [2/h] 1280 | 1000 890
F+Gl_Gl) = D _N'F
Con(GE +Gh=GY) = Con(Dp* Y Pum-YPr 0. (6:230)
m, me

because the actualy generation in area n consists of the consumption in the
price area plus physical export minus physical import. If we denote the actual
generation by GR and summarise the income minus the costs according to
(6.23a)-(6.23d), we get the producers’ surplus

PS, = ADn— Cp(GR) +

Z(X;—kn)Bm@ n+Z(Xn—7¢])an m (6.24)
m

Me
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Market splitting means that the system operator sells a certain amount of
electricity in the deficit areas to the corresponding area price, which produces
an income:

>0y (P n* B ). (6.253)
n m

The corresponding amount has been bought in the surplus areas to the corre-
sponding area prices, which causes the following cost:

> 03 (P * By ) (6.25b)
n m;

Counter trading provides income to the system operator when selling regulat-
ing power:

Zx ZB (6.25¢)

In those cases when the system operator is buying regulating power, there
will be a cost instead:

Zkgz Bme’ - (6.25d)
n m
The surplus of the system operator can thus be written

MS = Z(km—Xn)Pn’m

(n, m)
1
—ZLZ(xn— m n+z(x -A0)B n mJ. (6.26)
n\m, '
Summarizing (6.22), (6.24) and (6.26) yields the total surplus:

TS= ¥(CS, + PS) + MS = 3(B,(D,) —C,(GR)). (6.27)
n n

As expected, all terms depending on the prices and the amount of counter
trade disappear; hence, the total surplus is only depending on the supply,
demand and physical transmission capability between the price areas.

How are then the individual players affected? The larger the maximal coun-
ter trading, the more rare will market splitting become; thus, there will be a
trend towards uniform area prices in the whole system. This is of course ben-
eficia to those consumers who are located in those price areas which regu-
larly imports, because those consumers would have to pay a higher area price
if the market was split. Uniform prices also favour producers in price areas
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which are likely to export, because they would sell for a lower area price
when the market is split. We may in other words conclude that counter trad-
ing favours consumersin import areas and producers in export areas, whereas
consumers in export areas and producers in import areas are disadvantaged
(cf. figure 6.7). Here we see a disadvantage of counter trading—which will
only appear in the long run—since counter trading tends to direct new gener-
ation to export areas and hew consumption to import areas, which eventually
increases the need for transmission capability across the congested intercon-
nection. However, this disadvantage can be compensated by fixed fees, which
I will return to in section 6.3.

Counter trading is also profitable to the players, whose regulating bids are
activated, regardless of where in the system they are located. Thisis seenin
(6.24), where the two last terms always are positive, because the up-regula-
tion price awaysis at least aslarge asthe area price (k; >\,,) and the down-
regulation price is dways at most as high asthe area price (A, < k#]).

The incomes which the counter trading is generating for the players per-
forming up- and down-regulations are paid by the system operator, who
therefore will have higher costs. However, when the market is split, the sys-
tem operator receives an income, because they aways buy for a low area
price and sell to ahigher price; thus, the first termin (6.26) is positive. If only
market splitting is used, the system operator will have a positive surplus,
which can be used to cover other costs (see section 6.3 below). Conversdly, if
only counter trading is used, the system operator will have negative surplus,
which must be compensated somehow.

If there would be a player with a dominating position in a certain price area
(but not in the whole market), counter trading reduces this player’s influence
in the ahead market. On the other hand, the player remains dominant in the
real-time market (if pricing isfreein that market), but there market power has
asmaller impact on the other players than it has in the ahead market, because
the regulating prices only affect the players involved in regulation actions or
who have an imbalance in the post market (cf. chapter 2).

6.3 OTHER GRID COSTS

In addition to the direct operation costs related to losses and congestion, the
grid also requires maintenance and investments. Anideal electricity market is
not only efficient in the short run, but also in the long run. This means that in
an ideal electricity market, exactly so much maintenance is performed as
needed and the grid is expanded in correct pace and in the right way. In real-
ity it is unfortunately difficult to determine what is sufficient maintenance
and a proper pace of investments, and it can safely be assumed that the ideal
model and the reality will differ. However, these deviations are of no impor-
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tance to the kind of static electricity market ssimulation, which | am dealing
with in this dissertation; maintenance and investment costs are mostly fixed
costs in the short run and we have to include market dynamics in the simula-
tion model to study those costs. Although | therefore do not intend to present
any models of maintenance and investments, | would like to comment briefly
upon afew detailsin this context.

When discussing maintenance, we differentiate between corrective mainte-
nance and preventive maintenance. Corrective maintenance refers to repara-
tions which are performed after the failure of a component. The costs of cor-
rective maintenance is thus a variable cost, which could be included in the
total operation cost, TOC. In practice, such a solution would cause unneces-
sary difficulties in a simulation. To begin with, we would have to define at
which moment the reparation cost should be counted; when the component
fails, when it is repaired or some other time? We also have to include timein
the scenarios we study; in a short scenario (i.e., a snap-shot of the electricity
market) we have no information about how long time an unavailable compo-
nent has been out of order. If we include the time, which according to my ter-
minology means that we simulate long scenarios, the actual simulation will
become more difficult to perform (see chapter 10). A better method to
include the costs of corrective maintenance is to introduce a separate system
index for expected maintenance costs and determine or estimate this index
outside the electricity market simulation.’

The objective of the preventive maintenance is to reduce the risk of distur-
bances, for example by “exercising” components which are rarely used or by
replacing ageing (or otherwise damaged) components before they compl etely
cease to function. Assuredly, the material costs of preventive maintenance
may vary somewhat, but by and large, the preventive maintenance can be
considered a fixed cost per year; thus, this cost does not have to be included
inn the simulation part. If anything, the result of the preventive maintenance
affects the input of the electricity market simulation; the more maintenance is
done, the higher the availability of transmission lines and power plants should
become. Determining this relation and identifying which preventive mainte-
nance is the most important for the reliability of the system is a—to say the
|east—complicated problem, which | will not address any further.18 | nvest-
ments cause fixed costs in a similar way as preventive maintenance. (The
boundary between the two is not very clear—should for example a magjor
overhaul of an over-aged distribution grid be seen as maintenance or a new
investment?)

Apparently, there are quite alot of fixed costs for the grid. How should the

17. Cf. for example the case study in my licentiate theses [7], where | quite sSimply
assumed that the maintenance costs of grid and some power plants were an annual
cost corresponding to 5% of the original investment.

18. Those who are interested in these issued are referred to [98].
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grid users be charged to cover these costs? Depending on how the cost of
losses are covered and which congesting management method is chosen, the
running operation may either generate a surplus to the system operator (for
example when using marginal pricing of losses or market splitting to solve
congestion problems) or a deficit (for example as a consequence of counter
trading). But even if the final result of the system operator isagain, this gain
is normally not sufficient to finance the maintenance and investment costs of
the grid [111].2° In other words, additional fees are required to provide full
cost coverage for the system operator. These fees (which in [111] are referred
to as residual tariffs) can be designed more or less arbitrarily, but the most
common is probably to have afixed, annual fee, which is proportional to the
maximal injection or extraction of the grid user, or—in the case of an invest-
ment cost—as a fixed single payment.

The residual tariffs do not have to be uniform for all grid users, but can be
differentiated both between different parts of the grid and between different
categories of grid users. One reason to have different residual tariffsin differ-
ent parts of the grid is that the cost of connecting a certain maximal power
varies; the cost per connected grid user is obviously higher the fewer connec-
tions there are per km of line. Moreover, it was shown in the previous section
that counter trading tends to favour generation in export areas and consump-
tion in import areas, which causes an increased need of transmission
resources and hence higher fixed grid costs. If this kind of geographical vari-
ations is not reflected in the grid tariffs then there will be a risk that new
power plants and new load centres are placed in the wrong part of the system,
resulting in a decrease of the benefit to the society, due to the increased costs
of maintenance and investmentsin the grid.

On the other hand, access to electricity supply is of such fundamental
importance to our modern society, that there might be good reasons to subsi-
dise the grid costs in sparsely populated areas, if the grid costs otherwise
would become so high that it would affect the possibility to finance basic
public functions. It is however possible to keep the fixed grid costs quite uni-
form for most grid users, without giving up the possibility to provide eco-
nomic signals about where new investments should be located. The solution
isto differentiate the residua tariffs for different groups of grid users.

The cost of grid connection is probably of lessimportance for most smaller
load centres; anew residential areaisbuild where there is a housing shortage,
not where access to the existing grid is as close as possible, and thisis proba-
bly beneficial to the society. Large consumers, for example energy intense
industries, and—above all—large producers may nevertheless have approxi-
mately the same benefits and costs regardless of where new facilities are

19. | here assume, as in the previous sections, that the system operator also is the grid
owner.
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built, and then the residual tariff may actually have an impact on the invest-
ment decision. It is more important to persuade the larger grid users to locate
their facilities in the right part of the grid—it is self-evident that a new
nuclear power plant of 1 600 MW has a considerably larger impact on the
need for grid investments than a weekend cottage with a 16 A main fuse.
Thus, it can be justified to differentiate the residual tariffs, so that small grid
users pay uniform tariffs, while the larger gird users have a tariff system
which to a larger extent reflects geographical differences in the grid costs.
However, when small and large grid users are separated in this way, it is
important that the share of residual tariffs which is paid by the small grid
users is not too large, because the variations of the tariffs of the large grid
users might then become so small that it does not affect their investment deci-
sions (cf. [143]).
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OTHER MARKET
IMPERFECTIONS

As | have shown in chapter 3, a number of conditions must be fulfilled if an
electricity market should be considered ideal. In the previous chapters, | have
studied how external costs, uncertain forecasts and grid tariffs differ between
ideal and real electricity markets. If al the electricity markets in the world
were examined then countless other differences between reality and the ideal
model would be revealed. Such a complete survey is for natural reasons too
extensive for a dissertation. However, there are a few additional imperfec-
tions which | would like to comment upon briefly, but without describing or
modelling them in detail.

7.1 MARKET POWER

Most electricity markets are dominated by a single or a few players. Thisis
partly a heritage from the days of the verticaly integrated monopolies and
partly a consequence of the economics of scale in power generation.
Undoubtedly, possibilities to exercise market power arise when the produc-
tion resources are concentrated like this, and it is not surprising that thisissue
has attracted a lot of attention the last few years; [113-121] is just a small
selection of al the scientific papers about market power in electricity markets
which have been published. Here, | will restrict myself to a few general com-
ments on the subject of market power and the most important models, which
can be used.

As already known, market power arises when a player has such a large
share of the market that he or she becomes a price setter, i.e., a player who
can influence the market price. The price setter has not total control over the
price, but must still consider the reactions of the other players, but the control
is sufficient to alow the price setter to increase his or her own benefit (com-
pared to an ideal electricity market) on behalf of the total surplus. An exam-
ple of how thiswas given in figure 3.4.
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In this section | will assume that market power is exercised by producers.
Thisis not an attempt to discredit the industry, but just away to avoid lengthy
descriptions covering all possible cases. That | choose producers as example
and not consumers is because most electricity markets have many small and
medium consumers and quite a few large producers, which makes it more
redistic that it is the producers who may possess market power.

Legidation

Any in-depth discussion of the legidation concerning market power should
not be necessary—exercising market power reduces the total surplus and is
therefore forbidden.! Generally, the legislation is designed so that it is not
prohibited to be adominant player in amarket; what is prohibited is using the
dominating position in such a manner that other players are damaged.

It should however be noted that the regulatory authorities face amajor chal-
lenge when surveilling the electricity market. Admittedly, afterwards it is
easy to point out a certain action as suspected price manipulation, but then it
remains to prove that the action deliberately was performed to influence the
price. It is however difficult to exclude other possible explanations to the
behaviour of the player. (Anyone who wants to hide attempted price manipu-
lations can probably every now and then blame forecast errors; cf. figure 7.1.)
To convict someone for exercising market power, it is likely that written evi-
dence of irregularities have to be found in araid at the suspected player. This
happened for example in the Enron bankruptcy when U.S. authorities confis-
cated documents showing that Enron developed and also practised various
strategies to exploit weaknesses of the Californian electricity market [122].

Although it thus can be feared that there are plentiful opportunities—for
those who want—to fairly unncticed exercise market power, the situation
may yet not be that bad, because the risks of the dominating companies also
have to be accounted for. After al, if they are caught, the punishment can be
severe and they will hardly gain any sympathies from the general public. This
applies especialy to those power companies which are still entirely or partly
state-owned. | find it hard to believe that any politician in a working democ-
racy would neither want to nor dare to sanction a state-owned power com-
pany fleecing the electricity consumers of the nation and it seems just as
unlikely that the board of the company would initiate such arisky venture.

| could imagine that in most electricity markets there are players who pos-
sess market power, but they choose to use it only in asmall scale. Proving or
rejecting this thesis however requires more detailed studies of thisissue.

1. Of course, this does not only apply to trading in the electricity market, but all
other goods, too.
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Figure7.1

CorlGp) = 100G, +0.263 L s | ms[%] | Forecast 1 | Forecast 2
G, =25 ,U]ﬂ] 1 25 55 56
Cc1(Gy) = 100G, +0.2G2 2 50 60 61

3 25 65 66

Out- | Proba- Available hydro

H =80 Gz =50 come, | hility, | generation, H [Twh]

Example of the difficulty of proving price manipulation. Consider an elec-
tricity market where the electricity is generated by dispatchable hydro power,
nuclear power and other thermal power plants. Assume that there are neither
generation capacity limitations, transmission limitations nor reservoir
capacity limitations, resulting in a constant electricity price during the whole
year. The load of the system is price insensitive and the demand is always
100 TWh/year. In this market the electricity price is determined by the inflow
to the hydro reservoirs.

Assume that one single company owns all nuclear power plants. The com-
pany musts before the beginning of the year decide how much fuel they
should load their nuclear power plants with. If the nuclear power plants are
fully loaded, it is possible to use the entire technical potential, G,, butitis
also possible to set the available capacity, G;, to a lower value. The prob-
lem is that any unused fuel causes a cost due to lost income from interest.
Assume that the storage cost is Bk = 5a/MWh. In the other thermal power
plants, the fuel storage is filled as time goes; hence, the entire technical
potential is available each year, without extra storage costs.

If there is perfect competition in this market, the producers would minimise
the expected operation cost. Assume there are S discrete outcomes of the
inflow and that each inflow is associated with a certain probability, ng, and a
certain available hydro power generation, Hg. The market can then be simu-
lated by solving the following problem:

minimise ZSTES(CGl(Gl, §) T Cga(Gy o) + BkKy)

Se

subjectto  G;-G; s—Kg =0, Vses,
He+ Gy ¢+ G, = D, Vses,
0<Hg< Hg, VseS,
OSGg,s VgeG,seSs,
0<Kq Vses.

If this problemis solved using data according to the first forecast above, we
find that the nuclear power plants should be loaded with 21,88 TWh fuel.
Assume that the company just loads 21,04 TWh, which is the optimal solution
if the second forecast is used instead. Does this mean that the company is try-
ing to increase the market price by withholding some nuclear capacity? In
our example, we may define the first forecast as the correct one, and con-
clude that the company deliberately overestimated the hydro power genera-
tion when using the second forecast, but in reality it would be very hard to
show which forecast corresponds best to the real probability distribution.
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Modelling

In an ideal electricity market the actions of the producers are only depending
on the market price and the marginal costs of the producers (cf. the optimality
conditions of the producer problems in chapter 4-6). Price setters have the
possibility to deviate from this behaviour and in that way increase their own
surplus on behalf of the other players. A price setter may choose between
many different strategies. To model strategic behaviour, we end up in a
branch of mathematics called game theory. A market can be considered as a
game, where the players choose their moves (i.e., the bids they submit to the
market) depending on what they believe the other players will do. The objec-
tive of the gameisto gain the largest possible surplus.

There are many ways to desigh a game model of a market and the choice of
model may have a significant impact on the final result. Thisis not just about
the game model itself (i.e., the strategies of the players and how the game is
played®) but also the extent to which the model includes the special condi-
tionsin an electricity market (for example that a comparatively small player
can have market power, because the competitors are blocked by transmission
congestion problems). Below follows a brief summary of the general models
found in economic literature, as well as some comments about their applica-
tion to the electricity market.

» Bertrand model. A Bertrand producer chooses a price and then
sells as much as is demanded at this price [137, 140]. In many
cases a Bertrand model produces the same result as a perfectly
competitive market,3 but if there is alarge demand, which is not
very price sensitive, the producer can increase their surplus on
behalf of the consumers (see figure 7.2). This kind of behaviour
is said to have been observed in the centralised electricity market
in England-Wales [117, 119].

» Cournot model. The Cournot producer chooses a quantity and
then adjusts the price until the market demands the chosen quan-
tity [137, 140]. The result of a Cournot model is somewhere be-
tween the monopoly case and perfect competition [137, 140].
The Cournot model is frequently used when simulating electrici-
ty markets; see for example [114, 120, 121].

» Sackelberg model. Both the Bertrand and Cournot models as-

2. It is for example a considerable difference between a game which is played in a
single round compared to if there are multiple rounds, allowing the players to
study each others moves and adept to the strategies of the other players. Cf. [140],
section 15.6.

3. Cf. the example in [137], p. 504ff.
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price

A MB

B, MC (market power)

MC (perfect competition)

By

P quantity

Figure7.2 Example of a Bertrand model. In the market above
there are two producers. The first producer knows
that they can sell a quantity corresponding to the
entire demand, as long as they do not request a
higher price than the offered by the other producer.
Thus, they can set a market pricewhichisjust dightly
less than the marginal cost of the other producer, Bs.
If the same supply had been available on a perfectly
competitive market, the market price would have
been B, instead.

sume that all players submit their bids without knowing the bids
of the other players. The players in the Stackelberg model make
their decisionsin a certain order. The simplest caseisto consider
alarge, leading firm and a smaller company, but other constella-
tions are also possible. Given the quantity produced by the lead-
ing company, the smaller firm chooses the production which
maximises their profits. However, the leading firm is assumed to
be able to predict the reactions of the smaller company, which
hence can beincluded in their own profit maximisation problem.
This advantage makes the Stackelberg model more profitable to
the leading firm than the Cournot model [118, 139, 140].* An
example of how to apply the Stackelberg model to an electricity
market is found in [118] .

« Supply function equilibrium.® Rather than choosing between
selling for a certain price or selling a fixed quantity, the produc-

4. As can be seen, the Stackelberg model resembles the Cournot model, as they are
both a game in quantities. There is adso a corresponding market leader model
where the producer chooses which price to offer (in similarity to the Bertrand

model), but in this caseit is not profitable to be market leader [140]; hence, such a

model is of no practical interest.
5. Besides, | might mention that in figure 3.4 | used a Stackelberg model.

6. Thisfootnote has been added to maintain the footnote numbering in pace with the

Swedish edition.
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Apparently, there is abig selection of useful models to study market power,
but this does not mean that more research in this field is not required. It may
for example take some fine-tuning of the above mentioned models to apply
them in combination with a multi-area model of the electricity market. New
models may also have to be developed to manage for example cross subsidi-
aries.® Other interesting research issues would be to study how the possibili-
ties of exercising market power is affected by other rules in the electricity
market (tradable green certificate, choice of method for transmission conges-

ers bid could consist of an arbitrary supply function, i.e, it is
stated which quantity is offered for a certain price [138]. The
Bertrand and Cournot models are in a way two extreme cases of
supply functions (in the Bertrand model the producer chooses a
horizontal supply function and in the Cournot mode! they choose
a vertical ditto). The supply function has been applied to study
market power in electricity marketsin for example [113, 116].
Conjectured supply functions.” This model partly resembles
the previous one, but here the players also consider how they ex-
pect the other players to change their production due to price
changes [115]. Thisis a very general model, which with differ-
ent choices of parameters can be made to correspond to any of
the above mentioned models. The description in [115] is applied
both to bilateral and centralised electricity markets.

Cartels. The models above assume that each player makes his or
her decision independently from the others. It is also possible to
create models where some players cooperate by forming a cartel.
The choice whether to participate in the cartel or not becomes a
game in itself, because under some conditions it can be profita
ble to break the cartel agreement [137].

tion management, etc.).

7

8.

. Thisfootnote has been added to maintain the footnote numbering in pace with the

Swedish edition.

By cross subsidiaries | refer to a situation where companies participating in the
competitive part of the electricity market are owned by a player who is also con-
trolling companies in the regulated monopoly side of the electricity market; by
transferring money from the monopoly company, it is possible to subsidise the
company which is subject to competition. For example, a grid company could buy
power to cover the losses at a price higher than the market price. By that means,
the generation company can attract new customers by lowering their price in the
regular electricity market. The price reduction are paid by the customers of the

grid company, which have no possihility to choose another supplier.
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7.2 IRRATIONAL PLAYERS

Every now and when players can be observed, who seem to act irrationally,
i.e., they are not maximizing their surplus. For example, | have been told that
owners of hydro power plants sometimes generate electricity, although it
would be more profitable to save the water and use it at alater occasion when
the electricity prices are expected to be higher. The explanation for this
behaviour is that if the electricity prices are lower than expected when the
budget was decided, the company compensates by selling more instead.
Another, more obvious example, is consumers who do not switch supplier,
although they would receive alower cost with another supplier.

That players seem to behave irrationally is however not the same as that
they really areirrational, but there might be other explanations for the behav-
iour. A player may for example need to consider some factor outside the elec-
tricity market; the hydro power producer who can fulfil the budget might gain
some advantage from banks or share-holders. It may also be as discussed in
section 3.1.1, i.e, that the benefits perceived by a player cannot only be
measured in money, but other values may also play arole. A small consumer
may not save more than atrifling amount of money every year when chang-
ing supplier, and may therefore find that the inconvenience of contacting pos-
sible alternative suppliers and comparing prices is more costly than to pay
slightly more expensive electricity bills.® Another possible explanation is
incomplete information; consumers who during all these years have been
obliged to buy electricity from the local power company may not be aware
that after a restructuring they are free to choose any supplier they like in a
bilateral electricity market.

The deviations from an ideal electricity market mentioned above could be
modelled using similar methods as has been suggested to simulate the impact
of forecast uncertainty in the seasonal planning, i.e., by introducing a random
disturbance on cost or benefit functions. However, the impact of differences
between rational behaviour in an ideal electricity market compared to the real
case ismost likely so small that it is reasonable to neglect it. For aslong as it
is pure ignorance which make players behave irrationaly, it is better to coun-
ter this by information campaigns from relevant authorities.

9. At least | myself, happily pay a couple of hundreds crowns to avoid having to call
the customer service of a power company, just to be disconnected after half an
hour of waiting in atelephone queue.
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b)

MC
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If aprice cap just isintroduced, no producer will be willing to supply production when
the marginal cost is higher than the price cap. The consequence is that the turnover in
the market islower than what would have been the case in a perfectly competitive mar-
ket; hence, the total surplusis reduced by an amount corresponding to the shaded area
in the figure.
price

MC

T T T T T 1T Y T T T » quantlty
q 10 000
Here, a price cap is introduced while the producers are ordered to cover the entire
demand, whenever physically possible. The consequence is that the turnover in the
market is higher than for perfect competition; hence, the total surplusisreduced by an
amount corresponding to the shaded area in the figure.

Figure7.3 Impact of price caps.

7.3 LIMITATIONSIN ELECTRICITY

TRADING

All players are limited by the legislation and other rules controlling the elec-
tricity market. Some of these limitations are justified comparing to the
requirements on an ideal electricity market; it is for example nothing wrong
with punishing emission of environmentally hazardous agents or requiring
balance responsibility, etc. Other limitations are however such that they in a
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obvious way contradict the conditions of an ideal electricity market and
therefore can be questioned.

An example of an unnecessary limitation is bilateral electricity markets
where not all consumers have the possibility to choose supplier (which
clearly isadeparture from the requirement on free trade). If the objectiveisto
simplify the transition from a vertically integrated electricity market to a
restructured ditto, thiskind of limitation might be justified, but in the long run
all consumers should have access to the competitive el ectricity market.

Another example is when attempts are made to regulate the electricity
prices, for example by introducing a price cap. Such actions are sometimes
claimed to be necessary to counter the consequences of market power, but it
is an action which risks to fail. If the price cap is set lower than the market
price in a perfectly competitive market, the market will be prevented from
achieving the equilibrium where the total surplus is maximised, as shown in
figure 7.3. An example of how a price cap can cause problemsis the Califor-
nian energy crisis from the summer 2000 to the spring 2001, during which
several disturbances in the power supply stroke the consumers, while the
large power suppliers were brought to the brink of ruin [147]. A single, cru-
cia factor responsible for the crisis cannot be identified, but so much is at
least surethat it was not beneficial to the society to prohibit the power suppli-
ersto raise the prices paid by the final consumers, even though the suppliers
paid more when buying power than they received from the customers. To pre-
vent the power suppliers from going bankrupt the state of California had to
support them with huge amounts. Thus, the artificial low electricity prices
resulted in overconsumption—if the real electricity price had been visible, the
most price sensitive consumers would probably had turned off their air condi-
tioning when the power shortage was at its worst—and the consumers finally
had to pay for the whole show viataxes instead.
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Chapter 8

MONTE CARLO
TECHNIQUES

Monte Carlo techniques can be considered a general designation for methods
where a mathematical problem is solved by studying randomly chosen sam-
ples.! Today, Monte Carlo techniques are used within almost all areas of sci-
ence, from opinion polls to computer simulation of complicated technical
systems.

In this chapter | will give asummary of the notions and methods which are
relevant for performing Monte Carlo simulation of electricity markets. Most
of the chapter is thus a summary of mathematical theory, which has been
known for decades. Some parts of the chapter, more exactly some thoughts
about duogeneous populations and the idea of the strata tree, are however
results of my own research.

81 SIMPLE SAMPLING

In its moste smple form, Monte Carlo simulation means collecting a number
of completely random observations of a population. This is referred to as
simple sampling. In this section, the most important formulae of simple sam-
pling are summarised. Please note that | am only considering simple sampling
with replacement, which means that the same sample may appear any number
of times during the sampling procedure. Some formul ae take a somewhat dif-
ferent expression if sampling without replacement is used.?

| have tried to use the same symbols as in most standard works on Monte
Carlo techniques—in particular [127]—but | have made some changes to
avoid confusion with other symbols appearing in this dissertation. | will
define the symbols used as they are introduced, but it can be worthwhile to
already from the start clarify the general principles which | have used in my

1. In some literature the notion “Monte Carlo technique” is used as a synonym for
variance reduction technique.
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choice of symbols:

» Random variables are generally designated by Latin capital let-

ters, eqg. Y.

 Observations of arandom variable are designated with the corre-

sponding Latin lower-case letter. Generaly, an index is used to
distinguish different observations, e.g. ;.

» The exact values of parameters in probability distributions are

designated by Greek lower-case |etters. The random variable to
which the parameter is attributed is indicated by an index, e.g.

Py

 Estimates of parameters in probability distributions are desig-

nated by the corresponding Latin lower-case letter. Here too, the
random variable isindicated using an index, e.g. my.

Estimation of Expectation Value and Variance

If there is anumber of samples from a random variable and these samples are
distributed completely according to the density function, the mean of the
samples will be equal to the expectation value of the variable—thisis simply
the meaning of the definition of expectation value (cf. definition B.6). In
practice, an arbitrary number of samples will only be distributed approxi-
mately according to the density function; as a result the mean of the samples
will only approximately be equal to the expectation value. This can be

expressed in atheorem:

Theorem 8.1. If there are n independent samples, y;, ..., Y, of
the random variable Y then the mean of these samples,

n
_1
my, = F\Zyi’
i=1

2. The difference between sampling with and without replacement can be illustrated

by the following example: Assume that there is an urn full of green and white
marbles. When sampling without replacement, a marble is taken out of the urn, its
colour is noted and it is then put aside. If sampling with replacement is used then
the marble would be returned to the urn after its colour had been noted.

It might seem strange to replace samples, because it inevitably leads to an
increase of the uncertainty of the result. (With replacement there is arisk that for
example the same marble is selected in each trial, whereas without replacement it
is certain that eventually the whole popul ation will have been studied and thus we
will have exact knowledge of its composition.) However, this increase in uncer-
tainty is negligible for large populations;, moreover, it is often time consuming to
exclude those samples that already have appeared. For simulation of electricity
markets, sampling with replacement is definitely preferable.
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is an estimate of E[V].3

Theideaof the Monte Carlo techniqueisto use this possibility to determine
expectation values by random samples. If there is a random variable, which
has an expectation value that is unknown and too complicated to calculate
analytically, then the expectation value is estimated instead. It is also possible
to rewrite a complicated, but essentially deterministic, problem in such a
manner that the solution is expressed as an expectation value, which then is
estimated using Monte Carlo techniques. An example of thisis Buffon's nee-
dle, which | mentioned in [7] and which also is described in many textbooks
or in popular science literature.

It is important to notice that the estimate my is a also a random variable
with its own probability distribution. It can be shown that the expectation
value of the estimate is equal to the expectation value of Y, i.e., E[my] = E[Y];
otherwise there would be a systematic error in the estimate. The variance of
the estimate, which is a measure of how accurate the result is expected to be,
is given by the following theorem:

Theorem 8.2. The variance of the estimated expectation valuein
simple sampling is given by

var[Y] 4

n

Var[my] =

The theorem simply states that the more samples that are collected, the lower
the variance of the estimate. In plain language this means that the deviation
between the estimate and the real value is expected to decrease as the number
of samplesincrease. However, as Var[my] never becomes equal to zero, there
will aways be a certain random error in the estimate my. It should aso be
noted that even though the error is expected to decrease as more samples are
collected, this does not mean that it always decreases, but in some cases the
estimate may deteriorate if some more samples are collected.”

In many casesit is not sufficient to know the expectation value of arandom
variable, but it is also necessary to know the variance. If for example the
value of aninvestment isinvestigated then it is probably not sufficient to con-
clude that the investment is expected to be profitable (i.e., the expectation

3. According to my opinion, the nicest proof of thistheorem isgivenin[127], p. 28f.

4. A proof can be found in [127], p. 23f.

5. Thissituation can beillustrated by considering a coin which istossed twice. If itis
an ordinary coin (no hanky panky—the probability is 50% that the outcome is
heads and 50% that it is tails) and we had tails in the first trial and heads in the
second then we would estimate the probability of heads as 50%, which is the cor-
rect answer. If another trial is made, the estimate will either be 33% or 67%—in
both cases the estimate is deteriorated. If the result had been either just heads or
just tails in both trials then the third trial would either result in an improvement of
the estimate or that the estimate remained the same.
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value of the gain is positive), but it would also be interesting to know how
large the risk is (i.e., how large is the variance of the gain). The estimate of
the variance may also be required for internal calculations of the simulation,
aswe will seelater in this section.

Theorem 8.3. If there are n independent samples, y;, ..., Y, of
the random variable Y then

n

g = %Z(Vi—m\()z

i=1
is an estimate of Var[Y].®

An interesting practical detail in this context is that the expression of s$
can be reformulated as

n

n n
1 1
sG = 2 S (y2-2myy; +mf) = a( >y -2my 3y, +“'ng )
i1 i=1 i=1
n

n
:{Zyi:n.mY}::—]'Zin—m% (8.1

i=1 i=1
In other words, in order to calculate the estimates my and 3\2( it is sufficient
that after each new sample collected the sums Zyi2 and Xy; are updated
Thus, it is not necessary to store the whole set of samples, y;, ..., Y, to per-
form simple sampling, unlessit should be necessary to go back and study cer-
tain samples more closely after the simulation is compl eted.

Estimation of Probability Distributions

In many contexts the expectation value and the variance provide sufficient
information of the behaviour of arandom variable, but sometimesit is desira-
ble to have more detailed information about the variable. It isthen possible to
estimate the density function of a random variable using Monte Carlo tech-
nique.

The most straightforward method to estimate the density function isto sim-
ply store all samplesy; and at the end of the simulation estimate f\(x) as the
number of samplesy; = x divided by the total number of samples, n. For con-
tinuous random variables, the probability is extremely low that two identical
samples are collected, which makes the estimated density function will

6. A proof of the theorem is for example given in [127]. In this proof the denomina-
tor n—1 isused instead of just n; the reason is to simplify some formulae. If the
number of samplesis large then the differenceis negligible.

154  Smple Sampling




Chapter 8: Monte Carlo techniques

appear somewhat strange. In this case it is probably preferable to present the
result as a distribution function or duration curve instead.

Storing all samples might be impractical if there are many result variables
and alot of samples are required. To reduce the need for storage capacity the
sampl e space can be divided in a number of segments and estimate the share
of samples belonging to each segment. In practice this means that a continu-
ous random variable is approximated by a discrete variable, but the result will
still be rather good if the number of segment is sufficiently large.”

Confidence Intervals

Theorem 8.2 shows that simple sampling aways leads to some amount of
uncertainty of how well the estimate corresponds to the true expectation
value. Thus, it is appropriate to take this uncertainty into consideration before
any conclusions are drawn from the estimate. It is common to state a confi-
denceinterval for the estimate. A confidence interva isan interval which has
a certain probability, the confidence level, to include the true value. The con-
fidence level to be used may be chosen arbitrarily, but usualy it is 95%, 99%
or 99.9%.

A simple method to calculate the confidence interval of my is to assume
that the estimate is normally distributed around the true value py i.e.,
my € N(py, /Var[my]). 8 The confidence level is the probability that py is
within theinterval my + 3, i.e,,

P(y € (My—5, my+8)) = P(uy <my +8) —P(uy <my—5).  (82)

Using theorem 8.2 and 8.3 we obtain the following expression for the confi-
dencelevd in (8.2):

o20)-o(20) - 2a(B) s ©9

Each desired value of the confidence level is thus corresponding to a specific
valueof t = (6 ﬁ)/sY. Table 8.1 shows t for some confidence levels.? Given
adesired confidence level the confidence interval is calculated by

7. Inthis manner | presented the results of the case study in [7].

8. Whether or not this is a justified assumptions has been investigated by several
mathematicians, cf. [127], p. 39ff. Briefly, it can be said that if the number of sam-
plesislarge then my tends to be normally distributed. In [62] it is claimed that the
system index LOLP should be gamma-distributed, but no direct proof of this state-
ment is given. Cf. chapter 9, footnote 36.

9. Appropriate values of t for other confidence intervals can be found in most mathe-
matical handbooks, e.g. [134].
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Table 8.1 Calculation of confidence intervals.

Confidence level t
95% 1.9600
99% 2.5758
99.9% 3.2905
§= t—SY. (8.4)
Jn

Heter ogeneous, Confor mist and Diverging Units

The estimate of the standard deviation, sy, is important for several reasons,
for example because it is used to calculate confidence intervals, stopping cri-
teria and—as we will se in section 8.2.5—for calculation of sample alloca
tion. It istherefore worthwhile to reason alittle about the possible outcome of
sy for different kinds of random variables. Above all, it isimportant to study
the possibility that the estimate sy =0 is obtained, because such an estimate
is equivalent to estimating Var[my] equal to zero. Thisin its turn would imply
that an exact result had been obtained, but such are reserved for analytical
methods. When using Monte Carlo technique there is always a certain
amount of uncertainty in the final result—otherwise one should suspect that
something has gone awry.

The sample space of a general random variable can be seen as a population
consisting of a number of units (or individuals), which of course may be infi-
nite. Each unit has acertain valuey; and all units are equally likely; if thereis
an outcome y, which is more probable then another one, y», then there must
be relatively more units for which y; =y, than there are units for which
y; = yo. Collecting samples of the random variable is equivalent to randomly
choosing a unit and observing its value.

In some cases the units of a population are heterogeneous, which means
that it is hard to find two units having the same value, i.e,, it is unlikely that
y; =; for two randomly chosen unitsi and j. Consequently, it is sufficient to
collect just afew samples to obtain sy > 0.

In other cases the population consists of a large number of conformist units
and a small group of diverging units. Let us refer to this as a duogeneous
population.’¥ If the diverging units are homogenous (all diverging units have
the same value) or heterogeneous (the diverging units may assume different

10. The terms duogeneous population as well as conformist and diverging units are
my own inventions; | have not seen similar notions in the textbooks | have stud-
ied.
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values) is of less importance; the important thing is that they are few com-
pared to the conformist units. If a small number of units is randomly chosen,
the probability islarge that only conformist units are chosen, which yields the
estimate sy = 0. Thus, it is obvious that the estimate my does not take the
diverging units into consideration; therefore, it is more or less erroneous. The
size of this error is of course depending on the proportion of diverging units
in the population and how much they differ from the conformist units.'t

Table 8.2 Probability of just choosing conformist units.

Number of Proportion of diverging units in the population
samples n | 500 2506 10% 5% 1%  01%  0.01%
8 0.0039 | 0.1001 | 0.4305 | 0.6634 | 0.9227 | 0.9920 | 0.9992
32 0.0000 | 0.0001 | 0.0343 | 0.1937 | 0.7250 | 0.9685 | 0.9968
64 0.0000 | 0.0000 | 0.0012 | 0.0375 | 0.5256 | 0.9380 | 0.9936
256 0.0000 | 0.0000 | O.0000 | 0.0000 | 0.0763 | 0.7740 | 0.9747
1024 0.0000 | 0.0000 | O.0000 | 0.0000 | O.0000 | 0.3590 | 0.9027

It can be interesting to study the probability of getting the estimate sy = 0.
Table 8.2 shows some examples of the probability for just obtaining con-
formist units from a duogeneous population. The table does not say anything
about the number of samples necessary to get a good estimate of my, but is
intended to provide an indication of how many samples are needed to differ-
entiate a duogeneous population from a completely homogenous population,
which initsturn isaminimum requirement in order to obtain a good estimate
of my. The trend is clear; the smaller the proportion of diverging units, the
more samples are necessary.'?

11. In particular the relative error becomes large when the conformist units corre-
spond to the value zero. In a population consisting of 99% conformist units with
y; = 0 and 1% diverging unitswherey; = 1, it islikely that a simulation based on a
few samples will produce the estimate my = 0, even though py = 0.01. A relative
error of 100% in other words, although the error is only 0.01 in absolute terms.

12. Another way of understanding the difficulty is to imagine a situation where 100
samples have been collected and the result was 99 conformist units and one
diverging unit. This result does not provide enough information to differentiate
between for example the following two interpretations:

One unit out of ten is diverging, but unfortunately the samples are
such that the number of diverging units became unusually low.
One unit out of a thousand is diverging, but the samples are such
that adiverging unit appeared aready among the first 100 trials.
In order to be fairly certain about the proportion of diverging units, it would be
necessary to have at least 10 diverging units among the samples. The smaller the
proportion of diverging units, the longer it will take before a sufficient number of
diverging units appear in the chosen samples.
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Sopping Rules

As aready mentioned, it is never certain that the result of smple sampling is
the true expectation value, but if a sufficient number of samples is collected
the probability is large that the estimate obtained is accurate enough. To
determine how many samples are needed it isthus necessary to definewhat is
meant by “accurate”, as well as deciding which probability of an accurate
result that we desire. Given these parametersit is possible to determine a suit-
able number of samples using rough calcul ati ons.13

An dternative to choosing the number of samplesin advance isto use some
kind of test—a stopping rule—in order to decide to during the course of the
simulation whether or not the estimate seems to be accurate enough. It is not
necessary to check the stopping rule after each collected sample. | usually
divide the simulation into a number of batches, where each batch includes a
certain number of samples. The stopping rule is checked after each batch and
if itis not fulfilled then another batch is run. This procedure is most practical
when using stratified sampling, because then there will be another reason for
dividing the simulation in batches (see section 8.2.5).

It is possible to design a number of stopping rules. A common method isto
study the so-called coefficient of variation, which according to [47] is defined
as

_ [Var[my/] Sy ©5)

ay= —— ~{usetheorem 8.2 and 8.3} =~

mY mY./\/r’]'

If ay islessthan some relative tolerance p then the result is considered as suf-
ficiently good and the simulation can be terminated. The lesser the chosen
value of p, the more accurate results can be expected.

For a heterogeneous population it might be sufficient to study the coeffi-
cient of variation, but for a duogeneous population | think that another
requirement should be added to the stopping rule, more exactly that sy > 0.
As described earlier, the estimate sy = 0 means that no diverging units are
among the collected samples, which in many cases means that the estimate
my is completely wrong. Therefore, the sampling should continue until
diverging units have been encountered (i.e., until sy > 0) and the estimate of
there relative frequency isreliable (which it will be when ay < p).

8.2 VARIANCE REDUCTION TECHNIQUES

We resort to Monte Carlo techniques when a problem is too complicated to

13. Cf. for example [127], p. 72f, [47], p. 35ff, or [11], example 4.35.
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be solved analytically. However, there is often some knowledge about the
solution; in some cases it might even be possible to solve a part of the prob-
lem analytically. By using this knowledge it can be possible to increase the
accuracy of a Monte Carlo simulation. There are several methods to utilise
what is known about the solution of a given problem; a general designation
for these methods is variance reduction techniques. The designation refers to
attempting to reduce the variance of the estimate, Var[my], which means that
high accuracy can be achieved even with fewer samples.

Short descriptions of the variance reduction techniques | have acquainted
myself with follow below, as well as a short analysis of the benefits of each
method. In the latter analysis | assume that the problem to be solved is to cal-
culate E[X] = E[g(Y)], where Y is a vector of random variables with known
probability distribution, fy and g is a model of the system to be studied. As
described in section 1.1, static electricity market simulations fit into this gen-
eral format.

8.2.1 Complementary Random Numbers

The idea behind complementary random numbers is to reduce the influence
of the random fluctuations, which always appear in sampling, by creating a
negative correlation between the samples. In plain English, this means that
random numbers are generated in such a manner that the probability of a
good spread over the whole population increases.

Principle

Assume that my, and my, are two different estimates of the expectation value
wy of acertain random variable, i.e., E[lmy4] = E[my,] = pv If we have alook
a the average of the estimates then wefind that it is

my, + m 1 1
E[“TYZJ = SEImy] +5EIMy,] = by, (8.6)

The average of my; and my, is thus also an estimate of py which maybe is
not so surprising. The interesting thing is that the variance of the averageis

my, + M
Var[ Y1l YZJ

2

1 1 1
= ZVar[mYl] + ZVar[mYZ] + ECov[mYl, my,]. (8.7)

The variance of the average is apparently less than the variance of my; and
my, respectively. Above all, we can utilise the fact that the covariance may
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become negative. A straightforward method to generate two estimates having
anegative covariance is to use complementary random numbers.

If U isU(O, 1)-distributed then the complementary random number of U is
given by U* =1 —U. Obvioudly, U* isalso aU(0, 1)-distributed random var-
iable and, using definitions B.11 and B.12, the correlation coefficient can be
calculated as —1, i.e., the strongest possible negative correlation. Random
numbers of an arbitrary distribution are obtained by transforming U(0, 1)-dis-
tributed random numbers.2* Assumethat Y is a random variable with an arbi-
trary probability distribution and that Y has been obtained by transforming U,
while Y* has been obtained from U* using the same transform. The standard
transforms maintain at least a part of the negative correlation between U and
U*; hence, Y and Y* will also be negatively correlated.

A practical aspect concerning the usage of complementary random numbers
is that it is not necessary to have two separate estimates of my based on the
original samples and the complementary random numbers respectively.
Rather than managing two series of n observations each, it is thus possible to
consider yy, ..., ypand yj, ..., Y5, asone single series of 2n observations.
The formulae stated for simple sampling can the be used right away, even
though the samples are not really independent.

Benefits of Complementary Random Numbers

Complementary random numbers can create a negative correlation between
the input, Y, but in order to achieve a variance reduction a negative correla
tion is required between the observations of the variable which is actualy
sampled, i.e., the output, X =g(Y). Hence, the strong negative correlation
between U and U* is attenuated twice; first, when U is transformed to Y and
U* to Y*, and then when X = g(Y) and X* = g(Y*) are calculated. If comple-
mentary random numbers are to be of any use, it is required that the total
attenuation is not too large.

Most transforms are such that the negative correlation is maintained, but
some probability distributions—above all extremely asymmetrical distribu-
tions—may substantially weaken the correlation. An example of such an
asymmetrical distribution is a binary variable having a low probability that
y; = 1. If this probability is denoted p and is less than 50% then it holds that

Cov[Y, Y*] = E[Y-Y*] —E[Y]-E[Y*] =0 —p% (8.8)
As
Var[Y] = Var[Y*] = E[Y?] - (E[Y])* = p—p?, (89

we get the correlation coefficient

14. See appendix C for details.
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_ _CovY,Y*] _ —p2 _ p_
Y, Y*) = = R 8.10
pLY. Y*) JVar[Y]Var[Y*] p-p? 1-p (810

When p approaches zero, the expression (8.10) will also approach zero, i.e.,
the correlation is amost disappearing, and Var[my] using complementary
random numbers is more and more equal to Var[my] for simple sampling.

Whether g is such afunction that g(Y) and g(Y*) remains negatively corre-
lated depends entirely on the system at hand.

8.2.2 Dagger Sampling

Dagger sampling™® and complementary random numbers are based on similar
ideas. However, dagger sampling is especially appropriate for random varia-
bles with only two possible outcomes and the probability islow for one of the
outcomes—as seen in section 8.2.1 complementary random numbers is not
particularly efficient for this kind of variables. The original description of
dagger sampling isfound in [130].

Principle
Consider arandom variable Y, which has the density function

1-p X = A,
f(X) = p X = B, (8.11)
0 al other x,

where p < 0.5. Usually, samples are created by using the inverse transform
method. This method is based upon transforming a U(0, 1)-distributed ran-
dom number to the desired distribution using the inverse of the distribution
function of the variable (see appendix C). This can be viewed graphically by
starting at arandomly chosen point of the Fy-axis (which is graded between O
and 1) and follow aline parallel to the Y-axis, until the curve of the distribu-
tion function is reached. Then a vertical line is drawn to the horizontal axis,
where the transformed random value can be read.

In dagger sampling a scale between 0 and 1 is instead divided in subinter-
vals with the width p. The number of subintervals, which isreferred to as the
dagger cycle length,'® is thus equal to the largest integer Swhich is less than
or equal to 1/p. In addition to a number of subintervals, there may also be a

15. Thisfootnote has been added to maintain the footnote numbering in pace with the
Swedish edition.
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U__
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a) Three samples of Y created by the inverse transform method.
1
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y1=B y1=A S0 Y1IEA TS yi=A
Y2=A y2=B v Y2=A Y2=A
y3=A y3=A ~_Y¥3=B . y3=A

b) Three samples of Y created by dagger sampling.

Figure8.1 The principle of the dagger sampling technique.

remainder part. The finesse of dagger sampling is that one single random
number generates S samples. This is done by creating a U(0, 1)-distributed
random number and if this random number falls into subinterval k then the
outcome becomes y, = B, whiletheremainingy;, i =1, ..., S i # k, are equal
to A. If the random number fals into the remainder part then the outcome is
A inal samples. The difference between this procedure and using the inverse
transform method is illustrated in figure 8.1. With a generous portion of
imagination it can be perceived as if one single random number “cuts’
through several samples—hence the designation “dagger sampling”.

Let us now study the expectation value and variance of an estimate based
on samples generated by dagger sampling. In order to simplify the calcula-
tions, | will assume that the outcome A corresponds to the numerical value 0
and B correspond to 1, which means that E[Y] = p. Considering the expecta-
tion value of Sobservationsit is obvious that the probability is Sp that there
will be exactly one outcome where y; = 1 and the probability is 1 — Sp that

16. Thisfootnote has been added to maintain the footnote numbering in pace with the
Swedish edition.
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only outcomes where y; = 0 are obtained. The expectation value of the esti-
mate can therefore be written as

S
Elmy] = E{ézyi} = 45 1+(1-5p)-0) = p. (812)

i=1
The variance of the estimateis

S
Var[my] = Var E Zyi} =
i=1
S

-81—2[ Y Varly]+2¥ ¥ Covly, y, ]j . (8.13)

i=1 i<]j
The variance of a single observation y; is of course equal to Var[Y]. If there

was no correlation between the observations yy, ..., Ys then (8.13) would be
simplified to

Var[my] = -Sl—ZS-Var[Y] = \_@IéDf],

which corresponds to the variance of the estimate for simple sampling (cf.
theorem 8.2). But during dagger sampling there is clearly a correlation
between the observations, because it is known that if y; = 1 then the remain-
ingy; = 0. The product y;-y; is therefore always equal to zero; the definition of
covariance then yields

Covly;, ] = Elyi+y;] - EIy]E[y] =0-pp=—p> (8.15)

Since the covariance terms are negative, the variance of the estimate accord-
ing to (8.13) must be less than for simple sampling.

(8.14)

Benefits of Dagger Sampling

As for complementary random numbers it is required that the studied model,
g, isafairly nice function, so that the negative correlation between the inputs,
Y, will be preserved in the output, X. Also the practical effect of dagger sam-
pling is similar to complementary random numbers, i.e., dagger sampling
improves the spread of the observations. If Ssamples are produced using sim-
ple sampling then the probability is (1—p)S that only observations where
y; = 0 are obtained. If p is small then this probability is very high. However,
in dagger sampling the probability of generating S samples wherey; =0 is
egual to the size of the remaining part, i.e., (1 —Sp). As S~ 1/p, this proba-
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bility is small, regardless of the value of p.

Dagger sampling is very well suited for reliability analysis [47]. When con-
sidering the state of a system, this state is depending on the state of a whole
set of components, i.e., X=9(Yy, ..., Yi). Inagenera case these components
will have different failure rates, which means that the dagger cycle length is
different for different components. The question which dagger cycle length
that should be used is treated more closely in [59].

8.2.3 Control Variates

The method of control variates enables the usage of simple, analytical models
to improve the result of aMonte Carlo estimate. The ideaisto sample the dif-
ference between the problem at hand and a simplified model, which can be
treated analytically.

Principle

Assume that X is a random variable with the expectation value py. More-
over, assume that there is another random variable, a control variate, Z,
which expectation value E[Z] = p, isknown (from analytical calculations or
earlier investigations). Rather than estimating E[X] we choose to estimate the
expected difference between X and Z. An estimate of E[X] is then calculated

by

My =Mx_z * Uz, (8.16)
because

ElMx_z) * uzl =E[X-Z] + pz = E[X] —pz + uz = px- (8.17)
The variance of the difference X—Zis

Var[X —Z] = Var[X] + Var[Z] —2CoV[X, Z]. (8.18)

If acontrol variate Z can be found which is strongly positively correlated to X
it is then possible that 2Cov[ X, Z] > Var[Z]; this results in X-Z having a
smaller variance than X. Simple sampling of X—Z is then according to
theorem 8.2 resulting in less variance of the estimate than if X is sampled
directly.

Benefits of Control Variates

The prerequisite of making the control variate method efficient is of course
that a suitable control variate can be found. As earlier mentioned, we assume
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a) The expectation value of the control variate is added after sampling.
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b) The expectation value of the control variateisincluded in every sample.

Figure8.2 The principles of sampling using a control variate.

a random variable Y with a known distribution. The random variable to be
sampled is a function of Y, i.e.,, X=g(Y). The desired mathematical model,
a(Y), is generally afairly complicated model, which is difficult to treat ana-
Iytically—otherwise Monte Carlo methods would not be very interesting.
However, it is often possible to create a simplified mathematical model of the
same system, g* (). The simplified model can then be used as control variate,
as shown in figure 8.2. The simplified model should behave approximately
the same way as the complex model and thus it will be sufficiently correlated
to Xin order to produce a variance reduction. A condition is of course that
the expectation value of the simplified model, u, = E[g*(Y)], can be calcu-
lated analytically

In figure 8.2a simple sampling is applied to the difference between X and
the control variate Z; the expectation value of the control variate, p, is not
added until the difference has converged. An alternative approach is to add
the expectation value of the control variate before sampling, as shown in
figure 8.2b. The difference between the two alternatives is that they affect
stopping rules based on the coefficient of variation. In the first alternative, the
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estimated varianceis

n
1
SX-2= 4 > (=7 —m(x-z))z-
i=1

The estimated variance in the other alternativeis

n
_1 2
S(X=Z+py,) = HZ(Xi_Zi+“z_m(X—Z+MZ)) :
i=1

However, (8.19) and (8.20) are equally large, because

n

n
_1 _ 1 _
m(x_zﬂlz) = ﬁ_zl(xi_ZiJr“Z) = “ZJ’H_Zl(Xi_Zi) =
1= 1 =

= Hz T Mix—2),
which means that
Xi=Zi+tz=Mix_z+p,) = X =4 ~Mx-2z)
The resulting coefficients of variation are thus
S(x-z
Ax-2= =
Mix—z)" /M

S(X_Z+ HZ) _ S(X—Z)
Mix-z+u,)" Jnoomy-Jn

AX-Z+p,) =

(8.19)

(8.20)

(8.21)

(8.22)

(8.233)

(8.23b)

The coefficients of variation differ only depending on how my is related to
Mx — z); exactly the same series of samples will yield a smaller coefficient of
variation in the first aternative if myy_z >my. This must be considered

when deciding a suitable relative tolerance in the stopping rule.

8.2.4 Correlated Sampling

Correlated sampling is based on similar principles as the control variate
method. The control variate method studies the difference between a detailed
and a simplified model of the same systems, whereas in correlated sampling
the difference is studied between two separate systems which have similar
properties. A typical application is to study what happens if an existing sys-

tem is modified.
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b) Thetwo systems use inputs with different probability distributions.

Figure8.3 The principles of correlated sampling.

Principle

Assume that the difference between the expectation values of two random
variables X; and X, should be studied. Rather than estimating E[X;] and
E[X,] in separate simulations, we choose to study Z = X; — X,. Apparently,
E[Z] isequal to the difference we are looking for, because

E[Z] = E[X; —X5] = E[X{] — E[X,]. (8.24)
Thevarianceof Zis
Var([Z] = Var[X4] + Var[X5] —2Cov[ X1, X5]. (8.25)

If the two random variables are strongly positively correlated to each other
then it is possible that simple sampling of Z is more efficient than sampling
X1 and X, separately.
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Benefits of Correlated Sampling

The benefits of correlated sampling is utterly depending on whether or not the
two studied variables X; and X, are sufficiently positively correlated to pro-
duce a variance reduction according to (8.25). As earlier mentioned, we start
by input with known probability distributions. To apply correlated sampling,
we should have one system g, with output X; and another system g, with out-
put X,. The two systems can either use the same input (figure 8.3a) or inputs
with different probability distributions (figure 8.3b). Apparently it is more
likely that X; and X, are positively correlated in the first case, because the
correlation then only depends on how similar the two systems g; and g, are.
In the other case, the correlation is attenuated, since different transforms are
used to create Y, and Y, respectively.

A disadvantage with correlated sampling is that even though the estimate of
E[X; —X5] is very good, this does not mean that very accurate estimates of
E[X4] and E[X,] are obtained.

8.25 Sratified Sampling

If there is some knowledge about the characteristics of a population then we
can use it to concentrate the samples to those parts of the population which
are of most importance. Stratified sampling achieves this effect by dividing
the population in smaller parts, which are then studied separately.

Principle

Assume that there is a random variable Y with the sample space Y. In strati-
fied sampling the sample space is divided in L strata, where stratum h com-
prises the outcomes Y}, which is a subset of Y. Two strata may not overlap; in
other words, each outcome should belong to exactly one stratum:

YhﬁYJ‘:@Vhij, (8.269)
Yy =Y. (8.26b)
h

Each stratum is given aweight according to how large the part of the popula-
tion is that belongs to the stratum: 1’

17. Inthe literature, e.g. [127], the symbol Wis used for stratum weight. As this sym-
bol is frequently used in my electricity market model, | have chosen to use » for
stratum weight.
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Np
(O N = P(Y € Yh)’ (827)
where

oy, = stratum weight of stratum h,
Np, = number of units (i.e., possible outcomes) in stratum h,
N = number of unitsin the whole population.

As seen above, the stratum weight can also be expressed as the probability
that an observation of Y will fall into a certain stratum h.

It is now possible to consider L separate random variables Y, h=1, ..., L,
each with the sample space Y},. The expectation value of each stratum is cal-
culated separately. In the best case, E[Y},] can be calculated analytically; oth-
erwise an estimate is obtained by simple sampling:

Ny

> Yhi

_i=1
my, = | . (8.28)

where

myy, = estimate of the expectation value for stratum h,

Yni = value of thei:th sample of stratum h,

ny, = number of samples from stratum h.
The expectation value of the whole population, E[Y] = py, is then estimated
by weighting the results of each stratum:

L
> Npmyy 1L
_h=1 _ 18
my="—3 ~ Z OpMy,. (8.29)
h=1
If it has been possible to analytically calculate E[Y}] = pyy, then my, = pyy
should of course be used in (8.28).
The variance of the estimate my in stratified sampling is

L
Var[Y,]
Varmy] = " of———. 1
h=1
If strata have been defined properly then it is possible that (8.30) is less than
the variance for simple sampling (cf. theorem 8.2). Notice that the oppositeis

" (8.30)

18. A proof that E[my] = pyisgivenin [127], p. 91.
19. A proof isgivenin [127], p. 92.
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also possible; apoor stratification may result in a higher variance for the esti-
mate of the expectation value E[Y]!

If E[Y] isto be estimated using in total n samples, how should then these
samples be divided between the different strata? It can be shown that (8.30) is
minimised if the samples are distributed according to the so-called Neyman

allocation:2°

OrOy,
L L
D OOy
k=1
where

oyp = Standard deviation of stratum h, i.e.,  /Var[Y,].

If Var[Y}] could be calculated analyticaly then it would aso be possible to
calculate E[Y},] analytically and then there would be no need at all to apply
any Monte Carlo methods. Thus, it must be expected that all the oy, are
unknown. Estimates of oy}, have to be used instead when (8.31) is used:

np=n (8.31)

Ny

1
S = igl(yhi‘mvh)z’ (8:32)

where
Syn, = estimate of oyp,.

In other words, it is necessary to have a few samples from each stratum
before the Neyman allocation can be applied. This is solved by starting the
sampling with asmall pilot study, where a predetermined number of samples
istaken out of each stratum. The number of samples can either be the samein
each stratum, so-called proportional sampling, or be adjusted to the expected
properties of the individual stratum.

Better and better estimates of oy, can be expected as more samples are col-
lected. It may therefore be worthwhile to stop every now and then and use the
improved estimates to determine a new sample allocation. A practical solu-
tion isto divide the simulation into batches; after each batch the stopping rule
is checked and if it is not fulfilled then a new sample alocation is calcul ated.

Benefits of Sratified Sampling
In [127] stratified sampling is used for heterogeneous populations.®® | per-

20. A proof isgivenin [127], p. 98f.
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sonally think that stratified sampling is most useful when studying a duoge-
neous popul ation (see page 156), because it is then possible to use the stratifi-
cation to concentrate samples to those parts of the population where the
diverging units are found. Ideally, all conformist units are put in some strata
and the diverging units in others. Those strata which only have conformist
units do not need any further studies, because pyy, is obvious. At the same
time, it is much quicker to estimate the expectation value of the strata con-
taining only diverging units; indeed, if things are nice, there is only one kind
of diverging units, so that pyy, is obvious in these strata, too.

If it isimpossible to achieve the ideal division then one should attempt to
design strata having only conformist units or a mixture of conformist and
diverging units. In the latter, the proportion of diverging units can become
larger than it isfor the whole population; hence, these proportions will be eas-
ier to estimate (cf. the reasoning around table 8.2).

However, this strategy has a potential weakness, derived from the fact that
we are forced to use a pilot study before we can determine how to divide the
samples between the strata in the remainder of the study. If the result of the
pilot study is too erroneous, it might have catastrophic consequences for the
final result. Let me show an example of how this can happen.

Figure 8.4 shows an irregular, black shape, the area of which should be
determined. This can be done by a Monte Carlo method. Each sample con-
sists of a randomly chosen point within the surrounding, rectangular frame.
Thus, we have a population composed of a majority of grey points, which
constitute the conformist units. Besides, there is a small proportion of black
points, which consequently are the diverging units. The black surface consti-
tutes the same share of the surrounding rectangle as the proportion of diverg-
ing units in the population. Since the area of the rectangle is ssimple to calcu-
late, it is possible to estimate the black surface on the basis of an estimate of
the proportion of diverging units.

Assume that three strata have been defined as in the figure. In the pilot
study, 8 samples are taken per stratum. In stratum 1 all samples will be con-
formist units, resulting in the estimate sy; = 0. According to the Neyman allo-
cation (8.31) zero samples should be taken from stratum 1. The samples that
aready have been collected in the pilot study cannot be undone; the essential
isthat no more sampleswill be allocated to stratum 1. Thisis correct and effi-
cient, as stratum 1 is a completely grey surface; thus, no new information
would be gained from further sampling of stratum 1.

If we consider stratum 2 instead, the probability that a certain sample is
constituted by a black point is about 50%. The probability that 8 samples
would comprise only black or only grey pointsis less than one per cent. Most

21. Most examples in the book considers issues of population statistics, as number of
inhabitants in cities, number of acres per farm, etc.
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Figure8.4 Area determination problem. The share of the grey rectangle
which is covered by the black figure can be estimated by ran-
domly selecting a number of points (y;, ,). By that means it is
possible to estimate the area of the figure, because the area of
therectangle is easy to calculate.

likely, the estimate sy, > 0 is obtained, which is a prerequisite that more sam-
ples will be allocated to this stratum. Exactly how many more samples there
will be depends on the stratum weight w, and how sy, relates to the estimated
standard deviation of the other strata.

So far we have not had any trouble, as problems arise first when we incor-
rectly estimate sy, to zero, because then we risk to exclude important contri-
butions to the final result. This situation can arise in if we study stratum 3 in
the example. The black part is here only 5% of the total area of the stratum,
which means that the probability is about 2/3 that we solely collect 8 grey
samples from stratum 3; then we get the estimate sy3 = 0 and thus no more
samples will be allocated to stratum 3. The black part of stratum 3 will there-
fore never be detected in the remainder of the sampling procedure, even
though it comprises about a third of the total black surface!

The error described above is far more serious than the random errors which
are inevitable in Monte Carlo simulation, because this error does not
approach zero as the number of samples increase.?? Therefore, | have intro-
duced the designation cardinal error for those cases there the pilot study has
yielded the result sy, = 0 athough oy, > 0.

Another trouble caused by cardinal error is that a stopping rule including
the requirement that sy > 0 may never be fulfilled. This problem can be man-
aged in several ways. One is to continue the pilot study until sy > 0. A more

22. The simulation will converge towards an incorrect estimate instead, as illustrated
in[7], figure 4.5.
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simple alternative isto just introduce an upper limit to the number of samples
in asimulation; if this limit is exceeded, the simulation is terminated regard-
less of whether the stopping rule has been fulfilled or not.

Generally, stratified sampling can be very efficient for duogeneous popul a-
tions, as long as cardinal errors can be avoided. One should however notice
that the presence of cardinal error in a simulation does not always have a cat-
astrophic impact on the final result. If just a small fraction of the black sur-
face had been in stratum 3 in the example above, then the consequences of
neglecting this part had been rather insignificant.

When estimating E[X] = E[g(Y)] the strata has to be defined for the input Y,
but it is the properties of X = g(Y) which should be kept as similar as possi-
ble. For heterogeneous populationsit is possible to deduce stratification strat-
egies which at least approximately minimises Var[my].>®> These methods
assume that there is a fairly strong correlation between Y and X, and if strata
are defined so that Y is quite similar in each strata then the corresponding val-
ues of X will also be similar. | have not made any experiments with such
methods, because | think that the stratification in the first place must aim at
separating conformist and diverging units according to the principles dis-
cussed above. It is possible to achieve this by using a simple tree structure,
which | call astratatree.

A stratatreeis used to systematically divide a population which is charac-
terised by a number of inputs, Yy, ..., Y3 in such strata that the output
X1, ..., Xk gets similar properties in each stratum. The tree structure which is
used should have the following properties:

» Each node specifies a subset of the sample space for a certain
input YJ j €1, ...,J. Theonly exception is the root, which does
not contain any information at all.

» Each node has a node weight. The node weight is equal to the
probability that Y; belongs to the specified subset. The root
aways has a node weight equal to 1.

* Each branch of the tree should specify one subset of al ),
j=1, ..., J. Thismeans that each branch specifies a subset of the
population; thus, it may be considered as a stratum. The stratum
weight is simply obtained by multiplying the node weights along
the branch, assuming that all Y; along a branch are independent
of each other.

* All nodes must not specify subsets of the inputs Y;. Aslong asit
is possible to calculate a node weight, it is possible to introduce
different categories of help variables.

A dtratification requires that all possible inputs belong to a stratum and that
there are no overlaps (8.26a), (8.26b). To guarantee that the strata tree realy

23. See[127], section 5A.7.
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Figure 8.5 Sratification for the area determination problemin figure 8.4. The
proportion of black points compared to the grey points vary a lot
along the y;-axis, therefore, the y;-coordinate is placed in the first
level below the root of the strata tree. Given which interval of the y;-
axis a point belongs to it is possible to differentiate the y,-coordinates
where the black points can be found.

coversall inputsit is possible to apply the following two simple rules:
 The children of a certain node must define subsets of the same
input ;.
» The sum of the node weights of the children should be exactly 1.
The principle of how to utilise the stratatree isillustrated in figure 8.5.

8.2.6 Importance Sampling

Importance sampling improves the estimate in a similar manner as stratified
sampling, i.e., by concentrating samples to the most significant parts of the
population. In importance sampling this effect is achieved by modifying the
random number generation so that another probability distribution is used
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than the real. Those parts of the population which as a result of this are over-
represented are given alesser weight when the expectation valueis estimated.

In the literature it is common to derive the equations of importance sam-
pling from the problem of calculating the integra fh(x)dx.24 Here | will
present an alternative derivation, which is based on a general problem where
we want to determine E[X] = E[g(Y)].

Principle

Let Y be arandom variable with a known density function f defined on the
sample space Y. We wish to determine E[X], where X = g(Y), but rather than
sampling X we introduce another variable, Z. The density function of Z, f,, is
called the importance sampling functi on25 and should be such that f;(y) >0
V v e Y. For each outcome Y = y we have

X=g(v), (8.333)

Y(W)
f2(w)

It is simple to verify that E[Z] equals the expectation value we are looking
for, i.e., E[X]. According to definition B.6 we get

= 9(W)i7— (8.33h)

E[X] = [ g(w)fy(y)dy (8.34)
yeY
and
fy(w)
E[Z] = J g<w>f Y )z(w)d\v = [ g(w)fy(v)dy (8.35)
yeY

According to def|n|t|on B.7 we obtain

2(v)
Var[z] = E[Z?]-E[Z] = [ g%y )fﬁ) y—n3. (8.36)

yeY
As can be seen Var[Z] depends on the importance sampling function f(x),
which may be chosen arbitrarily. Obviously Var[Z] is minimised if we choose

f
) = 2 W) ©.37)
Hx

24. Seefor example [47, 59, 133].
25. Thisfootnote has been added to maintain the footnote numbering in pace with the
Swedish edition.
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However, this choice presupposes that iy is known and if that was the case,
there would be no reason to practice Monte Carlo simulation at all. The point
is that although the variance cannot be reduced to zero, a clever choice of
importance sampling function may result in Var[Z] < Var[X]. According to
theorem 8.2, this means that simple sampling of Z is more efficient than sim-
ple sampling of X. However, it must be kept in mind, that the oppositeis also
possible, i.e., a poorly chosen importance sampling function may result in
Var[Z] > Var[X].

Benefits of Importance Sampling

Importance sampling works in a similar manner as stratified sampling. Both
methods choose samples in such a manner that those units, which contribute
the most to the final results are more likely to appear among the samples than
during simple sampling. This overrepresentation is compensated by giving
the samples a lesser weight when estimating the expectation value; in impor-
tance sampling this weight is given by the quota f\(x)/fz(x) and in stratified
sampling it is given by the stratum weight, o The difficulty of both meth-
odsisto choose the parts of the population where the samples should be con-
centrated. In stratified sampling, this choice is done in two steps: partly by
designing strata and partly by alocating samples between different strata.
The two steps combined correspond to the choice of importance sampling
function.

If there is a sharp limit which can be identified between different parts of a
population then | think that stratified sampling is the more straightforward
method to use; the task of defining strata can be rather conveniently managed
by astratatree. If the limit however islesswell-defined or if its exact location
cannot be determined for practical reasons, importance sampling becomes a
more appealing alternative. An incorrectly chosen division between different
strata will convey a significantly increased risk of cardinal error, whereas a
weight sampling function can be designed to concentrate the samples to the
areawhere the limit is assumed to be, but without excluding other parts of the
population.
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SHORT SCENARIOS

Among all the models that can be used for simulation of an electricity market,
there are two main types that can be distinguished, namely those where time
isan explicit part of the model and those which constitute a“ snap shot” of the
electricity market. | refer to the latter as short scenarios. (The opposite is
long scenarios, which are treated in the following chapter.) The time elapsed
during a short scenario can be chosen arbitrarily, but must be so short that
none of the conditions of the electricity market has time to change, i.e., al
scenario parameters are constant during the whole scenario. It is possible to
imagine a short scenario which lasts aslong as atrading period in the electric-
ity market, or the short scenario may correspond to an infinitesimal time pe-
riod. In the former case it is of course an approximation to assume that all
scenario parameters are constant.

In ashort scenario the result variables depend only on the state of the elec-
tricity market in one particular moment; it does not matter what has happened
earlier in the system or which expectations the players have on future events.
In reality there is of course no electricity market which works in this manner.
If there is some kind of energy storage in the system then the players of the
electricity market must continuously make a choice between using the stored
energy now or saving it and selling it for ahigher price at alater occasion. In
such systems earlier states and expectations of the future play an important
role; therefore, short scenarios are absolutely unreasonable. Time constants,
for example long start-up times in certain power plants, have similar conse-
guences.

Although short scenarios thus always are a simplification of reality, studies
of simulation methods for short scenarios are relevant in the highest degree.
Firstly, there are electricity markets where energy storage and time constants
only have a negligible impact on the behaviour of the players and in those
cases it isacompletely reasonabl e approximation to simulate short scenarios.
Secondly, it is easier to study long scenarios once one has mastered simula-
tion of short scenarios.
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9.1 SCENARIO PARAMETERS

A scenario was defined in section 1.1 as a situation with given conditions for
the electricity market. A scenario is represented mathematically as a fixed
outcome for each of the scenario parameters (random variables with known
distribution) that appear in the eectricity market model. Exactly which sce-
nario parameters are necessary to define a short scenario depends of course
on which model has been chosen. Let us for the sake of simplicity limit our-
selves to the most basic scenario parameters, namely those that are part of a
multi-areamodel of an ideal electricity market.
* Available generation capacity in thermal power plants: (_Sg (one
value for each equivalent unit).
* Available generation capacity in non-dispatchable power plants:
W, (one value for each equivalent unit, which in practice means
one value per area).
* Available transmission capability: P, , (one value for each
interconnection)
* Load: D,, (one value for each area).!

In order to apply variance reduction techniques, it is necessary to have
some knowledge about the behaviour of the electricity market already before
the simulation has started. It is however not easy to predict operation cost or
loss of load occasions from just a glance at the above mentioned scenario
parameters. To gain a better overview it is a good idea to introduce special
scenario parameters which represent the total system resources and system
demand respectively. | call these scenario parameters primary scenario
parameters and the remaining—which provide more details about how the
primary parameters are distributed in the system—I call secondary scenario
parameters.

Available Generation Capacity

Concerning the available generation capacity it as actually sufficient to use
one single primary scenario parameter which defines the state of all power
plants in the system (both thermal and non-dispatchable)—no secondary sce-
nario parameters are needed. The principle is straightforward from a mathe-
matical point of view; all possible combinations of available and unavailable
power plants are listed and the probability is cal culated for each combination,
as well as the total available capacity in non-dispatchable power plants,
W,o, and thermal power plants, Gy, respectively. In practice this enumerar

1. We assume that there are only price insensitive loads in the system. This does not
restrict the simulation model, because price sensitive load can be simulated using
price insensitive load and fictitious power plants (see section 3.2.1).
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tion of possible combination may be quite time consuming, as the number of
combination grows exponentially with the number of power plantsin the sys-
tem. | will return to this issue in section 9.2.2. For the moment we assume
that all combinations have been identified and then we arrange a distribution
function, Fivso where each combination corresponds to one state. It is
important that tﬁe states are sorted according to W, + G;qt; Otherwise the
inverse transform method will not provide a correlation between the origina
sample, U, and W, + G;,;. Complementary random numbers will not work
without such a correlation (see section 8.2.1).

An important prerequisite to create a common probability distribution of
Wiot + Gyor iSthat the available capacity in individual power plants only can
assume discrete states. In reality, the available capacity of non-dispatchable
power plants is a continuous random variable; thus, a discrete approximation
must be used for the capacity in these power plants. It isnormally not difficult
to design such approximati ons.2 Neither does it result in any greater loss of
accuracy.

It may be worthwhile noticing that correlations between available capacity
in different power plants can be managed within the concept of a common
probability distribution F,  =. Dependent variables only affect the calculat-
ing of the probability for a certain state, but F—, . = isused in the same man-
ner as when all power plants are independent of each other.

Available Transmission Capability

In the same way as for the available generation capacity, it is possible to enu-
merate and determine the probability of every possible combination of availa-
ble and unavailable transmission lines. Theresult isasingle distribution func-
tion, F5. However, unlike the generation capacity it is not possible to define
any meaningful “total transmission capability” of each state—just adding up
available capacity of each interconnection does not tell us anything about the
behaviour of the system. | have not performed any detailed study whether or
not there is some way of arranging the states which is better than others; this
is a question which remains to be answered.

L oad

It issimple to define primary scenario parameter of the total load, Dy, inan
electricity market. Astheload is an continuous random variable it is however
not possible to include the geographical distribution of the load in the primary

2. Concerning wind power, | have described how to determine discrete approxima-
tions in my licentiate thesis [7], appendix C. The same description can also be
found in [11], p. 81ff.
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Figure9.1 Disturbance when using the scaling method. Here 1 000 samples have
been generated using the scaling method. The load in the two areas are
independent of each other; in area 1 it is N(20, 3)-distributed and in
area 2 the load is N(30, 4)-distributed. The sampled duration curves
are indicated by solid lines and the theoretical curves are dotted. The
disturbance is barely visible to the naked eye.

scenario parameter, unless a discrete approximation is used. A discrete
approximation of course means lost accuracy and therefore it is better and
even easier to introduce secondary scenario parameters, which show how
large the share of the total load islocated in each of the areas of the systemiis.

Given the probability distribution of the load in each area it is possible to
calculate the probability distribution of Dtot.3 When generating the scenario
parameters of the load, the first thing to do is to randomise a value of Dy
according to this distribution. Then preliminary load values, D,*, are ran-
domised in each area according to their given probability distributions. If
there are correlations between the load in different areas then this is consid-
ered when the preliminary loads are randomised.* However, generaly the
sum of the arealoads will not correspond to the randomised total load (unless
there has been an amost uncanny strike of luck). This is solved by simply
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scaling the preliminary loads so that they match the total |oad:

DtOt

D, = -
>0r
me N
It should be noted that this scaling method causes a slight disturbance of
fo(Xq, ..., Xn)- | have not made any general mathematical analysis of the pos-
sible size of this disturbance, but | have been content with establishing that it
is not large enough to have any practical importance; the errors caused by the
scaling method are rather small compared to the random errors of a Monte
Carlo simulation (cf. figure 9.1).

D,* VneN. (9.1)

9.2 POSSIBILITIESFOR VARIANCE
REDUCTION

Monte Carlo techniques are frequently used in scientific papers concerning
power systems and electricity markets, but comparatively little have been
written about the application of variance reduction techniques, which maybe
can be taken as an indication that most authors have been satisfied with using
simple sampling. Concerning calculation of reliability indices in power sys-
tems there are at least two thorough reviews of the possibilities and applica-
tions of variance reduction techniques [47, 59-60]. There are also some
papers where one or more variance reduction techniques are applied to relia-
bility calculations in power systems, for example [46, 56, 58, 61]. The most
common variance reduction techniques in these contexts seem to be comple-
mentary random numbers and control variates, but stratified sampling is used
in [56], and [61] uses an idea that resembles stratified sampling and impor-
tance sampling very much. Concerning calculation of expected operation
costs most authors seem to focus on the three variance reduction techniques
complementary random numbers, control variates and stratified sampling

3. Inthiscontext it isamajor advantage if it can be assumed that the load is normally
distributed and that the load in each area is independent of the load in the other
areas. In many cases this requirement can be fulfilled by using different probabil-
ity distributions of the load during different time periods. Assume for example
that the load during daytime is N(100, 15)-distributed in a certain area and
N(50, 10)-disturbed in another, and that these loads are independent of each other.
By night the loads are N(60, 10) and N(30, 5)-distributed instead. In this system
there is a clear correlation between the load of the two areas, because the load
decreases in both areas during the night, but within each time period (day and
night) the loads can still be considered independent.

4. There is an example of a method to generate correlated random numbers from a
general distribution in appendix C.
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[49, 55, 57, 63, 64]. However, nobody seems to have studied variance reduc-
tion techniques for electricity market simulations, i.e., when one and the same
simulation is used to estimate both reliability indices, as for example LOLP,
and production cost indices, as for example ETOC.

In this section | will describe how the different variance reduction tech-
niques described in chapter 8 could be used for simulation of short scenarios.
| pay most attention to stratified sampling, asthisisthe method which is most
complicated to apply. To gain maxima efficiency of stratified sampling it is
of extraordinary importance to design the strata with care; yet surprisingly
few studies have been made about strata design. In for example [49, 57, 64]
strata are chosen more or less based on engineer’s intuition. In [56] so-called
poststratification is used,® which results in a certain loss of efficiency as the
Neyman allocation can<not be applied. In [55] Huang describes a stratifica
tion strategy based on the “cum Jf(y)-rule’. The derivation of this rule is
based on the assumption of a heterogeneous popul ati on,% but my view is that
stratified sampling produces the largest gain when considering a duogeneous
population, where a number of diverging units have a particular importance
to the expectation value (loss of load scenarios are typical examples of
diverging units in electricity market simulations; the remaining scenarios are
conformist) and then another stratification strategy than the one used by
Huang is necessary.

Below follows a description of the principles of my stratification strategy,
which we may call the strata tree method. The first part of the description is
theoretical; | start by identifying which scenarios have common properties
(section 9.2.1) and then | show what a strata tree should look like in order to
place scenarios having similar properties in the same stratum (section 9.2.2).
Then a description of the practical implementation of stratified sampling fol-
lows (section 9.2.3). Finally, there is an analysis of the usage of the other var-
iance reduction techniques in simulation of electricity markets (sec-
tion 9.2.4).

9.2.1 ThePropertiesof the Scenario Population

Stratified sampling produces a variance reduction if it can be managed to
design homogeneous strata, i.e., when al units belonging to a certain stratum
have similar properties [127]. In other words, the stratification demands
knowledge about the properties of the population. Let us now study which
properties short scenarios can be expected to have and how to separate differ-
ent kinds of scenarios from each other in advance.

Assume that there is a power system with a given total available generation

5. See[127], section 5A.9.
6. Seefor example [127].
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Figure9.2 Loss of load scenarios in a loss-free two-area system without trans-
mission limitations.

capacity, Gy, divided in N areas, so that the available generation capacity
in each areais G,,.” Moreover, assume that there is a certain available trans-
mission capability, represented by the matrix I5n’ m- As the generation capac-
ities and transmission capabilities are assumed to be fixed, the set of possible
scenarios is equal to the set of possible load levels in the different areas. Let
us now consider in which scenarios there will be aloss of load.

We could define a subset Dy € RN, which includes all loss of load scenar-
ios. However, it is more convenient to project the N-dimensional space of
possible scenarios to a single dimension Dy-axis, where Dy is the total 1oad
in ascenario. All points on the hyperplane defined by

3D, = ¢, (9.2)

neN

where ¢ is an arbitrary constant, will be represented by a single point on the
Dyot-axis. Thus, the Dyg-axis can be seen as an axis orthogonal to the (N — 1)-

7. Normally | use the symbol G;; for available thermal generation capacity. To get
away from the trouble of repeatedly writing G;o + Wio; | will sometimes use
Giot to designate total generation capacity in the following discussion. It should
be clear from the context what is meant.

Possibilities for Variance Reduction 183



Chapter 9: Short Scenarios

|
|
[\
|\
Il
[l

} |_ »Dtot

Gtot — L| (Iatot MW
[
I
Il
A
|

a) The set of scenarios. The shaded b) Projection of the D;D,-plane on a

area corresponds to the loss of Dyot-axis.

load scenarios.

Figure9.3 Loss of load scenarios in a two-area system with transmission losses
but no transmission limitations. It may be noted that the losses in this
system have been chosen excessively large to make the figure more
clear.

dimensional hyperplanes defined by (9.2). The idea can be illustrated for a
two-area system, where the hyperplanes correspond to lines where
D, + D, = c; an axis perpendicular to these linesis a bisector between the D4-
and D,-axes, as shown in figure 9.2b.

In the most simple case we have loss-free transmission interconnections
with unlimited capacity. Loss of load (i.e., scenarios where LOLO = 1) will
then occur whenever the total load exceeds the total generation capacity. We
may therefore divide the D;y-axis in two partitions, leaving all loss of load
scenarios in one partition, while the remaining scenarios are found in the
other. The limit between these two partitions is Gy,;. Figure 9.2aillustrates
this situation for atwo-area system; the shaded area corresponds to the | oss of
load scenarios. In figure 9.2b it is shown how all scenariosin the shaded area
are projected on the same part of the Dyy-axis.

The conclusion above is essentially quite obvious. It gets more interesting
when transmission losses are added to the system. Now it is not sufficient that
Dot < Gyt to avoid loss of load, because the generation capacity must also
cover the lossesin the system. However, the losses depend on how generation

resources and the load are distributed between the areas. If D,,= G, in all
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a) The set of scenarios. The shaded b) Projection of the D;D,-plane on a
area corresponds to the loss of Dyot-axis.
load scenarios.

Figure9.4 Loss of load scenarios in a two-area system with transmission losses
aswell astransmission limitations.

areas no power will be transmitted on any line and the losses will be zero. The
larger the difference is between the geographical distribution of the genera-
tion capacity compared to the load, the larger the transmission losses will
become (cf. figure 9.3a, which shows the scenarios which will be subject to
loss of load in atwo-area system with transmission l0sses).

In order to distinguish scenarios with different properties we now need to
introduce the stratification parameter L as the largest possible losses in this
system. Such a parameter must exist, because the losses cannot become infi-
nite in a power system; however, in practise it might be difficult to calculate
L analytically—but let us put that problem aside for the moment.® Given L
there are three intervals of a Diy-axis where the scenarios have different
properties:

« None of the scenarioswhere Dy < Gyor — L issubject to loss of
load.

o If Dyt € (Gipt—L, Giot) then it is not possible to determine
whether or not there will be any loss of load without studying
the exact relation between G, and D,,.

8. The practical consequences when L cannot be calculated exactly are treated in
section 9.2.3.
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o If Dyt > Gyor then loss of load isinevitable,

Finally we add transmission limitations to the system. With that there is a
possibility that loss of load occurs even when Dy < Gy — L, because there
may be situations where a part of the available generation capacity cannot be
utilised due to transmission congestion. These situations mostly occur when
the load has a significantly different geographical spread compared to the
available generation capacity (cf. the example in figure 9.4).

We now introduce another stratification parameter, Uyyg, Which is the
maximal unused generation capacity. Aswith L it is generally not possible to
determine the exact value of UWG, but we definitely know that there is a
maximal unused generation capacity. If it was known, we would find four
interesting intervals on the D;y-axis:

¢ If Dyt £ Giot— Uy then loss of load isimpossible.

* When Dyt € (Gyot —Uwi: Gy —L) loss of load may occur
due to transmission congestion.

« When Dyt € (Gior—L, Giot) both transmission congestion and
losses may cause loss of load.

o If Dyt > Gyor then loss of load isinevitable,

The same reasoning which above was applied to LOLO can aso be applied
to study how the size and distribution of the load will affect the operation
cost, TOC, in asystem where thereis a significant possibility that the genera-
tion capacity having negligible operation costs, W,;, is sufficient to supply
the total load, D,q. The shaded areas in figures 9.2-9.4 will in this case corre-
spond to scenarios where TOC > 0, whereas the other scenarios are such that
TOC =0. The dratification parameters necessary to separate the different
partitions of the Djy-axis are the maximal losses, L (the same parameter as
when considering LOLO) and the maximal unused generation capacity hav-
ing negligible operation costs, Uy

The analysis above can be used to compile seven main types of scenarios,
the properties of which concerning LOLO and TOC are shown in table 9.1.
Depending on how the available generation capacity relates to the stratifica-
tion parameters, there may also appear some special types of scenarios. Most
of these special types are so rare that they do not need to be given special
treatment; if they are neglected due to cardinal error then it will only have an
insignificant impact on the final result. The only cases | have encountered
where scenarios of special types have had great importance, are systems
where there is a significant risk® that there is no thermal generation capacity
available, while there is a certain generation capacity with negligible costs.
Such systems are not common, but they may appear when studying for exam-
ple small, isolated systems supplied by non-dispatchable units and one or a

9. Which means at least a couple of per cent. Exactly how large the risk must be
depends on which accuracy is desired.
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Table 9.1 The main types of scenarios.

Type TOC LOLO Part of the Dyy-axis

[ 0 0 Diot < Wiot — Uw

Il >0 0 Wiot —Uw <Diyor < Wy —L

" > 0** 0 Wit —L < Dior < Wiot

v >0 0 Wior < Dior < Whot + Gyor — Uwi

Vv >0 Oor1* Wiot + Giot —Uwe < Dior € Wiot + Gy — L
Vi >0 Oor 1** Wiot + Gior =L < Dot < Wt + Gy
Vi >0 1 Wiot + Giot < Drot

* Depending on the impact of transmission limitations.
** Depending on the impact of transmission losses.

Table 9.2 Some special types of scenarios.

Type Properties Part of the Dyy-axis Condition
TOC=0 — — — _ —

Vil LOLO =0 or 1* Wiot —Uw < Dot < Wior —L Gtot =0
TOC=0 — - _ _

X LOLO = 0or 1** Wiot =L < Diot < Wrot Giot=0

* Depending on the impact of transmission limitations.
** Depending on the impact of transmission losses.

few diesel generator sets. When simulating those systems, it is recommended
to consider scenarios of type VIII and I X according to table 9.2.

9.2.2 SrataTrees

By using a strata tree we may divide the set of possible scenariosinto subpop-
ulations, where al scenarios in a subpopulation are of a certain type (cf.
table 9.1). The basic ideais to compare the total available resources with the
total demand, which can be done in the strata tree by placing the scenario
parameters describing the resources above the scenario parameters describing
the demand. In this section | will describe how to design strata trees accord-
ing to this basic idea and how the strata tree then is used to define strata.
Finaly, | will give an example of a poor method to design strata trees, so that
there is no hesitation on how not to do.

Basic Srata Trees

Let us for the sake of simplicity start by studying stratified sampling in a
multi-area system having just two scenario parameters. available generation
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capacity and load. The proper way to stratify such asystem isto have a strata
tree with two levels below the root. Inthelevel just beneath the root we create
a separate node for each state of the available generation capacity. As each
node thus specifies a well-defined generation capacity, we have achieved the
situation analysed in section 9.2.1, i.e., the properties of the scenarios only
depend on the load. In the lowest level we can now add nodes which specify
intervals of the total load. Theseintervals are chosen to correspond to the par-
titions from table 9.1.1% Each branch of the strata tree will only contain sce-
narios of acertain type, as shown in figure 9.5.

All types of scenarios do not have to appear in each part of the stratatree. If
for example W, = 0 there will be no scenarios of type I-111. Besides, there
may also be other types of scenarios than the main types I-VII. When build-
ing the strata tree one node may be added for each special type (cf.
figure 9.6b) or the special cases may be neglected and sorted under a similar
main type (cf. figure 9.6¢). As concluded in the end of the previous section,
the specia types shown in table 9.2 might be important for the final result,
but in many casesiit is possible to not separate the specia cases, which sim-
plifies the life of lazy programmers. 't

When building the strata tree it may for numerical reasons be necessary to
neglect nodes having a very small node weight.12 For example, if there is a
load which is normally distributed and the mean is 1 000 MW and the stand-
ard deviation is 100 MW, while the total available generation capacity
amounts to 2 000 MW, then the probability that the load exceeds the availa-
ble generation capacity isin practice zero; hence, there is no point in includ-
ing a branch of type VII in this case. The scenarios which would have
belonged to the cut off branch are transferred to the preceding Diy-node
instead.

Additional Scenario Parameters

Electricity market models having more scenario parameters than available
generation capacity and load can be managed by adding more levels to the
stratatree. If it is considered that not just power plants but also transmission
lines are subject to failures then the scenario parameter available transmission
capability must be added to the strata. Since the derivation of the different

10. To choose these intervals correctly, we need to know the stratification parameters
Uw, Uwg and L. How to calculate these is a question which is treated more
closely in section 9.2.3; for the moment, we concentrate on how an appropriate
strata tree would look like.

11. Which of course refers to myself.

12. | cannot specify an exact limit on how large the node weight must be in order to
include anode in the stratatree, because it depends on how large errors that can be
accepted.
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** Depending on the impact

Wtot .
= of transmission losses

Gtot

Dyt <95 95 < Dygy < 100 | {100 < Dy < 105| [105 < Dy < 110[ | 110 < Dy
Typel Typelll TypelV Type VI TypeVII
TOC=0 TOC > 0** TOC >0 TOC >0 TOC>0
LOLO=0 LOLO=0 LOLO=0 LOLO =0, 1** LOLO=1
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C) Wtot = 100, Gtot = 10, [ = 15.
Figure 9.6 Example of managing special types of scenarios. The maximal losses in fig-

ure a are less than the available thermal generation capacity and the load
nodes follow the standard pattern. However, as there are no transmission
limitations partition | and V are omitted. In figures b and c the losses are
larger than the thermal generation capacity, which causes partition |11 and
VI to partly overlap each other. In figure b this has been solved by ignoring
partition 1V. Moreover, the overlapping part is put in partition 111, which
means that thereis a certain risk of load shedding in partition 111 (which nor-
mally should have sufficient generation capacity)—by that means a small risk
of cardinal error isintroduced. In figure c the overlapping part is forming its
own partition instead, and its propertiesis a combination of partition 11 and
VI.
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Root

Diot<10 | [10<Dy<30| | 30<Dy || Dir<15 ||15<Dy<30| | 30 <Dy

TypelV TypeV Type VII TypelV TypeV TypeVII

Figure9.7 Srata treeincluding failuresin transmission lines. The figure shows the
strata tree of a simple two-area system. In the first area there is a power
plant with the capacity 10 MW and in the other there is a 20 MW power
plant in the other area. Both power plants are assumed to be completely reli-
able. The areas are interconnected by a loss-free transmission line, which
can transmit 5 MW when available. In this case the largest unused genera-
tion capacity, Uy, equals 15 MW. If the transmission line is unavailable
Uwg increasesto 20 MW, which result in somewhat different limits between
the partitions in the left part of the tree compared to the right part. It should
however be noted that the extra level in the strata tree does not introduce any
new types of branches than those defined in i figure 9.5.

partitions concerning the level of the total load in section 9.2.1 was based on
studying the power system for a specified generation capacity and a specified
transmission capability we need to arrange the strata tree so that each branch
corresponds to a fixed value for each of those two scenario parameters.' If
we want to, we may simply merge these parameters to a single scenario
parameter (available resources) and locate each state of the resource parame-
ter in the top level below the root in the strata tree. The alternative | most fre-
guently use—mainly due to its perspicuousness—is to have available trans-
mission capability and available generation capacity on separate levelsin the
stratatree. The principleisillustrated in figure 9.7.

Corrédations

Another situation when it might be desirable to expand the strata tree is to

13. Hence, a strata tree can become huge—see page 193 for additional comments
around this problem.
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Figure 9.8 Srata tree with “ point of timelevel” . The figure shows a strata tree for a
small systemwith photovoltaics and a diesel generator set. The photovoltaics
are assumed to generate 10 kW constantly during the bright hours of the day
and nothing at all during the night. The diesel generator set can generate
50 kW when it is available. The transmission losses are negligible and there
are no transmission limitations.

Notice that the extra level in the strata tree does not introduce any new types
of branches than those defined in i figure 9.5.

manage some correlations between scenario parameters. According to the
definition of strata tree (see section 8.2.5) the scenario parameters along a
branch must be independent of each other. (Notice that this does not mean
that all scenario parameters must be independent; it is for example no prob-
lems to have correlations between the load in different areas of the system,
because it is only the total load which is represented in the strata tree.) In
most cases it is also reasonable to assume that this requirement is fulfilled,
but there are some obvious exceptions. The most clear example could be elec-
tricity generation in photovoltaic modules. During the day, when the load is
comparatively high, the photovoltaic generation is maximal, and during the
night, when the load decreases to lower levels, the photovoltaic modules gen-
erates nothing at all; apparently there is a certain positive correl ation between
the photovoltaic generation and the load. Similar correlations, both positive
and negative ones, can aso be found between other non-dispatchable power
plants and the load.

Correlations can in many cases by managed by the observation that if we
limit ourselves to certain time periods—part of the day, season or whatever it
may be—then it is once again reasonable to consider the scenario parameters
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as independent of each other. It is for example hard to find any correlation
between the photovoltaic generation during daytime and the load; a cloud
temporarily blocking the sunshine and decreasing the power generation
should not influence the load in any particular direction. Thus, the correlation
may be managed by locating different points of time in different parts of the
strata tree on the top level just below the root. This idea is illustrated
infigure 9.8. By separating different points of time it is also possible to indi-
rectly manage correlations between the load in different areas. !4

From Srata Treeto Srata

The strata tree is as mentioned earlier a tool for sorting the scenario popula-
tion. Starting from this sorting it is then possible to finally define strata. The
most simple way of defining strata from a strata treeis to let each branch rep-
resent astrata.’® | have chosen to call this strategy “ complete stratification” .
As each branch only includes scenarios of one type, we have achieved the
goal of keeping each stratum as homogeneous as possible. The disadvantage
is however that if the number of states for the available generation capacity is
large then the number of strata might become annoyingly large. When the
simulation is started, alarge number of stratais a problem, because the simu-
lation requires that a few samples are taken from each stratum. In other
words, if the number of strata is large then the least possible number of sce-
nario swill be large. To reduce the number of scenarios, it is therefore recom-
mended to minimise the number of strata.

An dternative to the complete stratification isto let each stratum comprise
several branches of the strata tree; all branches of type | have similar proper-
ties concerning TOC and LOLO, and may therefore be put in a common stra-
tum, etc. With that, the number of stratais limited to the number of scenario
types (seetable 9.1 and 9.2). This strategy | call a*“ reduced stratification”.

Large Strata Trees

In arealy large power system with hundred of power plants, the number of
possible states of the available generation capacity might become very large;
consequently, the strata tree is even bigger. Things are even worse if there in
addition is a large number of possible states for the transmission capability
between the areas; when we identify the different types of scenarios each pos-
sible combination of available generation capacity and transmission capabil-
ity must be treated separately.

The question must be raised whether the gain of using stratified sampling is

14. Seefootnote 3.
15. Thisis how the technique was originally presented [10].
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worthwhile the effort to calculate F\Tv . & and building the strata tree. Thisis
partly a question about the algorithm which is used—the difficulty is the
problem size and not that the computations are particularly complicated in
their own. | have not performed any closer studies of which algorithms might
be useful and how many states it is reasonable to manage. However, quite a
good guesswould be that there is a pain threshold, where the number of states
of the generation capacity simply istoo large.1®

This does not mean that stratified sampling should be impossible to use for
really large systems. Probably there will be a limited number of large power
plants, and a larger number of smaller power plants. By just including the
larger power plants in the common distribution function F\Tv+ ~, wecan limit
the size of the strata tree. The available generation capacity in the smaller
power plantsis randomised independently of each other (or maybe using dag-
ger sampling) and is thus not part of the stratification. When comparing the
total load and the total available capacity in the larger units, it has to be con-
sidered that there is also an undetermined generation capacity in the smaller
power plants. The consequences of this unknown parameter corresponds to
the consequences of not knowing in advance the size of the lossesin a partic-
ular scenario, as long as the total generation capacity in the power plants
regarded as “smaller” is small compared to the total generation capacity of
the other power plants.

Similar reasoning should also be applicable when there is alarge number of
states for the available transmission capability. The problems of large strata
trees does however require further studies, in order to find out how to best
manage them best.

Unsuitable Strata Trees

Above | have described how a strata tree should be designed and how the tree
should be used to define strata. | have at some occasions'’ used another
method to build strata trees; the difference is that the nodes specifying the
available generation capacity comprises an interval rather than just a single
state. This is unfortunately not a very good solution. Below | will briefly
explain why, so that there is no confusion about how not to do when defining
Strata.

The idea behind the method—which we may refer to as “multiple state
nodes’ was the same as for the reduced stratification, i.e., to limit the number
of strata. The problem is that when comparing an interval of available
resources to the total load, the partitions where the properties of the scenarios
cannot be predicted, but where TOC and LOLO have to be calculated, are

16. Cf. [61], figure 2.
17. For example[7, 10].
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20 < Wiy <30

40 < Gyop < 50
Dyt < 15 15 <Dy <30 | | 30< Dy <55 | | 55< Dy < 80 80 < Dyt
TOC=0 TOC > O*** TOC> 0 TOC> 0 TOC >0
LOLO=0 LOLO=0 LOLO=0 LOLO=0,1***  LOLO=1

*** Depending on available generation capacity as well as transmission losses

Figure9.9 Srata tree with multiple state nodes. In this example it is assumed
that L =5.

comparatively large, as illustrated in figure9.9. Hence, Var[mroc] and
Var[m_ o o] Will increase and consequently a larger number of samples will
be required to achieve a certain level of accuracy.

It can aso be noted that the risk of cardinal error increases with multiple
state nodes—especially if there are states with very different probabilitiesin
the same node.® In order to avoid cardinal error, one could try to develop a
lot of special rules which prohibit certain states to be located in the same
node, but it is difficult to simultaneously keep the rules simple and general
enough to be possible to implement.

Finaly, it can be concluded that athough the number of strata decreases
compared to the complete stratification, a stratification using multiple state
nodes will result in alot more strata than usage of the reduced stratification.

9.2.3 Sratified Samplingin Practice

In the previous section | have identified scenarios with different properties
and shown how the scenarios can be sorted in a strata tree. Using this knowl-
edge, we may formulate a general method to apply stratified sampling in
practice.

18. For example, assume that there is a multiple state node where we have 99% prob-
ability that the available generation capacity is 120 MW and 1% probability that
only 100 MW is available. In the interval 100 < Dyt < 120 it is then very likely
that the generation capacity is sufficient (if we disregard the losses), but there is
also a small possihility that the capacity is insufficient. This small risk is easily
overlooked if only afew samples are collected from the interval.
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Presimulation

To define strata we need to know the stratification parameters Uy, Uyyg and
L. Unfortunately, it isin practice impossible to calculate these analytically in
systems with more than two areas. Without an analytical method of calcula-
tion we may—of course—use Monte Carlo techniques; we simply perform a
presimulation, the primary objective of which is to estimate the stratification
parameters necessary to build the strata tree. However, just studying the strat-
ification parameters would be uncalled-for; when analysing scenarios it takes
only a negligible extra work to also sample the usual result variables (TOC
and LOLO) too. The results of all scenarios included in the presimulation
should therefore be stored, together with the values of the scenario parame-
tersin each studied scenario. (The latter are needed in order to sort the pres-
imulation scenariosin the right stratum after the stratification.)

In the presimulation we cannot use stratified sampling, but the other vari-
ance reduction techniques may be applied as usual. It is desirable to use as
few scenarios as possible in the presimulation, as stratified sampling accounts
for alarge part of the variance reduction. The question is therefore how many
scenarios are needed to get estimates of the scenario parameters, which are so
accurate that the resulting stratification is efficient.

The maximal losses actually depend on the available generation capacity in
each area. However, in practice it does not matter if the maximal losses are
somewhat overestimated, and it is therefore possible to use the same L inthe
entire stratatree. By those means, it is sufficient to create a number of scenar-
ios, consider the total losses in each scenario, L, and then estimate L asthe
highest recorded value plus a safety margin of for example 50%, i.e.,

L~ Lsmax(L)), i =1, ..., Nyresmulation (9.3)

As losses gppear in all scenarios it is not necessary that Npresimulation 1S Very
large to get a sufficiently good estimate of L. In the tests | describe in
section 9.3, | used 100 scenarios in the presimulation and it worked splen-
didly, regardiess of whether the power system was divided in two, six or
seven aress.

To fully utilise the benefits of stratified sampling we also need to estimate
Uy and Uyg. Unlike L these stratification parameters are a lot more diffi-
cult to obtain. They are in the highest degree depending on both available
generation capacity, W;,; and Gy, as well as available transmission capa-
bility, P, which forces us to calculate separate values of these stratification
parameters for each combination of available generation and transmission

19. | have not systematically studied how large the safety margin should be—the
number 50% is just a qualified guess, which has turned out to work well in prac-
tice.
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resources. Besides, transmission congestion is a comparatively rare event,
which not at all appear in every scenario. Therefore, alot more scenarios are
required the presimulation before adequate estimates of Uy, and Uyyg are
obtained. Consequently, there is arisk that many scenarios of the presimula-
tion are selected from the parts of the scenario population which later turns
out to be of rather small significance. This is a waste of work. | noted this
problem of estimating Uy, and Uyyg first when I was writing this chapter of
the dissertation and | have not had time to test software to overcome the pre-
dicament. | will therefore have to restrict myself to a short reasoning around
the alternatives available:
» Forbearance. The first aternative is to swallow the annoyance
and accept that the variance reduction will not be aslargein sys-
tem with transmission limitations.?® The possibility to use strat-
ified sampling in the main simulation, as well as the other
variance reduction techniques will eventually produce a certain
gain of efficiency.
* Preliminary stratification. The consequences of not knowing
Uy and Uyyg are that the limits between scenarios of type I
and 11l as well as between type IV and V will not be known.
What we can do is to introduce a number of preliminary limits.
When a few batches of the main ssimulation have been run, then
we may see which of these preliminary limits best corresponds
to the real. The remaining preliminary limits are removed (i.e.,
the branches of the strata tree separated by these limits are
merged) and the main simulation continues. Using this method
we get a short presimulation without stratified sampling, a semi-
long preliminary main simulation with slightly hampered effi-
ciency, as we do not have enough information to define optimal
strata. Finally we have a continued main simulation, where the
stratification can produce maximal benefits.
» Other variance reduction techniques. The efficiency of the
presimulation might be enhanced by replacing stratified sam-
pling by some other variance reduction technique. To estimate
Uy and Uyg it isrequired that transmission congestion occurs
in the selected scenarios. These situations are most common
when the load is geographically lopsided compared to the gener-
ation capacity (cf. figure 9.4). It could therefore be possible to
use importance sampling to increase the probability of having
such scenarios in the presimulation. This can be done without
deteriorating the estimate of L, because the transmission losses

20. “Whether 'tis nobler in the mind to suffer the slings and arrows of outrageous for-
tune”’ as it has been beautifully written—although the subject was alittle bit more
dramatic than the fine-tuning of an electricity market simulation...
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are also larger when the transmission lines are heavily loaded;
hence, better estimations of L too are obtained when extreme
geographical distributions are overrepresented among the sam-
ples.

Sratification

After the presimulation we have access to estimates of the stratification
parameters Uy, Uyyg and L; thus, we can build a strata tree according to
the principles described in section 9.2.2. The strata can be defined from the
strata tree and the scenarios of the presimulation are sorted accordingly.

Pilot Sudy

In the pilot study it is possible to use stratified sampling, but thereis still not
enough information to determine the optimal distribution of samples accord-
ing to the Neyman allocation; the number of scenarios per stratum must be
chosen in some other way. Asthe Neyman allocation is the best way to divide
the scenarios between the strata, we want to use as few scenarios as possible
in the pilot study. It is however necessary that the number of scenarios is
large enough to guarantee that we find all strata where the variance is larger
than zeros, because otherwise the simulation will risk to suffer from the cardi-
nal error (see section 8.2.5).

The most straightforward method is to quite simply allocate a predeter-
mined number of scenarios to each stratum. Most simple isto use exactly the
same number of scenarios in each stratum (so-called proportional alocation),
but since we have a certain knowledge about which properties the scenarios
have in different kinds of strata, it would be a waste not to use this knowl-
edge. For example, we know that in stratum of type | both TOC and LOLO
are always equal to zero; hence, ETOC and LOLP can be calculated theoreti-
cally for a stratum of typel (or—if someone absolutely wants to sam-
ple—one single sampleis sufficient). In other types of strata there are diverg-
ing units which have to be identified in the pilot study in order to avoid
cardinal error in the main simulation, and then alarger number of scenariosis
required. Exactly how many scenarios it takes varies between different sys-
tems, because it depends on the proportion of diverging units (cf. table 8.2).
This proportion is of course not known before the system has been simulated,
but based upon the characteristics of the stratum type it is yet possible to get
an approximate understanding of an appropriate sample allocation in the pilot
study. | suggest some simple rules of thumb in table 9.3. Generally speaking,
it can be said that it is possible to be alittle bit more generous concerning the
number of scenarios per stratum in the reduced stratification, because there
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Table 9.3 Rules of thumb concerning sample allocation in the pilot study.

Approximate number of scenarios

Type Complete Reduced Comments
stratification dtratification

Both TOC and LOLO area homogeneous in
the stratum.

Hereit is necessary to collect as many scenar-
ios as is required to find at least one case
where TOC > 0 due to transmission conges-
tion.

| None A dozen

I A few hundreds | A few thousands

Hereit is necessary to collect as many scenar-
" Somedozens | A few hundreds |ios as is required to find at least one case
where TOC > 0 due to transmission |osses.

Hereit is only TOC which varies, but TOC is
on the other hand very strongly correlated to
the total load. Asit is very unlikely that two
v Two Some dozens | scenarios have exactly the same total load
(actually its impossible if complementary
random numbers are used) then two scenarios
is sufficient to avoid cardinal error.

Hereit is necessary to collect as many scenar-
ios as is required to find at least one case
where LOLO = 1 due to transmission conges-
tion.

\Y A few hundred | Some thousands

Hereit is necessary to collect as many scenar-
A A few dozens | Somehundreds |ios as is required to find at least one case
where LOLO = 1 due to transmission losses.

If there are no transmission limitations in the
system then both TOC and LOLO are obvi-
ous, because all available generation capacity
will be utilised, but still there will be loss of
None or afew load. If there are transmission limitations
VI A dozen I . .
dozens then it is possible that some generation capac-
ity will remain unused, causing TOC to vary
dlightly. However, if these variations cannot
be detected using more than a few dozens
scenarios then they are probably negligible.

are not that many strata.

Another method of choosing the number of scenariosin the pilot study isto
utilise the fact that we know in which strata the result variables are homoge-
neous and heterogeneous respectively, which makes it possible to use a sort
of dynamic sample alocation. If we know for a certain stratum that TOC is
homogeneous and LOLO is heterogeneous then we should continue to ran-
domise scenarios for this stratum until at least one diverging sample of
LOLO has been encountered. Similar procedures can be applied to the other
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strata. If desirable, it is also possible to have a lower limit to the number of
scenarios created in each stratum.

The dynamic sample allocation is not very practical if the number of strata
is large and the proportion of diverging units is small in several strata,
because each of these strata will then require thousands of scenarios before a
diverging unit has been found. Dynamic sample alocation in the pilot study
is therefore not recommended if the complete stratification is used. In the
reduced stratification, where there are at most a dozen strata or so, the method
isvery efficient, asfar as| have perceived in practica tests.

Main Simulation

The main simulation is divided in batches, where each batch includes a fixed
number of scenarios.?! Each batch starts by checking the stopping rule. If the
conditions are fulfilled, the simulation is terminated and the results are pre-
sented. Otherwise, more scenarios have to be studied. As there is an estimate
of the variance for each stratum and for each of the result variables, it is just
to calculate the optimal distribution of the samples according to the Neyman
allocation. However, adilemmaisthat the optimal allocation normally differs
between different result variables. It can then be questioned whether or not it
would be more efficient to ssmulate each result variable one by one, in order
to use the optimal scenario distribution with respect to each result variable.
The answer is however that this is not the case. When analysing a scenario
thereis practically no time to be saved by calculating just one result variable
and ignore the others. The only sensible option is then to let every scenario
generate samples of al result variables. By collecting these samples, they
may of course as well be utilised; it is not possible to loose efficiency, but
thereis on the other hand a possibility of obtaining some gains (cf. the exam-
plein figure 9.10).

There are severa possible alternatives to find compromise allocations when
there are more than one result variables. | recommend the following simple
algorithm:

+ Calculate the Neyman allocation with respect to each result vari-
able.

* Calculate the mean of these alocations.

» Compare the calculated mean alocation to the number of sce-
narios which already have been studied in each stratum.

Inthe last step it may turn out to be impossible to allocate the desired number

21. | have not studied how many scenarios there should be in each batch—my experi-
ence is that it does not make any significant difference if each batch comprises
100 scenarios or 1 000 scenarios.
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Gtot = 100
0.9938 0.0049 0.0013
Diot < 95 95 < Dy < 100 100 < Dyt
0< TOC < 100** 95< TOC <100 TOC =100
LOLO=0 LOLO=0or 1** LOLO=1

** Depending on the impact of transmission losses

Figure9.10  The benefit of simulating several result variables simultaneously. The exam-
ple shows a system with only one power plant, which has an installed capac-
ity of 100 MW, never fails and can generate electricity to a cost of 1 s/MWh.
The total load is N(70, 10)-distributed and the maximal losses, L, are
5 MW. There are no transmission limitations in the system. The figure above
shows the strata tree of thislittle system. Each branch correspondsto a stra-
tum, and the stratum weights are equal to the node weights of the lower level
inthetree.

Concerning the ETOC estimate, stratum 3 is completely uninteresting, as
the power plant is always operated at its installed capacity in these scenar-
ios, causing TOC to be completely homogeneous in this stratum. In the other
two strata TOC may however vary, but as stratum 1 has both higher stratum
weight and variance, the Neyman allocation with respect to TOC will allo-
cate an overwhelming majority of the samples to stratum 1. Concerning the
LOLO estimate, both stratum 1 and 3 are uninteresting, because LOLO is
homogeneous in both strata. The Neyman allocation with respect to LOLO
will therefore direct all samples to stratum 2. A compromise between the two
allocations would be to distribute the scenarios rather evenly between stra-
tum1and 2.

Assume that it takes 100 scenariosin stratum 1 and 10 in stratum 2 in order
to obtain a sufficiently good estimate of ETOC, while it takes 100 scenarios
in stratum 2 in order to correctly estimate LOLP. If both system indices are
estimated in separate simulations then in total 210 scenarios would be
required. If they are estimated concurrently it will be sufficient with 200 sce-
narios. The efficiency gain from treating the result variables simultaneously
is due to the fact that even though the scenarios which the compromise allo-
cation directs to stratum 2 mainly are necessary for the LOLP estimate, they
will also have a certain value for the ETOC estimate.

of scenarios to each stratum. The strata that have already been alocated too
many scenarios should of course not be given any more. Concerning the
remazj Qi ng strata, we should try to get as close as possible to the mean alloca-
tion.

It is possible to use a weighted mean when calculating the compromise
alocation, in order to give some result variables a larger impact on the sam-
ple alocation than others. The weights do actually not even have to be con-
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stant during the course of the simulation; it is for example possible to reduce
the weight to zero for the result variables where we have aready estimated
the expectation value with desired accuracy (i.e., which fulfils the stopping
rule), so that this result variable no longer will influence the sample alloca
tion.

| have not tried to make any detailed studies of how the choice of compro-
mise allocation in the main simulation affects the accuracy of the final resuilt.
In those cases where | have tried simulating the same system using several
aternative methods, | have barely been able to notice any differences. The
Neyman allocation is fortunately corresponding to a rather flat optimum,
which meansthat small deviations from the optimal distribution do not neces-
sarily have any larger importance [127].

After each batch of new scenarios the estimates of ETOC and LOLP are
updated as well as the variance within each stratum. Then the above proce-
dure is repeated for the next batch.

9.2.4 Other Variance Reduction Techniques

Stratified sampling is not the only variance reduction technique that can be
applied to simulation of electricity markets. Fortunately, the other techniques
are somewhat more straightforward to apply. In this section | will summarise
how the other variance reduction techniques may be used. | will also present
my opinion about which techniques seem most appropriate to utilise. The
choice of variance reduction technique is both about the efficiency of the
method and how well it can be combined with other techniques. In many
cases it is possible to combine severa techniques, because they achieve an
efficiency gain by using different kinds of information known in advance, but
there are some exceptions, which | will describe in more details bel ow.

Complementary Random Numbers
Applying complementary random numbers to simulation of electricity mar-

22. For example, assume that the desired alocation is 50, 50 and 100 scenarios per
stratum, and that 60, 38 and 52 scenarios respectively have been studied in each
stratum aready. In this case stratum 1 has obtained 10 “extra’ scenarios, which
inevitably means that in total 10 scenarios must be missed in strata2 and 3; in
total we would like to alocate the second stratum 12 scenarios and the third
should be given 48, but there are only 50 scenarios to be distributed (the total
number of scenarios should be 200 and we have already studied 150). As a sug-
gestion, we can distribute the deficit so that the relative deficit is more or less the
same in both strata, i.e., alocate 9 new scenarios to stratum 2 (in total 47 scenar-
ios, i.e., adeficit of 6%) and 41 new scenarios to stratum 3 (in total 93 scenarios,
i.e. adeficit of 7%).
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ketsis not very difficult, because the method only affects the random number
generation and does not require any other measures. A special consideration
is however that it usually takes more than one random number to generate a
scenario, because there are several scenario parameters. When applying com-
plementary random numbers one set of original scenario parameters and one
set of the corresponding complementary random numbers are obtained. All of
these values can then be combined into 2° complementary scenarios, where s
equals the number of scenario parameters. An example of this is given in
table 9.4. In order to at least somewhat restrict the number of complementary
scenarios, it is appropriate to apply complementary random numbers only to
the primary scenario parameters.

Table 9.4 Complementary scenarios for three scenario parameters.
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The prerequisite for complementary random numbers to be efficient is as
earlier mentioned that there is a hegative correlation between an observation
based on a particular random number and an observation originating from the
complementary random number. If there is a correlation (positive or nega-
tive) between a certain scenario parameter and a certain result variable, it is
likely that there will be a negative correlation between the original scenario
and the complementary scenarios.

It is obvious that there should be a clear correlation between the operation
cost and the load; low loads result in low operation costs and high loads will
yield high operation costs. Applying complementary random numbers to the
load should therefore be efficient. There is aso a certain correlation between
the available generation and transmission resources and the operation cost;
the more resources that are available the more likely it is that they can be dis-
patched in an efficient manner, thus the operation cost should be reduced.

Concerning the risk of power deficit it is also apparent that thereis a corre-
lation between load and power deficit, because power deficit will primary
occur during peak load periods. Thereis of course also a correlation between
power deficit and failures in generation or transmission resources. But since
LOLO isabinary variable with avery asymmetrical distribution—in the vast
majority of the scenarios there will not be any loss of |oad—we cannot expect
that complementary random numbers will provide much benefits (cf. the dis-
cussion of the benefits of complementary random numbersin section 8.2.1.).

There are no problems with combining complementary random numbers
and stratified sampling, but the choice of stratification strategy has a certain
impact on the use of complementary random numbers. In a complete stratifi-
cation there is only one scenario parameter which can vary within each stra-
tum, namely the load. In a simulation using the complete stratification there
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will thus only be one complementary scenario. If the reduced stratification is
used instead then there will in practice be two scenario parameters: load and
“strata tree branch” (each branch represents a certain generation capacity
and—where appropriate—transmission capability, point of time, or whatever
scenario parametersincluded in the strata tree). Let us for the sake of simplic-
ity assume that each branch corresponds to a unique state of the available
generation capacity G;o;. The possible levels of the load depend on the value
of Giot, Which therefore must be randomised first. Given G, it is now pos-
sible to determine the interval to which Dy should belong. Now it is possible
to randomise a first value of the total load, D'tot, and calculate its comple-
mentary random number, D{O}*. Then we study the complementary random
number of the available generation capacity, G;gf, which in many cases will
take us to another branch of the stratatree. If that isthe case then we will have
another possible interval of Dyy; thus, Dy, and D ¥ cannot be used. We
must therefore randomise a second value of the total load and calculate its
complementary random number. In total, we get four complementary scenar-
ios, but we have used three original random numbers, as shown in table 9.5. If
stratified sampling had not been used then two original random numbers
would have been sufficient, because G;,; and Dy,; would then have been ran-
domised independent from each other.

Table 9.5 Complementary scenarios with and without stratified sampling.

N;zrsﬁi:;d Reduced stratification
Gtot: Diot Giot Drot

Giot Dy} Gror: Diof

Gto’i > DtOt GIO’S( > Dltlot

Gyt - Dyt Gugt - Dyot

Dagger Sampling

This variance reduction technique is appropriate to guarantee that events
which have low probability will appear to a sufficient extent in the selected
samples. Examples of such events with low probabilities could be failuresin
power plants or transmission lines. | have however not considered dagger
sampling in simulation of electricity markets, because there are other vari-
ance reduction techniques which are better suited, but not easily combined
with dagger sampling. If we look at the literature in thisfield, it is hard to find
any examples of dagger sasmpling applied to power system analysis, which to
acertain degree may be taken as a confirmation of my opinion.
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a) Scenarios randomised by dagger sampling. In each of the two power
plants one random number is used to generate three samples of the
available generation capacity. The first random number, U, gener-
ates three values of the available capacity in power plant 1, G;, and
U, generates three values of G,. All in all, the two random numbers
yield three scenarios, where G; = 50 and G, = 50 in the first sce-
nario, G, = 50 and G, = 0 in the second scenario, and finally
G, = 50 and G, = 50 inthethird scenario.

T T T : »

G =0 G =50 G = G, =50
=0 G =0 G, = 50 G, = 50

b) Scenarios randomised by complementary random numbers. Here, one
random number generates a scenario where G; = 50 and G, = 50.
By studying the complementary random number U*, another scenario
is obtained inwhich G, = 50 and G, = 0.

Figure9.11  Randomizing available generation capacity. In this example there are
two power plants which both have an installed capacity of 50 MW and
are available 70% of the time. Dagger sampling is applied in panel a,
and the state is randomised separately for each power plant. In panel b
complementary random numbers are used instead; the state of both
power plantsis now randomised simultaneously.
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Complementary random numbers do not work well for asymmetrical distri-
butions (which could speak in favour of dagger sampling), but if a common
probability distribution of the available generation capacity is used, then it is
far less asymmetrical than the distribution of the available generation capac-
ity in a single power plant. Thus, the variance reduction of complementary
random numbers is improved. The difference between randomizing the state
of each power plant separately and randomizing the total generation capacity
isshownin figure 9.11.

A disadvantage of dagger sampling is that it is difficult to combine with
stratified sampling. If the complete stratification is used then each stratum
corresponds to a unique state of the generation capacity and then there is no
need to apply neither dagger sampling nor complementary random numbers.
In the reduced stratification there are more than one state of the generation
capacity in each stratum, but it is not guaranteed that all possible states are
alowed in a certain stratum, because some branches of the strata tree might
have been excluded due to overlapping or low probability.23 It might be pos-
sible to maodify the dagger sampling method in order to exclude those states
that are not allowed in a stratum, but it seems much simpler to determine a
probability distribution of the total generation capacity for each stratum and
then apply complementary random numbers.

Another contradiction between stratified sampling and dagger sampling is
that when applying the Neyman allocation for stratified sampling it will most
likely force us to truncate the dagger sampling cycles. | cannot straight off
determine how this will affect the efficiency of dagger sampling, but it is
hardly beneficial.

Thus, my conclusion is that dagger sampling is not especially appropriate
for smulation of electricity markets, as the method is difficult to combine
with gtratified sampling and similar gains can be achieved by applying com-
plementary random numbers in a proper way. Possibly, dagger sampling
could be useful in the presimulation (where stratified sampling cannot be
applied) or for such scenario parameters which are not included in the strata
tree (for example secondary scenario parameters).

Control Variates

To make it possible to use this method, we must find some appropriate con-
trol variate, the expectation value of which can be calculated analytically.
Concerning simulation of electricity markets, thereisan analytical simulation
method: probabilistic production cost simulation (PPC).?* This simulation
method uses a model which completely disregards the transmission system.
Moreover, it is assumed that the load is not price sensitive?® and that each

23. Cf. section 9.2.2.
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power plant has a variable generation cost which is directly proportiona to
the power generation. The power plants are dispatched in strict variable cost
order. Finally, it is assumed that load and failures in power plants are inde-
pendent random variables. In some cases it is however possible to manage
correlations between available generation capacity and load by studying dif-
ferent time periods separately, in a similar manner as correlations between
scenario parameters are managed in a strata tree. 28

Thus, the model can be described as an ideal dectricity market with one
areaand price insensitive load. The scenario problem of such amodel issim-
ply to cover the load, while minimizing the operation costs;%’

minimise Z BGgGg +ByU (9.4
geG

subject to z Gg -U = Dy, (9.49)
geG
0< Gy < Gy, v geG, (9.4b)
o<u. (9.4¢)

From the solution to (9.4) we get

TOC = ¥ Bg4Gy. (9.53)
geG
0 ifu=0
Loro={" " ! (9.50)
1 ifuso.

The result variables of the PPC model thus only include Gy, U, TOC and
LOLO. The PPC model can only generate control variates for these result var-
iables! If we want to estimate some other system index than EG EENS
ETOC or LOLP then control variates cannot be used.

If the control variate method should produce good results then it is abso-
lutely necessary that the analytical expectation value is calculated with suffi-
cient accuracy. Although PPC is an analytical method the calculations
involve integrals complex enough to force us to use numerical methods. It is
above al the load that is approximated by a discrete variable, in spite of being

24. This method was first presented in [45] and [48] respectively, and has later been
further developed by several authors. The method is described in detail in most
text books on power system planning, e.g. [11, 31, 32, 34].

25. Although it is possible to avoid this assumption by adding power plants corre-
sponding to load reductions (cf. section 3.2.1).

26. See section 9.2.2.

27. Compareto the general electricity market model described in section 3.2.2.
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a continuous variable in reality. In this approximation a certain step length is
used; the shorter the step length the more accurate will the approximation
become, but on the other hand will the numerical integration become more
time consuming. Hence, it is necessary to make a trade-off between accuracy
and which computation time is acceptable. In practice, it is however not a
major problem that the PPC simulation may require a few minutes. It should
also be remembered that it is not certain that a change in the simulation input
affects the PPC model. As seen above there are very few scenario parameters
and model constants included in the PPC model and it is only when any of
these is modified that a new PPC simulation has to be performed.

Correlated Sampling

The problem | described in section 1.1, i.e., to study how achangein an elec-
tricity market affects system indices, sounds cut out for applying correlated
sampling; we have an original system and a dightly changed version of the
same system. The difference in output of the two system is amost certainly
small; hence, the result variables from the two systems will be positively cor-
related. For example, if an investment has been made in increased transmis-
sion capability then the operation cost in the two systems will behave in a
similar manner; there will be higher operation costs in peak load periods than
in low load periods, but the difference will be dightly lesser in the reinforced
system.

In spite of these good conditions | have not used correlated sampling for
simulation of electricity markets and this for two reasons. My first objection
is that although it might be interesting to estimate the difference of two sys-
tems, it is probably also desirable to learn about the absolute values of the
system indices in both systems, but unfortunately correlated sampling does
not provide any variance reduction to individual system indices.

The other objection is that correlated sampling is hard to combine with
stratified sampling (and as aready mentioned, | consider stratified sampling
to be a very efficient method for electricity market simulation). When simu-
lating a single system the strata tree is based upon comparing the system
resources to the demand, which may be done in a systematic way. If corre-
lated sampling is applied there are however two different systems (or even
more) each having its own set of resources and demand. In these cases the
objective is to identify the scenarios where the system behaves differently.
This requires that all scenario parameters have the same probability distribu-
tion in both systems, as it otherwise would be impossible to calculate the
node weights of the stratatree.?8 If that would be the case then it may actually
sometimes be possible to identify partitions where it can be expected that the
system behaves differently. An example of this is given in figure 9.12. It
might be possible to formulate rules specifying the kinds of differences that
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Gtot = 100
Do < 90 90 < Dygy < 95 95 < Dy < 100 100 < Dy
LOLOA=0 LOLOA=0 LOLO, =0 or 1#* LOLOs =1
LOLOg =0 LOLOg =0or 1** LOLOg=0o0r 1** LOLOg =1

** Depending on the impact of transmission losses

Figure9.12  Sratatreefor correlated sampling. The difference between system A
and B respectively is that the losses are larger in system B. Assume
that L =5insystemAand L = 10in system B. Concerning TOC the
systems should differ in all scenariosin the first three branches. Con-
cerning LOLO it is only in the two middle branches where the sys-
tems may differ.

can be managed by a strata tree and how the strata should be adjusted, but |
have not yet done such an analysis.

I mportance Sampling

The choice of importance sampling function is of course extremely important
when applying importance sampling to simulation of electricity markets. |
have only made a few simple experiments with this variance reduction tech-
nique and therefore cannot say anything about the design of importance sam-
pling functions. The explanation to my lack of interest in importance sam-
pling is that | find stratified sampling much easier to apply efficiently. The
two steps stratification and sample allocation are simple to solve when simu-
lating electricity markets (the stratification by using a strata tree and the sam-
ples are distributed according to the Neyman alocation). | find it hard to see
that even larger efficiency gains could be achieved by importance sampling
and it then seems unjustified to put any effort into finding good importance
sampling functions.

However, importance sampling could be useful in the presimulation, when
stratified sampling cannot be utilised. There may aso occur situations where
it could be a good idea to combine stratified sampling and importance sam-
pling. As described earlier it is only the total load which is included in the
strata tree, whereas the geographical distribution of the load is treated as a

28. How should for example the node weight be defined in a node where Dy < 1 000
if the load is N(1 000, 100)-distributed in one system and N(2 000, 200)-distrib-
uted in the other?
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secondary scenario parameter. But the more extreme the geographical distri-
bution isthe larger istherisk for transmission congestion. These extreme dis-
tributions are important, but comparatively rare. Importance sampling could
be used to decide how the total load should be divided between the areas.
Exactly how to do this, i.e., which importance sampling function to use, is
something | have not yet studied. Further research is necessary in this field.

9.3 SOME SIMPLE TEST SYSTEMS

To evaluate how efficient different variance reduction techniques are, | have
performed a number of simulations of several test systems. In this section |
intend to present some illustrative examples.

Before | describe the test systems more closely | must however briefly
describe the software | have used in my test runs, because it has to some
extent been limiting the choice of test systems and evaluation criteria. Most
of the calculations have been performed in Matlab, as the programming is
swift and simple—most mathematical functions are already available. As
soon as pure syntax errors have been removed from a Matlab program it is
also very reliable. There are however aso some disadvantages with Matlab;
primarily that the calculations may become slow and memory consuming. To
simulate large multi-area systemsit is necessary to use the NNP algorithm (or
some other agorithm for solving non-linear optimisation problems) and
implementing the NNP algorithm in Matlab would result in a too slow and
inefficient program. When | wrote the fina version of the NNP agorithm |
therefore chose to use the programming language C. This causes some prob-
lems when performing a Monte Carlo simulation, because most of the soft-
ware running the statistical analysisiswrittenin Matlab and has to communi-
cate with an electricity market model written in C. This communication could
of course be automatised, but to avoid spending too much time on program-
ming, | have chosen to transfer data manually. The nuisance of this solution is
that a simulation requires human supervision, which makes it too time con-
suming to perform many long simulations.

If two-area electricity markets are studied instead, things become much
simpler. In such asmall system it is easy to find the rules describing in which
order the power plants will be dispatched considering transmission losses and
limitations (sort of a NNP “light” agorithm). By that means the whole simu-
lation can be performed in Matlab, thus making it possible to start a program
which runs twenty simulations of one million scenarios each, take a week’s
holiday and get back just in time when the results are available.

Hence, for practical reasons | have mostly stuck to two-area systems when
investigating the efficiency of simulation of short scenarios. This does how-
ever not at al mean that the conclusions only should be applicable to smaller
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systems, because the derivation of the strata tree method is in ho way based
on assuming that atwo-area system is simulated.

Apart from simplifying the data processing, studies of two-area systems
have yet another advantage, more precisely that an exact value of LOLP can
be calculated with a reasonable work effort (see appendix D). This is of
course vauable if the same system is simulated with two strategies and the
resulting LOLP-estimates are very different.

9.3.1 Two-area Test Systems

To demonstrate the size of the possible efficiency gains which can be
achieved by using variance reduction techniques, | have designed a small
two-area system. This system | have then varied in different ways. Each vari-
ant has been simulated a large number of times using different combinations
of variance reduction techniques. In those cases when stratified sampling has
been used | have included a presimulation of 100 scenarios to estimate the
stratification parameter L. Then follows the stratification and a pilot study.
The sample allocation of the pilot study is stated in the result table of each
test system. | have chosen to just identify scenarios of type I-VII (cf.
section 9.2.1) and disregard the more unusual scenario types, as they are so
rare that they have no significant impact on the final results.

The accuracy of a Monte Carlo simulation depends, as shown in chapter 8,
both on the number of samples and usage of any variance reduction tech-
niques. To facilitate the comparison of different variance reduction tech-
niques | have eliminated the number of samples by seeing to that the number
of scenarios in presimulation, pilot study and main simulation amount to
about 10 000 scenarios in each simulation.

The simulation results are compiled in separate result tables for each vari-
ant of the system. Aswe are dealing with compiling the results of hundreds of
different simulations, it is not strange if these tables seem somewhat confus-
ing. The principleis however simple: each combination of variance reduction
techniques has been simulated in 20 separate runs using different seeds for
the random number generator. These 20 runs yield a series of separate esti-
mates of ETOC (etocy, ..., etoc,p) as well as a series of separate estimates of
LOLP (lolpy, ..., lolpyg). Theresult of these 20 runs are described in arow of
itsown in the result table. The values stated in the table are

lowest = min etoc;,
|

20
1
mean = 20.Zetoci,
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highest = mri;\x etog;,

and
20
nce = L 2
variance = 19.Z(etoci—mean) :

Corresponding definitions are applied a so to the LOLP estimates. Notice that
the variance stated in the result tables thus does no relate to the variance cal-
culations which are part of asingle simulation (for example when calculating
confidence intervals or sample allocation according to Neyman), but isjust a
measure of how well concentrated the results of the 20 runs are.

Comparing the results of two different combinations of variance reduction
techniques takes some consideration. Most important is that the mean of the
20 estimates is close to the theoretical value. (Concerning ETOC | have not
calculated any theoretical value for comparison, but the results are on the
other hand quite unanimous, so that should not be a problem.) If a method
should be considered good then the lowest and highest estimates should not
differ too much from the theoretical value and the variance should be low.

As shown in other parts of this dissertation, cardinal error is a problem
which must be accounted for and a simulation method cannot be considered
very efficient if it is prone to be subject to cardinal error. In this sort of simu-
lation, cardinal error almost exclusively causes the final estimate of ETOC or
LOLP to be less than the true value. If the lowest estimate of the 20 trialsis
significantly lesser than the mean of all 20 runs, or if it even is equal to the
result of a PPC simulation, then this is an indication that cardinal error has
occurred.?® If cardina errors are frequent it is usualy also reflected in the

Table 9.6 Data of the base case.

Areal Area2
Thermal power plants
Installed capacity [MW)| 2x30 5x6
Operation cost [s/MWHh] 50 100
Availability [%] 99 95
Transmission line
Transmission capability [MW] Unlimited
Loss function L=2109pP?
Availability [%)] 100
L oad (not price sensitive, no correlations)
Mean 20 30
Standard deviation 3 4
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mean, which becomes noticeably lesser than the theoretical value.

The Base Case

In the base case there are only thermal power plants and the transmission line
between the areas has unlimited capacity. Detailed data about the base case
are given in table 9.6 and the simulation results are compiled in table 9.7.

The results clearly show that complementary random numbers have a
favourable effect on the ETOC estimate, but this effect is lesser when com-
plementary random numbers are combined with a control variate for TOC.
Concerning the LOLP estimate, the complementary random numbers do not
have any larger consequences, neither positive nor negative ones; the differ-
ences that appear are likely to be caused by random fluctuations as a result of
just comparing 20 estimates. These results are thus in accordance to the anal-
ysismade in section 9.2.4.

The control variate method has different impacts on ETOC and LOLP
respectively. The former system index is significantly improved when a con-
trol variate is used, regardless of which other variance reduction techniques
are used. Thisis not the case concerning a control variate for LOLO, which
only provides improved accuracy when stratified sampling is not used. The
explanation of this circumstance is smple. When calculating LOLO in a PPC
model it isonly possible to identify loss of load due to insufficient generation
capacity. However, these scenarios are also simple to identify using a strata
tree (cf. figure 9.2) and therefore a control variate for LOLO will not supply
any new information when combined with stratified sampling. Yet, there is
no distinguishable disadvantage if the control variate method nevertheless is
appliedto LOLO.

Concerning stratified sampling, we see that the LOLP estimates are signif-
icantly improved when this method is applied. However, at the same time the
accuracy of the ETOC estimates are dlightly decreased, but this negative
effect is so small that it should not discourage the usage of stratified sam-
pling—therelative error is after al 0.5% in al runs! The reason why stratified
sampling only improves the LOLP estimate is that the strata tree method is
most appropriate for defining strata in a duogeneous population. In the base
case TOC is however a continuous, heterogeneous random variable and such
are most appropriate to stratify using a classic stratification strategy as the
“cum \f(y)-rule” and itsrel atives. It could very well be possible to combine

29. Since the PPC model neglects the losses, we know that the Monte Carlo simula-
tion should result in a higher operation cost and larger risk of power deficit. If this
is not the case then it is likely that the Monte Carlo simulation missed that part of
the scenario population where the transmission |osses are really important.

30. See[127], section 5A.7, or [55].

Some Smple Test Systems 213



Chapter 9: Short Scenarios

Table 9.7 Result of simulating the base case.

g |8 gé Estimate of ETOC [o/h] Estimate of LOLP [%]
E Q E ©] 3 =} 0} )
sPleo|8:| 8|5 |E| 5|2 5|8 ¢
& |5 |EE| 3| |f|&8|3|=|5F| ¢
O O 8 E > >
No stratified sampling
2623|2629 |2635| 8.4 |0.120| 0.172 | 0.240 | 1.3-1077
v 2627 | 2629 | 2632 | 3.2 | 0.090 | 0.160 | 0.270 | 211077
v 2623 | 2629|2635 | 8.4 | 0.160 | 0.168 | 0.180 | 6.2:107°
v v | 2627|2629 2632| 3.2 | 0.160 | O.165 | 0.180 | 4.7-10~7
v 2628|2629 2630| 0. |0.120| 0.172 | 0.240 | 1.3-1077
v v | 2628(2629|2630| 0.1 | 0.090 | 0.160 | 0.270 | 2.1-10°7
v v 2628 | 2629|2630 | 0.1 | 0.160 | 0.168 | 0.180 | 6.2:107°
v v v | 2628(2629|2630| 0.1 | 0.160 | O.165 | 0.180 | 4.7-10~7
Complete stratification
(Sample dlocation in the pilot study: IV - 2. VI - 32. VII - 0)
2622|2630 | 2641 | 21.1 | 0.161 | 0.163 | 0.166 | 3.8:1071°
v | 2628(2629|2631| 0.6 |0.161 | 0.164 | 0.167 | 3.6:1071°
v 2617 | 2629 | 2637 | 21.0 | 0.161 | 0.163 | 0.165 | 3.3-1072°
v v | 2628|2629 |2632| 0.6 | 0.161| 0.164 | 0.166 | 3.6-10°10
v 2628|2629 | 2630| 0.3 | 0.161 | 0.163 | 0.166 | 4.0-1071°
v v | 2628(2629|2630| 0.2 | 0.161 | 0.164 | 0.166 | 3.4-107°
v v 2628 | 2629|2630 | 0.3 | 0.161 | 0.163 | 0.165 |3.4-10710
v v v | 26282629 |2630| 0.2 | 0.61| 0.163 | 0.166 | 3.5-10710
Reduced stratification
(Sample dlocation in the pilot study: IV - 64. VI - 512. VII - 16)
2617 | 2628 | 2639 | 24.4 | 0.164 | 0.166 | 0.168 | 7.5-107 11
v | 2626|2629|2631| 2.7 | 0.165| 0.166 | 0.168 | 4.4-10°1
v 2617 | 2628 | 2639 | 24.4 | 0.164 | 0.166 | 0.168 | 7.5:10°1
v v | 2626|2629|2631| 2.7 | 0.165| 0.166 | O.168 | 4.7-10°1
v 2627|2629 2630| 0.3 | 0.165| 0.166 | 0.167 | 3.5-10 11
v v | 2628(2629|2629| 0.2 | 0.164 | 0.166 | 0.168 | 6.4-1071
v v 2627 (2629|2630 | 0.3 | 0.165| 0.166 | 0.167 | 3.2-1071
v v v | 2628(2629|2629| 0.2 | 0.164 | 0.166 | 0.167 | 6.1-10° 11
Facts about Theoretical value of LOLP: 0.166%.
the base case LOLP according to PPC model: 0.160%.

ETOC according to PPC model: 2521 o/h.

Number of possible states for the available generation
capacity: 18.
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Table 9.8 Result of simulating the hydro power system.

g |8 gé Estimate of ETOC [o/h] Estimate of LOLP [%]
E Q § o =} 0} [0}
sPieo|2e| 8| B 5|8 8|E| &
5 5 se| 3| = || 8|85 ]|=2 <% g
O O 8 § > >
No stratified sampling
4938 | 553 | 64.0 | 11.15| 0.110 | 0.162 | 0.230 | 1.0-1077
v 387 | 54.4 | 62.9 | 3197 0.050 | 0.159 | 0.220 | 1.8:1077
v 49.8 | 553 | 64.0 | 11.15] 0.160 | 0.168 | 0.180 | 6.2-107°
v v | 387|544 | 629 |3L97| 0160 0.164 | 0.180 | 3.6:107°
v 546 | 553 | 56.0 | 0.15 | 0.110 | 0.162 | 0.230 | 1.0-1077
v v | 538|557 | 572 | 093 |0.050| 0.159 | 0.220 | 1.8:1077
v v 546 | 553 | 56.0 | 0.15 | 0.160 | O.168 | 0.180 | 6.2-107°
v v v | 538|557 | 572 093 |0.160|0.164 | 0.180 | 3.6:107°
Complete stratification
(Sample dlocation in the pilot study: | - 2, 111 - 32, IV - 2, VI - 32, VII - 0)
545 | 553 | 56.3 | 0.17 | 0.161 | 0.165 | 0.167 [4.5:10710
v | 549|554 | 558 | 0.05 | 0.161 | 0.164 | 0.167 | 2.7-1071°
v 545 | 553 | 56.3 | 0.17 | 0.162 | 0.165 | 0.167 |2.5:10710
v v | 549|554 | 558 | 005 |0.161|0.164 | 0.167 |3.3-10°10
v 55.1 | 55.3 | 55.6 | 0.02 | 0.160 | 0.164 | 0.165 |3.0-10710
v v | 551|554 | 556 | 0.02 |0.160 | 0.163 | 0.166 | 4.4-101°
v v 55.1 | 55.3 | 55.5 | 0.02 | 0.160 | 0.163 | 0.165 |3.3-10710
v v v | 550|553 | 556 | 0.02 |0.160 ]| 0.163 | 0.166 [4.3-1010
Reduced stratification
(Sampledlocation in the pilot study: | - 64, 111 - 512, 1V - 64, VI - 512, VI - 16)
53.7 | 55.1 | 55.8 | 0.37 | 0.165 | 0.166 | 0.167 |1.8:10 1
v | 548|554 | 562 | 013 | 0.165| 0.166 | 0.168 |3.7-10°
v 537 | 55.1 | 55.8 | 0.37 | 0.165 | 0.166 | 0.167 [2.1-107
v v | 548|554 | 562 | 013 | 0.165 | 0.166 | 0.168 | 3.5-10° 1
v 55.1 | 55.4 | 55.7 | 0.03 | 0.165 | 0.166 | 0.168 |5.1-10 1
v v | 550|553 | 557 | 0.03 |0.164 | 0.166 | 0.168 |8.0-10°
v v 55.1 | 55.4 | 55.7 | 0.03 | O.164 | 0.166 | 0.167 |5.1-10 11
v v v | 550|553 | 557 | 0.03 | 0.164 | 0.166 | 0.168 |8.2-10° 1

Facts about the

Theoretical value of LOLP: 0.166%.
hydro power system LOLP according to PPC model: 0.160%.
ETOC according to PPC model: 43.6 o/h.
Number of possible states for the available generation
capacity: 18.
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the two stratification methods, but this not anything | have studied any fur-
ther.

Moreover, it can be seen that the reduced stratification is more efficient
than the complete. The difference is due to the fact that the compl ete stratifi-
cation in total uses more scenarios in the pilot study31 and as these scenarios
are not distributed according to the Neyman allocation, some efficiency will
be lost.

Hydro Power without Reservoirs

Thissystemisidentical to the base case, except that the largest thermal power
plants (i.e., the two units in area 1) have been replaced by two just as large
hydro power plants with no reservoirs, so-called run-of-the-river units. For
the sake of simplicity, it is assumed that the water flow passing by these
hydro power plants always is sufficiently large to allow the technically avail-
able generation capacity to be fully utilised. The only difference compared to
the base case is thus that the operation cost is going to be far less, because the
variable operation cost of hydro power is assumed to be negligible; we get
TOC = 0 whenever the load can be covered by hydro power only. The results
of simulating the hydro power system are displayed in table 9.8.

The consequence of using complementary random numbers is not as clear
here asin the base case. It appears that complementary random numbers have
clear negative impact on the ETOC estimates when stratified sampling is not
used, whereas the impact on the LOLP estimates still is neutral. The explana-
tion should be that a mgjority of the scenarios result in TOC = 0; thus, there
will be aweaker correlation between the complementary scenarios. In combi-
nation with stratified sampling the pattern is however similar to that of the
base case (athough slightly less apparent), i.e., complementary random num-
bers have a positive effect, but it is less important when a control variate for
TOC isused. Asit isrecommended to use stratified sampling, thereis no rea-
son to advise against the usage of complementary random numbers for this
kind of systems.

The control variates works almost exactly the same in the hydro power sys-
tem as in the base case. Also stratified sampling produces more or less the
same effects as in the base case, except that now stratified sampling also pro-
vides a clear improvement of the ETOC estimates. The reason for thisis that
in the hydro power system TOC is divided in a homogeneous part (those sce-
narios where TOC = 0) and a diverging part (where TOC > 0), which means
that the advantages of the strata tree method can be fully utilised.

31. Admittedly there are less scenarios per stratum in the complete stratification, but
this does not compensate the large number of strata.
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Figure9.13  Duration curve of the available generation capacity of the
wind farmin the wind power test system.

Wind Power

All the power plants of the base case are present in this system, but it has also
been added awind farm. The duration curve of the available wind power gen-
eration capacity is shown in figure 9.13.%2 The available wind power genera-
tion capacity, W, is actually a continuous random variable, but it does not
follow any standard probability distribution. Therefore a discrete approxima-
tion of the continuous distribution has been used, so that it will be simpler to
generate random numbers of W. Besides, a discrete approximation is neces-
sary when building the strata tree.

The mgjor difference between this system and the former is that there are
considerably more possible states of the available generation capacity of the
system, which results in much larger strata trees. Another difference is that
theinstalled capacity of the system islarger, which causes LOLP to decrease
compared to the base case and the hydro power system. The diverging scenar-
ios (that is scenarios where LOLO = 1) are more rare, which makes proper
choice of strata even more important. Finally, this system can be seen as a
mixture of the base case (which was completely dominated by power plants
with non-negligible operation costs) and the hydro power system (which was
dominated by power plants having negligible operation costs); here thereisa
certain probability that the wind power can cover the load, but in most cases

32. It can be worth noting that the model corresponds to a wind farm with compara-
tively poor wind speed conditions.
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Table 9.9 Results of simulating the wind power system.

g |8 gé Estimate of ETOC [o/h] Estimate of LOLP [%]
E Q E ©] 3 =} 0} )
sC|so|BE| 8|5 | 2|58 5|8 5
5 |§ [EE|3|=|T|&|3|=|F]| ¢
O O 8 E > >
No stratified sampling
2396 | 2407 | 2419 | 29.5 | 0.040 | 0.103 | 0.170 | 1.1-1077
v 2395 | 2406 | 2418 | 33.2 | 0.050 | 0.105 | 0.240 | 2.1-1077
v 2396 | 2407 | 2419 | 29.5 | 0.099 | 0.105 | 0.119 | 3.6:1079
v v | 2395|2406 | 2418 | 33.2 | 0.009 | 0.102 | 0.109 | 2.0-107°
v 2406 | 2406 | 2407 | 0.1 | 0.040 | 0.103 | 0.170 | 1.1-1077
v v | 2406 | 2407 | 2407 | 0.1 | 0.050 | 0.105 | 0.240 | 2.1-10°7
v v 2406 | 2406 | 2407 | 0.1 | 0.099 | 0.105 | 0.119 | 3.6-107°
v v v | 2406|2407 | 2407 | 0.1 | 0.009 | 0.102 | 0.109 | 2.0-207°
Multiple state nodes
2344 | 2386 | 2408 | 496.5 | 0.080 | 0.092 | 0.107 | 1.1-1078
v | 2344 | 2388 | 2408 | 530.7| 0.081 | 0.091 | 0.106 | 1.2-107°
v 2334 | 2386 | 2412 | 715.2| 0.099 | 0.101 | 0.103 {1.3-20710
v v | 23452389 | 2410 | 63L.9] 0.099 | 0.100 | 0.102 | 8.0-10°1
v 2403 | 2406 | 2408 | 1.5 | 0.080 | 0.003 | 0.106 | 1.0-1078
v v | 2404 | 2406 | 2408 | 0.9 | 0.081 | 0.0%0 | 0.119 | 1.2-10°8
v v 2403 | 2406 | 2408 | 1.1 | 0.099 | 0.101 | 0.102 [ 1.2:20710
v v v | 2404|2406 | 2407 | 1.0 | 0.099 | 0.100 | O.101 | 7.3-10°1
Reduced stratification
(Sample alocation in the pilot study: | - 64, 111 - 512, 1V - 64, VI - 512, VII - 16)
2395 | 2408 | 2419 | 31.3 | 0.102 | 0.103 | 0.104 | 3.210° 1
v | 2399|2405 | 2416 | 25.2 | 0.103 | 0.104 | 0.105 | 1.9-10~1
v 2395 | 2408 | 2419 | 31.3 | 0.102 | 0.103 | 0.104 | 3.0-10°1
v v | 2399|2405 | 2416 | 25.2 | 0.103 | 0.103 | 0.105 | 1.7-10°1
v 2405 | 2406 | 2408 | 0.2 | 0.103 | 0.104 | 0.105 | 1.9-10°1
v v | 2406 | 2406 | 2407 | 0.1 | 0.102 | 0.104 | 0.105 | 2.3-10° L
v v 2405 | 2406 | 2408 | 0.2 | 0.103 | 0.104 | 0.105 | 1.8-10°1
v v v | 2406 | 2406 | 2407 | 0. | 0.102 | 0.103 | 0.105 | 2.3-10°1
Facts about the Theoretical value of LOLP: 0.104%.

wind power system

LOLP according to PPC model: 0.099%.
ETOC according to PPC model: 2300 o/h.

Number of possible states for the available generation

capacity: 666.
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thermal generation will be required too.

The simulation results are compiled in table 9.9. No results of the complete
stratification are recorded, as this stratification strategy would require more
than 33 000 scenarios just in the pilot study; apparently, the method is ineffi-
cient compared to reduced stratification. The complete stratification has been
replaced by stratifications based on the idea of multiple state nodes. Stratified
sampling using this method is more efficient than not using stratified sam-
pling at al, but the results clearly shows that the multiple state nodes are not
as efficient as the reduced stratification and thereis an imminent risk of cardi-
nal errors.

Besides that, the conclusions of the wind power system are the same as for
the hydro power system.

Transmission Limitations

To study the impact of transmission limitations | have used a variant of the
base case, where | have restricted the transmission capability between the
areasto 25 MW. As | have not yet solved the problem of estimating the strat-
ification parameters Uy and Uy | have taken myself the liberty of cheat-
ing alittle bit, and calcul ate them theoretically, which isareasonable task in a
two-area system. The reason for this trickery is to indicate the efficiency
gainswhich could be achieved if the problem of determining the stratification
parameters was solved for systems having more than two areas. Therefore, |
present three variants of the reduced stratification strategy. In the first | have
ignored the unknown stratification parameters and merged scenarios of type
IV and V into one single stratum instead. In the second variant | use the theo-
retically calculated values of Uyyg. Thetheoretical values of Uy g are based
upon the worst case when the whole total load is located in one of the areas,
while the load in the other area is zero. This scenario is of course extremely
unlikely; hence, it might be worthwhile to modify Uyg, by for example
assuming that the least possible load in any one area amounts to the mean
load minus three standard deviations. This method of calculation has been
used in the third variant.

The results of the system with 25 MW transmission capacity are shown in
table 9.10. If we start by analysing ETOC, we find that regardless of which
variance reduction technigue we use there is no problem to detect the cost
increase due to the transmission limitations; the ETOC estimates are roughly
2 890 a/h, compared to about 2 630 ©/h in the base case.

Concerning the LOLP estimates the accuracy—as usual—primarily de-
pends on which stratification strategy is used. Apparently those stratifications
which do not differentiate scenarios of types IV and V respectively do not
convey any larger efficiency gain compared to giving up stratified sampling
atogether. It is neither an improvement to use the exact theoretical values of
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Table 9.10 Results of simulating the system with transmission limitation.

g g Eﬁ Estimate of ETOC [o/h] Estimate of LOLP [%]
8 Bol|&E

>S0Q | > 3 D [0}
s0|s3|5E| 8 g g2 |8 g g g
sF|E2|g§]| 2 S | 8| 2 S 8
E |E7|Eg| B3 |=|2 8|8 |=|2| &

No stratified sampling

2882 2890 | 2898 | 18.2 | 0.130 | 0.189 | 0.260 | 1.4-10~"
v | 2887(2890|2892| 1.8 |0.30| 0.7 | 0.280 | 2.1-107"
v 2882 | 2890 | 2898 | 18.2 | 0.160 | 0.184 | 0.210 | 1.5:10°
v v [2887|2890|2892| 1.8 |0.160|0.180 | 0.210 | 2.5:1078
2885 (2889|2894 | 4.1 | 0.130 | 0.189 | 0.260 | 1.4-107"
v | 2887|2889|2891| 1.7 | 0.130| 0.176 | 0.280 | 2.1-1077
v 2885 | 2889 | 2894 | 4.1 | 0.160 | 0.184 | 0.210 | 1.5:10°
v v v |2887|2889|2891| 1.7 | 0.160 | 0.180 | 0.210 | 2.5:10°8

Reduced stratification not separating strata of types |V and V
(Sample alocation in the pilot study: 1V/V - 512, VI - 512, VII - 16)

2880 | 2892 | 2902 | 32.2 | 0.166 | 0.183 | 0.207 | 2.0-107°
v | 2886|2890 | 2893 | 3.9 | 0.166 | 0.181 | 0.199 | 1.1-10°°
v 2879 | 2891 | 2899 | 35.1 | 0.166 | 0.180 | 0.207 | 1.6:107°
v v 2884|2890 (2893 | 4.9 |0.166|0.180 | 0.207 | 1.6:2078

AR

v 2883|2888 | 2891 | 4.6 | 0.166 | 0.182 | 0.200 | 2.1-107°
v v | 2885|2889 |2892| 2.3 | 0.166 | 0.183 | 0.231 | 3.3-10°°
v v 2883|2888 | 2891 | 4.6 | 0.166 | 0.181 | 0.208 | 2.1-107°
v v v | 2885|2889 (2892 | 2.3 [ 0.166|0.183 | 0.231 | 3.3-10°8

Facts about Theoretical value of LOLP: 0,180%.

the system with LOLP according to PPC model: 0,160%.

25MW transmis- ETOC according to PPC model: 2521 a/h.

sion capability Number of possible states for the available generation

capacity: 18.

(continues next page)

Uwa: the best results are obtained when using the slightly modified values
of Uyyg, Where the most unlikely load distributions have been neglected.
Thisisin away good news, because it implies that it may actually be an ad-
vantage that Uy is estimated from a presimulation and therefore by practi-
cal reasons neglect the most unlikely distributions of the total load. This
should mean that it is possible to keep the number of scenarios low in the
presimulation, without compromising the quality of the stratification. How-
ever, further studies are necessary before any reliable conclusions can be
drawn.
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Table 9.11 (cont.) Results of simulating the system with transmission limitation.

g |8 |5 é Estimate of ETOC [o/h] Estimate of LOLP [%]
8 8o | &

S0 |54 2 @ Q
s0|s3|8E g | e g | ¢
cRleo(se| 852|288 £ ¢
€ € ES| 3| =2 |&|8]|=|2 5

Reduced stratification based on theoretically calculated values of Uy
(Sample alocation in the pilot study: 1V - 64, V - 512, VI - 512, VII - 16)
2880 | 2892 | 2904 | 30.3 | 0.166 | 0.183 | 0.227 | 2.5:1078
v | 2884|2891 |2898| 10.8 | 0.166 | 0.176 | 0.203 | 1.7-1078
4 2880 | 2890 | 2904 | 29.6 | 0.166 | 0.178 | 0.197 | 8.8:107°
v v | 2884|2891|2898| 12.6 | 0.165 | 0.176 | 0.202 | 1.6:107®
2885 | 2889 | 2894 | 4.8 | 0.166 | 0.179 | 0.200 | 1.1-1078
v | 2886|2890 |2893| 3.3 |0.166 | 0.178 | 0.205 | 1.9-1078
v 2885|2889 | 2894 | 5.4 | 0.166 | 0.180 | 0.199 | 1.2:1078
v v v | 2886(2890|2893| 4.4 |0.165| 0.175 | 0.203 | 1.2:1078

Reduced stratification based on theoretically calculated (but slightly modified)
valuesof Uyg
(Sample alocation in the pilot study: 1V - 64, V - 512, VI - 512, VII - 16)

2880 | 2888 | 2897 | 2555 | 0.173 | 0.180 | 0.187 | 1.7:107°
v | 2886|2889 |2892| 2.0 |0.172 | 0.180 | 0.101 | 2.3-107°
v 2880 | 2888 | 2897 | 255 | 0.173 | 0.180 | 0.187 | 1.7:107°
4 v 2886|2890 (2892 | 2.1 |0.171|0.180 | 0.186 | 1.7-207°

AR

v 2885 | 2889 | 2895 | 5.7 | 0.175 | 0.181 | 0.187 | 1.6-107°
v v | 2886|2890 |2893| 2.6 | 0175 0.181 | 0.202 | 3.8:107°
v v 2885|2889 | 2895| 5.7 | 0.175 | 0.181 | 0.187 | 1.5:107°
v v v | 2886(2890|2893| 2.6 | 0.175 | 0.180 | O.186 | 1.4-107°

Facts about Theoretical value of LOLP: 0,180%.

the system with LOLP according to PPC model: 0,160%.

25MW transmis- ETOC according to PPC model: 2521 a/h.

sion capability Number of possible states for the available generation

capacity: 18.
Conclusions

The most important conclusion of the above described test systems is of
course that the three variance reduction techniques complementary random
numbers, control variates and stratified sampling all produce efficiency gains
when used for simulation of short scenarios. Moreover, it works excellent to
combine the three methods. It can be noted that different methods are of dif-
ferent importance for different result variables. The estimate of ETOC is
above al improved by using a control variate with respect to TOC. Comple-
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mentary random numbers also primarily improve the ETOC estimate, but in
combination with control variates, the impact of complementary random
numbers is almost negligible.33 | can however not see any major harm of
using the method, and as it also saves a certain amount of random number
generation efforts, | find no reason to refrain from using complementary ran-
dom numbers even in those cases when the benefits of the method are hard to
notice. Stratified sampling improves the ETOC estimates of systems, where
thereis an element of power plants having negligible operation costs.

The method which is most beneficial when it comes to improving the
LOLP estimate is without doubt stratified sampling. A control variate with
respect to LOLO will be good for the LOLP estimate, but this benefit is only
noticeable when stratified sampling is not used (unless multiple state nodes
are used, but that is as mentioned earlier not what we should do). In this case
too, we may say that though it does not produce any gain, neither does it
make any harm; as we still need to determine the control variate with respect
to TOC, hardly no extrawork is required to determine the control variate with
respect to LOLO at the sametime.

In table 9.12 a compilation of the results from simulating the test systemsis
shown. The table also includes some simulation runs, where a stopping rule
based on relative tolerance (see section 8.1) has been used rather than deter-
mining the number of scenarios in advance. The results shows that the effi-
ciency gain is considerable when all the tested variance reduction techniques
are combined. Compared to simple sampling about 99% less scenarios are
reguired to obtain an equivalent accuracy of the estimates. In the system with
the transmission limitation, this efficiency gain was only obtained if the best
possible stratification could be used—how to determine this stratification in
an efficient manner remains to be solved.

Strangely enough, it does not seem as if the efficiency gain depends on the
absolute values of ETOC and LOLP respectively, which otherwise could have
been expected. In [47] it is shown that in simple sampling a reliability index
(like LOLP) requires more sample for a given accuracy as the value of the
index decreases. This conclusion does not seem to apply to electricity market
simulation using variance reduction techniques.

| have not shown to which extent the above described test system simula-

33. In some cases complementary random numbers in combination with a control var-
iate for TOC produces a very small improvement, whereas in other casesthereisa
very small deterioration. This should be regarded as random deviations and indi-
cate that the method more or less lacks impact on the final result.

34. Here | have to add a reservation, as it probably takes studies of more systems
before any definitive conclusions can be drawn. Another aternative is that who-
ever isinclined examines the question by calculating Var[mroc] and Var[m, o o]
analytically—I havetried and found that the cal cul ations become horrible even for
asystem with just one area.
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Table 9.12 Overview of the test system results.

Vai- |Estimate of ETOC [o/h]| Estimate of LOLP [%] N“g‘ebre;r‘::uf;eiginos
e | g 5|2y g ¢ | g g |°
on |2 | E|5E|5 8|5 E|5| 8|8
- T > - T > - T
Base case
2628(2629|2629| 0.1 |0.150|0.166 | 0.172| 1.2:107° 1,000 000
v |2628|2629(2629| 0.2 [0.164|0.166|0.167|6.1-1071 10 000
v |2628]2629|2630| 0.3 [0.164| 0.166] 0.167| 5,010 2822 | 3688 5948] 0.
Hydro power
54.6 | 55.2 | 56.0 | 0.13 [0.150| 0.166 | 0.172 | 1.3-107° 1 000 000
v | 55.0/| 553557 | 0.03[0.164|0.166| 0.168 | 8.2:10~ 1 10 000
v | 544553560 0.10]0.165]0.166] 0.160] 111070 2608 | 3508 | 4722 022
Wind power
2406|2406|2407| 0.3 [0.1000.103|0.108|5.8-10710 1 000 000
v |2406|2406|2407| 0.1 [0.102|0.103|0.104|2.3-107 1 10 000
v |2405[2407|2409] 0.8 [0.102]0.103]0.105|6.4-101| 2380 | 3427 [ 5385 0.2
Transmission limitation 25 MW
2888(2889(2890| 0.2 |0.1710.181|0.188| 1.6-107° 1,000 000
v 2885(2889(2892| 2.3 |0.166|0.183| 0.231| 3.3-10°8 10000
v2a |2886(2890(2893| 2.6 |0.175|0.180| 0.186 | 1.4-1072 10 000
va [2887/2890[2895| 5.1 [0.173]0.181]0.108] 1.420° [ 3839 6116 | 7943| 0.2

a Using theoretically calculated stratification parameters.

tion runsresulted in confidence intervals which really included the true value.
The reason is simply that | did not think of adding a function investigating
this question to my test software. A rough survey35 yieldsthat it seemslike a
95% confidence interval really includes the true value in about 95% of the
simulation runs. An important exception are those simulations that are subject
to cardinal error; cardinal error means that the variance of the estimate has
been undervalued, which results in too small confidence intervals. By using
an appropriate stratification strategy cardinal errors should however be possi-
ble to avoid. Therefore, it seems reasonable to assume that the estimates
really are normally distributed around the true value; hence, (8.4) can be

applied.3®

35. It would be to the least exhausting to manually compile statistics from about 7 000
simulations | have performed...
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9.3.2 Kigoma Revisited

In my licentiate thesis [7] | used Kigoma region in western Tanzania as an
example to demonstrate Monte Carlo simulation of an ideal electricity mar-
ket. In those simulations | used complementary random numbers and strati-
fied sampling. The stratified sampling was unfortunately rather clumsily per-
formed—I used multiple state nodes for the available generation capacity,
where each node had two child nodes in the load level of the strata tree. The
limit between these child nodes | simply put half-way between the highest
and lowest available generation capacity of the parent node.

To verify that my new simulation strategies aso are efficient for systems
with more than two areas, | have brushed up two of the systems from [7] and
simulated them again. Thefirst of these systemswasreferredto as“case 2” in
[7] and consisted of seven areas. The most important power plant is a hydro
power plant, but there are also diesel generator sets in each load centre. The
other system, “case 34, is almost the same, but the hydro power plant has
been replaced by a wind farm next to one of the load centres; this system
therefore has just six areas. A regional transmission grid of 33 kV connects
the areas. The transmission on the lines are confined by thermal limits, which
however are so large compared to the loads in the system, that there in prac-
tice are no transmission limitations. For further details about the two cases,
please refer to [7].

Results

As | dready have described, my software needs somewhat more human
assistance to simulate systems with more than two areas, and | have therefore
not simulated every system several times with different seeds for the random
number generator, but | have performed one single simulation of each sys-
tem. The results are displayed in table 9.13.

Before | discuss the accuracy of the recorded simulation runs, | would like
to briefly explain some partial results. In the old simulations | restricted
myself to estimating Fy, (i.e., the duration curve of the unserved power
within each area) and calculated the risk of load shedding in each area as
LOLP, = Fy(0). Since | never calculated any confidence intervals of the

36. My results are thus contradicting the claim by Suhartono et a. in [62] that LOLP
estimates should be considered gamma-distributed. The difference might be that
the precision of Suhartono’s simulation are far less than in my test systems; in
Suhartono’s system the result is 0.034% < LOLP < 0.195% (confidence level 90%)
compared to for example 0.102% < LOLP < 0.106% (confidence level 95%) for a
typical simulation of the wind power system.
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Table 9.13 Results of simulating Kigoma region.

Case 2 Case 3a
Old simulation . . Old simulation . .
(from [7]) New simulation (from [7]) New simulation

ETOC [USD/h]

Monte Carlo 16.46 +0.16 16.62 +0.03 B57.12 +2.46 557.83 + 1.00

PPC 14.32 14.28 556.48 553.90
LOLP [%)]
Whole system

Monte Carlo 0.064 * 0.002 0.073 # 0.001 4.132 + 0.099 4.192 +0.015

PPC 0.065 0.065 4.191 4.153
Kigoma 0.055 0.050 + 0.014 3.798 3.773 £ 0.561
Kasulu 0.015 0.025 +0.016 0.824 0.399 + 0.561
Kibondo 0.017 0.055 + 0.014 0.973 1.232 +0.857
Uvinza 0.011 0 0.729 0.199 * 0.407
Number of 15 360 604 30720 1932
scenarios

duration curves, the LOLP,, estimates lack confidence intervals in the old
simulations. In the new ssimulations | chose to add LOLO,, as individual result
variables (which however were not given any consideration when calculating
compromises of the Neyman alocation; neither were they included in the
stopping rule). By that means | obtained confidence intervals for LOLP,, too,
but as these estimates were given no priority, the precision is not exactly
something to be bragging about. Yet estimations with large uncertainties can
be used to high-light tendencies, which is quite clear in case 3a. As can be
seen from the result table, an overwhelming majority of the load shedding
occurs in Kigoma. From that it can be concluded that if there is a reserve
power plant, the generation capacity, availability and operation cost of which
are independent of its location, it will be of most benefit if it is built in Kig-
oma.

How efficient are then these simulations? As each system only has been
simulated once, it is of course impossible to compare the efficiency of the dif-
ferent methods by studying the spread of the ETOC and LOLP estimates
respectively. It is however possible to get an idea about the precision by stud-
ying the confidence intervals of each estimated system index. Apparently, the
confidence intervals are much smaller using the new simulation method, even
though the number of studied samplesis about 95% less.3’

37. Inthis context it may be noted that the new simulation used a stopping rule with a
relative tolerance of 20% for the operation cost and the system-wide risk of load
shedding. In the old simulations | made a personal judgement when the sampling
procedure “looked” like it had converged and the confidence interval had shrunk
to asufficiently small interval.
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Even more important than the size of the obtained confidence intervalsis of
course whether or not the estimates are correct or not. Here, we have to be
content with an assessment of the plausibility of the results, because it would
be almost mental abuse to force somebody to theoretically calculate ETOC
and LOLP for systems of this size. If we start by case 2—the hydro power
system—we see that both methods produce about the same estimate of ETOC
and there is no reason to believe that this value should be incorrect. However,
the LOLP estimates do differ, which apparently depends on cardinal error in
the old simulation—the estimated value of LOLP is less than the value
obtained by PPC simulation.3® The older simulation has clearly completely
disregarded load shedding due to the transmission losses (i.e., scenarios of
type VI).

The simulation of case 3a follows the same pattern; both methods yield
similar estimates of ETOC, whereas the LOLP estimate of the older simula-
tion is subject to cardinal error. The most interesting about this case is that it
illustrates another important practical aspect, namely that the result of the
PPC cal culations depends on the precision used in the numerical calculations.
The PPC results of the old case 3a simulation differ from the new results and
| am convinced that the new results are correct. In the new simulation | per-
formed the PPC simulation repeatedly, successively increasing the accuracy
of the calculations, until the resulting values of ETOC and LOLP no longer
were affected by reducing the step length of the PPC simulation.

Finally it can be concluded that the new simulation method does not need
more scenarios to produce reasonably accurate estimates of ETOC and LOLP
in these six- and seven-area systems than was required in the corresponding
two-area system. Actually, the number of scenarios is lessin the larger sys-
tems, but considering that each system has only been simulated once, it is
hard to draw any conclusions from that circumstance.

Some Practical Observations

Although Kigomaregion is quite a small system to simulate (compared to for
example simulating the whole Nordic electricity market), yet it is so much
larger than the two-area systems described in section 9.3.1, that it provides
interesting insight about the problems which have to be addressed when sim-
ulating real systems. It is self-evident that it takes quite a lot of work to per-
form a Monte Carlo simulation, as it involves a large number of scenarios to
be analysed. What should not be forgotten is that there are several other time
consuming steps, before the Monte Carlo simulation even can be started.

38. It isthe irony of fate that this simulation was subject to cardinal error, because it
was when simulating this particular system that | first discovered the phenomenon
cardinal error—however only concerning ETOC...
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The first problem is of course to collect the data of the electricity market
model. | have only used Kigoma region to test the simulation method and
make no claim to provide an exactly correct picture of the possibilities for
electrification of the region; hence, | have been able to take the liberty of
using rough estimates and pure conjecture; nevertheless it took a few days
work to compile at least fairly reasonable input.

Among the preparations a little bit more affiliated to the simulation itself,
there are three work intensive steps: determining the probability distributions
of the scenario parameters, building the stratatree and performing a probabil-
istic production cost simulation. If too much time is spent on building the
strata tree and running the PPC simulation there is arisk that a major part of
the efficiency gain of using stratified sampling and control variates respec-
tively islost. To avoid that kind of trouble the simulation software should be
written in such a manner that as many partial results as possible are saved and
can be reused.

The probability distribution of some scenario parameters can be determined
at the same time as the strata tree is built; both tasks are about enumerating
each possible state of the scenario parameters and calculating the probability
of this state. Thisis certainly not a difficult task, but it is however extensive.
In for example case 3a above the available generation capacity can assume
16 848 states. Each of these states can occur during four different time peri-
ods of the day (with different probability distributions of the load during the
four periods). In each state we need to separate about four partitions of the
Diot-axis. The final result is a strata tree comprising no less than 271 223
branches! Inevitably it takes some time to process al these branches. It would
therefore be desirable if building a strata tree could be skipped before each
new simulation and an old strata tree used instead. Thisis not possibleif there
have been any changes to the probability distribution of the scenario parame-
ters (although some parts of the old strata tree might be reused), but if the
change only applies to some model constant then hopefully the same stratifi-
cation may be used again. If the transmission grid is reinforced so that the
losses decrease then L is affected—and hence basically the whole strata
tree—but if the change is small, not much efficiency will belost by not updat-
ing the stratification.

The probabilistic production cost smulation is time consuming due to the
number of convolutions which have to be performed. The time consumption
increases exponentially when the precision requirements are increased of the
PPC calculations. As mentioned above it is important that the PPC simulation
results are accurate, as the control variates otherwise will produce biased
results, and it may therefore be necessary to perform several PPC simulations
with different accuracy, in order to control that there are no numerical errors
that disturb the results. In thisway the PPC simulation will be even moretime
consuming. However, it can be utilised that the PPC model does not consider
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any other factors than the power plants available and the load; hence, thereis
no reason to make a new PPC run if a new simulation should be made, where
some other property of the system has been changed.
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LONG SCENARIOS

In an electricity market with energy storage facilities or non-negligible time
constants (e.g. long start-up times in thermal power plants) it is necessary to
consider scenarios, where the scenario parameters vary over time. | refer to
this as simulation of long scenarios. Long scenarios are in many ways more
difficult to manage compared to short scenarios, therefore, | chose after afew
simple experiments (which are described in [5]) to focus on systems with
short scenarios—it seemed to be proper to learn how to walk (i.e., simulate
short scenarios) before trying to run (i.e., simulate long scenarios). | have not
had time to perform a systematic analysis of how to simulate electricity mar-
kets with long scenarios in an efficient way. The objective of this chapter is
therefore to show similarities and differences between short and long scenar-
ios.

10.1 SCENARIO PARAMETERS

A scenario was defined in section 1.1 as a situation with given conditions for
the electricity market. A scenario is represented mathematically as a fixed
outcome for each of the scenario parameters (random variables with known
distribution) that appear in the electricity market model. Exactly which sce-
nario parameters are necessary to define a short scenario is of course depend-
ing on which model has been chosen. The scenario parameters of a short sce-
nario—available generation capacity, available transmission capability and
load—are needed to define long scenarios too. Besides, there are other sce-
nario parameters related to the energy limited power plants: inflow to energy
storage facilities aswell as start and final contents of the energy storage facil-
ities. The main difference between a short and along scenario is however that
in the former all scenario parameters are constant for the whole duration of
the scenario, whereas in long scenarios they may vary over time.

Below follow further details about the probability distributions of different
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scenario parameters. However, | limit the discussion to such scenario param-
eters which are needed for simulation of ideal electricity markets. The sce-
nario parameters introduced in some non-ideal electricity markets generally
follow one of the patterns described below; for example, emission caps cause
thermal power plants to obtain similar properties as energy limited power
plants. A more detailed study of the scenario parameters of non-ideal electric-
ity markets will have to be a future project.

Available Generation Capacity and Transmission Capability

Concerning short scenarios | suggested that a probability distribution of the
primary scenario parameter total available generation capacity should be
determined. The idea was that there is some knowledge about how the total
generation capacity affects the result variables of a short scenario and this
knowledge may then be used in variance reduction techniques as complemen-
tary random numbers and stratified sampling. Unfortunately, it is not possible
to define asimilar primary scenario parameter in long scenarios, becauseitis
pointless to sum the available capacity in different power plants during differ-
ent time periods.® When randomizing the available generation capacity it
must also be considered that the generation capacities in two consecutive
time periods are strongly correlated. If a power plant is available in period t
then it is likely that it is available in period t+ 1 too, because failures are
rare events.

Therefore, when randomizing the available generation capacity in a long
scenario another method must be used than for short scenarios. In thermal
power plants and energy limited power plantsit can be assumed that in every
period the available generation capacity can have one of two possible values:
installed capacity (when it is available) or zero (when it is unavailable). In
order to randomise the available generation capacity in a long scenario we
start by determining the initial state and then we randomise how long time it
will take before the power plant changes its state. This approach requires that
the following properties are known about the power plants:

1. If we for example have a short scenario where G = 100 MW and D = 80 MW then
we know that there will not be any load shedding (unless losses or transmission
congestion cause problems). If we in along scenario know that G in average is
100 MW and D in average is 80 MW then this does not say anything about the
risk of load shedding, because we need to consider how the scenario parameters
vary over time. If the long scenario has two periods and s G = 150 MW in the
first, and 50 MW in the second, while the load is 120 MW and 40 MW respec-
tively, then everything is all right. But if G =100 MW in both periods, we get
load shedding during 50% of the scenario duration. It isin other words impossible
to predict the properties of along scenario just from a summation of the available
generation capacity over all time periods, which means that such a scenario
parameter cannot be used for any variance reduction technique.
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Definition 10.1. The failure rate, A, states the probability that an
available power plant will fail at a certain moment. The failure
rate relates to the MTTF (Mean Time To Failure) by

1

T~ MTTE

Definition 10.2. Therepair rate, u, states the probability that the
repairs of an unavailable power plant are completed at a certain
moment. The repair rate relates to the | MTTR (Mean Time To
Repair) by

-1
H = MTTR

Definition 10.3. The availability, p, states the probability that a
power plant can be operated. The availability relates to failure

and repair rates by
.

To determinetheinitial state of the power plant the following trivial probabil-
ity distribution is used:

~

p X = Gg,
fég(X) =31-p X =0, (10.1)
0 al other x.

The time to next failure and repair respectively is commonly assumed to be
exponentially distributed,? i.e., TTF € E() and TTR e E(u).2 When the ini-
tial state of the power plant has been determined, a series of TTF and TTRis
generated until the state of the power plant has been determined for each
period of the scenario. An example of the result of this method is shown in
figure 10.1.

The available generation capacity of a non-dispatchable power plant during
along scenario is more complicated to randomise, because it depends both on
whether or not the power plant is technically available and some weather

2. There are aso other possible distributions, where running-in problems and aging
are considered. For further details about this kind of modelling, please refer to [19,
47].

3. Notice that if X is E(L)-distributed then the expectation value E[X] = I/A. Thus,
MTTF and MTTR correspond to the expectation values of TTF and TTR. Methods
for generation of exponentialy distributed random numbers are described in
appendix C.
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TTF, TTF, TTF,
TR, TTR,

t
100 200 300 400 500 600 700 800 900 1000 h
Figure10.1 Example of available generation capacity of a power plant in along sce-
nario. The power plant in the example has MTTF = 500 and MTTR = 40
respectively, which corresponds to an availability of about 93%. In this
case the scenario starts by the most likely state of the power plant (i.e., it
isavailable) and it fails and repairs twice before the scenario ends after

1000 hours.

depending factor. To generate a realistic series Wy, ..., Wy it is necessary to
use similar methods as for load and inflow, which | will describe below.

The available transmission capability between two areasis partly limited by
the requirements of voltage stability and partly by the number of available
transmission lines. The voltage stability requirement is approximately repre-
sented in a multi-area model (cf. section 3.2.1), which means that the trans-
mission capability in the model only depends on whether or not the lines
interconnecting the areas are available or not. Each of these lines has its own
MTTF and MTTR; the availability is treated using exactly the same methods
as for thermal power plants.

Load and Inflow

Both load and inflow show periodical patterns, the exact nature of which is
depending on socio-economic factors (e.g. people's work hours) as well as
meteorological factors (e.g. seasonal variations); some examples are given in
figures 10.2 and 10.3 respectively. The periodical pattern is however just a
part of the varying load and inflow; there is a considerable amount of random
events, too. Somehow the combination of periodical patterns and purely ran-
dom events must be imitated when generating time series of D, ; and Q; .
The periodicity results in correlations both between different time periods
and between different areas of the power system. Therefore, it is ho easy task
to generate redistic probability distributions. The following two aternatives
are available:
 Historical data. A simple solution to the problem is to use his-

torical data. However, access to large amounts of measurements

is necessary in order to produce correct results, as the data base

should include as many potential outcomes as possible.

232  Scenario Parameters



Chapter 10: Long Scenarios
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Figure10.2 Exampleof load cycle. The figure shows the electricity consump-
tion in Sweden during the period 29/9 to 5/10, 2003. A typical
daily cycle can be seen, with one peak in the morning, another
peak in the afternoon and low load during the night. Thereis also
a weekly cycle, as the daily cycle is somewhat different during
workdays and weekends.

TWh/week Q

t
2001 2002 2003  year
Figure10.3 Exampleof inflow cycle. The figure shows the inflow per
week in Sweden from January 1, 2001 up to August 25, 2003.
The pattern is similar fromyear to year: not much inflow dur-
ing the winter, a big peak when the snow starts melting in
May and June.* However, the total inflow can vary widely
from year to year. During 2001 the autumn was extremely
rainy (with several large floods), whereas the autumn in 2002
was extremely dry.

* This refers just to the rivers of northern Sveden. The general climate
conditionsin Sweden are not that harsh...)
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» Sochastic process. This method requires that we design a sto-
chastic process, which generates output with approximately the
same statistical properties as historical data. The advantage of
this method compared to directly using historical datais that the
scenario population includes such scenarios that are possible,
but not yet recorded in the historical data. The disadvantage is of
course that it takes a more or less extensive work effort to design
aproper stochastic process.*

Regardless of how the time series are generated it is possible to introduce
primary scenario parameters, Dy, and Q; respectively. Given a probability
disturbing of those, a time series can be scaled so that %2, Dy, = Dy and
22 Qp ¢ = Qqor- The scaling works similarly and has similar consequences as
when a geographical load distribution in a short scenario is scaled to match a
certain total load (cf. section 9.1).

Initial and Final Contents of Energy Storage

The reason why we at al study long scenarios rather than the more comforta-
ble short scenarios is that we want to model how the decisions of the players
do not depend on the system state at a certain occasion, but is also depending
on the earlier decisions of the players and their perception of the future. The
dilemmaisthat their decisions do not just depend on events within the limited
period of time included in the scenario. Figure 10.4 is an attempt to illustrate
the difference between the time perspective of the players in the electricity
market and of the simulation.

In the model all earlier decisions are primarily represented by the amount of
energy stored in the system at the beginning of the scenario; i.e., M, o repre-
sent the history of the system. Accordingly, the future is represented by the
energy that is stored at the end of the scenario, i.e., M 1. These scenario
parameters must be chosen carefully, because they are correlated to the load,
Diot: s well asthe inflow, Q. If theinflow islarge and the load issmall in a
particular scenario then it would be reasonable that the energy storage facili-
ties are quite empty at the beginning of the scenario, because the players have
probably prepared for the energy surplus by storing less in the storage facili-
ties. Moreover, the final contents of the scenario should have an increased
likelihood of lesser values; if the scenario is followed by a“normal scenario”
(i.e., ascenario with inflow and load closer to the mean) or even another “sur-
plus scenario” (i.e., continuing high inflow and low load) the players will be
less inclined to store energy. Meanwhile, there is also a possibility that the

4. For that matter, it is not unthinkable that a systematic method could be devel oped
to adjust the parameters of a stochastic process to match a series of load or inflow
data. Please refer to [126] for further details on this topic.
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I i
time
%ﬁ—,J
A long scenario

Figure10.4 Modelling of time. The players modelled in a long scenario see
time as a straight line—they have a certain, known history and
they anticipate a certain future (in accordance to their fore-
casts). Both history and future will affect the decisions of the
players.

The time perspective is different in a simulation; a scenariois
just alimited part of the time line. Assuredly, the scenario must
be proceeded by other scenarios and it will be followed by fur-
ther more scenarios, but when analysing a single scenario, we
do no have any exact knowledge of these scenarios—the his-
tory and future is a grey, unknown mist, which somehow must
be modelled in order to simulate how the players of the elec-
tricity market relates to their earlier decisions and their fore-
casts.

scenario is followed by a “deficit scenario” (where inflow is low and load
high) and then the energy storage facilities should be well filled at the end of
the scenario.

The reasoning above indicates that it is a mgor challenge to choose the
probability distribution of the initial and final contents of energy storage
facilities. Further research is required in this field before an acceptable solu-
tion can be presented. Some insight in the subject are given in for example
[25]. | myself have been thinking about two options, which could be worth-
while to study closer:

» Dynamic probability distribution. If the predetermined final
contents of the energy storage facilities are replaced by benefit
functions (see section 3.2.1) then an iterative process can be
used to obtain an appropriate probability distribution of the ini-
tial contents. We start by letting the storage facilities be half-
filled or some other arbitrary value. After simulating a number
of scenarios, we can estimate the duration curve of the final con-
tents of the storage facilities. Asinitial and final contents should
have the same probability distribution, this duration curve can be
used as a new estimate of the probability distribution of the ini-
tial contents. Then some further scenarios are simulated accord-
ing to the new distribution, and a duration curve of the final
contents is estimated, etc. Hopefully, this process will converge
to an appropriate probability distribution

» Very long scenarios. If a scenario comprises a very long time
period (compared to how long time it takes to empty and refill
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the energy storage facilities of the system) then it is reasonable
that both load and inflow will be approximately equal to their
expectation values, which means that the contents at the end of
the scenario should be equal to the contents at the beginning. In
thiskind of scenariosit is reasonable to assume that all scenarios
start and end with half-filled energy storage facilities (or some
other value.).®

10.2 POSSIBILITIESFOR VARIANCE
REDUCTION

To create a variance reducing effect it is necessary to have some information
about the system to be studied. As described in the previous section, the prob-
ability distribution of the scenario parameters have partly different properties
in short and long scenarios respectively, which means that the advance infor-
mation about the properties of a long scenario is somewhat different com-
pared to simulation of short scenarios. Below | will discuss how this affects
the different variance reduction techniques.

Complementary Random Numbers

Complementary random numbers are based on the existence of a negative
correlation between the values of the result variables of a scenario and its
complementary scenarios. Of the primary scenario parameters we have in a
long scenario it is only the total load and the total inflow that clearly have
correlations to the result variables. It islikely that the operation cost is high if
the total load is high, whereas if the load is low, the operation cost should be
low, too. A large inflow mean more power generation in the energy limited
power plants and as these power plants have negligible or small variable
costs, the operation cost should be low. A small inflow will for the same rea-
son probably result in higher operation costs. Both Dy and Q. are thus cor-
related to TOC. Complementary random numbers can therefore be used when
simulating long scenarios to randomise Dy and Qq: by forming complemen-
tary scenariosin the same manner as for short scenarios (see section 9.2.4).
Besides, there is also a connection between load, inflow and load shedding.
If the load is high and/or the inflow is low, there is arisk that the eectricity
market becomes subject to energy deficit, i.e., the stored energy is not suffi-
cient to cover the remaining load when thermal and non-dispatchable power
plants operate at their maximal capacity. The consequence is that although

5. 1 used asimilar ideain my first experiments with long scenarios; see [5].
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the available generation capacity is continuously larger than the load, at some
point load shedding will be necessary, because the available capacity in the
energy limited power plants cannot be utilised due to empty storage facilities.
Thus, energy deficit inevitably results in power deficit, but the players of the
electricity market have some control of when load shedding will occur. If
desirable, aminor part of the load could be continuously disconnected, which
would give LOLO = 100%, or it would be possible to choose larger discon-
nections for example one night per week, which would result in a value of
LOLO around 5%. The exact relation between energy deficit and power defi-
cit is thus dependant on how to ration the electric energy that actually can be
produced. The correlation between load, inflow and load shedding may there-
fore vary depending on the rules of the electricity market.

Dagger Sampling

| could hardly see any use for dagger sampling when simulating short scenar-
ios, because | find it easier to use complementary random numbers for a com-
mon probability distribution of available generation capacity. In long scenar-
ios, we do not use such common probability distributions, because we must
generate a sequence of states for each power plant, which is exactly what dag-
ger sampling does. However, the sequence obtained by dagger sampling will
have at most one period where the power plant is not available. Such a
sequence is only useful if MTTF is so large that it is extremely unlikely that
two errors would occur in one power plant during one dagger sampling cycle,
while MTTR must be so small that it is almost certain that a failing unit will
be repaired before next time period. It should be fairly unusual that these con-
ditions are fulfilled and therefore dagger sampling seems to have a very lim-
ited use for simulation of long scenarios; the only possibility | seeisto use
the method when randomizing the initial state of the power plants and trans-
mission lines. Whether or not thiswould produce any efficiency gain is some-
thing | do not dare to predict—this question has to be answered by practical
experiment.

Control Variates

As for short scenarios the results of probabilistic production cost simulation
(PPC) may be used as control variates for a Monte Carlo simulation. In PPC
an optimal energy value is determined for each energy limited power plant
[11, 32]. Thisenergy value, v,, is then compared to the generation cost of the
thermal power plants when determining the merit order of the power plants. It
is not considered that energy storage facilities have limited storage capacity.
A PPC model of along scenario can be written as

Possibilities for Variance Reduction 237



Chapter 10: Long Scenarios

T
minimise Y T, Y BgG.t* X VeHr. + ByUy) (102)
=1 geG reR
subject to ZGg i ZHr —U; = Dy,
geG reR t=1,..,T, (10.22)
0<Gy <Gy, vgeGt=1..T  (10.2b)
OSHr,tS Hr,t' erR,tzl,...,T, (1020)
0<U, t=1,..,T, (10.2d)
From the solution of (10.2) we can calculate
T
TOC = ZTtZBGgGg’t, (10.33a)
t=19eG
0 if U, =0,
LOLO, = _ (10.3b)
1 if U, > 0,
|
SLOLOT,
LoLO = Ll (10.3c)
2T
t=1

The vaues of the result variables of the PPC model (10.2) are then compared
to the result of the electricity market model of the Monte Carlo simulation;
the principles are the same as for short scenarios.

Correlated Sampling

My primary objection to using correlated sampling for simulation of short
scenarios was that the method in many cases is hard to combine with strati-
fied sampling. Concerning long scenarios stratified sampling is used in a
completely different manner (see below) and there should not be any difficul-
ties in using both methods simultaneously. Thisis of course an advantage, as
correlated sampling is well suited to study small differences between differ-
ent systems, i.e., exactly the kind of studies necessary to determine the value
of an investment (cf. section 1.1). An objection is however that it would still
be interesting to know the absolute values of the system indices in both cases
and not just the differences.
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Sratified Sampling

In chapter 9 | showed that stratified sampling is an excellent method to make
Monte Carlo simulations of electricity markets with short scenarios more effi-
cient. The strata definitions were based on the fact that knowing the available
resources it would be possible to predict how the system will behave for dif-
ferent levels of the total load. Such predictions are unfortunately not possible
for long scenarios.® However, as | concluded in the above discussion of com-
plementary random numbers, it is possible to make predictions about the pri-
mary scenario parameters total load, total inflow and the result variables
operation cost and loss of load. It could therefore be possible to build a strata
tree with two levels below the root, where one level specifies values of Dy
and the other one states values of Q. The resulting strata from such a strata
tree would however not be as homogeneous as the strata we get when build-
ing a stratatree for short scenarios; hence, the efficiency gain would be less.

It therefore seems as if stratified sampling is far less useful for long scenar-
ios compared to short ones. Thereis however a brand new problem to address
when simulating long scenarios, namely that the size of the scenario problem
can become so large that the analysis of single scenarios becomes trouble-
some time-consuming.” But there is a possibility that the calculation time can
be reduced by using stratified sampling.

The ideais that a scenario problem can be divided in along-term problem
and a number of short-term problems, where the duration of one period of the
long-term problem corresponds to the total duration of a short-term problem.
In the short-term problems we use the same period length as in the original
scenario problem. The long-term problem yields an approximate solution to
the scenario problem and this solution is further refined in the short-term
problems. Depending on how large optimisation problems we can manage, it
might become necessary to divide the analysis of a scenario in more than two
steps; cf. figure 10.5. In the following reasoning | will however assume that
there isonly one long-term problem and several short-term problems, without
any intermediate levels.

Already the division into several analysis with different time perspectives
in most cases results in an efficiency gain, because it is generally faster to
solve several small multi-area problems than one large.® But there is also a

6. Cf. footnote 1.

7. For example, consider an electricity market divided in five areas, where there are
in total four equivalent energy limited power plants. If each scenario in this elec-
tricity market comprises a year divided in one hour periods then we get 5 - 8 760
load balance constraints and 4 - 8 760 energy balance constraints, i.e., in total
78 840 constraints. Such large problems can be solved rather quickly if a linear
model is used, but otherwise there is—to say the |east—sweaty work ahead...
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Figure10.5 Analysisof a one-year scenario. We start from a scenario divided in
8 760 hours. From this scenario we first define a year problem by
taking monthly averages or monthly sums of the scenario parameters
of the original scenario problem. The solution to this problem pro-
vides initial and final contents for the energy storage facilities in
each of the month problems. In the month problems each period cor-
responds to a day, and mean values of the original problem are used
here too (not illustrated in the figure). The results of the month simu-
lations give initial and final contents of the energy storage facilities
in the 365 day problems. The scenario parameters in the day prob-
lems are directly taken from the original problem. The solution of the
day problems are used to determine TOC, LOLO and other result
variables.

Thanks to the division into smaller problem we will not have to
solve a multi-area problem comprising 8 760 time periods; we will
have 378 smaller problem instead, where the largest one comprises
31 time periods.

8. Cf. the practical experiments of [135].
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MONTE CARLO-SIMULATION

Electricity Market Model

ETOC

LOLP

Random number generator

a) Desired electricity market model.

b) Hereacertain scenario is analysed as
one single optimisation problem,
where each period is one hour long.

Scenario =3
problem
(complete)

W)

¢) Hereacertain scenario is analysed by
first solving an overall long-term
problem and then several more
detailed short-term problems. One
period in the long-term problem is as
long as the duration of a whole short-
term problem. Each period in the

Short-term problem | short-term problems is one hour.

Short-term problem |

Long-term
problem

d) Herethesamebasicideaisused asin
| panel ¢, but rather than solving all
] short-term planning problems, we
| Short terr: problem | = restrict ourselves to a number of ran-
o dom samples. In this case Monte
° Carlo simulation is used to calculate

| Short-term problem | 0 TOC and LOLO.

Long-term
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Figure10.6  Monte Carlo simulation of long scenarios. The figure illustrates how the
same electricity market model can be treated in several ways when analys-
ing individual scenarios. Which solution is chosen does not affect the elec-
tricity market simulation, as the three pieces of a puzze in panel b-d all fits
into the same Monte Carlo machinery in panel a.
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Figure 10.7

Example of division of a long scenario. The model constants and scenario
parameters are shown in the figure to the right. Panel a shows the values of the
result variables when the whole scenario problemis solved at once. Panels b-d
show the result when the same scenario is divided in long- and short-term
problems. The capacity limit in the sixth hour is missed in the long-term prob-
lem, which has difference consequences depending on how information is
transferred to the short-term problems. If reservoir limousines are used (panel
¢) then too much water is allocated to hour 4-6. All the water will be utilised,
but not in an optimal manner, which causes the TOC to be dlightly higher than
in the original scenario. Using water values (panel d) the missed limitation
results in overestimated water values; hence, too much water is saved for
future use. If the reservoir contents is calculated according to the solutions of
the short-term problems then we find 8 MWh too much water is left after hour
9. The lesser hydro power generation has been replaced by increased thermal
generation, which results in too high TOC compared to the original problem.

Hour

Scenario problem (original) 1 2 3 4 5 6 7 8 9
Load, D [MWh/h] 60 | 70 | 89 | 120|110 | 130|120 | 90 | 81
Inflow, Q [MWHh/h] 57 | 42 | 45 | 58 | 55 | 63 | 73 | 52 | 47
Reservoir contents [MWh]

At beginning of hour, M; _ 4 100 | 138 | 151 | 148 | 127 | 113 | 96 | 90 | 93

At end of hour, M; 138|151 | 148 | 127 | 113 | 96 | 90 | 93 | 100
Generation [MWh/h]

Hydro power, H 19 (29| 48| 79 | 69 | 80 | 79 | 49 | 40

Thermal, G 41 | 41 | 41 | 41 | 41 | 50 | 41 | 41 | 41
Electricity price, A [//MWh] 1411141 141|141 | 141|150 | 141 | 141 | 141
Water value, v [o/MWh] 141|141 | 141 | 141 | 141 | 141 | 141 | 141 | 141

a) Solutionto theoriginal scenario problem. TOC =45 774 .

Hours

Long-term problem 1-3 4-6 7-9
Load, D [MWh/h] 73 120 97
Inflow, Q [MWHh/h] 144 176 172
Reservoir contents [MWh]

At beginning of hour, M; _ 1 100 151 93

At end of hour, M, 151 93 100
Generation [MWh/h]

Hydro power, H 31 78 59

Thermal, G 42 42 42
Electricity price, A [&/MWHh] 142 142 142
Water vaue, v [e/MWh] 142 142 142

b) Solution to the long-term problem.

(continues next page)
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Figure 10.7 (cont.)

G = 100

H=8 M=100 Co(G) = 100G + 262
M =200 Mg=100
Q; =[57 4245585563 73 52 47]
D; = [60 70 89 120 110 130 120 90 81]
Hour
Short-term problem
(reservoir limit) 1 2 3 4 5 6 7 8 9
Load, D [MWh/h] 60 | 70 | 89 (120|110 | 130|120 | 90 | 81
Inflow, Q [MWh/h] 57 | 42 | 45|58 | 55| 63| 73| 52| 47
Reservoir contents [MWh]
At beginning of hour, M; _ 1 100 | 139 | 1531151 | 129 | 110 93 | 88 | 92
At end of hour, My 139 | 153 | 151|129 | 110 | 93 | 88 | 92 | 100
Generation [MWh/h]
Hydro power, H 18 | 28 | 47 | 80 | 74 | 80 | 78 | 48 | 39
Thermal, G 42 | 42 | 42 | 40 | 36 | 50 | 42 | 42 | 42
Electricity price, A [¢/MWHh] 142 | 142 | 142 | 140 | 136 | 150 | 142 | 142 | 142
Water vaue, v [e/MWh] 142 | 142 | 142 | 136 | 136 | 136 | 142 | 142 | 142

c) Solution to the short-term problems when using initial and final reservoir contents from
the long-term planning problem. TOC = 45 790 =. Values from the solution to the long-
term problem are shaded.

Hour

Short-term problem
(water value) 1 2 3 4 5 6 7 8 9
Load, D [MWHh/h] 60 | 70 | 89 | 120 | 110 | 130 | 120 | 90 | 81
Water value, v [//MWh] 142 142 142
Generation [MWh/h]

Hydro power, H 18| 28 | 47| 78 | 68 | 80 | 78 | 48 | 39

Thermal, G 42 | 42 | 42 | 42 | 42 | 50 | 42 | 42 | 42
Electricity price, A [//MWHh] 142 | 142 | 142 | 142 | 142 | 150 | 142 | 142 | 142
Inflow, Q [MWHh/h] 57 | 42 | 45| 58 | 55 | 63 | 73 | 52 | 47
Reservoir contents [MWh]

At beginning of hour, M; _ 100 | 139 | 1531151 | 131 | 118 93 | 88 | 92

At end of hour, M; 139|153 | 151 1131|118 | 101 | 88 | 92 | 100

d) Solution to the short-term problems when using water values from the long-term problem.
TOC = 46 906 =. Values from the solution to the long-term problem are shaded. Notice
that the reservoir contents are calculated after solving the short-term problems.
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possibility of making even larger efficiency gains, because most periodsin a
long scenario will show large resemblance. Rather than solving all short-term
planning problems, we could restrict ourselves to a number of randomly cho-
sen samples—in other words, Monte Carlo techniques may be used to esti-
mate TOC and LOLO in along scenario.? The difference between the three
options solving the whole scenario problem at once, dividing it into several
problems and solving al of them, and to use Monte Carlo techniquesisillus-
trated in figure 10.6.

Stratified sampling should be useful for Monte Carlo simulation of a long
scenario. Exactly how to use stratified sampling depends on how it is chosen
to transfer information form the long-term and short-term problems. Here
there are two alternatives.

Thefirst isto transfer initial and final contents of the long-term problem to
the short-term problems; the contents of the energy storage in the beginning
of one period in the long-term problem becomes the initial state of the corre-
sponding short-term problem (cf. figure 10.5).This means that the long-term
and short-term problems have exactly the same structure—the only difference
is that the short-term problems have shorter time periods. Using this kind of
information transfer allows stratified sampling to be used for choosing which
short-term problems should actually be solved. If there are large seasonal dif-
ferencesit might for example be possible to consider each month as one stra-
tum.

The other method to transfer information is to use energy values. The dua
variables of the energy balance constraint (3.14b) correspond to the value of
the stored energy. When solving the long-term problem we thus get energy
values for each energy storage and for each period. As a period in the long-
term problem corresponds to a short-term problem we may say that the long-
term problem produces one energy value for each storage and short-term
problem, v, . In the short-term problem we may now choose to neglect the
energy balance constraints and treat the energy limited power plants as ther-
mal power plants instead. The operation cost in the energy limited power
plant is then assumed to be Cyy; (H; 1) = v, (H; 1. In this case we will have a
long-term problem in the same shape as the original scenario problem, but
with longer period length and short-term problem in the same form as (10.2).
The finesse is that without the energy balance constraint each short-term
problem will disintegrate to a number of one-period problems. Thus, when

9. Thus, we use Monte Carlo techniques to solve a subproblem of a Monte Carlo
simulation. To avoid confusion it is very important to differ between Monte Carlo
simulation of an electricity market (or electricity market simulation if a shorter
designation is preferred), i.e., the problem of estimating the system indices ETOC
and LOLP of a certain electricity market, and Monte Carlo simulation of a long
scenario (or scenario simulation), i.e., the problem of estimating the result varia-
bles TOC and LOLO in a certain long scenario.
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using energy values we may transform a long scenario of T periods to T
short scenarios—and for sampling of short scenarios there are huge effi-
ciency gains to be claimed! Hence, the long-term problem is solved first and
then the resulting short scenarios are sorted into a strata tree. Based on the
strata tree, we may define strata according to the principles described in the
chapter on short scenarios.

When long scenarios are divided into several subproblems we introduce
several error sources. The long period length of the long-term problem may
cause incorrect mean values and overlooked limitations (see section 3.2.1),
which means that the information transferred to the short-term problems will
be dightly incorrect, as illustrated in figure 10.7. If we also choose to use
Monte Carlo techniques to determine TOC and LOLO we will also add errors
to the estimates. The question is if the benefit of the division—significantly
shorter calculation time for anaysis of a single long scenario—is large
enough compensation for these disadvantages. The results in [5] indicated
that the estimation errors from a Monte Carlo simulation of a long scenario
do not have any larger importance for the final result of the electricity market
simulation, but closer studies will be necessary to finally conclude how useful
stratified sampling is to simulation of long scenarios.

I mportance Sampling

When | was discussing importance sampling of short scenarios in
section 9.2.4, | advocated that importance sampling was an alternative to
stratified sampling, but the former method was to be preferred. A possible
application of importance sampling was however to determine how to distrib-
ute the primary scenario parameter Dy in the different areas of the sys-
tem—this problem cannot easily be dealt with using stratified sampling. The
same judgement is valid for long scenarios, where both D,y and Q must be
distributed not just over different areas, but also over different time periods.
Solving this task requires further studies of appropriate importance sampling
functions.
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CLOSURE

When | started my Ph.D. project, it was not known beforehand that Monte
Carlo simulation was a practical method to analyse modern electricity mar-
kets. As stated in my problem definition (see section 1.1), a smulation may
not take days or—horribl e thought—weeks to perform, if the simulation tech-
nique should be of any practical use. In aMonte Carlo simulation, this means
that the number of scenarios necessary to obtain a sufficiently accurate result
must be kept on a reasonable level. What constitutes a reasonable number of
scenarios depends on how fast a single scenario can be treated; if it takes
about a minute to calculate the result variables of a scenario, we may accept
perhaps a few hundred scenarios—but if we can process hundred scenarios
per second instead, it becomes possible to alow the simulation to include up
to amillion scenarios.

With efficient usage of variance reduction techniques, it hardly takes mil-
lions of scenariosto produce useful results, but rather between a thousand and
ten thousand scenarios. Neither does it take very long time to evaluate a sce-
nario. For example, it took my version of the NNP-algorithm? less than half a
minute to process thousand scenarios when | was simulating Kigoma region,
i.e.,, a multi-area model of an ideal electricity market having six or seven
areas and twenty-one power pl ants.> When simulating larger power systems
or non-ideal electricity markets, the computation time of each scenario will
probably increase somewhat. Long scenarios will aso require a larger work
effort per scenario, which however might be compensated by a reduction of
the total number of scenarios per simulation—closer studies of variance
reduction techniques for long scenarios will tell how that turns out. Nonethe-
less, | am fairly certain that the simulation time will not be a problem, thanks

1. A program written in C, which was run on a 433 MHz Alpha processor. It should
be noted that all matrix operations in this program was performed by subroutines
which | had written myself. A professiona programmer would undoubtedly write
more efficient code and by that means cut the computation time significantly.

2. See [7] for more details.
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to the increasingly fast computers of today, as well as further development of
both optimisation algorithms and variance reduction techniques.

The first conclusion of my work is thus that the Monte Carlo technique is
well suited for simulation of electricity markets. Below, | will give a further
summary of my results concerning how to perform electricity market simula-
tions, and give some suggestions of interesting issues for future research.

11.1 SIMULATION OF ELECTRICITY
MARKETS

The objective of a simulation is to predict how an electricity market will
behave for a certain set of resources, a certain demand and a certain market
design. Each electricity market will face an infinite number of scenarios and
therefore we need a simple way of summarizing the behaviour of the electric-
ity market in all these scenarios, so that it is possible to get an overview of the
simulation results. Thus, we may define a number of system indices, which
are equal to the mean result of all possible scenarios.

| differentiate between two kinds of electricity market simulations. static
and dynamic. In the former, the set of possible scenarios is constant. This
means for example that no new power plants are built and that the load fol-
lows the same probability distribution all the time. However, in a dynamic
electricity market simulation, the scenario population may change over
time—the change may even be depending on what has happened earlier in the
electricity market.

Another important aspect when simulating electricity market is how timeis
represented. | differentiate between two groups of models, namely those with
short scenarios and those with long scenarios. In a short scenario, it is
assumed that al the players of the electricity market make their decisions
based only on the conditions of the present moment; the behaviour of the
electricity market is thus independent of that has happened earlier in the sys-
tem and of the players expectations about the future. A short scenario isin
other words an on-the-spot account of the electricity market. A long scenario
on the other hand, comprises a certain time period, during which the condi-
tions of the electricity market (for example the state of the power plants or the
load) will have time to change. Thus, in along scenario, we have the possibil-
ity to follow how the players of the electricity market adjust to changes.

Two questions are of particular importance when performing a Monte
Carlo simulation of an electricity market. Firstly, it must be possible to find
out how the electricity market will behave in a certain scenario, and secondly,
we must choose the scenarios to study closer. Let me separately summarise
my results concerning these two issues.

248  Smulation of Electricity Markets



Chapter 11: Closure

11.1.1 Electricity Market Models

It is the electricity market model which tells us how the electricity market
will behave in acertain scenario. In practice this means that we solve an opti-
misation problem, which | refer to as the scenario problem.3 Different elec-
tricity market models are thus separated by the different structures of the sce-
nario problem.

In this dissertation | have developed a basic model—the ideal electricity
market. Moreover, | have compared this basic model to the conditions in a
rea electricity market, described different market designs and strategies
which follow from the differences, and | have suggested models. The analysis
of the differences between ideal and non-ideal electricity markets has prima-
rily been focused on three aspects of the electricity market: environment
issues, forecast uncertainties and grid costs.

Theldeal Electricity Market

The basic model of an electricity market iswhat | refer to as an ideal electric-
ity market. | have provided an extensive definition of the conditions which
have to be fulfilled in order to consider an electricity market as ideal. This
definition is useful in several ways. Firstly, it is straightforward to formulate
the scenario problem of an ideal electricity market. Moreover, the ideal elec-
tricity market represents the optimal resource utilisation, which means that it
can be used as a benchmark when evaluating areal electricity market. A good
understanding of the conditions of an ideal electricity market is also valuable
when analysing the operation of a real electricity market. Finaly, the ideal
model can be useful to simulate simple electricity markets (preferably such
with short scenarios, where the assumption of perfect information is fairly
reasonable).

The Environmental Impact of the Electricity Market

In an ideal electricity market, al players consider the environmental impact
of their actions, as the costs of damages to the environment are directly
included in the cost and benefit functions of the players. Unfortunately, real-
ity far to seldom works like this. The reason is partly that damages to the
environment can be hard to value or that the relation between a certain human
activity and a certain environmental damage is unclear, and partly because it

3. In some cases we will rather have an optimisation problem of each player (so-
called player problems) instead of one single scenario problem. The player prob-
lems are related to each other by one or more balance constraints which apply to
the whole market.
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is sometimes too simple for unscrupulous or ignorant players to neglect the
environment. The players can however voluntarily reduce the environmental
impact of the power system, for example if consumers require a specification
how the electricity they purchase has been generated, and that they then
refrain from buying generation which does not pay its environmental costs.

Generdly, the initiatives taken by the players of the electricity market are
insufficient, and authorities or international organisations have to intervene
and prompt the development by introducing different rules. | have described
most environmental rules which can be found in eectricity markets and pre-
sented basic models of them. An interesting observation when comparing dif-
ferent rules is that they all have a potential to result in a resource utilisation
which is most beneficial to the society. The prerequisite is however that the
authorities choose correct values of various control parameters; hence, the
guestion is not which rules are the best, but for which parameters it is most
easy to find an optimal value.

Consequences of Uncertain Forecasts

The playersin an ideal electricity market have perfect information and there-
fore never have to make a decision without being able to predict the conse-
guences of their actions. Thisis not the casein areal electricity market, and |
have identified a number of areas, where the players of the reality dueto fore-
cast uncertainty will behave differently compared to what they would have
donein anideal electricity market. The exact consequences of forecast uncer-
tainties depend on the context—above all the time perspective in the planning
where the forecast is used. If desirable, detailed models can be used, which
simulate the planning process of the players, but the risk is that such models
are unnecessarily complicated, without actually producing very much extra
precision.

My recommendation is to use simplified models, which only simulate the
conseguences of forecast uncertainty, rather than simulating the entire plan-
ning process. (An example of thisidea is to introduce a random deviation of
the players valuation of stored energy.) The disadvantage of this kind of sim-
plified modelsisthat we assuredly get rid of complex cal culations when solv-
ing the scenario problem, but on the other hand we are faced by the challenge
of collecting appropriate input to the model.

Grid Costs

A gridis apublic good, which makes it difficult to build and operate the grid
in afair manner. | have focused on the operation costs of the grid, which basi-
cally consist of the costs of the electric losses and rationing costs during those
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times when a part of the grid has reached is capacity limit. | have described
different methods to divide the cost of losses among the grid users and sug-
gested models to be used in electricity market simulation. The methods for
congestion management which | have modelled are restricted to the market
based solutions. | have also briefly discussed possible market dynamic of the
grid tariffs.

11.1.2 Monte Carlo Techniques

The basic idea of aMonte Carlo simulation is seductively simple: samplesare
chosen until a sufficiently clear picture of the studied population has been
obtained. The difficulty isto make the ssmulation as efficient as possible, i.e.,
to produce good results using as few samples as possible. Using various vari-
ance reduction techniques, it is possible to use information known in advance
to increase the efficiency. Different variance reduction techniques are based
on different statistical relations and hence use different kind of advance
knowledge. | have described six well-known variance reduction techniques
and demonstrated which kind of advance knowledge they use (and | have
made some small contributions of my own concerning stratified sampling). |
have also studied to which extent the six variance reduction techniques are
applicable in electricity market smulation using short and long scenarios
respectively.

Short Scenarios

The properties of ashort scenario are quite easy to predict, becauseit is possi-
ble to compare directly the available generation capacity and transmission
capability to the demand. Using stratified sampling, it is possible to divide the
scenario population in various parts (strata) and concentrate the sampling to
those scenarios, where the properties are harder to predict. Thisis most of all
important when estimating the risk of power deficit, LOLP.

Another variance reduction technique which is efficient for short scenariois
control variates. The difference between the model used in the analytical
method of probabilistic production cost simulation (PPC) and a multi-area
model of an ideal electricity market is mostly that in the latter, the operation
costs will be dightly higher, due to the losses. The estimate of the expected
operation cost, ETOC, is therefore much better if we start from the PPC
model and then just estimate the extra cost caused by the losses.

| have in practical tests shown that the simulation method | suggest pro-
duces a significant efficiency gain. In the test systems recorded in chapter 9
equally good or more accurate results are obtained when using variance
reduction technigues, even though the number of scenarios is 99% less com-
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pared to simple sampling. Very accurate results—the relative error is about
+0.1% concerning ETOC* and +2% for LOLP°—are obtained by using some
thousands of scenarios.

L ong Scenarios

It is harder to predict the properties of a long scenario than for a short sce-
nario, which makes it more difficult to find efficient methods to utilise vari-
ance reduction techniques. Besides, it is difficult even just to determine the
probability distribution of all inputs in a long scenario—it is primarily the
start and final contents of energy storage facilities, which cause problem. |
have therefore not performed any extensive, practical survey of how to simu-
late long scenarios, but what | have presented in this dissertation is a theoreti-
cal anaysis. | point out the different properties of long and short scenarios
and reason about the impact on the efficiency of various variance reduction
techniques. | also make a suggestion of how the theory of short scenarios can
be utilised, by breaking down each long scenario into a population of short
scenarios.

11.2 FUTURE WORK

The number of issuesin this dissertation which | have either chosen or been
forced to refer to future studies are legion and it would be little rewarding to
enumerate them all here. | will rather present some general project proposals,
where each project includes research around some questions which have not
been answered in this dissertation.

Further Development of the Monte Carlo Technique

There are several challenges to study more closely, in order to develop the
simulation technique to manage all sorts of electricity markets. The major
problems are of course managing transmission limitations and how to create
the largest possible variance reduction when simulating long scenarios. We
cannot be satisfied with the Monte Carlo technique, until such systems can be

4. Except for the test system with a large share of hydro power; in that case the
ETOC isso small that even aminor error in absolute termsresult in arelative error
around 2%.

5. With the exception of the test system including transmission limitations; even
when using calculation methods which can only be applied to two-area systems,
therelative error is still £6%. Further research on simulation of transmission limi-
tations is necessary.
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mastered, because they appear in severa practical applications (more about
that below). There are also other challenges, which are not as fundamental,
but nevertheless as interesting. | am for example thinking about how to simu-
late realy large systems, where the strata tree becomes so huge that the com-
putational effort to administrate the tree structure becomes troublesome in
itself (see section 9.2.2). When | analysed the scenario population in
section 9.2.1, | assumed that only available generation capacity, available
transmission capability and load had any importance to LOLO and TOC. Ina
non-ideal electricity market, there might be other factors which come into
play (for example, power plants with negligible operation costs might not be
fully utilised due to presence of market power), which might require that the
strata have to be defined differently.

Finally, there are also several minor details, where | have more or less arbi-
trarily chosen a solution without a closer analysis. Examples of this kind of
detail issues are the choice of compromise when the Neyman allocation pro-
duces conflicting results for different result variables (see section 9.2.3) and
determining correct confidence intervals for the estimate of a system index
(cf. sections 8.1 and 9.3.1). A systematic analysis of which solution is the
best will maybe not result in a radical reduction of the simulation time, but
any achieved improvement is of course valuable. And if it would not be pos-
sible to point out any possibilities to gain efficiency then that too would be a
valuable conclusion—then we would definitely know that no further studies
are necessary in this particular issue.

Methods for Data Collection

In my research | have studied general designs for models of ideal and non-
ideal electricity markets. | have however not performed any closer studies of
how to determine numerical values of the involved model constants or how to
identify the probability distributions of the scenario parameters. Obviously,
without proper input even the most sophisticated electricity market model is
useless; consequently, it is extremely important to develop methods to collect
the necessary data and process them to fit into the desired electricity market
model.

The technical data needed in the model (for example generation capacity in
individual power plants, availability and generation costs) generally cause no
major problems, although in today’s restructured electricity market they are
to some extent considered company secrets. It might however be difficult to
identify the price sensitivity of the consumers, the demand for eco-labelled
electricity, etc. It is probably hard to develop a general method to collect this
kind of data, but even simple rules of thumb could doubtless be of value for
the unhappy engineer, who has been assigned the task of compiling inputs.

In a Monte Carlo simulation it is desirable that the scenario problem is as
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small as possible (in order to keep the solution time short) and it is therefore
appropriate to use a multi-area model. The idea of a multi-area model is to
merge smaller units into larger, “equivalent” units; several power plants with
similar properties can be combined into one equivalent power plant, a group
of buses in the grid can be merged into an area, etc. If the model should not
loose accuracy, it isimportant that the behaviour of the equivalentsisas close
aspossible to the original units. It would of course be helpful if standard algo-
rithms were developed to identify the optimal parameter values of the equiva-
lents.

Market Dynamics and Applications

| have in this dissertation not built any dynamic electricity market models. In
the future it is probably a necessary further development. It would be appro-
priate to combine studies of how to simulate market dynamics with case stud-
ies around some interesting issue.

An example of an application for market dynamicsisto study the supply of
reserve power pl ants. It isnot certain that in a competitive e ectricity market
there will be enough reserve power to keep the risk of power deficit (LOLP)
on alevel which maximises the benefit to the society. In theory it is profitable
toinvest in reserve power plants [17]. However, for natural reasons a reserve
power plant is only operated during shorter time periods and with very irreg-
ular intervals (years may pass between two occasions when a reserve power
plant is needed), which might make investors judge the income as too uncer-
tain to be attractive (cf. [33]). It might therefore be necessary to design rules
which either subsidise reserve power plants or in some other way make
investments in reserve power more attractive. A good survey of existing and
conceivable methods is found in [18]. These rules should be possible to for-
mul ate as different dynamic electricity market models.

Another question involving market dynamics is about the various rules to
reduce the environmental impact of the electricity market. | have in this dis-
sertation shown that the different rules have various impacts in the short run,
but also that they have market dynamic effects. To fully evaluate different
environment legidations, these market dynamic effects must of course be
modelled.

6. The term reserve power plant refers to power plants which are only dispatched
during extreme peak load situations or when several other power plants are una-
vailable. The boundary between reserve power and base power (i.e., such power
plants which are more continuously dispatched) is rather indefinite.
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Rural Electrification

Access to electric power is probably one of the factors which has the greatest
importance to our standards of living; it is hard to imagine how modern
health care, communications, industrial production and education could work
without electric power. Yet about 1.6 billion people completely lack accessto
electricity and most of them live in poor, rural areas in developing countries
[148].

Research about Monte Carlo simulation of electricity markets can in sev-
eral ways be beneficial when studying the possibilities of electrifying an area.
For example, Monte Carlo simulation can be used to determine which costs
and which reliability different options result in, as demonstrated in for exam-
ple the study of Kigoma region in my licentiate thesis [7]. But to be able to
evaluate al options which might be of interest, it is necessary to be able to
simulate long scenarios in an efficient way, because we in many cases would
like to evaluate the possibility to use dispatchable hydro power or isolated
systems supplied by photovoltaics or wind power in combination with batter-
ies. Moreover, we must be able to manage market dynamics, because the load
in a recently electrified area can be expected to increase, but the rate of
increase probably depends on the electricity prices paid by the consumers.

Monte Carlo simulation can also be used to study how different market
designs influence the rate of expansion in a country which isonly partly elec-
trified. If the electricity market is restructured, will it then be profitable for
investors to build grids in rural areas and which prices will they charge the
consumers? Isit preferable to refrain from restructuring and make avertically
integrated power company responsible for al rura electrification? These
kinds of questions are further examples of simulations which require model-
ling of market dynamics.

Grid Tariffsto Cover Cost of L osses

| was surprised when | started studying how the cost of losses was transferred
to the grid users; | simply took it for granted that in centralised electricity
market some kind of optimal power flow algorithm was used in the central
power pool (which means that the losses are considered when deciding which
power plants should be dispatched) and that bilateral electricity markets used
feed-in tariffs, which reflect the marginal losses of the grid. However, it
turned out that many electricity markets use post allocation of transmission
losses, which | always considered as a rather inadequate method, since it is
quite arbitrary.

It would beinteresting to study how asingle system would be affected if we
switched between the different methods. How would the total surplus be
affected? How important are the patterns of the electric power flows?’ The
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most relevant would be to study areal system, but if it turns out to be difficult
to collect the necessary data then a fictitious—but realistic—test system
would at least indicate the size of the problem. It would for example be possi-
ble to get an idea of how much the social cost would increase if improper grid
tariffs were chosen. It would also be possible to estimate how large impact
the choice of grid tariffs could have for the surplus of individual players.

7. For example, the Nordic feed-in tariffs are partly based that the power flow in the
system is generally quite predictable, because a large part of the generation
resources are in the northern part of the system, whereas most of the consumption
is in the south. If the power flows often and quickly switched direction between
different parts of the system, feed-in tariffs could possibly become aless attractive
aternative.
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NON-LINEAR
OPTIMISATION

In this appendix a short summary is given of the most important definitions
and theorems concerning non-linear optimisation. More detailed descriptions
are found in [123, 125, 131, 132] and other textbooks on mathematical pro-
gramming.

Convexity

The notion convexity is central to the mathematical programming, because
convex problems do not have any local optima.

Definition A.1. A set X is convex if for every x; € X, x, € X
and real number o € [0, 1] it holds that ax; + (1 —a)x, € X.

The definition has a simple geometrical interpretation: if it is always possible
to draw a line between two arbitrarily chosen points within the set and all
points on the line also belong to the set, then the set is convex. The ideais
illustrated in figure A.1.

b

Convex Not convex

FigureA.1  Examples of convex sets and not convex sets.
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a) Convex, pseudoconvex and quasi- b) Pseudoconvex and quasiconvex,
convex function. but not convex function.

¢) Quasiconvex, but neither convex d) Neither convex, pseudoconvex nor
nor pseudoconvex function. quasiconvex function.
FigureA.2  lllustration of various types of convexity.

x Arbitrarily chosen point
o Extremum point
------ Line for testing convexity
- — - Line for testing quasi convexity

Proposition A.2. The intersection of any number of convex sets
isalso aconvex set.t

Definition A.3. A function f is convex on a convex set X if for
every X1 € X, Xo € X and real number a € [0, 1] it holds that

flaxq + (1 —a)Xo) < af(Xq) + (1 — a)f(xy).
The function is said to be strictly convex if the left hand side is
strictly less than theright hand sidefor all x; # X, and a € (0, 1).

In the one-variable case the definition of a convex function means that aline
which connects two points of the curve f(x) will never be below the curve (cf.
figure A.24).

Definition A.4. A function f is concave on aconvex set X if —fis
convex.

1. Cf. [123], p. 35.
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Proposition A.5. If fi, i = 1, ..., n, are convex functions on the
convex set X thenthesumf; + ... +f,,isaso aconvex function
on X.2

Proposition A.6. If fisaconvex function on aconvex set X then
the st C={x:xe X, f(x)<c} is a convex set for each rea
number ¢

Sometimes it is not necessary to require convexity, but it is sufficient to
assume the weaker notions of pseudoconvexity or quasiconvexity instead.

Definition A.7. A function f is pseudoconvex on a convex set X
if for al x; € X, X, € X such that Vf(x;)"(x, —x;) > 0 it holds
that f(xy) > f(xq).

Definition A.8. A function f is pseudoconcave on a convex set X
if —f is pseudoconvex.

Definition A.9. A function f is quasiconvex on a convex set X if
foral x; € X, x, € X and real number a € [0, 1] it holds that

foxq + (1 — c)X) < max {f(xy), f(x)}

Definition A.10. A function f is quasiconcave on a convex set X
if —f is quasiconvex.

Pseudoconvexity means that if we have an extremum point X, i.e,
Vi(xq) = 0, then f(x;) < f(xp) for al x, € X, which means that x; is a global
minimum for f(x) on X. In both figure A.2a and A.2b there is only one
extremum point and it corresponds to the global minimum in the interval. But
in figure A.2c and A.2d there are at least one extremum point which is not a
global minimum, which means that the functions in these figures are not
pseudoconvex.

In the one-variable case the definition of quasiconvexity means that if we
choose two arbitrary points and draw a horizontal line from the point where
f(x) is largest, the line will never be below the curve on the interval between
the two points. In figure A.2 this requirement is fulfilled for all examples
except in panel d.

Finally, it can be noted that nice convex functions are also pseudoconvex
and quasiconvex:

Proposition A.11. A convex function which is differentiable is
also pseudoconvex.t

Proposition A.12. A convex function is also quasiconvex.®

2. Cf. [123], p. 80.
3. See[123], lemma3.1.2.
4. Follows by the definitions A.3 and A.7.
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Optimality Conditions

Consider a general optimisation problem in the following form:

minimise  f(x) (A1)
subjectto  hj(x) =0, i=1,..,n, (A.18)
g(x) <0, ji=1,...,m (A.1b)

The optimality of this problem is given by the following two theorems:

Theorem A.13. Let A; denote the dual variable of the constraint
hi(x) = 0 and let y; denote the dual variable of the constraint
g(x) < 0. Let A be the index set for the active inequality con-
straints, i.e., the j for which gj(x) = 0.% The necessary optimality
conditions can then be written

n

Vf(x)+2 A Vhi(X) +Z ijgj(x) =0, (A.28)
i=1 jeA

hi(x) =0, i=1,..,n, (A.2b)

g(x) =0, j €A, (A.2¢)

g(¥) <0, jeA, (A.2d)

K =0, j €A, (A.2e)

b =0, jeA (A.2f)

Theorem A.14. If f is pseudoconvex, g; is quasiconvex for j € A,
h; is quasiconvex when A; >0 and quasiconcave when ;<0
then the necessary conditions are also sufficient for an optimal
solution.®

Most optimisation problems in this dissertation can be seen as specia cases
of (A.1), where the constraints mostly consist of equality conditions, but
where there aso is an upper and lower limit respectively for each optimisa-
tion variable, i.e., problem in the following form:

minimise  f(X) (A.3)
subjectto  hj(x) =0, i=1..,n, (A.39)
X <X <X =1, ...,m (A.3b)

I ] 1’

5. Follows directly from definitions A.3 and A.9.

6. The set A is generally referred to as the active set.
7. A proof is provided in for example [123], p. 162f.
8. A proof is provided in for example [123], p. 164f.
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To apply theorems A.13 and A.14, we rewrite (A.3) as

minimise  f(X) (A.4)
subjectto  hj(x) =0, i=1,..,n, (A.4aQ)
IJ-(x)=xj —-X <0, ji=1,...,m, (A.4b)
uj(x)=xj—xj <0, =1 ...,m (A.4c)
The optimality conditions can thus be written as
n
VIO + Y LV + 3 - (-1 + S v 1 = 0, (A.53)
i=1 jeA jeA,
hi(x) =0, i=1,..,n, (A.5b)
X = X, jeA, (A.5¢c)
X > X, jeA, (A.5d)
=0, jeA, (A.5e)
=0, je A, (A.5f)
Xj = %, j €Ay (A.50)
X < X je Ay (A.5h)
vj 20, je A, (A.5i)
vj=0, je A, (A.5)

Thej:th row in (A.5a), which corresponds to the optimality condition of x;
becomes

" Bh(x)
of(x) i _

i=1 J

Now notice that j cannot simultaneously belong to both A; and A, because
that would imply that x; = X, = x;, but if the upper and lower limit of X; coin-
cide then X; would be a constant and not an optimisation variable. Hence,
either p; or v; must equal zero, while the other dual variable is equal to an
arbitrary non-negative value. Therefore, (A.6) can be simplified to an
inequality condition in those cases when an optimisation variable is equal to
its upper or lower limit.

Another observation is that the functions I(x) and u(x) are linear; thus, they
fulfil all convexity conditions. Hence, it only depends on the objective func-
tion, f(x), and the equality constraints, h(x) whether the problem is convex or
not.

The above results can be summarised as the following theorem:
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Theorem A.15. If f(x) is pseudoconvex and h;(x) is quasiconvex
when 2; > 0, and quasiconcave when A; < 0, then the necessary

and sufficient optimality conditions for a problem in the form
(A.3) can be written as

n
oh: (x
SR = T
" Bh(x)
m:— 7\4I_ |fX<X<X jzla---zm
axJ :1' axj IR B
of(x) 8hi(x) 3
ox. 2 M ox I %5 =%,
J i = J
and
hI(X) =01 I= 11 ’n’
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RANDOM VARIABLES

In this appendix, a short overview is given of the most important definitions
and theorems concerning random variables. More detailed descriptions are
found in [128, 129] and other textbooks on probability theory and random
variables.

In the description below it is generally assumed that we are considering a
continuous random variable X. If X is discrete instead, all integration should
be replaced by summation instead.

Probability Distributions

The result of arandom experiment is referred to as an outcome. In each trial,
there is a set of possible outcomes, which is generally called the sample
space. A random variable can be seen as a function, which associates each
outcome to anumerical value. The probability distribution of the random var-
iable states how likely different outcomes are. The probability distribution
can be described in several ways:

Definition B.1. The probability that an observation of X belongs
toaset X isgiven by the density function fy(x), i.e.,

P(XeX)= jfx(x)dx. L
X

Definition B.2. The probability that X < x is given by the distri-
bution function Fy(X), i.e., Fx(X) = P(X < X).

Definition B.3. The probability that X > x is given by the dura-

1. It can be noted that concerning discrete random variables, fy(X) is often referred to
as the probability function, because in this case fy(X) is exactly equal to P(X = x).
Except for this difference in the interpretation of fy(x), probability functions and
density functions have the same properties.
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fy(X) Fx(X) Fx(X)

1 1

® I

:I:l:l-»x X X

X a a a

FigureB.1 Example of density function, distribution function and duration curve
of arandomvariable. The variable X is uniformly distributed on the
interval [0, a].

tion curve Fy(x), i.e, Fy(x) =P(X>x).2

Theorem B.4. The density function, distribution function and
duration curve are related to each other according to

X 0

Fy(X) =1—Fy(x) = 1- [tx(hdt = [fy(tyat. 3
% X

If we take the sum of two random variables, the result is a new random varia-
ble, having its own distribution function. The following applies to independ-
ent random variables:*

Theorem B.5. The density function of the sum, Z, of two inde-
pendent random variables X and Y is given by convolution. The
convolution formula of independent discrete random variablesis
written

fz(X) = fo(i M (x=1)
i

and for independent continuous random variables, we have

o]

f(X) = j f (Df (X —t)dt. ®

2. Duration curveis my own designation for thiskind of function. Other authors may
use terms as cumul ative distribution function or reliability function.

3. The theorem follows directly by the definitions B.1-B.3.

4. See the section Correlations on page 266.

5. A proof is provided in [129], p. 70 and. p. 113 respectively.
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Expectation Value and Variance

The density and distribution functions defined above describe a random vari-
ablein detail. In many cases, we have alarger practical use of an approximate
description, in the form of the expected mean value. This information is
obtained using the expectation value:

Definition B.6. The expectation value of a random variable X is
given by

0

E[X] = J Xfy (X) dX.

Sometimes, we also need a measure of how much a single sample can deviate
from the mean. This measure is either stated by the standard deviation, which
is defined as the square root of the variance. The varianceinitsturnisdefined
asfollows:

Definition B.7. The variance of arandom variable X is equal to
the expected quadratic deviation from the expectation value, i.e.,

Var[X] = E[(X - E[X])?] = E[X?] - (E[X])? =

= j(x — E[X])2f(x)dx.

The following two theorems describe how expectation value and variance
are affected by linear operations:

Theorem B.8. If arandom variable X is multiplied by a scalar a
then the expectation value and variance of aX are given by

E[aX] = aE[X],
Var[aX] = a2 Var[X].6

Theorem B.9. The expectation value and variance of the sum of
two random variables X and Y are given by

E[X+Y] =E[X] + E[Y],

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X; V],
where Cov[X, Y] is the covariance between the two variables
(see definition B.11).”

One of the reasons that duration curves are useful is that the expectation
value of the corresponding random variable can be computed by studying the

6. A proof is provided in [128], §28-29.
7. A proof is provided in [128], §28-29.
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area below the duration curve:

Theorem B.10. If x is the least possible outcome of a random
variable X then the expectation value of X is given by

o0

E[X] = x + jF~x(x)dx 8
X

When studying power systems, x is often equal to zero, which, means that
the expectation value equals the area of the part of the duration curve in the
first quadrant. This situation isillustrated in figure B.1.

Correlations

If we consider more than one random variableit isin many casesimportant to
know how their probability distributions are related to each other. A very
important notion in this context is independent random variables. There are
several definitions of the meaning of independent random variables, but
briefly speaking, we may say that if X and Y are independent then knowledge
of the outcome of X will not provide any information about the outcome of Y
and vice versa. If we for example roll adice twice and let X be the outcome
of the first roll and Y the outcome of the second then X and Y are independ-
ent.® However, if X isthe outcome of the first roll and Y is the sum of the two
rollsthen X and Y are dependent; given the outcome of X, the random variable
Y will have completely different probability distributions.

A measure of how two praobability distributing are correlated to each other
isthe covariance:

Definition B.11. The covariance of two random variables X and
Yisgiven by

Cov[X, Y] = E[(X=E[X])(Y - E[Y])] = E[XY] — E[X]E[Y].
A related measure is the correlation coefficient:

Definition B.12. The correlation coefficient between two ran-
dom variables X and Y is given by

Cov[X, Y]
Var[X]Var[Y]

The correlation coefficient will always be in the interval [-1,1]. If
p(X,Y) =0, we say that X and Y are uncorrelated. Independent variables are

p(X,Y) =

8. The theorem follows more or less directly from the definitions of density function,
duration curve and expectation value; cf. [7], p. 115.
9. Unless there is something fishy about the dice.
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aways uncorrelated, but uncorrelated variables are not aways independ-
ent! 0 If p(X, V) is positive, the random variables are positively correlated,
which means that if we for example know that the outcome of X was higher
than the expectation value then it is more likely that Y too is higher than the
expectation value. If the variables had been negatively correlated instead
(p(X,Y) < 0) then ahigh value of X would have resulted in an increased prob-
ability of alow valuefor Y.

10. Consider for example a U(-L, 1)-distributed random variable X and Y= XZ.
Although Y is adirect function of X (and hence clearly dependent of X), the corre-
lation coefficient is p(X, Y) = 0.
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RANDOM NUMBER
GENERATION

Without algorithms to generate random numbers, it would not be possible to
perform a Monte Carlo simulation on a computer. Several methods have been
developed for generation of so-called pseudorandom numbersfrom aU(O, 1)-
distribution. The term pseudorandom numbers is used to emphasise that we
do not get truly random numbers, but a pseudorandom number generator is
based on a seed. Given the same seed, the random number generator will pro-
duce the same sequence of numbers. A good generator will produce along se-
guence before it starts repeating itself. Moreover, it is desirable that the distri-
bution of the generated numbers is as close as possible to a uniform
probability distribution, and that the correlation between the random numbers
isnegligible.

Software capable of producing good random numbers is available on all
modern computers; therefore, there is no reason to describe the function of a
random number generator in detail.> However, below | will briefly describe
how to transform the U(0, 1)-distributed random numbers to random numbers
of any desirable probability distribution.

Generating Random Numbersfrom an Arbitrary Distribution

An ordinary random number generator randomises numbers which are uni-
formly distributed between 0 and 1, i.e., random numbers from a U(0, 1)-dis-
tribution. Using the following theorem, we can obtain random numbers from
most other distributions:

Theorem C.1. If arandom variable U is U(0, 1)-distributed then
therandom variable Y = F;l(U) will have the probability distri-
bution Fy(X).2

1. The reader who wants to learn more about random number generator may for
example consult [47], section 3.3, or [133], chapter 2.
2. A proof can be found in for example [47], p. 43 or [133], p. 39.
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F;l(x) in the theorem is the inverse function of Fy(X). Hence, the theorem is
referred to as the inverse transform method. It can be noted, that we might as
well use the duration curve as the distribution function.

Generating Exponentially Distributed Random Numbers

Random numbers from the exponential distribution can easily be generated
by applying the inverse transform method:

Theorem C.2. If U isaU(0, 1)-distributed random number then
Y is E(M)-distributed if Y is calculated according to
= —7—% Inu.3
If alarge number of exponentially distributed random numbers are needed, a
logarithm calculation is necessary for each random number generated using
theorem C.2. Thereis an alternative method too, which only requires one log-
arithm calculation:

Theorem C.3. Let Uy, ..., Uy, _4 be independent and U(O, 1)-
distributed random numbers. Sort the random numbers U, ; 4,
..., Ugp_1 in ascending order and denote the sorted segquence
Ui, ..., U,_q. Then

n
1 1 L}
i=1
are independent and E(A)-distributed.*

According to [133] theorem C.3 is more efficient than theorem C.2 if the
number of generated random numbers, n, is between 3 and 6.

Generating Normally Distributed Random Numbers

The inverse of the distribution function, CD_l(x), does not exist for the nor-
mal distribution. However, it is possible to use an approximation of the
inverse function for the transformation:

Theorem C.4. If U isaU(0, 1)-distributed random number then
Y isN(0, 1)-distributed if Y is calculated according to

3. The theorem follows directly from theorem C.1.
4. A proof isprovided in for example [133], p. 68ff.
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0= U if 0<U<O0.5,
1-U if 0.5<U<1,
t=./-2InQ,
Co= 2.515517, €1 = 0.802853, C, = 0.010328,
d; = 1.432788, d, = 0.189269, d3 = 0.001308,
ottt c t?

z=t-

1+d;t+d,t2 +dgt3

and finally

-z if 0<U<O0.5,

Y=40 if U = 0.5,

z if05<U<1.°

Thistheorem is referred to as the approximate inver se transform method.

Independent N(O, 1)-distributed random numbers can then be transformed
to random numbers from a general normal distribution. It is also possible to
generate random numbers with a particular correlation:

Theorem C.5. Let X =[Xq, ..., X,] | denote avector of independ-
ent, N(O, 1)-distributed elements. Let B = 22, i.e, let 2; and g;
be the i:th eigen value and the i:th eigen vector respectively of
the matrix X, and define matrices as follows;

P= [g]_! LRE) gn]’
A =diag(rq, ...y Ay,
B =PAY2PT,
Then Y = p + BX is a vector of normally distributed random

numbers with the expectation value vector p and the covariance
matrix .9

From the theorem above, we have that if we only need one random number Y
from an N(u, o)-distribution, then the covariance matrix is £ = o2, which
means that we use the transformation Y = pu + oX.

Generating Random Numbersfrom a Part of a Distribution
When using stratified sampling, it is necessary to be able to direct the out-

5. The theorem is a summary of the method described in [47], p. 48f.
6. The theorem is based on remark 6 in [126], p. 35.
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come of a random variable to a specific interval. Concerning uniformly dis-
tributed random numbers, thisis atrivia task. As random numbers with any
other distribution than a U(0, 1)-distribution can be generated by transforma-
tion, arandom number from a certain interval can be generated by first decid-
ing which subinterval of the U(0, 1)-distribution will after transformation
correspond to the desired interval:

Theorem C.6. If Uy is U(O, 1)-distributed then the outcome of
the random variable Y, which has the distribution function Fy(x),
will belong to theinterval [a, b, if Yis calculated according to

o =Fy(a),

B =Fy(b),

U= (B—O(,)Uo‘*'OL,
Y=FJ(V).’

7. The theorem follows directly from theorem C.1.
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TWO-AREA POWER
SYSTEMS

In a two-area system it is quite straightforward to calculate LOLP analyti-
cally, even if we consider transmission losses and limitations. Given the
available generation capacity in each area, G; and G, the density function
of the load, fp, the available transmission capability, P, and the transmission
losses as a function of transmitted power, L(P), we can calculate the risk of
power deficit. Aswe in practice have several possible states for G; and G,
we are forced to repeat this calculation for each state. The final value of
LOLP is then obtained by weighting the partial results according to their
probabilities.

The tricky part of the calculation is to determine LOLP(G;, G,). If we
consider the D1D,-plane and use the set L to denote the scenario in which
load shedding occurs, then we can calculate the risk of power deficit as

LOLP(Gy, Gy) = j j fo (Xg, Xp) X, X, (D.1)
L

If D1 and D, are independent then we may rewrite (D.1) as

o]

LOLP(Gy, Gp) = | fDl(xl)ﬁDZ(BZ(xl))dxl, (D.2)

where [_)z(xl) is the largest load permitted in area 2 if we should avoid
power deficit, provided that the load in area 1 is equal to x;.

The function Dy(x,) can be divided in two parts. If x; < G; then thereis
surplus capacity to be exported from area 1; in this case the maximal load in
area 2 islarger than the area’'s own generation capacity. How much larger the
load can be is determined by I512(x1), which isthe maximal export from area
1. If sufficient generation capacity is available then P1»(x,) equalsthe trans-
mission capability between the areas, i.e., P. Otherwise, the maximal export
is equal to the unused generation capacity of areal, i.e, G- Xy

The second dternative isthat x; > G4, which meansthat the load in area 2
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MW D,

G, MW

FigureD.1  The set of scenarios. The shaded areas correspond to the
scenarios where load shedding is necessary due to trans-
mission limitations, transmission losses and capacity def-
icit respectively (cf. figures 9.2-9.4).

must be less than the area’s own generation capacity; there must be a surplus
in area 2 to be exported to area 1. The surplus should be large enough to allow
the transmitted power, P,;(X;), to cover both the transmission losses and the
part of theload in area 1 which cannot be covered by the generation resources
within the area. Therefore, the transmitted power is determined by the solu-
tion to the equation

Po1(X)) = L(Py(Xp)) +%; = Gy. (D.3)

If we have aloss function accordingto L = sz then (D.3) has the solution

1 / 1 X -G
P21(X1) - 2,y_ 4’Y2_ y . (D4)

Finally, we must consider that there is an upper limit to how much we can
export from area 2.
Allin all, we get the following function:

G+ P1a(X)) —L(P1a(X1))  0<x, <Gy,
Dy(xq) = G —Py(Xy) G1<x; <G, + Py —L(Py), (D.5)

0 Gy +Ppp —L(Pyp) <Xy,
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where
P1o(Xy) =min (Gy—x4, P), (D.6)
|521 =min (C_;z, IS) (D?)

and where P,,(x;) isthe solution of (D.3).
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ABBREVIATIONSAND

NOTATION

Units

Hz
kV
kw
kWh
MW
MWh
TWh

Abbreviations

Eltra
EM PS-model

ETSO
EU
IEE

IEEE

HVDC
KRAV

arbitrary currency unit

Ampere

hour

Hertz

kilovolt

kilowatt

kilowatt-hour

megawatt (= 1 000 kW)
megawatt-hour (= 1 000 kwh)
terawatt-hour (= 1 000 000 kWh)

system operator of western Denmark

multi-area power scheduling model (simulation
model developed by SINTEF)

European Transmission System Operators (cooper-
ation organisation of the Europeans system opera-
tors)

European Union

Thelnstitution of Electrical Engineers (cooperation
organisation for electrical engineers)

The Institute of Electrical and Electronics
Engineers (cooperation organisation for electrical
engineers)

High Voltage Direct Current

Kontrollféreningen for ekologisk odling (Swedish
organisation for eco-labelling of agricultural prod-
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KTH

MNZD
MSEK
NNP
NO,
Nordel

PIM
PPC
rms

SEK
SINTEF

UCTE

ucts)

Kungliga tekniska htgskolan (Royal Institute of
Technology in Stockholm)

millions New Zealand Dollars

millions Swedish Crowns

Non-linear Network Programming

nitrogen oxides

cooperation organisation of the Nordic system
operators

Pennsylvania-New Jersey-Maryland (electricity
market in north-eastern U.S.)

Probabilistic Production Cost simulation

root mean square

Swedish Crowns

Stiftelsen for industriell og teknisk forskning ved
Norges tekniske hagskole (The Foundation for Sci-
entific and Industrial Research at the Norwegian
Institute of Technology)

Svenska Naturskyddsféreningen (Swedish Society
for Nature Conservation)

sulphur dioxide

Stochastic Programming

Svenska kraftnét (Swedish system operator and
owner of the national grid)

Union for the Co-ordination of Transmission of
Electricity (cooperation organisation of most Euro-
pean system operators except for the Nordic coun-
tries, the British isles and former Soviet Union)

Electricity Market Modelling

I ndex

physical limit (for example installed capacity)
temporary technical limitation (for example availa-
ble capacity at a certain occasion)

down-regulation

up-regulation

certified

accounting period

consumer

electricity product

trading in the ahead market
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Og power plant (generally thermal power plants)
Ome On area

oP capacity reserved for primary control

OR actual operation

Oy energy limited power plant

Ot time period

Otot sum for the entire system

Functions (scenario parameter Ymodel constants)

Bo(©) benefit function of ¢

Co(©) cost function of ¢

Dy(0) damage function of ¢

Eq(©) emission function of ¢

Lo () loss function of ¢
MBy(0) marginal benefit function of ¢, i.e., dB,/d®
MC,(0) marginal cost function of ¢, i.e., dC,/d0¢
MD(0) margina damage function of 0, i.e., dD,/d0
ME(0) marginal emission function of ¢, i.e., dE,/d®
ML (®) marginal loss function of ¢, i.e., dL,/d0

Sets (scenario parameter smodel constants)

A set of time periods belonging to a certain account-
ing period
C set of consumers
Cp set of price insensitive consumers
Ca set of price sensitive consumers
G set of power plants (generally thermal power
plants)
M set of power plants supplying a certain electricity
product)
N set of areas
P set of interconnections
Prom set of areas m capable of importing from arean
Prem set of areas m capable of exporting to arean
R set of energy limited power plants

Other Scenario Parametersand M odel Constants

A number of accounting periods
D load (price insensitive) [MWh/h]
E number of electricity products

279



Abbreviations and Notation

green certificate quota [%]

inflow to energy storage during a certain time
period [MWNh]

primary control reserve [MW]

period duration [h]

number of time periods

constant term of the function ¢

coefficient of linear term in the function ¢
coefficient of quadratic term in the function ¢

Result Variables and System Indices

(ON)
EE
EG
EENS
EL
ENS
EP
ETOC
G

H
LOLO

LOLP

TOC

@u~x >

consumer’s surplus [o/h]

expected emissions [ton/h]

expected generation [MWh/h]

expected energy not served [MWh/h]

expected losses [MWh/h]

energy not served [MWh/h]

expected transmission [MWh/h]

expected total operation cost (i.e., E[TOC]) [a/h]
generation (generally in thermal power plants)
[MWH/h]

generation in energy limited power plant [MWh/h]
duration of load shedding during a certain time
period [% or h/year]

risk of power deficit (i.e., E[LOLQ]) [% or h/year]
contents of energy storage at the end of atime
period [MWh]

market operator’s surplus [o/h]

transmission [MWHh/h]

producer’s surplus [o/h]

spillage from energy storage during a certain time
period [MWh]

total surplus[=/h]

unserved power [MWh/h]

total operation cost [=/h]

generation in non-dispatchabl e power plant
[MWHh/h]

load (price sensitive) [MWh/h]

purchased and cancelled certificates [MWh/year]
price of emission rights [@/ton]

emission rights purchased by players outside the
electricity market [ton/year]
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Abbreviations and Notation

DHEDUsIl < 2 >A <

individual emission rights value [o/ton]
individual certificate value [s/MWHh]

purchased emission rights [ton/year]

electricity price [o/MWh]

energy value [&//MWh]

consumption subject to penalty fee [MWh/year]
certificate price [¢/MWNh]

rebate [o//MWNh]

emissions subject to penalty fee [ton/year]
unused certificates [MWh/year]

Monte Carlo Technique

Random Variables
Cov[01, ©5]
E[0]

covariance between ¢4 and 0,
expectation value of ¢
distribution function of ¢
duration curve of ¢

density function of ¢
probability of the event ¢
variance of ¢

expectation value of ¢
standard deviation of ¢

Probability Distributions

E()
N(u, o)

U(a b)

Sampling

Lo s3z2zr®

exponential distribution with intensity A

normal distribution with expectation value u and
standard deviation o

uniform distribution between a and b

coefficient of variation for ¢
number of strata

number of unitsin population
estimate of expectation value of ¢
number of samples

estimate of standard deviation of ¢
relative tolerance

weight of stratum h
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Abbreviations and Notation

Special Sratification Parametersfor
Simulation of Electricity Markets

_[
Uw

Uwe

maximal total losses [MWh/h]

maximal generation capacity with negligible opera-
tion cost which cannot be utilised due to congestion
[MWHh/h]

maximal generation capacity which cannot be uti-
lised due to congestion [MWh/h]

Electrical Engineering

f
R

frequency [HZ]
speed-droop characteristics [MW/HZ]

Reliability Analysis

MTTF
MTTR
p
TTF
TTR
A

n

mean-time to failure [h]
mean-time to repair [h]
availability [%]

timeto failure [h]
timeto repair [h]
failurerate [h 7]

repair rate [
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