
Degree project

Empirical testing of pseudo
random number generators
based on elliptic curves

Abstract

An introduction on random numbers, their history and applications is given,
along with explanations of different methods currently used to generate them.
Such generators can be of different kinds, and in particular they can be based on
physical systems or algorithmic procedures. The latter type of procedures gives
rise to pseudo-random number generators. Specifically, several such generators
which are based on elliptic curves are examined. Therefore, in order to ease
understanding, a basic primer on elliptic curves over fields and the operations
arising from their group structure is also provided. Empirical tests to verify
randomness of generated sequences are then considered. Afterwards, there are
some statistical considerations and observations about theoretical properties of
the generators at hand, useful in order to use them optimally. Finally, several
randomly generated curves are created and used to produce pseudo-random se-
quences which are then tested by means of the previously described generators.
In the end, an analysis of the results is attempted and some final considerations
are made.

Keywords: elliptic curves, cryptography, pseudo random, number generation,
PRNG, TRNG, linear congruential generator, power generator, Naor-Reingold
generator, empirical testing, frequency test, serial test, run test, poker test,
autocorrelation test

Acknowledgements

I would like to thank in particular Per-Anders Svensson for advice while choosing
the topic for this thesis and the assistance throughout; Karl-Olof Lindahl for
the useful lectures on the thesis process; and finally my family for supporting
me during my studies.

1

Contents

1 Introduction 4
1.1 Motivation and aim . 5
1.2 Report outline . 6

2 Preliminaries 7
2.1 Random numbers . 7

2.1.1 Criteria for randomness 8
2.1.2 Applications . 9

2.2 Elliptic curves . 9
2.3 Random number generation . 14

2.3.1 Non-deterministic . 14
2.3.2 Deterministic . 15

2.4 Testing for randomness . 17
2.4.1 Frequency test . 18
2.4.2 Serial test . 18
2.4.3 Poker test . 18
2.4.4 Run test . 19
2.4.5 Autocorrelation test . 19

3 Methods 22
3.1 Research of information . 22
3.2 Statistical procedures . 22

3.2.1 Remarks on interpreting results 23
3.3 Implementation . 24

3.3.1 Theoretical observations 24

4 Results 27
4.1 Some curves in detail . 27
4.2 An extract of the results . 29

5 Discussion 32
5.1 Single curves . 32
5.2 In general . 33
5.3 Running times . 33

2

5.4 Possible developments . 35

6 Conclusion 36

Appendices 40

A Source code for random number generators 41

B Source code for testing 46

3

Chapter 1

Introduction

c© Dilbert, “Random Number Generator”, October 25, 2001

The history of number generation is full of interesting anecdotes and attempts.
Nowadays, random numbers are widely used, yet their true nature remains hard
to define. Is randomness an intrinsic property that is naturally occurring, is it
merely a mathematical concept tailored to suit our needs? The line between
those possibilities is quite fine.

For a long time in history the random number generators of choices were simple
tools such as—hopefully fair—dice, coins, and cards, used especially for betting
games, dating back to several centuries ago. For gambling purposes, wheels
were also used which eventually evolved in the game of roulette [2].

During the early twentieth century, it was common to use tables containing
random numbers derived from data sources such as census or logarithmic ta-
bles [13]. Around 1945, the RAND Corporation produced a table with a large
amount of random numbers picked by a machine and an operator together. In
1957, a machine called ERNIE 1 was first used to generate winning lottery num-
bers. It was the first machine capable of quick random number generation, and
picked the curiosity of the public. Using noise generated by neon tubes, it was
an example of a hardware random number generator—and quite a large ma-
chine. ERNIE 1 had several successors, each smaller and more efficient [3,6,14].

4

When Intel’s Ivy Bridge processors came out in 2012, an instruction rdrand()
was added in order to produce random numbers from a hardware entropic ran-
dom source [4].

But such slower sources were not, and are not, practical in all situations. With
the advent of computers, the matter of generating random numbers by means
of algorithms became of interest. The reasons were obvious: fast generation
with minimal time and resource expenditure would be of advantage. To be fair,
algorithmic generation was suggested earlier, even if not particularly pursued.
A monk known as Brother Edvin first proposed, around the thirteenth century,
a method which would be revised and proposed by Von Neumann in 1951. It
was called the middle square method. Starting from a four digit number, it
would be squared, and the four middle digits would be subsequently squared.
It was an obviously flawed method, but nonetheless it was a beginning [4].

Subsequently, more algorithms were invented. For instance, a very simple one
is the linear congruential generator [2], a variation of which we consider in this
work. Another example is the Blum Blum Shub generator [2], today well known
as a cryptographically secure method. This kind of random number generators
are quite interesting, because they can be studied both theoretically and em-
pirically. In recent years, the necessity to have effective generators for several
different uses had mathematicians and computer scientists try to find new meth-
ods to add to an already large pool of algorithms. In this work, we examine
some of these in more detail. The generators we consider are all based on elliptic
curves. These are algebraic curves with the property that it is possible to deter-
mine group operations that, along with the curve points, form an Abelian group.
The security of elliptic curves relies on the difficulty of solving the discrete log-
arithm problem within them. So far, no method taking less that exponential
time has been found [1,10]—it is thought to be a hard problem. There are a fair
amount of generators of this kind, and some descriptions can be found for ex-
ample in [16]. A particularly infamous generator is the Dual EC-DRBG, which
is now known to have relevant security weaknesses [5]. In this paper, we look at
a few of the simplest such generators, in order to study them more accurately,
namely, the linear congruential, power, and Naor-Reingold generator, analysing
and testing them.

1.1 Motivation and aim

Initially, the thesis topic was determined to be relating to cryptography, because
of personal interest. By narrowing down the choice of topics, random generators
based on elliptic curves were chosen as a basis because of being related to some
of the most recent developments in the field of cryptography. It was decided
that only a few of this kind of generators would be included in this work, which
was so that the focus could be on thorough testing.

5

The initial conjecture was that it would have been possible to show that elliptic
curves can be used to generate good random sequences. There were several
limitations that are described in later sections, as of course it would not have
been possible to test all curves and generators based on those, and apply all
existing tests to them.

Although all the necessary notions—overviews of random number generation,
testing algorithms, and elliptic curves—were researched beforehand, most of
this work is original and centred on implementation and programming meaning
not many references are given. However, a large part of the code is included in
the appendix available for consultation and reuse.

1.2 Report outline

Chapter 2 deals with several notions that are essential to understand the remain-
der of this text. These include an overview on what random numbers are and
how they are used, as well as several methods to produce them, in particular,
those based on the use of elliptic curves. Such curves are also explained briefly.
We then go over a few statistical randomness tests which are needed later on.
Chapter 3 contains detailed explanations of the methods and implementation
details for all the features we require, namely, the random number generation
and testing procedures. Theoretical considerations are also included. The con-
tents of Chapter 4 are mainly tables containing raw data obtained from running
the implemented procedures. Finally, we investigate our results in Chapter 5,
and make a few final considerations before concluding the report.

6

Chapter 2

Preliminaries

We present in the following sections the key concepts that form the basis of this
report. Random numbers, generators and testing are covered somewhat broadly,
before providing more focus. For context, several properties of randomness are
examined, not only the specific ones we aim to test later. Our subsequent
investigation only concerns several select random number generators to which
we apply just a handful of carefully chosen tests, as described. Some of the
mentioned notions are further investigated and developed in later sections, as
needed. Elliptic curves are also covered briefly, as they form the basis for the
generators we consider.

2.1 Random numbers

Randomness, on the surface, seems an easy enough concept to grasp, but when
one digs deeper, it is exceptionally hard to define. As an experiment, try to
ask anyone to come up with a random number, or even an entire sequence of
numbers. Chances are, what you get won’t be very random. People tend to
think of certain numbers more frequently, for instance. If asked to come up
with a random sequence, most people will think long and hard in order to make
the result appear random. Humans have a hard time thinking without patterns,
whether they’re trying to avoid or find them—see for instance [12].

For this reason, determining the nature of randomness has been an important
as well as interesting problem, mathematically and philosophically, and because
of the vast amount of possible applications. In a general way, we can define
random numbers as lacking predictability and intelligible patterns, especially in
the case that what we are seeking for is a sequence, not just a single number.
In the next section, we examine the concept in more detail, concentrating on
the properties of random sequences, as we are going to investigate those in this
work.

7

2.1.1 Criteria for randomness

Before we go on to define several useful criteria for measuring randomness, let
us consider a few sequences as an example.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
0 0 0 0 0 0 0 0 0 0 0 0 0

0.15 0.23 0.09 0.49 0.21 0.57 0.11

For sure, upon a quick examination, these sequences look quite non-random be-
cause of the presence of obvious patterns. The first sequence is a repeating cycle
of a short monotonous subsequence; the second is all zeros; and the last one,
the values go up and down in an alternating way. But not all patterns are easy
to identify quickly. Also, what if each of those sequences were part of a longer
sequence? There is a difference between local and global non-randomness. We
expect to have low non-randomness in general, but if a sequence is long enough,
even the most seemingly non-random subsequences will begin to show up—after
all, they are as likely as any other subsequence, and therefore are to be expected.

Another characteristic that a sequence should possess is that the occurrences of
each different number in it should be uniformly distributed. It would be suspect
if a number in a sequence occurred many more times than any other number. In
a similar way, we would also like each possible subsequence of a certain length
to appear roughly the same amount of times. We also want a sequence not to
contain discernible repeating patterns.

Albeit these are the properties that are most easily applied to binary sequences,
which interest us the most, there are other kinds of sequence as well, which may
be made up of a larger range of integers, may allow repetition or not, or may
be sequences of real numbers, most commonly normalised in an interval from
zero to one. For the sake of exhaustiveness, we mention a few properties that
are relevant in those cases as well.

When there are many possible numbers in a sequence, we may be interested
in the spacings between the occurrences of certain numbers or numbers lying in
a certain range, as well as the occurrence patterns of monotone subsequences.
We may also examine the subsequences to see how many different integers are
in them, or how many consecutive numbers in a sequence it takes to find a com-
plete set of integers in a given range. The ordering of numbers in subsequences
of a certain length may also be of interest. There are more formal measurements
of randomness that we do not examine here, but the interested reader can see
[1] for a starting point.

As we have seen, there are many desirable properties when it comes to gen-
erating a sequence. These give rise to several randomness tests, some of which
we include in Section 2.4.

8

2.1.2 Applications

There are many variegate applications of random numbers. In cryptography,
they are widely used for generating encryption keys, or parameters for certain
cryptosystems. This gives rise to the distinction between sources of random
numbers that are cryptographically secure versus those who aren’t.

Random numbers are also useful in conjunction with different kinds of math-
ematical models, for instance when running simulations and physical research,
when such numbers are needed in order to keep the model as realistic as possible.
Random data sampling from given sets is also an important application which is
closely related to simulations. Samples generated in this way can provide more
insight about “typical” behaviours of certain systems. Another mathematical
field which uses random numbers is numerical analysis, where they have been
successfully used to solve a variety of problems.

Computer programming is also an area where the use of random numbers is
profitable, as they are useful for testing the functionality of programs where
many kinds of input could be provided [7]. Other applications are games and
graphics, think for example of dice rolling, particle systems. Other fields that
use random numbers are for example decision making, and generative art and
music. For sure, many different fields can benefit from randomness in some way
and the kind of problem one is attempting to solve impacts the nature of the
random numbers we seek.

2.2 Elliptic curves

We now switch our focus for a moment from random numbers to elliptic curves.
We do so as knowledge of these is necessary in order to fully understand the
random number generators that are considered in this work.

Elliptic curves are curves which have the structure of an Abelian group when
taken over a field K. They are of the form

E(K) : y2 = x3 + ax+ b,

where all coordinates are pairs belonging to the field K. This is called the
Weierstrass equation. It should be noted that this is a particular form of the
curve equation the use of which should be avoided if the characteristic of the
field K over which the curve is defined is equal to 2 or 3. However, we do not
have to worry about this due to the fields we use. It is required that a and b
are chosen in such a way that the curve is non singular, that is, 4a3 + 27b2 6= 0,
computed in the field K. This ensures that the curve has no self intersections,
cusps, or isolated points.

Elliptic curves can be over various fields, but for our purposes only the finite

9

field Fp for different values of p is used.

The elliptic curve y2 = x3 − x+ 1

An elliptic curve is always symmetric along an horizontal line—the x-axis, if
K = R—, as it is easy to see from the structure of the equation. Because of
this, the reflection of any point P ∈ E(K) also belongs to the curve, and we
denote it with P ′.

We include an additional point in the curve, the point at infinity O, which
is defined to be infinitely far on every vertical line. We can now discuss several
properties of the curve, when K = R.

Addition. To add two points P and Q, we trace the line which connects
them. Such a line intersects the curve at another point of the curve, R′. We
define then P ⊕ Q = R, such that R is the reflection of R′ along the line of
symmetry of the curve. Note that if P = Q, the line we look for is simply the
tangent through the point; then we proceed normally. Because the line between
P and Q is the same as the line between Q and P , addition is commutative.
If P = Q′, the connecting line is vertical and then R = R′ = O, the point at
infinity.

We now develop explicit formulas for adding points on an elliptic curve, based
on these geometrical considerations. We add P = (x1, y1) and Q = (x2, y2) to
obtain R = (x3,−y3). The first step is to find the line through P and Q, which
we assume here to be different points, so we find its slope which is defined as .
Once we have found the slope, we can find an explicit expression for the line:
y − y1 = m(x − x1). Because of the definition given earlier, we know that this
line passes through the reflection of the sum of the points. We can manipulate

10

the expression as follows

y = m(x− x1) + y1 ⇐⇒ y2 = m2(x− x1)2 + y21 + 2my1(x− x1),

and then we can equate it to the elliptic curve formula, such that

x3 + ax+ b = m2(x− x1)2 + y21 + 2my1(x− x1)

⇐⇒ x3 + ax+ b−m2(x− x1)2 − y21 − 2my1(x− x1) = 0, (2.1)

and since it is of third degree, this polynomial has three roots, and can be
rewritten as

(x− x1)(x− x2)(x− x3) = 0

⇐⇒ x3 − (x1 + x2 + x3)x2 + (x1x2 + x2x3 + x1x3)x− x1x2x3 = 0. (2.2)

Now we can equate the coefficients in (2.1) and (2.2) to obtain m2 = −(x1 +
x2 + x3), which gives

x3 = m2 − x1 − x2.

Moreover, we know that y3 − y1 = m(x3 − x1) so that

y3 = m(x3 − x1) + y1.

In the case where P = Q, the formulas are derived similarly and then we have
that

m =
3x21 + a

2y1

x3 = m2 − 2x1

y3 = m(x3 − x1) + y1,

so that in the end we have

R′ = (x3, y3),

R = (x3,−y3).

Multiplication. Since for some applications it is necessary to perform addition
of a point to itself several times, a fast multiplication algorithm can be helpful.
Note on the other hand that points in general cannot be multiplied by each
other. A known algorithm, which we use in this work, is the double and add
algorithm. Say, for instance, that Q = kP . Then we need to find the binary
expansion of k, that is express the number as a sum of powers of two, so that
k =

∑r
i=0 ci · 2i. Here, ci is a coefficient which can be either one or zero. After-

wards, we produce a list of Q0, Q1, . . . , Qr in an iterative way, and add them to
obtain Q, as follows:

11

Q 0 := P
Q := 0
f o r i from 1 to r do

Q i := 2Q (i −1)
i f c i = 1 do

Q := Q + Q i
Return Q

Identity and inverse. When we attempt to compute P ⊕P ′, we run into the
problem of not having a third intersection point on the curve. This is when the
point at infinity comes into play. We define P ⊕P ′ = O. Then, in group terms,
P ′ is the inverse of P , and O is the identity element. We also have P ⊕O = P .

As already mentioned, these geometrical explanations only apply when the field
over which we take the curve is R; on the other hand, since we from here on
use a prime field Fp, it is worth giving a geometrical explanation for this case
as well, which is, anyway, analogous to the real case. When taken over a prime
field, the elliptic curve does not look like a curve any more. This is because
we take only points with integer coordinates, modulo p. Addition follows the
same rules explained for the real field, adapted to this case, keeping in mind to
perform operations modulo p.

Finding and counting points. When we consider a curve over a finite field,
there are only a finite amount of points within it. It may be useful to determine
all points on an elliptic curve. To do this, we simply input all possible values
of x, from 0 to p− 1, in the curve equation y2 = x3 + ax+ b. If x3 + ax+ b is
a quadratic residue modulo p for a certain x, it means it is possible to take its
square root modulo p, and therefore we obtain two solutions to the equation,
and two points of the curve. On the other hand, if it is not a quadratic residue,

we obtain no new points for that value of x. The formula
(
x
p

)
≡ x(p−1)/2

mod p, called Legendre symbol, has value 1 if x is a quadratic residue, −1 if it
is not, and 0 in the case when x3 +ax+ b mod p ≡ 0. Therefore, we know that

the expression 1 +
(
x3+ax+b

p

)
has value 2 if there are two solutions to the curve

equation, 1 is there is only one solution and the line through x is vertical, and
0 otherwise. Therefore, if we sum this value as calculated for each x ∈ Fp, and
add the point at infinity, we obtain the total number of points on the curve:

S = 1 +
∑
x∈Fp

1 +

(
x3 + ax+ b

p

)

= 1 + p+
∑
x∈Fp

(
x3 + ax+ b

p

)
.

Having defined group properties and with the additional consideration that ad-
dition is associative—although we omit the proof here— we see that the set of
points on the elliptic curve together with the binary operation give rise to an

12

Abelian group. The examples that follow illustrate the properties discussed so
far.

Example 1. Let us take the curve E(F11) : y2 = x3 + 2x + 5 which in-
cludes as an example the points P = (x1, y1) = (0, 4) and Q = (x2, y2) = (4, 0)
as is readily verified by inputting the values into the equation. We try to find
R = P ⊕ Q = (x3,−y3). To begin with, we have that m = −4

4 = 1. We can
then find the coordinates of R as follows

x3 = (−1)2 − 0− 4 = −3 ≡ 8 mod 11

y3 = −1(8− 0) + 4 = −4 ≡ 7 mod 11,

which gives then

R′ = (8, 7),

R = P ⊕Q = (8, 4).

The graph below shows graphically the steps to compute the sum. The red dots
represent all points in the curve.

Example 2. Say we have the curve E(F13) : y3 = x3 + 3x+ 7 and we know it
contains the point P = (3, 2). We try to find Q = 11P .

Expanding 11, we have that 11 = 20 + 21 + 23. So, c0 = c1 = c3 = 1, and
c2 = 0. We compute Q0 through Q3—addition is left to the reader this time
around—as follows:

Q0 = (3, 2)

Q1 = (3, 2) + (3, 2) = (8, 6)

Q2 = (8, 6) + (8, 6) = (10, 7)

Q3 = (10, 7) + (10, 7) = (9, 10),

13

and then we have that

11P = (3, 2) + (8, 6) + (9, 10) = (12, 9) + (9, 10) = (8, 7).

Example 3. We wish to look at the curve E(F5) : y2 = x3 + 2x+ 4. We check
that if it is non singular first and see that 4(23) + 27(42) = 464 6≡ 0 mod 5.
Then we input the values to calculate the points and obtain the following points:

x y2 y
0 4 2 and 3
1 2 no roots
2 1 1 and 4
3 2 no roots
4 1 1 and 4

The curve contains the points {O, (0, 2), (0, 3), (2, 1), (2, 4), (4, 1), (4, 4)}.

2.3 Random number generation

As we have seen, finding a way to generate random numbers effectively has
been a very relevant problem in the past century. One could say that there are
as many ways of generating random numbers as there are applications. Some
are slower, some are faster; some generate longer sequences, some generate
individual numbers. It is important to choose the optimal method in each case.
There are two classes of generators, that differ when it comes to predictability.

2.3.1 Non-deterministic

One way of generating random numbers is by using non-deterministic genera-
tors. In this case, the sequence is not predictable, and no assumptions can be
made on its structure until it is generated. The resulting numbers are said to
be truly random. Ways of generating numbers in a non-deterministic way are,
for instance, making use of atmospheric noise, electromagnetic and quantum
phenomena, and so forth. These methods have the disadvantage of being very
slow, and therefore suitable only for applications where a limited amount of
numbers is needed, such as lottery drawings, for instance [3,15]. We may be
tempted to include items such as coins and fair dice as true random number
generators, however, such macroscopic phenomena are only unpredictable be-
cause we can’t determine the physical starting conditions and forces acting on
them with sufficient accuracy. Moreover, the possible outcomes are very limited,
which differs from the other true generators proposed above. If one were able to
measure all physical data with high accuracy, then these tools would produce
fully predictable outcome. In contrast, quantum phenomena are completely un-
predictable and therefore make for the “truest” possible generators.

14

This is what a true random sequence looks like. Zeros are white; ones are
black. It is a sequence of length 10000, created with a dedicated sequence

generator available on RANDOM.org. No evident patterns are visible.

2.3.2 Deterministic

When on the other hand a generator is deterministic, it means that the numbers
are generated in an algorithmic, iterative way. We define a sequence generated
in this way to be pseudo random. When the same generator is run more than
once on the same parameters, the same sequence results. What this implies is
that it is always possible to predict what the following number will be, pro-
vided one knows the workings of the generator. In other words, each number
of the sequence is uniquely determined, given a seed—that we should find by
means of a truly random generator—and the other possible parameters. Such
methods have the advantage of being somewhat fast, allowing to generate long
sequences, and it is possible to optimize the output by making several consid-
erations beforehand. A downside is that these generators inevitably produce
cycles. Usually though, the numbers do not repeat within a single cycle, which
may be useful for some applications. The generators that follow are all deter-
ministic and based on elliptic curves.

The following table summarises the differences between pseudo random and
true random generators.

15

Non-deterministic (TRNG) Deterministic (PRNG)

Generally slow Generally fast
Allows repetition Disallows repetition*
Physical source Algorithmic source

Hard implementation Easy implementation
Completely unpredictable Unpredictable to uninitiated

*This is meant in the sense that since in a PRNG each number depends on the
previous one, then if you see a number repeat you know the whole sequence is
going to repeat. In many applications, only the first iteration of a sequence is
of interest.

We will now have a look at the specific pseudo-random generators which were
tested.

Linear congruential generator

The linear congruential generator (EC-LCG) is a generator which we define as
the following sequence

Un = G⊕ Un−1 = nG⊕ U0, n = 1, 2, . . . ,

where G ∈ E(Fp) is some given point, and U0 ∈ E(Fp) is an initial seed.

Power generator

We define the power generator (EC-PG) as the sequence

Wn = eWn−1 = enG, n = 1, 2, . . . ,

where e ≥ 2 is an integer and G ∈ E(Fp) a point on the curve.

Naor-Reingold generator

Finally, we go over the Naor-Reingold generator (EC-NRG). The sequence is
defined as

Fa(n) = aν11 . . . aνkk G, n = 1, 2, . . . , (2.3)

where a = (a1, a2, . . . , ak) is a vector such that each ak ∈ Z\tZ, where t is the
order of the point G ∈ E(Fp) and v = (ν1, ν2, . . . , νk) is the bit representation
of n, with 0 ≤ n ≤ 2k − 1.

Note that in conjunction with these generators we use an output function in
order to produce a binary sequence. The function we use takes as input the x
coordinate of a point P = (x, y) and if x > p−1

2 then the output value is one;
otherwise it is zero. This method is appropriate for use on an entire sequence,
if we assume that the points on the curve are evenly distributed on the x-axis.

16

Example. We demonstrate how each generator functions by taking for in-
stance the curve E(F17) : y2 = x3 + x+ 1. Then, suppose that G = (6, 11) and
U0 = (10, 5). The sequence generated by the linear congruential generator looks
like this:

U1 = G⊕ U0 = (6, 11) + (10, 5) = (16, 4)

U2 = G⊕ U1 = (6, 11) + (16, 4) = (13, 16)

U3 = G⊕ U2 = (6, 11) + (13, 16) = (11, 0)

U4 = G⊕ U3 = (6, 11) + (11, 0) = (13, 1) . . .

continuing this way until all the sequence is generated. If we apply the power
generator, and we choose e = 4 for instance, then the sequence is as follows:

W1 = 4G = 4(6, 11) = (15, 12)

W2 = 4(15, 12) = (9, 5)

W3 = 4(9, 5) = (13, 1),

and that’s the end of the sequence, since W4 = W0 as easily verifiable. Finally,
to try the Naor-Reingold generator, we take for example the vector a = (2, 5).
Then we know from the size of the vector that we should end up with 22 = 4
terms in the sequence:

Fa(1) = 2050G = G = (6, 11)

Fa(2) = 2051G = 5G = (0, 1)

Fa(3) = 2150G = 2G = (9, 12)

Fa(4) = 2151G = 10G = (13, 1).

By applying the output function defined in this section to each of the sequences
above, we obtain binary sequences that look like this

Ubinary = {1, 1, 1, 1, . . . }
Wbinary = {1, 1, 1}
Fabinary

= {0, 0, 1, 1}.

For more examples and to see other generators based on elliptic curves, see
[8,16].

2.4 Testing for randomness

Given that, as we have seen, randomness is a difficult concept to define, it is hard
to give an absolute answer as to whether a random number generator produces
good enough output. What we can do is reject the possibility of randomness, or
fail to reject it—but we can never be completely sure. Essentially, there are two

17

general ways of testing for randomness. A possible approach is to use several
theoretical tests on the generators to estimate their quality, without having to
generate an actual sequence first. Another possibility is to examine just the
output sequences, which is known as empirical testing. Although we do make a
few theoretical considerations later on in the text, the focus in this work is on
empirical tests. There are many kinds of such tests, but we only consider a few
ones. Five or six tests are generally considered enough, and the following are
the ones we choose to implement for binary sequences. We follow the versions of
the tests as described in [9], except for the frequency test which slightly differs.

2.4.1 Frequency test

This test involves verifying that zeros and ones appear in the sequence roughly
the same amount of times. The statistic we use follows directly from applying
the chi-square test to determine if a sample distribution follows an uniform
distribution.

X1 =
2(n0 − 1

2n)2

n
+

2(n1 − 1
2n)2

n
,

where n0 and n1 represent the amount of zeros and ones respectively, and n is
the length of the sequence. This statistic follows directly from applying the chi-
square test to determine if a sample distribution follows an uniform distribution.
Therefore it follows a χ2 distribution with one degree of freedom.

2.4.2 Serial test

The serial test is similar to the frequency test and uses an analogous statistic. In
this case, instead of just considering the amount on zeros and ones, we consider
how many times each the subsequences 00, 01, 10 and 11 appear. There are
versions of this test which don’t let the subsequences overlap, however the test
we use lets them overlap and uses a modified χ2 statistic that takes into account
the lack of complete independence,

X2 =
4

n− 1
(n200 + n201 + n210 + n211)− 2

n
(n20 + n21) + 1,

which follows a χ2 distribution with 2 degrees of freedom, when n00, n01, n10,
and n11 are defined in an analogous way as for the frequency test.

2.4.3 Poker test

An even more generalised version of the frequency and serial test, the poker test
counts the number of occurrences of each possible subsequence of length m. In
our version of this test we take the subsequences to be non overlapping, and it
follows that m must divide the length n of the sequence. We take m such that⌊ n

m

⌋
≥ 5 · (2m),

18

and we define k = b nmc. In our case, since we have n = 1000, good values are
m = 5 and k = 200. We can say that m is the size of our “poker hand”. The
statistic we compute is also given by a modified chi-square test and is given by

X3 =
2m

k

(
2m∑
i=1

n2i

)
− k,

following a χ2 distribution with 2m − 1 degrees of freedom.

2.4.4 Run test

Run tests also come in several varieties, for some consider the lengths of in-
creasing or decreasing subsequences, while others consider the amount of sub-
sequences consisting of only one number repeating. For binary sequences, we
use this latter type, where the subsequences made up of zeros are called gaps

while those made up of ones are known as blocks. We define ei = (n−i+3)
2i+2 as the

expected number of blocks, or gaps, of length i—see [9] for details. Then, we
have that k is the largest integer i for which it holds that e1 ≥ 5. This is so we
don’t consider blocks and gaps that are too long and would probably appear a
negligible amount of times. We need the following statistic

X4 =

k∑
i=1

(Bi − ei)2

ei
+

k∑
i=1

(Gi − ei)2

ei

where Bi and Gi are the number of blocks and gaps of length i respectively. We
use a χ2 distribution with 2k − 2 degrees of freedom.

2.4.5 Autocorrelation test

This last test that we look at measures the correlation of the sequence with
itself shifted by an offset d, non cyclically, which means that some terms at
the beginning and end of the sequence are disregarded. Then, we hope that
not too many or too few bits are equal to their d-shifts. We define A(d) =∑n−d−1
i=0 si + si+d mod 2 as the number of bits in the sequence that are equal

to their d-shifts. The statistic is

X5 =
2(A(d)− n−d

2)
√
n− d

,

Note that the larger the offset, the less pairs of bits are examined. The statistic
follows a N(0, 1) distribution and a two-tailed test shall be used for the reason
stated above.

Example. Let us consider a sequence of length n = 180, for instance

110010 100001 101110 000101 011111 100000 000001 001011 000011 101110
011011 001100 100100 111100 100001 111011 001011 111101 101110 100001
001100 111100 100111 101000 001100 101110 001011 101101 011010 000010.

19

We try to run all our tests on it.

1. Frequency test. We have that n0 = 81 and n1 = 79. When we apply the
statistic formula, we get X1 = 0.025.

2. Serial test. It can be seen that n00 = 44, n01 = 36, n10 = 37, and n11 = 42.
Therefore, the statistic is X2 = 1.10079.

3. Poker test. The values for m and k we gave in the test description do
not apply for this sequence, because of its length. We try instead m =
3, and we see that b 1803 c ≥ 5 · 23 holds. Then, we also have k = 60.
The subsequences 000 through 111—in binary numbering order—appear
respectively 6, 10, 3, 9, 12, 9, 5, and 6 times. The statistic is X3 = 8.26667.

4. Run test. Here we have that k = 3, and e1 = 22.75, e2 = 11.3125,
e3 = 5.625. The blocks of length 1, 2, and 3 are respectively 19, 12, and
6, whereas the gaps of the same lengths are 20, 14, and 1. The statistic
value is X4 = 5.45858.

5. Autocorrelation test. By using an offset d = 8, we have A(d) = 92 and a
statistic X5 = 0.914991.

The statistic values don’t let us accept or reject a sequence by themselves. This
depends instead on these values combined with the statistical significance level
[17], which allows to find upper bounds for the values of the statistics—or both
upper and lower bounds for the autocorrelation test.

In order to select such bounds, which we call critical values, we first need to
choose an α value, which determines the error rate that we are willing to accept.
It is fairly standard to pick α = 0.05, and it is the value we use throughout this
thesis. Depending on the test used and its parameters, each α value has one
or more critical values associated with it, which can be easily found in statis-
tical tables. If the statistic values calculated are below the critical value—for
one-sided tests— or between the upper and lower critical values—for two-sided
tests—we consider the result significant. What this means in our case is that a
specific randomness test is passed by the given sequence.

The following table gives the critical values for each randomness test, based
also on the degrees of freedom, where the chi-square distribution is used.

Test Critical value(s)
Frequency 3.841

Serial 5.991
Poker (m = 5 and k = 200) 44.985

Run 15.507
Autocorrelation (d = 7*) ±1.96

*Randomly chosen, small prime offset.

20

Because of our choice of α, we know that a sequence that is sufficiently ran-
dom has a 95% chance of passing the test. We keep in mind this consideration
for when we interpret the general results in Chapter 5.

21

Chapter 3

Methods

Not considering preparatory work, e.g., gathering information about writing
style, essentially two major steps were part of the creation of this report, namely,
research of background information and subsequent implementation. The topic
for this work was selected in consultation with several teachers. The general idea
was to work on something related to cryptography, a particularly interesting
field of applied mathematics. Working on elliptic curves was recommended.
The choice of topics was then narrowed down until it was decided that pseudo
random number generators based on elliptic curves was the most suitable topic.

3.1 Research of information

The research began by seeking information about elliptic curves, as they are
the basic structure upon which the pseudo random number generators under
consideration rely. By the time this process started, the topic hadn’t been
covered by any university lecture yet, so quite some time was spent on studying
it. The starting point was the document [8] which in particular contains a quick
overview of some generators. From there, the investigation branched out with
additional documentation and web searches. Overall, though, most of the work
went into the implementation. The research was not extremely in-depth, as
the aim of this thesis is oriented on analysing existing structures by means of
original work, rather than exposition of known concepts.

3.2 Statistical procedures

We use two statistical distributions, namely the chi-square distribution—which
we already encountered in Section 2.4 when describing randomness tests—and
the normal distribution. The chi-square distribution enables us to evaluate how
close the probability distribution of a sample of random variables is to a given
distribution, given that these variables are independent from one another. We
take k possible categories which a random variable can belong to. The degrees

22

of freedom are denoted by ν = k− 1. If we take n as sequence length, pk as the
probability of an element of falling in category i, and ni the number of elements
in category i, then the statistic is

χ2 =

k∑
i=1

(ni − npi)2

npi
,

which we apply unaltered to perform the frequency test. For other tests we
use variations of it which take into account different circumstances. Whenever
a chi-square test is involved, we perform a one tailed test, and expect to get
small, positive values.

The only test which makes use of the normal distribution is the autocorrela-
tion test, where we expect to obtain negative or positive values close to zero.

3.2.1 Remarks on interpreting results

When we run each of our tests a number of times, we need to define exactly in
what cases we will reject our generators and in what cases we will fail to do so.
We take the following hypotheses

H0: the generators produce non-random sequences;
H1: the generators produce random sequences.

We are only able to prove non-randomness of a sequence; it is not possible to
prove in a definitive way that a sequence is random enough. The best we can
do and the result we aim for is to fail to reject the hypothesis of each generator
being non-random. Each single test measures a different property of a sequence
which is important for randomness, and we therefore want all of these properties
to be fulfilled. In other words, in order to fail to reject H0, we expect all of the
tests to be passed.

Note on the other hand that each generator-test combination is tested 1000
times in total as that is the number of elliptic curves we consider. Therefore it
may happen that a certain test on a specific generator fails. Unless that happens
the majority of the times, it is unreasonable to reject a whole generator just be-
cause of one or a couple failed tests. Instead, we consider the probability of a
test failing and we compare it to how many times a fail actually occurred. As
was stated in Section 2.4, the significance level at which we perform the tests
is 95%. What this means in our case is that approximately 5% of sequences
produced by a certain generator might fail a given test even if they are valid. In
other words, if more than 50 failures happen when we are testing all our curves
with a specific test on a given generator, we interpret is as the generator having
failed that test. This has to be kept in mind when dealing with the results.

23

3.3 Implementation

The implementation was fully done on Wolfram Mathematica. Apart from a
short code snippet implementing basic elliptic curve functions, the rest of the
code is completely original. The main tasks that needed implementation were,
to begin with, the three generators at hand, and secondly, the testing methods.
The rest of the code consists of helper methods, which I used to simplify the
programming.

3.3.1 Theoretical observations

Even if the testing is to be done on the output binary sequences only, it is
reasonable to at least have a quick look at the theoretical properties of the gen-
erators. With this information at hand, it is possible to provide the generators
with very good parameters, allowing for better sequences. If we used somewhat
arbitrary parameters—generators and seeds, coefficients of the elliptic curves,
fields and other factors related to each particular generator—the likelihood to
produce short cycles and/or sequences with predictable patterns would be far
greater.

The sequence length we take into consideration is n = 1000. This is a value high
enough to ensure accuracy on all tests considered, but low enough to be able to
manipulate several sequences at once. Because n is quite large, it is important
to pay particular attention to the choice of suitable prime fields.

Simplifications

A useful—but not strictly necessary—step is to pick primes p such that the or-
der of the elliptic curves over Fp would also be prime. Is is then guaranteed that,
except for the point at infinity, each element is a generator, i.e., of the maximum
possible order. This is because in a finite group, the order of an element divides
the order of the group. Then, if a group is of prime order q, the only possible
element orders are 1 and q. Of course, this also depends on the parameters a
and b of the curve. To generate suitable curves, we randomly select some pa-
rameters a and points (x, y) within a predefined range and compute the b and
p based on these. We then check the order of these curves as a final step, and
if it is prime we accept them and in this way, obtain several ad hoc elliptic curves.

Since the primes with which we construct fields are quite large, it is very in-
feasible to compute the entire elliptic curves. Fortunately, the complete sets of
points are not particularly useful to us. Because of our previous assumptions,
there is not much of a difference among all the points on each curve. Therefore,
we may pick any point we like as generator—and another for a seed, if necessary.
We simply calculate the first few points on the curve and use these.

24

EC-LCG

An advantage of the linear congruential generator is that is has a very simple
structure. Therefore, it is easy to evaluate. Recall, from Section 2.3.2, that

Un = nG⊕ U0, n = 1, 2,

We now wish to maximise the period of this generator. Then, we determine that
we want nG to take on as many different values as possible. This is equivalent
to saying that ord(G) needs to be as high as possible. This is easy, because of
the limitations outlined in the previous paragraph. Any element of the group
will then be a good candidate for the generator G.

EC-PG

When it comes to the power generator, we have one more factor to take into
account, that is the integer e. Recall the formula for the generator,

Wn = enG, n = 1, 2,

Similarly as with the linear congruential generator, we want enG to assume as
many values as possible. Consider that e is an integer mod t, with t = ord(G).
It is then possible for e to range through all values from 1 to t − 1 in some
order, if and only if it is a primitive root modulo t. For the purposes of our
implementation, we simply use the smallest primitive root we can find.

EC-NRG

The Naor-Reingold generator is a slightly more complex construction. We recall
the definition

Fa(n) = aν11 . . . aνkk G, n = 1, 2,

Here the most important variable is the input vector (a1, a2, . . . , ak). We would
like all the possible products aν11 . . . aνkk to be different. Because of how the
generator works, if wanting an output sequence of length n = 1000, we need a
minimum vector length k = dlog2 ne = 10. Using the first ten primes to con-
struct the vector is, then, a suitable choice. In this way, we are sure that all
possible products, which belong to Z, are different, because the vector entries
share no factors. We still have to reduce each of the products mod t, and we
might then find out that a few of the products are congruent. However, most
of the products will be smaller than p and thus distinct.

We may also rearrange the vector entries, if another sequence is needed. Then
we will obtain a permutation of the original sequence.

Constraints and limitations

Because of the limited amount of time at our disposal, we only investigate the
aforementioned generators—other random number generators based on elliptic

25

curves exist, see for example [16]. For the same reason, we only make our
investigation for a few selected primes. There are a number of randomness
tests other than these used in this report, but we need not apply all of them,
as just a few are sufficient. Note that apart from the frequency test, all the
tests used can be expanded and/or have several variations, as described in for
instance [7]. However, each test is only performed in one way for this report.
These limitations make the theoretical considerations more relevant, as we are
interested in obtaining the best outcomes possible.

26

Chapter 4

Results

This section gathers the results presented in various ways. First, some example
curves are shown. Then, a table is given which gathers several of the testing
results. Interpretation and discussion are left to the following chapter.

4.1 Some curves in detail

We will now take a look at some curves selected from the tests, and display
extended results. The curves are chosen because of particularly representative
behaviours—a curve that passed all tests, curves that failed on only one or more
generators, curves that failed similar tests on the same generator. We discuss
these properties in Section 5.1. From here onwards, s0 is the seed and g the
generating point used.

Example 1.
E(F162947) : y2 = x3 + 36806x+ 69342

s0 = {59179, 152510} g = {109032, 159310}

Linear congruential Power
Frequency test: 0.004 (passed)
Serial test: 2.21722 (passed)
Poker test: 24.96 (passed)
Run test: 13.9025 (passed)

Autocorrelation test: 0.533333 (passed)

Frequency test: 0.9 (passed)
Serial test: 2.58649 (passed)
Poker test: 36.16 (passed)
Run test: 10.7527 (passed)

Autocorrelation test: −0.733333 (passed)

Naor-Reingold
Frequency test: 0.064 (passed)
Serial test: 0.907972 (passed)

Poker test: 44.16 (passed)
Run test: 11.4798 (passed)

Autocorrelation test: 1. (passed)

27

Example 2.
E(F127601) : y2 = x3 + 29143x+ 65073

s0 = {95416, 33660} g = {101909, 82366}

Linear congruential Power
Frequency test: 0.9 (passed)
Serial test: 1.07297 (passed)

Poker test: 24. (passed)
Run test: 3.73409 (passed)

Autocorrelation test: 0.8 (passed)

Frequency test: 0.256 (passed)
Serial test: 0.275532 (passed)

Poker test: 26.24 (passed)
Run test: 2.73576 (passed)

Autocorrelation test: −1.73333 (passed)

Naor-Reingold
Frequency test: 4.356 (NOT passed)
Serial test: 9.99735 (NOT passed)

Poker test: 34.88 (passed)
Run test: 10.9456 (passed)

Autocorrelation test: 1.26667 (passed)
Example 3.

E(F136693) : y2 = x3 + 89534x+ 58653
s0 = {120271, 17779} g = {80413, 31297}

Linear congruential Power
Frequency test: 4.356 (NOT passed)

Serial test: 4.11147 (passed)
Poker test: 28.16 (passed)

Run test: 17.4151 (NOT passed)
Autocorrelation test: −0.6 (passed)

Frequency test: 1.296 (passed)
Serial test: 1.23753 (passed)

Poker test: 50.88 (NOT passed)
Run test: 14.5481 (passed)

Autocorrelation test: 0.133333 (passed)

Naor-Reingold
Frequency test: 0.144 (passed)
Serial test: 0.227371 (passed)

Poker test: 33.28 (passed)
Run test: 4.29812 (passed)

Autocorrelation test: 0.133333 (passed)

28

Example 4.
E(F124297) : y2 = x3 + 3686x+ 28995

s0 = {65915, 57599} g = {117832, 43407}

Linear congruential Power
Frequency test: 1.024 (passed)
Serial test: 1.55758 (passed)

Poker test: 14.4 (passed)
Run test: 5.38103 (passed)

Autocorrelation test: 0.133333 (passed)

Frequency test: 1.764 (passed)
Serial test: 2.56333 (passed)

Poker test: 53.12 (NOT passed)
Run test: 12.9025 (passed)

Autocorrelation test: -1.13333 (passed)

Naor-Reingold
Frequency test: 0.144 (passed)
Serial test: 1.51666 (passed)

Poker test: 27.2 (passed)
Run test: 11.6783 (passed)

Autocorrelation test: 0.466667 (passed)

4.2 An extract of the results

The table that follows gathers some randomly selected results in a more com-
pact form, which allows us to show several more data in comparison to last
section. Because of the larger amount of curves here included, this data is more
representative of the complete output for all curves, and can be used to quickly
compare different results. The information contained is essentially the same
as in the most extensive examples in the previous section. In particular, the
matrices in the results column are to be read as follows:

1. Each matrix column shows outcomes for all five tests on a single generator,
given in the same order as in the previous section.

2. Each matrix row shows outcomes for a specific test on all generators, re-
spectively the linear congruential, the power and the Naor-Reingold gen-
erator.

3. An “1” represents a failed test, while a “0” represents a pass.

In reading the table, it is advised to pay particular attention to any correla-
tions between outputs of similar kinds of tests, as well as correlations among
the performance of different generators based on the same curve. In Chapter 5
we elaborate on these observations.

29

Curve Seed Generator Results
a b p s0 g

32886 599 138389 {118711, 13012} {105666, 86305}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

35467 114475 145043 {41009, 80717} {14533, 115803}

 0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

127676 70251 162209 {93798, 97137} {143361, 73605}

 0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

2001 80929 137443 {56452, 9841} {121017, 7676}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

91345 111855 120811 {57141, 70744} {116084, 22962}

 0 0 0 0 0
0 0 0 0 0
1 1 0 0 0

4917 47427 113657 {98385, 26736} {85261, 112514}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

119621 63788 149971 {23242, 81650} {82130, 115637}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

80508 32532 106243 {75313, 99156} {12927, 55379}

 1 0 0 0 0
0 0 1 0 0
1 0 0 0 0

129588 42387 139753 {13517, 49169} {21942, 122202}

 0 0 0 0 0
0 0 0 0 0
0 1 0 1 0

95019 63505 138139 {45896, 73892} {61779, 18926}

 1 1 0 0 0
0 0 0 0 0
0 0 0 0 0

15895 63080 137713 {1508, 38079} {79196, 22751}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

46052 74821 115321 {48561, 6348} {8998, 50513}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

112313 81853 113717 {6077, 9775} {25014, 22673}

 0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

22591 113837 116131 {65462, 14963} {74709, 36388}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

30

Curve Seed Generator Results
a b p s0 g

34130 29071 129769 {19710, 25326} {7199, 98947}

 0 0 0 0 0
0 0 0 0 0
1 1 0 0 0

112752 66488 125201 {112341, 6505} {169, 92155}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

57750 2315 112759 {97443, 26919} {33886, 36059}

 0 1 0 1 0
0 0 0 0 0
0 0 0 0 0

188 34592 125659 {81933, 7277} {47522, 86938}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

874 47810 105673 {21288, 94339} {17279, 8134}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

9222 597 125863 {87100, 22734} {25073, 54561}

 0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

100731 47 110813 {30833, 95937} {50472, 64596}

 0 0 0 0 0
1 0 1 0 0
0 0 0 0 0

27160 44476 118457 {98644, 2408} {66177, 79732}

 0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

51477 11802 107183 {52414, 43675} {14477, 3479}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

5176 78989 126653 {75626, 74614} {61489, 38881}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

42267 43784 143831 {74472, 121315} {123356, 9686}

 0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

30254 21506 140867 {127442, 78256} {3061, 139809}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

56953 93006 129901 {77939, 82347} {105168, 118296}

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

31

Chapter 5

Discussion

In this final chapter we deal with and interpret the results we have obtained.
Statistical considerations are made, and a description of the running times of
the algorithms is given. Some final remarks are made.

5.1 Single curves

When looking at the results for each curve, there are radically different results.
Several curves give rise to perfectly pseudo-random sequences, according to the
tests we run, on all generators. On the other hand, there are also many curves
that fail one or more tests for at least one generator, therefore leading us to
reject the random sequence.

Taking a look at the tables and logs of the results, testing failures for a given
generator on a specific curve do not correlate strongly with failures for the same
curve and a different generator. In other words, no elliptic curve appears to be
bad by itself, by only in relation to a specific generator.

Another interesting observation is that a failure of passing some specific tests
can correlate to the likelihood of failing other test as well. For instance, often
times a curve which does not pass a frequency test on a generator does not pass
a serial test either. This is because those tests are very similar and test similar
properties.

There are a number of possible solutions to this issue. We may decide for
instance to apply a larger number of tests, and investigate the result not in the
absolute sense, each on its own, but by comparing the outputs of the various
tests. We can also try to simply use a different combination of tests, taken for
instance from [7], which contains many more tests other than those proposed
here. Another way is to apply tests on the raw generated sequence as well, that
is, before the output function creating the binary sequence is applied. After all,

32

if in the raw sequence there are no patterns, there is no reason to believe the
binary sequence contains patterns—but of course this also might depend on the
choice of output function.

5.2 In general

We run into problems when we look at the results in general, looking to de-
termine how good a generator is in general, by considering how it performs on
quite a large amount of different curves. As mentioned in Section 3.2.1, if we
are to accept a failure rate of no more than 5%, that means that out of 1000 no
more than 50 tests can fail. This is where we see that quite a few generators fail
on given tests, although the values are not very much higher than 50. Then, the
reasons for this may be either simple bad luck on the choice of curves and/or
the fact that even when there are many good curves, all other curves failed
quite a few tests, which outweighed the influence of the suitable curves when
computing the total percentages.

On the other hand, this might not be the best way of testing a generator by
itself, which could very well have affected the results. Such empirical tests are
good if we are looking for data on the sequence, but they prove here to be un-
suitable for testing a generator. The previous observations were made for the
purpose of a general overview, but it is advised to use theoretical tests if needing
to test the general performance of a generator.

5.3 Running times

Practically, the time taken to run the whole generating and testing algorithm
was about a few hours. However we do not worry about the actual time taken by
a specific machine, because it is not an accurate measurement of the efficiency
of the implementation. Instead, we try to briefly define the running times in
more general terms, by using the big-O notation. In order to do this, we take a
closer look at the algorithms for both generating and testing. The algorithms for
generators and helpful routines can be found in Appendix A, while the code for
the tests in Appendix B. For what concerns the time taken by simple operations
integrated in Mathematica, we take it to be constant for lack of implementation
details, and also because, as long as they don’t take more than our routines—
very unlikely—, they don’t influence the result. The following analysis may be
useful to anyone wanting to use or improve the code.

We start by taking a look at EC-LCG. The first operations are assignments,
which take constant time and therefore we disregard. We then have a loop,
which iterates n times, where n is the length of the sequence we want to gen-
erate. Inside the loop, the interesting command is addpoints. This command
takes constant time, in that it does not depend on the choice of curve. Therefore

33

the loop as a whole takes O(n). We then have the output function for a binary
sequence. This command also takes constant time. That means the generator
as a whole takes O(n).

For the EC-PG, we proceed similarly. We have a loop of length n, and in-
side the operation multpoint. The way it is implemented, by the double and
add algorithm, it is easy to see that the time taken is proportional to O(log2 e),
where e is the factor by which we multiply a point. Therefore the total time
for the loop is n ·O(log2 e) = O(n log2 k). Note that since e is later on selected
as a smallest primitive root, it is very small. In this case we may approximate
the total duration to be O(n) instead, but this does not hold in the general case.

The last generator, EC-NRG, is a little more complex. We consider the routine
Order of Point. There is a loop which repeats as many times as there are divi-
sors of the order of the curve, the number of which we denote by k. Multpoint
takes as much time as it takes to run for the largest divisor, which is the order
itself and we denote by G, and thus we have k · O(log2G) = O(k log2G) total
time. Note that, in our special case, the order of the curve is a prime p. This
means that the loop only runs once and the time taken then is proportional to
the logarithm of that prime, which is quite a long time, since the primes used in
this investigation are somewhat large. Then, the time for running the routine
reduces to O(log2 p). Then, we have a loop that iterates k = log2 n times. An-
other loop with constant time operations to find factors by which to multiply
the generating point repeats n times. Afterwards, we compute all these O(n)
factors mod t, which takes constant time, and finally the main loop of the
algorithm computes the points by using multpoint, taking in total O(n log2 t).
We just sum the most prominent terms and disregard the others, to get a total
time of O(log2 p+ n log2 t). Since in our case, with additional considerations, p
and t are similarly large, we may then write O(log2 p+ n log2 p) = O(n log2 p).
Thus this is the generator that takes the longest time.

Lastly, we briefly look at the test implementations. It is straightforward from
the code for the chi and serial tests that they both take O(n) time. The poker
test is more interesting, as there are two loops one of which iterates 2m times
and the other k = n

m . By the definition of how to derive the values m and k,
we know that 2m < k, and therefore total time is O(k). The run test is also
interesting because it is made up with a helper routine called BlocksGaps. This
takes O(n). In the testing method itself we have a loop of n steps, and a second
loop of at most n steps, which executes the previously mentioned O(n) routine.
Therefore we can see that in total, the time taken is O(n2) for this loop and for
the whole method. Finally, the autocorrelation algorithm takes O(n) as well, as
it is easy to verify.

34

5.4 Possible developments

Apart from trying the solutions anticipated in the previous sections, it is also
worth investigating the curves themselves. It is possible that a different choice
of elliptic curve and/or prime field yields better sequences. However, this was
not in the scope of this work, as shows the fact that we used randomly picked
curves. Perhaps a bigger curve would work better, but going that direction
would require much more computational power. It also needs to be considered
that the tests suggested may be somewhat updated. Using a newer suite of tests
may be more useful.

35

Chapter 6

Conclusion

Several different aspects of randomness were examined in this work. Not only
did we attempt to define randomness, but we also took a look at it from an
historical context. It is remarkable what efforts have been made by scientists
and mathematicians to come up with sources of random numbers. Some of such
these are now extremely outdated, despite having been popular in the past, and
a modern day mathematician wouldn’t probably even think of using them if
not for study purposes. It is fascinating how the concept of randomness subtly
changes to fit different applications, and the way it is applicable to a large va-
riety of fields of human knowledge.

Without introducing randomness in such a broad way, it would not have been
possible to present the different concepts that were needed for this work in an
understandable, interesting manner. We went over different aspects and chal-
lenges of random number generation, and saw that there are essentially two
ways of generating such random sequences. That is, deterministic and non-
deterministic, both enclosing tens of different generators, each used for specific
purposes, according to how much time and resources we are willing to spend,
and the final application. We went over testing methods, mentioning in partic-
ular those which would be used during our investigation.

Another essential concept that has been looked at is elliptic curves over finite
fields. The explanations given here were not intended as a complete lecture on
the topic, but rather as a primer including only the necessary information for
the reader to be able to follow the theory of pseudo-random number generators
based on elliptic curves.

Apart from these introductory notions, this work is largely original. The re-
sult of independent research is what ended up in the preliminary section, and
the rest was programming work. Although it could surely be improved, the im-
plementation was good enough and functional for the intended purposes. Before
going on to the testing, we made some statistical remarks which were essential

36

to interpret our results. Moreover, we delved deeper into the matter of optimis-
ing the inner workings of the generators in order to eliminate as many sources
of non-randomness as possible. Simplifications had to be made because of the
limited time and resources for this work, and they were carefully described.

There were expectations for our results, and not all of these were met, which is
not a bad thing by itself. When doing scientific work any result is a good result
if it provides new insight, and if we are able to give possible explanations for it
in order to improve further investigation. Finally, to end the report, we went
over the results and interpreted them from different points of view.

37

Bibliography

[1] Cohen, Henry and Frey, Gerhard. Handbook of Elliptic and Hyperelliptic
Curve Cryptography. Boca Raton: Chapman & Hall/CRC, 2006.

[2] De Vito, Bob. History of Random Number Generators. Probability and
Statistics, 2005. Retrieved from http://people.brandeis.edu/~moshep/

_0Lect8/Presentation/RandomNumberGenerators_BobDeVito.ppt, May
26, 2015.

[3] Fairhead, Harry. ERNIE - A Random Number Generator. I Programmer,
September 2013. Retrieved from http://www.i-programmer.info/

history/machines/6317-ernie-a-random-number-generator.html,
May 26, 2015.

[4] Garrett, Matthew. A Short History of Random Numbers (And Why You
Need to Care). Portland, 2013. Retrieved from http://www.codon.org.

uk/~mjg59/oscon_random_2013.odp, May 26, 2015.

[5] Green, Matthew. The Many Flaws of Dual EC DRBG. A Few
Thoughts on Cryptographic Engineering, September 2013. Re-
trieved from http://blog.cryptographyengineering.com/2013/

09/the-many-flaws-of-dualecdrbg.html, May 26,2015.

[6] Kamath, John-Paul. Photo story: ERNIE goes on dis-
play at the Science Museum. Computer Weekly, June 2008.
Retrieved from http://www.computerweekly.com/feature/

Photo-story-ERNIE-goes-on-display-at-the-Science-Museum,
May 26, 2015.

[7] Knuth, Donald E. The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. 3rd ed. Boston: Addison-Wesley, 1997.

[8] Lange, Tanja. Analysis of pseudo-random number generators based on el-
liptic curves. 31st Australasian Conference on Combinatorial Mathematics
& Combinatorial Computing (ACCMCC), Alice Springs, 2006. Retrieved
from http://www.hyperelliptic.org/tanja/#conf, May 26, 2015.

[9] Menezes, Alfred J., Van Oorschot, Paul C. and Vanstone, Scott A. Hand-
book of Applied Cryptography. Boca Raton: CRC Press, Inc., 1997.

38

[10] Miller, Victor S. Elliptic Curves and their use in Cryptography. Prince-
ton, 1997. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.38.1785&rep=rep1&type=pdf, May 26, 2015.

[11] Silverman, Joseph H. An Introduction to the Theory of Elliptic Curves.
Summer school on Computational Number Theory and Applications to
Cryptography, University of Wyoming, 2006. Retrieved from http://www.

math.brown.edu/~jhs/Presentations/WyomingEllipticCurve.pdf,
May 26, 2015.

[12] Williams, Joseph J. and Griffiths, Thomas L. Why are People Bad at
Detecting Randomness? Because it is Hard. 30th Annual Conference
of the Cognitive Science Society, Washington DC, 2008. Retrieved from
https://cocosci.berkeley.edu/tom/papers/hard.pdf, May 26, 2015.

[13] A Million Random Digits with 100000 Normal Deviates. 2nd ed. RAND,
2001. Retrieved from http://www.rand.org/content/dam/rand/pubs/

monograph_reports/MR1418/MR1418.introduction.pdf, May 26, 2015.

[14] ERNIE 1. Science Museum, London. Retrieved from http://objectwiki.

sciencemuseum.org.uk/wiki/ERNIE_1.html, May 26, 2015.

[15] RANDOM.org. Retrieved from https://www.random.org/, May 26, 2015.

[16] Recent Trends in Cryptography. Universidad Internacional Menndez Pelayo
Santander, Spain, 2005. E-book. Retrieved from https://books.google.

se/, May 26, 2015.

[17] Statistical Significance. StatPac. Retrieved from https://www.statpac.

com/surveys/statistical-significance.htm, May 26, 2015.

39

Appendices

40

Appendix A

Source code for random
number generators

The following is the complete source code for this project, written in Mathe-
matica language.

E l l i p t i c C u r v e [a , b , p] :=
Module [{ e , l s n } ,
I f [Mod[4 aˆ3 + 27 bˆ2 , p] == 0 , Pr int [” The curve i s

s i n g u l a r ”] ;
Abort []] ;
e = {{\ [I n f i n i t y] , \ [I n f i n i t y] } } ;
Do [
l s n = y / . So lve [yˆ2 == xˆ3 + a x + b , y , Modulus −> p] ;
I f [Length [l s n] > 0 , e = Union [e , {{x , l s n [[1]] } , {x , l s n

[[2]] } }]] ,
{x , 0 , p − 1 }] ;
RotateRight [e , 1]]

Orde rOfE l l i p t i c [a , b , p] :=
I f [Mod[4 aˆ3 + 27 bˆ2 + b , p] == 0 , Pr int [” The curve i s

s i n g u l a r ! ”] ,
p + 1 + Sum[JacobiSymbol [xˆ3 + a x + b , p] , {x , 0 , p −

1 }]]

addpoints [{ x1 , y1 } , {x2 , y2 } , a , b , p] :=
Module [{ \ [Lambda] , x3 , y3 } ,
Quiet [
I f [Mod[4 aˆ3 + 27 bˆ2 , p] == 0 , Pr int [” The curve i s

s i n g u l a r ”] ;
Abort []] ;
I f [Mod[y1ˆ2 − x1ˆ3 − a x1 − b , p] != 0 | |

41

Mod[y2ˆ2 − x2ˆ3 − a x2 − b , p] != 0 ,
Pr int [” Error : Point (s) not on curve ! ”] ; Abort []] ;
I f [{ x1 , y1} == {\ [I n f i n i t y] , \ [I n f i n i t y]} , Return [{ x2 , y2

}] ;
Break []] ;
I f [{ x2 , y2} == {\ [I n f i n i t y] , \ [I n f i n i t y]} , Return [{ x1 , y1

}] ;
Break []] ;
I f [x1 == x2 && y1 == Mod[−y2 , p] ,
Return [{ \ [I n f i n i t y] , \ [I n f i n i t y] }] ; Break []] ;
I f [{ x1 , y1} == {x2 , y2 } , \ [Lambda] =
Mod[(3 x1ˆ2 + a) PowerMod [2 y1 , −1, p] , p] , \ [Lambda] =
Mod [(y2 − y1) PowerMod [x2 − x1 , −1, p] , p]] ;
x3 = Mod [\ [Lambda]ˆ2 − x1 − x2 , p] ;
y3 = Mod [\ [Lambda] (x1 − x3) − y1 , p] ;
{x3 , y3 }]
]

multpoint [n , {x , y } , a , b , p] :=
Module [{ double , base2 , rounds , x2 , y2 } ,
{x2 , y2} = {x , y } ;
double = {} ;
base2 = Reverse [I n t e g e r D i g i t s [n , 2]] ;
Do [
AppendTo [double , {x2 , y2 }] ;
{x2 , y2} = addpoints [{ x2 , y2 } , {x2 , y2 } , a , b , p] ,
{Length [base2] }] ;
{x2 , y2} = {\ [I n f i n i t y] , \ [I n f i n i t y] } ;
Do [
I f [base2 [[i]] == 1 , {x2 , y2} =
addpoints [{ x2 , y2 } , double [[i]] , a , b , p]] ,
{ i , Length [base2] }] ;
{x2 , y2}
]

OrderOfPoint [{ x , y } , a , b , p] :=
Module [{ cand idate s } ,
I f [Mod[4 aˆ3 + 27 bˆ2 , p] == 0 , Pr int [” The curve i s

s i n g u l a r ! ”] ;
Abort []] ;
I f [Mod[yˆ2 − xˆ3 − a x − b , p] != 0 ,
Pr int [” Error : Point not on curve ! ”] ; Abort []] ;
cand idate s = D i v i s o r s [Orde rOfE l l i p t i c [a , b , p]] ;
Do [
I f [multpoint [cand idate s [[i]] , {x , y} , a , b ,

42

p] == {\ [I n f i n i t y] , \ [I n f i n i t y]} , Return [cand idates [[i
]]] ;

Break []] ,
{ i , Length [cand idates] }]
]

MakeBinarySequence [seq , p] := Module [{ output , thresho ld
, curr , i } ,

t h r e sho ld = (p − 1) /2 ;

output = {} ;
For [i = 1 , i <= Length [seq] , i ++,
I f [seq [[i]] [[1]] <= thresho ld , curr = 0 , curr = 1] ;
output = Append [output , curr] ;
] ;

Return [output] ;
] ;

ECLCG[{ x0 , y0 } , {x1 , y1 } , a , b , p] :=
Module [{ current , l i s t , g , i , seed , b inary } ,
seed = {x0 , y0 } ;
cu r r ent = seed ;
g = {x1 , y1 } ;
l i s t = {{x0 , y0 }} ;
For [i = 0 , i <= 1000 , i ++,
I f [Length [l i s t] == 1 | | cur rent != seed ,
l i s t = Append [l i s t , cur rent] ;
cur r ent = addpoints [current , g , a , b , p] ;
] ;
] ;
l i s t = Delete [l i s t , 1] ;
l i s t = Delete [l i s t , 1] ;
b inary = MakeBinarySequence [l i s t , p] ;
Return [b inary] ;
]

ECPG[{ x0 , y0 } , e , a , b , p] :=
Module [{ i , seed , l i s t , current , length , b inary } ,
seed = {x0 , y0 } ;
cu r r ent = seed ;
l i s t = {} ;
l ength = 1 ;
For [i = 0 , i <= 1000 , i ++,
I f [cur rent == seed && length != 1 , Break [] ,] ;
l i s t = Append [l i s t , cur rent] ;

43

l ength++;
cur rent = multpoint [e , current , a , b , p] ;
] ;
l i s t = Delete [l i s t , 1] ;
b inary = MakeBinarySequence [l i s t , p] ;
Return [b inary] ;
]

ECNRG[{ g0 , g1 } , n , a , b , p] :=
Module [{ k , vect , t , i , r , sequence , j , expvec , zeros , num

, l , e , c ,
def , m, pt , x} ,
k = Log [2 , n] ;
vect = {} ;

t = OrderOfPoint [{ g0 , g1 } , a , b , p] ;
For [i = 0 , i < k , i ++,
r = RandomInteger [{2 , t − 1 }] ;
vect = Append [vect , Prime [i + 1]] ;
] ;

sequence = {} ;
For [j = 0 , j <= 2ˆk − 1 , j ++,
expvec = I n t e g e r D i g i t s [j , 2] ;
z e r o s = Length [vect] − Length [expvec] ;
num = 1 ;
I f [z e r o s > 0 ,
For [e = 1 , e <= zeros , e++,
expvec = Prepend [expvec , 0] ;
] ,] ;

For [l = 1 , l <= Length [vect] , l ++,
c = num∗(vect [[l]] ˆ expvec [[l]]) ;
num = c ;
] ;
sequence = Append [sequence , num] ;
num = 1 ;
] ;
For [x = 1 , x <= Length [sequence] , x++,
sequence [[x]] = Mod[sequence [[x]] , t] ;
] ;

de f = {} ;
For [m = 1 , m <= Length [sequence] , m++,
pt = multpoint [sequence [[m]] , {g0 , g1 } , a , b , p] ;
de f = Append [def , pt] ;

44

] ;
de f = MakeBinarySequence [def , p] ;
Return [de f] ;
] ;

45

Appendix B

Source code for testing

ChiTest [s eq] := Module [{ ones , zeros , i , p , expectedOnes ,
s t a t i s t i c } ,

ones = 0 ;
For [i = 1 , i <= Length [seq] , i ++,
I f [seq [[i]] == 1 , ones ++ ,];
] ;
z e r o s = Length [seq] − ones ;
p = 0 . 5 ;
expectedOnes = Length [seq]∗p ;
s t a t i s t i c = ((ones − expectedOnes) ˆ2/
expectedOnes) + ((z e ro s − expectedOnes) ˆ2/ expectedOnes) ;
I f [s t a t i s t i c < 3 .841 , Pr int [” The f requency t e s t i s passed

. ”] ;
Return [True] ,
Pr int [” The f requency t e s t i s NOT passed . ”] ; Return [Fa l se

]] ;
]

S e r i a l T e s t [s eq] := Module [{ ones , zeros , n00 , n01 , n10 ,
n11 , i , s t a t } ,

ones = 0 ;
For [i = 1 , i <= Length [seq] , i ++,
I f [seq [[i]] == 1 , ones ++ ,];
] ;
z e r o s = Length [seq] − ones ;
n00 = 0 ;
n01 = 0 ;
n10 = 0 ;
n11 = 0 ;
For [i = 1 , i < Length [seq] , i ++,

46

I f [seq [[i]] == 0 ,
I f [seq [[i + 1]] == 0 , n00++, n01 ++]; ,
I f [seq [[i + 1]] == 0 , n10++, n11++];
] ;
] ;
s t a t = ((4 / (Length [seq] − 1)) ∗(n00ˆ2 + n01ˆ2 + n10ˆ2 +
n11 ˆ2)) − ((2/ Length [seq]) ∗(z e r o s ˆ2 + ones ˆ2)) + 1 ;
I f [s t a t > 5 .991 , Pr int [” The s e r i a l t e s t i s NOT passed

. ”] ;
Return [Fa l se] , Pr int [” The s e r i a l t e s t i s passed . ”] ;

Return [True]] ;
]

PokerTest [seq , m , k] :=
Module [{ i , numList , e lements , sum , s t a t i s t i c } ,
l i s t = {} ;
For [i = 1 , i <= 2ˆm, i ++,
l i s t = Append [l i s t , 0] ;
] ;

For [i = 1 , i <= Length [seq] , i = i + 5 ,
e lements = {} ;
For [j = 1 , j <= m, j ++,
e lements = Append [elements , seq [[i + j − 1]]] ;
] ;

l i s t [[FromDigits [e lements , 2] + 1]]++;
] ;

s t a t i s t i c = (2ˆm/k) ∗Sum[l i s t [[i]] ˆ 2 , { i , 2ˆm}] − k ;

I f [s t a t i s t i c <= 44 .985 , Pr int [” The poker t e s t i s passed
. ”] ;

Return [True] , Pr int [” The poker t e s t i s NOT passed . ”] ;
Return [Fa l se]] ;
]

BlocksGaps [seq , l e n g t h] :=
Module [{ i , b locks , gaps , currLength , n , l i s t } ,
b l ocks = 0 ;
gaps = 0 ;
currLength = 1 ;

n = Length [seq] ;
l i s t = {} ;
For [i = 2 , i <= n , i ++,

47

I f [seq [[i]] != seq [[i − 1]] , l i s t = Append [l i s t ,
currLength] ;

currLength = 1 , currLength ++];

] ;
l i s t = Append [l i s t , currLength] ;

For [i = 1 , i <= Length [l i s t] , i ++,
I f [l i s t [[i]] == length ,
I f [seq [[1]] == 1 ,
I f [Mod[i , 2] == 1 ,
b locks++;
, gaps ++];
, I f [Mod[i , 2] == 1 ,
gaps++;
, b locks ++] ;] ;
,] ;
] ;

Return [{ blocks , gaps }] ;
]

RunTest [s eq] := Module [{n , i , e i , k , s t a t i s t i c , B, G, j ,
e } ,

n = Length [seq] ;
i = n − 995 ;
For [i = n , i >= 0 , i−−,
e i = (n − i + 3) /(2ˆ(i + 2)) ;
I f [e i >= 5 , k = i ; Break [] ; , ,] ;
] ;
s t a t i s t i c = 0 ;
For [j = 1 , j <= k , j ++,
{B, G} = BlocksGaps [seq , j] ;
e = (n − j + 3) /(2ˆ(j + 2)) ;
s t a t i s t i c = s t a t i s t i c + (((B − e) ˆ2) /e) + (((G − e)) ˆ2/ e)

;
] ;
I f [s t a t i s t i c > 15 .507 , Pr int [” The run t e s t i s NOT passed

. ”] ;
Return [Fa l se] , Pr int [” The run t e s t i s passed . ”] ; Return [

True]] ;
]

AutoCorre lat ion [s eq] := Module [{d , n , A, s t a t i s t i c } ,
d = 100 ;
n = Length [seq] ;

48

A = Sum[BitXor [seq [[i]] , seq [[i + d]]] , { i , n − d }] ;
s t a t i s t i c = 2∗(A − ((n − d) /2)) / Sqrt [n − d] ;
I f [s t a t i s t i c >= −1.96 && s t a t i s t i c <= 1.96 ,
Pr int [” The a u t o c o r r e l a t i o n t e s t i s passed . ”] ; Return [True

] ,
Pr int [” The a u t o c o r r e l a t i o n t e s t i s NOT passed . ”] ; Return [

Fa l se]] ;
] ;

DoAllTests [seq , l i s t , d] := Module [{ f a i l s , passed , m,
k} ,

f a i l s = {0 , 0 , 0 , 0 , 0} ;
m = 5 ;
k = 200 ;
passed = ChiTest [seq] ;
I f [passed == False , f a i l s [[1]] + + ,] ;
passed = S e r i a l T e s t [seq] ;
I f [passed == False , f a i l s [[2]] + + ,] ;
passed = PokerTest [seq , m, k] ;
I f [passed == False , f a i l s [[3]] + + ,] ;
passed = RunTest [seq] ;
I f [passed == False , f a i l s [[4]] + + ,] ;
passed = AutoCorre lat ion [seq] ;
I f [passed == False , f a i l s [[5]] + + ,] ;
Return [f a i l s] ;
] ;

GenerateCurve := Module [{ i , p , x , y , A, B, q} ,
i = 0 ;
While [True ,
p = Prime [RandomInteger [{10000 , 1 5 0 0 0 }]] ;
{x , y , A} = RandomChoice [Range [0 , p − 1] , 3] ;
B = Mod[yˆ2 − xˆ3 − A x , p] ;
q = p + 1 + Sum[JacobiSymbol [xˆ3 + A x + B, p] , {x , 0 , p
− 1 }] ;

I f [PrimeQ [q] , Break [] , i ++]] ;
{A, B, p , q , i }
] ;

GetTwoPoints [a , b , p] := Module [{ x , Y2 , P, k , Q, R} ,
x = 1 ;
While [True ,
Y2 = xˆ3 + a∗x + b ;
I f [JacobiSymbol [Y2 , p] == 1 , P = {x , PowerMod [Y2 , 1/2 , p

] } ;
Break [] ,] ;

49

x++;
] ;
k = RandomInteger [{1 , p }] ;
Q = multpoint [k , P, a , b , p] ;
k = RandomInteger [{1 , p }] ;
R = multpoint [k , P, a , b , p] ;
Return [{Q, R}] ;
]

Test [n] :=
Module [{ curveData , a l lCurves , f a i l u r e s , k , po ints , A, B,

p , q , i ,
e c l cg , ecpg , ecnrg , t o t a l F a i l s , f a i l s 1 , f a i l s 2 , f a i l s 3 ,

f a i l s ,
idx } , curveData = {} ;
t o t a l F a i l s = {{0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 , 0 , 0} , {0 , 0 , 0 ,

0 , 0}} ;
a l lCurve s = {} ;
For [k = 1 , k <= n , k++, f a i l s = {} ;
{A, B, p , q , i } = GenerateCurve ;
curveData = Append [curveData , A] ;
curveData = Append [curveData , B] ;
curveData = Append [curveData , p] ;
Pr int[”−−−−−−−−−−−−−−−−−− For the curve ” , Supe r s c r i p t [”Y

” , 2] ,
” = ” , Supe r s c r i p t [”X” , 3] , ” + ” , A, ”X + ” , B, ” over

” ,
Subsc r ip t [”F” , p] , ” −−−−−−−−−−−−−−−−−”];
Pr int[”−−−−−−−−−−−−−−−−−−−−−−−”\
] ;
po in t s = GetTwoPoints [A, B, p] ;
curveData = Append [curveData , po in t s [[1]]] ;
curveData = Append [curveData , po in t s [[2]]] ;
Pr int [po in t s] ;
e c l c g = ECLCG[po in t s [[1]] , po in t s [[2]] , A, B, p] ;
Pr int [” Linear c o n g r u e n t i a l : ”] ;
f a i l s 1 = DoAllTests [e c l cg , f a i l u r e s , 0] ;
ecpg = ECPG[po in t s [[1]] , Pr imit iveRoot [q] , A, B, p] ;
Pr int [” Power genera tor : ”] ;
f a i l s 2 = DoAllTests [ecpg , f a i l u r e s , 1] ;
ecnrg = ECNRG[po in t s [[1]] , 1000 , A, B, p] ;
Pr int [” Naor Reingold : ”] ;
f a i l s 3 = DoAllTests [ecnrg , f a i l u r e s , 2] ;
f a i l s = Append [Append [Append [f a i l s , f a i l s 1] , f a i l s 2] ,

f a i l s 3] ;
curveData = Append [curveData , f a i l s] ;

50

t o t a l F a i l s = t o t a l F a i l s + f a i l s ;
Pr int [” Total f a i l s so f a r : ” , t o t a l F a i l s] ;
a l lCurve s = Append [a l lCurves , curveData] ;
curveData = {} ;
] ;
TableForm [a l lCurves ,
TableHeadings −> {None , {”A” , ”B” , ”P” , Subsc r ip t [” s ” ,

0] , ”g ” ,
” Resu l t s ”}}]
]

51

Faculty of Technology
SE-391 82 Kalmar | SE-351 95 Växjö
Phone +46 (0)772-28 80 00
teknik@lnu.se
Lnu.se/faculty-of-technology?l=en

Author: Alice Reinaudo
Supervisor: Per-Anders Svensson
Examiner: Marcus Nilsson
Date: 2015-06-20
Course Code: 2MA11E
Subject: Applied Mathematics
Level: Undergraduate

Department Of Mathematics

