y A)
| V 4

MALARDALENS HOGSKOLA
ESKILSTUNA VASTERAS

Model-based Testing on Generated C Code

Madlardalen University

School of Innovation, Design and Engineering
Athanasios Stratis

2015-06-27

Examiner: Kristina Lundqvist

Supervisor: Adnan Causevié

Co-Supervisor: Eduard Paul Enoiu

Mdlardalen University Model-based Testing on Generated C code

Abstract

In this master thesis we investigated whether it is possible to use
automatically generated C code from Function Block Diagram models as an
input to the CPAchecker model checker in order to generate automated test
cases. Function Block Diagram is a non-executable programming and
modeling language. Consequently, we need to transform this language to an
executable language that can be model checked. A tool that achieves this is
the MITRAC tool, a proprietary development tool used in the embedded
system domain, for engineering programmable logic controllers. The
purpose of this research was to investigate to what extent the generated C
code using MITRAC can be reused as an input to the CPAchecker tool for
automated test case generation. In order to achieve this we needed to
perform certain transformations steps on the existing code. In addition,
necessary instrumentations were needed in order to trigger CPAtiger, an
extension of CPAchecker which generates test cases, to achieve maximum
condition coverage. We showed that by performing the required
modifications it is feasible to reuse the generated C code as an input to
CPAchecker tool. We also showed an approach for mapping the generated
test cases with the actual Function Block Diagram. We performed mutation
analysis in order to evaluate the quality of the generated test cases in terms
of the number of injected faults they detect. Test case generation with
CPAchecker could be improved in the future in terms of reducing the number
of transformations and instrumentations that are currently needed. In
order to achieve this we need to add to CPAchecker tool support for
structures that are used in C, such as structs. Finally we can extend the type
of logic coverage criteria we can use with CPAchecker by adding additional
support of FQL language.

Mdlardalen University Model-based Testing on Generated C code

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
3.1
4.1
4.2
4.3
5.1
5.2

N o Y 8
Internal Structure 0f @ PLCrsersersessessessesssssssssssesssssssssssssssesssesssssssssssssssenns 9
A Function BlOCK DIia@ram........ocereeneereenemnemnensesssssesssssesssssssssssessssssssssssssssssssssssssssssssssssses 10
CPACRhECKET STIUCTUTE ..ottt sesasnss 14
A C program and its Control FIow AUtomaton ... 15
A simplified C program, its CFA (center) and its ARG (right)cccoevmnerirnsenenns 16
The research method employed in this thesis....... . 18
Query-driven Program teStING ... eeeererrememreessmsesseens 19
A Finite automaton for covering line 7 ... 19
CPAtiger approach for generation Of tE€St CASEScuurrerreerrerrerseessesserssessessessesseesnes 20
FBD for FAN CONTROL €XaMPIE...cvrermrnenineninsnssnssssnssnssnes 28
Mapping between test case 1 and FBD ... 29

List of Tables

2.1
2.2
2.3
2.4
4.1
5.1
5.2
5.3
5.4
5.5
5.6
6.1

A set of test cases for Predicate COVETagecomrmrernerreenesseenessesssssessessesssssesssssesnes 11
A set of test cases for Clause COVETAZEommrrreererrerrernesrersessessessessessesssssessssssssssseses 11
A set of test cases for Combinatorial COVErageccemrneenernessnnessessssseens 11
A set of test cases for Active Clause COVETagecmmmrrneereenesreenessessessessessessesseenes 12
Generated test Cases by CPALIZET ... sssssessssss 20
Generated test cases for MSEL8_I function by CPAtiger tool........cccouninrerirnsenns 24
negation operation handled by instrumented codecoonrereneeneenceneseereeseenenns 25
Constant and output variables of FAN CONTROL program.........uoeeeseereessennes 26
generated test cases for FAN program by CPALIGETcccocerceneereeneereeneeneeneesersenseens 28
mapping between test cases and FBD........onnnrcseseeeseseeeeseeseeseesesseeeens 29
mutants that were not “killed” by CPACheCKer ..o 31
generated test cases for FAN CONTROL program by CompleteTest.........c......... 31

Mdlardalen University Model-based Testing on Generated C code

Contents
1. INETOAUCTION coeeeeeceeecee ettt e bbb bbb nn s 4
1.1 Problem formulation ... sesssssssssssessessssssssssssssssessessssssssseas 4
00 & 7= ol €4 (01 0o Lo PR 6
2.1 Programmable Logic CONIOLIET ... sessssssssssssessssssssesaes 6
2.2 JEC 61131-3 StANAATd...ccceeerereerereereremrersessessessesssssessessesssssssssssssssssesssssssssssesssssssssssesssssesssssssssssesees 7
2.3 Function BIOCK DIagram ... sessssssssssssssssssssssssses 8
2.4 SOFtWATE TESEING cooueruerrirrisrirerssis e 9
2.4.1 Logic COVErage Criteria ... sssssssns 9
2.5 Program Analysis and Model cheCKing ... 11
S 08 2 el (=T (=) PP 12
0 B 0 N 1) o 13
2.7 MULAtION TESTINEG v 14
R I U0 o 0 L= 2V o o PP 14
3. ReSEArCh MEthOd ... 16
4. CPAtiger and generated code by MITRAC ... neneereereeresesseeseesesseesessesssssssssssssssssssssssssseens 18
4.1 FShell Query Language and CPATIZETcerenrereeeeeeseeseeseeseessesessssesssssessssssssssssssessssseens 18
4.2 EXECULING CPATIZET ..o s 20
4.3 The generated C code by MITRAC.......ereeceeereeeeseeseeseessesesssesssssssesssssssssssssssssssssssssseens 21
. RESUIES ...ttt 22
5.1 Transformation of generated C COAE ... 22
5.2 Code INStrUMENTAtIONS. c...ceceeeeeeereeseeressessessessessessessessesssssesssssssssssssssssesssssesssssssssssssssssssssssssssssssnes 24
5.3 Map generated test cases With FBD ... 29
6. EVAlUAtiON Of TESULELSeuececeeeceetee et sees 30
6.1 Related research and experimental COMPATiSONovvererenseresenseresessereseesessssssesssssnens 31
7. COMCIUSION oottt bbbt 33
7.1 FULUTE WOTK ..oieeeeeeeeseeseseesesessesses s s st s snnas 33
Appendix A — COAE LISTINEGScvueurirerrireisessessisssssss s sesssssssssssssssssssssssssssssssssssessssssssssssssssssasesns 34
BIDlIOZIaPNY ..ot 41
P2\ 0] o) 3 TA T U 1) 4 U TP 44

Mdlardalen University Model-based Testing on Generated C code

1. Introduction

Function Block Diagram (FBD) is one of the most widely used programming languages for
designing safety-critical systems. It is defined within the concept of 61131-3 standard,
which was established by International Electrotechnical Committee (IEC) [4]. This
standard defines five programming languages that can be used for the design of
Programmable Logic Controllers (PLCs), which are controllers that are used in safety-
critical systems.

Since the IEC 61131-3 standard was established and succeeded in increasing the
reusability of PLCs, the need for verification and validation of them was raised radically.

Testing PLCs is not an easy task. The reason is that the programming languages that are
defined in IEC 61131-3 standard are not executable [2]. Therefore, there is a need for
transforming the software into an executable actual program code, e.g. C code, in order to
be compiled and executed on the PLC.

In addition, the verification of software components for safety-critical systems is a quite
significant process [3]. Consequently the phase of testing the quality and the reliability of
PLCs is one of the most important ones within the PLC software development lifecycle [6].
The purpose of this phase is to minimize the chance of a critical failure due to an untraced
software error [5]. This can be achieved either by creating tests manually and executing
them, which is expensive and prone to human error. Alternatively, researchers have
proposed the use of automated test generation using a model checker for PLC software

[5].

According to Sadolewski [7], model checking is a method for formal verification of finite-state
systems. Therefore, if we are able to transform one of the non-executable programming
languages of [EC 61131-3 standard into the input language of one of the existing software
model checkers [8] then the model checker will be able to generate automatically test
cases that can eventually be executed. Consequently we will be able to validate and verify
PLCs.

The purpose of this research is to investigate how FBD can be transformed into actual c
code in order to be used as an input to the CPAchecker tool, which is a tool for verifying
configurable software [9], so that it can generate automated test cases.

1.1 Problem formulation

This thesis report has two major goals: the first goal is to investigate and define how an
FBD program can be transformed to C code. This can be used as an input to the
CPAchecker tool in order for it to generate automated test cases. The second goal of this
thesis is to identify a mapping between the automatically generated test cases and the
actual FBD program.

Bombardier Transportation AB, which is a major rail vehicle manufacturer in Sweden,
have developed a tool, called MITRAC, in order to transform an FBD program to an
executable C code. This thesis investigated if the generated C code by MITRAC tool can be
used as an input to the CPAchecker. We showed to what extend the generated C code can

Mdlardalen University Model-based Testing on Generated C code

meet the requirements and be transformed to a structure of C code that is accepted by
CPAchecker as an input.

The test cases that CPAchecker generated are related with the C code, since this is the
input that is used by the tool. The goal of this thesis is to investigate how we can relate the
information we retrieve, by measuring coverage on C code, to the coverage of FBD. It is
reasonable to mention that it is meaningless to map the test cases with the C code, since
this is considered to be an intermediate step in verification and validation progress of FBD
programs. What is significantly important is to map the generated test cases with FBD and
this is what this thesis investigated.

The problem that this master thesis report will address can be formulated into the
following research questions (RQs):

RQ1: How can we represent an FBD program as a C program such that it can be used
by the CPAchecker tool?

RQ2: How can we instrument the C code that is used by CPAchecker for the purpose
of model-checking properties related to logic-based coverage achieved FBD program?

RQ3: How can we map properties which we model-check on the C code with the actual
FBD program?

More specifically we investigated to what extent the C code that is generated by MITRAC
tool can be reused as an input to the CPAchecker tool. In addition, we defined the
modifications that are needed to be performed, in order to utilize CPAchecker.

This thesis report is organized as follows. In Section 2 we provide the necessary
theoretical information that is needed in order to understand the contributions of the
report. In Section 3 we describe the research method that was used in order to retrieve
the results of the work while in Section 4 we provide technical information that are
required in order to present the results of the work which are presented in Section 5. In
Section 6 we evaluate the results of the research and we perform an experimental
comparison with an existing tool for test case generation. Finally in Section 7 we
summarize the results of the research and we discuss future work.

Mdlardalen University Model-based Testing on Generated C code

2. Background

In this section introduce Programmable Logic Controller and we describe its architecture.
Then we present IEC 61131-3 standard and its fundamental software unit (POU). Next we
describe Function Block Diagram programming language and we introduce software
testing, focusing on logic coverage criteria. In addition, we discuss about two approaches
for static software verification, namely model checking a program analysis and we
introduce CPAchecker and its extension CPAtiger. Finally we present the related state of
the art.

2.1 Programmable Logic Controller

A microprocessor-based controller is a processor, or a set of them, that based on a
program and a given set of inputs will produce the required outputs, as shown in Figure
2.1 [1]. The most significant advantage that offers a microprocessor control system its
reusability. This stems from the fact that by changing the program we can reuse the same
microprocessor system in order to handle a broad range of different situations [1].

Program

INPUT A | OUTPUT A

PLC
| |

Figure 2.1 - APLC[1]

INPUT B OUTPUT B

PLC is a type of microprocessor-based controller that uses a programmable memory in
order to store the program and basic functions, namely logic, arithmetic, counting and
others [1]. The primary purpose of PLC is to implement logic and switching operations.
They are used widely in the industry since they are optimized for control tasks [1].

One of the most significant advantages of PLCs is reusability. It is possible to reuse the
same PLC for controlling a wide variety of situations. In order to do that the engineer
needs to change the program of the PLC, namely the set of instructions that will be used
by the PLC in order to produce the required outputs [1]. The program is executed
iteratively. Each iteration consists of three phases [3]. During the first phase the program
reads and stores the inputs. In the next one it executes, which means that performs all the
necessary computations in order to produce the outputs and finally during the final phase
it writes the produced outputs [3].

From the hardware perspective a PLC is composed of following components [1]:
= Processor unit
= Memory
= Power supply unit
* [nput/output interface
= Communication interface
* Programming device

Mdlardalen University Model-based Testing on Generated C code

The way that these components are connected with each other is illustrated in Figure 2.2.

Programming | _
device “A | Program & data Communications | 3,
memory interface —
Fy %
—> Input L—p, Output
p| inter- Processor inter- — >
— —>
—p face face 5

T— Power supply T

Figure 2.2 - Internal structure of a PLC

The processor unit is responsible for receiving the inputs and according to the instructions
of the program carry out the control actions and produce the required outputs. The
programming device is used in order to enter the program in the program and data
memory. Input sections are used in order to provide information from external devices to
the CPU, while output sections are used in order for the CPU provides the outputs.

Another significant advantage of PLCs is that it is not required by the engineers to have a
high level of programming language in order to enter the program that is needed for the
PLC. This is done by using simple and easy to understand programming languages [1].
However in the past manufacturers were using different programming languages [2],
which were costly and development time consuming. As a result of this it was quite
challenging for engineers to reuse PLCs in different situations. Over the time it was clear
that there is a need for a standardized programming language in order to develop
programs for PLCs, so that it is possible to be used by different manufactures in different
situations.

2.2 |[EC 61131-3 standard

International Electrotechnical Committee (IEC) established the IEC 61131-3 standard,
which is the first worldwide accepted standard, that defines, among others, a standard
programming technology for PLCs [2]. It contains not only major principles for developing
PLC projects but also describes the programming languages that can be used in PLCs [2].
It is used though more as a set of guidelines that should be followed in order to program
PLCs.

The fundamental software unit that is defined in IEC 61131-3 is called POU (program
organization unit) [2]. According to the 61131-3 standard [4], a POU can be called
multiple times and contains a well-defined interface with inputs and outputs. There are
three different types of POUs, namely Program (PROG), Function block (FB) and Function
(FUN) [2]. Function and FB provide similar functionality. Their purpose is to produce
outputs based on the input parameters that are provided. The major difference is that a
FUN has no memory and therefore, if it is called with the same inputs it will provide the

Mdlardalen University Model-based Testing on Generated C code

same outputs. On the other hand, FB has its own data record [2]. Programs (PROG) can be
seen as the main program of a PLC.

IEC 61131-3 standard defines a huge amount of details [2]. Therefore, it is quite hard for
a programming system to implement all the standard. Thus, programming systems
usually implement a part of it. There are three different levels that certificate the
compliance of a programming system with the standard, namely Base Level (BL),
Reusability Level (RL) and Conformity Level (CL) [2].

The programming languages that are defined in IEC 61131-3 standard are as follows:
Structured Text (ST), Function Block Diagram (FBD), Ladder Diagram (LD), Instruction
List (IL) and Sequential Function Chart (SFC) [2]. ST and IL are textual programming
languages. On the other hand, FBD, SFC and LD are graphical ones [2].

2.3 Function Block Diagram

Function Block Diagram is a graphical programming language which is widely used in
industry in order to design PLCs [2]. It describes the relation between input parameters
and output variables. The parameters are given as inputs to the graphical elements. The
result is calculated by the graphical elements and stored in an output variable which is
then ready for sending to the next graphical element [2]. This data flow is described by
graphical elements which are connected with each other with connection lines, as
illustrated in Figure 2.3.

Input 1 _AND
AND —
Output 1
Input 2—— el
OR ——
Input 3 OR ——QOutput 3
Input 4! . Output 2
Input 5——

Figure 2.3 - A Function Block Diagram

A graphical element can be either a function that implements basic operations, such as
logarithmic, conversion etc.,, a function block, e.g. counter, timer or a function that
implements a required task [1].

In Figure 2.3 the FBD consists of 3 blocks, which perform basic bitwise operations. The
first block has two inputs, namely input 1 and input 3 and performs the bitwise AND
operation. Input 3 is used as an input parameter in the second block as well, which has an
additional input parameter, namely input 2 and performs bitwise OR operation. The

Mdlardalen University Model-based Testing on Generated C code

results of these two blocks are sent as output variables to the third block, which performs
the bitwise XOR operation and provides the final output of the FBD.

2.4 Software Testing

Software testing is a significant phase in software development lifecycle process [10]. It
is an expensive and time consuming process and needs more than 50% of the overall
software development cost [10]. This percentage is even higher for the development of
safety-critical systems. The purpose of software testing is to execute the software under
testing and compare the result of the execution against the expected one in order to
conclude whether the implemented software meets its specification or not. According to
Ammann et al. [10] and Utting et al. [11], software testing is a process that proves the
presence of failures but not their absence. In order to evaluate how thorough is a test case,
or a set of test cases, we use coverage criteria [3]. The coverage score of a set of test cases
is calculated by using the equation (2.1):

|Testedsc(T,S)|
|Existing 4¢(S)|

Coverageyc = (2.1)

It represents how many of the existing test items, Existing,.(S), have been tested,
namely Tested (T, S).

2.4.1 Logic Coverage Criteria

Logic coverage criteria are used in order to test the logical expressions of the software
artifact. Logical expressions are widely used in every software artifact, such as source
code, state machines etc. [12]. In addition, it is easy to evaluate them automatically and
simply to formalize [12]. Therefore, there are many coverage criteria that are defined and
used in order to test logical expressions.

In order to control the flow of an FBD program we use Boolean variables and logical
expressions which are composed of Boolean variables and Boolean operators (AND, OR
etc.) [3]. Therefore, in order to assess the thoroughness of a set of test cases, that cover
FBD programs, we use logic coverage criteria. There are several logic coverage criteria.
The most commonly used are the Predicate Coverage (PC), Clause Coverage (CC),
Combinatorial Coverage (CoC), Active Clause Coverage (ACC) etc. In order to understand
the logic behind these criteria first we need to define predicate and clause.

A predicate is a logic expression that evaluates to TRUE or FALSE. According to Ammann
etal.[10], a predicate can be composed of Boolean variables, non-Boolean variables which
are compared by using the required operators (<, >, <, >, =, #) and function calls. We use
mathematical symbols in order to formalize logical expressions [10].

A clause is a predicate which does not contain any logical operators. The following
expression (2.2) is a predicate, which consists of three clauses, namely a Boolean variable
(A), a comparison expression (b > ¢) and a call function f(x, z) that returns a Boolean

variable.

AN =)V f(x,2) (2.2)

Mdlardalen University Model-based Testing on Generated C code

Predicate Coverage (PC), which is also referred as decision coverage, assesses if each
predicate of the software artifact is evaluated to TRUE and FALSE. A set of test cases that
satisfies predicate coverage for the predicate (2.2) is illustrated in Table 2.1.

Table 2.1 - A set of test cases for Predicate Coverage

ID A b c f(x,2) Result
1 T 1 0 T T
2 T 0 1 F F

A drawback for this type of coverage criterion is that it is possible that one or more
individual clauses are not always evaluated to both TRUE and FALSE at least once [12]. In
the above mentioned example the first clause, namely A, is always evaluated to TRUE. In
order to address this problem we use clause coverage.

Clause Coverage (CC), which is also referred as condition coverage, assesses if each
clause of every predicate in the software artifact is evaluated to TRUE and FALSE [3]. A

test suit that satisfies clause coverage for the predicate (2.2) is illustrated in Table 2.2.

Table 2.2 - A set of test cases for Clause Coverage

ID A b c f(x,2) Result
1 T 1 0 T T
2 F 0 1 F F

Combinatorial Coverage (CoC), assesses if each clause of every predicate in the software
artifact is evaluated to each possible combination of truth values [10]. CoC is considered
to be impractical logic coverage criterion because we need a considerable amount of test
cases for predicates with several clauses. The reason is that a predicate p with n clauses
has 2" possible assignments of truth values [10]. For instance the predicate (2.2) contains
three clauses. Therefore, we need 8 different test cases, which are illustrated in Table 2.3.

Table 2.3 - A set of test cases for Combinatorial Coverage

ID A b c f(x,z) Result
1 T 1 0 T T

2 T 2 1 F T

3 T 0 1 T F

4 T 1 2 F F

5 F 2 2 T F

6 F 2 0 F F

7 F 0 3 T F

8 F 1 3 F F

Active Clause Coverage (ACC), which is also referred as Modified Condition / Decision
Coverage (MC/DC), assesses whether each major clause of every predicate in the software
artifact determines the final value of the predicate to TRUE and FALSE [12]. Major clause
is the clause that the test case is focused on, while the values of the other clauses remain

10

Mdlardalen University Model-based Testing on Generated C code

unchanged. Thus, the goal of ACC is to change the value of the predicate when the value of
the major clause is changed [12].

In the predicate (2.3) we will consider the first clause as major clause (A) and we will
determine the value of the predicate based on the values of the major clause.

AV fEDAE=)) (2.3)

This is illustrated by test cases 1 and 2 in Table 2.4. Next we consider as the major clause
the function f(x). Therefore, we hold the same values for the remaining clauses and we
determine the final value of the predicate based on the value of the major clause. This is
shown by the test cases 3 and 4 in Table 2.4. We follow the same procedure for the final
clause. Therefore, the Table 2.4 is as follows:

Table 2.4 -A set of test cases for Active Clause Coverage

ID f(x) Result

O\ UT A WIN -
— = oo - >
— = 1 =] 1 ™
ONRFR OR O~
_mNR O R O~
e e N M |

We notice that test cases 2 and 4 are identical. Therefore, the final test cases we need in
order to satisfy ACC for the predicate (2.3) are 1,2,3,5 and 6.

2.5 Program Analysis and Model checking

As it was mentioned in section 2.4, during the testing process we verify whether the
software satisfies its specification by comparing the result of its execution against the
expected one. In order to conclude whether the software meets its specification or not we
have to determine the right test cases. Thus, is achieved by identifying the appropriate
input parameters and the appropriate test oracle for each test case. This procedure is
error prone, time-consuming and expensive when it is performed manually [5].
Therefore, we need to verify the program automatically.

The method that will be used in order to verify the program automatically needs to be
decisive, in order to reveal as less as possible false positives [13]. But the more precise
the method is, the more expensive it will be. The two most common methods of static
verification are model checking and program analysis. Both of these two methods reflect
the trade-off between precision and efficiency [13]. Program analysis is used to
understand the behavior of the software and is more efficient approach comparing to
model checking. On the other hand, model checking checks whether the model of a
software meets its specification or not and focuses on correctness [9, 13]. The algorithms
that are used in model checking investigate the reachable states of the software [13]. If
the algorithm reveals a state that does not satisfy the property, then a counterexample
will be produced. The counterexample is a trace that exposes the error and is used to trace
back the error in the model [13].

11

Mdlardalen University Model-based Testing on Generated C code

These two approaches are considered to be subcase of the other [13]. Therefore, the
researchers are trying to combine them by exploiting the efficiency of program analyzers
and the precision of model checkers [13]. Thus, they extended the model checker BLAST
[13], by developing CPAchecker, which gives the opportunity to the researchers to
configure the automated software verification process.

2.6 CPAchecker

wyzle e

e e verification results

femorosamzle Lma-, demaoeoats A

CPAChecker

Selected program analysis

CPA algorithm

CFA

Figure 2.4 - CPAchecker structure

CPAchecker is an open-source framework that is used for configurable analysis and
verification of programs written in C programming language [9]. It combines the concept
of model checking and different approaches of program verification in one framework.
Therefore, the researchers are able to compare experimental results of different
approaches or the combination of them [9]. Figure 2.4 illustrates the way that CPAchecker
works.

The input of the tool is a program written in C. CPAchecker transforms this program into
Control-Flow Automata (CFA) and based on the type of program analysis the researcher
selected the algorithm of the tool that will provide the verification results [9]. CFA is a
directed graph that consists of finite set of nodes and edges [14]. Each node represents a
program counter and each edge represents a program operation [14]. A transformation

12

Mdlardalen University Model-based Testing on Generated C code

of a simple program in C into CFA created by CPAchecker is shown in Figure 2.5. The main
algorithm of the tool performs reachability analysis on the program [9], which means that
it computes all the states of the program that are reachable.

1 Function start dummy edge
2 int value = 8;

1. #include <stdio.h>

2. int exampleFunction (int x, int y) {
3. int value = 0;

4. (x > vy)

5. value = 1;

6. (x < vy)

7. value = 2;

8.

9. value = 3;

10.

11. (value) ;

12.}

13.

14.void main () {

15. int x = 0;

16. int y = 1;

17. res = exampleFunction (x,Vy)
18.}

Figure 2.5 - A C program and its Control Flow Automaton

The architecture of the tool is component-based, which means that it is easy to extend by
integrating new components. Therefore, the researchers developed an extension of the
tool, which is called CPAtiger, in order to generate test cases for the input program [9].

2.6.1 CPAtiger

CPAtiger is a test case generator based on CPAchecker. It performs reachability analysis
similarly to CPAchecker in order to derive the appropriate test inputs [15]. The algorithm
that CPAtiger executes in order to find the test inputs is based on model checking. More
specifically the idea that the algorithm implements, is to derive a counterexample by the
model checker, which will be used as a test input. This is achieved by using the test goal
as an input to the model checker [15, 16]. Given the CFA of the input program, which is

13

Mdlardalen University Model-based Testing on Generated C code

generated by CPAchecker, the location of the CFA that we want to derive a test input and
the predicate we want to test, the algorithm is trying to find a path in the CFA in order to
reach the required location [15]. Then it derives the test inputs by finding values that
satisfy the path that is previously found [15]. In order to achieve this CPAtiger uses an
abstract reachability graph (ARG) [15]. An ARG is a directed graph which consists of a
finite set of nodes and edges [17]. Each node of the ARG represents an abstract state. In
order to create the abstract states we compute the abstract successor states based on the
respective edges on the CFA of the program [17]. Each edge represents a program
operation. An ARG for the program shown in Figure 2.5 is illustrated in Figure 2.6.

1. int x;

2. x = 5;

3. (y)

4. z =

5.

6. z =2 * x / 5;

Figure 2.6 - A simplified C program, its CFA(center) and its ARG
(right) [17]

2.7 Mutation testing

Mutation testing is a technique that is used in order to evaluate the quality of the
generated test cases in terms of the number of faults that they can detect. In principal it
can be used for several types of artifacts but the engineers usually use it for program code
[10]. According to this technique first we generate test cases for a program under test.
Afterwards we create faults that we instrument into the existing program. Each version
of modified program contains only one fault and is called mutant. Then for each mutant
we execute again the test cases and we observe the results. If some of the test cases failed,
this means that these test cases managed to detect the fault we instrumented on purpose.
Then we say that the test case “killed” the mutant. The more mutants are killed by a test
cases the more effective the test cases is considered to be. In order to measure the
effectiveness of the test cases we define the mutation score as shown in equation (2.2):

K
Mutation score = Wm (2.2)

K,y is the number of mutants that were killed and M is the total number of mutants.
Mutation testing will be used in order to evaluate the results of this thesis and perform an
experimental comparison with an existing test case generation tool.

2.8 State of the Art

The first researchers that proposed the use of model checkers in order to generate test
cases were Callahan [25] and Engels [26]. Rayadurgam and Hemindahl in [27] proposed

14

Mdlardalen University Model-based Testing on Generated C code

an approach for test case generation by using counterexamples that are created by a
model checker. In [28] Ammann, Black and Ding suggested a method in which
specifications are mutated and then we use these mutants with a model checker in order
to generate test cases. Srivatanakul in [29] applied this approach.

On the other hand, extensive research has been performed regarding static analysis of a
program and tools that perform formal verification. D’ Silva, Kroening and
Weissenbachen in [30] created a survey in which three of the most important methods
for software verification has been described, namely abstract static analysis, model
checking and Bounded Model Checking.

Furthermore, different approaches regarding FBD testing have been proposed. In [31]
Richter and Wittig present an approach where the FBD program is simulated. Moreover,
Baresi in [20] discuss how we can verify directly the initial FBD. Three test coverage
criteria for FBD have defined by Jee at [16], while Enoiu on [3,5] suggests an approach
with which we can generate automated test cases for FBDs.

15

Mdlardalen University Model-based Testing on Generated C code

3. Research Method

Figure 3.1 illustrates the basic steps that were followed in order to retrieve the results of
the thesis. The thesis process starts by formulating the research questions. Then an
extensive research was conducted at Malardalen University. This research aimed on
finding and gathering all the state of the art and current practices that could be used in
order to answer the questions that previously was stated. Afterwards we conducted the
required analysis of the generated code by MITRAC tool in conjunction with the analysis
of the input code in CPAchecker. Then we formulated the modifications that were needed
in order to achieve our goals.

(Research Question]

(Research J
L T~y
.| Analysis of generated Analysis of input code in|_
r code by MITRAC CPAchecker ")
\“‘H\ _/'/
H‘m_‘ /_/
‘H‘H&‘m_‘ ,,/./
modifications’
formulation
h { Evaluation } g
(Discussion]

Thesis report

Figure 3.1 - The research method employed in this thesis

Moreover, experimentation was conducted in order to evaluate our results. We
investigated how we can transform FBD to c code that can be used as an input to the
CPAchecker tool. This could lead us to three different cases. In the first case, the c code
that is generated by the MITRAC tool that is used in Bombardier AB meet the
requirements and the structure that is needed and can be used directly as an input to the
CPAchecker. In the second case we need to transform the generated code by MITRAC to
an accepted model in order be used as an input to CPAchecker. In the third case the
generated code cannot be used as an input at all, which will leads us to the conclusion that

16

Mdlardalen University Model-based Testing on Generated C code

the CPAchecker cannot be used in order to generate test cases for FBD programs.
Furthermore, we will investigate how the generated test cases can be mapped to the initial
FBD program. Then we will evaluate effectiveness and efficiency compared to another
model checker tool, namely Uppaal. Finally the results of the experimentation will be
analyzed and discussed to the thesis report.

17

Mdlardalen University Model-based Testing on Generated C code

4. CPAtiger and generated code by MITRAC

4.1 FShell Query Language and CPAtiger

FShell Query Language (FQL) [18] is a test specification language that is used in order to
specify the coverage criteria of a program under testing. It was developed as an attempt
to improve the quality of the generated test cases in terms of the number of test goals that
needs to be covered [19]. Its principles are based on query-driven program testing, where
there is a clear separation between the specification of test goals and the test cases
generation technique [19]. The test case generation back-end tool that follows the query-
driven program approach needs two inputs. The first one is the source code of the
program under test and the specification of the coverage criterion, which are written in
FQL. Given these two inputs the tool will generate a set of test cases, as illustrated in
Figure 4.1 [21].

Source Code
Test Case Generation Tool Set of generated test cases

FQL Query

Figure 4.1 - Query-driven Program testing [19]

FQL syntax is based on regular expressions. This will be illustrated by a simplistic
example. For instance, given the program presented in Figure 2.5, we need a test case
which will cover line 7. According to Holzer [19], we can express the path that we need to
follow in order to reach line 7 by using the following regular expression

@7, * (4.1)

where we describe all program executions that will reach line 7. The expression _*
denotes all sequence of statements, that need to be executed before and after line 7 [19].
Symbol @ is used in order to express the number of line we want to test. An automaton
that would accept our criterion is presented in the Figure 4.2.

*

— Line 7 — N

O X

O
Figure 4.2 - Finite automaton for covering line 7

In order to express the above mentioned criterion in FQL we write the following
command:

cover “ID*.@7.ID*” (4.2)
The test goal is defined as the path that needs to be followed in order to fulfill the coverage

criterion that is defined in the command. For instance for the command (4.2) the test goal
is the path that needs to be followed in order to reach at line 7 of the program. A test case

18

Mdlardalen University Model-based Testing on Generated C code

that would be generated in order to cover the above mentioned criterion would have as
input values x = 0 and y = 1. We notice that this command is quite similar with the
logical expression (4.1). The main difference is that we replaced the underscore _ with ID,
which denotes the ID of the edge that need to be visited. Following the rules of regular
expressions and using the operators “+”,"*” and ”.” we can express more complex criteria
in FQL. In addition, FQL supports filter functions with which we can express coverage
criteria, such as statement coverage, condition coverage etc. [18]. For example the
command (4.3) in FQL

cover “ID*.@BASICBLOCKENTRY.ID*” (4.3)
will generate a set of test cases that fulfil statement coverage.

For complex programs expressing coverage criteria in FQL results in a huge set of test
goals [19]. As a backend tool we can use a model checker which will generate test cases
by following query-based program testing. However, according to Holzer in [19], model
checkers are not the optimal solution because for a large set of test goals they respond
poorly. The reason is that the model checker needs to perform an extensive and costly run
for each test goal [19]. On the other hand, expressing coverage criteria in FQL results in
a big amount of test goals, which are represented as finite automaton. These finite
automaton are called test-goal automaton (TGA) [19]. Based on the CFA of the program
under test and the TGAs that are generated based on the FQL query, CPAtiger tool
performs reachability analysis for each TGA, determining whether the TGA is feasible on
the given input program or not. If yes, the CPAtiger generates a test input for this TGA
[19]. This procedure is iterative until all the TGAs are checked, which will result in a set
of test cases as illustrated in Figure 4.3.

FQL Query Program under test
[Set of Test-Goal Automata CFA

AN

Reachability Analysis for each TGA

!

Test Input

l

Set of generated test cases

CPAtiger

Figure 4.3 - CPAtiger approach for generation of test cases

19

Mdlardalen University Model-based Testing on Generated C code

4.2 Executing CPAtiger

CPAtiger can be used either on Windows or on Linux. For this thesis we executed it on
Linux by using the terminal. In the command line we specify the type of coverage criterion
we want to use to test the program, which is expressed in FQL and then we type the
program we want to test, as illustrated in the Listing 4.1.

scripts/cpatiger.sh -fgl 'COVER "EDGES (ID) *".EDGES (@CONDITIONEDGE) . "EDGES (ID) *"'
examples/MSEL8 I.c

Listing 4.1 - CPAtiger command line example

CPAtiger does not support all FQL filter functions though. The filter functions that support
is only BASICBLOCKENTRY and CONDITIONEDGE which can be used in order to fulfill
statement coverage and condition coverage respectively. Assuming we want to fulfill
condition coverage for the program illustrated in Figure 2.5 CPAtiger would provide the
following results, as shown in Listing 4.2.

COVER "EDGES (ID) *" .EDGES (@CONDITIONEDGE) . "EDGES (ID) *"
Determining the number of test goals

Number of test goals: 4

TODO: reduce coupling!

Goal #1 is feasible!

Goal #1 needed 201 ms

Goal #2 is feasible!

Goal #2 needed 25 ms

Goal #3 is covered by an existing test case!
Goal #4 is feasible!

Goal #4 needed 45 ms

Time in reach: 0.246

Max time in reach: 0.188 s

Mean time of reach: 0.082 s

Generated Test Cases:

pl_ VERIFIER nondet int,-1,0][VERIFIER nondet long][VERIFIER nondet uint]
[VERIFIER nondet bool][VERIFIER nondet char]

pl_ VERIFIER nondet int,1,0] [_VERIFIER nondet long][VERIFIER nondet uint]
[VERIFIER nondet bool][VERIFIER nondet char]

pl_VERIFIER nondet int,0,0][VERIFIER nondet long][VERIFIER nondet uint]
[VERIFIER nondet bool][VERIFIER nondet char]

INTERN:

#Goals: 4

#Feasible: 4
#Infeasible: 0
#Imprecise: 0O
#BugRevealing: 0

Listing 4.2 - CPAtiger generated test cases

First CPAtiger determines the number of test goals. As we mentioned in section 4.1 during
this procedure CPAtiger generates the set of TGA. Then it performs reachability analysis
for each of them and finally it generates the set of test cases that fulfill to coverage
criterion we expressed in the command. CPAtiger provides information for each test goal.
We can see if the test goal is feasible or not, if it is covered by an existing test case and the
time that is needed in order to perform reachability analysis. Then it presents the

20

Mdlardalen University Model-based Testing on Generated C code

generated test cases and finally it shows the number of feasible and infeasible test goals.
In this example CPAtiger generated 3 test inputs, which are presented in Table 4.1.

Table 4.1 - generated test cases by CPAtiger

ID X y \ Result

1 | 0 2 |
2 1 0 1

3 0 0 3

4.3 The generated C code by MITRAC

As we mentioned in previous section, Bombardier AB developed a tool called MITRAC in
order to transform FBD to executable C code. In this section we will present an example
of the generated code and we will illustrate all the obstacles that need to be encountered
in order the code to be used as an input to the CPAtiger tool. MSEL8_I function block is
written in ST and it is presented in Listing A.1 of Appendix A. It is part of an FBD which
describes a component that is used in Train Control and Management System (TCMS)1.
MSELS_I function block selects the first active value in list of 8 (active, value) pairs. The
generated C code by MITRAC is presented in Listing A.2 of Appendix A.

In order to reuse this code as an input to the CPAchecker tool we need to overcome
specific obstacles. These obstacles are mostly related with the structure of the C code that
CPAtiger tool expects as an input in order to generate test cases that will fulfill logic
coverage criteria. MITRAC tool handles blocks that perform logical operations in a specific
way. It transforms the logical operation to a simple statement. This needs to be changed
for the CPAchecker tool. The reason is that CPAchecker tool does not recognize this kind
of statements as logical conditions and therefore, it does not generate test case in order
to cover it. Furthermore, obstacles related with CPAchecker needs to be encountered.
More specifically, CPAtiger does not support structures that are commonly used in C
programming. In addition, the logical negation operation is not supported. Therefore, we
need to investigate how we can tackle these obstacles in order to achieve our goal.

1 http://www.bombardier.com/en/transportation/products-services/propulsion-
controls/products/train-control-and-management-system.html

21

Mdlardalen University Model-based Testing on Generated C code

5. Results

In this section we will show how we can reuse the generated C code by MITRAC as an
input to CPAtiger tool. In order to achieve this we need to perform specific
transformations to the generated C code. In addition, we need to instrument snippets of
code to trigger CPAtiger to generate the test cases we need in order to achieve 100%
condition or statement coverage.

5.1 Transformation of generated C code

As we mentioned in section 4, CPAtiger does not support structures, which are commonly
used in C code. Therefore, we need to perform specific transformations in the code in
order to tackle this problem. Algorithm 1 illustrates the steps that need to be performed
in order to achieve this. The parameter that is passed in the algorithm is the program
under testing.

Algorithm 1 structTransformation(program P)
1: for each struct in the Program P do

2: for each variable defined in the struct do
3: define the variable of the struct as a variable in the test case function
4: delete the struct variable which is defined as parameter of the function
5: add the variable as a parameter to the definition of the function under
testing
6: add the variable as a parameter to call the function under testing
7: find all the statements of the program that the variable is used
8: for each statement do
9: replace the variable of the structure with the corresponding
variable we defined in the test case function
10: end for
11: delete the variable in the struct
12: end for
13: delete the struct
14: end for

The algorithm begins by selecting each of the structs that are declared in the program
(line 1). Then it defines each of the variables of the struct as simple variables in the test
case function and add this variable as a parameter to the function that we are currently
testing (lines 3 to 6). Afterwards we need to find all the statements that the variable is
using in order to replace it with the simple variable we defined in the test case function
and then delete the variable that is defined in the struct (lines 7 to 12). This procedure is
iterative for every variable of each struct in the program. We will illustrate step by step
how the structTransformation method is performed on the MSEL8_I function block.

As shown in Listing, A.2 this function block contains a struct namely MWT_MSELS8_L. In
this struct 19 variables are defined. The algorithm starts with the first variable that is
defined, namely MWT_BOOL ENABLE. MWT_BOOL is a struct that we assume that has
been handled previously by CPAtiger since MSEL8_L constitutes a part of the FBD. We will
define a variable called ENABLE type of bool in the TestCase function as shown in listing
5.1.

22

Mdlardalen University Model-based Testing on Generated C code

1. void TestCase() {

3. bool ENABLE = VERIFIER nondet bool () ;

Listing 5.1 - Define the variable of the struct as a variable
in the test case function

__VERIFIER nondet_bool() is the function that is called in order to assign a number to the
variable. In case this variable is Boolean then _ VERIFIER nondet_bool() will assign 0 as
equivalent to FALSE and a non-zero value as equivalent to non-zero according to the C
convention. Next we need to delete the variable which is defined as parameter to the
function (MWT_MSEL8_L* data) and add this variable as a parameter to the MSEL8_L
function in its definition. In addition, we need to add the variable as a parameter to the
MSELS8_L function where it is called. This is illustrated in Listing 5.2.

void MSEL8_I (bool ENABLE) { .. }
vold TestCase () {

bool ENABLE = VERIFIER nondet bool();
MSEL8 I (ENABLE)

o U s W N

Listing 5.2 - add the variable as a parameter to the
function

Afterwards we need to find all the statements that the ENABLE variable is used. In C the
variables of a struct are used in the form of “name_of_struct->name_of variable”. Thus, we
need to find statements were data->ENABLE is used and replace it with ENABLE. This is
shown in Listing 5.3.

1. void MSEL8 I (MWT MSEL8 I* data)
2.
3. (!data->ENABLE)

Listing 5.3 - replace variable in the statements where it is used

Then we delete the definition of the variable in the struct and we repeat this procedure
for every variable that is defined in the struct. The result of the necessary transformations
is illustrated in Listing A.3. In order the code to be executable, we added the definition of
a struct for handling the Boolean variables.

We used the transformed code of MSEL8_I function, which is presented in Listing A.2 of

Appendix A, as an input to the CPAtiger tool in order to fulfill condition coverage. The
generated test cases are illustrated in Table 5.1.

23

Mdlardalen University Model-based Testing on Generated C code

Table 5.1 - Generated test cases for MSEL8 I function by CPAtiger tool

qv_), - HI NI ml <l-'| LOI \ol l\l ooI H| N| m| ﬁ-l ml @l l\l ool
tEzE:z:zzz:z888¢8¢8¢888
7 & FH B B B B B B B 33 32 3 2 23 23 3 3
2222823232555 55 55 %
i /T F T T T T T T T 30 27 23 19 15 11 7 3
2 |T F F F T T T T T 28 25 22 19 15 11 7 3
3 |T F F F F F F F F 2 3 4 5 6 7 8 9
4 'F T T T T T T T T 10 11 12 13 14 15 16 17
5 |T ¥F ¥F F F F F T T 22 25 19 16 13 10 7 3
6 T F F F F F T T T 26 23 20 17 14 11 7 3
7 |T F ¥ F F T T T T 27 24 21 18 15 11 7 3
8 |T F F T T T T T T 29 26 23 19 15 11 7 3
o,Tr T T T T T T T T 24 21 18 15 12 9 6 3
io/T F F F F F F F T 24 21 18 15 12 9 6 3
i1|/T F F F F F F F T 4 5 6 7 8 9 10 11

5.2 Code Instrumentations

The algorithm that was described in the previous section will give us the opportunity to
handle structs, which are not supported by CPAtiger, and thus, reuse the generated C code
by MITRAC tool. Despite this, in order to take advantage of the use of CPAtiger we need to
instrument snippets of code which will handle comparisons and logical operations.

In FBD we can have function blocks that perform comparisons similar to the usual
comparisons that are made in C. Therefore, we have a function block with two inputs
which checks if the first input is greater, or less, or equal etc., than the second one. These
function blocks are handled in MITRAC tool by assigning the result of the comparison to
a Boolean variable as shown in Listing 5.4, where we compare if localvar_2_2_3 is greater
or equal to variable P2. The result of the comparison is stored in localvar_2_3_4.

1. localvar 2 3 4 = (localvar 2 2 3 >= P2);

Listing 5.4 - comparison operator handled by MITRAC tool

In addition, in FBD we can have function blocks which perform logical operations, such as
logical AND or OR. These operations are handled in a similar way by the MITRAC tool. It
generates a statement in which the result of the logical operation is stored in a Boolean
variable. Therefore, we will handle these two above-mentioned cases in a similar way.

Let oper € {=,<,>,<,>,#,AND, OR} and var1 and var2 be the variables that we want to
perform the operation. Let also var3 be the variable that MITRAC tool stores the result of
the operation. Then for each statement in which one of the above mentioned operations

is performed we need to add the following snippet of code which is illustrated in Listing
5.5.

24

Mdlardalen University Model-based Testing on Generated C code

var3 = (varl oper var2);
(var3) {
//statements...

Sw N

Listing 5.5 - Code instrumentation for comparison
and logical operations

Furthermore, FBD language contains a function block type which performs the logical
negation NOT. This operation returns the opposite Boolean value of the given input. For
example if the input is TRUE then the output of this function block will be FALSE. This
operation in MITRAC tool is handled by using the following statement as illustrated in
Listing 5.6.

1. DBC A AirDryerCtrl 0 = (!Enable DBC A);

Listing 5.6 - negation operation handled by MITRAC tool

Statements which are written similarly to the statement presented in Listing 5.6 are not
supported by CPAtiger. Thus, we need to delete these statements and instrument code
that will perform the negation operation. Let var2 be the Boolean variable that we want
to perform the negation operation. Then the code that we need to instrument is shown in
Listing 5.7.

1. (var?2)

2. {

3. varl = (!var2 && var2);
4. }

5. {

0. varl = (!var2 && !var?2);
7. 1

Listing 5.7 - code instrumentation for negation operation

Table 5.2 shows how the code of Listing 5.7 performs the negation operation for a variable
var2 which is evaluated either to TRUE or FALSE.

Table 5.2 - negation operation handled by instrumented code

ID var2 !var2 | 'var2 && var2 !var2 && 'var2

1 T F F -
2 F T - T

25

Mdlardalen University Model-based Testing on Generated C code

The motivation behind these instrumentations is that we want to trigger CPAtiger to
perform condition coverage. In order to do that CPAtiger has to find an IF statement
condition in order to execute it and generate all the required test cases that will evaluate
it to TRUE and FALSE.

We will illustrate the above-mentioned instrumentations with an example. FAN CONTROL
is an industrial program example provided by Bombardier Transportation AB. It consists
of one integer variable, namely DBC_PV_X_CoStep, which is the input in the FBD. It also
contains ten constant integers and six Boolean variables which are the outputs of the
program and are presented in Table 5.3

Table 5.3 - Constant and output variables of FAN CONTROL program

Constant variables Output variables

1 P_FanlLo_1=3 DBC_PV_C_FanlLo
2 P_FanllLo 2=7 DBC_PV_C_Fan1Hi
3 P_Fan1Hi=8 DBC_PV_C_FanZ2Lo
4 P_Fan2Lo_1=4 DBC_PV_C_Fan2Hi
5 P_Fan2lo_ 2=6 DBC_PV_C_Fan3Lo
6 P_Fan2Hi_1=7 DBC_PV_C_Fan3Hi
7 P_Fan2Hi_2 =8

8 P_Fan3Lo =5

9 P_Fan3Hi_1=6

10 | P_Fan3Hi_.2 =8

The FBD of the FAN CONTROL is presented in Figure 5.1. It consists of function blocks
which perform comparisons between the given input and the constant variables and
logical operations. The instrumented code for the FAN CONTROL program is illustrated
in Listing A.4. We used the code presented in A.4 as an input to the CPAtiger tool and the
set of test cases that it generated is shown in Table 5.4.

26

Mdlardalen University Model-based Testing on Generated C code

GE | END
DBC_PY_X_(bbt=p DBC PV_C_Fanilo

P_Fanilo_1—

P_Fanilo_2—

DEC PV_C_FanlHi
P_FanlHi—

GE TAND

— —DBC PV_C_Fanllo
P_Fanilo_1—

P_Fanllo 2—1 —

GE T AND

- L —DEC_PYV_C_FanZHi

P_Fan2Hi_ 1—

P_Fan2Hi_2—] e

DBEC PV_C_Fanilo
P_Fanilo—

DEC_PV_C_Fan3Hi
P_FzniHi_1—

P_Fan3Hi_2—

Figure 5.1 - FBD for FAN control example

27

Mdlardalen University Model-based Testing on Generated C code

Table 5.4 - generated test cases for FAN program by CPAtiger

Test DBC_PV_ | DBC_PV_. DBC_PV_ DBCPV_ DBCPV_ DBCPV_ DBCPV_
case X_CoStep | C_FanlL C_FanlHi C_FanZ2L C_FanZ2Hi C_Fan3L C_Fan3Hi
0 0 0
1 5 T F T F T F
2 4 T F T F F F
3 7 T F F T F T
4 2 F F F F F F
5 8 F T F F F T
6 9 F F F F F F
7 3 T F F F F F

Figure 5.1 illustrates the mapping between test case 1 and the blocks of the FBD. On each
line it is stated whether the test case evaluates the block to TRUE or FALSE.

GE) BND
DEC_PV_X_(bEtep DEC PV_C_Fanilo

P_Fanllo 1—

\[

nilo_2—

}\

DEC PV_C_FaniHi

J

L DBC_PV_C_Fanllo

P_Fanilo 1—

P_Fan2lo_

L —DBC_PV_C_FanZHi

0
3

DEC PV_C_Fanilo

ﬂ—oa C_PV_C_FandHi
& ._
P_FaniHi_2—|

Figure 5.2 - Mapping between test case 1 and FBD

28

Mdlardalen University Model-based Testing on Generated C code

5.3 Map generated test cases with FBD

Since we managed to reuse the C code (by performing the necessary transformations and
instrumentations) that is generated by MITRAC tool as an input to CPAtiger tool and
generate test cases that fulfil logic coverage criteria. Now we are interested in
investigating how we can map the generated test cases with the actual FBD. More
specifically we are interested in finding which test case evaluates which function block in
the FBD to TRUE and which one to FALSE. Thus, we will be able to retrieve significant
information related with the extent of the logic coverage we achieved through the
generated test cases.

In order to achieve this we need to construct a table. Each row in the table will represent
a block of the FBD under test, while each column will represent a test case. Then we need
to check whether the test case evaluates the if statement, that corresponds to each block
of the FBD, to TRUE or FALSE and fill the corresponding cell. Once we iterate the same
procedure for each of the test cases we will have a complete mapping between them and
each of the blocks in the FBD. The above mentioned procedure can be illustrated in the
FAN CONTROL example. The table with the FBDs and the generated test cases is
illustrated in Table 5.5.

Table 5.5 - mapping between test cases and FBD

Block in FBD Test Test Test Test Test Test Test
case case case case case case

0O
Q
wn
()

DBC_PV_X_CoStep >= P_Fan1Lo_1
DBC_PV_X_CoStep >= P_Fan1Lo_2

AND block with DBC_PV_C_FAN1Lo output
DBC_PV_X_CoStep == P_Fan1Hi
DBC_PV_X_CoStep >= P_Fan2Lo_1
DBC_PV_X_CoStep <= P_Fan2Lo_2

AND block with DBC_PV_C_FAN2Lo output
DBC_PV_X_CoStep >= P_Fan2Hi_1
DBC_PV_X_CoStep <= P_Fan2Hi_2

AND block with DBC_PV_C_FAN2Hi output
DBC_PV_X_CoStep == P_Fan3Lo
DBC_PV_X_CoStep >= P_Fan3Hi_1
DBC_PV_X_CoStep >= P_Fan3Hi_2

AND block with DBC_PV_C_FAN3Hi output

A4 M 4 m 4 M A A A Mg g
M AT AT AT A A AT A A AN
e e B B T R B s Bl B B R R R) OV
B e T e B e o W o s o M 2 e o M 2 R o B A B
4 4 4 mm™m m 4T ™+ 47T T o
e e B e B e o M s o B 2 M o B 2 B s B A B)
B B o e o e o B B o B o B B 2 B B EE IR B DN

29

Mdlardalen University Model-based Testing on Generated C code

6. Evaluation of results

The primary purpose of this research was to investigate whether it is feasible to reuse the
generated C code by MITRAC tool as an input to the CPAchecker tool in order to generate
test cases and to investigate what transformations and instrumentations are needed in
order to achieve this. If this was feasible then we wanted to map the generated test cases
with the FBD. The motivation behind this research was that we want to generate test cases
that will fulfill logic coverage criteria for FBDs. We believe that creating automatically test
cases for the generated C code by MITRAC, which is a transformation of an FBD will
achieve this.

Based on the research that has been performed we can answer to RQ1 and RQ2 by stating
that it is possible to reuse the generated C code by MITRAC as an input to the CPAchecker
tool. In order to achieve this we need to perform several modifications in terms of
transformations and modifications. Once the required modifications are performed then
we can reuse the C code as an input to the CPAchecker tool, which will generate test cases.
For the FAN CONTROL example we need to instrument 14 if conditions in order to trigger
CPAchecker to generate test cases that will fulfill condition coverage. As we will present
later on this section the generated test cases are of high quality. A question may be raised
though, regarding the effort we need in order to perform the required modifications.
Furthermore, we managed to map the generated test cases with the actual FBD. We
showed a simple but effective way that this can be achieved (RQ3).

In order to evaluate the generated test cases we will perform mutation testing. As we
mentioned on section 2.7 when we perform mutation testing we create faults that we
inject into the code. As a result of this we create several mutants. Then we execute the
same test cases and we observe the results. Each mutant corresponds to a single fault. The
purpose of performing mutation testing is not to detect faults but to evaluate the quality
of the generated test cases in terms of their ability to trace the injected faults.

As mutation analysis for FBD programs is outside the purpose of this thesis, we based the
analysis in this thesis on mutation operators found effective in the work by Donghwan et
al. [22]. According to Donghwan, the most suitable mutation operators for FBD are as
follows:

e Comparison Block Replacement (CBR) in which we replace a block that performs
a comparison operation with a block that performs another comparison operation.

e Logical Block Replacement (LBR) where we replace a block that performs a logical
operation with a block that will perform another logical operation (e.g., AND block
is changed to XOR block).

e Constant Value Replacement (CVR) where we replace a constant variable with
another constant variable

e Arithmetic Block Replacement (ABR) where we replace a block that performs an
arithmetic calculation with a block that performs another arithmetic calculation

e Inverter Insertion or Detection (IID) where we perform negation of a Boolean
variable.

Having that in mind we created 100 different mutants for the FAN CONTROL example that
we used in section 5.2 by using the above mentioned mutation operators. Then we
executed the test cases that the CPAtiger generated, which were presented on Table 5.4

30

Mdlardalen University Model-based Testing on Generated C code

and we observed the results. Our purpose was to evaluate whether the generated test
cases will detect the faults we injected or not. The results showed that the generated test
cases by CPAtiger managed to “kill” 95 out of the 100 mutants achieving a mutation score
equal to 95%.

It is interesting to investigate the reasons that 5 of the mutants were not “killed” even
though this is out of the scope of this research. Although, we should mention that 2 of
these mutants are LBR mutants and 3 of them are CVR. Table 5.6 represents the mutants
that were not killed by the test cases that CPAtiger generated.

Table 5.6 - mutants that were not “killed” by CPAchecker

Operator Mutant
1 | LBR replace a Block that performs LE (less equal) operation to LT (less than)
2 | LBR replace a Block that performs GE (greater equal) operation to GT (greater than)
3 | CVR Replace Fan2Lo_2 constant value from 6 to 5
4 | CVR Replace Fan2Hi_1 constant value from 7 to 6
51| CVR Replace Fan3Hi_1 constant value from 6 to 7

6.1 Related research and experimental comparison

As we mentioned in section 1 FBD is not an executable language. Therefore, we need to
transform it to an executable program, such as C code. This is achieved by MITRAC tool.
In addition, the generation of automated test cases for FBD is complicated because the
test cases are designed based on the graphical program but the actual coverage criteria
that will be fulfilled at the executable program code.

In order to encounter the above mentioned problems the CompleteTest? tool was
developed at Malardalen University [23]. The concept of the tool is based on Uppaal.
Uppaal is a model checker which first creates a representative model of the FBD under
testing and then identifies the execution paths of the FBD. Based on the analysis of the
FBD by the Uppaal tool, CompleteTest is able to generate the optimal number of test cases
that is needed in order to fulfill structural coverage criteria [24].

We used CompleteTest tool in order to generate test cases for the FAN CONTROL example.
The generated test cases are presented in Table 6.1. We notice that CompleteTest
generated 4 test cases while CPAtiger tool generated 7 test cases. In addition, both tools
fulfill 100% condition coverage. Furthermore, we performed mutation testing on the FAN
CONTROL example with the test cases that CompleteTest tool generated. The results
showed that the generated test cases by CompleteTest managed to “kill” 85 out of the 100
mutants achieving a mutation score equal to 85% which is less than the CPAtiger mutation
score. In addition, the test generated by CompleteTest is shorter than the test generated
by CPAtiger.

2 CompleteTest tool is available for download at http://www.completetest.org/

31

Mdlardalen University

Model-based Testing on Generated C code

Table 6.1 - generated test cases for FAN CONTROL program by CompleteTest

Test DBC_PV_ | DBC_PV_ DBC_PV_ DBC_PV_ DBC_PV_ DBC_PV_ DBC_PV_

case X_CoStep | C_FanlL C_FanlHi C_Fan2L C_Fan2Hi C_Fan3L C_Fan3Hi
0 0 0

1 2 F F F F F F

2 8 F T F T F T

3 9 F F F F F F

4 5 T F T F T F

Consequently we notice that CPAtiger tool generate test cases that are of similar quality
comparing to the test cases of the CompleteTest tool, in terms of the % of the logic
coverage they achieve. In addition, the generated test cases by CPAtiger achieved higher
mutation score but it generated more test cases comparing to the CompleteTest tool. This
may raise a problem in case we use as an input a program with huge size.

32

Mdlardalen University Model-based Testing on Generated C code

7. Conclusion

In this research we investigated the possibility to reuse C code that is generated by
MITRAC tool that is currently used in Bombardier AB in order to transform FBD to
executable C code. Our goals was to reuse this C code as an input to CPAchecker tool in
order to generate automated test cases. The test cases should fulfill logic coverage criteria
and more specifically condition coverage. If this was possible our second goal was to map
the generated test cases with the actual FBD. The research that was carried out showed
that it is possible to reuse the C code that is generated by MITRAC. In order this to be
achieved, we need to perform specific transformations and code instrumentations so that
the structure of the C code is accepted by CPAchecker. Transformations are related with
the fact that CPAtiger, which is an extension of CPAchecker that generate the test cases,
does not support structures of C code (structs). Therefore, we defined an algorithm which
can be used in order to overcome this obstacle. Furthermore, we presented the
instrumentations that need to be performed in order to trigger CPAchecker to perform
condition coverage. The reason this was needed is that the C Code by MITRAC tool
handled logical and comparison operations as simple statements and as a result of this it
was not recognized by CPAchecker tool as a condition statement. Once the required
modifications are applied the CPAchecker is able to generate automated test cases. The
generated test cases are achieving 100% condition coverage. Furthermore, we managed
to map the generated test cases with the actual FBD program.

7.1 Future work

Future work can be done in order to improve the generated test cases by CPAchecker. It
is significant to mention that the C code that MITRAC tool generates as a transformation
of FBD is certified. This means that we have already tested and confirmed that it can be
used a representative executable code of an FBD. Therefore, transforming or
instrumenting the C code by MITRAC to a large extent may raise a question regarding the
level of certification of the modified code. Having that in mind we can investigate how we
can improve CPAtiger in terms of supporting structs. Hence we will be able to avoid all
the transformations that are currently needed. In addition, we can improve CPAtiger in
terms of the logic coverage criteria that supports. As we mentioned currently only
statement coverage and condition coverage criteria are supported by the tool. This can be
improved by adding more extensive support of the FQL language in CPAtiger.

Furthermore, it would be significant to investigate the results of the mutation analysis on
the generated test cases by CPAtiger. As we mentioned the generated test cases have
mutation score 95%, which means that there are 5 mutants that were not killed. It is
important to investigate the reasons of this in order to improve even more the quality of
the generated test cases in terms of the number of faults they detect.

33

Appendix A — Code Listings

1
2
3.
4.
5
6
7
8

9.

10.

11
12

13.
14.

15

16.

17

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46

47.
48.

49

VAR INPUT
ENABLE : BOOL;
ACTIVE 1 : BOOL;
ACTIVE 2 : BOOL;
ACTIVE 3 : BOOL;
ACTIVE 4 : BOOL;
ACTIVE 5 : BOOL;
ACTIVE 6 : BOOL;
ACTIVE 7 : BOOL;
ACTIVE 8 : BOOL;

. END_VAR

. VAR _OUTPUT
ACTIVE : BOOL;

VALUE : INT;

. END_VAR

. IF (ENABLE) THEN
IF (ACTIVE 1) THEN

ACTIVE := ACTIVE 1;
VALUE := VALUE 1;
ELSIF (ACTIVE 2) THEN

ACTIVE := ACTIVE 2;
VALUE := VALUE 2;
ELSIF (ACTIVE 3) THEN
ACTIVE := ACTIVE 3;
VALUE := VALUE 3;
ELSIF (ACTIVE 4) THEN
ACTIVE := ACTIVE 4;
VALUE := VALUE 4;
ELSIF (ACTIVE 5) THEN
ACTIVE := ACTIVE 5;
VALUE := VALUE_5;
ELSIF (ACTIVE 6) THEN
ACTIVE := ACTIVE 6;
VALUE := VALUE_6;
ELSIF (ACTIVE 7) THEN
ACTIVE := ACTIVE 7;
VALUE := VALUE 7;
ELSIF (ACTIVE 8) THEN
ACTIVE := ACTIVE 8;
VALUE := VALUE_8;
ELSE
ACTIVE := FALSE;
VALUE := 0;
END_IF;

. ELSE
ACTIVE := FALSE;
VALUE := 0;

. END_TF;

Listing A.1 - MSEL8_I function block written in ST

Mdlardalen University

Model-based Testing on Generated C code

1
2
3.
4.
5
6
7
8

9.

10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.

22

typedef struct

{
MWT BOOL ENABLE;
MWT BOOL ACTIVE 1;
MWT INT VALUE 1;
MWT BOOL ACTIVE 2;
MWT INT VALUE 2;
MWT BOOL ACTIVE 3;
MWT INT VALUE 3;
MWT BOOL ACTIVE 4;
MWT INT VALUE 4;
MWT BOOL ACTIVE 5;
MWT INT VALUE 5;
MWT BOOL ACTIVE 6;
MWT INT VALUE 6;
MWT BOOL ACTIVE 7;
MWT INT VALUE 7;
MWT BOOL ACTIVE 8;
MWT INT VALUE 8;
MWT BOOL ACTIVE;
MWT INT VALUE;

.} MWT MSEL8 I;

23.

24

37

38.
39.
40.
41.
42.
43.
44,

45

46.
47.
48.
49.
50.
51.
52.

53

54.
55.
56.
57.
58.

.void MSEL8 I (MWT MSEL8 I* data)
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

{
(!data->ENABLE)

Label MSEL8 Il;
(!data->ACTIVE 1)

Label MSEL8 I2;
}

Label MSEL8 I3;
. Label MSEL8 I2:;
(!data->ACTIVE 2)

Label MSEL8 I4;
}

Label MSEL8 I3;
. Label MSEL8 I4:;
(!data->ACTIVE 3)

Label MSEL8 I5;
}

Label MSEL8 I3;
. Label MSEL8 I5:;
(!data->ACTIVE 4)

Label MSEL8 1I6;
}

data->ACTIVE = data->ACTIVE 1;
data->VALUE = data->VALUE 1;

data->ACTIVE = data->ACTIVE 2;
data->VALUE = data->VALUE 2;

data->ACTIVE = data->ACTIVE 3;
data->VALUE = data->VALUE 3;

data->ACTIVE = data->ACTIVE 4;

35

Mdlardalen University Model-based Testing on Generated C code

59. data->VALUE = data->VALUE 4;
60. Label MSEL8 I3;

61. Label MSEL8 I6:;

62. (!data->ACTIVE 5)

63. {

64. Label MSEL8 I7;

65. }

66. data->ACTIVE = data->ACTIVE 5;
67. data->VALUE = data->VALUE 5;
68. Label MSEL8 I3;

69. Label MSEL8 I7:;

70. (!data->ACTIVE 6)

71. {

72. Label MSEL8 I8;

73. }

74. data->ACTIVE = data->ACTIVE 6;
75. data->VALUE = data->VALUE 6;
76. Label MSEL8 I3;

77. Label MSEL8 I8:;

78. (!data->ACTIVE 7)

79. {

80. Label MSEL8 I9;

81. }

82. data->ACTIVE = data->ACTIVE 7;
83. data->VALUE = data->VALUE 7;
84. Label MSEL8 I3;

85. Label MSEL8 I9:;

86. (!data->ACTIVE 8)

87. {

88. Label MSEL8 I10;
89. }

90. data->ACTIVE = data->ACTIVE 8;
91. data->VALUE = data->VALUE 8;
92. Label MSEL8 I3;

93. Label MSEL8 I10:;

94. data->ACTIVE = (MWT BOOL) O;
95. data->VALUE = 0;

96. Label MSEL8 I3:;

97. Label MSEL8 Il1l;

98. Label MSEL8 Il:;

99. data->ACTIVE = (MWT BOOL) O;
100. data->VALUE = 0;
101. Label MSEL8 Ill:;

102. }

Listing A.2 - Generated C code by MITRAC for MSELS8_I
function block

36

Mdlardalen University Model-based Testing on Generated C code

1. void MSEL8 I (bool ENABLE, bool ACTIVE 1,int VALUE 1, bool ACTIVE 2,
int VALUE 2, bool ACTIVE 3, int VALUE 3, bool ACTIVE 4, int VALUE 4, bool
ACTIVE 5, int VALUE 5, bool ACTIVE 6, int VALUE 6, bool ACTIVE 7, int VALUE 7,
bool ACTIVE 8, int VALUE_8)

2. |

3. int ACTIVE;

4. int VALUE;

5.

6. (!ENABLE)

7. {

8. Label MSEL8 Il;
9. }

10. (!ACTIVE 1)

11. {

12. Label MSEL8 I2;
13. }

14. ACTIVE = ACTIVE 1;

15. VALUE = VALUE 1;

16. Label MSEL8 I3;

17. Label MSEL8 I2:;

18. (!ACTIVE 2)

19. {

20. Label MSEL8 I4;
21. }

22. ACTIVE = ACTIVE 2;

23. VALUE = VALUE 2;

24. Label MSEL8 I3;

25. Label MSEL8 I4:;

26. (!ACTIVE 3)

27. {

28. Label MSEL8 I5;
29. }

30. ACTIVE = ACTIVE 3;

31. VALUE = VALUE 3;

32. Label MSEL8 I3;

33. Label MSEL8 I5:;

34. (!ACTIVE 4)

35. {

36. Label MSEL8 I6;
37. }

38. ACTIVE = ACTIVE 4;

39. VALUE = VALUE 4;

40. Label MSEL8 I3;

41. Label MSEL8 I6:;

42. (!ACTIVE 5)

43. {

44. Label MSEL8 I7;
45. }

46. ACTIVE = ACTIVE 5;

47. VALUE = VALUE 5;

48. Label MSEL8 I3;

49. Label MSEL8 I7:;

50. (!ACTIVE 6)

51. {

52. Label MSEL8 I8;
53. }

54. ACTIVE = ACTIVE 6;

55. VALUE = VALUE 6;

37

Mdlardalen University Model-based Testing on Generated C code

56. Label MSEL8 I3;
57. Label MSEL8 I8:;
58. (!ACTIVE 7)
59. {
60. Label MSEL8 I9;
61. }
62. ACTIVE = ACTIVE 7;
63. VALUE = VALUE 7;
64. Label MSEL8 I3;
65. Label MSEL8 I9:;
66. (!ACTIVE_8)
67. {
68. Label MSEL8 I10;
69. }
70. ACTIVE = ACTIVE 8;
71. VALUE = VALUE 8;
72. Label MSEL8 I3;
73. Label MSEL8 I10:;
74. ACTIVE = 0O;
75. VALUE = 0;
76. Label MSEL8 I3:;
77. Label MSEL8 Il1l;
78. Label MSEL8 Il:;
79. ACTIVE = O0;
80. VALUE = 0;
81. Label MSEL8 Ill:;
82.}
83.
84.void TestCase () {
85.
86. bool ENABLE = _ VERIFIER nondet bool();
87. bool ACTIVE 1 = VERIFIER nondet bool();
88. bool ACTIVE 2 = _ VERIFIER nondet bool();
89. bool ACTIVE 3 = _ VERIFIER nondet bool();
90. bool ACTIVE 4 = VERIFIER nondet bool();
91. bool ACTIVE 5 = VERIFIER nondet bool();
92. bool ACTIVE 6 = _ VERIFIER nondet bool();
93. bool ACTIVE 7 = _ VERIFIER nondet bool();
94. bool ACTIVE 8 = VERIFIER nondet bool();
95. int VALUE 1 = VERIFIER nondet int();
96. int VALUE 2 = VERIFIER nondet int();
97. int VALUE 3 = VERIFIER nondet int();
98. int VALUE 4 = VERIFIER nondet int();
99. int VALUE 5 = VERIFIER nondet int();
100. int VALUE 6 = _ VERIFIER nondet int();
101. int VALUE 7 = VERIFIER nondet int();
102. int VALUE 8 = _ VERIFIER nondet int();
103.

104. MSEL8 I (ENABLE, ACTIVE 1, VALUE 1, ACTIVE 2, VALUE 2, ACTIVE 3,

VALUE 3, ACTIVE 4, VALUE 4, ACTIVE 5, VALUE 5, ACTIVE 6, VALUE 6, ACTIVE 7,
VALUE 7, ACTIVE 8, VALUE 8);
105. }

Listing A.3 - transformed code for testing MSEL8_L
function

38

Mdlardalen University Model-based Testing on Generated C code

1. void FAN CONTROL (int DBC_PV_X COSTEP) {

2. //Constant variables

3. int P_FanlLo 1 = 3;

4. int P_FanlLo 2=7;

5. int P_FanlHi=8;

6. int P_Fan2Lo 1=4;

7. int P_Fan2Lo 2=6;

8. int P_Fan2Hi 1=7;

9. int P_Fan2Hi 2=8;

10. int P_Fan3Lo=5;

11. int P_Fan3Hi 1=6;

12. int P_Fan3Hi 2=8;

13.

14. //Transform GE

15. bool block 1;

16. block 1 = (DBC PV X CoSTEP >= P FanlLo 1);
17. if(block 1){

18. //statements. ..

19. }

20.

21. //Transform LE

22. bool block 2;

23. block 2 = (DBC PV X CoSTEP <= P_FanlLo 2);
24. if(block 2){

25. //statements. ..

26. }

27.

28. //Transform AND

29. bool FanlLo;

30. FanlLo = (block 1 && block 2);

31. 1f(FanlLo) {

32. //statements. ..

33. }

34.

35. //Transform EQ

36. bool FanlHi;

37. FanlHi = (DBC PV X CoSTEP == P_FanlHi);
38. 1t (FanlHi) {

39. //statements. .

40. }

41.

42. block 1 = (DBC_PV X CoSTEP >= P_Fan2Lo 1) ;
43. if(block 1) {

44, //statements

45. }

46.

47. block 2 = (DBC_PV_X CoSTEP <= P_Fan2Lo 2);
48. if(block 2){

49, //statements

50. }

51.

52. bool Fan2Lo;

53. Fan2Lo = (block 1 && block 2);

54. 1t (FanlLo) {

55. //statements

56. }

57.

58. block 1 = (DBC PV X CoSTEP >= P Fan2Hi 1);

39

Mdlardalen University Model-based Testing on Generated C code

59. (block 1) {

60. //statements

6l. }

62.

63. block 2 = (DBC PV X CoSTEP <= P_Fan2Hi 2);
64 . (block_ 2) {

65. //statements

66. }

67.

68. bool Fan2Hi;

69. Fan2Hi = (block 1 && block 2);

70. (Fan2Hi) {

71. //statements

72. }

73.

74. bool Fan3Lo;

75. Fan3Lo = (DBC PV _X CoSTEP == P_Fan3Lo);
76. (Fan3Lo) {

77. //statements

78. }

79.

80. block 1 = (DBC PV X CoSTEP >= P _Fan3Hi 1);
81. (block 1) {

82. //statements

83. }

84.

85. block 2 = (DBC PV X CoSTEP <= P_Fan3Hi 2);
86. (block_ 2) {

87. //statements

88. }

89.

90. bool Fan3Hi;

91. Fan3Hi = (block 1 && block 2);

92. (Fan3H1i) {

93. //statements

94 . }

95. }

96.

97. void TestCase () {

98. int DBC_PV_X CoSTEP = _ VERIFIER nondet int();
99. FAN CONTROL (DBC_PV_X COSTEP) ;

100. }

101.

102. void main () {

103. TestCase () ;

104. }

Listing A.4 - instrumented code for FAN Control program

40

Mdlardalen University Model-based Testing on Generated C code

Bibliography
[1] W.Bolton, Programmable Logic Controllers, 5th edition. Burlington: Newnes, 2009.

[2] K.-H. John, M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems
2nd edition. New York: Springer, 2010.

[3] E. P. Enoiu, A. Causevic, T. O., E. Weyuker, D. Sundmark and P. Pettersson. Automated
test generation using model-checking: An industrial evaluation. International Journal on
Software Tools for Technology Transfer, 1:1-18, 2014.

[4] IEC 61131-3. Programmable Controllers - Part 3: Programming languages.
International Electrotechnical Commission, 2013

[5] E. P. Enoiu, Model Checking-Based Software Testing for Function Block Diagrams.
Licentiate Thesis, Mdlardalen University, November 2014

[6] G. Fraser, F. Wotawa, and P. E. Ammann. Testing with model checkers: a survey.
Software Testing, Verification and Reliability, 19(3):215-261, 2009.

[7] J. Sadolewski, ST to ANSI C transformation, Department of Computer and Control
Engineering, Rzeszow University of Technology, 2011.

[8] V. Gourcuff, O. De Smet and]. Faure, Efficient representation for formal verification of
PLC programs, LURPA - ENS de Cachan, 2006.

[9] D. Beyer, M. Keremoglu, CPAchecker: A Tool for Configurable Software Verification,
Simon Fraser University, 2009

[10] P. Ammann and]. Offutt, Introduction to Software Testing. Cambridge University
Press, 2008.

[11] M. Utting and B. Legeard, Practical model-based testing: a tools approach, Kaufmann,
Morgan, 2010

[12] P. Ammann,]J. Offut and H. Huang, Coverage Criteria for Logical Expressions, 14th
International Symposium on Software Reliability Engineering (ISSRE’03), 2003

[13] D. Beyer, T. Henzinger and G. Théoduloz, Configurable Software Verification:
Concretizing the Convergence of Model Checking and Program Analysis, Computer Aided
Verification, P 504-518, Springer Berlin Heidelberg, 2007

[14] D. Beyer, A. Holzer, M. Tautschnig and H. Veith, Information Reuse for Multi-goal
Reachability Analyses, Computer Aided Verification, P 504-518, Springer Berlin
Heidelberg, 2007

[15]]J. Biirdek, M. Lochau, S. Bauregger, A. Holzer, A. von Rhein, S. Apel and D. Beyer,

Facilitating Reuse in Multi-Goal Test-Suite Generation for Software Product Lines,
Fundamental Approaches to Software Engineering, Springer Berlin Heidelberg, 2015

41

Mdlardalen University Model-based Testing on Generated C code

[16]] Eunkyoung, K. Suin, C. Sungdeok, and L. Insup. Automated Test Coverage
Measurement for Reactor Protection System Software Implemented in Function Block
Diagram. Springer, 2010.

[17] A. Kucera, T. Henzinger,]. Nesetril, T. Vojnar and D. Antos, Mathematical and
Engineering Methods in Computer Science: 8th International Doctoral Workshop,
MEMICS 2012, Springer, 2013

[18] A. Holzer, C. Schallhart, M. Tautschnig and H. Veith. How did You Specify Your Test
Suite, 25th IEEE/ACM International Conference on Automated Software Engineering, ASE
2010

[19] A. Holzer, “Query-based Test Case Generation”, Ph.D. Dissertation, Faculty of
Informatics, University of Technology, Wien, 2013

[20] L. Baresi, M. Mauri, A. Monti, and M. Pezz_e. Plctools: Design, formal validation, and
code generation for programmable controllers. In Systems, Man, and Cybernetics, 2000
IEEE International Conference on, volume 4, pages 2437{2442. IEEE, 2000.

[21] M. Tautschnig, “Query-driven Program testing”, Ph.D. Dissertation, Faculty of
Informatics, University of Technology Wien, 2011

[22] Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae. Empirical evaluation on FBD
model-based test coverage criteria using mutation analysis. Springer, 2012.

[23] E. P Enoiu, D. Sundmark, and P. Pettersson. Model-based test suite generation for
function block diagrams using the uppaal model checker. In International Conference on
Software Testing, Verifcation and Validation (ICST), Advances in Model Based Testing (A-
MOST 2012). 1EEE, 2013.

[24] E. P Enoiu, D. Sundmark, and P. Pettersson. Using logic coverage to improve testing
function block diagrams. International Conference on Testing Software and Systems, pages
1-16. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-41706-1.

[25]]J. Callahan, F. Schneider, S. Easterbrook, et al. Automated software testing using
model-checking. In Proceedings 1996 SPIN workshop, volume 353. Citeseer, 1996.

[26] A. Engels, L. Feijs, and S. Mauw. Test generation for intelligent networks using model
checking. In Tools and Algorithms for the Construction and Analysis of Systems, pages
384{398. Springer, 1997.

[27] S. Rayadurgam and M. P. E. Heimdahl. Coverage based test-case generation using
model checkers. In Engineering of Computer Based Systems, 2001. ECBS 2001

[28] P. Ammann, P. E. Black and Wei Ding. Model checkers in software testing. In NIST-IR
6777, National Institute of Standards and Technology. Citeseer, 2002.

42

Mdlardalen University Model-based Testing on Generated C code

[29] T. Srivatanakul, JA Clark, S. Stepney, F. Polack. Challenging formal specifications by
Mutation: A CSP security example. Tenth Asia-Pacific Software Engineering Conference.
IEEE Computer Society: Washington, DC, U.S.A., 2003; 340-350.

[30] V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Automated Techniques or
Formal Software Verification, IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 7, JULY 2008

[31] S. Richter and]. Wittig. Verification and validation process for safety ic systems.
Nuclear Plant Journal, 21:36-36, 2003.

43

Mdlardalen University

Model-based Testing on Generated C code

Abbreviations

PLC
IEC
POU
PROG
FUN
FB
ST
FBD
LD
IL
SFC
PC
CC
CoC
ACC
CFA
ARG
FQL
CBR
LBR
CVR
ABR
11D

RQ

Programmable logic controller
International Electrotechnical Committee
Program Organization Unit
Program

Function

Function Block

Structure Text

Function Block Diagram

Ladder Diagram

Instruction List

Sequential Function Chart
Predicate Coverage

Clause Coverage

Combinatorial Coverage

Active Clause Coverage
Control-Flow Automaton
Abstract Reachability Graph
FShell Query Language
Comparison Block Replacement
Logical Block Replacement
Constant Value Replacement
Arithmetical Block Replacement
Inverter Insertion or Detection
Research Question

44

