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Sammanfattning

Antalet enheter som är anslutna till internet växer snabbt. När man talar om en-
heter så menar man också de som inte har någon kontakt med människor, ex. en
uppkopplad temperaturgivare till en termostat. Dessa typer av enheter är de som
förväntas växa mest, vilket är anledningen till att området för att unikt identifiera
dessa enheter kräver mer undersökning. Det här examensarbetet inkluderar mät-
ningar och utvärdering av användningen av sensorerna accelerometer, kamera
och gyroskop på mobiltelefoner för att undersöka i vilken utsträckning de går att
identifiera som unika enheter. Det kan liknas med ett fingeravtryck för mobilte-
lefonen. Den metod som används bygger på tidigare forskning inom sensoriden-
tifiering tillsammans med metoder som används för att utforma ett biometriskt
system. Kombinationen av långa beprövade metoder inom biometriområdet och
ny forskning inom identifiering av sensorer är ett nytt sätt för att titta på enheters
fingeravtryck.
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Abstract

The number of connected devices connected to the Internet is growing rapidly.
When talking about devices it also covers the ones not having any contact with
humans. This type of devices are the ones that are expected to increase the most.
That is why the field of device fingerprinting is an area that requires further inves-
tigation. This thesis measures and evaluates the accelerometer, camera and gyro-
scope sensor of a mobile device to the use as device fingerprinting. The method
used is based on previous research in sensor identification together with meth-
ods used for designing a biometric system. The combination with long-proven
methods in the biometric area with new research of sensor identification is a new
approach of looking at device fingerprinting.
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1
INTRODUCTION

This paper is the report for my master thesis in Computer Science and the last
part of my education of becoming an engineer in information-technology in the
field of secure systems. This thesis was performed at Cybercom AB in Linköping.
This chapter of introduction will give an overview of the work together with back-
ground and aims and objectives that is used as the basis for the work presented
in this thesis.

1.1 Background

Cars, locks, birds, stoves, refrigerators, coffee makers, watches, cat feeders, sewing
machines. . . The world of connected devices is growing rapidly. This world is
known under the term ‘Internet of Things’. To make these things connect to each
other secure authentication methods is needed. To be sure that the device are
connecting to the device it is suppose to and not anything or anyone else.

Two-factor authentication is something we humans use basically every day when
accessing buildings, part of networks, our bank and so on. When talking about
two factor authentication we usually use a combination of either three things;
something you know like a password, something you have like a passport or some-
thing you are like your fingerprint. (More about those in chapter 2.)

Something you know or have are things that can be copied, stolen or modified
fairly easy and without knowing all that much about the person or thing you try
to authenticate as. This compared to something you are requires much more ef-
fort and time since you only can focus at one person a time. Machines do not
have those attributes as us human, they are build upon hardware parts.

1



2 1 INTRODUCTION

The aim of this thesis is to explore the possibility of a machine to have a finger-
print that can be used to more securely authenticate them. This can be applied in
several areas. An example is the new smart homes where fridges, stoves, coffee
makers and doors shall communicate with each other. Another example could
be when you want to limit the access to your bank account to your phone only to
avoid that a malicious user accessing your account.

1.2 Aims & Objectives

Today most of the solutions for machine-to-machine (M2M) authentication in-
volves a certificate, token, UUID etc. This is something the machine knows or
has. The area of device fingerprinting is more investigated in line with the world
of connected devices, which is called IoT (Internet-of-things) is growing. The aim
of this thesis is to look into if the fingerprinting methods found today can be used
as something the machine are for two factor authentication between them. The
problems this thesis aims to solve are:

• Is it possible to create a device fingerprint by using the sensor characteristics in
a mobile device?

• Could the device fingerprint be used as a second factor to identify the device?

The problems above state a mobile device and not a general machine, which is
one of the limitations in the thesis. The focus is also identification as a biometric
process where you are able to collect a set of data from the device in a database
in an enrollment phase. This means that new devices in the system first have to
be checked by collecting sensor data from your device, just like the police has
to collect fingerprint from the suspect to compare with the fingerprints from the
crime scene. As written in the background the devices building stone are hard-
ware, thus something the devices are that is the point of view of the thesis. This
is similar to biometric authentication of us humans.

The objectives of this work can be summed up to:

Explore different sensor characteristics of a mobile device
Mobile devices today are equipped with a lot of sensors. The sensors as hardware
in general contains manufacturing defects that may cause bias. The bias that may
be unique enough to differ from another device of the same model. Measure-
ments from the gyroscope-, accelerometer- and camera-sensor will be collected
and valuated like biometric fingerprints.

Combining M2M, two factor and biometrics
Biometric authentication has methods of identify fingerprints and designing such
systems. These will be used to compare the characteristics of the sensors and eval-
uate the possibility of two factor authentication between the devices.
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1.3 Thesis Outline

This chapter includes background, aims and objectives that gives a quick view
of what the thesis is about. The chapters that follows are divided into different
parts that map to the different objectives listed above.

Ch.2: Theory-chapter about how authentication is made today between machines,
two factor, the challenge-response protocol and in biometrics.

Ch.3: Theory-chapter about the different hardware characteristics of a mobile de-
vice. Together with previous work in the area of the thesis.

Ch.4: The method used when doing measurements of the characteristics described
in chapter 3.

Ch.5: Result of measurements.

Ch.6: Discussion about the result and method used. Followed by another discus-
sion about the work in a wider context.

Ch.7: Conclusions that refers back to the aims and objectives and also includes
further work in the area if the thesis.





2
COMMUNICATION &

AUTHENTICATION

Since about all devices that are connected to a network are one way or another
connected to the Internet you can bet that they find themselves in an untenanted
or malicious environment. Everything connected to the Internet is very likely to
be hacked. Thus, authentication is needed for remote sensing devices to commu-
nicate. [24]
This chapter presents ways of authentication (two factor, M2M and biometric).
The section about biometrics is included in the thesis because it has methods of
measuring strength of a biometric trait. These methods will be used when com-
paring strength of characteristic bias in the mobile device.

2.1 Two factor authentication

There are more ways to authenticate users than the use of passwords, however
it is the most common. The types of authentication is often divided into three
categories;

• Something the authenticator has like a tag, key, credit card or passport.

• Something the authenticator knows like a password.

• Something the authenticator is, biometrics such as fingerprint or iris pat-
tern

[2, p. 31]
Authentication in two factors means a combination of two of the three types of
authentication above. An example can be the use of a credit card (that you have)
in combination with a PIN-code (that you know) to collect the money from an

5



6 2 COMMUNICATION & AUTHENTICATION

ATM. Something the authenticator has and knows is the most common combina-
tion. The biggest reason that biometrics is not that common yet is due to costs. [2,
p. 47]

2.2 Challenge-Response authentication

The challenge-response protocol is built upon the idea that the user of a system
first must complete a challenge decided by the system in order to access the sys-
tem. An example is a modern car key when trying to start the engine, the engine
controller gives the key a challenge consisting of a random n-bit number. The
key encrypts the challenge and responds.

The problem challenge-response protocols faces is often to achieve good random-
ness, thus if the challenge is not random enough there is a risk for a malicious
user to calculate the n-bit number.

There are other applications than locks, like the HTTP Digest Authentication.
That uses the authentication process where a web server challenges a client or a
proxy with the common secret of a password. The server send nonce to the client
or proxy, that hash the nonce with the password and the requested URI. (Nonce
is an arbitrary number that only can be used once, often generated as random or
pseudo-random.) This authentication mechanism is not vulnerable to password
snooping and is used in cases like client-server-authentication in SIP or the pro-
tocol for Voice-Over-IP telephony.

A more common use of challenge-response is in two-factor authentication. An
example is if you have a bank card reader when accessing your bank on the Inter-
net. When you want to log in there is a random set of n numbers displayed in the
screen. You put these numbers together with a PIN into your bank card reader.
The reader encrypts these numbers (pin + n numbers) using a secret key shared
with the server of the bank. The first n numbers of the encryption is displayed on
the card reader and you enter this in the login screen as a password.
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Figure 2.1: Challenge-response authentication with bank card reader

Description of figure 2.1:

1. Bank sends challenge XXXX XXX to the requesting address.

2. User enters PIN and XXX XXX in the bank card reader.

3. The reader encrypts the PIN and number with a secret key shared with
the bank. The first numbers of the encryption are displayed o the reader.
(Y Y Y Y Y Y Y = XXXXXXX, P IN k)

4. The user enters the encrypted numbers YYYY YYY on the log in screen and
sends it as a password to the bank.

[2, ch.3]

2.3 M2M - Machine to machine

Information that is exchanged via a communication network between machines
has to establish conditions for doing so, that is where M2M is used. M2M is often
a short synonym for M2M communication, meaning the communication condi-
tions between devices. M2M communication is only the communication made
between machines without any human behind it. A mobile phone interacting
with a call center application is not M2M, because there is a human behind the
mobile device calling. The reason for using mobile devices in this thesis, that is
controlled by a human, is that they contain many sensors. These sensors can be
found in other simpler devices where M2M communication can be applied.
M2M often involves similar devices in a M2M area network interacting with an
application. This makes it possible for devices to access public networks as well,
via a gateway or router. An example is the heating system in smart homes. M2M
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is important to make devises talk without a human behind. This affects the re-
quirements on the applications and networks dealing with the devices. Charac-
teristics of these devices are listed blow:

• Multitude - The part of IoT that is not directly interacting with humans
is the part growing the most. The part is soon expected to be significant
more than the one which interacts direct with humans. This will put more
pressure on application and networks dealing with all devices.

• Variety - The connected devices have requirements such data exchange rate,
form factor, computing and communication capabilities. M2M applications
have to be built in order to define and develop common enabling capabili-
ties.

• Invisibility - The device has virtually zero human control. The more invisi-
ble the lower the probability of errors caused by humans.

• Criticality - Devices that can harm people because of electrical failure and
such. Therefore reliability is an important factor.

• Intrusiveness - Many of the increasing connected devices raise the privacy
question like refrigerators, stoves, doors, etc.

All these devices with no human control are very different. But many of them
have some characteristics such that the functionality is limited, low-powered, em-
bedded and have long life cycles. The fact that they often are embedded makes it
hard to separate machine-to-machine, machine-to-human and human-to-human
communication. [7, p. 2-4]

2.3.1 Difference between M2M and IoT

The term Internet-of-things, means everything that is connected to the Internet.
IoT is now in its starting pits and ready to explode. Machine-to-machine com-
munication is a part of that, but it also covers other areas that IoT does not and
vice versa. The common denominator is according to Polsonetti the remote device
access. Where the embedded hardware modules in a machine that communicate
wireless or not is M2M applications. Remote device access for IoT has a wider per-
spective that is not only including same device communication. But also commu-
nication between passive and other low-power sensors, that not can be motivated
as a M2M hardware module. [23]

2.3.2 M2M authentication

There is no standardized way of authentication in M2M, but effort is done in the
area. An example is authentication based on a what a machines knows or have.
This consist of a hardware message of a computer, such serial number of CPU,
MAC address of network card, machine ID etc. [13]
These things have through the years been proven to be pretty easy to spoof. There
are hundreds of blog-articles and forum topics of how to do that for many plat-
forms of mobile devices.
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2.4 The biometric process

“A biometric system measures one or more behavioral characteristics...information of
an individual to determine or verify his identity.”

[14, p. 3]

2.4.1 Recognition

The person showing a biometric identifier (fingerprint, iris, DNA, etc.) to the
biometric system, is seen as a user of the system. The strength of biometrics is
also the fact that it knows if a user is known to the system even if the user denies
it. [14, ch. 1]

2.4.2 Biometric systems

There are blocks for building a biometric systems which can measures charac-
teristics of a user. In biometrics these characteristics are called traits, indicators,
identifiers, or modalities. In thesis it will still be called characteristics.

The first step of biometric authentication is to collect biometric data and store
it in a database together with the user’s identity. The recognition is then done by
again collecting biometric data from the user and compare it to the database. This
is the so called enrollment and recognition phase. The raw biometric data is often
destroyed after the enrollment and the recognition is all about pattern matching.
This matching is done in four steps;

1. Sensor - Collects the raw biometric samples, which can be an image, ampli-
tude signal, online signature, odour or chemical-based.

2. Feature extractor - Makes the raw biometric samples comparable, which is
most of the time done in three pre-process operations;

• Quality assessment - Checks if the sample is good enough.

• Segmentation - Removes background noise from sample.

• Enhancement - Uses an algorithm to improve characteristic features of
the sample.

3. Database - Contains the data from the enrollment phase together with some
identity data (like name or ID). The database should have an access control
mechanism for security reasons.

4. Matcher - The sample from the enrollment is compared with the sample in
recognition, to see if it is a match or not. This is done by having a match
score to decide how close the enrolled and recognition sample is. The score
is calculated in different ways depending on the characteristics that is used.

[14, ch. 1]
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2.4.3 Biometric authentication

Biometric authentication, is sometimes also called verification which answers the
question Are you the one you say you are?. There is also biometric identification
which answers Are you someone known to the system? The practical difference is
that in authentication the user has to give the system some kind of information
(username, passport, email etc.) of who they claim to be. For identification the
user just gives the sample to the system, which then checks if the user is known
to the system or not. The identification look-up takes longer time since it com-
pares the biometric input with all samples in the database. Authentication only
compare sample with the sample of claimed identity. [14, ch. 1]

2.4.4 Biometric measurements

Biometric measurements is more difficult than in a password-based system, where
the answer just is match or not match. The accuracy of the biometric system must
be considered when choosing characteristics. This is measured by two FRR (False
rejection rate) that is the probability that two samples from the same user is not
a match and FAR (False acceptance rate) is the probability that two samples from
different users is a match. There is a threshold η that is used to decide the FRR
and FAR. The proportion of authentic scores (ω1)) that are less than η is defined
as FRR and the impostor score (ω0)) that are greater than or equal to η is FAR.
The rates can be described mathematical as;

FAR(η) = p(s ≥ η|ω0) =
∫ ∞
η
p(s|ω0)ds,

FRR(η) = p(s ≤ η|ω1) =
∫ η

−∞
p(s|ω1)ds,

where p(s ≤ η|ωx) us the probability density function of the authentic respective
impostor score. [14, p. 18]

2.4.5 The design of a biometric system

When designing a biometric system it is done in an activity cycle of five steps.
Depending on the outcome of one activity, the next step could be forward or
re-doing earlier activity. These five steps are explained below followed by a flow-
chart of the design cycle. Figure 2.2

Understand the nature of application
Deciding functionality upon type and classification based on how well the sys-
tem fits different behaviours; cooperative, overt, habituated users, attended, un-
tenanted operation, controlled operation and open system.
The first is if the user will be cooperative or not, like if the user wants to access
something it is likely to cooperate. Overt is if the user knows that it is object for
biometric recognition. If the user interacts with the system a lot it is likely that
the user will be habituated. The enrollment and recognition operations can either
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be attended by a human or not. The environment of the operations may have to
be controlled in terms of temperature, pressure, etc. in order to work. Last there
is the question of if the system will be closed or open, such if the database of bio-
metric data will be shared between applications or be in one closed application.)
This chapter and the next that includes theory, can be compared to this part of
the biometric design cycle.

Choose biometric characteristics
The choice is based on seven different factors. The disadvantages of biometrics is
that it will never be completely solid, therefore factors will have different signifi-
cance in different systems.

1. Universality, the trait should be possessed by the ones authenticated to the
system. The fail-to-enrollment (FTE) rate should be low.

2. The uniqueness of the characteristics is high the rate of FAR will be low.

3. The characteristic should be high in terms of permanence and not be chang-
ing significantly over time.

4. Measurability from the user perspective in terms of collecting characteris-
tics should be convenient.

5. The time of the authentication is the factor of performance.

6. User should have a high acceptability when presenting their characteristics
to the system.

7. Circumvention, in terms of how easy it is to maliciously fake the character-
istics.

Collect biometric data
As the name implies this step is about the choice of how to collect the biometric
data. The choice also includes factors of time, cost and size of the equipment.

Choose features and matching algorithm
This is critical step since this is the heart of the system and has to bee done with
a great deal of knowledge of the selected characteristics and the data extracted
from it.

Evaluate the biometric system
There is no framework or standardisation for doing the evaluation and it has to ac-
count different perspectives that require experts of different fields such psychol-
ogy, business, computer science and statistics. The proposed method is divided
into three evaluation-stages technology, scenario and operational. [14]
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Figure 2.2: The design cycle of a biometric system



3
CHARACTERISTICS OF A MOBILE

DEVICE

Compared to the biometric design cycle is this a part of understand nature of ap-
plication.

In the hardware of a device there are features that can be used to distinguish
devices from each other. In most cases its not called features rather error sources,
noise or bias. Device fingerprinting is the term used for this feature characteristics
and the pyramid seen in figure 3.1 shows the different types of sources of device
fingerprinting. This thesis focuses on the top of that pyramid that is the sensors.

OS, Protocol Stack

Radio Signal

Clock Skew rate

Sensors

Vary across vendors

Requires external

special hardware

Low margin of error

Untapped source of

fingerprints

Vendor specific

protocol

Emitted radio signal

from wireless device

Internal idiosyncrasy

in crystal oscillator

Like- microphone, ac-

celerometer, gyroscope

Figure 3.1: The pyramid of features in a mobile device that can be used for
fingerprinting.[9]

As seen in figure 3.1 are sensors an untapped source of fingerprints in mobile
devices and example of sensors are microphone, accelerometer, barometer, speak-
ers and gyroscope. The sensors investigated in this work are the accelerometer,
gyroscope, and camera sensors. All of them are common sensors in most of the

13
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mobile devices used today.

3.1 Accelerometer

The accelerometer is the sensor that detects movement of a mobile device, like
when you change orientation on your device. Acceleration is measured by sensing
how much force is applied to the device. The type of accelerometer sensor found
in a mobile device are a micro-electromechanical systems known as MEMS. [25]

3.1.1 Fingerprinting characteristics

Measures the characteristics from the accelerometer is done by taking the long
term average of the output when the accelerometer is in rest. Which is the biggest
error source in the accelerometer and grows quadratic over time. When the ac-
celerometer is in rest the error ε can be calculated as a function of time t:

s(t) = ε ∗ t
2

2
(3.1)

[25]

3.2 Gyroscope

The gyroscope senses how the device is moving in terms of angles, for measure
the orientation. This is originally a mechanical system based on the principle of
conservation of angular momentum. The most popular Gyroscope for devices
today is MEMS that uses silicon micro-mechanical techniques. Coriolis effect is
measured with vibrating elements in the MEMS gyroscope. Coriolis effect is the
change of moving objects direction when looking at it from a rotating reference
system. The equations of Coriolis force:

FC = −2m (ω ∗ v)

Where m is the mass of the particle, ω the angular velocity and v the velocity of
the particle in the rotating system. [27]

3.2.1 Fingerprinting characteristics

The gyroscope has some error characteristics like constant bias, white noise, bias
instability, calibration error and temperature effects. One of these characteristics
that can be tested by reading the output from a gyroscope in rest is the constant
bias. Which is bias of the gyroscope output when the gyroscope is still. This
constant error ε of the bias over time t leads to an angular error that grows linear;

θ(t) = ε ∗ t (3.2)

If take the long term average output from the gyro in rest, the constant bias of
the gyroscope can be estimated.[25]
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3.3 Camera

Note that normally bias in a camera sensor is called noise but for uniformity reason of
this report it will be referenced to bias.

The digital camera of a mobile device also includes sensors and other hardware
that can be used as fingerprinting characteristics. The basics is that light travels
through the lens and hits the imaging sensor which contains pixels that has a
filter array in front. The filter gives each pixel a detected color. The pixels are
then added together to a resulting signal which is send to some final post pro-
cessing (color correction, white balance, etc.) steps before the image is written to
the memory card. In this process there are different types of bias that effects the
picture:

• Shot noise - the amount of photons hitting the sensor and each pixel varies
a random amount.

• Fixed pattern noise - a small electric current that leaks from photo-diodes in
each pixel, which is caused by dark current.

• Photo-response non-uniformity noise (PRNU) - when manufacturing sensors
the silicon gets imperfection which causes that pixels are not equally sensi-
tive to light. This is the main source of pattern bias and makes it unlikely
for two cameras to have the same pattern. This bias is not affected by tem-
perature or humidity.

The three types of bias can be described as a mathematical model for getting the
output of the sensor yij :

yij = fij (xij + ηij ) + cij + εij

where fij is a multiple factor close to one that captures PRNU, xij is the number
of photons hitting the sensor, ηij the shot noise, cij the dark current and εij the
additive random bias. The key for a unique fingerprint of the camera (in the
mobile device) is to find f . [15]

3.3.1 Fingerprinting characteristics

In this work the PRNU will be used as bias as in the research by [15]. PRNU is the
average of multiple pictures used and substantially an approximation of f. The
first step is to remove the pictures-content which leaves the noise, which is done
using a denoising filter.

3.4 Allan variance

In clocks, oscillators and amplifiers there is a measures of stability known as
Allan variance. This variance is an estimation of bias processed and not imperfec-
tions as temperature effects and frequency drift. [1]
This is also a common variance to use when calibrating gyroscope. [26] [18]



16 3 CHARACTERISTICS OF A MOBILE DEVICE

The mathematical term of Allan variance is σ2
y (τ) and the square root of Al-

lan variance is called Allan deviation, that mathematically becomes σy(τ) .
Allan Variance:

σ2
y (τ) =

1
2
〈(ȳn+1 − ȳn)2〉 =

1
2τ2 〈(xn+2 − 2xn+1 + xn)2〉

Allan Deviation:

σy(τ) =
√
σ2
y (τ)

[1]

3.5 Previous work of device sensor fingerprinting

Accelerometer fingerprinting is a recent field of studies compared to the camera
fingerprint that has been around for a longer time. The camera has for a long time
been object of identification in forensic purposes and therefore research has been
made and is applied today. Most of them uses advanced algorithms to extract the
fingerprint and time of identifying has not been a concern. However in the use
of this thesis time is an important factor, since accessing a system is a process
expected to be fast. In table 3.1 and table 3.2 previous studies is presented in
brief, followed by a longer presentation. Studies of gyroscope fingerprinting have
not been found. The majority of recent studies regarding the gyroscope have been
about speech recognition. [20]

Accelerometer

Year Devices Purpose Fingerprint Ref.
2014 107 Identification Statistics [10]
2014 3583 Tracking Bias offset [5]
2015 60-100 Identification Statistics this thesis

Table 3.1: Comparing studies of accelerometer fingerprinting

AccelPrint: Imperfections of Accelerometers Make Smartphones Trackable

The research shows that the accelerometer in a mobile device can be used for iden-
tification and tracking purposes. Tests are performed on android devices with an
application and on standalone accelerometer chips. Their fingerprint consists of
statistics values such mean, standard deviation, skewness, min and max-values
in both time and frequency domain. The research make recordings with and
without vibrations and in different circumstances; in car, running, walking and
standing still. Their test environment machine learning that uses the statistics to
build a fingerprint is used.

The result has an accuracy on 98% when having alien devices among the already
known devices which. Alien devices means that they are not previously known
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to the system.

The research also states that the time needed of identifying a device is 30 seconds
and that a CPU-load less than 40% is not affecting the result. Another important
thing to notice that since they also used standalone accelerometer in different OS
that rules out the possibility of an OS affecting the output from the accelerome-
ter. [10]

Mobile Device Identification via Sensor Fingerprinting

The research has a much larger scale experiments of 3583 devices. Experiments
is performed using JavaScript in a web-page. The fingerprint consists of calculat-
ing the bias offset on the accelerometer data. The result however are not as good
as the previous, with successful identification on 15.1%. To improve the result
UserAgent-data were added and success rate goes up to 58.7%. But UserAgent
is software-based identification that more easily can be modified at the client
side. [5]

Since the researches are of such different size they are difficult to compare. It
may be the case that AccelPrint gets similar success rate if scaling it up and vice
versa.

Camera

Year Devices Purpose Fingerprint Ref.
2008 16 Identification Probabilistic SVM

classifier
[8]

2009 150 Identification PRNU correlation [15]
2015 10 Identification PRNU correlation this thesis

Table 3.2: Comparing studies of camera fingerprinting

Blind Identification of Source Cell-Phone Model

Using a probabilistic SVM (support vector machine) classifier based on different
features they manage to get good resulta (success rate on 95.1%) even on images
that is manipulated such cropped, resized or rotated. This however are a small
scale experiment with more advanced technique that cannot be applied in au-
thentication purposes rather in forensics. The thing to notice here is that the
experiment is performed on cell-phones from 2008 when the pictures had lower
quality than today’s smart-phones. [8]

Digital Camera Identification

One of the experiments performed in this research included 150 devices with
images that had random motives, zooming and other post-processing. The finger-
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print consisted of the PRNU correlation and resulted in a FRR of 2.4% and a FAR
of 0.043%. The difference to this work is the use of camera of a mobile device
instead of a digital camera. [15]



4
METHOD OF COLLECTING DATA

As the title implies this is the part of collect biometric data compared to the bio-
metric design cycle. It can also be seen as a part of choose biometric characteristics.

Overview of the tests performed:
Measurement I - Motion: Collect accelerometer and gyroscope data by the use
of a JavaScript web-page. With purpose to find out which of
accelerationIncludingGravity and acceleration is better in purpose
of extract unique device characteristics.

Measurement II - Motion: Collect accelerometer and gyroscope data by the use
of a JavaScript web-page. With purpose to find unique device characteristics
from the sensors.

Measurement II - Camera: Collect one video from each device and extract pic-
tures frames from the video. Calculate and compare the PRNU of the extracted
pictures. The videos collected by the same process as motion measurement II
above

Measurement III - Camera: Collected ten pictures instead of a video from the
device.

4.1 Measurements of motion sensors in JavaScript

Measurements of sensors from mobile devices can be gather in different ways. In
the work of this thesis a browser application in JavaScript is used for the data
collection.

19
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JavaScript have since the use of mobile devices adapted a lot of new features,
which makes it possible to access a lot of hardware features in the devices. No
permission is needed to access the gyroscope and accelerometer-data, thus the
user do not have to know that the sensors are measured.

Figure 4.1: The coordinate system used in JavaScript[11]

4.1.1 Accelerometer in JavaScript

To get measurements from the accelerometer an event listener called
devicemotion is used. The output from measurements is the acceleration of
the device in m/s2 according to x-, y- and z-axes (figure 4.1).

There are two types of accelerometer output in JavaScript
accelerationIncludingGravity and acceleration. The acceleration in-
cluding gravity is acceleration made by the device. In context to acceleration
not depending on influence of gravity only by the acceleration made on the de-
vice. What this actually means is that if a device lies still with the screen fac-
ing upwards the acceleration output will be zero in x, y and z-axes but the
accelerationIncludingGravity will be zero along x and y-axes, the z-axis
will be equal to G. If you put the device in free fall with the screen facing upwards
the acceleration is zero in in all azes with accelerationIncludingGravity
and x=0,y=0 and z=-G for the acceleration. [4]
The rotation rate of the device is also available from the devicemotion, that is
the acceleration around the axes as seen in figure 4.2.

The JavaScript for measuring the accelerometer:

if(window.DeviceMotionEvent) {
window.addEventListener(’devicemotion’, function(event) {
x = event.acceleration.x;
y = event.acceleration.y;
z = event.acceleration.z;
r = event.acceleration.rotationRate;

});
}

[11]
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4.1.2 Gyroscope in JavaScript

A listener is implemented in the same way as for the accelerometer. This listener
is called deviceorientation. The output from this listener is given in degrees
of the rotation angle. JavaScript has named these rotations as the figure 4.2.

Figure 4.2: The device rotation axes for the JavaScript
DeviceOrientation

Alpha is measured in the range of 0◦to 360◦around the z-axis, beta in in the
range of -180◦to 180◦around x-axis and gamma in the range of -90◦to 90◦around
y-axis.[11]

if(window.DeviceOrientationEvent) {
window.addEventListener(’deviceorientation’, function(event) {
alpha = event.alpha;
beta = event.beta;
gamma = event.gamma;

}, false);
}

Listing 4.1: JavaScript measurement of the gyroscope

4.2 Measurement I - Motion

The purpose of the first measurement was to analyse the accelerometer with and
without the impact of gravity. To evaluate if any of them was a better choice in
terms of characteristics uniqueness in the devices.
The data was collected by developing a JavaScript web-page that used the listen-
ers described in section 4.1.1. The test was completely diverse in sense of device
platform and only required a browser installed and Internet connection.

The measurements required that the device was still on a flat surface, then started
by pressed a button. It gathered 1000 samples of accelerometer data that where
saved as a CSV-file for further analyzing. It also collected gyroscope data as
well for possible future analyzing purposes. The screen-shots (figure 4.3) shows
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the web-page while measuring and the when the measurements are finished and
ready to send.

Figure 4.3: Screen-shots of web-page during accelerometer measurements
in test I

4.3 Measurement II - Motion

The second measurements were also performed from a web-page using JavaScript
to collect gyroscope and accelerometer data with an additional step to collect
measurements from the camera of the device. As of the result in last test there
where a few changes made to improve the accuracy of the measurements and to
collect sensor samples from the gyroscope and camera:

1. Adding time-stamp to every recording sample to know exactly recording
frequency to enable further analyzing.

2. Time based recording on 30 seconds instead of taking 1000 samples as in
the first measurement.

3. It is also sampling at a lower rate of at least 10 ms instead of as fast as it
could before to reduce the effect of other processes that may are in use on
the device.

4. The accelerometer readings used is only accelerationIncludingGravity,
due to results described in section 5.2.

5. Added a readings of the gyroscope

6. Collecting camera sensor data by a five seconds black video, section 4.4.
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Figure 4.4: Motion sensor measurements II on a Google Nexus 7

4.4 Camera measurements

The research found on identifying a camera based on pictures has been in foren-
sic purposes. The difference with forensics and the use in authentication of a
system or application is that there are harder time-limits. Integrity is also a fac-
tor that comes into play to the system to be socially acceptable. That is why some
limitations has been made in these measurements. The black motive is used due
to integrity, thus no information that could reveal the environment surrounding
the camera is sent. Because of having a socially acceptable system there are lim-
ited number of pictures that can be taken in an enrollment phase.

To measure the camera two measurements were gathered. In both cases was the
device put on a flat surface which makes the camera result black. Both of the
measurements are analysed by the PRNU-method used in [15] described in sec-
tion 5.4.

Collecting I - Black video:
The recommended number of pictures for camera fingerprinting is 50 [15]. Which
is not convenient in gathering purposes, thus not many users would send 50 pic-
tures in order to access a system or application. That is why the first test asked
to recording a 5 seconds video-recording with the camera towards a flat surface.
This video is then shuttered into picture frames, 5 seconds generate 100-200 pic-
tures depending on the recording rate of fps (frames per second).

Collecting II - 10 black pictures:
Taking 10 pictures from a device, also with the camera pointing down on a flat
surface. Since [15] were using pictures of diverse motives this aims to investigate
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if it may be enough with 10 pictures when the motive is the same.
Screen-shots from the camera-page of the second measurements:

Figure 4.5: Sensor measurements on a Google Nexus 7

For calculating the bias the MATLAB medfilt2 are used, which is a 2-D me-
dian filtering that outputs the median value of each pixel by its 3-by-3 neighbors.

Figure 4.6: the MATLAB medfilt2 outputs the median of each pixel by its
3-by-3 neighbors

From the medfilt2 a picture is gained without bias which is subtracted from
the original. In this case the picture without bias is removed from the original
to obtain the bias. This technique works best if there are no feature added to
the pictures such auto-fix, black and white etc. The more images used for the
average value the more accurate the bias gets and more of the random bias is
removed. For calculating the PRNU there is a recommendation minimum of 50
picures. This is then seen as the reference pattern used for correlating the noise
from another picture. This correlation is calculated like:

corr(n, r) =
(n − n̄)(r − r̄)
‖n − n̄‖‖r − r̄‖
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where n is the reference pattern and r the noise from another picture. [15]





5
RESULT OF MEASUREMENTS

The chapter is seen as one part of the choose biometric characteristics and a part
of choose features and matching algorithm steps of the biometric design cycle. The
chapter covers the results of measurements described in chapter 4.

5.1 Pre-measurements

To get a hint if accelerometer is a possible fingerprinting candidate pre-measurements
were performed. This was in the early state of the development of the web-page
used in measurements I and II. Measurements preformed on six different iPhones
showed in figure 5.1 indicates that the accelerometer is a sensor that could be
used in fingerprinting purpose.

Figure 5.1: Scatter-plot on accelerometer recordings of 6 Apple devices

27
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5.2 Result of measurements I - Motion

The data was gathered as described in section 4.2 from the web-page (figure 4.3).
This resulted in over a hundred recordings with an FTE of 5% and had diversity
in platforms, brands and models ( figure 5.3).

The purpose of this measurement was to identify if there was differences in terms
of bias characteristics between the JavaScripts two accelerometer readings. The
result of the measurements can be showed by making scatter-plots of the output
acceleration of the devices. As seen in the figure 5.3 the Sony Xperia devices
represents more than a fifth of the total devices in the measurement.

Figure 5.2: Diversity of device brand sampled in measurements I

Figure 5.3: Most common devices models in measurements I
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Figure 5.4: Bias from twelve Sony Xperia devices measured with JavaScripts
acceleration

Figure 5.5: Bias from twelve Sony Xperia devices measured with JavaScripts
accelerationIncludingGravity
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5.3 Result of measurements II - Motion

The result is of the gyroscope and accelerometer data collected from 60 devices
with an FTE of 2% by an improved version of the JavaScript web-page used in
measurements I. The changes that were made is described in section 4.3 to im-
prove the analyze of the data. The diversity of the devices brands in the measure-
ment is have not changed significant compared to measurements.

5.3.1 Permanence of accelerometer

When choosing biometric trait one of the factors to considred is permanence de-
scribed in section 2.4.5, that is the trait not changing over time. To test perma-
nence measurement II were performed on a Sony Xperia Z1 Compact over a period
of 50 days. The choice of device was based on that Sony Xperia devices is 30% of
the devices in measurements II. The same test were also made on a Google Nexus
7 tablet. The graphs below shows the difference of accelerometer readings over
time. To get an perspective of this measurements among devices the scatter-plot

Figure 5.6: Accelerometer readings of x-axes on a Sony Xperia Z1 Compact
and a Google Nexus 7 over 50 days

in figure 5.9 that include the same measurements from Sony Xperia Z1 Compact
as in figure 5.6, figure 5.7 and figure 5.8.
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Figure 5.7: Accelerometer readings of y-axes on a Sony Xperia Z1 Compact
and a Google Nexus 7 over 50 days

Figure 5.8: Accelerometer readings of z-axes on a Sony Xperia Z1 Compact
and a Google Nexus 7 over 50 days
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Figure 5.9: Scatter-plot of accelerometer readings Sony Xperia-device, one of
them with measurements performed on the same device over 50 days.

5.3.2 Features of accelerometer data

As [10] statistical features calculated by the time domain. The features used is
calculated as followed:

Figure 5.10: Calculations of statistical accelerometer features.
From [10, p.6]
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To compare these features and get a picture of if any of them are good for
fingerprinting plots of devices were made. Those can be found in appendix A.
The chosen devices for the plots are twelve Sony Xperia Z-devices including the
Sony Xperia Z1 Compact that contain measurements over 50 days. In the graphs
the medium, min, max and the RMS is plotted. The Sony Xperia Z1 Compact
measurements still are quite gathered compared to the other device. Standard
deviation looks to differentiate a bit more and kurtosis, and skewness means de-
viation can can no pattern be seen.

In order to compare which properties that is best, the distance between these
points for all the 60 units were calculated. A point contain the x-, y- and z-
coordinates of the feature and the distance is the Euclidean distance. The min-
imum and median distance from all the sample points calculated into features
to compare with the same values calculated from only one unit (Sony Xperia Z1
Compact or Google Nexus 7) over time. The choice to use the median and not aver-
age value because it could be outliers in the measurements. As seen in table 5.1
the values proves the result read from appendix A.

Minimum distance
Mean RMS Std.dev. Min Max Median

All 0,018 0,0193 0,0001 0,0287 0,0365 0
Z1Comp 0,0171 0,0171 0,0002 0,0224 0,0144 0,0175

95% 89% 200% 78% 39%
Nexus7 0,0237 0,0182 0,0008 0,0267 0,0119 0,0225

132% 94% 4% 93% 33%

Median distance
Mean RMS Std.dev. Min Max Median

All 0,7934 0,3925 0,0202 0,89 0,9199 0,7953
Z1Comp 0,0519 0,0519 0,0009 0,0447 0,054 0,0575

7% 13% 690% 5% 6% 7%
Nexus7 0,0285 0,0275 0,0019 0,0361 0,0302 0,0283

4% 7% 10% 4% 3% 4%

Table 5.1: Comparing distance between values of statistical features for the
accelerometer. Z1Comp and Nexus7 is the devices that have been measured
over 50 days. (Z1Comp=Sony Xperia Z1 Compact & Nexus7=Google Nexus 7)

5.3.3 Gyroscope

The same calculation and plots of the measurements as for the accelerometer
has been done with the gyroscope. Since the output of the measurements is in
degrees and as written in section 4.1.2 the alpha value goes from 0 to 360 degrees,
beta from -180 to 180 degrees and gamma from -90 to 90 degrees. To get rid
of the case when the values in measurement readings switch from 0 to 360 or
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-90 to 90 degrees. The output is calculated trough sinus, cosine and tangent,
(α = sin(alpha), β = cos(beta), γ = tan(gamma)). As the measurements is in
degrees the measurements is only the same if the device is rotated in the exactly
same angular-values of the axes as last time. Constant bias cannot be calculated
in the same way as for the accelerometer were the measurements should be zero
without bias.
The constant bias from the gyroscope is calculated as the distance between the
vectors (v = {α, β, γ}) of the measurements, because that value would be the same
in an ideal sensor with zero bias. That however did not result in the same stability
in permanence as seen in table 5.2.

Mean Std.dev. RMS Min Max

Minimum distance
All 0,000188 1,31E-05 0,000112 2,63E-05 0
Z1Comp 0,00924 0,001157 0,00896 0,009478 0,001348
Z1Comp/all «100% «100% «100% «100%
Nexus7 0,006013 0,003204 0,006512 0,000738 0,000126
Nexus7/all «100% «100% «100% «100%

Median distance
All 0,019079 0,005938 0,016074 0,012646 0,007945
Z1Comp 0,00924 0,001157 0,00896 0,009478 0,001348
Z1Comp/all 48% 19% 56% 75% 17%
Nexus7 0,006013 0,003204 0,006512 0,000738 0,000126
Nexus7/all 32% 54% 41% 6% 2%

Table 5.2: Comparing distance between values of statistical features for the
gyroscope. Z1Comp and Nexus7 is the devices that have been measured over
50 days. (Z1Comp=Sony Xperia Z1 Compact & Nexus7=Google Nexus 7)

If the gyroscope values in table 5.2 are compared to the accelerometer values
in 5.1, is the accelerometer much more stable over time. The percentage of the
gyroscope distances is much higher than the accelerometer percentage.

5.3.4 Allan variance

As described in section 3.4 the Allan variance is used to calibrate sensors. The
Allan variance calculated from all sixty devices compared in table 5.3. If the
variance stays the same between measurements for each device it would be a
good fingerprinting feature.
As read in the table 5.3 is the Allan variance not the same between measurements
of the same device. Thus the variance between all the 60 devices is smaller than
the variance between the variance of one device measured over time. This result
is not making the Allan variance to a candidate of a fingerprinting feature of the
gyroscope.
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Minimum distance
All Z1Comp Nexus7 Z1C./All Nex./All

Accelerometer 2,28E-14 9,06E-14 1,02E-12 «100% «100%
Gyroscope 1,91E-19 2,85E-17 2,57E-17 «100% «100%

Median distance
All Z1Comp Nexus7 Z1C./All Nex./All

Accelerometer 3,64E-12 3,57E-13 4,96E-12 10% < 100%
Gyroscope 1,68E-16 4,17E-17 1,44E-16 25% 86%

Table 5.3: The Allan variance differences between measurements of all de-
vices and same devices (Z1Comp & Nexus7)

5.3.5 Simulate authentication of motion sensors in MATLAB

To test the time features of the accelerometer a simulation were performed in
MATLAB. In the simulation fingerprints of all devices is calculated. It contains
the features described in section 5.3.2 that resulted in the most stable values over
time; min, max, mean and RMS. The code of the simulation can be found in ap-
pendix B.

When a new measurement is to the simulation, features are calculated and com-
pared to the already known devices. The comparing is done by an algorithm that
calculates the point distance between all points of the input device and a known
device. Point distance is the distance between two points. In this case all points
of the input device is compared to all points in a known device.
The min, max, mean and RMS is then calculated between the distances. The
smaller values the closer to the input device. The features is then used to decide
if there is a match or not, by sorting out the lowest values. Since the percentage
of features median distance for the accelerometer is around a twentieth a thresh-
old of the 5% the devices of each feature is chosen. If the most common device
among the devices in the output is the input device there is a match.

As in biometric system the threshold decides how far from a deivce in the database
an input can be and sill be a match. This threshold creates a rate of error in the
system called FRR and FAR (see section 2.4.4). There are two values that can be
changed in the simulation that affects the FAR and FRR that is th1 and th2. The
result of these changed values is presented in table 5.4.

5.4 Result Camera-measurements

To get result of the camera sensor the PRNU value is calculated as an approxima-
tion of the algorithm described in section 4.4 and also used by [15].
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FRR th1/th2 1 2 3

1 2,27% 8,62% 29,55%
2 20,45% 20,45% 29,55%
3 34,09% 34,09% 38,64%

FAR th/F< 1 2 3

1 0,00% 0,00% 0,00%
2 0,89% 0,45% 0,43%
3 1,77% 0,86% 0,44%

Table 5.4: The FAR and FRR of the MATLAB simulation when changing
threshold values th1 and th2, the code can be found in appendix B

5.4.1 Camera measurement I

Since this thesis compared to earlier work (section 3.5) has the purpose of au-
thentication and not forensics, is convenience of the collecting and measurability
factors to take into account. That is why the first experiment is asked the users
to record a five seconds video-clip with the device camera facing down on a flat
object, like a table. Instead of making the user take 50 pictures or more which
require a lot more time.
The video is then shuttled into images (100-200 from a 5 seconds video depend-
ing on fps on recording camera) that is used for calculating the PRNU.

% Make images from video frames
shuttleVideo = VideoReader(filename);
i = 1;
while hasFrame(shuttleVideo)

img = readFrame(shuttleVideo);
fn = [sprintf([filename ’_%03d’],i) ’.jpg’];
imwrite(img,fn); % Write to a JPEG file
i = i+1;

end

% Calculate PRNU from images
imagefiles = dir([filename ’*.jpg’]);
for ii=1:nbr_of_images

currentfilename = imagefiles(ii).name;
currentimage = imread(currentfilename);
img = im2double(currentimage);
filtImg = medfilt2(img);
noise = noise + ( img - filtImg ); % add noise from current

image
end

prnu = noise / nbr_of_images; % get average noise
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% width and heigt is saved for comparing correlation with images
of different size

save(filename, ’prnu’);

Listing 5.1: Shutter a video into picture, calculating the PRNU of the
pictures in MATLAB

To compare a pictures between all collected PRNU the same calculation is
done. Then the noise from the reference pictures is compared to all collected
PRNU and correlation is calculated like in listing 5.1.

load(prnu_mat);
% Make it a flat vector instead than a matrix
prnu_vector = reshape( prnu, 1, numel( prnu ) );
% Calculate the mean PRNU value
p = prnu_vector - mean( prnu_vector );

ref_img = im2double( imread (imgname) );
noise = ref_img - medfilt2( ref_img ); % get noise by remove

denosied image scene
img_vector = reshape( noise, 1, numel( ref_img ) ); % reshap to

get same lenght as prnu
i = img_vector - mean(img_vector);

% calculate correlation between PRNU and reference image
correlation = ( i * ( p’ ) ) / ( sqrt( i * i’ ) * sqrt( p * p’ )

);

Listing 5.2: Comparing the PRNU of an input picture with already known
PRNU in MATLAB

Identify an input PRNU with the PRNU from already known devices reached
a high value of FRR with only six devices, only two of them were correctly iden-
tified. Since [15] made better result than this, that the bad result may occurred
due to the use of video instead of pictures. Thus the decision to redo the measure-
ments but with picture instead of videos for calculating the PRNU.

5.4.2 Camera measurement II

Since the bad result in camera measurement I the new test consist of 10 pictures
from every device. The recommendation from [15] to use at least 50 images is
here compensated by using black pictures (picture taken with the camera facing
down). Since the motives always is the same the idea is that the noise removal
will be better in fewer images. The same code is used as in measurements I with
the differences that the video-to-image part is removed. The sizes of the images is
larger since the camera on the mobile devices has higher resolution when taking
a picture then when recording.
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The result of the measurements started out well with no FRR with five devices,
but FRR increased rapidly as seen in table 5.5. As the value grew that quickly no
more samples from devices were gathered.

Devices FRR Time [s]

5 0% 15-20s
7 50% 17-26s

10 67% 25-46s

Table 5.5: FRR and time taken to compare PRNU of camera images.



6
DISCUSSION

This chapter interweaves the theory and method with the result. Discuss the dif-
ference between the theory and result is and why. The limitations of the method
used is also discussed.
This chapter together with the next chapter that includes conclusions is be seen
as choose features and matching algorithm of the biometric design cycle.

6.1 Accelerometer

6.1.1 Result

The result of measurements I resulted in some unexpected result, the JavaScripts
output without gravity does not seem to have any constant bias at all. The reason
could be that some software calibration of the sensor data is done. The recommen-
dation from MEMS accelerometer manufacturers is to calibrate the sensors. [17]
Doing some research on Android sensors reviled that their SensorEvent also
has two types of accelerometer sensors that can be used:
TYPE_ACCELEROMETER is the hardware measurements that measures the force
of acceleration including the force of gravity with the SI unit m/s2. This sensor is
stated as only containing hardware sensor output. But there have been some bias
removal from the sensor such bias from different temperature.
TYPE_LINEAR_ACCELERATION is without gravity and a combination of hard-
ware and software sensor. [3]

It would be a reasonable assumption that JavaScripts acceleration without grav-
ity gets sensor data from Androids TYPE_ACCELEROMETER and JavaScripts accel-
eration including gravity gets data from TYPE_LINEAR_ACCELERATION. Thus
software calibrations or calculations have been done on the output event from
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the acceleration including gravity. This however is not anything that is public in
any specifications such as W3C or Mozilla. [4] [22]
As a result of motion measurements I the used measurement of the accelerometer
in motion measurements II is the one including gravity.

As seen in the figures 5.6, 5.7 and 5.8 the Google Nexus 7 has not changed much
over the 50 days compared to the Sony Xperia Z1 Compact that especially has
changed on the y-axis. The reason for the difference of accelerometer change
over time may be due to the Google Nexus 7 being in the same place during those
50 days, and therefore only used when the tests were performed. Unlike the Sony
Xperia device that was used daily and might have been dropped at some point.
An additional fact about the measurements is that both devices have changed OS
version between measurements 2 and 3, from Android version 4.4.4 to 5.1.1 and
that different browser were used (Opera, Chrome and Firefox). Only the Sony
Xperia device had changed and not the Google Nexus, which leads to the conclu-
sion that OS version or browser does not matter and that the use of the device
may affect the accelerometer.

When comparing distances between the time features there are some values to
discuss. The percentage that is calculated in table 5.1 is the percentage calculated
to compare if the the distances of features between all 60 devices is larger than
the distances between measurements of one device. If the min-distance has a per-
centage larger than 100% that means that there are different devices that have
closer feature-distance than the ones between one device, thus not a good candi-
date for fingerprinting. Average deviation, kurtosis and skewness were excluded
from the table since their percentage were all too high (the min-distance in per-
cent were higher than 100%). The median distance of the features gives a value
of the normal case of the measurements. Example the median mean-distance be-
tween all devices is ten times longer than the median mean-distance between the
measurements of Nexus7. The lower percentage the lower risk of that another de-
vice has similar values. From this point of view the Mean, Maximum, Minimum
and Median makes the best features of fingerprinting.

6.1.2 Method

As discussed in the beginning of the section above the JavaScript or Android/iOS
is doing some calibration with the sensor that effects the results if not dealing
with raw data. As mentioned is the data used in measurements II probably as
raw data as you can get without reading from the accelerometer alone. To read
directly from the accelerometer would however be hard since manual calibration
of noise caused be temperature had to be done.
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6.2 Gyroscope

6.2.1 Result

The first method used to compare the measurements was based on research of the
accelerometer since there were no earlier research on the gyroscope. This may af-
fect the outcome since there may be other features that would have given better
results.
The other method where calculating the Allan variance is used for calibration of
gyroscope, did not give the expected results. Since the variance is used for gyro-
scope calibration it may be the case that it already is calculated and compensated
for in the device.

The gyroscope seems much more sensitive in measurements than the accelerom-
eter and therefore it is harder to extract the constant bias. The fact that Android
or JavaScript does not reveal information on what bias compensation and calibra-
tion that has been done before the developer get the measurement data, makes
it harder to analyse the noise. The gyroscope seems to be much more sensitive
than the accelerometer is drawn by reading from table 5.2 were the Sony Xperia
Z1 Compact device changed the min median distance with 75% and the Google
Nexus 7 only with 6%. The Sony Xperia has been used over the fifty days of mea-
surements, compared to the Nexus that were only used at the time of the measure-
ments.

A thing to take to account before the constant bias from the gyroscope is ruled
out, is if the sensor data gotten from JavaScript contains software calibrations or
the output data coming raw from the sensor.

Android developer page about sensor events state that they make factory cali-
bration and temperature compensation even on their uncalibrated sensor events
(magnetometer and gyroscope). Which is relativity new feature added in Android
4.3 Jelly Bean (API level 18 [19]) from 2013, the original once used since Android
1.5 Cupcake (API level 3 [12]) from 2009 makes more noise compensation and
calibration. What kind of compensation and calibration done is not public. [3]
Since the output of both the calibrated and uncalibrated sensor is in rad/s im-
plies that it could be some software calibration in the data from JavaScripts that
is in degrees.

6.2.2 Method

The choise of using JavaScripts listener to collect the data seems to work as ex-
pected. The question to ask is the same as for the accelerometer, how much cal-
ibration and compensation of bias and drifts already done before the software
developers get the output from the gyroscope. The positive thing about using
JavaScript instead of developing an application is that the diversity of the col-
lected devices is much better. It also gets easier to collect measurements since it
is a web-page is much easier to spread and no installation is needed, in context to
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an application that has to be installed. The gain of using an Android application
when measuring the gyroscope would be that Android provides an uncalibrated
version of the gyroscope since 2013 [19]. This rawer data may result in better
feature values in time domain or Allan variance.

6.3 Camera

6.3.1 Result

The result of the camera were not as good as expected or as good as by [15] were
PRNU also was used. The significant differences is the use of a mobile device
camera instead of a digital camera. Although the high level specification seems
to be comparable with the digital cameras from 2009, since they had around 11
mega-pixels, an images size of around 4000x3000 pixels, and digital zoom of 4
times and had HD video recording width 30 fps. [6] This is about the average
smart-phone today, but some other specifications may also impact as ISO, optical
zoom etc.

6.3.2 Method

The two methods used for collecting picture features had different advantages
and disadvantages. The video-collecting done in connection to the second mea-
surement were good in terms of measurability since it was easy to record a video
of five seconds and send. It generated 100-200 which made enough pictures for
a trait. On the other hand that lead to worse result in terms of uniqueness. The
second way of collecting data was not as good in terms of measurability but it got
slightly more uniqueness, but far from good enough.

6.4 The work in a wider context

There is a lot of issues to discuss in terms of privacy and integrity when dealing
with the sensors of devices. To begin neither of the motion sensors require any
permission to read when visiting a web-page. If there is an easy way of identify-
ing a device by a sensor the days of using cookies will be long gone. Which of
course can has advantage in terms of ease of use. But the value of your personal
information today of the commercial and advertising industry. It is hard to set
a price for something that could identify you everywhere on the Internet. The
tracking possibilities are enormous and have to be concerned if this type of iden-
tification can be done.

There are of course some good things in the view of ethical and social aspects.
If sensor-data is used as aimed in this thesis it gain privacy and integrity since
the provided possibility of more secure authentication both between human and
machine and M2M. Because, you want to know that it really is one of your heat
sensors that sending signals to your thermostat, or that only your mobile device
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that can unlock the front door.

The point here is that fingerprinting features of your device should be treated
in the same way as your biometric trait. This means that you want to have con-
trol over were your biometric trait is used. Most of us think that it is legit that an
Authority would use our fingerprint if it resulted in a more secure society. On the
other hand most of us do not want our fingerprints to be used in commercial pur-
poses. This concept should be considered when fingerprinting a device as well.
The accelerometer data may be applicable to use by banks, to your door or your
car. But you may not want as a login feature to a commercial site that may sell
that information.





7
CONCLUSIONS

This chapter reconnects to the aim and objectives of the thesis. In comparison
to designing a biometric system this would be the part of choosing feature and
matching algorithm.

7.1 Choise of characteristics

In the selection of characteristics, there are seven different factors that must be
considered (section 2.4.5). The sensors in the thesis are compared to decide which
sensor is best suitable as a second factor in authentication between devices.

Universality

The first factor regarding universality. The FTE of the accelerometer and gyro-
scope is quite low, around 4% which could be lower if more tests and adjustments
are done in the code. Since one of the conditions when doing the measurements
was that the device should lay still on a flat surface there are conditions to decide
if the device is still or not ([16]). The conditions together with some additional
checks for valid sensor-measurements should lower the FTE. The camera is also
good in terms of universality because it is almost impossible to find a mobile de-
vice without camera today.

Uniqueness

As shown in the result the accelerometer is the best choice since the FAR is zero
when both threshold values is set to one. The FRR were as high on the other
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sensor that no calculations on FAR were made. But there are other methods used
of identify the camera as in previous research that shows good uniqueness. [8]

Permanence

What was also shown in the result is that the permanence of the accelerometer
is better than compared to the gyroscope. If considered using accelerometer in
a system were an authentication is done more than once a month, but further
testing is recommended. Also some kind of machine learning on the drift of bias
would be preferable as used by [10].
The permanence of the camera was not tested but it seems likely that it has a good
value of permanence since the result in previous research has tested a random
pick of images from portfolios that had been taken at different time and various
environments. [15]

Measurability

When it comes to measurability, the accelerometer and gyroscope are good choices
since they seems to work quite well when only 600 samples are used as in the
MATLAB simulation which is just a few seconds depending on the device and
sampling rate. Furthermore is it quite quick since the data to send is about 57
KB. To take a picture and send takes longer time considered the size of a picture
of a mobile device is between 0.5 and 1.3 MB.

Performance

The time to authenticate the accelerometer is just a fraction compared to the
camera authentication method. The accelerometer simulation in MATLAB takes
around five seconds with sixty devices and the camera took 25-46 seconds when
only ten devices were compared.

Acceptability

The ethical aspects discussed in section 6.4 regarding information of sensors
noise is a part of the acceptability. Today does not many of us care sending sen-
sor information, since we do not think it is (or can) be used to anything else than
what the application aims to do (e.g. rotating the device or uploading a picture to
a social media site). Today is a gray area for this type of sensor reading, especially
when you read research as with the title:

‘’Gyrophone: Recognizing Speech From Gyroscope Signals‘’

This is a Stanford security research showing that it is possible to do exactly as
the title implies, gyroscopes in smart phones are capable of measuring acoustic
signals that can recognize speech. [21]
The conclusion is that it is acceptable of the majority of people today but may not
be the case with more knowledge in the area.
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Since the number of uploaded pictures today in social media etc. is growing,
it is hard to believe the use of pictures in a authentication system would not be
acceptable.

To conclude this, all the sensors is probably social accepted to use for authen-
tication today. The question is what happens in the near future when the sensor
data could be used as speech recognition or tracking.

Circumvention

Circumvention is not in the area of the thesis since this is a question of how to
implement the authentication system and the security in it. The reason for having
a section on challenge-response (section 2.2) in the authentication-chapter is that
it would be a protocol to consider that would make it harder to malicious fake
sensor noise. Ways to do this with the accelerometer is discussed later in this
chapter (section 7.2).

Summary of characteristics

The table 7.1 summarizes the conclusions made about the different characteris-
tics to make a summarized answer to the question asked in the aims and objec-
tives of the thesis (section 1.2).

Characteristics\Sensor Accelerometer Gyroscope Camera

Universality Good Good Good
Uniqueness Good Bad *
Permanence Good Bad Good
Measurability Good Good Bad
Performance Good Good Bad
Acceptability * * Good
Circumvention Good Good Good

Table 7.1: Conclusions of the factors of choosing fingerprint sensor. (Factors
from biometric characteristics see section 2.4.5)
*See explanation respective title above.

7.2 Further work

Taking this work to the next step that could be to further evaluate and test the
accelerometer since that is the only one of the sensors that seems like a promis-
ing second factor to use in M2M authentication. That work would make mea-
surements on more devices, and therefore check the scalability of using an ac-
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celerometer. What is the maximum number of devices to have in this kind of au-
thentication before the FAR and FRR grows to unacceptable numbers. Another
thing to explore is the possibility of including the challenge-response protocol in
the authentication to make it harder of a malicious device to authenticate. With
malicious device meaning a malicious human using a device or pretend to be a
device. The challenge could be things like vibrating a pattern or moving the ac-
celerometer in a certain way. If continuing with the accelerometer other features
of extracting the constant bias would be an area to explore and evaluate if they
have lower rates of FAR and FRR or are more scalable in the number of devices
that can be used.

Another thing to explore is other sensors than the one presented in this thesis as
the microphone, speaker, magnetometer or even the barometer. The most impor-
tant factors to explore is the scalability and uniqueness because without neither
of them the sensor would not be suitable in the aim as characteristics in a M2M
authentication system. Also before saying that the gyroscope has bad uniqueness
and permanence the data could be collected from an application were the data
may be less calibrated.
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A
Motion measurements II: Feature

plots

In the result of motion measurements II ( section 5.3, plots were scattered to
analyze which features that are most suitable for device fingerprinting. This
appendix includes these plots that are used in section 5.3 and discussed in sec-
tion 7.1.

Scatter-plot of mean values

Figure A.1: Scatter-plot of mean values of 12 Sony Xperia Z-devices includ-
ing one device with readings over a period of 50 days
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Scatter-plot of standard deviation values

Figure A.2: Scatter-plot of standard deviation values of 12 Sony Xperia Z-
devices including one device with readings over a period of 50 days

Scatter-plot of average deviation values

Figure A.3: Scatter-plot of average deviation values of 12 Sony Xperia Z-
devices including one device with readings over a period of 50 days
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Scatter-plot of skewness values

Figure A.4: Scatter-plot of skewness value of 12 Sony Xperia Z-devices in-
cluding one device with readings over a period of 50 days

Scatter-plot of kurtosis values

Figure A.5: Scatter-plot of kurtosis values of 12 Sony Xperia Z-devices in-
cluding one device with readings over a period of 50 days
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Scatter-plot of RMS values

Figure A.6: Scatter-plot of RMS values of 12 Sony Xperia Z-devices including
one device with readings over a period of 50 days

Scatter-plot of min values

Figure A.7: Scatter-plot of min values of 12 Sony Xperia Z-devices including
one device with readings over a period of 50 days
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Scatter-plot of max values

Figure A.8: Scatter-plot of max value of 12 Sony Xperia Z-devices including
one device with readings over a period of 50 days





B
MATLAB accelerometer fingerprinting

simulation

function fingerprint_calc(device_id)
%FINGERPRINT_CALC recivce the device id and save finerprint in a

mat-file
% The CSV-file is recived and being extracted to a fingerprint

file = [’recordning-’ device_id ’.csv’];
if exist(file, ’file’)

file = importdata(file) ;
t = file.data(:,1) - file.data(1,1); %timestamps
acc = file.data(:,5:7); % accelerometer data
f_acc = [min(acc);

mean(acc);
median(acc);
max(acc)];

id = device_id;
mat_name = [’db/’ device_id ’.mat’];
if exist(mat_name, ’file’)

disp(’Not saved, %s already exists’,device_id);
else

save(mat_name, ’id’,’t’,’acc’,’f_acc’); %save to database
end

end
end

Listing B.1: Making a fingerprint file from a CSV-file in MATLAB

function [match] = fingerprint_matcher( inputfile )
%FINGERPRINT_MATCHER The matcher of an acclerometer data input
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58 B MATLAB accelerometer fingerprinting simulation

% The input file is a CSV-file with acclereometer data in
column 5-7

th1 = 1; %threshold number 1
th2 = 1; %threshold number 2
nbrOfDeviceIDinSystem = 140;
nbrOfDevicesInSystem = 59;

foundDevices = 0;
labels = cell(1,nbrOfDevicesInSystem);
ansAcc(4,nbrOfDevicesInSystem) = 0;

inputData = importdata(inputfile);
in_acc = inputData.data(:,5:7); % Acc data is in column 5-7

compSamples = 600; %number of sample used to compare
for iii = 1:nbrOfDeviceIDinSystem

if iii<10
name = [’00’ num2str(iii)];

elseif iii<100
name = [’0’ num2str(iii)];

else
name = num2str(iii);

end

file_out = [’db/’ name ’.mat’];
if exist(file_out, ’file’)

foundDevices = foundDevices +1;
mat = importdata(file_out);
labels{foundDevices} = mat.name;
diff_acc =

pdist2(in_acc(1:compSamples,:),mat.acc(1:compSamples,:));
ansAcc(1,foundDevices) = mean2(diff_acc);
ansAcc(2,foundDevices) = max(diff_acc(:));
ansAcc(3,foundDevices) = min(diff_acc(:));
ansAcc(4,foundDevices) = median(diff_acc(:));

end
end
% sort the distances, the shortest distance is the one matching
[sort_acc, ind_mean] = sort(ansAcc(1,:));
[sort_acc, ind_max] = sort(ansAcc(2,:));
[sort_acc, ind_min] = sort(ansAcc(3,:));
[sort_acc, ind_med] = sort(ansAcc(4,:));

%take the threshold 2 number of best matches of each feature
out =

[ind_mean(1:th2);ind_max(1:th2);ind_min(1:th2);ind_med(1:th2)];

%Counts which device_id that is most common
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[M,F] = mode(out(:));

if(F>th1 && ~isempty(labels{M}))
%MATCH, sending back deviceID of device with best match
match = labels{M};

else
%NO MATCH
match = 0;

end
end

Listing B.2: Simulation of authenticating a new CSV-input against already
known fingerprint





C
Example of CSV-file of measureing

accelerometer and gyroscope

This is an example of the first row of an csv-file that were made when recording
measurements from the web-page. The decimal in the table are decreased to five
since the limit of page with. The the real CSV is the output of a sample like:

time = 1427124966085
alpha = 286.42725394605435
beta = 0.9896375362002724
gamma = -7.288607417105047
x = 1.22528076171875
y = 0.1465606689453125
z = 9.65521240234375

As said before is time in milliseconds, alpha, beta, gamma in degrees and x,y,z
in m/s2.
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62 C Example of CSV-file of measureing accelerometer and gyroscope

time alpha beta gamma x y z

1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1466 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2322 0,1473 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2322 0,1473 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2322 0,1473 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1791 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1791 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1791 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1987 9,6631
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1987 9,6631
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1987 9,6631
1,4271E+12 286,4273 0,9896 -7,2886 1,2353 0,1918 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2353 0,1918 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2353 0,1918 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1418 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1418 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1418 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2556 0,1556 9,6633
1,4271E+12 286,4273 0,9896 -7,2886 1,2556 0,1556 9,6633
1,4271E+12 286,4273 0,9896 -7,2886 1,2556 0,1556 9,6633
1,4271E+12 286,4273 0,9896 -7,2886 1,2273 0,1717 9,6673
1,4271E+12 286,4273 0,9896 -7,2886 1,2273 0,1717 9,6673
1,4271E+12 286,4273 0,9896 -7,2886 1,2273 0,1717 9,6673
1,4271E+12 286,4273 0,9896 -7,2886 1,2193 0,1849 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2193 0,1849 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6604
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6604
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6604
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6847
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6847
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6847
1,4271E+12 286,4273 0,9896 -7,2886 1,2558 0,1756 9,7088
1,4271E+12 286,4273 0,9896 -7,2886 1,2558 0,1756 9,7088
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1554 9,6801
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1554 9,6801
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1554 9,6801
1,4271E+12 286,4273 0,9896 -7,2886 1,2464 0,1697 9,6572
1,4271E+12 286,4273 0,9896 -7,2886 1,2464 0,1697 9,6572
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1897 9,6911
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1897 9,6911
1,4271E+12 286,4273 0,9896 -7,2886 1,2256 0,2097 9,6747
1,4271E+12 286,4273 0,9896 -7,2886 1,2256 0,2097 9,6747
1,4271E+12 286,4273 0,9896 -7,2886 1,2256 0,2097 9,6747
1,4271E+12 286,4273 0,9896 -7,2886 1,2256 0,2097 9,6747
1,4271E+12 286,4273 0,9896 -7,2886 1,2256 0,2097 9,6747
1,4271E+12 286,4273 0,9896 -7,2886 1,2256 0,2097 9,6747
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1906 9,6555
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1906 9,6555
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1693 9,6756
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1693 9,6756
1,4271E+12 286,4273 0,9896 -7,2886 1,2471 0,1361 9,7046
1,4271E+12 286,4273 0,9896 -7,2886 1,2471 0,1361 9,7046
1,4271E+12 286,4273 0,9896 -7,2886 1,2471 0,1361 9,7046
1,4271E+12 286,4273 0,9896 -7,2886 1,2563 0,1599 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2563 0,1599 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6597
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1909 9,6597
1,4271E+12 286,4273 0,9896 -7,2886 1,2360 0,1909 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2360 0,1909 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2360 0,1909 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2572 0,1845 9,6680
1,4271E+12 286,4273 0,9896 -7,2886 1,2572 0,1845 9,6680
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1647 9,6482
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1647 9,6482
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1647 9,6482
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1453 9,6577
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1453 9,6577
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1619 9,6651
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1619 9,6651
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1619 9,6651
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1717 9,6653
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1717 9,6653
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1826 9,6853
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1826 9,6853
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1826 9,6853
1,4271E+12 286,4273 0,9896 -7,2886 1,2370 0,1909 9,6935
1,4271E+12 286,4273 0,9896 -7,2886 1,2370 0,1909 9,6935
1,4271E+12 286,4273 0,9896 -7,2886 1,2370 0,1909 9,6935
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1784 9,6685
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1784 9,6685
1,4271E+12 286,4273 0,9896 -7,2886 1,2311 0,1717 9,6819
1,4271E+12 286,4273 0,9896 -7,2886 1,2311 0,1717 9,6819
1,4271E+12 286,4273 0,9896 -7,2886 1,2311 0,1717 9,6819
1,4271E+12 286,4273 0,9896 -7,2886 1,2535 0,1717 9,6794
1,4271E+12 286,4273 0,9896 -7,2886 1,2535 0,1717 9,6794
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1717 9,6595
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1717 9,6595
1,4271E+12 286,4273 0,9896 -7,2886 1,2333 0,1565 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2333 0,1565 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1690 9,6881
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1690 9,6881
1,4271E+12 286,4273 0,9896 -7,2886 1,2264 0,1717 9,6586
1,4271E+12 286,4273 0,9896 -7,2886 1,2264 0,1717 9,6586
1,4271E+12 286,4273 0,9896 -7,2886 1,2441 0,1717 9,6741
1,4271E+12 286,4273 0,9896 -7,2886 1,2441 0,1717 9,6741
1,4271E+12 286,4273 0,9896 -7,2886 1,2441 0,1717 9,6741
1,4271E+12 286,4273 0,9896 -7,2886 1,2266 0,1730 9,6731
1,4271E+12 286,4273 0,9896 -7,2886 1,2266 0,1730 9,6731
1,4271E+12 286,4273 0,9896 -7,2886 1,2423 0,1865 9,6596
1,4271E+12 286,4273 0,9896 -7,2886 1,2423 0,1865 9,6596
1,4271E+12 286,4273 0,9896 -7,2886 1,2423 0,1865 9,6596
1,4271E+12 286,4273 0,9896 -7,2886 1,2282 0,1555 9,6906
1,4271E+12 286,4273 0,9896 -7,2886 1,2282 0,1555 9,6906
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1756 9,6705
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1756 9,6705
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1756 9,6705
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1909 9,6601
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1909 9,6601
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1853 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1853 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6672
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6672
1,4271E+12 286,4273 0,9896 -7,2886 1,2370 0,1599 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2370 0,1599 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2370 0,1599 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1717 9,6633
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1717 9,6633
1,4271E+12 286,4273 0,9896 -7,2886 1,2347 0,1812 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2347 0,1812 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2554 0,1717 9,6691
1,4271E+12 286,4273 0,9896 -7,2886 1,2554 0,1717 9,6691
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1833 9,6820
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1833 9,6820
1,4271E+12 286,4273 0,9896 -7,2886 1,2636 0,1833 9,6820
1,4271E+12 286,4273 0,9896 -7,2886 1,2302 0,1717 9,6694
1,4271E+12 286,4273 0,9896 -7,2886 1,2403 0,1717 9,6894
1,4271E+12 286,4273 0,9896 -7,2886 1,2403 0,1717 9,6894
1,4271E+12 286,4273 0,9896 -7,2886 1,2403 0,1717 9,6894
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6628
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6628
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1541 9,6920
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1541 9,6920
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1541 9,6920
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1710 9,6567
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1526 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6748
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6748
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6748
1,4271E+12 286,4273 0,9896 -7,2886 1,2428 0,1734 9,6919
1,4271E+12 286,4273 0,9896 -7,2886 1,2428 0,1734 9,6919
1,4271E+12 286,4273 0,9896 -7,2886 1,2428 0,1734 9,6919
1,4271E+12 286,4273 0,9896 -7,2886 1,2303 0,1884 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2303 0,1884 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2303 0,1884 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2570 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2570 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2294 0,1676 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2294 0,1676 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2294 0,1676 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2294 0,1676 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2253 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2321 0,1785 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2321 0,1785 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2321 0,1785 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2371 0,1909 9,6670
1,4271E+12 286,4273 0,9896 -7,2886 1,2371 0,1909 9,6670
1,4271E+12 286,4273 0,9896 -7,2886 1,2371 0,1909 9,6670
1,4271E+12 286,4273 0,9896 -7,2886 1,2333 0,1828 9,6712
1,4271E+12 286,4273 0,9896 -7,2886 1,2333 0,1828 9,6712
1,4271E+12 286,4273 0,9896 -7,2886 1,2333 0,1828 9,6712
1,4271E+12 286,4273 0,9896 -7,2886 1,2535 0,1717 9,6844
1,4271E+12 286,4273 0,9896 -7,2886 1,2535 0,1717 9,6844
1,4271E+12 286,4273 0,9896 -7,2886 1,2538 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2538 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2538 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2339 0,1717 9,6638
1,4271E+12 286,4273 0,9896 -7,2886 1,2339 0,1717 9,6638
1,4271E+12 286,4273 0,9896 -7,2886 1,2366 0,1717 9,6666
1,4271E+12 286,4273 0,9896 -7,2886 1,2366 0,1717 9,6666
1,4271E+12 286,4273 0,9896 -7,2886 1,2366 0,1717 9,6666
1,4271E+12 286,4273 0,9896 -7,2886 1,2326 0,1717 9,6862
1,4271E+12 286,4273 0,9896 -7,2886 1,2326 0,1717 9,6862
1,4271E+12 286,4273 0,9896 -7,2886 1,2326 0,1717 9,6862
1,4271E+12 286,4273 0,9896 -7,2886 1,2381 0,1717 9,6808
1,4271E+12 286,4273 0,9896 -7,2886 1,2381 0,1717 9,6808
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1717 9,6453
1,4271E+12 286,4273 0,9896 -7,2886 1,2426 0,1890 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2426 0,1890 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2280 0,1717 9,6717
1,4271E+12 286,4273 0,9896 -7,2886 1,2280 0,1717 9,6717
1,4271E+12 286,4273 0,9896 -7,2886 1,2280 0,1717 9,6717
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1682 9,6587
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1682 9,6587
1,4271E+12 286,4273 0,9896 -7,2886 1,2487 0,1568 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2487 0,1568 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2487 0,1568 9,6744
1,4271E+12 286,4273 0,9896 -7,2886 1,2586 0,1767 9,6694
1,4271E+12 286,4273 0,9896 -7,2886 1,2586 0,1767 9,6694
1,4271E+12 286,4273 0,9896 -7,2886 1,2586 0,1767 9,6694
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1847 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2444 0,1847 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2374 0,1717 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2374 0,1717 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2374 0,1717 9,6552
1,4271E+12 286,4273 0,9896 -7,2886 1,2518 0,1717 9,6670
1,4271E+12 286,4273 0,9896 -7,2886 1,2518 0,1717 9,6670
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