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Abstract

Simplified finite element bearing modeling - with NX
Nastran

Erik Adolfsson

This report was produced at the request of ABB Robotics and the work was
conducted at their facilities in Västerås, Sweden.

In the development of industrial robots the structures are slimmed to increase the
accuracy and speed. When conducting finite element analysis on the robots the
accuracy of the component modelling and definitions of the boundary conditions
becomes more important. One such component is the ball bearing which consist of
several parts and has a nonlinear behavior where the balls are in contact with the
rings.

The task given was to develop new methods to model roller bearings in Siemens finite
element modelling software NX Nastran. Then conduct a strain measurement, to
compare the methods to real experimental values. The goal with the report is to find
one or more methods to model roller bearings, with accurate results, that can be
used in their development work.

The report was conducted by first doing a study on bearings and finite element
modeling, and learning to use the software NX Nastran. Then the development of the
methods were done by generating ideas for bearing models and testing them on
simple structures. Nine methods was produced and a tenth, the method used to
model bearings today, was used as a reference. The methods was used to build
bearing models in a finite element model of a six axis robot wrist.

Simulations were done on the models with different load cases and the results were
compared to a strain measurement of the wrists real counterpart. Only six of the
models were analyzed in the result, since four of the models returned results that
were deemed unusable.

When compiling the result data no model was found to accurately recreate the
stresses in every load case. Three methods, that allow deformation, performed
similarly. One of them is suggested to be used as modelling method in the
future.Worst of the methods, according to the results compiled, was found to be the
method used today. It fails to describe local stresses around the bearing. For
continued work it is suggested that linear contact elements is studied further. Four
out of five models constructed with linear contact elements failed to return
satisfactory results.
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Sammanfattning 

Denna rapport är framtagen på uppdrag av ABB Robotics och arbetet har utförts i 

Västerås. 

I utvecklingen av industrirobotar så bantas strukturerna för att kunna ha höga 

hastigheter med god precision. När man genomför finita elementanalyser så blir 

vikten av noggrann komponentmodellering och val av randvillkor viktigare ju 

tunnare strukturen blir. En sådan komponent är lager som består av flera delar och 

har ett ickelinjärt beteende där de rullande elementen har kontakt med ringarna. 

Uppgiften som gavs var att ta fram nya metoder för att modellera lager i Siemens 

finita elementmodellerare NX Nastran. Sedan skulle dessa jämföras mot resultat 

från en töjningsmätning. Målet med rapporten är att finna nya metoder att 

modellera lager som ger noggranna resultat i deras fortsatta utvecklingsarbete. 

Rapporten togs fram genom att först genomföra en teoristudie av finita 

elementmetoden och lager, och lära sig NX Nastran. Utvecklingen av metoderna 

började med idégenerering och tester av dessa idéer på enklare strukturer. Nio 

metoder utvecklades och en tionde användes som referens mot det tidigare 

arbetssättet. 

Metoderna använde senare till att bygga lagermodeller i handleden på en 

länkarmsrobot. Simuleringar genomfördes på modellerna med olika 

belastningsfall och resultaten från dessa jämfördes med resultaten från 

töjningsmätningarna på den riktiga robothandleden. Endast sex modeller är med i 

resultatet då fyra av modellernas simuleringar bedömdes vara obrukbara. 

När resultaten sammanställdes var det ingen av modellerna som passade bra för 

alla lastfallen. Tre modeller, som har egenskaperna att de kan deformeras, hade 

liknande uppträdande. En av dessa rekommenderas att användas i fortsättningen. 

Den metoden som fick sämst resultat var den som i dagsläget används. Den är 

dålig på att beskriva lokala spänningar i strukturen runt lagret.  

Rekommendationer för fortsatt arbete är att linjära kontaktelement studeras 

närmre. Fyra av fem modeller som var baserade på dessa misslyckades. 

  



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

II 

 

 

Preface 

This is my thesis in Mechanical Engineering at Uppsala University, written in the 

spring of 2015 at ABB Robotics in Västerås. 

I would like to thank my supervisor Mattias Tallberg and Björn Lundén for giving 

me the opportunity to write this report. I would specially like to thank Mattias and 

his colleagues for their valuable assistance and patience with my questions. 

I would also like to thank Urmas Valdek of the department of engineering 

sciences, Uppsala University, for tips and thoughts on the project. 

Finally I want to thank my girlfriend and my family for all their support. 

Uppsala, May 2015 

Erik Adolfsson  



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

III 

 

Contents 
1 Introduction ........................................................................................................................ 1 

1.1 Background to the report ............................................................................................. 1 

1.2 The problem ................................................................................................................. 1 

1.3 Purpose and goal .......................................................................................................... 2 

1.4 Limitations ................................................................................................................... 3 

1.5 Method ......................................................................................................................... 3 

1.5.1 General ................................................................................................................. 3 

1.5.2 The strain test ....................................................................................................... 3 

2 Background ........................................................................................................................ 8 

2.1 ABB Robotics .............................................................................................................. 8 

2.2 FEM ............................................................................................................................. 8 

2.3 Previous work .............................................................................................................. 9 

2.4 NASTRAN .................................................................................................................. 9 

2.5 Development of the methods ..................................................................................... 10 

3 Theory .............................................................................................................................. 11 

3.1 One dimensional elements and mpc’s ....................................................................... 11 

3.1.1 RBE2 and RBE3 ................................................................................................. 11 

3.1.2 CBUSH ............................................................................................................... 13 

3.1.3 CGAP ................................................................................................................. 13 

3.1.4 CBEAM .............................................................................................................. 14 

3.2 Tetrahedral ................................................................................................................. 14 

3.3 Linear elasticity ......................................................................................................... 15 

3.4 Bearings ..................................................................................................................... 16 

3.5 Calculations for beam geometry ................................................................................ 17 

3.6 Calculations for CGAP defined stiffness ................................................................... 19 

3.7 Von Mises stress ........................................................................................................ 19 

4 Models .............................................................................................................................. 21 

4.1 Wrist model preparation ............................................................................................ 21 

4.1.1 CAD and FE-model ............................................................................................ 21 

4.1.2 Load sub-cases ................................................................................................... 23 

4.2 Model A – Single point RBE2-connections .............................................................. 24 

4.3 Model B – Single point RBE3-connections .............................................................. 25 



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

IV 

 

4.4 Model C – Multi CGAP-spokes ................................................................................ 26 

4.5 Model D – Single CGAP-spokes ............................................................................... 27 

4.6 Model E – Single CBEAM-spokes ............................................................................ 27 

4.7 Model F – Inner CBEAM-mix .................................................................................. 28 

4.8 Model G – Outer CBEAM-mix ................................................................................. 28 

4.9 Model H – CGAP defined stiffness ........................................................................... 29 

4.10 Model X – RBE3 ring ................................................................................................ 30 

4.11 Model Z – RBE2 rigid ring ........................................................................................ 30 

5 Measure points ................................................................................................................. 31 

6 Results – Simulation and Experimental ........................................................................... 34 

6.1 Graphical results from the simulations ...................................................................... 34 

6.2 Solving time ............................................................................................................... 38 

6.3 Stresses ...................................................................................................................... 38 

7 Analysis ............................................................................................................................ 41 

7.1 Error ratio .................................................................................................................. 41 

7.2 Pattern error ............................................................................................................... 42 

7.3 Stress direction .......................................................................................................... 45 

8 Discussion ........................................................................................................................ 48 

8.1 Reliability of the results ............................................................................................. 48 

8.2 The time consuming CGAP ....................................................................................... 48 

8.3 Evaluation of the models ........................................................................................... 48 

8.4 The failed models ...................................................................................................... 49 

9 Conclusion ........................................................................................................................ 51 

10 Suggestions for continued work ....................................................................................... 52 

11 Sources ............................................................................................................................. 53 

Appendix .................................................................................................................................. 57 

A. Parameters of the Models ................................................................................................ 57 

B. Calculations ..................................................................................................................... 60 

C. Figures ............................................................................................................................. 61 

D. Diagrams ......................................................................................................................... 66 

E. Tables ............................................................................................................................... 69 

 

 



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

V 

 

Figure index 

Figure 1-1 The entire setup, axle 5 tilted 90 degrees (Tallberg, 2015) ...................................... 4 

Figure 1-2 Strain gauge fixed on a marked location, slightly misaligned to the arrow ............. 4 

Figure 1-3 Connecting the strain gauges to the measure amplifier ............................................ 5 

Figure 1-4  Isosceles triangle load rig ........................................................................................ 5 

Figure 1-5 Force gauge .............................................................................................................. 6 

Figure 1-6 Measure amplifier ..................................................................................................... 6 

Figure 1-7 The side of the wrist with the bearing and strain gauges fixed ................................ 7 

Figure 2-1 The two kinds of structures the development of the models were performed on ... 10 

Figure 3-1 Setup for comparing RBE3 (left) and RBE2 (right) ............................................... 12 

Figure 3-2 The resulting deformations of the RBE3 and RBE2. Isometric view (left) and a 

sectional view (right). ............................................................................................................... 12 

Figure 3-3 RBE3 deformation. Radial load downwards (left) and upwards (right)................. 12 

Figure 3-4 The red jagged line is the CBUSH, connecting two RBEs, it’s modeled less than 

1mm long .................................................................................................................................. 13 

Figure 3-5 Bearing sectional view. The ball is in the raceway of the two rings and held in 

place with a cage, in the picture represented by the two rectangles. ........................................ 16 

Figure 3-6 Sketch of bearing load distribution, neutral clearance. .......................................... 17 

Figure 4-1 2D mesh .................................................................................................................. 22 

Figure 4-2 Enabling the AUTO-MPC ...................................................................................... 22 

Figure 4-3 The loads simulated, from the top ZC, 90d, YC and -ZC. The red arrow indicates 

load point and direction, the green cones are RBE2-elements. The gray lid is covering the 

bearing modeled in this report. ................................................................................................. 23 

Figure 4-4 The shaft-RBE2 without shaft (left) and with the shaft (right) .............................. 24 

Figure 4-5 Model A (left) Points in the structure (right) .......................................................... 25 

Figure 4-6 Model B, showing the wrist finite element model ................................................. 25 

Figure 4-7 Von Mises stresses with equal axial loads, multiple connection points (left) and 

single ditto (right). .................................................................................................................... 26 

Figure 4-8 Multi CGAP connection. ........................................................................................ 26 

Figure 4-9 No contacts are defined, the tubes are only a visual representation of the properties.

 .................................................................................................................................................. 27 

Figure 4-10 Failed nodal merge (left), corrected nodal merge (right) ..................................... 28 

Figure 4-11 Tiny CGAP. Reversed order from model F. ......................................................... 29 

Figure 4-12 Circular pattern of CGAPs. .................................................................................. 29 

Figure 4-13 Connecting the purple RBE3 to the surface. ........................................................ 30 

Figure 5-1 Von Mises stress with the 90d-load. From top left, Models A, B, D, E and Z. ..... 31 

Figure 5-2 Von Mises stress with the ZC-load. From top left, Models A, B, D, E and Z. ...... 32 

Figure 5-3 Von Mises stress with the opposing load, -ZC. From top left, Models A, B, D, E 

and Z. ........................................................................................................................................ 32 

Figure 5-4 Measure Points on the wrist and the directions X and Y. ...................................... 33 

Figure 6-1 Von Mises stress in model C, failed simulation. .................................................... 34 

Figure 6-2 Von Mises stress in the ZC-load for models F (left), G (middle) and H (right). See 

fig. 6-1 for scale. ...................................................................................................................... 35 



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

VI 

 

Figure 6-3 Von Mises stress in the ZC-load. Model A (left) and  model D (right). See fig. 6-1 

for scale. ................................................................................................................................... 35 

Figure 6-4 Von Mises stress in the 90d-load. Models from the top left: A, B, D, E, X and Z. 

See fig 6-1 for scale. ................................................................................................................. 36 

Figure 6-5 Von Mises stress in the YC-load. Models from the top left: A, B, D, E, X and Z. 

See fig 6-1 for scale. ................................................................................................................. 37 

Figure 11-1 MA –ZC left, MB ZC right, von Mises stress. ..................................................... 61 

Figure 11-2 MB -ZC left, MD –ZC right, von Mises stress, scale in fig. 11-1. ....................... 62 

Figure 11-3ME ZC left, ME –ZC right, von Mises stress, scale in fig. 11-1. .......................... 62 

Figure 11-4 MX ZC left, MX –ZC right, von Mises stress, scale in fig. 11-1. ........................ 63 

Figure 11-5 MZ ZC left, MZ –ZC right, von Mises stress, scale in fig. 11-1. ......................... 63 

Figure 11-6 Case Control Settings ........................................................................................... 64 

Figure 11-7 General Settings .................................................................................................... 64 

Figure 11-8 The system cell OLDGAP setting ........................................................................ 65 

 

Table index 

Table 6-1 Calculation times for the models, red fields mark the failed models. ..................... 38 

Table 7-1 Model total error ratio .............................................................................................. 41 

Table 11-1 Average error ratios for the four loads. .................................................................. 69 

Table 11-2 Pattern error for the four loads ............................................................................... 69 

Table 11-3 Pattern error for the four measure points ............................................................... 69 

Table 11-4 The simulation stress results .................................................................................. 69 

Table 11-5 The experiment stress results ................................................................................. 72 

 

Diagram index 

Diagram 6-1 YC-load, von Mises stress. ................................................................................. 39 

Diagram 6-2 90d-load, von Mises stress. ................................................................................. 39 

Diagram 6-3 -ZC-load, von Mises stress. ................................................................................ 40 

Diagram 6-4 ZC-load, von Mises stress. .................................................................................. 40 

Diagram 7-1 Average error ratio for the load cases ................................................................. 42 

Diagram 7-2 Pattern Error for the load cases ........................................................................... 43 

Diagram 7-3 Pattern error for the measure points .................................................................... 43 

Diagram 7-4 σX stresses for models B, E and X in every load case and three of the measure 

points. ....................................................................................................................................... 45 

Diagram 7-5 σY stresses for models B, E and X in every load case and three of the measure 

points. ....................................................................................................................................... 45 

Diagram 7-6 σX stresses for models A, D and Z in every load case and three of the measure 

points. ....................................................................................................................................... 46 

Diagram 7-7 σY stresses for models A, D and Z in every load case and three of the measure 

points. ....................................................................................................................................... 46 

Diagram 11-1 Model A von Mises ........................................................................................... 66 



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

VII 

 

Diagram 11-2 Model B von Mises ........................................................................................... 66 

Diagram 11-3 Model D von Mises ........................................................................................... 67 

Diagram 11-4 Model E von Mises ........................................................................................... 67 

Diagram 11-5 Model X von Mises ........................................................................................... 68 

Diagram 11-6 Model Z von Mises ........................................................................................... 68 



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

1 

 

1 Introduction 
 

1.1 Background to the report 
Ever since work began on their first electric industry robot in 1971 (Karlsson, 

2014), ABB is constantly developing new manipulators. Nowadays the 

manipulators, a.k.a. robots, are modeled with finite elements before they are built 

to be able to simulate loads and stresses in the structures. The FE models have to 

be made with consideration of how accurate and how demanding the simulations 

are going to be. With a finely meshed structure the calculations are going to be 

more precise, but much more time and computer power consuming than with a 

coarse mesh of elements. 

With the progress of developing new robots, the structures are becoming reduced. 

As long as they remain stiff enough, lighter materials and slimmer geometry are 

contributing to all round lighter, and therefore faster and more accurate, robots. 

This makes the modeling of other components and definitions of boundary 

conditions more important since their impact on the structure is greater. One of 

the components in any machine that is difficult to handle is the ball bearing. 

Basically they are made up from an outer ring, an inner ring, a cage, and some 

rolling elements. Simulating these with the contact conditions and nonlinearity of 

the rolling elements in finite elements is incredibly computer time consuming, so 

they are generally modeled in a simplified way. At a distance from the bearing it’s 

not very important how it is modeled, but close to the bearing there will be a 

certain distribution of the load carried by it. 

The purpose of this report is to find new ways of doing the simplified modeling of 

the bearings in the finite element modeling software NX Nastran, and then 

evaluate them. One of the ways they are constructed today is by multi point rigid 

constraining elements coupled with spring elements. This enables defining the 

stiffness of the bearings but with rigid contacts. With rigid contacts the shaft and 

surrounding structures don’t get the loads that the real ball bearing carries. 

Because of this, there are probably load ways that doesn’t get identified by the 

analyzer.  

 

1.2 The problem 
Modeling the ball bearings as they are is difficult and not feasible in most cases. 

The required computer power to calculate everything that happens in and around a 

ball bearing is substantial. In a research article (Molnár et al., 2010, 30) the 

authors ran a simulation of a roller bearing where it is modeled to look like a real 
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bearing with 321 608 elements. That simulation took 43 hours although only half 

the bearing was modeled and the other half was simulated through symmetry.  

By making simplified models it’s not probable that they simulate the real stresses 

that occur in the surrounding structures. Some new models, however, might give a 

better description of what’s happening in the material when loads are applied than 

the models today do.  

Since the structures of the manipulators are being slimmed, the way the 

components get built-in and modelled is growing more important. With thinner 

structures the load way is something that the designers need to know to 

understand where stresses will occur. 

The level of accuracy of a FE model is dependent of the way it’s constructed and 

how the conditions are defined. By making a non-linear calculation, the conditions 

might be changed during the simulation. For example, the force applied to an 

object can surpass the yield strength of the material and make it behave differently 

or parts can come in contact with each other. For this report a linear simulation 

method is being used. The linearity makes the simulations quicker than the non-

linear ditto, and that is a desirable feature when simulating large structures with 

lots of components.  

By using the simplest method of simulation and trying to make the bearing 

construction methods generalized, they are going to be limited in their usability. 

But by knowing their limits, it is possible to apply them and be confident in the 

results. 

 

1.3 Purpose and goal 
The purpose of this report is to find one or more ways to construct ball bearings in 

the finite element modeling program NX Nastran. Well-constructed models of this 

load carrying machine element might give the user a better understanding of the 

load paths and stresses occurring around the bearings.  

By developing several methods it is possible to have options when doing 

simulations. Depending on what points are interesting, or the purpose of the 

simulation, different modelling alternatives might be desirable. 

The ways bearings are modelled are often either very simple or very complex, but 

in this report a few semi-complex methods are created and evaluated. The report 

is focused on finding the load ways and local stresses that a ball bearing causes. 

The goal is to develop one or more methods that, depending on application, with 

accurate results can be used in the development of the industrial robots.  
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1.4 Limitations 
Nonlinearity will not be handled even though the balls act as nonlinear springs, all 

the simulations will be done with NX Nastran’s linear SOL101 solver. The report 

focuses on a deep grove single row ball bearing and even though the methods 

could be applicable to other kinds of bearings it will not be considered here.  

The clearance and preload of the ball bearing will be ignored in the methods. 

The tools used in the methods will be limited to the tools usable in the software 

NX Nastran 9.0. 

 

1.5 Method 
1.5.1 General 

Knowledge of bearings and finite elements was acquired by searching through 

Uppsala University’s library database and Google Scholar. Information about the 

software NX such as tutorials, quick guide references to the elements, and 

literature about general knowledge of the how’s and why’s of FEA, was provided 

by ABB Robotics. A lecture about bearings at Uppsala University was attended 

and an open dialogue was held with people from Schaeffler Sverige and the 

employees of ABB Robotics. The stiffness for the bearing is given by ABB 

Robotics, it is originally calculated with the software BearinX from Schaeffler. 

After learning the basics of constructing with finite elements and knowing the 

tools and limitations of NX, concepts for the bearings was developed. 

The FE-model of a “lower line” wrist was used to test the different methods of 

constructing the bearings. The construction methods were evaluated with a test 

carried out in the ABB Robotics laboratories where loads were applied to the 

same wrist of an actual industrial robot.  

1.5.2 The strain test 

The strain test was run on a Lower Line wrist of a 6-axis robot, see figure 1-1. The 

bearing that the test focused on is a supporting bearing on the opposite side of the 

gearing mechanics of axle 5. Almost all of the axial force is absorbed in the 

gearing side of the wrist so the 61826-2RS is mostly a radial-load support. This 
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report does not cover the mechanics of the wrist any deeper since it is ABB’s wish 

that the details remain in-house.  

 

Figure 1-1 The entire setup, axle 5 tilted 90 degrees (Tallberg, 2015) 

The positions of the strain gauges taped to the wrist were decided by analyzing 

simulations of the different models that were built, and they were then placed by 

ABB technicians. The locations were marked by measuring distances from 

threaded holes with a slide caliper, visually projecting the measure distance and 

then marking them with lines. Where the lines cross, the strain gauges were fixed, 

see figure 1-2. The strain gauges are of two sizes with slightly different gauge 

factors, but they both measure strain in three directions.  

 

Figure 1-2 Strain gauge fixed on a marked location, slightly misaligned to the arrow 
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Figure 1-3 Connecting the strain gauges to the measure amplifier 

The strain gauges were connected to a measure amplifier (figure 1-3) that sends 

the signal to a computer with HBM’s software for measuring, Catman Easy, 

installed. A force gauge was used to measure the load applied to the test rig, so the 

computer had four inputs from the measure amplifier when the test was made. The 

program made measurements every 0.02 seconds and with a setting, the software 

presented Von-Mises stress in addition to the strain components. 

The rig used to apply the load was made up of a welded isosceles triangle welded 

to a turntable, see figure 1-4. With an adapter washer it was mounted on to a 

process turntable that was mounted on the tilt house of the wrist. That gave the 

load point a distance of approximately 1910 mm to the extended centerline of the 

bearing.  

 

Figure 1-4  Isosceles triangle load rig 

 

The rig was then jogged into the different positions where it was possible to pull 

the force gauge and achieve the same loads as the ones simulated in the software 

NX Nastran, see figure 1-5. The loads are applied manually, by pulling a rope. 
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Figure 1-5 Force gauge 

List of components used: 

 Lower Line wrist with process turntable mounted (figure 1-1)  

 Two strain gauges – gauge factor 2.12 (figure 1-3 ) 

 Two strain gauges – gauge factor 2.08 (figure 1-3) 

 1560 mm welded isosceles triangle (figure 1-4)  

 Force Gauge from Tokyo Sokki Kenkyujo (figure 1-5)  

 Measuring Amplifier from HBM (figure 1-6) 

 Computer with measuring software Catman Easy v3.5.1 

 

  

Figure 1-6 Measure amplifier 
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Figure 1-7 The side of the wrist with the bearing and strain gauges fixed   
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2 Background 
 

2.1 ABB Robotics 
In the 60’s ASEA was a big user of NC machines and had their own NC control 

systems developed. They began working on their own industrial robot, after 

seeing a great potential in the Unimate robot but not getting the license to 

manufacture it.  After testing concepts they decided to go with an electrical robot 

(Wallén, 2008, 10-11).  

In 1974 the IRB 6 stood ready as “the world’s first microcomputer controlled 

electric industrial robot” (ABBa, 2015). In 1975 they started exporting the IRB 6 

and the development of robots continued as they acquired a lot of industrial robot 

related companies. Later the IRB60 hit the market and it stayed there with the 

IRB6 for 17 years (Wallén, 2008, 11). ASEA merged with Brown Boveri et Cie in 

1987 to form ABB (ABBb, 2015) and has since then developed and released a 

wide range of industrial robots designed for many applications.  

Today ABB is one of the leading industrial robot manufacturer and they have 

research and development in several countries around the globe (ABBc, 2015). 

 

2.2 FEM 
The finite element method is a way to solve problems by defining a phenomenon 

as partial differential equations and then solving them approximately. By doing 

this, it is possible to analyze structures and systems before they are built. When 

analyzing the design and mechanical properties of an arbitrary structure with 

FEM, it is divided into several smaller elements. The smaller (and therefore larger 

in numbers) the elements are, the more accurate the approximated solution will 

be. By doing this, it is possible for a computer to solve the equation system and 

give the user information on stresses and displacements in the structure (Fish, 

Belytschko, 2007, 1) 

Nowadays the finite element method is used everywhere as a tool for engineers 

and scientists to make calculations and predictions of how an object, system and 

construction will act and behave. Usually the finite elements are created from a 

CAD-model, which makes it easy to mesh the structure and make the appropriate 

changes for the simulation (Dhatt, Touzot, Lefranҫois, 2012, 1-3). 

Meshing is the process of generating the elements (Fish, Belytschko, 2007, 1) in 

either 1D, 2D or 3D elements. There are also 0D elements which will not be 

included in this report. Meshing can preferably be made with different densities 

depending on what regions are of interest.  
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1D and 2D elements can be used in a number of ways to either predefine the 

outlines and nodes of the 3D elements or to simplify the model to make the 

calculations less complex. All elements are built from nodes that define the 

coordinates of the elements.  

 

2.3 Previous work 
Some of the earlier work on this subject are two papers, a master thesis by Emil 

Claesson (2014) about finite element modeling in the solver ABAQUS and a 

research article about simplified modelling for needle roller bearings by Molnár et 

al (2010). 

In Emil Claesson’s master thesis (2014) he built one very simplified model 

consisting of coupling nodes and spring elements (Claesson, 2014, 8). The other 

two of his models are more complex and built with the inner and outer rings 

modeled in finite elements. In those models a big focus is on the rolling elements, 

correct stiffness and the force distribution on the raceways. For this, he used rows 

of spring elements in both models (Claesson, 2014, 10-14). In the same paper 

(2014, 18) the computing time for the most complex model is about 8 500 times 

the simplest. 

Molnár et al developed two models (2010). One is similar to the ones in 

Claesson’s paper (2014) with rows of spring elements and the other is a bushing 

replacing the rolling elements altogether. The springs in the first model are acting 

differently depending on the load, with no stiffness when they are “outside of the 

loaded zone” (Molnar et al, 2010, 30-31).  

Claesson’s models are verified with a reference model, a “fully” modeled finite 

element needle roller bearing, “with satisfactory result” (Claesson, 2014, I). 

Molnár et al finds their models to be applicable for practical use (Molnár et al, 

2010, 32). 

 

2.4 NASTRAN 
NASTRAN is a structural analysis software developed by NASA in the 60’s for 

the aerospace engineers to analyze the structures of space- and aircraft (NASA, 

2008). Siemens software NX has the Nastran FEA built in to the structural 

analysis part of the program. It is capable of several different kinds of analyzing, 

including linear, nonlinear, durability and fatigue analysis (Siemens, 2015). 
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2.5 Development of the methods 
The development of the methods was conducted using two kinds of structures 

with very basic geometries, see figure 2-1. By using these structures instead of the 

Lower Line wrist, the many test-simulations could be done in short time. 

 

Figure 2-1 The two kinds of structures the development of the models were performed on 

Both structures were used to figure out how the different elements could be used 

to simulate the load of the bearing. In the one without a shaft the loads were 

applied to a single point in the center of the hole of the structure. This was useful 

when testing the models that don’t require the CBUSH element.  

The structure with a shaft is more similar to the setup of the wrist which made it 

suitable for testing both CBUSH-based methods and the finalization of all the 

methods. The loads are put on the shaft by connecting a RBE2 to the end and 

applying one or more forces to the dependent node. 
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3 Theory 
 

3.1 One dimensional elements and mpc’s 
These are special elements that are used in the creation of the bearing models. 

They are used as connections with the intention to mimic some of the features of 

the actual deep grove ball bearing and lighten the load instead of using the 

computing power demanding tetrahedral elements. 

3.1.1 RBE2 and RBE3 

The RBE2 is a multi-point constraint that is useful in many ways in finite element 

modeling. Although the name is a little misleading, it resembles a one 

dimensional element in its graphical representation (Predictive Engineering Inc, 

2013, 6). Simply put, it works by enforcing the connected nodes to keep the 

internal coordinate positions in between themselves. The RBE2 is made up of a 

dependent and an arbitrary amount of independent nodes, and the behavior of it is 

determined by the DOF of the nodes. The standard is that the independent node 

have six DOF and the dependent are more restricted. (Predictive Engineering Inc, 

2013, 10). 

The RBE3 isn’t rigid in the same manner as the RBE2. According to the authors 

of Small Connection Elements one should “think of them as small little free 

bodies floating in space. They need to have sufficient DOF defined to be stable 

but not more” (Predictive Engineering Inc, 2013, 12). Siemens Quick reference 

guide describes the RBE3 as an interpolation constraint element: 

“Defines the motion at a reference point as the weighted 

average of the motions at a set of other grid points” (Siemens 

Product Lifecycle Management Software Inc, 2011, 1987). 

In a technical note Mark Robinson (2008) similarly explains how the RBE3 

works. It uses motion of a set of nodes to calculate how one or more nodes should 

move. This makes the RBE3 a good element to carry loads without over 

constraining the connection. (Robinson, 2008).  

To illustrate how they differ this simple model is built. In figure 3-1 two circles 

are defined on a surface. A point-to-surface-connection is made for a RBE2 and a 

RBE3, and then a force is applied on each of the independent nodes.  
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Figure 3-1 Setup for comparing RBE3 (left) and RBE2 (right) 

According to the authors of the Predictive Engineering paper one of the major 

functions of the RBE3 is to evenly distribute a force “from the independent node 

to the dependent nodes” (Predictive Engineering Inc, 2013, 11).  In figure 3-2 this 

feature is made visible. 

 

Figure 3-2 The resulting deformations of the RBE3 and RBE2. Isometric view (left) and a sectional view 

(right). 

The RBE3 balances the force distribution and it looks like a bag of liquid is the 

load, with stresses throughout the area of the dependent nodes. The RBE2 on the 

other hand have all the stresses in the perimeter of the circle with dependent 

nodes.  

In the wrist model the dependent nodes of the RBE3s will be connected to the 

surface and point of a hole. Figure 3-3 show what the deformation looks like 

when radial forces are applied. 

 

Figure 3-3 RBE3 deformation. Radial load downwards (left) and upwards (right) 
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3.1.2 CBUSH 

CBUSH is a spring element with the added features of viscosity and damping, 

figure 3-4. It is used instead of the spring element CELAS because the CELAS 

has been problematic (Predictive Engineering Inc, 2013, 22).  

 

Figure 3-4 The red jagged line is the CBUSH, connecting two RBEs, it’s modeled less than 1mm long 

The CBUSH has many variables to adjust. Stiffness and DOF control are the 

major features used in this report. It can easily be set with different stiffness’s in 

different directions which makes it excellent when it comes to simplify things in 

the FE model.  

3.1.3 CGAP 

The CGAPs are used as linear contact elements when using the SOL101 solver. It 

is defined with an element vector and four physical property parameters in the 

PGAP. That includes:  

 Initial opening of the gap 

 Stiffness when the gap is closed 

 Translational stiffness when the gap is closed 

 Friction of the gap 

Generally when constructing the bearings in this report, as the CGAP is not 

desired to be the element to define the stiffness, the parameter for stiffness when 

the gap is closed is set to 1015 N/m. The friction is set to 1 and the other 

parameters are set to 0. Setting the translational stiffness to anything else than 0 

has not had any impact on the solutions, except returning errors when defined too 

stiff. The CGAP elements are quite hard to get to work properly and the 

parameters have to be set right to avoid strange results.  

The linear contact element works by making the solver iterate the simulation so 

that it can adjust the conditions when contacts occur. This removes the true 

linearity of the SOL101 but it is still linear calculations between the iterations.  
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The CGAP is dependent on the user defining a coordinate system for it. The 

element itself consists of three axis and an orientation vector (Siemens Product 

Lifecycle Management Software Inc, 2011, 1175). The orientation vector cannot 

be parallel with the x-axis or NX will return error messages about it. This causes a 

few problems since, apparently, similar constructions need to have the CGAP 

coordinate system defined differently.  

When using CGAP elements the parameters of the solver has to be tweaked, 

according to the Siemens NX Nastran support.  

In the solver settings there are four important parts: 

 the “element iterative solver” is enabled 

 the “Treat CGAP as Linear Contact Element” is enabled 

 in the system cells the “OLDGAPS(412)” is activated on 0 (default) 

 “User defined text” modelling object is created 

(Djeni, 2015). See figures 11-6 to 11-8 in appendix C for clarification. 

The first activates the iterating process of the solver. When working with contacts 

the conditions change as elements collide with each other. The second does just 

what it is called, it makes the CGAPs acting as contacts in the linear solver. The 

third makes sure that it uses the NX 9.0s way to solve the gaps. The last one is 

necessary to create a BCSET card which defines contact in the solver (Siemens 

Product Lifecycle Management Software Inc, 2011, 1175). 

In a query about the CGAP-elements David Whitehead, product support at 

Siemens Industry Software, stated: 

In my experience, I would say that getting models which include CGAP 

elements to work properly can be somewhat fiddly, particularly if there are 

a number of them. I'm not sure that there are any 'hard and fast rules' 

which can be used to guarantee success in every case. 

     (Whitehead, 2015)  

3.1.4 CBEAM 

The CBEAM is a one dimensional beam that can be assigned material and 

geometric specifications. Even though the element itself is one-dimensional the 

solver calculates the stresses and strains based on the physical properties given to 

the element. 

 

3.2 Tetrahedral 
These 3D solids, tetrahedrals, are common elements in finite element structures. 

They look and behave like real structures which make them preferred when 

building finite element models. The nodes in a 3D solid are not allowed any 



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

15 

 

rotational freedoms, they are restricted to translational movement. The downside 

with using 3D solid elements is that they require heavy processing power since no 

simplifications are made. Of course it can be regulated with the number and size 

of elements, but the accuracy of the solution might suffer with too few nodes 

(Baguley, Hose, 1997, 31). 

 

3.3 Linear elasticity 
In this report the simulations are done linear. This is quite a big simplification 

since the contact of the spherical balls to the inner and outer ring of the deep 

grove ball bearing makes it nonlinear. However, as the step from nonlinearity to 

linearity is a big reduction in computing power demand, it might still be good 

enough to learn the way the loads are carried in to the structure. The fundamentals 

of linear stress analysis is Hooke’s law which relates the strain and stress of a 

linear material (Fish, Belytschko, 2007, 215). This makes Hooke’s law a 

constitutive connection since it’s a mathematical relationship that describes 

material properties (Lundh, 2000, 10). 

Linear elasticity is a theory that according to Fish and Belytschko (2007) is 

dependent on these four assumptions: 

1. deformations are small 

2. the behavior of the material is linear 

3. dynamic effects are neglected 

4. no gaps or overlaps occur during deformation of the solid 

(Fish, Belytschko, 2007, 215) 

The first of the assumptions is that the resulting deformations are almost invisible. 

This works fine as long as the deformations are small enough (Fish, Belytschko, 

2007, 216 - 217). In the tests and simulations of the deep grove ball bearing the 

loads are 500 N on a distance of about 1900 mm causing a torque of 950 Nm on 

the wrist. This is not enough to make any large deformation on the wrist.  

As long as the stresses are under the yield-point of the material, one can assume 

that the behavior will be linear. This assumption is applicable for most materials, 

like metals. (Fish, Belytschko, 2007, 216) This means that the strain is 

proportional to the stress in the material (Chillery, 2013, 8). 

The neglected dynamic effect assumption is an assumption that the loads are 

applied carefully with low acceleration. This might sound like a very loosely 

grounded assumption since it is difficult to determine what low is without 

something to compare with. There are however a few simple ways that Fish and 

Belytschko mentions. The fourth assumption is that no material breaks or 
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penetrates itself. If it breaks and gaps occur, it is no longer linear (Fish, 

Belytschko, 2007, 216) 

 

3.4 Bearings 
The most common use of bearings is when radial force has to be carried and 

rotation needs to be allowed (Ohlsson, 2006, 159). For this, the rolling element 

bearings kind are well suited. The ball bearings are made up of a few different 

types of components. Usually an inner ring that fits to the shaft-object and an 

outer ring that fits in the hole where the bearing is going. Between the rings the 

balls or rollers are located. The rolling elements are kept in place by the rings 

geometry and separated from each other by a cage-construction, see figure 3-5. 

There are several different kinds of sized and geometrically formed bearings. 

Eschmann, Hasbargen and Weigand (1985, 2) describes the deep groove ball 

bearing as capable of handling both high axial and radial forces due to the grooves 

in the rings, also called raceways. The grooves have just a little bigger radius than 

the balls. For this report, only deep grove ball bearings are considered. 

 

Figure 3-5 Bearing sectional view. The ball is in the raceway of the two rings and held in place with a cage, 

in the picture represented by the two rectangles. 

When the bearings are loaded a few balls will carry all the load from raceway to 

raceway. With heavier load the contact area gets bigger because of the elastic 

deformation, but the contact area are still very small so the concentrated stress in 

the raceways are very big (Eschmann, Hasbargen, Weigand, 1985, 99). According 

to Hans Wicklund of Schaeffler Sverige in a lecture (2015), a load of 1200 N on a 

ø10 mm ball pressed into a raceway will give an elliptical contact area with a 

stress of 2130 MPa.  

Hertz’s theory can be used to calculate the contact pressure and the deformation in 

the contact points of the bearing (Eschmann, Hasbargen, Weigand, 1985, 99). In 
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this report however, the models are made linear so the problem with variable 

contact area that occurs are never handled. 

With a pure axial force all the rolling elements are equally loaded, but with a pure 

radial force the load is distributed differently. The inner ring is pressed against the 

balls that deform. How much they deform is depending on the distance the ring 

moves related to its initial position (Ohlsson, 2006, 164). 

Depending on the preload or clearance of the bearing, the ending stresses look 

differently. With a neutral bearing where the rolling elements fit perfectly into the 

raceways and no initial stresses are occurring, half the rolling elements will carry 

load, see figure 3-6. The maximal load 𝑄0 and mean load 𝑄𝑚 of the balls in a ball 

bearing can be calculated with equations derived from the Hertz Theory.  

𝑄0 =
4.37 ∗ 𝐹𝑟

𝑚
    [𝑁]      (3 − 1) 

where 𝐹𝑟 is the radial force applied and m is the number of balls (Ohlsson, 2006, 

164 - 165) and from “Ball and Roller Bearings” (Eschmann, Hasbargen, Weigand, 

1985, 127) we get the equation for the mean load for the balls 

𝑄𝑚 =
2.46 ∗ 𝐹𝑟

𝑚
     [𝑁]     (3 − 2). 

 

Figure 3-6 Sketch of bearing load distribution, neutral clearance. 

Several of the models developed in this report do not have contact conditions so 

the distribution will not be correct. For the ones with linear gap elements it is 

assumed that NX distributes the loads in this manner. 

 

3.5 Calculations for beam geometry 
The stiffness of the CBEAM’s, in the models that uses them to define the bearing 

stiffness, has to be defined by its geometry and modulus of elasticity. The 

equations here works for model E (introduced in section 4.6) which has the entire 

bearing diameter as the length of two beams. The other models are slightly shorter 

because of the serial couplings with CGAP-elements and has to be calculated with 

different lengths. The first stiffness to define is the axial stiffness of the beam, 
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which will represent the radial stiffness of the bearing. The axial beam stiffness 

k is calculated with equation (3)  

𝑘 =
𝐸𝐴

𝐿
     [𝑁 𝑚⁄ ]     (3 − 3) 

where E is the modulus if elasticity, L is the length of the beam and A is the cross 

section-area of the beam. The stiffness has to be distributed on the number of 

beams with a function that makes the stiffness correct independent of what 

direction the load is applied. For this, a summation of the cosine of the angles are 

required to get factor 𝛼. 

𝛼 = ∑ |cos (
360

𝑚
𝑛)

𝑚−1

𝑛=0

|     (3 − 4) 

Here m is the number of balls in the model bearing. For models with linear 

contact elements the factor 𝛼 is halved, see 4.7. By choosing a tube structure for 

the beam, there are two variables for the geometry to adjust. The equation for the 

bearing radial stiffness 𝑘𝑏𝑟 is then 

𝑘𝑏𝑟 =
𝑚𝐸𝛼𝜋

𝐿ℎ
(𝑟𝑜

2 − 𝑟𝑖
2)     [𝑁 𝑚⁄ ]     (3 − 5) 

where 𝑟𝑜 is the outside radius, 𝑟𝑖 is the inside radius and 𝐿ℎ is the radius of the 

bearing. 

For the bearing axial stiffness, the elementary case of beam bending nr. 22 from 

Björk (Björk, 31) is used, where both ends are fixed and a point load is in the 

middle. 

𝑓 =
𝑃𝐿3

192𝐸𝐼
     [𝑚]    (3 − 6). 

This equation gives the deflection f of the bending in the middle. By dividing with 

P and inverting the equation, the stiffness can be calculated 

𝑘 =
192𝐸𝐼

𝐿3
    [𝑁 𝑚⁄ ]    (3 − 7). 

The second moment of area I for a tube is calculated with this equation, 

𝐼 =
𝜋

64
(𝐷4 − 𝑑4)    [𝑚4]    (3 − 8) 

where D is the outside diameter and d is the outside diameter (Nordling, 

Österman, 2006, 377). With radius instead of diameter the equation is 

consequently 
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𝐼 =
𝜋

4
(𝑟𝑜

4 − 𝑟𝑖
4)    [𝑚4]    (3 − 9) 

With this information, the equation for the bearing axial stiffness 𝑘𝑏𝑎 can be 

constructed. 

𝑘𝑏𝑎 =
𝑚192𝐸𝜋

8𝐿3
(𝑟𝑜

4 − 𝑟𝑖
4)    [𝑁/𝑚]    (3 − 10) 

With equations (5) and (10) an equation system can be constructed to find the 

inner and outer radius for the tube beams. 

    {
𝑟𝑜
2 − 𝑟𝑖

2 =
𝐿ℎ𝑘𝑏𝑟
𝑚𝐸𝛼𝜋

𝑟𝑜
4 − 𝑟𝑖

4 =
𝐿3𝑘𝑏𝑎
𝑚24𝐸𝜋

 

     (3 − 11) 

For the solution to the equation system see appendix B. 

 

3.6 Calculations for CGAP defined stiffness 
This only affects one model that utilizes CGAP-elements to define the stiffness of 

the bearing. The translational stiffness of the spokes is simply the acquired axial 

stiffness divided by the half the number of spokes, because of the linear gap 

elements inactivity when not compressional loaded axially.  

𝑘𝑟 =
2𝑘𝑏𝑎
𝑚

     [𝑁/𝑚]    (3 − 12) 

𝑘𝑏𝑎 is the bearing axial stiffness. For the bearing radial load (the CGAP element 

axial), the factor 𝛼 from equation (4) is used. 

𝑘𝑎 =
𝑘𝑏𝑟
𝑚

∗  𝛼     [𝑁/𝑚]     (3 − 13). 

𝑘𝑏𝑟 is the bearing radial stiffness. 

 

3.7 Von Mises stress 
The von Mises yield hypothesis is one of the common ways to define when a 

material plastically deform. The von Mises Stress is a combination of stresses in 

all three coordinate planes that with the yield stress 𝜎𝑠 determines when the 

material will yield. 

𝜎𝑒 = √𝜎𝑥2 + 𝜎𝑦2 + 𝜎𝑧2 − 𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑧 − 𝜎𝑧𝜎𝑥 + 3𝜏𝑥𝑦2 + 3𝜏𝑦𝑧2 + 3𝜏𝑧𝑥2  [𝑀𝑃𝑎]   

                                                         (3 − 14) 
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𝜎𝑒 is the von Mises Stress, or equivalent tensile stress, and when the yield 

condition 

𝜎𝑒 = 𝜎𝑠      [𝑀𝑃𝑎]     (3 − 15)  

is fulfilled, the material is supposed to start deform plastically (Lundh, 2000, 234-

235). 

𝜎𝑒 is one of the features that can be viewed in the result file in NX Nastran when 

simulations are done. It is a way to quickly get an idea of the stress state of the 

finite element model and it is useful when analyzing the results from the 

simulations and strain tests. Even if it is not used as a means to see if the wrist 

will yield it gives an easily overviewed number to compare between the results.   
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4 Models 
4.1 Wrist model preparation 
4.1.1 CAD and FE-model 

The wrist is pre-meshed with CTETRA10 elements, the size is set to 6 mm. In the 

preparation of the Lower Line wrist the surface that the outer ring is in contact 

with is divided into several smaller surfaces. 

This is done by: 

1. Going into the modeling application of NX with the part-file. 

2. Creating a datum plane centered in where the bearing goes, in the tangent of 

the T and R axis of the hole. 

3. Creating two more datum planes parallel to the first on each side with a 1.5 

mm offset (this is only necessary when placing out multiple spokes, as in 

model C). 

4. Creating a datum plane in the center of the hole in the tangent of the centerline 

and the radius of the hole, making it perpendicular to the first datum plane. 

5. Creating two more planes in the same fashion as step 3 on the plane created in 

step 4 but with 0.5 mm offset (again, only necessary when multiple spokes are 

used). 

6. Making a circular pattern of the planes in step 4 and 5 with 24 instances 

equally distributed in 360 degrees. 

7. Using the “Divide face”-tool with all the created planes to create all the 

surfaces. 

8. Going in to the fem-file in the advances simulations and meshing the newly 

created surfaces with a 2D paver meshing method (CQUAD4 plate elements), 

to define how the model should rebuild the 3D mesh in that area, see figure 4-

1. The 2D mesh element size is set to 1.66 mm, and then the model is updated. 

By doing this the model gets points that are usable to connect the nodes of the 

elements, points that stay even when the model updates. The deep grove ball 

bearing that the models are going to simulate is a 61826-2RS from Schaeffler that 

actually contains an uneven number of balls, but with this method an even number 

of connection points will always be achieved. If one tries to create an uneven 

number of connection points, say 5, the actual number will be 10 since each 

instance of the planes will create two connection points.  

For Models X and Z no special preparation were made, the RBE2 and RBE3 of 

those were connected to a surface as thick as the bearing. No 2D meshing of that 

surface were made. 
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Figure 4-1 2D mesh 

Applying the load directly to the structure of the Lower Line wrist might be 

considered somewhat inaccurate, but the resulting load ways near the bearing 

could still be good enough to use the models for finding the load ways. There will 

be inaccurate stresses where the bearing model points are attached to the 

surrounding structure, because the balls of the bearing are not directly in contact 

with the structure. By ignoring the inner and outer ring, the entire bearing stiffness 

can be simulated through the 1D elements and connections.  

Two RBE2s are used to create leverage points where the loads are applied. This 

causes a problem with the nodes since they are connected to the same surface. The 

nodes are defined as dependent by both RBE2s. The NX software recommends 

that this is solved with a parameter in the solver called AUTO-MPC (see figure 4-

2) that automatically resolves this issue, so that parameter in enabled in every 

model. 

 

Figure 4-2 Enabling the AUTO-MPC 



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

23 

 

4.1.2 Load sub-cases  

Four subcases with different loads are simulated for each model. The loads are 

applied to the independent nodes of the load-RBE2s in the solver. NX then runs 

the simulation for all the sub-cases separately. The loads are kept simple to not 

complicate the strain measurement test where the exact loads are supposed to be 

replicated. The force applied to the RBE2s is 500 N, this is because the loading is 

done by hand in the laboratory and depending on the accessibility to the test rig 

the loading capabilities are more or less limited.  

 

 

Figure 4-3 The loads simulated, from the top ZC, 90d, YC and -ZC. The red arrow indicates load point and 

direction, the green cones are RBE2-elements. The gray lid is covering the bearing modeled in this report. 
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The loads used are named after the direction they are headed. From the top of 

figure 4-3 they are ZC, 90d, YC and –ZC. For the 90d load there is a difference 

between the simulated load and the load applied in the experimental strain 

measurement. In the laboratory the wrist was jogged to the correct position and 

the load was applied as intended. In the simulation the fifth axis is locked in a 

front facing position, so the load is applied to an independent node concentric 

with the bearing. The distance from the load point to the position between the fifth 

axis bearings is the same as if the fifth axis was tilted 90 degrees. The dependent 

nodes are connected to the same surface as the other loads. 

 

4.2 Model A – Single point RBE2-connections 
The first model is built with two RBE2’s and a CBUSH element. The CBUSH is 

used to define the stiffness of the deep grove ball bearing and one of the RBE2’s 

(shaft-RBE2) is simply used to make a rigid connection between the shaft and one 

of the CBUSH’s nodes, see figure 4-4. The intentions of the second RBE2 is to 

carry load to single points in the wrist structure, see figure 4-5. 

 

Figure 4-4 The shaft-RBE2 without shaft (left) and with the shaft (right) 

One problem with this model is, like many of the other models, no contacts are 

defined. This means that half of the connections from the RBE2 will be pulling on 

the structure when a radial force is applied to the shaft. Another problem with the 

use of RBE2 is that it is truly rigid and therefore do not allow any deformation of 

the bearing itself. It will however cause local stresses in the connecting points. No 

changes are made to the DOF for any of the RBE2s.  
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Figure 4-5 Model A (left) Points in the structure (right) 

 

4.3 Model B – Single point RBE3-connections 
Model B, figure 4-6 is modeled exactly like model A but with an RBE3 connected 

to the wrist structure instead of the RBE2. The RBE3 will not only allow 

connection point displacement but will also allow bearing deformation.  

 

Figure 4-6 Model B, showing the wrist finite element model 

The deformation of the bearing means that more concentrated stresses will be 

found in the structure near the bearing. How well this deformation depicts the 

reality will be shown in the analysis of the simulations and the strain 

measurement. The spokes will push and pull the structures in the radial load 

direction. 
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4.4 Model C – Multi CGAP-spokes 
Just like in model A, this method utilizes the stiffness parameters of the CBUSH 

element to define the stiffness of the whole bearing. The connections are made in 

the same way except that each CGAP has multiple connection points on the wrist 

structure. The multiple connection points are meant to even out the load from the 

bearing to the structure and make the CGAPs have more angles to attack the wrist. 

When putting pure axial loads on the bearing models with CGAP spokes the 

connections seem to just slip, but when the multiple connections form an isosceles 

triangle the force should never be perpendicular to all of the gaps as shown in 

figure 4-7. 

 

Figure 4-7 Von Mises stresses with equal axial loads, multiple connection points (left) and single ditto 

(right). 

Every pack of connection points is one CGAP-element, figure 4-8. They are 

created by making one connection from the center CBUSH to the points in the 

structure. The CGAP then get its coordinate system defined. The CGAP is now 

copied by a translation command, in a pattern around the hole which creates 23 

more elements. This action doesn’t connect the new elements to the structure, nor 

to each other, so a duplicate node identification and merge is needed. 

 

Figure 4-8 Multi CGAP connection. 
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4.5 Model D – Single CGAP-spokes 
Again, this model uses the CBUSH to define the stiffness of the bearing and is 

rigidly connected to the shaft with a RBE2 in the same way as model A. The 

connections to the wrist structure is made with CGAPs like model C. Each spoke 

is a unique CGAP. The advantage of using single CGAPs is that there are fewer 

gaps to handle and it is slightly simpler to model. 

The CGAP elements are patterned in the same way as model C but the element 

coordinate system is defined differently. 

 

4.6 Model E – Single CBEAM-spokes 
The idea for this model comes from the supervisor of this report, Mattias Tallberg 

(2015). This is a CBEAM based model that gets the stiffness defined with the 

beam material and geometry, see figure 4-9. The CBEAM is a tube so that there 

are two variables in the geometry dimensions. This makes it possible to give the 

beam both bending and axial stiffness.  

 

Figure 4-9 No contacts are defined, the tubes are only a visual representation of the properties. 

One beam is created and connected directly to the independent node of the shaft-

RBE2 and then to a point in the structure. The CBEAM is then copied in a 

circular pattern and the duplicate nodes are merged. This method will still make 
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the spokes pull the structure, something that cannot be avoided without some sort 

of contact definitions. 

 

4.7 Model F – Inner CBEAM-mix 
Model F is an experiment to see if how well it works to combine CBEAM 

elements and CGAP elements and have the CBEAMs define the stiffness. The 

CGAP’s seems to only allow translational load when the gaps are closed, which 

with this setup and these load cases, only happens to approximately half the 

contacts in the bearing. Because of this the bending stiffness is calculated for 12 

beams instead of 24.  

The bearing is modeled by creating a CBEAM connecting one end to a point in 

the center of the hole and the other end in a point a few millimeters from the hole 

perimeter. To that point, and a point in the wrist structure, a CGAP is connected. 

Like model C the created elements are then copied in a pattern to build the spokes. 

The newly built element’s nodes need to be merged with the duplicate node 

identification and merge operation. 

 

Figure 4-10 Failed nodal merge (left), corrected nodal merge (right) 

In this model the merge failed initially as seen in figure (4-10). This caused the 

model check, which NX performs before sending the model to the solving server, 

to fail. 

 

4.8 Model G – Outer CBEAM-mix 
Model G is built similarly to model F. Instead of the CBEAMs, the CGAPs are 

the elements that are connected to the independent node of the shaft RBE2, see 

figure 4-11. These are still very short and the stiffness is defined trough the 

beams. 
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Figure 4-11 Tiny CGAP. Reversed order from model F. 

When running this simulation, NX Nastran returned a lot of error messages and 

did not finish simulating. The solution to get it to work was to intentionally 

misalign the center of the circular pattern from the hole center when copying the 

elements. 

 

4.9 Model H – CGAP defined stiffness 
This is a simple model where the spokes are made out of CGAP-elements. The 

difference between this one and model D is that the stiffness is defined through 

the physical parameters of the CGAP. This should make the model have similar 

deforming capabilities as model E.  

In the development of the model the CGAP’s never had more than approximately 

half the CGAPs activated at any given time, so the stiffness of the CGAPs are 

calculated with equations (3-12) and (3-13). 

 

Figure 4-12 Circular pattern of CGAPs. 
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Since the stiffness is defined through the physical properties of the CGAPs, no 

CBUSH is required and the CGAPs are connected to the dependent node of the 

shaft-RBE2. Again, one CGAP is created and the rest is copied in a circular 

pattern, see figure 4-12. The duplicate nodes need to be merged.  

 

4.10 Model X – RBE3 ring 
This model is similar to model Z which is the reference model in this report. The 

only difference is that the outer RBE is a RBE3. The use of an RBE3 is going to 

enable the bearing and wrist to deform and cause more local stresses. Other than 

the outer RBE being connected to the entire surface where the outer ring is in 

contact with the structure and no wrist preparations are made, there is no 

difference between this and Model B. Figure 4-13 shows the connection to the 

surface.  

 

Figure 4-13 Connecting the purple RBE3 to the surface. 

With this model no consideration to the balls impact on the structure is taken but 

the RBE3 allows deformation of the outer ring and the structure. The load is 

carried over from the shaft and the bearing uses the correct overall stiffness.  

 

4.11 Model Z – RBE2 rigid ring 
The making of model Z is a method that ABB Robotics uses and is included in 

this report as a reference. It is similar to model A with the CBUSH in the center, 

but without the points in the structure. The outer RBE2 is instead connected to the 

surface of the structure, which is a simple and fast method to model the bearing.  

This works well when the finite element designer doesn’t need to know the load 

ways in the structure near the bearing.   
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5 Measure points 
The figures in this part are viewed directly from the sides with no section view, to 

see the von Mises stresses on the surface. 

The measure points are based on the results from some of the early simulations. 

That is, the results acquired in time for the decision of where the strain gauges are 

going. After analyzing all of the simulations the locations seemed to be 

appropriate. Four spots are chosen that should separate the models from each 

other, to find out how well they represent the deep grove ball bearing under the 

different loads. 

 

Figure 5-1 Von Mises stress with the 90d-load. From top left, Models A, B, D, E and Z. 

In figure 5-1 the 90d load is simulated and there are several areas with stresses 

that separate the models from each other. Here, the stresses on the left and right 

side of the bearing is unique. In most of the models the stresses get very high in 

the groove area under the bearing when the 90d load is simulated. 
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Figure 5-2 Von Mises stress with the ZC-load. From top left, Models A, B, D, E and Z. 

In figure 5-2 the models are more similar but a key difference is the large stresses 

in the sides once again. Model B, D and E show stresses above the bearing center. 

 

Figure 5-3 Von Mises stress with the opposing load, -ZC. From top left, Models A, B, D, E and Z. 

In the last figure, figure 5-3, the load is opposite from the one in figure 5-2 but the 

only model that shows any real changes is model D. Since it has linear gap 
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elements it does not pull on the structure, it is the only one that changes the 

conditions depending on the load.  

 

Figure 5-4 Measure Points on the wrist and the directions X and Y. 

With the information from the analysis of the model simulations the measuring 

points can be decided. All of the points are located under the removed cover, on 

the same surface. Two of the points are symmetrically located on each side of the 

bearing and two points are located to the left of the bearing in figure 5-4, in the 

grooves. These are locations that are easily accessible for the strain gauges and 

they should give results that distinguish the models from each other. The locations 

are numbered counter-clock-wise as shown in red numbers in figure 5-4. These 

will be referred to as the measuring points in the results.  

Observe the directions, as they are the normal directions of the measurements, 

except for the experimental value in position 2. That strain gauge had the first 

gauge directed to the center of the bearing.  
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6 Results – Simulation and Experimental 
6.1 Graphical results from the simulations 
All of the figures in this section have the views in a section view in the middle of 

the bearing, to see the von Mises stresses in the wrist structure. The von Mises 

stress scale is the same for every picture and can be seen in figure 6-1. 

Some of the simulations, most of the ones with CGAP-elements, did not behave 

as expected. In those cases the CGAP-elements were not in contact throughout the 

simulation. In model C, F and H the contacts seems to be inactive after a few 

iterations according to the f06-file, and thus no contact is defined at all. 

Sometimes random elements seem to stay active as seen in figure 6-1. 

Since models C, F and H ended up with inactive contacts in the simulations they 

are not included in the presentation of the results, except for these initial pictures. 

Model G is also ignored since all the gap elements were in contact in the end of 

the simulations and thus it is deemed a failed simulation. 

 

Figure 6-1 Von Mises stress in model C, failed simulation. 
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Figure 6-2 Von Mises stress in the ZC-load for models F (left), G (middle) and H (right). See fig. 6-1 for 

scale. 

In figure 6-2, middle, the lower half of the spokes should be inactive since it is the 

ZC load that is simulated. Instead it is pulling the structure as well. 

The other results from the simulations are showing some expected differences 

between the models. The ones with spokes that connect to single points, and no 

CGAPs, are showing large local stresses all around the periphery of the hole in all 

of the load cases. Since they are pulling the structure as well as pushing it, the 

stresses in the thinner part of the structure, to the left and right of the bearing 

center, are low when the ZC and –ZC-loads are applied. This is demonstrated in 

figure 6-3 left.  

 

Figure 6-3 Von Mises stress in the ZC-load. Model A (left) and  model D (right). See fig. 6-1 for scale. 

In figure 6-3, right, model D is shown with the same load as model A to the left in 

the figure. The linear gap elements are causing the bearing to only push the 

structure which is expected from a bearing, see section 3.4.   

The 90d load case shows that a lot of stresses occur in the grooves, under the 

bearing in the figures. This is significant in the models B and X that uses RBE3s 
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and model E that uses beams to carry the load to the structure. In those models 

stresses can be seen over the bearing and all around the perimeter of the structure. 

   

   

Figure 6-4 Von Mises stress in the 90d-load. Models from the top left: A, B, D, E, X and Z. See fig 6-1 for 

scale. 

The least stresses are shown in model Z, the reference model. There are almost no 

visible local stresses except in the lower regions of the picture. Those, expected, 

stresses are approximately the same for all the models. 
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Figure 6-5 Von Mises stress in the YC-load. Models from the top left: A, B, D, E, X and Z. See fig 6-1 for 

scale. 

In figures 6-5 the YC-load results is shown. Again models B, E and X are 

showing similar results with great stresses all around the wrist. Especially model 

B and model E. Model D is pushing its load to the right with local stresses around 

the right side periphery of the bearing. Model A and Z are showing similar results 

although model A has local stresses around the bearing. 

The figures from load cases –ZC and ZC are attached in appendix C (figures 11-1 

to 11-5). 
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6.2 Solving time 
The solving times of the simulations are presented in table 6-1. There it clearly 

shows that the models containing linear gap elements (and the element iterative 

solver enabled) have significantly longer solving time. 

Table 6-1 Calculation times for the models, red fields mark the failed models. 

Model Run time [min] 

A 23  

B 25  

C 360 

D 380 

E 24  

F 360 

G 360 

H 385 

X 22 

Z 33 

 

It does not seem to really matter how many contact points the models have, since 

models C is solved as fast as the other CGAP models. The time-results are not 

provided by NX Nastran, they are instead calculated from the time gap between 

the return of the result-files from the solving server. 

 

6.3 Stresses 
The measurements are from the same four nodes in every simulation, except for 

models X and Z which have slightly different meshing. This is because of the 

preparation made with the 2D meshing on the perimeter of the structure hole. The 

value the nodes return is an average of the values in the elements connected to that 

node. 

First some diagrams with the results compiled are studied to get an idea of how 

well the bearing models perform. In diagram 6-1 to 6-4 von Mises stresses from 

the different load cases are presented. For each measure position, each model and 

the strain gauges. The transparent green bar is the calculated von Mises stress 

from the strain gauge measurements. 
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Diagram 6-1 YC-load, von Mises stress. 

None of the models seem to catch the stresses correctly in the YC load (diagram 

6-1). Models A and D appear to follow the pattern close to the experimental 

stresses for the first three strain gauges, but are quite off on the fourth. Models B, 

E and X also follow the pattern for the first three strain gauge measurements, but 

with a factor of two, and they are near the correct value on the fourth. Model Z is 

not following the patterns very well nor does its stresses conform to the 

experimental stresses. 

  

Diagram 6-2 90d-load, von Mises stress. 

For the 90d-load in diagram 6-2, the twisting of the wrist, models B, E and X 

reflect the first three stresses very well. They are not that off on the fourth either. 
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The rest of the models do not seem to replicate the stresses very well, especially 

model D and Z. 

  

Diagram 6-3 -ZC-load, von Mises stress. 

Diagram 6-3 shows the –ZC load cases. Here all of the models differ greatly from 

the experimental values. Model D somewhat follows the pattern but with half the 

magnitude of the stresses. Model Z has the same tendencies but again it is quite 

off. 

 

Diagram 6-4 ZC-load, von Mises stress. 

In diagram 6-4 several of the models appear to follow the pattern of the 

experimental values, except for location 2. Again model Z is not performing well, 

but none of the models capture the magnitude of the stresses in location 1 and 4 in 

any of the Z-load cases. Model D does however follow the pattern in both. For a 

better overview on each model check diagrams 11-1 to 11-6 in appendix D. 

  

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4

V
o

n
 M

is
es

 S
tr

es
s 

 [
M

P
a]

Strain Gague

-ZC load

MA

MB

MD

ME

MX

MZ

Strain Gauge

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

1 2 3 4

V
o

n
 M

is
es

 S
tr

es
s 

 [
M

P
a]

Strain Gague

ZC load

MA

MB

MD

ME

MX

MZ

Strain Gauge



Thesis – SIMPLIFIED FINITE ELEMENT BEARING MODELLING – WITH NX NASTRAN 

41 

 

7 Analysis 
  

7.1 Error ratio 
The error ratio is calculated to get a comparable value of how well the models 

perform. It is a comparison of every model, their load cases and the measuring 

points, to the experimental values of the strain gauges ditto. 

It is calculated by taking the value of a model measurement and its corresponding 

value in the experimental measurements. The smallest value of the two is then 

subtracted from the other value, and the result from that operation is divided by 

the larger of the two initial values. The error ratio does consequently not take into 

account if the simulated stresses are bigger or smaller than the experimental. The 

lower the result is, the better the simulation stresses conform to the experimental 

stresses.  

The total error ratio for each model is an average of every error ratio from the 

model. 

 

Table 7-1 Model total error ratio 

Model Total Error 

ratio 

A 0,49 

B 0,47 

D 0,51 

E 0,46 

X 0,47 

Z 0,61 

 

The table 7-1 results show that most of the models perform approximately equal 

overall, except for the reference model Z which has a distinguishing high total 

error ratio. 

If the focus is put on the different load cases it is possible to see how the models 

perform under the different conditions. The data can be seen in table 11-1 in 

appendix E.  
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Diagram 7-1 Average error ratio for the load cases 

Diagram 7-1 shows the average of the measure points. Once again the models 

don’t work well when the Z-loads are applied.  Models B, E and X are around 10 

% off in the 90d-load, 30% off in the YC-load.  

 

7.2 Pattern error 
Since the stresses in the simulations are mostly inaccurate, it becomes interesting 

to see if any of the models conform to the same pattern as the experimental 

results. It could be that they are wrong by a certain factor overall. For this there is 

the pattern error.  

The pattern error value is calculated by dividing the simulated von Mises stress 

with the experimental ditto. Unlike the error ratios this method can return values 

greater than 1. 

The average pattern errors for the load cases are shown in diagram 7-2, for the 

numbers check table 11-2 in appendix E. The bars show the difference between 

the largest and the smallest pattern error value of every measure point for each 

load case. Average pattern error is calculated by subtracting the smallest pattern 

error from the greatest pattern error in a load case or measure point. The 

difference should be as small as possible for a good average pattern error. 
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Diagram 7-2 Pattern Error for the load cases 

The distinguishing model in diagram 7-2 is model D which seems to follow the 

pattern fairly well in the Z-loads. What this diagram say is that it for the most part 

is a bad conformity with the experimental pattern. The diagram does only show 

the pattern error for all the measure points, and not if there is a single measure 

point that particularly distinguishes itself from the others.  

  

Diagram 7-3 Pattern error for the measure points 
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Diagram 7-3 shows the difference between the largest and smallest pattern error 

value between the different cases for each measure point. The values are mostly 

quite high, over 1 times the experimental value, but model D has a low pattern 

error in measure point 4. Like the previous diagram this does not show if there is a 

single value that ruins the overall pattern error. The values are attached in table 

11-3 in appendix E. 

Models B, E and X are showing similar results in the von Mises stress, error ratio 

and pattern error. In load case 90d they conform to the experimental values for 

measure points 1, 2 and 3. Model D also conforms to the experimental values 

quite successfully, albeit the error ratios in measure point 1 in the 90d-load and 

measure point 4 in YC-load are 0.79 and 0.78 respectively (table 11-4). 
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7.3 Stress direction 
To see if the models stresses are directed in the same way as the experimental 

stresses the following diagrams are created. Since the strain gauge in measure 

point 2 is directed differently it is not included in these comparisons. σX and σY are 

the normal stress components in the X- and Y-coordinate planes, see figure 5-4. 

 

 

Diagram 7-4 σX stresses for models B, E and X in every load case and three of the measure points. 

 

 

Diagram 7-5 σY stresses for models B, E and X in every load case and three of the measure points. 

In diagrams 7-4 and 7-5, model B, model E and model X are compared to the 

experimental stress values in the coordinate systems X and Y direction. In 

diagram 6-2 all three seem to match the experimental stresses pretty well and in 

diagram 6-1 they appear to conform to the experimental pattern.  

In the first load case, 90d, the σX- and σY-stresses do not match the experimental 

stress directions at all, except for measure point 4 in diagram 7-5. In measure 
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point 1 the models stress is perpendicular and in measure point 3 they show 

mostly shear stress (table 11-4 appendix E). In the YC-load case the stresses are 

matching well in the first measure point but not in the rest.  

In the –ZC and ZC load cases the stress-direction rarely matches. However there 

are instances that separate model E from the two others, in the σY -stress table 

measure point 3 for both loads. This does not show in the load case diagrams 6-3 

and 6-4. 

 

Diagram 7-6 σX stresses for models A, D and Z in every load case and three of the measure points. 

 

Diagram 7-7 σY stresses for models A, D and Z in every load case and three of the measure points. 

The same prerequisites for models A, D and Z with diagrams 7-6 and 7-7. None of 

the models match the experiment particularly well in the 90d-load case, model D 

seems to match stress directions in measure point 3 for the first two load cases.  

In the ZC and –ZC load cases, model D matches the directions but not the 

magnitude (except for measure point 3 ZC-load diagram 7-7). This matches well 

with the low pattern errors it gets in section 7.2. 
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Model Z is hardly showing any stresses at all and when it does, it is not well 

conforming to the experimental values. Model A sometimes simulates the correct 

magnitude of stress in the first two load cases but according to diagrams 7-6 and 

7-7 they are rarely correct when it comes to direction. 
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8 Discussion  
8.1 Reliability of the results 
The experimental testing was conducted in the ABB Robotics laboratories by 

Mattias Tallberg and myself. The tools we had at hand, to mark the spot for the 

technicians to place the strain gauges, was a slide caliper and a marker. We then 

had to project the spots onto the wrist. This makes the placement of the strain 

gauges imprecise and it might cause the measured stresses to differ from the true 

stresses in the spots. The strain gauges, see figure 1-7, are quite large however, so 

the impact on the results might be negligible.  

During the strain test the values from the strain gauges had a tendency to rise, 

albeit slowly. Precautions were taken to avoid that error, like doing the tests 

quickly and making sure the values returned to zero, but some unwanted value-

rises might have slipped in.  

During some of the first measurements a hammer drill was operated nearby. The 

vibrations might have impacted the early measurements. 

Stress concentrations are high where the connections are made for the spokes. 

This is also true for the balls in the bearing (section 3.4). Since it is impossible to 

see where the balls are located in the bearing at the measuring moment, 

measurements to close to the bearing will be unreliable. 

To make sure that the finite element models work properly, a convergence control 

is supposed to be made. This has not been done. 

 

8.2 The time consuming CGAP 
The results show that when the models contain gap elements, the time required for 

computing is significantly longer than the models without gap elements. It does 

not seem to matter whether the model contain 24 or 288 contact elements, the 

solving time is approximately the same. The number of iterations that NX Nastran 

makes is a value that can be changed in the solver settings, so by adjusting the 

number of iterations and/or conditions for convergence, one can speed up the 

process of simulation cases with linear gap elements. 

 

8.3 Evaluation of the models 
The most important knowledge from the results is that the way the bearing 

modeling is done today is not accurately replicating the load paths and stresses 

found around the bearing. It achieved a significantly worse result in the total error 

ratio, 0.61, which reflects the overall results. The problem seem to be that it does 
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not cause enough stresses in the structures around the bearing. Measure points 1 

and 4 show very low stresses in every load case, see diagrams 6-1 to 6-4.  

Model A is very similar to model Z but with the difference that it causes local 

stresses with the spokes. Apart from a few instances and that model A have a 

better total error ratio, they are equally bad at simulating the stresses. 

Model D scored greatly in the error pattern diagrams on the ZC and –ZC-loads 

with the values 0.21 and 0.29. It does however somehow fail to describe the 

impact on the structure, almost every stress reading is lower than the 

experimental. It does not provide any torsional load on the opposite side of the 

load direction. In a deep grove ball bearing the raceways will enable axial load but 

model D does not seem to carry those loads, see diagram 11-3. 

Models that appear to do a great job at carrying torsional loads are models B, E 

and X. The 90d-load that twists the bearing is a special load case and I think it is 

the ability to deform the bearing that made the stresses seem correct. As seen in 

section 7-3 however, the stresses are not correctly directed in measure point 1. 

This I believe is something to keep in mind if using any of those modelling 

methods. 

An overall problem with all models, except model D, is that they pull the structure 

when radial loads are applied. This becomes a problem when looking for stresses 

in areas such as measure point 1 and 4, like the results clearly reveal. 

 

8.4 The failed models 
Every modelling method did work at one point in the development, and those 

settings were used in the wrist model simulations. Prior to the simulations, model 

C were expected to deliver the most accurate results. With the triangle shaped 

connection geometry it was supposed to handle the axial load problem for the 

CGAPs.  

Models F and G were supposed to mix the beam stiffness and the gap element 

contact abilities. This was thought to enable contact conditions and deformation of 

the bearing. They got quite different results in the simulations since one did not 

have any active contacts in the end, and the other did not have inactive contacts. 

Model H was an experiment to see how well the stiffness could be defined 

through the physical properties setting of the CGAP instead of using the CBUSH, 

enabling bearing deformation.  

David Whitehead said that “getting models which include CGAP elements to 

work properly can be somewhat fiddly” (Whitehead, 2015) and I am inclined to 

agree. In conditions that may appear similar, the CGAP behaves differently.  
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One big problem with getting the CGAP elements to work on the wrist model is 

that the simulations are very time consuming, even for a single load case. This 

makes the process of tweaking and testing parameters a long one, compared to the 

testing conducted on the basic structures in section 2.5.   
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9 Conclusion 
The way that ABB Robotics model their deep groove ball bearings today do not 

recreate the stresses found in the structure around the bearing. The method is 

quick and simple but the load paths are not correct.  

None of the models developed in this report is suitable for every load case. 

Models B, E and X, the ones that allow bearing deformation, appear to describe 

the correct stresses in the 90d-load, and close to correct in the YC-load. Model D 

mostly shows a good conformity to the pattern of the experimental stresses but it 

is often missing the magnitude of the stress. 

With the knowledge from the results I suggest that something similar to model X 

be used from now, and a closer study of RBE3s is conducted. In the result section 

it shows good conformity to the von Mises stresses and it has one of the lower 

total error ratio. It does not simulate the correct compression and tension, but so is 

also the case for the reference model. Model Z fails to simulate any stresses 

around the bearing which is showed in the result section, where its von Mises 

stresses are overall low. It is not a hard transformation to use model X since it is 

prepared in the same way as model Z (see 4.1). 

In load cases similar to the ZC-load and the -ZC-load, when measuring areas 

corresponding to measure point 1 and 4, I think models with linear gap elements 

should be considered. It should, however, be tested thoroughly before the results 

are trusted. 
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10 Suggestions for continued work 
 In the results from the simulations where spoke-design is used, the stresses 

in the connecting points are quite high, just like the contact points in a 

bearing. This makes the location of the connecting points and the choice of 

measuring points important since they might have an unrealistically large 

impact on the test result. For this I suggest testing the models with the 

outer bearing ring modeled in the finite element model.  

 

 Most of the models containing CGAP-elements failed in the final 

simulations. Since they functioned in the development of the methods I 

believe they can be used with the right settings and preparations, 

especially model C. Model D is the only model showing the same pattern 

as the experimental values in the ZC and –ZC load cases which makes it 

worth pursuing a solution to how the CGAP elements work. Perhaps in 

collaboration with Siemens Product Support.  
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Notations 
 
General 

FEA – Finite element analyzer  p.5 

f06 – A report file created by the solver that can be used to troubleshoot the 

simulations.    p.38 

FEM – Finite element method  p.12 

FE – Finite element   p.5 

RBE – Rigid body element   p.14 

DOF – Degrees of freedom   p.15 

OLDGAPS – A setting that defines whether NX Nastran should treat CGAPs like 

old versions of NX Nastran or not  p.18 

AUTO-MPC – A setting that, when enabled, makes NX Nastran resolve some 

multi point constraint problems automatically  p.26 

Element name descriptions 

These are from the NX Nastran Quick Reference Guide (Siemens Product 

Lifecycle Management Software Inc, 2011) 

CBEAM – Beam element connection 

CBUSH – Generalized spring and dampener connection 

CELAS – Spring element connection 

CGAP – Gap element connection 

CQUAD4 – Quadrilateral plate element connection 

CTETRA10 – Four-sided solid element connection 

PGAP – Gep element property 

Shaft-RBE2 – The RBE2 element connecting the shaft to the other parts of the 

modelled bearing 
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SYMBOLS 

𝛼  Factor for load distribution in bearing radial stiffness 

𝐴   Cross sectional area 

d  Inner diameter 

D Outer diameter 

E  Modulus of elasticity 

f  Beam deflection 

𝐹𝑟  Radial force applied to a bearing 

𝐼   Second moment of area 

𝑄0  Maximal ball load in bearing 

𝑄𝑚  Median ball load in bearing 

𝑘  Stiffness 

𝑘𝑎  CGAP axial stiffness 

𝑘𝑏𝑎  Bearing axial stiffness 

𝑘𝑏𝑟  Bearing radial stiffness 

𝑘𝑟 CGAP translational stiffness 

𝐿ℎ  Half beam length 

𝐿  Beam length 

𝑚  Number of rolling elements 

𝑟𝑖  Inner radius 

𝑟𝑦  Outer radius 

𝜎  Stress 

𝜎𝑒  von Mises Stress 

𝜎𝑠  Yield stress 

𝜏  Shear stress 
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Appendix 
A. Parameters of the Models 
 

Model A 

CBUSH Physical properties: 

Radial stiffness:  426000000 N/m 

Axial stiffness :  12500000 N/m 

Rotational stiffness: 49000 N/m 

Model B 

CBUSH Physical properties: 

Radial stiffness:  426000000 N/m 

Axial stiffness :  12500000 N/m 

Rotational stiffness: 49000 N/m 

 

Model C 

CBUSH Physical properties: 

Radial stiffness:  426000000 N/m 

Axial stiffness :  12500000 N/m 

Rotational stiffness: 49000 N/m 

CGAP Physical properties: 

Initial opening of the gap:   0 mm 

Stiffness when the gap is closed:  1e+015 N/m 

Translational stiffness when the gap is closed: 0 

Friction of the gap:   1 

Coordinate system definition: 

CSYS Override – Cylindrical 

Model D 

CBUSH Physical properties: 

Radial stiffness:  426000000 N/m 

Axial stiffness :  12500000 N/m 

Rotational stiffness: 49000 N/m 

CGAP Physical properties: 
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Initial opening of the gap:   0 mm 

Stiffness when the gap is closed:  1e+015 N/m 

Translational stiffness when the gap is closed: 0 

Friction of the gap:   1 

Coordinate system definition: 

Specify Vector – At Angle to XC = 90° 

Model F 

CGAP Physical properties: 

Initial opening of the gap:   0 mm 

Stiffness when the gap is closed:  1e+015 N/m 

Translational stiffness when the gap is closed: 0 

Friction of the gap:   1 

Coordinate system definition: 

CSYS Override – Cylindrical 

Model G 

CGAP Physical properties: 

Initial opening of the gap:   0 mm 

Stiffness when the gap is closed:  1e+015 N/m 

Translational stiffness when the gap is closed: 0 

Friction of the gap:   1 

Coordinate system definition: 

Specify vector – bearing center line 

Model H 

CGAP Physical properties: 

Initial opening of the gap:   0 mm 

Stiffness when the gap is closed:  269649125 N/m 

Translational stiffness when the gap is closed: 1041666 N/m 

Friction of the gap:   1 

Coordinate system definition: 

CSYS Override – Cylindrical 
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Model X 

CBUSH Physical properties: 

Radial stiffness:  426000000 N/m 

Axial stiffness :  12500000 N/m 

Rotational stiffness: 49000 N/m 

Model Z 

CBUSH Physical properties: 

Radial stiffness:  426000000 N/m 

Axial stiffness :  12500000 N/m 

Rotational stiffness: 49000 N/m 
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B. Calculations 
Beam 

To find 𝑟𝑜 and 𝑟𝑖 for equation (3-11), 𝑟𝑜 can be broken out of equation (3-5) 

𝑟𝑜 = √
𝑘𝑏𝑟 +

𝑚𝐸𝛼𝜋
𝐿ℎ

𝑟𝑖
2

𝑚𝐸𝛼𝜋
𝐿ℎ

     [𝑚]     (11 − 1) 

and placed in equation (3-10) 

𝑘𝑏𝑎 =
𝑚192𝐸𝜋

8𝐿3

(

 (
𝑘𝑏𝑟 +

𝑚𝐸𝛼𝜋
𝐿ℎ

𝑟𝑖
2

𝑚𝐸𝛼𝜋
𝐿ℎ

)

2

− 𝑟𝑖
4

)

      [𝑁/𝑚]    (11 − 2). 

Here 𝑟𝑜 can be broken out and the equation can be simplified  

𝑟𝑖 =

√
  
  
  
  
  
 
𝑘𝑏𝑎 (

𝑚𝐸𝛼𝜋
𝐿ℎ

)
2

𝑚192𝐸𝜋
8𝐿3

− 𝑘𝑏𝑟
2

2𝑚𝐸𝛼𝜋𝑘𝑏𝑟
𝐿ℎ

     [𝑚]    (11 − 3) 

In collaboration with Tallberg, M (2015).  

Model E 

E = 200 GPa 

𝑘𝑏𝑎= 426 MPa 

𝑘𝑏𝑟= 12.5 MPa  

m = 24 

L = 0.165 m 

𝛼=15.1915 

This gives 

𝑟𝑖 = 0,022485157 m 

𝑟𝑜= 0,022488568 m 

Model F 

E = 200 GPa 

𝑘𝑏𝑎= 426 MPa 

𝑘𝑏𝑟= 12.5 MPa  

m = 24 
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L = 0.155 m 

𝛼=15.1915 

This gives 

𝑟𝑖 = 0.02112232 m 

𝑟𝑜= 0.02112573 m 

 

Model G 

E = 200 GPa 

𝑘𝑏𝑎= 426 MPa 

𝑘𝑏𝑟= 12.5 MPa  

m = 24 

L = 0.155 m 

𝛼=15.1915 

This gives: 

𝑟𝑖 = 0.0224579 m 

𝑟𝑜= 0.02246131 m 

 

C. Figures 

 

Figure 11-1 MA –ZC left, MB ZC right, von Mises stress. 
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Figure 11-2 MB -ZC left, MD –ZC right, von Mises stress, scale in fig. 11-1. 

 

Figure 11-3ME ZC left, ME –ZC right, von Mises stress, scale in fig. 11-1. 
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Figure 11-4 MX ZC left, MX –ZC right, von Mises stress, scale in fig. 11-1. 

 

 

 

Figure 11-5 MZ ZC left, MZ –ZC right, von Mises stress, scale in fig. 11-1. 
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Figure 11-6 Case Control Settings 

 

Figure 11-7 General Settings 
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Figure 11-8 The system cell OLDGAP setting 
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D. Diagrams 
 

 

Diagram 11-1 Model A von Mises 

 

Diagram 11-2 Model B von Mises 
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Diagram 11-3 Model D von Mises 

 

Diagram 11-4 Model E von Mises 
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Diagram 11-5 Model X von Mises 

 

 

Diagram 11-6 Model Z von Mises 
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E. Tables 
 

Table 11-1 Average error ratios for the four loads. 

 

 

 

 

 

Table 11-2 Pattern error for the four loads 

Model 90d YC -ZC ZC 

A 0,24 
 

1,07 4,49 0,87 

B 0,61 
 

1,13 8,44 0,64 

D 0,59 
 

1,19 0,21 0,29 

E 0,64 
 

0,97 7,83 0,78 

X 0,47 
 

1,19 7,80 0,68 

Z 0,59 
 

1,46 2,04 0,96 

 

Table 11-3 Pattern error for the four measure points 

Model 90d YC -ZC ZC 

A 1.94 1.11 1.14 4.45 

B 3,83 1,67 1,90 8,12 

D 0,88 1,18 1,02 0,33 

E 3,68 1,48 1,81 7,55 

X 3,75 1,65 1,90 7,51 

Z 0,96 1,21 0,66 2,04 

 

Table 11-4 The simulation stress results 

Model Load  
case 

Measure 
Point 

XX YY XY vM Error ratio 

MA 90d 1 -1,698 0,142 -1,502 3,149 0,498195697 

  2 -0,429 -1,435 -2,19 4,001 0,284641421 

  3 0,053 -0,061 -3,594 6,225 0,342652223 

  4 1,596 -0,14 -1,628 3,276 0,261349333 

 yc 1 0,756 -0,049 0,658 1,383 0,215155742 

  2 0,223 0,639 1,1 1,986 0,310834485 

  3 0,043 0,021 1,877 3,251 0,242672667 

  4 -0,742 0,033 0,777 1,544 0,614819912 

 zc- 1 -0,772 -0,017 -0,426 1,063 0,524543987 

  2 -0,929 -0,98 -0,619 1,436 0,658448885 

Model 90d YC -ZC ZC 

A 0,35 0,35 0,70 0,57 

B 0,11 0,39 0,82 0,57 

D 0,49 0,35 0,55 0,64 

E 0,15 0,37 0,80 0,53 

X 0,10 0,41 0,81 0,56 

Z 0,65 0,58 0,53 0,67 
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  3 -0,732 -0,749 -0,006 0,731 0,823021115 

  4 -0,769 -0,002 0,528 1,194 0,78586992 

 zc 1 0,772 0,017 0,426 1,063 0,838155196 

  2 0,929 0,98 0,619 1,436 0,035423783 

  3 0,732 0,749 0,006 0,731 0,623090943 

  4 0,769 0,002 -0,528 1,194 0,779421965 

MB 90d 1 -0,103 0,724 -3,598 6,282 0,00105783 

  2 2,221 -1,305 -2,47 5,277 0,05649907 

  3 0,002 -0,114 -5,386 9,329 0,014875918 

  4 0,354 -0,802 -3,921 6,872 0,354610868 

 yc 1 -0,037 -0,356 1,779 3,101 0,431753291 

  2 -1,211 0,527 1,251 2,66 0,485457627 

  3 0,016 0,01 2,833 4,907 0,498253279 

  4 -0,101 0,398 1,982 3,465 0,135590023 

 zc- 1 -1,48 0,002 -0,858 2,1 0,759328694 

  2 -0,496 -0,692 -0,55 1,136 0,729803574 

  3 -0,25 -0,408 0,005 0,352 0,914778977 

  4 -1,377 -0,011 0,978 2,179 0,882665757 

 zc 1 1,48 -0,002 0,858 2,1 0,680268967 

  2 0,496 0,692 0,55 1,136 0,179861231 

  3 0,25 0,408 -0,005 0,352 0,818506172 

  4 1,377 0,011 -0,978 2,179 0,597454323 

MD 90d 1 -0,221 -0,008 -0,766 1,345 0,785669486 

  2 0,684 0,432 -2,564 4,482 0,198641052 

  3 1,516 1,938 -3,464 6,248 0,340223468 

  4 0,081 -0,263 -0,94 1,658 0,6261652 

 yc 1 -0,353 0,912 0,895 1,92 0,082222373 

  2 -0,353 0,912 0,895 1,92 0,28714442 

  3 0,776 0,995 1,849 3,323 0,259081806 

  4 0,547 -0,102 0,353 0,868 0,783460935 

 zc- 1 0,133 0,056 0,101 0,209 0,586474137 

  2 -1,424 -1,302 -0,999 2,206 0,475305181 

  3 -1,58 -0,86 -0,022 1,361 0,670494852 

  4 0,035 0,058 -0,075 0,139 0,456333224 

 zc 1 2,042 0,307 0,225 1,953 0,702650139 

  2 0,129 0,231 0,126 0,296 0,78630187 

  3 -0,548 0,255 -0,222 0,809 0,582873561 

  4 2,058 0,208 -1,099 2,726 0,496402241 

ME 90d 1 -0,013 0,703 -3,485 6,079 0,031289819 

  2 1,895 -1,027 -2,365 4,835 0,135526436 

  3 0,005 -0,097 -5,028 8,71 0,080241103 

  4 0,213 -0,73 -3,82 6,677 0,335762451 

 yc 1 -0,004 -0,387 1,921 3,35 0,473990136 

  2 -1,029 0,454 1,21 2,475 0,446996884 

  3 0,014 0,01 2,707 4,689 0,474926176 

  4 -0,132 0,416 2,145 3,75 0,064491366 
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 zc- 1 -1,588 -0,016 -7,21E-
01 

2,015 0,749176307 

  2 -0,5 -0,495 -0,734 1,365 0,675336161 

  3 -0,433 -0,083 -0,004 0,398 0,903642139 

  4 -1,451 -0,041 0,832 2,027 0,873867136 

 zc 1 1,588 0,016 7,21E-
01 

2,015 0,693210461 

  2 0,5 0,495 0,734 1,365 0,014533962 

  3 0,433 0,083 0,004 0,398 0,794788229 

  4 1,451 0,041 -0,832 2,027 0,625534609 

MX 90d 1 -0,06 0,566 -3,711 6,459 0,028432465 

  2 2,179 -1,303 -2,47 5,253 0,060790149 

  3 0,038 -0,098 -5,338 9,246 0,023640555 

  4 -0,016 -0,762 -3,587 6,257 0,291175625 

 yc 1 -0,057 -0,269 1,85 3,215 0,45190263 

  2 -1,189 0,525 1,252 2,648 0,483125864 

  3 -0,003 -
0,0004 

2,828 4,899 0,497433933 

  4 0,093 0,379 1,843 3,21 0,19920461 

 zc- 1 -1,431 -0,021 -0,859 2,055 0,75405852 

  2 -0,509 -0,745 -0,583 1,207 0,712916298 

  3 -0,251 -0,427 0,016 0,37 0,910421084 

  4 -1,336 0,024 0,864 2,016 0,873178911 

 zc 1 1,431 0,021 0,859 2,055 0,687120346 

  2 0,509 0,745 0,583 1,207 0,128602558 

  3 0,251 0,427 -0,016 0,37 0,809225238 

  4 1,336 -0,024 -0,864 2,016 0,627566735 

MZ 90d 1 -0,48 -0,065 -0,386 0,808 0,871242338 

  2 -2,264 -1,5 -2,023 4,028 0,279813957 

  3 0,347 0,066 -2,004 3,486 0,631885245 

  4 0,499 0,092 -0,364 0,782 0,823679847 

 yc 1 0,209 0,023 0,166 0,349 0,80194458 

  2 1,258 0,76 1,05 2,122 0,355003434 

  3 -0,012 -2,10E-
05 

1,065 1,845 0,25063092 

  4 -0,236 -0,021 0,171 0,374 0,906698606 

 zc- 1 -0,274 0,057 -0,244 0,523 0,03363338 

  2 -1,109 -0,474 -0,618 1,439 0,657735338 

  3 -0,344 -0,405 0,002 0,377 0,908726348 

  4 -0,303 0,069 0,246 0,546 0,531737516 

 zc 1 0,274 -0,057 0,244 0,523 0,920371748 

  2 1,109 0,474 0,618 1,439 0,037434713 

  3 0,344 0,405 -0,002 0,377 0,805615986 

  4 0,303 -0,069 -0,246 0,546 0,899132657 
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Table 11-5 The experiment stress results 

Load 
case 

Measure 
point 

Load kN Y Mpa X Mpa XY Mpa VM Mpa 

90d 1 0,500 -0,886581 -1,344792 -3,557988 6,275354 

 2 0,502 3,645003 2,402435 -2,644540 5,592999 

 3 0,499 0,546004 3,653708 -5,099860 9,469873 

 4 0,501 -0,624501 -0,219562 -2,540941 4,435114 

yc 1 0,501 -0,220629 -0,430548 0,994326 1,762133 

 2 0,503 0,200954 0,379657 0,767042 1,368682 

 3 0,501 0,722312 0,010768 1,359867 2,462071 

 4 0,501 0,070171 -0,151535 2,311541 4,008514 

zc- 1 0,501 0,224296 0,536854 0,111553 0,505409 

 2 0,501 -1,745863 -2,970071 -1,914203 4,204348 

 3 0,501 -1,981754 -4,639649 -0,516865 4,130436 

 4 0,500 0,076767 0,284960 -0,007019 0,255671 

zc 1 0,500 0,349512 2,694000 3,497650 6,568020 

 2 0,500 -0,880129 -0,973742 0,592397 1,385131 

 3 0,504 -0,848727 -2,167062 0,247824 1,939459 

 4 0,500 0,508218 2,832674 -2,736079 5,413050 

 

  




