
DEGREE PROJECT, IN  , SECOND LEVELENGINEERING PHYSICS

STOCKHOLM,  SWEDEN 2015

Modeling the Effects of Strain in
Multiferroic Manganese Perovskites

MARKUS SILBERSTEIN HONT

KTH ROYAL INSTITUTE OF TECHNOLOGY

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY





iii

Abstract
The effects of strain on the magnetic phases in perovskites are of inter-
est in the highly active research field of multiferroics. A Monte Carlo
program is written to investigate the influence of strain on the low–
temperature magnetic phase diagram of the manganese perovskites,
RMnO3, where R is a cation in the lanthanide series. A Metropolis
simulation scheme is implemented together with parallel tempering to
perform computations in a two–dimensional geometry using a conven-
tional nearest–neighbor and next–nearest–neighbor Heisenberg Hamilto-
nian, extended to include spin–lattice couplings and single–ion
anisotropies. The latter two are important to account for structural
distortions such as octahedral tilting and the Jahn–Teller effect. It is
shown that even weak single–ion anisotropies render incommensurability
in the otherwise structurally commensurate E–type ordering, and that
the Dzyaloshinskii–Moriya interaction, in combination with single–ion
anisotropies, is crucial for the stabilization of previously experimentally
observed incommensurate spin spirals. Simulations performed to account
for strain in the crystallographic ab–plane show that tensile strain may
improve stability of E–type ordering for R elements with small atomic
radii and that compressive strain drives the magnetic ordering toward
the incommensurate spiral states.

Keywords: Condensed matter physics, multiferroics, magnetism, spin
modeling, computational physics
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Sammanfattning
Modellering av spänningsinverkan på multiferroiska

manganitperovskiter

Spänningsinverkan på de magnetiska faserna i perovskiter är av intresse
inom den just nu högaktiva forskningen om multiferroiska material. Ett
Monte Carlo-program har skrivits för att undersöka effekterna av spän-
ning på de magnetiska lågtemperaturfaserna i multiferroiska manganitpe-
rovskiter, RMnO3, där R är en katjon i lantanoidserien. En kombination
av Metropolisalgoritmen och parallelltemperering har använts för att ut-
föra beräkningar i tvådimensionell geometri med en konventionell Heisen-
berghamiltonian, utökad till att även inkludera spinn–gitterkopplingar
och enkeljonsanisotropier. De senare har visats vara viktiga för att ta i
beaktande den strukturella distortion i materialet som följer av t.ex. syre-
oktahederförskjutning och Jahn–Tellereffekten. Det visas att även svaga
anisotropier orsakar inkommensurabilitet i den i övrigt kommensurabla
E–typsfasen, och att Dzyaloshinskii–Moriyainteraktionen, i kombination
med anisotropitermerna, är avgörande för att kunna stabilisera de sedan
tidigare experimentellt bekräftade inkommensurabla spinnspiralsfaserna.
Simuleringar som modellerar spänning i materialets kristallografiska ab–
plan visar att dragspänning kan förbättra stabiliteten hos E–typsfasen
för R–atomer med liten radie och att tryckspänning leder den magnetis-
ka ordningen mot inkommensurabla spiraltillstånd.

Nyckelord: Kondenserade materiens fysik, multiferroiska material, mag-
netism, spinnmodellering, beräkningsfysik
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Chapter 1

Introduction

Modern science has long relied on two main approaches, working in tandem. Theoreticians con-
struct models which seek to describe natural phenomena. Experimentalists then develop ways
of assessing the accuracy of the models, by means of controlled observation. (The reverse is, of
course, equally valid.) In recent decades, however, and owing to the immense development of
computational capability, there has been a rapid rise of numerical methods as a third approach
to science, complementing the better–established previous two. Computerized models continue to
serve as valuable tools when attempting to reject or confirm theoretical results where experiments
are either unreliable or even unfeasible.

The thesis work presented here makes use of computational methods in the highly active research
field of multiferroics, in which the magnetic phase diagram and ordered symmetries of the material
play imperative roles. The objective has been to as accurately as possible reproduce quite recent
experimental results from works on the effects of strain in the perovskite lattice structure, see e.g.
[1, 2]. In doing this, there arises a possibility for predicting other results within the same class of
problems which may not yet have been tested experimentally.

1.1 Multiferroics

The term multiferroics was coined by Schmid [3] and it refers to classes of materials which show
simultaneously more than one ferroic order parameter which sometimes couple strongly with each
other. Examples of four common ferroic order parameters are:

• Ferroelasticity – Materials exhibiting spontaneous strain

• Ferroelectricity – Materials exhibiting spontaneous electric polarization

• Ferromagnetism – Materials exhibiting spontaneous magnetization. This generalizes to
include antiferromagnetism as well (Section 2.1.1).

• Ferrotoroidicity – Materials with vortices of magnetic moments. These vortices are also
referred to as skyrmions.

A key aspect of ferroic order is that it is intimately related to their invariance (or lack thereof)
under symmetry operations of space and time. This aspect is discussed in detail in Appendix B.
Table 1.1, however, summarizes the main order parameters and their properties under space and
time symmetry operations [4, 5].

It was first stipulated by Pierre Curie [6] in the late 19th century and later in the 1950s by Landau
and Lifshitz [7] that materials with multiferroic properties were possible, but it was not until much

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Ferroic order parameters and their invariance under space and time symmetry operations [4].

Time
Space

Invariant Non–invariant

Invariant Ferroelasticity Ferroelectricity
Non–invariant Ferromagnetism Ferrotoroidicity

later that their existence was confirmed experimentally. The fact that electricity and magnetism
are intimately connected has been known since the 19th century and has been described ever since
using the theoretical framework of Maxwell. In materials science, however, the origins of these two
phenomena have been studied separately [5]. This is because electric and magnetic polarization
stem from two different sources: Electric polarization is caused by the spatial displacement of
electric charges (something which may be caused by a range of phenomena) while the magnetic
equivalent is caused by the time-resolved displacements of electrons (which are strongly connected
to atom spins) [8]. But with Landau and Lifshitz came the birth of the field of multiferroics.

This thesis will concentrate on multiferroic materials showing magnetic and ferroelectric order
simultaneously. Khomskii [8] defines two kinds of such multiferroic materials, which differ in
that their ferroic order parameters couple to each other to varying extent. In a Type–I material,
ferroelectricity and magnetism do not cause each other, and couple very weakly. A type–II material,
on the other hand, has strong coupling between the two; Magnetic order will cause ferroelectricity.
The latter is a quite recent discovery, made in 2003 [6] and since then the Type–II multiferroics
have been a matter of highly active research.

1.2 Perovskites

One of the classes of materials which have been shown to possess Type–II multiferroicity are the
magnetic perovskites. Their chemical formulas can be abbreviated by RBO3, where R and B are
cations. In this thesis work, the B element considered will always be Mn, and the associated class
of perovskites is thus called manganese perovskites or perovskite manganites. The R element is
most often a lanthanide (R = La–Lu). The structure is described by the orthorombic crystallo-
graphic group Pnma (No. 62), which is illustrated in Fig. 1.1. It consists of a body–centered Mn
atom which has a non–zero atom spin (and hence also a non–zero localized magnetic moment)
and is, together with non–zero exchange couplings, the direct cause of magnetic ordering at low
temperatures [5]. In face–centered positions are oxygen atoms which form an octahedral cage–like
shape around the Mn. In the simple–rectangular corners are the R atoms. The oxygen atoms and
their interactions with the R and Mn elements contribute – indirectly but to a great extent – to the
characteristics of the magnetic phase diagram of the perovskite structure. This will be discussed
in greater detail in Sections 2.3.1 and 2.3.3.

Manganese perovskites were the first multiferroic materials of this kind to be discovered, and it
was found that they made possible an improper polarization, i.e. its ferroelectric order is initiated
by magnetic ordering (hence making it a Type–II multiferroic) as opposed to proper ferroelectricity
in which the polarization is initated by broken inversion symmetry in the crystal structure itself
[6, 9]. Due to this fact, the resultant ferroelectric polarization can potentially be switched on
and off by controlling the magnetic ordering, something which is possible, for instance, via field
gradients, temperature regulation or local laser pulse excitations – an ongoing field of research [10].
Applications to this feature exist, for example, in tentative spintronic devices which are among the
technologies expected to enter the market in the "more than Moore" sense [11].
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Figure 1.1: The RMnO3 perovskite structure. R, Mn and O atoms are colored green, purple and red,
respectively. The shaded surface illustrates the oxygen octahedron structure.

Ferroelectric effects in perovskites appear as a consequence of certain kinds of magnetic order-
ing, the specific configurations of which make possible an electric polarization (see section 2.1).
Knowledge of the magnetic phase diagram and its susceptibility to disorder and other defects that
may be present is therefore of great interest. One such kind of disorder which is important in
nanostructure physics in general (and certainly applies to perovskites in particular) is geometric
strain. For real applications, being able to predict the phase diagram of a perovskite structure
under the influence of strain is imperative to operation stability.

1.3 Problem Formulation and Motivation

Among recent experimental works are those conducted by Windsor [2]. In it the effects of strain
in LuMnO3 thin films are described and the results reported there are the main targets for further
investigation in this thesis work. The aim is to reproduce the results reported in this work, but by
means of theoretical investigation.

Primarily, a Metropolis Monte Carlo program is written which uses a Heisenberg description to
model the spin interactions within the manganese perovskite structure, in spirit of the extensive
works of Mochizuki [9, 12], which models the phase diagrams of the undistorted lattice structure.
Simulations will first be performed with these works as targets, and then the model will be extended
so as to account for the effects of strain, and results in, for instance, [2] will be targeted.

In addition, the magnetic phase transitions can be studied further using Landau theory. Monte
Carlo simulations are quasi–dynamic in the sense that, while performed at equilibrium, one usually
studies the system for a discrete range of temperatures within which phase transitions are expected
to take place. Because of the discreteness of the temperature mesh, it is not evident in all cases
whether a phase transition can be considered first or second order [13]. The Landau theory may
complement the simulations in this aspect. It is phenomenological, and if applied with sufficient
rigor it is able to predict the order of the phase transitions. In the scope of this work, the theoretical
framework is studied: An introduction is given to the theory and methods for the analyses are
presented.
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1.3.1 Benefits, Ethics and Sustainability
As mentioned in Section 1.2, improper ferroelectrics such as the manganese perovskites have po-
tential to become important in the future of information technology. Binary information may be
stored in magnetic domains in which, for instance, a nonzero net magnetization could correspond
to a ’1’ state and zero net magnetization could represent a ’0’ state. Now, not only does this
make for faster electronics since spin waves can propagate rather quickly through a lattice, but it
is also interesting since transitions between states can be made at low energy costs [14]. This is an
important motivation for the present study and works alike.

In real–life applications, strain is an important factor to take into account. For instance, an
epitaxially grown thin film may experience different amounts of strain depending on the lattice
mismatch between film and substrate, something which will have substantial effect on the magnetic
phases in the film [2, 15]. Therefore, being able to accurately predict how strain will influence a
material is important for controlling its fabrication (and any components made from it). To this
end, theoretical investigations such as the present are valuable; Provided the theoretical model
is accurate enough, there is no need for actual synthesis of any material, something which could
potentially be quite inefficient and expensive in many cases. Rather, simulations can be safely and
efficiently performed in large volumes and with quick modifications in between simulation runs,
something which is beneficial because feedback may come faster than when synthesizing the real
material. Also, results from simulations which are known to match existing experimental results
may be extended so as to predict future results for slighlty different experimental settings.

Furthermore, fabrication of functional materials is in many cases a dangerous activity. Not
seldom are toxic fumes involved, which are not only hazardous to the fabricator, but are also often
harmful for the environment. Therefore, any limits that can be put to these kinds of emissions are
beneficial, and thus simulations can serve as valuable alternatives.

1.4 Layout of Report

The rest of this thesis report is structured as follows. In section 2, summaries are given of funda-
mental concepts that are important for the remainder of this work. The theory of magnetic phase
transitions is outlined (2.1), and the real physical phenomena which contribute to the magnetic
characteristics of the structure (2.3) are discussed. Section 3 describes the computer model used in
this work. Firstly, the Heisenberg model is discussed (3.1). Secondly, the Monte Carlo implemen-
tation of the model is presented (3.2). Section 4 presents the results and the discussion. Section 5
gives a brief summary and presents the conclusions. The fundamentals of magnetic groups and
corepresentations are presented in Appendix A, which are later applied in the discussion of Landau
theory in Appendix B.



Chapter 2

Background

Constructing a credible computer model requires a few important considerations. Firstly, the
complexity of the model must be reasonable. It could not be too extensive because computer
resources are limited. But also, one cannot use all too crude model assumptions because naturally
it will lead to poor results. One of the main challenges is modeling the system in such a way that
these limiting factors are held at a minimum.

In addition to these mere practical aspects, keeping up to date with recent progress in theoretical
and experimental works is imperative to being able to accurately describe the real world using
numerical modeling. If, as mentioned earlier, a computerized model is to overbridge theory and
experiment, then an exhausting treatment of the one must be done in order to numerically simulate
the other. This chapter discusses the fundamentals of existing theoretical descriptions of the
perovskite structure and its magnetic phases.

2.1 Magnetic Phases and Phase Transitions

Microscopic interactions between atoms with nonzero magnetic moments may give rise to long–
range magnetic ordering. The study of magnetic phases is at the heart of understanding multiferroic
materials. This section introduces some key concepts and definitions and their connection to
perovskite manganites.

2.1.1 Magnetic Ordering
In the simplest description, magnetic order can be separated into three categories. Disorder, i.e.
purely random alignment of magnetic moments, is called paramagnetism (PM). When the spins
favor being aligned with each other, the ordering is referred to as ferromagnetic (FM). When anti–
alignment is favored, the ordering is antiferromagnetic (AFM) [16]. While the distinction between
FM and AFM is an important one to make, further classification is necessary; Generally, structures
will show ferromagnetic ordering in some crystallographic directions and antiferromagnetic ordering
in others. Naming conventions used below are in spirit of Wollan and Koehler [17].

In perovskite manganites, there have been reports of four main types of ordering [1, 2, 5, 9].
At high temperatures (but low enough for magnetic ordering to be possible), a sinusoidal collinear
phase is favored, in which the b–axis component is modulated sinusoidally (top of Fig. 2.1(b)).
At even lower temperatures, the amount of structural distortion influences greatly the phases
which can be realized (see Sections A and 2.3). For small distortions, when R is an element of
larger atomic radius, the low–temperature phase is A–type, which essentially is FM in the ab–
planes and has AFM–ordering in–between crystallographic planes (Fig. 2.1(a)). As the distortion

5
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spiral (bottom)

(c) E–type

Figure 2.1: Possible magnetic phases in perovskite manganites in the ab–plane.

increases, the low–temperature phase changes into a spin–spiral phase in which the spin directions
are subject to incommensurate modulation (that is, a mismatch between the wave vector and the
lattice periodicity). These spirals can be either in the ab– or bc–planes – see the bottom of Fig.
2.1(b).

For an even smaller R atom, or, equivalently, even larger distortions, the low–temperature phase
is of E–type (Fig. 2.1(c)). It is highly important in the context of multiferroics, since the structure
enables an unusually high resulting ferroelectric polarization [1, 9]. The E–type phase is subject
for meticulous study in this thesis work. For some manganese perovskites, such as LuMnO3 for
instance, the low–temperature phase has been observed to be pure E–type, but for other, larger
R elements, there are reports of an E–type phase in coexistence with an incommensurate spin
spiral [9]. This complicates the study somewhat, but is indeed an interesting feature because this
incommensurability in the E–type phase has been shown to feature different sources of the resulting
ferroelectric polarization than the purely E–type phase [9]. This is explained by the fact that there
are two kinds of contributions to the ferroelectric polarization, P. The first is of (S ·S)–type, where
S is a spin vector, and this is the major contribution to P in the commensurate E–type structure.
But there is also a possible (S × S)–type contribution to P, which enters when the pure E–type
phase is subjected to incommensurate modulation, as is the case in the observed coexistent state.

2.1.2 Magnetic Phase Transitions

The critical phenomena associated with letting the structure go from one type of magnetic ordering
to another are of interest. A phase transition can be described using order parameters, a quantity
which one is rather free to design depending on the context. The idea of the order parameter
is to have it describe the symmetry of one phase and observe what happens to its value as one
approaches a new phase (in which, preferably, it becomes zero). An example of an order parameter
is the average magnetic moment of the sinusoidal phase described in the previous section. It can
be described as m(rb) = m0 exp (ik · rb), where rb is along the b–axis. When the system goes
from the sinusoidal to the PM phase, the average magnetic moment becomes zero. In general, one
distinguishes between two cases depending on whether this transition is continuous or not [16, 18]:

• A first–order phase transition is such that the order parameter experiences a discontinuous
jump at the transition point.

• In a second–order phase transition, the order parameter goes to zero continuously.
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A widely used framework for theoretically characterizing the nature of phase transitions is
Landau theory, which in essence studies the approximate equilibrium free energy around the point
of transition. This topic is discussed in greater detail in Appendix B.

2.2 Lattice Structure: Symmetry Considerations

Crystals are ordered structures. Thus, in addition to only specifying the locations of the atoms
of a unit cell, they are aptly described by the symmetries under which they are invariant. The
most basic example would be the simple–cubic lattice. It has one atom in its primitive unit cell.
But also, it is invariant under rotations by π

2 about the principal axes and under mirroring in the
planes spanned by the principal axes, to name a few examples. The complete set of symmetry
operations describing the structure can be treated using the theoretical framework of group theory.
We define the point group as being the collective set of symmetry operations which leaves the unit
cell invariant. In addition, due to the fact that crystals are (ideally) infinite structures, one must
also take into account the invariant translations of the lattice. The point group and the group of
translations jointly constitute the space group of the structure [19].

The rigorous mathematical framework for describing the geometric (and magnetic) symmetries
in a lattice relies upon representation theory. Using these concepts from abstract algebra, the most
important aspects can be characterized, and the fundamentals of this theory are outlined in Ap-
pendix A. Furthermore, one is able to predict the different low–temperature magnetic phases that
can possibly appear, given some paramagnetic lattice structure, and the natures of the transitions
between these phases are also deductable. The framework for doing this is Landau theory, and its
fundamentals are described in Appendix B.

2.3 Lattice Structure: Effects of Distortions

The unit cell shown in Fig. 1.1 is quite schematic. In reality, the structure will be distorted to
different extents depending on a number of different physical effects. For instance, the cage–like
structure formed by oxygen atoms around the Mn atoms can in fact be contracted and/or elongated
along the principal axes owing to the Jahn–Teller effect described in Section 2.3.1. Also, they can
be tilted and rotated in relation to each other as a consequence of interactions between the R
element and the O atoms, as described in Section 2.3.2. Figure 2.2 shows a schematic of how the
distorted structure might look.

These different kinds of distortions will have substantial effects on the magnetic phase diagram
of the manganese perovskites. An important framework for describing this is the concept of
superexchange which is discussed in Section 2.3.3.

2.3.1 The Jahn–Teller Effect

The Jahn–Teller (JT) effect is an example of electron–phonon coupling, which means that the
interactions between electrons in the structure will affect the ions (and hence also the phonon
modes). In essence, the JT theorem says that whenever a molecular configuration experiences
an electronic degeneracy, the system will (almost always) strive toward lifting the degeneracy
mainly by introducing structurally symmetry–breaking distortions [20, 21]. This holds true for
most systems, albeit with a few exceptions. The perovskite structure, however, is not one of these
[22].

The description of the JT effect builds upon the Born–Oppenheimer approximation [20], which
supposes that the wavefunctions of electrons and nuclei of a system are uncoupled. Generally,
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Figure 2.2: The distorted RMnO3 structure. Here, R, Mn and O atoms are colored green, purple and
red, respectively.

the JT effect can be described as a perturbative correction to the Hamiltonian of the degenerate
system:

H = H0 + kHJT, (2.1)

where k is a correction coefficient called the JT parameter. The form of HJT will of course depend
on the symmetry of the structure and it can be of different order in parameter space depending on
the order of correction to the electron–phonon interaction that one wishes to include in the study
[21]. Irregardless of the form, however, the minima of the Hamiltonian (2.1) will include modes
which reflect the JT distortion.

In the perovskite structure, there is an overlap in the d–orbitals of the Mn and O atoms.
Particularly, both the t2g and eg orbitals (Fig. 2.3) contribute to the degeneracy. In the symmetry
of the perovskite structure, there are two competing vibrational modes, which act together to
lift the degeneracy by shifting the O atoms away from their centered positions in between their
neighboring Mn atoms, thus creating an anisotropic coupling [21, 23].

(a) dz2 (b) dx2−y2 (c) dxz (d) dyz (e) dyz

Figure 2.3: The eg ((a) and (b)) and t2g ((c), (d) and (e)) orbitals.

2.3.2 Octahedral Tilting

The octahedral shape formed around the Mn atom by the O atoms in Figs. 1.1 and 2.2 will be
tilted by different amounts depending on the stoichiometric formula of the perovskite structure.
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Now, since the only variable element in the RMnO3 manganese perovskite is R, one is lead to
believe that it is responsible for the differentiation between different RMnO3 molecules [9].

Generally, the octahedral tilting depends on the symmetry formed by the distorted structure;
The new configuration (which necessarily is of lower symmetry) must be a subgroup of the symme-
try group of the ideal structure [21]. In his work, Woodward [24] studies 23 potentially allowable
tilt systems and concludes that, while many systems allow for pure tilted distortions, there are
configurations which require structural distortions of the octahedrons themselves in order to retain
a three–dimensional network of connected cages. Such distortions are equivalent to the JT effect
described in the previous section.

Phenomenologically, the tilting changes the coordination sphere, i.e. the geometrical pattern of
bonds to the central atom, about the R atom, while it is left unchanged about the Mn atom (again,
see Fig. 2.2). Hence, it is indeed the case to a first approximation that octahedral tilting is driven
by the configuration of anions around R [25]. It is shown in [25] that both the atomic radius as well
as the charge of the R atom makes substantial difference in determining which tilting geometry
will actually take form. Firstly, in regard to the atomic radius, one can define a tolerance factor
as follows:

t = rR + rO
21/2 (rMn + rO)

, (2.2)

where ri is the (average) radius of atom i. It is shown that perovskite compounds exist in the range
1.05 > t > 0.78 and depending on t, different tilt systems will be realized. Secondly, in regards to
the charge of the R atom, it is seen that, owing to the large difference in ionic charge between O
anions and R cations, the bonds will be largely ionic. The tilting structure realized then depends
on the ratio between the R–O bonds and the ion repulsion between the R atoms themselves.

2.3.3 Superexchange and the Goodenough–Kanamori Rules
The physical effects described in the two previous subsections will mainly affect the positions of
the O atoms in relation to the R and Mn atoms. In the manganese perovskite structure, it is
the Mn atoms which have nonzero atom spins and hence also localized magnetic moments. The
magnetic structure depends on the interactions between the Mn atom spins (see Section 2.1).
Now, since there are no pure Mn–Mn bonds of significance in perovskites, these interactions will
be strongly dependent on the Mn–O–Mn bonds which exist predominantly instead. In the Mn–
O–Mn configuration, the interacting valence electrons are in the d, p and d orbitals, respectively.
Thus, the interaction cannot be described by direct hopping of electrons between the Mn atoms
[26]. Instead, the interaction must take place via the O atom. This kind of interactions between
magnetic cations through an intermediate (non–magnetic) anion can be modelled by superexchange
and semicovalence.

Goodenough argues that if the cation (Mn) is located in an interstitial position of an octahedron
spanned by anions (O), which is indeed the case in the perovskite structure, then the d–orbital of
the cation will be split into a doubly degenerate eg level and one triply degenerate t2g level – see
Fig. 2.3. The splitting is induced by the electrostatic field caused by the cation, and the amount
of splitting, ∆, will depend strongly on its valence. Also, there will be a further split depending on
the electron spin due to inter–atomic exchange interactions between the cation and anions [27]: In
an anion–cation bond in which the anion has a full p–orbital overlapping an empty cation orbital,
there will be two electrons of opposite spin in valence. In an ordinary homopolar bond these
electrons have equal probability of being shared with the cation. But because there are exchange
forces involved, and because the cation has a net magnetic moment in some direction, the situation
changes in that the electron with spin parallel to the cation spin will have a greater probability
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Figure 2.4: Splitting of the cation d–orbitals. ∆ is caused by the self–induced electrostatic field and Eex
is caused by the exchange forces between the cation and anions [27].

of being shared. Also, the Pauli exclusion principle governs the spin state of the valence orbital
in the anion [28]. This occasional addition of an electron to a neighboring cation corresponds to
an even further split in the d–orbital of the cation, by an energy Eex, see Fig. 2.4. The relation
between the ∆ and Eex energies will determine whether the Mn atoms are in high or low spin
states, which in turn determines the type of magnetic interaction between the two and hence also
the total magnetic ordering of the structure, see Fig. 2.5 [27].

Kanamori [29] supplements Goodenough’s picture by arguing that the symmetries of the orbitals
are crucial. Overlapping orbitals of two atoms are considered orthogonal if they are invariant under
collective spatial symmetry operations. It is stated that semicovalent bonds can only be formed
between orbitals which are orthogonal.

The above arguments do, however, suppose that the Mn–O–Mn bond is linear, i.e. that the
bonding angle is 180◦. As seen in the two previous sections, this is not the case of the perovskite
manganites; Octahedral tilting and JT distortion cause the bonds to be skewed to off–linear an-
gles. Although Goodenough and Kanamori present valid results which are relevant as qualitative
estimates, a more accurate model requires additional treatment. For instance, Kim et al. [30]
use a microscopic Hamiltonian treatment and suggest that the nearest–neighbor interaction goes
from slightly AFM to FM with increasing amount of JT distortion (i.e. decreasing bonding angle)
and more AFM with increasing octahedral tilt angle. Kimura et al. [31], on their part, use a
more phenomenological argument to conclude that the strongest superexchange interaction occurs
where the geometry allows for the largest orbital overlap between neighboring Mn and O atoms,
and arrive at the same qualitative result in regards to the magnetic ordering. These two works do,
however, present quite contradicting results in other respects, something which will be discussed
further in Sections 3.1 and 4.

Antiferromagnetic Ferromagnetic

3+ or 4+ 3+ or 4+ 3+ or 4+ 3+

Mn Mn Mn MnO O

Figure 2.5: Schematic of the magnetic ordering in one Mn–O–Mn bond structure, resulting from the
superexchange mechanism. The exchange depends strongly on the net ionic charge of the Mn atoms [28].



Chapter 3

Spin Modeling and Simulation

Most physical computer models are divisible into two parts, both of which are important for the
results in their own right. Firstly, there needs to be a clear connection between the models and
simulations and the real physics behind the experimental results that one may wish to target. To
that end, a spin Hamiltonian in a lattice–geometry has been used here.

Secondly, the physical model must be implemented in such a way that the computational results
reflect the real physics, and not just artefacts stemming from the mere fact that an artificial means
has been used. In this thesis work, a flavor of the Monte Carlo method has been used to perform
simulations within the spin Hamiltonian description.

3.1 The Heisenberg Model

The Heisenberg Model is a framework for describing interactions between magnetic atoms in a
compound. It is very commonly used within the context of magnetic materials and spin modeling.
In essence, it builds on formulating a microscopic lattice model Hamiltonian for the system. In its
most rudimentary form, the Heisenberg Hamiltonian assumes pairwise interactions between closely
situated spins – long–range interactions are usually neglected. A very common basic formulation
is the following [16, 32]:

H =
NN∑
〈i,j〉

JijSi · Sj +
NNN∑
〈i,j〉

JijSi · Sj (3.1)

Here, the first sum is over nearest–neighbor (NN) spins and the second sum is over next–nearest–
neighbor (NNN) spins. Si is the vector of the spin at lattice site i. The factors Jij are coupling
constants reflecting the strengths of the interactions. The convention used in this work is that
Jij < 0 indicates a FM interaction and, conversely, Jij > 0 indicates AFM.

One quickly realizes, however, that the Hamiltonian in Eq. (3.1) is not always enough to
simulate more complex structures and phenomena. A fundamental challenge in working with
Heisenberg physics is formulating a suitable Hamiltonian. In many cases, there is a need for a
more detailed description. For instance, how does one take into account the dependence of the
interactions on the positions of the O atoms in the perovskite structure?

As mentioned previously, it is the Mn atoms, with spin S = 2 (equivalent to a magnetic
moment of 4µB , where µB is the Bohr magneton), which are magnetic – the other elements in
manganese perovskites contribute indirectly. Thus, the Heisenberg Model would only take into
account interactions between the manganese atoms, but attempts must be made to model the
secondary effects stemming from interactions with the other elements in the structure.

11
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Furthermore, it is seen from Section 2.1 that the differences between the expected magnetic
phases are distinguishable in a two–dimensional geometry and hence it would be enough to simulate
over one crystallographic ab–plane only. The different ab–planes are antiferromagnetically stacked
in the manganese perovskites, and so certain ordering in one plane will have an equivalent in the
other planes. The Hamiltonian used in this work is in spirit of Mochizuki [9]. In his work, a three–
dimensional Hamiltonian is used which takes into account this antiferromagnetic spin–spin coupling
in between planes. These Heisenberg exchanges along the c–axis are isotropic, whereas the NN–
couplings in the ab–plane are modulated by the fact that magnetic interactions are screened by the
intermediate oxygen atoms, and that the coupling strength depends on their positions. Oxygen
deviations along the c–axis are, however, neglected in the works by Mochizuki, and the static
screening is absorbed into the c–axis coupling. The fact that the JT effect is neglected along the
c–axis further motivates that a two–dimensional Hamiltonian is sufficient. A drawback from using
the 2D–lattice is that the anisotropies (single–ion and Dzyaloshinskii–Moriya anisotropies) will not
be as elaborate as in the case of the 3D–model used by Mochizuki. For instance, the Dzyaloshinskii–
Moriya interaction is neglected entirely in the present Hamiltonian so as to simplify calculations.
It will, however, turn out to be an important term to consider (refer to Section 4.1). In this work,
the total Hamiltonian has the following form:

H = Hexc +Hani +Hsl +Hlat, (3.2)
where

Hexc = Jab
∑
i

[Si · Si+x̂ + Si · Si+ŷ] + Ja
∑
i

Si · Si+â + Jb
∑
i

Si · Si+b̂, (3.3)

Hani = A
∑
i

(Si · ĉ)2
, (3.4)

Hsl = Jsl
∑
i

[δi1Si · Si+x̂ + δi2Si · Si+ŷ] , (3.5)

Hlat = K
∑
i

[
δ2
i1 + δ2

i2
]
. (3.6)

Here, the sums run over all (manganese) atoms in one ab–plane of the lattice and the sub–index
vectors are unit steps in the x,y,a and b directions. Hexc is the conventional Heisenberg exchange
term, where Jab is the NN interaction and Ja and Jb are NNN interactions. Hani is an anisotropy
term, making alignment along the out–of–plane c–axis less favorable. Hsl is a spin–lattice coupling
term which takes into account the deviations of the oxygen atoms from their equilibrium positions
so as to model octahedral tilting and the JT effect. The values δi1, δi2 are (dimensionless) shifts in
the x̂ and ŷ directions, respectively. They are scaled to assume values −0.5 ≤ δi ≤ 0.5 depending
on whether the bonding angle increases or decreases: Negative values indicate a smaller bonding
angle and more ferromagnetic interactions and positive values indicate a more linear Mn–O–Mn
bond, i.e. more AFM interactions. Finally, Hlat is an elastic term which favors the oxygen atoms
being in their equilibrium positions, thus restoring the elastic force in the linear approximation.
Figure 3.1 shows a schematic of the couplings. Table 3.1 summarizes the signs of the coupling
constants in the Hamiltonian.

It is worth noting that this is not the only kind of Hamiltonian commonly used. There exist
many works in which spin–lattice terms and single–ion anisotropies are not used, but rather one
includes so–called biquadratic couplings in the model. These kinds of terms have been reported to
also render good agreement with experimental data and first–principle calculations, and there is
an ongoing debate about the validity of biquadratic additions as compared to a Hamiltonian on
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Figure 3.1: Schematic of the Heisenberg couplings in the Hamiltonian (3.2). White circles represent
oxygen atoms and their shifts by δi from equilibrium.

the form (3.2), and concensus has yet to be reached. Refer to Section 4.1.5 for a more elaborate
discussion.

3.1.1 Strain Modeling
It has been shown that the Néel temperature, i.e. the transition temperature from PM to AFM,
of tetragonal perovskites changes under strain [33]. But how does one model this? Once the
Heisenberg parameters in Table 3.1 have been fit to match the relaxed phase diagram sought after,
it remains to systematically account for the strains in the lattice by altering the Hamiltonian in
a suitable way. This requires some insight into how the manganese perovskite structure deforms
under the influence of strain.

Intuitively, and referring to, for instance, Fig. 2.2, it is the lattice parameters a and b that
change under the influence of ab–plane strain. Indeed, this is what has been reported [15, 34]. In
the context of the Hamiltonian (3.2), this would correspond to altering of the exchange couplings
Jij by different amounts. It has been shown that the NN couplings are are rather sensitive to
strain in the ab–plane, while the NNN couplings show no significant change in comparison [34].
This would correspond to scaling Jab and Jsl in the Hamiltonian above.

Table 3.1: Summary of exchange couplings in the Hamiltonian (3.2).

Description Abbreviation Sign
NN Jab −

NNN Ja −
NNN Jb +

Anisotropy A +
Spin–lattice Jsl +

Elasticity K +

When the in–plane lattice parameters change, the Mn–O–Mn bonding angles will be affected as
well. Previous results are, however, not consistent in describing how they are affected. Experiments
performed using X–ray diffraction on epitaxially strained thin–films have shown that the thinner
the films (i.e. the higher the strain), the larger the in–plane bonding angle [15]. That is, thin–films
with higher ab–plane strain experience a more antiferromagnetic Mn–O–Mn interaction. On the
other hand, first–principle calculations have shown that the in–plane Mn–O–Mn bonds do not
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change notably under neither compressive nor tensile ab–plane strain. Rather, it is the inter–
plane Mn–O–Mn angles that are suggested to change – and quite drastically, too [34]. In the
two–dimensional model chosen for this work, there is no way of accounting for the intra–plane
interactions, and hence attempts are made to follow the results reported in [15]. In the context
of the Heisenberg Hamiltonian above, an altered Mn–O–Mn bonding angle corresponds to a shift
of ∆0 in Fig 3.1. Now, since the NN coupling Jab is set to be FM, it follows that an increased
bonding angle (i.e. a decreased ∆0) corresponds to a more AFM Jsl coupling. That is, the products
Jslδi,i+x̂ must increase with the bonding angle.

3.2 Monte Carlo Simulations

When investigating properties of a spin system at finite temperatures, the goal is usually to deduce
expectation values of some physical observables and study how they change in a certain tempera-
ture range. A suitable environment is the canonical ensemble, in which Boltzmann statistics are
applicable [16]. A proper thermal expectation value of the observable M in this context would
be 〈M〉 = 1

Z

∑
iMipi exp (−βEi), where i runs over all possible states Mi with probabilities pi.

Here, β = 1/kbT is the inverse thermal energy, Ei is the energy of the state and Z is the partition
function [32]. But since there may be up to an infinite number of possible states in the system,
this approach is not feasible in the context of computer simulations. Instead, one can approximate
〈M〉 by means of importance sampling, in which the expectation value over a chain of events is
taken to be the "time average" over the states Mi that the system assumes in the chain:

〈M〉 = 1
N

N∑
i=1

Mi. (3.7)

This much simpler sum runs over the N states assumed by the system over the chain. Here, the
Boltzmann factor and the impractical partition sum over all possible states have been canceled
out. The connection to the canonical ensemble and Boltzmann statistics now appear only in how
one choses the allowed states Mi [13]. Eq. (3.7) is fundamental to Monte Carlo (MC) simulations.
It remains now to introduce a scheme for generating the set of allowed states in this sum. At the
heart of doing this are Markov processes: Given a state Mi, one randomly generates a new state
Mj and accepts the transition to the new state with a probability P (Mi → Mj). If accepted,
the system is then said to be in state Mj , otherwise it remains in Mi. If one performs these trial
moves repeatedly, the series of transitions is called a Markov chain, and it is over this chain that
one computes the thermal average (3.7) [13]. In the context of our two–dimensional spin–lattice,
the states Mi and Mj are different configurations of spin directions, and the transition probability
P (Mi →Mj) is governed by the Boltzmann distribution.

3.2.1 The Metropolis Algorithm
One of the most common simulation schemes in statistical physics (and in a variety of other fields
as well) is the Metropolis Algorithm, proposed by Metropolis et al. in 1953 [35]. In short, it builds
upon studying the energy difference between the current state Mi and a randomly generated new
state Mj and favor accepting states Mj which have lower energy than Mi. But in order for the
Markov chain to be consistent with Boltzmann statistics, there must also be a finite probability
for Mj to be accepted even if it has higher energy. Thus, the Metropolis probability is expressed
as follows [13]:

P (Mi →Mj) =
{
e−β∆E , ∆E > 0
1, otherwise , (3.8)
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where ∆E = EMj −EMi . In a conventional Metropolis scheme applied to a spin system, and given
a set of temperatures, one would begin by fixing the temperature in either end of the range. Then,
one would perform N trial moves in a Markov chain and accept or reject them according to Eq.
(3.8). After forming the thermal averages of interest (such as magnetization, energy, etc.), a new
temperature is chosen and the procedure is repeated. When all temperatures have been visited,
one has a sense of how the thermal averages change within the range. Naturally, the number of
trial moves per sample, and the number of samples, N , strongly influences the accuracy. Also, the
number of temperatures visited within the range plays an important role.

3.2.2 Replica Exchange and Parallel Tempering
The method described above does, however, suffer from a few drawbacks. If the system is complex
enough, there may exist several energy minima in the low–temperature regime. These minima
are separated by energy barriers, and it can be a challenge to overcome them using the standard
Metropolis Monte Carlo method [36]. This is because, at low temperatures, acceptance rates are
lower due to the low thermal energy in the system, and therefore one would have to perform many
trial moves before potentially escaping a local minimum in the free energy landscape. As mentioned
previously in Section 2.1.1, this is a real issue in manganese perovskites, because there is a range
of R elements with atomic radii such that there are several possible phases at low temperatures –
the E–type may coexist with the spin spiral [12] and even the different kinds of spin spirals may
coexist with each other in certain cases [5]. Also, when modeling the perovskite manganites in the
Heisenberg framework, different combinations of values of the coupling constants in Table 3.1 may
give rise to degenerate phases [9], which are difficult to handle using the conventional Metropolis
method.

One way of overcoming these issues is by using the parallel tempering (PT) or replica exchange
algorithm. It builds upon creating a number of replicas of the spin system and place each of them
at a different temperature in the range of interest. One then performs a number of conventional
Metropolis trial moves so as to equilibrate each system at its given temperature. The main idea is
then that there is a finite Boltzmann probability for a temperature exchange between each pair of
replicas Ri and Rj according to [36]

P (Ri ←→ Rj) =
{
e−∆R , ∆R > 0
1, otherwise , (3.9)

where

∆R = (βj − βi)(ERi − ERj ). (3.10)

Every once in a while, a trial move is made according to Eq. (3.9). If it is accepted, then the
replicas are interchanged and the procedure is repeated. In order for the acceptance rates to remain
relatively high, one may choose to only perform trial moves between "neighboring" replicas in the
temperature range [36], but there are cases for which one may wish to sacrifice a high acceptance
rate in exchange for, for instance, a more efficient computer implementation and perform trial
moves for replicas that might not be neighbors [37].

3.3 Simulation Methodology

The spins of the manganese atoms in the structure were represented by classical vectors of fixed
length and position, but free to rotate in any of the three dimensions. In this model, there are thus
two free spatial parameters, namely the polar and azimuthal angles in Euclidian space. Also, since
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all manganese atoms are connected to each other via an oxygen atom, the oxygen deviations δx,yi
from equilibrium are also free parameters so as to model the lattice distortions (refer to Sec. 2.3
and Fig. 3.1).

Spins were sampled for the MC sweeps by randomly chosing a c–axis component, Sci, and a
polar angle, θi, and then constructing the spin according to [9]

Si =
(√

S2
i − S2

ci cos θi,
√
S2
i − S2

ci sin θi, Sci
)
. (3.11)

Oxygen deviations δx,yi in the x and y directions were sampled such that −0.5 < δx,yi < 0.5 [9].
Depending on the order parameters used to describe a certain kind of ordering, magnetic phase

transitions can be detected in several different ways. Two common observables in this context is
the heat capacity, Cv, and the magnetic susceptibility, χ. They can be defined in a statistical
manner by

Cv = β

T

(〈
E2〉− 〈E〉2 ), (3.12)

χ = β
(〈
m2〉− 〈m〉2 ). (3.13)

In addition to studying the order parameter(s), a phase transition can be identified by divergent
Cv and χ at the transition temperature [13].

Different types of magnetic ordering have different call–signs by which they can be identified.
For instance, a completely ferromagnetic configuration will have a finite magnetization, whereas a
fully antiferromagnetic structure will have zero net magnetization. When it comes to spin states
that cannot be described as either or, other means are necessary. Important tools are the two main
types of correlation functions [13]:

• Real–space spatial (spin) correlation functions in an equilibrium system measure the range
of the ordering and can be defined as

S̄(r) = 1
N

∑
i,j

[〈
Si · Sj

〉
−m2] , (3.14)

where N is the number of atoms in the system and r = ri − rj is the distance between spins
Si and Sj and m is the average magnetization in the system.

• Reciprocal–space (spin) correlation functions measure the ordering in the frequency domain
when moving along some axis, α, and can be defined as

Ŝα(k) = 1
N

∑
r
eik·rS̄α(r)

= 1
N

〈∑
ri

e−ik·ri(Siα −m)
∑
rj

eik·rj (Sjα −m)
〉
. (3.15)

This is equivalent to the Fourier transform of the observable. Here, S̄α denotes the correlation
of the spin component in the α direction in real space.

The most important magnetic phases of those described in Section 2.1.1 are the E–type AFM
phase the incommensurate spin spirals in the ab– and bc–planes, and the incommensurate sinusoidal
phase. They can be identified as follows (see Table 3.2) [9]:
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• In the E–type phase, the b–components of the spins are modulated by a wave vector of
around kb ∼ 0.5π. There are suggestions saying that it is commensurate, with kb exactly
equal to 0.5π [9], but other sources say that it is incommensurate, with kb ≈ 0.49π [2]. In any
case, Eq. (3.15) is used to calculate the frequency response of the b–axis spin components.
Also, it has been suggested that the reciprocal–space correlation function for the oxygen
deviations δi has sharp peaks for k = (±π,±π, 0) [9]. It is defined as follows:

δ̂γ,γ′(k) = 1
N2

∑
i,j

〈
δi,i+γδj,j+γ′

〉
eik·(ri−rj), (3.16)

where (γ, γ′) = (x, x), (y, y) and (x, y). i and j each runs once over all spins in the system.

• The incommensurate ab–plane spiral and the sinusoidal collinear phases are shown to have
sharp peaks in Ŝb (Eq. (3.15)) for wave vector k ≈ (0.46π, 0.46π, π) [38], although early
experiments suggested that there is no lock–in to any fixed value within this phase region [5].
Similarly for the bc–plane spiral, the Ŝc correlation function has a sharp peak for the same
value of k [38]. The spiral and sinusoidal collinear phases are told apart by constructing the
spin helicity correlation function:

Ĥb
α(k) = 1

N2

∑
i,j

〈
hbiαh

b
jα

〉
eik·(ri−rj), (3.17)

where hbiα = 1
S2 (Si × Si+b)α are the local spin helicity α–components. In the sinusoidal

region, Ĥb
α is practically zero everywhere, whereas, for the ab and bc–spirals, there are peaks

for |k| = 0 in Ĥb
c and Ĥb

a, respectively [38].

Table 3.2: Summary of the characteristics of different phases.

Phase Ŝb Ŝa Ŝc Ĥb
a Ĥb

c δ̂γ,γ′

bc–spiral 6= 0 = 0 6= 0 6= 0 = 0 N.A.
ab–spiral 6= 0 6= 0 = 0 = 0 6= 0 N.A.
E–type 6= 0 6= 0 = 0 = 0 6= 0 6= 0

Sinusoidal 6= 0 = 0 = 0 = 0 = 0 N.A.

3.3.1 Computer Implementation
In this work, a Monte Carlo program was written in its entirety. A square (L×L) lattice was used,
with periodic boundary conditions (PBCs). The Metropolis algorithm was implemented according
to the above. Also, parallel tempering was used so as to improve statistics and to overcome potential
minimum–energy traps. The latter was implemented using the Message Passing Interface (MPI),
in which each replica of the system is run as an independent thread. When replica exchange trial
moves are performed, messages containing the total energy and temperature of the replica are sent
in–between threads. An accepted trial move is equivalent to interchanging the temperature values
of the participating replicas. In the implementation used, all processes perform Heisenberg Monte
Carlo calculations, but one of the threads is thought of as master in that it also performs the
PT trial moves between all threads and distributes messages amongst them. A decentralized PT
algorithm has been proposed in which all threads perform these exchanges [37]. An advantage of
this method is that the PT trial moves are performed "locally" by the two replicas involved. This
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makes for a faster program since there is no longer only one thread having to serially pass messages
to all the others. This decentralized PT algorithm is, however, not explored any further in this
work.

Computer code was written in the C language and simulations were run using bash scripts.
Random numbers were generated using the GNU Scientific Library1. The MPI was implemented
using the open–source Open MPI library2.

Typically, in order to observe the expected phenomena described in Section 2.1, there is a need
for quite large lattices (up to some 100 × 100 atoms). Also, a fine temperature mesh requires
many replicas (some 100) to be run in parallel. These needs are difficult to meet with a regular
computer, and therefore some of the simulations have been run on the Triolith cluster at the
National Supercomputer Centre (NSC) at Linköping University. Using this resource, each replica
could be dedicated one processor of its own and much larger computations could be performed.

1https://www.gnu.org/software/gsl/
2http://www.open-mpi.org/



Chapter 4

Simulation Results and Discussion

Simulations were performed in two steps. Firstly, attempts were made to tune the model to
reproduce results obtained by others for the unstrained case so as to validate the written MC
program. Then, simulations were performed using a model of the strained case. Results from
these two scenarios are presented and discussed below.

4.1 Unstrained Case

Figure 4.1 shows a schematic of the predicted phase diagram for different R elements [5, 38]. In
the model Hamiltonian (3.2), it is the NNN coupling Jb which reflects the differences between the
choices of R; Large R atoms are modeled with small values of Jb, and vice versa [9].

Paramagnetic

A-type

Sinusoidal

IC	spiral E-type

T

Jb,	1/Rr

Figure 4.1: Schematic of the magnetic phase diagram as a function of the inverse size of the R element
or, equivalently, the value of the parameter Jb [5, 9].

It is seen in Fig. 4.1 that the low–temperature phase becomes increasingly antiferromagnetic
in the ab–plane for smaller R atoms. That is, the relatively strongly ferroelectric E–type phase
appears for R = Ho-Lu in the lanthanide series. However, the true characteristics of this phase
are not entirely clear – there are reports of a range of different results when it comes to the
E–type phase. The ideal E–type configuration, as seen in Fig. 2.1(c), is commensurate with
kb = 0.5π [9]. However, other results point towards that the real E–type phase experiences a slight
in–plane modulation, with wave vector kb ≈ 0.48π [2, 30]. The modulation is attributed to a single–
ion anisotropy and to the Dzyaloshinskii–Moriya (DM) interaction and arguments have been put
forward that this "incommensurate E–type" ordering is a question of a coexistence between the IC
spiral in the bc–plane and the purely E–type phase [9].

19
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Table 4.1: Simulation parameters used together with Eq. (3.2) in the simulations of the unstrained
system. The Jb parameter was varied in the simulations so as to model the different R atom radii. All
values are in units of meV.

Ja Jb Jab Jsl A K
-1.0 1.0→ 4.5 -0.8 2.5 0.1 500

Simulations were performed using Eq. (3.2) and a 100× 100 lattice. The coupling parameters
Jab, Jsl, A and K where gathered either from experiments or theoretical estimates by others, and
compiled by Mochizuki [9]. The value of the ferromagnetic NN coupling Ja was set higher than in
[9] because it yielded better agreement with previous results in the present 2D–lattice. A summary
of the parameters used are presented in Table 4.1. Replica exchange attempts were made every 200
MC sweeps, where each sweep consisted of L× L trial moves (that is, 104 in this case). 3000× p
replica exchange attempts were performed, where p = 96 is the number of replicas used over the
temperature range.

4.1.1 Incommensurate Spiral Phases
Figure 4.2 shows the phase diagram for the system when varying the Jb parameter. It is seen that
the phase boundaries in the temperature domain agree rather well with what has been previously
reported for lower values of Jb. Low–temperature phases were identified according to the rules
of thumb in Table 3.2. There is, however, no clear distinction in the results between the two
different types of IC spirals. Instead, there are simultaneously peaks in the Ŝa and Ŝb data for the
low–temperature region, something which would signify a coexistence of the two kinds of spirals
or, rather, a kind of incommensurate pseudo–state which is of neither ab or bc–spiral kind. The
regions in Fig. 4.2 marked as IC spirals are done so based on which of Ŝa and Ŝb is dominating,
but in no case is any flavor of spiral phase particularly well–distinguishable from the other here.
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Figure 4.2: Approximate phase diagram obtained
from simulations of the unstrained case (black lines).
Blue lines are previously presented theoretical re-
sults [9]. Black dashed lines are approximate phase
evolutions using the present model.

Table 4.2: Approximate phase evolu-
tions as a function of the parameter Jb –
comparison with previous results.

Transition Jb (meV)
This work [9]

ab→bc ∼ 2.5 ∼ 0.8
Spiral→E–type ∼ 3.7 ∼ 2.0

To understand the inability of the model Hamiltonian (3.2) to distinguish between the two
kinds of spiral phases, one has to study their reported origins. One common effect to take into ac-
count in a Heisenberg Hamiltonian describing manganese perovskites is the Dzyaloshinskii–Moriya
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interaction. It has terms on the form dαij ·(Si×Sj) which favors canting of otherwise parallel spins.
The vectors dαij , where α = {x, y, z}, reflect the bond geometries of the structure and can be deter-
mined via experiments or first–principle calculations [5, 38]. In the RMnO3 structure, shifts of the
in–plane oxygen atoms due to JT distortion and octahedral tilting will alter the c–components of
the dαij vectors. This favors an ab–plane cycloid since the in–plane spins strongly couple with these
c–components. It has been shown in [38], however, that the energy gain of the ab–phase due to the
DM interaction reduces with increasing oxygen shifts (and hence also with decreasing R element
size and increasing Jb). Thus, there becomes room for another phase with lower energy – in this
case the bc–phase, whose energy gain is independent of the value of Jb. The bc–plane phase is
really a modulation of the angles φc between inter–plane neighbor spins, which are equal to φc = π
in the absence of any DM terms due to strongly antiferromagnetic inter–plane interactions in the
models used in [9, 38]. But when the DM term sets in, oxygen shifts will affect these interactions
via alterations of the φc angles, and the bc–cycloid can be formed.

In regards to the above, the model Hamiltonian used in the present work is insufficient. It is
two–dimensional and fails by construction to reflect the inter–plane antiferromagnetic behavior,
from which the bc–spiral is assumed to appear. There is only one term taking into account the
coupling to the c–axis, namely the single–ion anisotropyHani in the Hamiltonian. Now, considering
a small change in the angle φ′c between a spin and the c–axis by ∆φ′c, we have via Eq. (3.4) that

∆Eani/N = AS2| cos2(φ′c + ∆φ′c)− cos2 φ′c|

= 1
2AS

2| cos(2φ′c + 2∆φ′c)− cos 2φ′c| ≈
1
2AS

2| sin(2φ′c)∆φ′c|. (4.1)

It is seen here that there is always an energy cost for spins to direct themselves out of the ab–
plane – the c–axis is a hard axis for the magnetization and the system has a steady minimum for
φ′c = π/2. Were the DM term present, there would be a competition between it and the anisotropy
term (3.4), leading to an energy gain for canting in the c–direction when increasing Jb [38]. But
since Eq. (3.2) includes no DM interaction, the spins will have a hard time shifting from their
equilibrium position and move in a spiral fashion and this is a reason for the absence of a bc–spiral
in the phase diagram in Fig. 4.2.

The ab–cycloid appears due to the superexchange term Hsl in the present Hamiltonian. It will,
however, rotate uniformly in all directions in the ab–plane – contrary to the expected b–directed
cycloid – because the in–plane angle φab between two neighboring spins only depends on the ratio
between the NN and NNN couplings and there would practically always be an energy gain of having
this phase. If the DM interaction were present, however, the energy gain would decrease with
increasing structural distortion (increasing Jb) until the bc–spiral became energetically favorable
and the phase evolution took place [9, 38]. Thus, to summarize, the two–dimensional lattice model
and the absence of the DM interaction in the Hamiltonian are what hinder there being a distinction
between the two possible spin spirals in RMnO3.

4.1.2 E–type Ordering
With increasing Jb comes an onset of the periodic modulation of the oxygen shifts δi in the
Mn–O–Mn bonds and the E–type phase is formed. It has been shown that the crucial interactions
in the Hamiltonian for forming the E–type phase are the Heisenberg exchanges Jab, Ja and Jb and
the superexchange term Jsl [9]. Figure 4.3 shows the peak wave vector evolution for Ŝb. It is seen
that the modulation moves towards being commensurate with 0.5π as Jb is increased. The E–type
phase is identified as having set in when peaks appear for δ̂yy in the low–temperature region as
seen in the inset of Figure 4.3. But using the parameters in Table 4.1, the fully commensurate
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Figure 4.3: Peak values of the Ŝb correlation function (3.15) at kbT = 3.4 meV. The black, blue and
red plots are for Jb = 2.15, 3.3 and 4.45 meV, respectively. All other parameters in Eq. (3.2) were set
according to Table 4.1. The first two are identified as IC–spirals and the latter is an (incommensurate)
E–type phase. Inset: Peak values of δ̂yy as defined in Eq. (3.16) for wave vector kb = π. It is seen that
only the high–Jb phase has non–zero correlation for low temperatures, thus signifying an E–type phase.

configuration expected for a theoretical E–type phase does not seem to form for any reasonable
value of Jb. Rather, the E–type phase has a strong peak for kb = 0.48π, something which is
described by some as a coexistence between the E–type phase and an IC–spiral [9] and by others
as a coexistence with the sinusoidal collinear phase [2]. Indeed, it is seen that it is the single–ion
anisotropy (and possibly also the DM term) which obstructs the full commensurability in the E–
type region. Figure 4.4 shows a comparison between two E–type phases, one of which is a result
of the full Hamiltonian (3.2) and the other of which does not include Hani or Hlat. Clearly, one is
commensurate while the other is not, thus proving the importance of considering such extra terms
in the Hamiltonian. The question remains, however, whether the pure commensurate E–type phase
is really feasible.

Experiments reveal that different samples have different E–like ordering; LuMnO3 thin films
have been shown to have incommensurate E–type ordering [2] while a commensurate E–phase has
been identified in bulk LuMnO3 samples [39], and so one may conclude that anisotropies play more
important roles and that canting along the c–axis is more prominent in more 2D–like samples.

4.1.3 Sinusoidal Collinear Phase

The sinusoidal collinear phase appearing above the low–temperature phases throughout the sweep
in Jb–space in Fig. 4.2 increases more than expected in comparison to the results presented in [9].
Again, this is attributed to the fact that there exists no DM term in the Hamiltonian, thus making
the single–ion anisotropies dominate in the coupling to the c–axis. It has been demonstrated
that an increasing amount of single–ion anisotropy increases the temperature range for which the
sinusoidal collinear phase is stabilized [38].

4.1.4 Low–Temperature Phase Evolutions in Jb–Space

Looking at Fig 4.2 and Table 4.2, there is quite a discrepancy in where the phase evolutions between
the different low–temperature phases occur when gradually increasing the Jb parameter; Results
in this work severely overestimate the Jb values for which the evolutions take place as compared
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Figure 4.4: Peak values of the Ŝb correlation function for simulations run with (black) and without (blue)
single–ion anisotropies and elastic terms in the Hamiltonian. In both cases, Jb = 4.45 meV and kbT = 3.4
meV. Without Hani and Hlat, it is seen that the system is able to become fully commensurate, whereas
it locks into kb = 0.48π in the presence of these terms. Inset: Peak values for δ̂yy in the respective cases.
It is seen that, while both phases have non–zero values (and hence are E–type), the commensurate phase
has much stronger correlation in the low–temperature regime.

with previous results in [9]. This can be attributed to the absence of DM interactions which,
in combination with the single–ion anisotropy term, establishes the spin–cycloids (see discussion
above): Previous results show phase evolutions from a bc–spiral to the E–type, which are clearly
distinctive from each other in that the bc–spiral is an out–of–plane modulation and the E–phase
is an in–plane antiferromagnetic ordering. Mochizuki [9] reports a coexistence of these two phases
for a range of Jb values – that is, an E–phase with canting along the c–axis. Now, since the present
model only has in–plane spin–spin couplings and fails to reproduce a clear bc–spiral, the evolution
takes place between the ab–spiral and the E–type phases. Given a set of parameters such that the
system is in proximity to the point of transition between these two phases, the energy difference
per spin is (by Eq. (3.2) and the geometries of the phases)

∆Eab→E = EE/N − Eab/N

= S2[Ja − Jb]− S2
[
2Jab cos φb2 + Ja + Jb cosφb + Jsl cos φb2 (δ̄abx + δ̄aby )︸ ︷︷ ︸

<0

]

= S2
[
2|Jab| cos φb2 + Jsl cos φb2 |δ̄

ab
x + δ̄aby | − Jb(1 + cosφb)

]
, (4.2)

where δ̄Xi is the average oxygen shift in the i direction for phase X and φb is the incommensurate
modulation angle in the b–direction for the ab–spiral (which is shown above to be φb = 0.46π).
By symmetry, it can be assumed that the average oxygen shift δ̄Ei , i = x, y, is isotropic, thus
making the spin–lattice terms cancel in EE . (Assuming also that the δ̄Xi are small, the elastic
terms from Eq. (3.6) cancel as well.) The relation δ̄abx + δ̄aby < 0 was established through the
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MC simulations. Now, since the first two terms are positive and the third is negative, there is a
competition between them, creating an energy gain for the E–type system only when increasing
Jb by large enough amounts. Thus, theoretically, there will eventually be a phase evolution from
the ab–phase to the E–type phase and it is the relative values of Jab, Jsl and Jb which determine
the point of evolution. Interestingly, the ferromagnetic Ja coupling has no part in determining the
phase evolution. Also, since δ̄abi are small, one may neglect the Jsl term in Eq. (4.2), and so the
stabilization of the E–phase can be said to depend only on the ratio between Jab and Jb. Using
S = 2 and parameter values in Table 4.1, we see that Jb > 4.3 meV for the E–type phase to be
established with the present Hamiltonian, thus explaining the difference as compared to the results
in [9].

4.1.5 Biquadratic Couplings

The present Hamiltonian (3.2) only takes into account exchanges up to bilinear order. Mochizuki
reports that Equations (3.3) and (3.5) are enough to establish the pure E–type phase [9]. But
there are essentially two main doctrines by which current researchers choose to describe manganese
perovskites, one of which follows Kimura [6] and Mochizuki [9, 12, 38] and is used in this work.
The other, described for instance in [40, 41], use Hamiltonians in which there are no single–ion
anisotropies, DM interactions or spin–lattice couplings. Instead, arguments are put forward that
quartic couplings are the ones to establish the E–type phase. This type of coupling term is suggested
by Hayden et al. [41] to be biquadratic and have the form

Hbq = κbq
∑
ij

(Si · Sj)2, (4.3)

where the sum is performed for NN spins. Fedorova et al. suggest instead that, in addition to the
biquadratic exchange, a quadratic four–spin ring exchange is also important [40]. It has the form

H4q = κ4q
∑
ijkl

[
(Si · Sj)(Sk · Sl) + (Si · Sl)(Sk · Sj)− (Si · Sk)(Sj · Sl)

]
. (4.4)

Here, the sum is performed for NN spins forming a ring–like, four–site plaquette. Both above
forms of quartic couplings are claimed to describe better the origins of the E–type ordering. In
fact, Kimura [6] is refuted almost entirely in a comment by Kaplan [42] in which it is shown
that the pure exchange Heisenberg Hamiltonian (3.3) fails to stabilize the E–type phase. The
model of Kimura et al. has since been extended by Mochizuki [9] to include terms on the form
(3.5), directly taking into account the structural distortions of the perovskite structure which
render the NN couplings anisotropic, and thus making it possible for the E–type phase to form.
In fact, it is stated there that Eq. (3.5) is crucial for lifting the degeneracy in the otherwise
frustrated configuration, something which is not taken into consideration in, for instance, the
paper by Fedorova in which the pure Heisenberg description is deemed insufficient [40]. In this
paper, it is shown via first–principle calculations that the biquadratic couplings can be comparable
in size to the bilinear couplings in orthorombic perovskite manganites with small R–atom radii.
It is also demonstrated that the pure Heisenberg Hamiltonian (3.3) applied to TbMnO3 renders
energies which do not agree well with those calculated from density–functional theory (DFT), and
that the addition of a biquadratic term greatly improves the results. Again, it should be stressed
that comparisons are made with a Hamiltonian not including the Hsl term, the addition of which
may be of interest for future similar studies.

Hayden et al. [41] make the claim that Eq. (4.3) is an important addition to the pure Heisenberg
Hamiltonian in order to establish the E–type phase. It can be shown, however, that Eq. (4.3)
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is equivalent to Eq. (3.5) by a simple argument: Consider a Hamiltonian which includes both
spin–spin exchanges and phonon terms:

H̃ = Jij
∑
ij

Si · Sj + uJ̃sl
∑
ij

Si · Sj + k
u2

2 + p2

2m, (4.5)

where u is a harmonic oscillator variable and the last term is an ion momentum term. By arguing
that u has a much slower time scale than do the spin interactions, the adiabatic approximation is
valid. It states that, given a time interval [0, T ] in which the time scale argument above holds, a
system which is in an eigenstate of H̃(u) is assumed to remain so throughout the time interval in
the adiabatic approximation [43]. Thus, we have that ∂H̃

∂u ≈ 0 in Eq. (4.5) and one can define a
mean–field free energy, E(u), according to

E(u) = Jij 〈SiSj〉+ J̃sl 〈SiSj〉u+ k
u2

2 . (4.6)

Minimizing with respect to u and reinserting into the expression then gives the following:

E(u) = Jij 〈SiSj〉 −
J̃2
sl

2k 〈SiSj〉
2
, (4.7)

thus proving that Hsl is equivalent to the biquadratic term suggested by Hayden et al..

4.2 Strained Case

Based on the findings in [34], which state that it is the NN couplings that are affected the most under
the influence of in–plane strain (see Section 3.1.1), simulations were performed. The parameter
Jab was changed from its assumed equilibrium value in Table 4.1 according to [34]. The results
are shown in Fig. 4.5. Using this strain model, it is seen that compressive strain seems to drive
the system towards the incommensurate spiral phase with wave vector kb = 0.46π, while tensile
strain further stabilizes the incommensurate E–type ordering. This can also be seen in Eq. (4.2),
which verifies that smaller values of Jab, i.e. tensile strain in the model used here, lessens the
energy gain for the ab–spiral until eventually the E–type phase has lower energy. For very small
values of the NN coupling, the correlation Ŝb gets weaker and a new peak appears for kb = 0.51π.
These peaks are, however, rather broad and it is not safe to draw definitive conclusions as to what
precisely the Ŝb correlation is here. It is not clear from the literature what happens when the
ratio Jab/Jb goes to zero. It has been reported [30] that there is frustration in the lattice in the
case Jab/Jb � 1, |Ja|/Jb � 1, which is the state approached by the system with increasing tensile
strain in the present model. In the same report, it is demonstrated that the sign of Ja becomes
increasingly important with weaker NN couplings and it is stated that the present Heisenberg
Hamiltonian, in which Ja < 0 is consistently used, breaks down and that Ja > 0 is correct instead.
Hence, modeling tensile strain solely as an isotropic decrease in the absolute value of NN coupling
might not be entirely justified, and the plot furthest to the back in Fig. 4.5 (colored green) may
be inaccurate.

There exist several experimental works in which the effects of strain on RMnO3 have been
investigated. Windsor et al. [2] study b–axis strain in epitaxially grown LuMnO3 films. Firstly,
it is concluded, quite remarkably, that the peak wave vector of Ŝb locks in at kb ≈ 0.485π for
low temperatures, and then experiences a shift downward with increasing temperature. Also,
greater amounts of (compressive) b–axis strain is demonstrated to increase this shift in the high–
temperature region. This reported shift in the wave vector is, however, not observed in the present
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Figure 4.5: Peak values of the Ŝb correlation function when varying the Jab parameter (see plot legend).
Negative strains are compressive and positive strains are tensile. Here, Jb = 4 meV and T = 1.4 meV.

work; In some regions of the Jb–range, there is indeed a shift observed with increasing temper-
ature. But it is not continuous and does not take place in the range reported by Windsor, but
rather between the kb = 0.48π and kb = 0.46π peaks, which is attributed to the above–discussed
coexistence between the incommensurate ab–spiral and E–type phases. Hence the reported effects
of increasing compressive strain are absent in the present model.

Jiménez–Villacorta et al. [15] grow YMnO3 epitaxial films on cubic single–crystal substrates
and measure how the Mn–O–Mn bond angles and the anisotropic bond lengths due to lattice
distortions change with film thickness (which in correlation with the amount of strain in the thin
film). It is seen that the in–plane bond angles become larger with increasing strain, and that the
antiferromagnetic order changes as a result of this, from spin–cycloidal ordering to A–type. In
light of the present model, this corresponds to a shift to the left in Fig. 4.1 [9], which follows the
same general trend as the present strain model observed through Fig. 4.5. It is stressed in [15],
however, that an isotropic lattice–mismatch – which is the result of the cubic substrate used –
does not create isotropic ab–plane strain in the RMnO3 structure, but rather the contrary. This
indicates that the strain model in this work, in which the Jab parameter was scaled isotropically,
is inaccurate. The inclusion of anisotropic Jab scaling is thus suggested as an outlook from this
work.



Chapter 5

Summary and Conclusions

A Monte Carlo program has been constructed, which implements the Metropolis Algorithm to
perform simulations of the magnetic phases of orthorombic manganese perovskites, RMnO3. A
parallel tempering, replica exchange algorithm has been implemented so as to improve simulations
in a cluster computer setting. A two–dimensional geometry was used, describing one ab–plane of
the structure. An extended Heisenberg Hamiltonian was used to model the structure. In addition
to the conventional nearest–neighbor and next–nearest–neighbor exchange couplings, terms were
added so as to account for structural distortions which are fundamental to perovskite manganites
and their magnetic structure:

H = Hexc +Hsl +Hani +Hlat, (5.1)
where Hexc are the conventional Heisenberg exchange couplings, Hsl models the shifts of oxygen
atoms in the Mn–O–Mn bonds due to octahedral tilting and Jahn–Teller distortions, Hani is an
anisotropy term which makes the c–axis a hard axis for the magnetization and Hlat is an elastic
term which restores the forces on the oxygen atoms to equilibrium.

Simulations were performed on an equilibrium system so as to verify the Monte Carlo implemen-
tation and map results from the Hamiltonian (5.1) to previous existing results from simulations
in a similar scheme. Phase transitions in the temperature domain agree rather well with what
was previously reported (see Fig. 5.1). However, as expected, the present Hamiltonian cannot
stabilize the two different kinds of incommensurate spin–cycloids that have been experimentally
confirmed in the low–temperature region for certain RMnO3 compounds, and it is verified that
the Dzyaloshinskii–Moriya interaction in combination with single–ion anisotropies is of great im-
portance for establishing these kinds of ordering.

Also, phase evolutions which have been shown previously to occur when increasing the antifer-
romagnetic next–nearest–neighbor interaction, do so for much larger values than expected. This is
attributed to the two–dimensional geometry and, again, to the absence of the DM interactions and
sufficiently detailed anisotropy terms which fail to stabilize the bc–cycloid which would otherwise
be an intermediary phase in–between the ab–spiral and E–type phases.

The anisotropy term in Eq. (5.1) affects the E–type phase which one expects to observe for
large structural distortions. Without the anisotropy, the system is able to stabilize a commen-
surate E–type phase. But when adding even the weakest anisotropy, the system locks into an
"incommensurate E–type phase", which agrees with experiments performed on thin films but not
with results from bulk samples.

Attempts were then made to model strain in the RMnO3 structure within the Hamiltonian
description in Eq. (5.1) and in accordance with previously reported experimental and theoretical
results. Increasing compressive strain in the ab–plane affects the magnetic ordering in that a
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Figure 5.1: Reported phase diagram (black lines) as compared to previous results (blue lines).

compressively strained RMnO3 compound will achieve magnetic ordering similar to that of a
compound with larger R radius. This is in accordance with previously reported experimental
results. It is, however, valid within the present context only for small enough strains. For large
strains, the model seems to break down. It is suggested that the inclusion of anisotropic ab–plane
strains be investigated within the description in Eq. (5.1) as a possible outlook. Also, while the
incommensurate E–type phase has been observed in the present model, the experimental reports of
a shift in the incommensurate magnetic wave vector along the b–axis with increasing temperature
for the E–type phase, and the claim that this shift increases with strain, have not. There is
no clear consensus concerning the origins of this incommensurability in the E–type phase. And
while there are many descriptions of how the RMnO3 structure changes under the influence of
strain, no unified results exist to answer how the magnetic ordering might be affected, thus making
phenomenological computer models such as that presented in this work a challenging task.
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Appendix A

Lattice Structure: Algebraic Description

Below follows an introduction to the algebraic treatment of magnetic ordering in lattices. Sec-
tion A.1 introduces the fundamental concepts of representation theory which are needed in order
to describe magnetic ordering using corepresentations, which is described in Section A.2. Together,
these topics are important when working with Landau theory, which is presented in Appendix B.

A.1 Representation Theory

One way of working with a finite space group is to use representations, i.e. the homomorphic map-
ping of a set of (spatial) transformations onto a complex vector space. We define the representation
of the group G as the finite–dimensional vector space V through the homomorphism ρ, given by

ρ : G→ GL(V ). (A.1)

Here, GL is a set of invertible (square) matrices of dimension dim(V )×dim(V ). The homomorphism
ρ can be seen as a projection of the space group G onto some subspace V and must be chosen
wisely so as not to lose vital information of G. Eq. (A.1) describes how G, which is complicated in
general, can be described by the representation V via the much simpler notion of square matrices
GL. It remains, then, to classify V . In doing this, a few important results exist, which will be
given here without proof (see [44] for a more detailed treatment):

1. A subrepresentation of a representation V is a vector subspace W of V which is invariant
under G.

2. The representation V of the group G is called irreducible if there is no subrepresentations W
of V other than 0 and V itself.

3. If V is a representation of the group G, and W is a subrepresentation of V (i.e. W ⊂ V ),
then there is a complementary subset W ′ ⊂ V such that V = W ⊕W ′.

4. Schur’s Lemma: If V and W are irreducible representations (irreps) of G and φ : V →W is
a homomorphism on G, then

a) Either φ is an isomorphism, or φ = 0
b) If V = W , then φ = λ · I for some λ ∈ C and I the identity.

In other words, 1 and 2 simply say that there exist representations of the group G which cannot
be decomposed into other, smaller representations. This in turn leads to 3, which states that each
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reducible representation can be written as a tensor sum of a specific set of irreducible representa-
tions. Lastly, Schur’s Lemma ascertains that each irrep of G is unique, up to isomorphism. This
is a very important result, because it means that every representation V of the finite group G can
be written as a sum of distinct irreps:

V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k , (A.2)

where {ai} are multiplicities. We have now reduced the problem of representing G to a matter of
finding all irreps and then use them to decompose any representation of our chosing.

We are now in a position to find a way of decomposing representations into irreps. To do this,
we make use of the character of a representation, which is defined as follows: Given an element
g ∈ G, the character χ of g on the vector space V is given by

χV (g) = Tr(g|V ). (A.3)

Noting also the well–established result from linear algebra that the trace of a matrix is invariant
under any similarity transformation (see [45], for instance), we have that

χV (hgh−1) = χV (g), (A.4)

which means that there is a set of elements in G – a conjugacy class – which share a particular
character. It follows, then, that the character of any representation V is a function of the characters
of the conjugacy classes only, and thus we have simplified the problem even more. Using the
arithmetic identities in Proposition 2.1 in [44], we can write the character of the representation
(A.2) as a weighted sum of the characters of all the irreps of which the representation is composed:

χV = a1χV1 + · · ·+ akχVk
(A.5)

The results of such a treatment of a finite group can be summarized in a character table in
which characters of all representations under all elements of the group are written. Table A.1
shows the character table of the crystallographic group Pmmm (or no. 47). The table uniquely
determines the space group.

Table A.1: Character table of the point group of the crystallographic space group Pmmm (no. 47) [46].
The leftmost column shows the irreps, Γi. The first row shows the symmetry operations that make out
the point group. Here, E is the identity, Cni is a rotation by 2π

n
about the i axis, σij is a reflection in the

ij–plane, Sn is rotoinversion (Sn = σh ⊗ Cn). Lastly, I = S2 is the inversion operator.

Pmmm E C2z C2y C2x I σxy σxz σyz
Γ1+ 1 1 1 1 1 1 1 1
Γ2+ 1 1 -1 -1 1 1 -1 -1
Γ3+ 1 -1 -1 1 1 -1 -1 1
Γ4+ 1 -1 1 -1 1 -1 1 -1
Γ1− 1 1 1 1 -1 -1 -1 -1
Γ2− 1 1 1 1 -1 -1 1 1
Γ3− 1 -1 -1 1 -1 1 1 -1
Γ4− 1 -1 1 -1 -1 1 -1 1
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A.2 Magnetic Groups and Corepresentations

Materials gain their magnetic properties due to the resultant effect of the magnetic moments of
the atoms in the structure. Because of this, any space group used to describe a magnetic structure
must also contain the antisymmetric operator (or, equivalently, the time reversal operator), O. In
fact, it can be shown [47] that the magnetic space groups must necessarily be on the form

M = G+OG, (A.6)

i.e. the magnetic groups are composed of a regular crystallographic space group and its product
with O [48]. This way of constructing antiunitary groups from the unitary space groups creates
a need for the framework of Section A.1 to be extended. Representation theory is no longer
enough to fully describe the symmetries of magnetic structures. Rather, one must make use of
corepresentations, which (luckily) resemble regular representations.

The first thing to note about the time reversal operator is that, given a wave function expanded
in some basis, |ψ〉 =

∑
k ak(t) |ψk〉, it transforms as

O |ψ〉 =
∑
k

a∗k(t)O |ψk〉 , (A.7)

where the asterisk denotes complex conjugation [47]. For reasons stated in Section A.1, it is con-
venient to use the irreps of a group as a basis for the state. Given a magnetic group M according
to (A.6), representations of the unitary group G can be used such that, for all R ∈ G,

R 〈ψi| =
d∑
j=1
〈ψj |∆(R)ji = 〈ψ|∆(R), (A.8)

where ∆(R)ji are matrix elements of the unitary irrep of dimension d belonging to G [48]. (The last
equality is shorthand notation.) The expression is written in accordance with the convention of
left–action of operators on group elements [44]. This can now be expanded to account for the entire
antiunitary group M by defining 〈γ| = 〈ψ, φ| = 〈ψ1, ψ2, . . . , ψd, φ1, φ2, . . . , φd|, where 〈φ| = O 〈ψ|.
Now, according to Bradley [48], we write

R 〈γ| = 〈γ|D(R), where (A.9)

D(R) =
(

∆(R) 0
0 ∆∗(O−1RO)

)
. (A.10)

The matrix D(R) is the corepresentation of R on M . Similarly, for all antiunitary elements
B ∈ OG, we have

B 〈γ| = 〈γ|D(B), where (A.11)

D(B) =
(

0 ∆(BO)
∆∗(O−1B) 0

)
. (A.12)
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The corepresentations have properties similar to the regular representations in that there also
exist irreducible corepresentations and that one can construct character tables. To describe all the
possible magnetic symmetries available, one must include all symmetry operations R but also all
antisymmetric operations OR. Table A.2 shows an example.

An important application of the magnetic groups and (co–)representation theory exists within
the framework of the Landau theory of phase transitions (see Appendix B).

Table A.2: Character table of the group Pca211’ at k = 0. τi are the four corepresentations available
and gi are the (unitary) symmetry operations in the paramagnetic group [49].

Pca211′ g1 g2 g3 g4 Og1 Og2 Og3 Og4
τ1 1 1 1 1 -1 -1 -1 -1
τ2 1 1 -1 -1 -1 -1 1 1
τ3 1 -1 1 -1 -1 1 -1 1
τ4 1 -1 -1 1 -1 1 1 -1



Appendix B

Landau Theory

Landau theory has been an important aid in the study of phase transitions. It is successful in a
great variety of scenarios: With very little prior knowledge about a system, one is able to draw
general conclusions about symmetries and possible phases using Landau theory. If, on the other
hand, one has more extensive knowledge about the system, accurate predictions may be made
concerning the orders of the phase transitions and the temperatures at which they occur. This
chapter describes the fundamental methodology. Also, the model is extended to account for strain
influences and for the observed incommensurate phases appearing in most manganese perovskites.

B.1 Fundamentals

The temperature regime around a phase transition (magnetic or otherwise) is, by definition, non–
equilibrium. Landau theory does, however, describe the situation from an equilibrium perspective,
essentially by Taylor expanding the free energy, F , around the critical temperature, Tc. The idea
is to express the free energy in terms of order parameters which leave invariant the free energy
under the symmetry operations of the space groups in both phases [50]. Generally, lowering the
temperature will induce phases with successively lower symmetry, and by invariance, it is meant
that F does not change when applying symmetry operations of the paramagnetic group. The
possible lower–symmetry phases will be subgroups of this parent group. Landau theory is useful
in two main ways:

1. Given a paramagnetic space group, one is able to determine the possible ordered low–
temperature phases and the order parameters describing the transition.

2. Given a known transition between two phases, one is able to determine its order.

It is here that the amount existing prior knowledge about the system comes into play. If one
only knows the symmetry of the paramagnetic phase (the very minimum amount of information
needed in order to be successful in applying the theory), then one can only list the possible low–
temperature phases (and possibly the expected orders of transition). If no additional information
is supplied, this is where the range of the theory ends – there is no way of knowing what phases
will actually occur experimentally and what phases are mere theoretical constructions [49]. If, on
the other hand, one does have experimental information about the phase(s), then the theory will
be able to predict its nature and how it may be affected by distortions (strain, for instance) [51].
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B.1.1 Symmetries
Table B.1 shows the symmetries of the paramagnetic group Pnma (No. 62), which matches the
magnetic structure of the manganese perovskites. This describes the entire parent group, and
given that the geometric structure itself does not change over the course of the transition, then all
ordered symmetries will be subgroups of Pnma [52].

Table B.1: Character table of the group Pnma at k = 0. Γi are the corepresentations available and gi
are the (unitary) symmetry operations in the paramagnetic group [46, 48].

Pnma g1 g2 g3 g4 g5 g6 g7 g8
Γ+

1 1 1 1 1 1 1 1 1
Γ−1 1 1 1 1 -1 -1 -1 -1
Γ+

2 1 1 -1 -1 1 1 -1 -1
Γ−2 1 1 -1 -1 -1 -1 1 1
Γ+

3 1 -1 -1 1 -1 1 1 -1
Γ−3 1 -1 -1 1 1 -1 -1 1
Γ+

4 1 -1 1 -1 1 -1 1 -1
Γ−4 1 -1 1 -1 -1 1 -1 1

Pnma Og1 Og2 Og3 Og4 Og5 Og6 Og7 Og8
Γ+

1 -1 -1 -1 -1 -1 -1 -1 -1
Γ−1 -1 -1 -1 -1 1 1 1 1
Γ+

2 -1 -1 1 1 -1 -1 1 1
Γ−2 -1 -1 1 1 1 1 -1 -1
Γ+

3 -1 1 1 -1 1 -1 -1 1
Γ−3 -1 1 1 -1 -1 1 1 -1
Γ+

4 -1 1 -1 1 -1 1 -1 1
Γ−4 -1 1 -1 1 1 -1 1 -1

Looking at Table B.1, we see that for any given corepresentation Γi, there is a unique set
of symmetry operations gi which leave the system invariant (i.e. whose characters are 1). For
instance, the corepresentation Γ+

2 is invariant under g1, g2, g5, g6,Og3,Og4,Og7 and Og8. This set
of operations corresponds to a specific (antiferromagnetic) symmetry. Each corepresentation of a
paramagnetic group thus corresponds to a possible ordered symmetry, and hence also a certain
transition between two phases [49]. After deciding upon which corepresentation(s) of interest, one
can construct the Landau free energy.

B.1.2 The Landau Free Energy
Generally, if a system can be described by an order parameter η (which, for example, could
correspond to the total magnetization in a system), then the basic Landau free energy has the
form

F (η, T ) = F0(T ) + aη2 + bη4, (B.1)

where F0 is a background free energy, independent of η. Note how odd powers of η cannot
be included in the expression since it would violate invariance under η → −η, which would be
unreasonable, at least in a magnetic system. One can then minimize F around T = Tc by ∂F (η,Tc)

∂η =
0 and ∂2F (η,Tc)

∂η2 = 0. This is allowed because it is assumed that η → 0 around Tc, something which
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should always hold for any appropriate order parameter [16]. The fundamental result from Landau
theory is that the coefficients a and b (and any higher–order coefficients, if present) determine the
nature of the phase transition. They are often written a = a0(T − Tc) (and similarly for b). It
turns out that a phase transition takes place when a or b changes sign. An important thing to
note here is that only one of them may change sign [50].

After identifying a certain phase transition between two symmetries using the method in Sec-
tion B.1.1, it remains to determine suitable order parameters which are left invariant under the
transition. In the Pnma group there are 8 basis atoms (sub–lattices) corresponding to the 8 Mn
atoms in the magnetic unit cell in the RMnO3 structure. If the spins are labeled {~µi}8i=1, then one
can form combinations of sublattice spins in accordance with the 8 corepresentations in Table B.1.
Given a low–symmetry structure (i.e. a set of operations gi), the structural invariance under these
operations does not mean that all components of the ~µi will also be invariant – the sublattice spin
representations are reducible. It remains to find the components that are invariant, and it is these
components that are suitable as order parameters [49].

As an example, we choose the Pca211’ group, which has 4 basis atoms and is perhaps more
instructive than the perovskite Pnma structure because it requires less lengthy expressions (they
are, however, analogous in most respects). The Pca211’ equivalent to Table B.1 is Table A.2, and
one can construct four vectors from the different sublattices according to

M = ~µ1 + ~µ2 + ~µ3 + ~µ4

L1 = ~µ1 + ~µ2 − ~µ3 − ~µ4

L2 = ~µ1 − ~µ2 + ~µ3 − ~µ4

L3 = ~µ1 − ~µ2 − ~µ3 + ~µ4

(note how the signs match the characters corresponding to the four corepresentations in Table A.2).
Similarly to Pnma, these are reducible since not all components of the ~µi are invariant under the
same symmetry operations. Those that are, however, are suitable order parameters in the Landau
free energy. For τ1 in Table A.2, for instance, it is L1z, L2z and L3y that are invariant and
parametrize the phase transition.

B.2 Strain Modeling

Magnetization and polarization are examples of primary order parameters, because they charac-
terize the symmetry–breaking of the transition from high to low symmetry; They are invariant
under all symmetry operations in both phases. There are, however, order parameters which do
not obey all symetry operations, but still parametrize the Landau free energy around the phase
transition. These are called secondary order parameters. One important use of secondary order
parameters is to describe distortions which arise in the transition to the low–symmetry phase [53].
Hence, secondary order parameters are useful when studying the influences of strain in the ordered
phases.

For temperature–driven transitions, and for relatively small applied strains, it is sufficient to
treat the strains as infinitesimal (something which will also be relevant in Section B.2) [54]. Thus,
one can define a linear strain tensor

εij = rij0 − r0

r0
, (B.2)

where r0 is the equilibrium position and rij0 is the deviation from it in the ij direction (i = j
signifies a deviation along an axis and i 6= j is a deviation perpendicular to the ij–plane). εij is
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taken into account in the Landau free energy (B.1) by adding first a coupling invariant term and
then an elastic term [49]. If, for instance, the strain is taken to be in one direction only, then Eq.
(B.1) will be extended as follows:

F (η, T ) = F0(η) + aη2 + bη4 + cη2εii + 1
2Cε

2
ii, (B.3)

where the last two terms are the coupling invariant and elastic term, respectively. When minimizing
the above with respect to εii, one can identify the equilibrium strain and reinsert it into Eq. (B.3).
By doing this, one will have renormalized F (η, T ) in the η4 term, and it is seen that the strain
influences the stability of the phase [50].

It is worth mentioning that arguments have been raised that infinitesimal strain models such as
the above are used all too incautiously, and that they are inaccurate in describing anything other
than pure temperature–driven transitions [54]. Attempts have been made to increase the accuracy
of the model by going beyond harmonic order in the free energy [54, 55]. In this work, however,
only infinitesimal strains are considered, and so the elastic model presented above is justified.

B.3 Incommensurate Phases

Incommensurate (IC) phases have larger unit cells than the paramagnetic group, and hence the
symmetry arguments presented in the previous section must be extended so as to account for a
non–zero wave vector in the Brillouin zone. First of all, by definition, it is not possible to describe
IC structures using a magnetic space group [50], because periodic translations of the paramagnetic
unit cell do not exist in the IC magnetic context. Instead, only the magnetic point group is used.
Generally, an IC order parameter can be written S = S0e

ik·r, where k is the modulation vector in
reciprocal space. Again, depending on the knowledge beforehand about the system that is to be
described, the Landau theory can be used in different ways.

Table B.2: Generators of the irreducible corepresentations ∆2 and ∆3 of the paramagnetic group Pbnm1’
(see text) [56, 57]. The order parameters S2 and S3 (and their complex conjugates) transform according
to the matrices in the table. Here, ε is connected to the wave vector of the phase of interest (be it IC or
not).

Pbnm1’
(
Uy|a2

b
20
) (

σz|00 c2
)

(I|000) O (E|0b0)

∆2
S2
S∗2

(
eiε 0
0 e−iε

) (
−1 0
0 −1

) (
0 1
1 0

) (
−1 0
0 −1

) (
e2iε 0
0 e−2iε

)
∆3

S3
S∗3

(
−eiε 0

0 −e−iε
) (

1 0
0 1

) (
0 1
1 0

) (
−1 0
0 −1

) (
e2iε 0
0 e−2iε

)

For example, in the case of lanthanide perovskite manganites (RMnO3 with R=La–Lu), it
has been observed [57, 58] that, out of four possible corepresentations in the Pbnm space group
(which, in addition to the Pnma group, can be used to describe orthorombic perovskites), two
are responsible for the symmetry–breaking transitions, labeled ∆2 and ∆3, the character table of
which is seen in Table B.2. Using this knowledge, one can define order parameter invariants which
characterize the transitions
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J1 = S2
2 (B.4)

J2 = S2
3 (B.5)

J3 = S2
2S

2
3 cos 2φ. (B.6)

Here, the order parameters are defined using S2 = S0
2e
iθ2 , S∗2 = S0

2e
−iθ2 , S3 = S0

3e
iθ3 and S∗3 =

S0
3e
−iθ3 which are the complex amplitudes transforming according to ∆2 and ∆3, respectively. The

mixing phase angle is φ = θ2 − θ3. The free energy can then be written as [56]

F (S2, S3, φ, T ) = F0(T ) +
2∑
i=1

[αi
2 Ji + βi

4 J
2
i

]
+ γ1

2 J3 + γ2

2 J
2
3 + . . . . (B.7)

When minimizing with respect to the parameters S2, S3 and φ, one gets five different stable states,
corresponding to different values of the complex amplitudes and the mixing angle [50, 56]. Two
of these are the sinusoidal and E–type ordered states reported in the literature (e.g. by [5, 6, 9,
30]). Using knowledge (experimental or theoretical) of the wave vectors of these two states, one
can replace ε in the character table B.2 with real values and analyze, for instance, the orders of
the transitions.
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