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ABSTRACT 

Parallelization is the answer to the ever-growing demands of computing power by 

taking advantage of multi-core processor technology and modern many-core graphics 

compute units. Multi-core CPUs and many-core GPUs have the potential to 

substantially reduce the execution time of a program but it is often a challenging task to 

ensure that all available hardware is utilized. OpenMP and OpenCL are two parallel 

programming frameworks that have been developed to allow programmers to focus on 

high-level parallelism rather than dealing with low-level thread creation and 

management. This thesis applies these frameworks to the area of computed tomography 

by parallelizing the image reconstruction algorithm DIRA and the photon transport 

simulation toolkit CTmod. DIRA is a model-based iterative reconstruction algorithm in 

dual-energy computed tomography, which has the potential to improve the accuracy of 

dose planning in radiation therapy. CTmod is a toolkit for simulating primary and 

scatter projections in computed tomography to optimize scanner design and image 

reconstruction algorithms. The results presented in this thesis show that parallelization 

combined with computational optimization substantially decreased execution times of 

these codes. For DIRA the execution time was reduced from two minutes to just eight 

seconds when using four iterations and a 16-core CPU so a speedup of 15 was achieved. 

CTmod produced similar results with a speedup of 14 when using a 16-core CPU. The 

results also showed that for these particular problems GPU computing was not the best 

solution. 
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1. INTRODUCTION 

Parallelization is the next step in keeping up with the ever-growing need for additional 

computational power. The single processor system is no longer able to provide the 

performance required due to limitations in clock speed, caused by power and heat 

problems, the restricted instruction-level parallelism available and memory access 

bottlenecks. The limitations of the single processor system lead to the introduction of 

multi- and many-core systems, but they require software developers to explicitly write 

programs with parallelization in mind to fully utilize all cores. To aid the developers a 

set of parallel paradigms have evolved that provide simple and easy to use methods for 

unlocking the powers of parallelization by abstracting the tedious tasks of low-level 

thread and core management. In this thesis two of these paradigms, Open 

MultiProcessing (OpenMP) and Open Computing Language (OpenCL), are used to 

parallelize codes in the area of computed tomography. In this area there are still many 

codes that have not yet been parallelized to take advantage of the additional computing 

power provided by multi-core processors and many-core graphics processing units, 

leading to unnecessarily long execution times, making the user pointlessly wait for 

results. Some of these codes include, but are not limited to, the iterative reconstruction 

algorithm DIRA and the CTmod toolkit. 

Using dual-energy CT (DECT) instead of single-energy CT has the potential to improve 

quantitative tissue classification by providing additional information of the scanned 

object and improve dose planning accuracy in radiation treatment. There are still 

problems with beam hardening and scatter artifacts in the reconstructed images altering 

the CT values, causing the tissue classification to incorrectly decompose the image. This 

can for example result in bone tissue being classified as soft tissue, such as protein or 

fat. A new method, DECT Iterative Reconstruction Algorithm (DIRA), has been 

developed in Linköping and has the potential to remove the beam hardening artifacts 

while keeping the CT numbers intact. 

Photons that have not interacted inside a phantom carry useful information to the 

detector array, but the scattering of photons causes scatter artifacts, visible as cupping or 

streaks when reconstructing images. The scattering of photons is especially strong in 

cone beam CT as the amount of scatter is dependent on the beam width, where a wider 

beam increases the scatter. Other factors playing a role in the scattering are the tube 

voltage, the size of the phantom, the usage of collimators and bowtie filters as well as 

the detector array setup. The ability to study how these factors affect the projections is 

helpful in the optimization of image reconstruction algorithms and CT scanner design. 

The simulation toolkit CTmod, written in C++ and based on the analysis framework 

ROOT [1] by CERN, was developed to calculate scatter projections using the Monte 

Carlo method. Many of the toolkit’s features are not readily available in general purpose 

Monte Carlo codes like Geant4, MCNP and FLUKA. 
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1.1. PURPOSE AND GOAL 

The purpose of this thesis is to improve the execution times of DIRA and CTmod by 

taking advantage of the multiple cores provided by modern CPUs and many cores by 

modern GPUs using the frameworks OpenMP and OpenCL. The single-threaded 

execution time of DIRA is in the range of several minutes per slice, depending on the 

hardware used and the number of iterations the algorithm performs. Some diagnostic 

protocols use volumetric scans consisting of tens or hundreds of slices [2]. These would 

require hours of computation to complete. 

The execution time of CTmod is dependent on the configuration chosen, where the 

number of photon histories to simulate, the complexity of the geometry and the detector 

array setup are all factors. A single-threaded simulation can take hours to complete. 

Parallelization would open up new possibilities regarding the complexity of simulation, 

application of the code in clinical practice and execution on new hardware architectures, 

such as Intel Xeon Phi [3]. 

There are alternative frameworks available for writing parallel programs such as 

Message Passing Interface, MPI [4], for CPUs and Compute Unified Device 

Architecture, CUDA [5], for GPUs. For parallelization on the CPU the choice was made 

to use OpenMP instead of MPI as the utilization of a distributed memory system was 

not required. For GPU parallelization there are two alternatives, OpenCL and CUDA. 

CUDA is developed and maintained by NVIDIA and as such can only be used on their 

GPUs. OpenCL does not have the same restriction and can run on a wider range of both 

CPU and GPU architectures so in order to make the parallelization as general as 

possible the choice was made to use OpenCL.  

1.2. RELATED WORK 

DIRA’s approach to image reconstruction has been unique till 2014 and so there is little 

possibility to compare it with competing projects. More is known about parallelization 

of other image reconstruction algorithms like the filtered backprojection or noise-

suppressing iterative image algorithms, for example described in [6]. Any comparison 

is, however, complicated by the fact that vendors often do not disclose implementation 

details of their algorithms.  

There are several codes that can simulate CT scanners. Some of them are specialized, 

like GATE, MCGPU and CTsim, others are just adaptations of general-purpose MC 

codes like MCNPX, EGSnrc and FLUKA. As those codes typically simulate very many 

independent particle histories, their parallelization can be done by splitting the 

simulation to several smaller jobs, where each job simulates a subset of the histories. 

Results from these jobs are then summarized by a master process. Implementation 

details of such solutions are listed below for several selected codes. The open source 

software GATE (Geant4 Application for Tomographic Emission) [7] supports 

simulations of Computed Tomography, Radiotherapy, PET (Positron Emitted 

Tomography) and SPECT (Single Photon Emission Computed Tomography) 

experiments. GATE uses a parallel computing platform to run simulations in a cluster to 
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shorten the setup time and provide fast data output handling. It also supports CUDA for 

PET and CT applications. GATE is an extension of Geant4 [8], a toolkit for the 

simulation of the passage of particles through matter. Geant4 includes facilities for 

handling geometry, tracking, detector response, run management, visualization and user 

interface. The parallel implementation ParGATE, using MPI, achieved a speedup of 170 

with 100 workers. The superlinear speedup occurred due to inefficiencies in the 

sequential program caused by the overhead of writing large files [9]. 

MCNPX (Monte Carlo N-Particle eXtended) [10] is a general-purpose Monte Carlo 

radiation transport code. It can simulate 34 particle types (including nucleons and light 

ions) at almost all energies. It uses the MPI library [4] to allow for parallel processing. 

According to [11] a speedup of 11 was possible to achieve with 31 cores. 

The code MCGPU is a massively multi-threaded GPU-accelerated x-ray transport 

simulation code that can generate radiographic projection images and CT scans of the 

human anatomy [12]. It uses the CUDA [5] library to execute the simulations in parallel 

on NVIDIA GPUs. It also uses the MPI library to allow for execution on multiple 

GPUs. The code is in the public domain and developed by the U. S. Food and Drug 

Administration (FDA). Evaluation showed that MCGPU on a NVIDIA C2070 GPU 

achieved a speedup of 6 compared to a quad-core Xeon processor [13].  
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2. BACKGROUND 

This section serves as an introduction to (i) processor architecture, (ii) parallelization, 

and (iii) physics and algorithms of computed tomography. It also briefly describes the 

OpenMP and OpenCL frameworks for parallelization of programs, and how the 

performance improvement of parallelization is measured. The GPU architecture is 

shortly described and the new Xeon Phi architecture is introduced.  

2.1. PROCESSOR CONCEPTS AND PARALLELIZATION 

2.1.1. MULTI-CORE 

A core refers to a processing unit capable of reading and executing program 

instructions, such as addition, subtraction, multiplication and conditional statements 

(also known as if-then-else statements). A multi-core processor is a single computing 

component with two or more independent processing units (cores). The term multi-core 

refers to multi-core CPUs, other hardware architectures such as the GPU or the Intel 

Many Integrated Core (MIC), brand name Xeon Phi, are not included. In the beginning 

of 2015 a modern desktop CPU typically had 4 cores, while a server CPU from Intel 

could have up to 18 cores [14] or 16 cores for AMD [15].  

2.1.2. CACHE 

The cache is a component acting as a small but fast memory on the CPU, storing data or 

instructions. A modern CPU has multiple independent caches, separating the 

instructions and the data. The advantage to using a cache is speed; it is able to more 

quickly provide the CPU with the instructions to execute as well as fulfill requests for 

data, compared to retrieval from main memory. A cache hit refers to the situation when 

requested data is available in the cache and a cache miss is the opposite of a hit; the data 

is not available in the cache. A cache miss causes a delay as the data is fetched from the 

main memory. The execution time of a program is affected by the number of cache hits 

as retrieving data from the main memory is much slower. Modern CPUs typically have 

three caches named L1, L2 and L3 where each core has individual L1 and L2 but L3 is 

shared. L1 is the smallest and fastest cache and is checked first. If there is no hit the L2 

is checked and finally the L3 cache is checked. Latencies of the Intel Core i7 Xeon 5500 

Series CPU caches for a theoretical CPU clock speed of 2 GHz are in table 1 [16]: 

Table 1: CPU cache and main memory latencies in seconds for the Intel® Xeon® Processor 5500 Series with a 

CPU clock speed of 2 GHz. 

Data source Latency 

L1 Cache hit ~4 cycles (2 ns) 

L2 Cache hit ~10 cycles (5 ns) 

L3 Cache hit ~60 cycles (30 ns) 

Local DRAM ~60 ns 

 

According to table 1, a hit in the L1 cache is 30 times faster than a retrieval of data from 

the main memory. 
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2.1.3. PIPELINE AND BRANCHING 

The basic instruction cycle is broken up into a series called a pipeline. Rather than 

processing each instruction sequentially each instruction is split up into a sequence of 

steps where separate steps are executed concurrently by utilizing different components 

of the processor core [17]. Figure 1 demonstrates a very simple pipeline with multiple 

steps for each instruction. 

 

Figure 1: Classic RISC 5 Stage Pipeline.  Source:  

http://upload.wikimedia.org/wikipedia/commons/thumb/6/67/5_Stage_Pipeline.svg/2000px-

5_Stage_Pipeline.svg.png 

 

A branch is an instruction in a computer program that may, when executed by a 

computer, cause the computer to begin execution of a different instruction sequence 

[18]. Depending on the outcome of the branch the processor may be forced to clear the 

pipeline of instructions which will cause it to stall until new instructions have been 

loaded. To achieve the highest possible performance branching should be kept to a 

minimum in order to ensure that instructions are always executed. This is especially 

important for a GPU as it does not possess the necessary control logic to effectively 

handle branches. Modern CPUs have long pipelines, for instance Intel’s Haswell 

architecture has a pipeline length of 14-19 stages and the AMD Jaguar architecture has a 

pipeline length of 14 stages. 

Hyper-Threading Technology (HT) [19] is an attempt by the processor manufacturer 

Intel to solve the issue of pipeline stalling. Each core of the CPU consists of two 

processors, each with their own executing resources, such as cache and bus-interface. 

The shared resources allow the processors to borrow from each other if either stalls. 

This allows for twice as many threads compared to a CPU with the same number of 

cores but without Hyper-Threading. The performance increase is highly dependent on 

both the operating system supporting HT by efficiently scheduling the tasks, and the 

tasks themselves. 

2.1.4. PARALLELIZATION 

The conversion of a sequential program to a parallel program requires analysis of the 

control and data dependencies to ensure that the same results are produced by both 

programs for all input values. The change from sequential to parallel is based on the 

decomposition of the program into tasks. A task is a series of computations executed by 

a single processor or core. The number of tasks a program is decomposed into is an 
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upper limit on the level of parallelism possible and the number of cores that can be 

utilized. The goal of the decomposition is to create enough tasks so that (i) all available 

cores are kept busy and (ii) the computational part large is enough that the execution 

time is long compared to the time required to schedule and map the tasks to different 

processors. For example, assume we want to apply a function f() for every element in a 

matrix A of size M×N. If the operations the function performs are independent for every 

element in the matrix, then a maximum of M×N tasks can be created. But the 

computational complexity of f() might be low and it is more efficient to only create M 

tasks to reduce the time for scheduling and mapping of the tasks to the processors. 

Data dependencies must be taken into account when parallelizing a program and 

creating tasks. The existence of such dependencies prevents instructions from parallel 

execution. There are three types of data dependencies: 

 Flow/true dependency: Instruction 𝐼1  computes a result that is later used by 

instruction 𝐼2. 

 Anti-dependency: Instruction 𝐼1 uses a value later modified by instruction 𝐼2. 

 Output dependency: Instruction 𝐼1 and 𝐼2 computes separate results stored in the 

same location. 

𝐼1: 𝑹𝟏 = 𝑅2 + 𝑅3   

𝐼2 : 𝑅5 = 𝑹𝟏 + 𝑅4   

flow/true dependency 

𝐼1: 𝑅1 = 𝑹𝟐 + 𝑅3  

𝐼2 : 𝑹𝟐 = 𝑅4 + 𝑅5   

anti-dependency 

𝐼1: 𝑹𝟏 = 𝑅2 + 𝑅3 

𝐼2: 𝑹𝟏 = 𝑅4 + 𝑅5   
output dependency 

 

The existence of data dependencies and their types affects possible types and sizes of 

created tasks as they must be independent to allow parallel execution. 

A code parallelization requires careful consideration of the sequential code by the 

programmer. Can the code be at all parallelized or are the data dependencies that 

prohibit this? If there are dependencies, is it possible to restructure the code in such a 

way that they are avoided or can they be dealt with using some other method? How 

many tasks should the code be divided into so that the available processors are best 

utilized? What data is required to perform the computations and can they be shared 

between tasks as they are not modified, or are they used in such a way that accessing it 

by multiple tasks is order dependent? What is the cost of using synchronization to 

ensure that data is correctly accessed and how does it compare to the cost of, if possible, 

modifying the code in such a way that synchronization is not needed? 

2.1.5. SYNCHRONIZATION 

In parallel programming, a critical section is a part of an algorithm that accesses a 

shared resource (variable or device) that must not be executed at the same time by more 

than one thread. Such an execution will lead to a race condition where two or more 

threads use a shared resource and the order of execution between the threads will affect 

the value of the resource. Consider a simple example where threads T1 and T2 use the 

shared resource A, both increasing its value by 1. 
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Value of A T1 T2  Value of A T1 T2 

A = 0 Read A   A = 0 Read A  

A = 0 A = A + 1   A = 0  Read A 

A = 1 Write A   A = 0 A = A + 1  

A = 1  Read A  A = 0  A = A + 1 

A = 1  A = A + 1  A = 1 Write A  

A = 2  Write A  A = 1  Write A 

 

In the two examples the value of 𝐴 differs due to the different execution orders for 

threads T1 and T2. To ensure that the shared resource is not accessed by multiple 

threads at the same time, mutual exclusion must be guaranteed. The most common way 

to do this is by using a lock, a shared object that provide two operations: acquire_lock() 

and release_lock(). The lock can have two values, free and locked where the initial 

value of the lock is free. To enter a critical section the thread must first acquire the lock 

by testing its value. If it is free then the lock can be taken by the thread, which updates 

the value of the lock to locked. If the lock is already taken by another thread it must wait 

until the value of the lock is set to free by that thread. When the lock is acquired by the 

thread it can enter the critical section and release the lock after finishing execution of 

the critical section [20]. 

2.1.6. SPEEDUP 

The benefits of parallelism are measured by comparing the execution time of a 

sequential implementation of program to its parallel counterpart. The comparison is 

often based on the relative change in execution time, expressed as speedup. The 

speedup 𝑆𝑝(𝑛) of a parallel program with parallel execution time 𝑇𝑝(𝑛) is defined as 

 
𝑆𝑝(𝑛) =  

𝑇∗(𝑛) 

𝑇𝑝(𝑛) 
, 

 

(2.1) 
 

where 𝑝 is the number of processors used to solve a problem of size 𝑛 and 𝑇∗(𝑛) is the 

execution time of the best sequential implementation. Due to difficulties in determining 

and implementing the best sequential algorithm, the speedup is often computed by using 

the sequential version of the parallel implementation. 

It is possible for an algorithm to achieve super-linear speedup, where 𝑆𝑝(𝑛) > 𝑝. This 

is often caused by cache effects: A single processor might not fit the entire data set into 

its local cache and thus cache misses will appear during the computation. The data set 

can be split into fractions when using multiple processors and each fraction might fit 

into the local cache of each processor, thereby avoiding cache misses. Super-linear 

speedup is very rare and it is unlikely that even the ideal speedup (𝑆𝑝(𝑛) = 𝑝)  is 

achieved. The parallel implementation introduces additional overhead for managing the 

parallelism. Synchronization, uneven load balancing and data exchange between 

processors are all factors that can add overhead. It could also be that the parallel 

program contains parts that have to be executed in sequence due to data dependencies, 
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causing the other processors to wait. If the speedup is linear then it scales with the 

number of additional cores used at the same rate: (𝑆𝑝(𝑛) = 𝑘 ∗ 𝑝)  where 0 < 𝑘 ≤ 1. 

The number of processors is an upper bound for the possible speedup. Data 

dependencies leading to sequential execution also limit the degree of parallelism. 

Amdahl’s Law describes the speedup when a constant fraction of a parallel program 

must be executed sequentially. Denoting the fraction of the sequential execution time 𝑓, 

where 0 ≤ 𝑓 ≤ 1, the execution can be divided into two parts, the sequential execution 

time 𝑓 ∗ 𝑇∗(𝑛) and the parallel execution time  
(1−𝑓)

𝑝
∗ 𝑇∗(𝑛) where 𝑝 is the number of 

processors. The attainable speedup is 

 
𝑆𝑝(𝑛) =  

𝑇∗(𝑛)

𝑓 × 𝑇∗(𝑛) +
(1 − 𝑓)
𝑝 × 𝑇∗(𝑛) 

=  
1

𝑓 +
1 − 𝑓
𝑝

≤
1

𝑓
. 

(2.2) 
 

 

As an example, assume that 10% of a program must be executed sequentially. This 

gives 𝑓 = 0.1 and 𝑆𝑝(𝑛) ≤  
1

0.1
= 10 . No matter the number of processors used, the 

speedup cannot be higher than 10 [21]. 

2.1.7. OPENMP 

OpenMP is a specification for a set of compiler directives, library routines, and 

environment variables that can be used to specify high-level parallelism in FORTRAN 

and C/C++ programs [22]. It is supported by a wide range of compilers, such as GCC 

(the GNU Compiler Collection) and ICC (Intel C++ Compiler), and is supported by 

most processor architectures and operating systems. It uses a set of preprocessor 

directives and keywords to generate multi-threaded code at compile time for a shared 

memory system. A short example using some of the OpenMP directives available:  

#pragma omp parallel private(thread_id) 

{ 
  thread_id = omp_get_thread_num(); 
  printf("thread id: %i \n", thread_id); 
     

  #pragma omp for 
  for(i=0;i<X;++i) 
  { 
    a[i] = b[i] + c[i]; 
  } 
} 

 

#pragma omp indicates that OpenMP should be used for the section. parallel specifies 

that the region should be parallelized and for is used to indicate a for-loop. The loop is 

split automatically so that each individual thread computes different iterations. The 

directive private(thread_id) indicates that the variable thread_id should not be shared 

among threads, but a local, private copy needs to be created and allocated for each 

thread. The function call to omp_get_thread_num() retrieves the thread’s internal 

identification number. Every thread makes its own call to the function printf, each with 

a different value for the argument %i, their unique value of thread_id. 
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There are multiple ways of handling synchronization in OpenMP. For instance the 

critical or atomic directives can be used depending on the size of the operations 

performed. The atomic directive is used to synchronize a single memory access by an 

arithmetic operation, such as addition or subtraction. Critical on the other hand applies a 

lock on a section of code, preventing multiple threads from concurrent execution. 

#pragma omp parallel 

{ 

    … 
 
  #pragma omp atomic 

  Counter++; 
} 

 

In the above example, Counter is a variable that is increased by each thread in such a 

way that mutual exclusion is guaranteed by ensuring that only a single thread has access 

at a time. 

#pragma omp parallel private(private_image) 

{ 

  … 

 

  #pragma omp critical 

  { 
    for(i=0;i<N*N;++i) 
    { 
      image[i] += private_image[i]; 
    } 
  } 
} 
 

In the example above the variable private_image is a temporary matrix allocated for 

each individual thread and image is the global matrix containing the final values. The 

code combines the temporary results produced by each thread for a matrix of size N×N. 

critical specifies a critical section and a lock is automatically applied around the section. 

OpenMP provides a wide base for managing parallelism and the potential problems that 

can arise when creating the multiple tasks to execute the code. The data dependencies 

mentioned in section 2.1.4 can be handled by the synchronization keywords provided 

and the private directive to specify what variables to make copies of for each thread. It 

also supports multiple methods of scheduling the tasks to avoid load-balancing issues 

caused by differences in computational complexity between individual tasks. The 

schedule() clause is used to specify how the tasks are allocated between threads. static 

divides the work so that every thread works on the same number of tasks whereas 

dynamic assigns new tasks when the thread finishes the previous one. guided starts with 

a large task size and for each partition of work reduces the size of the tasks for the 

threads to execute. 

 

 



15 

 

2.1.8. OPENCL 

OpenCL™ is an open, royalty-free standard for cross-platform, parallel programming of 

modern processors found in personal computers, servers and handheld/embedded 

devices [23]. OpenCL is a framework for parallel programming that allows for 

execution on a multitude of different hardware architectures such as AMD, Intel, and 

IBM CPUs and AMD, NVIDIA and Qualcomm GPUs. OpenCL executes on devices 

consisting of one or more compute unit(s) which in turn is divided into processing 

elements, performing the computations. The device executes a kernel by defining 

multiple points in an index space and for every point executes an instance of the kernel. 

The instance is referred to as a work-item and is identified by its point in the index 

space, known as a global id. Work-items are grouped into a work-group. An example of 

a simple OpenCL kernel: 

__kernel void sum(global int *a, global int *b, global int *c) 
{ 
  int work_item_id = get_global_id(0); 
  a[work_item_id] = b[work_item_id] + c[work_item_id];  
} 
 

To calculate the sum of matrices 𝑏 and 𝑐 the work is divided such that a work-item 

calculates a single element. The global id is specified outside of the kernel by the host 

and each work-item is assigned a unique id.  

 

Figure 2: OpenCL memory architecture. Source:  

http://developer.amd.com/wordpress/media/2012/11/Fig1.png 

 

 

OpenCL uses four different types of memory [24] as seen in figure 2: 

1. Global memory: Any work-item can read and write from all elements. (The 

slowest to access.) 
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2. Constant memory: A part of the global memory dedicated to data that is only 

read. 

3. Local memory: A part of memory available only to a specific work-group. (Fast 

access.) 

4. Private memory: A part of memory available only to a specific work-item. (The 

fastest access.) 

Global memory should be avoided at all costs due to the high access latency. Storing 

data in local or private memory has a much lower latency but the memory’s full 

utilization may be difficult because of its small size. According to [25] Appendix D the 

total amount of local memory available per compute unit is 256 kB on the AMD 

RADEON HD 7000 series. Storing a matrix with the dimensions 512×512 where each 

data element is 8 bytes large requires a total of 

512 × 512 × 8 𝐵 =  2 097 152 𝐵 = 2 𝑀𝐵 

of memory. The matrix cannot be stored in its entirety in the local memory so the global 

or constant memory has to be used. To utilize the speed of the local memory a small 

part of the matrix can be read at a time and copied to the local memory; these operations 

add additional overhead when the many threads read their required data. 

An OpenCL code has a different structure compared to an OpenMP code. For OpenCL 

the kernel describes what each work-item shall do, whereas for OpenMP the pragmas 

and keyword are used to specify how to break down the code into tasks that can be 

scheduled on multiple processors. As OpenCL supports both CPU and GPU 

architectures, which greatly differ in code execution, additional setup is required in 

order to run the code. First, a platform with a device must be specified on which the 

code is to be executed. In order to use the device a context must be created to manage (i) 

a queue of commands to the device, (ii) memory to and from the kernel, and (iii) the 

program and kernel objects for code execution.  

The OpenCL kernel uses the C99 standard with some restrictions. There is no support 

for classes and templates and dynamic memory allocation is not allowed; it limits the 

code that can be written. The focus is on solving a single problem of a known size, not 

on flexibility and ability to handle multiple configurations. 
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2.1.9. GPU ARCHITECTURE 

 

Figure 3: The difference between CPU and GPU transistor allocation. A GPU uses a lot more transistor area 

for computational units (ALUs) compared to the CPU. The GPU relies on many threads and high bandwidth 

to hide high latencies, removing the need for a large cache. The core simplicity and the SIMD model reduce the 

amount of control logic needed.  

Source: https://mohamedfahmed.files.wordpress.com/2010/05/screenshot-1.png 

 

The GPU has become more and more programmable over the last decades, replacing 

fixed function logic with programmable processors and floating-point arithmetic 

replaced integer arithmetic. The desire for more advanced 3D graphics from the gaming, 

movie and television industry has led to an increase in parallelism. The manufacturers 

have been adding instructions and memory to support general purpose programming, 

turning the GPUs into fully general purpose processors, or GPGPUs. A GPU contains 

hundreds or even thousands of processor cores (see table 2) to perform graphical 

operations. This specialization means that it cannot perform the same operations as a 

CPU; its instruction set is limited. The large number of cores on a GPU requires a large 

amount of data so the GPU has a high memory bandwidth compared to a CPU. Instead 

of relying on the cache to provide the necessary data in a timely fashion, the latency is 

hidden by using many cores. 

The cache, described in section 2.1.2, is used to reduce the latency between requesting 

data and it being available. GPUs are designed to be latency tolerant, in that the tasks 

performed are not critically dependent on data availability, for example computing pixel 

values in a game. The smaller cache allows for more computational units and a higher 

throughput. 

A GPU is designed to run simple threads that are independent of each other, using the 

model SIMD (Single Instruction Multiple Data). A single instruction, such as an 

addition, is applied to multiple data by multiple threads at the same time. The thread 

simplicity allows for a smaller Control Unit which in turn allows for more ALUs. The 

small size of the cache and the control unit limits the efficiency of the simple threads; 

they do not perform well when the computations are branch-intensive and memory-

intensive. The simple threads combined with the absence of a large cache to reduce 

latency leads to more transistor area available for compute units, as seen in figure 3. 
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The threads on a GPU are divided into warps (NVIDIA) or wavefronts  (AMD), the 

most basic scheduling unit, which execute the same instruction but on different data. A 

warp consists of 32 threads while a wavefront consists of 64 threads. Branching can be 

handled in two ways. The first option is to let all threads in a warp/wavefront execute all 

branches and discard the results from the branch/es that evaluates as false. The other 

option is to alternate what threads are running, switching between execution of the 

branches. For example, depending on the value of the thread id idx, we want to perform 

a specific instruction: 

if (idx < X) 
{ 
    my_array[idx] += A; 
} 
else 
{ 
    my_array [idx] *= B; 
} 

 

If the value of X is a multiple of the warp size then there will be no divergence, all 

threads will execute the same instruction. If it does not match the warp size however, 

there will be a divergence and the execution of the branch will be split into two. 

Assuming a warp size of 32 threads and X=16 the warp is divided into two blocks, 

threads 0-15 and threads 16-31. Threads with id 0-15 will evaluate the branch condition 

as true and execute the addition while threads 16-31 wait. After their completion threads 

16-31 execute the multiplication while threads 0-15 wait. The total execution time has 

more than doubled due to the additional overhead of thread management and execution 

of both branches. 

Table 2: Specifications of top of the line GPUs by manufacturers AMD and NVIDIA for both desktop and 

workstation. 

 R9 290X [26] FirePro  

W9100 [27] 
GTX  

Titan Black [28] 
Quadro  

K6000 [27] 

Manufacturer AMD AMD NVIDIA NVIDIA 

Cores 2816 2816 2880 2880 

Clock (MHz) 1000 930 889 700 

SP
1
 GFLOPS 5632 5240  5121  5196  

DP
2
 GFLOPS

3
 704  2675  1707  1732 

Memory 4 GB 16 GB 6 GB 12 GB 

Bandwidth 320 GB/s 320 GB/s 336 GB/s 288 GB/s 

Release Q4’2013 Q2’2014 Q1’2014 Q3’2013 

 

                                                 
1
 Single-precision floating-point format is a computer number format that occupies 4 

bytes (32 bits) in computer memory. 
2
 Double-precision floating-point format is a computer number format that occupies 8 

bytes (64 bits) in computer memory. 
3

  FLOPS (FLoating-point Operations Per Second) is a measure of computer 

performance. 
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Table 3: Specifications of the Intel Xeon Phi coprocessor and high end server CPUs by manufacturers Intel 

and AMD. 

 Xeon Phi  

7120P [29] 
Xeon  

E5-2697 v2 [29] 
Opteron  

6284 SE [30] 

Manufacturer Intel Intel AMD 

Cores 61 12 16 

Clock (MHz) 1238 2700 2700 

SP GFLOPS 2416  518 346 

DP GFLOPS 1208 259 173 

Memory 16 GB Max 768 GB Max 768 GB 

Bandwidth 352 GB/s Max 59.7 GB/s Max 51.2 GB/s 

Release Q2’2013 Q3’2013 Q2’2012 

 

There is a significant difference in the amount of raw computational power available on 

GPUs compared to CPUs for both single- and double-precision. A top of the line GPU 

from either AMD or NVIDIA has ~10 times the computational power for single-

precision calculations and ~3-10 the computational power for double-precision 

calculations. The Xeon Phi lies somewhere between the GPUs and the CPUs where it is 

about half as powerful as the FirePro W9100 and Quadro K6000 but ~4 times more 

powerful than the CPUs. 

2.1.10. XEON PHI 

Intel Many Integrated Core Architecture or Intel MIC is a coprocessor computer 

architecture developed by Intel. The current (2014) coprocessor family is brand named 

Intel Xeon Phi. It consists of up to 61 processor cores, each with support for fetching 

and decoding instructions from four hardware threads for a total of up to 244 threads. Its 

memory is based on the GDDR5 specification and supports up to 16 GB with a 

maximum bandwidth of 352 GB/s. The cores communicate using an Interprocessor 

Network (IPN) using the Shortest Distance Algorithm. Figure 4 is a conceptual drawing 

of the Xeon Phi hardware architecture. 

 

Figure 4: Conceptual drawing of the general structure of the Intel Xeon Phi coprocessor architecture.  

Source: http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-

datasheet.pdf 
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The Intel MPI library can be used on the Xeon Phi in three different modes: offload, 

coprocessor only and symmetric. In offload mode, the MPI communications occur only 

between host processor/s and the coprocessor/s are used exclusively through the offload 

capabilities of the compiler. With coprocessor only mode the MPI processes reside 

solely inside the coprocessor. The required libraries and the application to run are 

uploaded to the coprocessor and can be launched from either the host or from the 

coprocessor. In symmetric mode both the host CPU/s and the coprocessor/s are involved 

in the execution of MPI processes and the related MPI communications.  

The Xeon Phi architecture also supports OpenMP, OpenCL, Intel Threading Building 

Blocks and POSIX threads for parallelization. Programs using these tools can run 

offload and native mode on the Xeon Phi. Offload mode starts execution on a CPU and 

transfers the heavy computations to the Xeon Phi at run time. For OpenMP this can be 

specified with #pragma omp target data device(1) map() available on several compilers, 

and the Intel specific #pragma offload. Native mode compiles the code directly for the 

Xeon Phi architecture using the -mmic option and builds the required libraries. The files 

are then transferred from the host to the Xeon Phi and run manually by the user. 

2.2. PRINCIPLES OF COMPUTED TOMOGRAPHY 

2.2.1. PHOTON INTERACTIONS 

Photons with energies between 1 and 150 keV interact with the irradiated material via 

photoelectric effect, coherent scattering and incoherent (Compton) scattering. 

Interactions occurring only outside this range, such as pair-production, are not 

considered in this thesis. 

A photoelectric effect is an interaction between a photon and a tightly bound orbital 

electron of an atom [31]. The photon is absorbed and all of its energy is given to the 

orbital electron, which is then ejected from the atom with kinetic energy equivalent to 

the photon energy minus the binding energy of the ejected electron. As the photon 

energy, 𝐸, increases, the cross section of the photoelectric effect decreases rapidly; for 

instance as 𝐸−3 in the energy region of 100 keV and below. As the atomic number, 𝑍, 

of a material increases, the cross section of the photoelectric effect increases rapidly; for 

instance the photoelectric mass attenuation coefficient depends on 𝑍3  in the energy 

region around 100 keV.  

A coherent (Rayleigh) scattering is a photon interaction process in which photons are 

elastically scattered by bound atomic electrons. The atom is neither excited nor ionized 

[31]. The interaction causes the direction of the photon to change. 

An incoherent (Compton) scattering is an inelastic scattering of a photon with an atom. 

It typically occurs for a loosely bound orbital electron. The energy given to the electron 

depends on the initial photon energy and the scattering angle. The cross section is 

dependent on the photon energy, see figure 5. Corresponding linear attenuation 

coefficient is proportional to the electron density. 
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Computed tomography in medical diagnostics typically uses x-ray tube voltages 

between 80 and 140 kV. Energy spectrum of photons produced at for instance 80 kV 

ranges from several keV to 80 keV (see figure 6(a)) and similarly for other tube 

voltages. The dominant interaction in computed tomography is incoherent scattering. 

Photoelectric effect dominates for low photon energies. As most of these low energy 

photons are absorbed by the patient and thus contribute to the patient dose, there is a 

trend to remove these photons from the x-ray spectrum by additional filters.  

 

Figure 5: Mass attenuation coefficient for iron as the function of the photon energy for coherent and 

incoherent scattering, the photoelectric absorption, pair production in both nuclear and electronic fields as 

well as total attenuation.  

Source: http://commons.wikimedia.org/wiki/File:Ironattenuation.PNG 

 

2.2.2. COMPUTED TOMOGRAPHY 

A CT scanner consists of an x-ray tube and a detector array, which rotate inside a 

gantry. The detector array measures the intensity,  𝐼 , of x-rays passing through the 

imaged object as a function of the rotation projection angles. In addition, the intensity, 

𝐼0, of photons measured by the detector array when the gantry is empty has to be known 

to calculate the attenuation value along each x-ray from source to detector. For the 

simplest case of a homogenous object with a monoenergetic parallel x-ray beam 

attenuation is given by 

 𝐼 =  𝐼0 ∗ 𝑒
−𝜇𝑑, (2.3) 

 

where 𝐼 is the intensity measured with a detector element, 𝜇 is the linear attenuation 

coefficient of the object and 𝑑 is the distance the x-ray travelled inside the object. When 

the object is inhomogeneous and polyenergetic radiation is used the intensity is given by 

 
𝐼 =  ∫ 𝐼0(𝐸) ∗ 𝑒

−∫ 𝜇(𝐸)𝑑𝑠
𝑑
0 𝑑𝐸

𝐸𝑚𝑎𝑥

0

, 
(2.4) 
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where  𝐼0(𝐸)  is the distribution initial intensity with respect to energy, 𝐸𝑚𝑎𝑥  is the 

maximum photon energy in the x-ray tube energy spectrum, ∫ 𝜇(𝐸)𝑑𝑠
𝑑

0
 is the energy 

dependent line integral (the radiological path) through the imaged object placed inside a 

circle with diameter 𝑑. 

In the case of classical image reconstruction algorithms assuming monoenergetic beams 

(e.g. the filtered backprojection), the usage of polyenergetic radiation leads to image 

artifacts for the following reason. The energy spectra of photons entering and exiting the 

object differ, see figure 6; the x-ray beam hardens as it moves through the object. The 

corresponding beam hardening artifact manifests itself in the reconstructed images as a 

darkening in the center of a homogenous object (cupping), or a darkening between two 

highly absorbent objects in the image. Figure 7 shows the darkening effect between two 

highly attenuating objects. 

 

Figure 6: Comparison of energy spectra in front of (a) and behind (b) the imaged object. Source: “An iterative 

algorithm for quantitative tissue decomposition using DECT”, Oscar Grandell, 2012. 

 

 

Figure 7: Images reconstructed using filtered backprojection. (a) The polyenergetic beam led to a strong beam 

hardening artifact. (b) The beam hardening artifact is not present for a monoenergetic beam. Source: “An 

iterative algorithm for quantitative tissue decomposition using DECT”, Oscar Grandell, 2012. 

 

The X-ray tube’s voltage (kV) affects the average energy of the photons in the X-ray 

beam. Changing the tube voltage results in an alteration of the average photon energy 

and a corresponding modification of the attenuation of the X-ray beam in the materials 

scanned. For example, scanning an object with 80 kV results in a different attenuation 
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than with 140 kV. In addition, this attenuation also depends on the type of material or 

tissue scanned (the atomic number of the material). Dual-Energy Computed 

Tomography (DECT) exploits this effect by using two X-ray sources simultaneously at 

different voltages to acquire two data sets showing different attenuation levels. In the 

resulting images, the material-specific difference in attenuation makes a classification of 

the elemental composition of the scanned tissue feasible [32].  

2.3. DIRA 

The model-based iterative reconstruction algorithm DIRA (see figure 8) is used for the 

determination of elemental composition of tissues. It suppresses the beam hardening 

artifact and, when the simulation of scattered radiation is used, it can also suppress the 

scatter artifact. 

 

Figure 8: Data-flowchart of the DECT Iterative Reconstruction Algorithm DIRA. Source: “An iterative 

algorithm for quantitative tissue decomposition using DECT”, Oscar Grandell, 2012. 

 

1. Two measured projections, 𝑃𝑀,𝑈1 and 𝑃𝑀,𝑈2, using two different tube voltages 𝑈1 

and 𝑈2, are used as input.  

2. 𝑃𝑀,𝑈1 and 𝑃𝑀,𝑈2  are reconstructed  via filtered backprojection into the volumes 

𝜇1 and 𝜇2, containing the linear attenuation coefficients approximately similar to 

the effective energies 𝐸1 and 𝐸2 of the spectra for the tube voltages 𝑈1 and 𝑈2. 

3. The reconstructed volumes 𝜇1 and 𝜇2 are classified to preselected tissues, e.g. 

bones and soft tissue in this example. 

4. The soft tissue is then decomposed using three material decomposition (MD3) 

and the bone is decomposed using two material plus density decomposition 

(MD2 + ρ), resulting in the decomposed volume 𝜇𝐶. 

5. The monoenergetic projections 𝑃𝐸1  and 𝑃𝐸2  at the energies 𝐸1 and 𝐸2, and the 

polyenergetic projections 𝑃𝑈1  and 𝑃𝑈2  for spectra 𝑈1  and 𝑈2  are forward 

projected using Joseph’s method. 
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6. The differences between the monoenergetic projections 𝑃𝐸1  and 𝑃𝐸2  and the 

polyenergetic projections 𝑃𝑈1 and 𝑃𝑈2 are calculated and added to the measured 

projections to create the corrected projections 𝑃𝑀′,𝑈1 and 𝑃𝑀′,𝑈2. 

7. 𝑃𝑀′,𝑈1  and 𝑃𝑀′,𝑈2  are then used in the next iteration as the new measured 

projections. After a number of iterations the beam hardening artifacts are 

removed and accurate mass fractions of the base materials as well as the density 

for the bone tissue obtained. 

2.3.1. FILTERED BACKPROJECTION 

The Radon transform 𝑔(𝑠, 𝜃) of a function 𝑓(𝑥, 𝑦) is the line integral of the values of 

𝑓(𝑥, 𝑦) along the line inclined at angle 𝜃 from the x-axis at a distance 𝑠 from the origin 

 

𝑔(𝑠, 𝜃) =  ∫ 𝑓(𝑠 𝑐𝑜𝑠(𝜃) − 𝑢𝑠𝑖𝑛(𝜃), 𝑠 sin(𝜃) + 𝑢 cos(𝜃))

∞

−∞

𝑑𝑢. 
 

(2.5) 
 

 

The value of 𝑔(𝑠, 𝜃) is the sum of values 𝑓(𝑥, 𝑦)  along the line 𝐿. Backprojection is 

defined as 

 

𝑏(𝑥, 𝑦) =  ∫ 𝑔(𝑠, 𝜃)𝑑𝜃.

𝜋

0

 

 

(2.6) 
 

Replacing the integral in equation (2.6) with a sum gives 

 

�̃�(𝑥, 𝑦) =  ∑𝑔(𝑠𝑘, 𝜃𝑘)∆𝜃,

𝑝

𝑘=1

 

 

(2.7) 
 

where 𝑝 is the number of projections, 𝜃𝑘 is the kth angular position of the detector, 𝑠𝑘 is 

the location along the detector and ∆𝜃 is the angular step between 2 projections. Using 

only backprojection will produce a blurry the image. The blurriness is removed by 

applying a ramp filter on the projection data, before performing the backprojection. This 

gives 

 

𝑓(𝑥, 𝑦) =  ∫ �̂�(𝑠, 𝜃)𝑑𝜃

𝜋

0

 𝑜𝑟 𝑓(𝑥, 𝑦) =  ∑ �̂�(𝑠𝑘, 𝜃𝑘)∆𝜃

𝑝

𝑘=1

, 
(2.8) 

 

 

where �̂�(𝑠, 𝜃) and �̂�(𝑠𝑘 , 𝜃𝑘) are filtered with a ramp filter [33]. 

2.3.2. MATERIAL DECOMPOSITION 

Assume that a mixture consists of three separate components, with mass attenuation 

coefficients 𝜇𝑚,1, 𝜇𝑚,2 and 𝜇𝑚,3, defined as 𝜇𝑚,𝑖 =
𝜇𝑖

𝜌𝑖
, where  𝜇𝑖 is the linear attenuation 

coefficient and 𝜌𝑖 is the density. The mass attenuation coefficient of the mixture 𝜇𝑚(𝐸) 

at photon energy 𝐸 can be calculated from the mixture law as 
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 𝜇𝑚(𝐸) =  𝑤1𝜇𝑚1(𝐸) + 𝑤2𝜇𝑚2(𝐸) + 𝑤3𝜇𝑚3(𝐸) (2.9) 
 
 

and   
 𝑤1 + 𝑤2 +𝑤3 = 1,       (2.10) 

 

where equation (2.10)  is a normalization condition for the mass fractions 𝑤𝑖 . By 

expressing the mass attenuation coefficients at two different energy levels 𝐸1 and 𝐸2, 

we get two equations; 

 𝜇𝑚(𝐸1) =  𝑤1𝜇𝑚1(𝐸1) + 𝑤2𝜇𝑚2(𝐸1) + 𝑤3𝜇𝑚3(𝐸1) (2.11) 
 

 

and   
 𝜇𝑚(𝐸2) =  𝑤1𝜇𝑚1(𝐸2) + 𝑤2𝜇𝑚2(𝐸2) + 𝑤3𝜇𝑚3(𝐸2). (2.12) 

 

 

The density of the mixture is an unknown parameter. Assuming that the volume of the 

mixture is equal to the sum of the volumes of each individual component, the density 

can be written as 

 
𝜌 =  

𝑚

𝑉
= 

𝑚
𝑚1

𝜌1
+
𝑚2

𝜌2
+
𝑚3

𝜌3

= 
1

𝑤1
𝜌1
+
𝑤2
𝜌2
+
𝑤3
𝜌3

 .     
(2.13) 

 

 

Combining (2.11) − (2.13) we get a matrix equation 

 

(

 
 

𝜇(𝐸1) − 𝜇3(𝐸1)

𝜌3
𝜇(𝐸2) − 𝜇3(𝐸2)

𝜌3 )

 
 
+𝑴(

𝑤1
𝑤2
) =  (

0
0
), 

 

 

(2.14) 

where 

 𝑴

= 

[
 
 
 
 
𝜇(𝐸1) − 𝜇1(𝐸1)

𝜌1
−
𝜇(𝐸1) − 𝜇3(𝐸1)

𝜌3

𝜇(𝐸1) − 𝜇2(𝐸1)

𝜌2
−
𝜇(𝐸1) − 𝜇3(𝐸1)

𝜌3
𝜇(𝐸2) − 𝜇1(𝐸2)

𝜌1
−
𝜇(𝐸1) − 𝜇3(𝐸1)

𝜌3

𝜇(𝐸1) − 𝜇2(𝐸1)

𝜌2
−
𝜇(𝐸1) − 𝜇3(𝐸1)

𝜌3 ]
 
 
 
 

. 

 

 

(2.15) 
 

 

 

 

Equation (2.14)  gives the mass fractions 𝑤1  and 𝑤2 . The mass fraction 𝑤3  can be 

obtained from equation (2.10) as 

 𝑤3 = 1 − 𝑤1 − 𝑤2.  (2.16) 
 

2.3.3. FORWARD PROJECTION 

Joseph’s Method [34], see figure 9, describes how to produce projections by calculating 

line integrals (radiological paths) through a 2D or 3D volume. The method assumes an 
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image consists of 𝑁 × 𝑁 pixels and that the image function 𝑓(𝑥, 𝑦) is constant over the 

domain of each pixel. Consider a straight line K specified as 

 𝑦(𝑥) =  −𝑥 cot(𝜃) + 𝑦𝑜 (2.17) 
 

or 

 𝑥(𝑦) =  − y tan(𝜃) + 𝑥𝑜 , (2.18) 
 

where 𝜃 is the angle to the y-axis, 𝑦𝑜  is the cross-point with the 𝑦-axis and 𝑥𝑜  is the 

cross-point with the 𝑥-axis. The line integral 𝑆(𝐾) is dependent on whether the ray’s 

direction is aligned with the direction of the 𝑦- or 𝑥-axis. It can be written as 

 

𝑆(𝐾) =  

{
 

 
1

|𝑠𝑖𝑛𝜃|
∫𝑓(𝑥, 𝑦(𝑥))𝑑𝑥

1

|𝑐𝑜𝑠𝜃|
∫𝑓(𝑥(𝑦), 𝑦)𝑑𝑦

 

 

𝑓𝑜𝑟 |𝑠𝑖𝑛𝜃| ≥  
1

√2

𝑓𝑜𝑟 |𝑐𝑜𝑠𝜃| ≥  
1

√2

 

 

 

(2.19) 

By using the Riemann sum to approximate, equation (2.19) can be written as (for the x-

directional integral) 

 

𝑆(𝐾) =   
1

|𝑠𝑖𝑛𝜃|
[∑ 𝑃𝑛,𝑛′ + 𝜆𝑛(𝑃𝑛,𝑛′+1 − 𝑃𝑛,𝑛′) + 𝑇1 + 𝑇𝑁

𝑁−1

𝑛=2

]. 
 

(2.20) 

The terms 𝑇1 and 𝑇𝑁 represent the first and the last pixel on the line and are treated 

separately. 𝜆𝑛  is defined as  𝜆𝑛 = 𝑦(𝑥𝑛) −  𝑛´, where 𝑛´ = the integer part of 𝑦(𝑥𝑛). 

𝑃𝑛,𝑛′  and 𝑃𝑛,𝑛′+1  are pixel values. If no pixels are treated separately,  𝑇1 = 0  and 

𝑇𝑁 = 0, and rewriting the interpolation, the final equation becomes 

 

𝑆(𝐾) =   
1

|𝑠𝑖𝑛𝜃|
[∑((1 − 𝜆𝑛)𝑃𝑛,𝑛′ + 𝜆𝑛𝑃𝑛,𝑛′+1)

𝑁

𝑛=1

]. 
 

(2.21) 

 

 

Figure 9: Joseph's method of line-integration along one axis using bi-linear interpolation. Source: "Cone-beam 

Reconstruction using Filtered Backprojection”, Henrik Thurbell, 2001. 
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There are two ways of calculating the projections, either using inverse mapping or 

forward mapping. The image transforms can be described as 

 𝑥 = 𝑀−1(𝑥) 
 

(2.22) 
 

and 

 𝑥′ = 𝑀(𝑥), 
 

(2.23) 
 

where 𝑥 is the input image, 𝑥′ the output image and 𝑀 the mapping function with  𝑀−1 

its inverse [35]. Inverse mapping is a destination-driven method where a pixel in the 

output image is calculated from the input image. Forward mapping is a source-driven 

method where a pixel in the input image is mapped onto the output image.  

2.3.4. POLYCHROMATIC PROJECTIONS 

The monoenergetic projection 𝑃𝑚𝐸   at effective energy 𝐸1  for base material 𝑚  with 

mass attenuation coefficient 𝜎𝑚𝐸 can be calculated using Joseph’s method: 

 𝑃𝑚𝐸1 = 𝜎𝑚𝐸𝜌𝑚𝑙𝑚.  (2.24) 
 

 

The polychromatic projection is also calculated by using Joseph’s method by using 

 
𝑃𝑈1 = 𝑙𝑛(

𝑆𝑖𝑛
𝑆0
) = −𝑙𝑛 (

𝑆0
𝑆𝑖𝑛
), 

(2.25) 
 

 

where 𝑆𝑖𝑛 is the incident-photon intensity and 𝑆0 is the existing-photon intensity given 

by 

 

𝑆𝑖𝑛 = ∑ 𝐸𝑁(𝐸)

𝐸𝑚𝑎𝑥

0

 

 

(2.26) 
 

 

and   
 

𝑆0 = ∑ 𝐸𝑁(𝐸)𝑒−(∑ 𝜇𝑚𝐸(𝐸)𝜌𝑚
𝑀
𝑚=1 𝑙𝑚),

𝐸𝑚𝑎𝑥

0

 

 

 
(2.27) 

where 𝐸  is the photon energy, 𝑁(𝐸)  the number of photons, 𝜇𝑚𝐸(𝐸)  the mass 

attenuation coefficient, 𝜌𝑚  the material density and 𝑙𝑚  the length of the intersection 

with material 𝑚. 

2.4. CTMOD 

CTmod is a toolkit written in C++ that simulates primary and scatter projections in 

computed tomography. It can be used in the optimization of CT scanner design and 

image reconstruction algorithms by evaluating the effects of factors like the tube 

voltage, phantom size, beam collimators and detector array construction. The toolkit is 

based on CERN’s data analysis framework ROOT [36]. It simulates the transport of 
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photons emitted from an x-ray tube (approximated by a point source) through a user-

defined phantom. The phantoms are constructed from homogenous solids or voxel 

arrays. Variance reduction techniques such as the collision density estimator and 

survival biasing with Russian roulette are used to increase precision of scored 

quantities. In the collision density estimator technique, each photon interaction 

contributes to the quantity scored by each detector element in the detector array, see 

figure 10. The photons are simulated independently, i.e. they do not interact with each 

other and no photon history is affected by previous photon histories. 

 

Figure 10: The primary projection is calculated using line integrals from the X-ray source to each detector 

element. The scatter projection is calculated by simulating photon histories and registering their contributions 

to each detector element. 
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3. METHODS 

This chapter describes the changes made to the DIRA and the CTmod codes. For DIRA 

these changes include rewriting MATLAB-code to C-code, altering computations and 

the parallelization of the algorithm. The CTmod code was modified to allow parallel 

photon transport simulation. 

3.1. HARDWARE 

Several systems were used to test the performance improvements of DIRA and CTmod, 

and to evaluate how well the parallelization scales when using multiple cores. Table 4 

contains information on the CPUs used in the performance evaluations. The Intel 

Celeron T1600 and Intel Xeon E5-2660 were used to evaluate the performance of 

DIRA. For CTmod the Intel Xeon E5-2660 was used to evaluate the performance 

scaling and the Xeon W3520 was used to compare the difference between Hyper-

Threading enabled and disabled. To evaluate OpenCL performance the AMD R7 260X 

desktop GPU, table 5, was used. 

Table 4: Specifications of the CPUs used to evaluate the performance of DIRA and CTmod. 

 

 Celeron® T1600 [37] Xeon® E5-2660 [38] Xeon® W3520 [39] 

Manufacturer Intel Intel Intel 

Cores 2 8 4 

Clock speed (MHz) 1.66 GHz 2.2 GHz 2.66 GHz 

HT No Yes Yes 

L1 Cache 32 KB instruction 

32 KB data 

32 KB instruction 

32 KB data 

32 KB instruction 

32 KB data 

L2 Cache 1 MB 256 KB 256 KB 

L3 Cache - 20 MB 8 MB 

 

Access to Intel Xeon E5-2660 was provided by NSC [40], The National Supercomputer 

Centre in Sweden, using their Triolith system. Every compute node consists of two 

CPUs with Hyper-Threading disabled, for a total of 16 cores per node. 

Table 5: Specifications of the GPU used to evaluate the OpenCL implementations of DIRA functions. 

 

R7 Series 260X [41] 
Manufacturer AMD 

Cores 896 

Clock speed (MHz) 1.1 GHz 

Single-precision GFLOPS 1971 

Double-precision GFLOPS 123 

Memory 2 GB 

Bandwidth 104 GB/s 

3.2. DIRA 

The first step of an iteration is to calculate the monoenergetic and polychromatic 

projections, performed in two steps. The individual materials are forward projected with 

the sinogramJc function to create sinograms of each material. These are then used as the 

base to calculate the projections. The polychromatic projections are calculated with the 
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computePolyProj function. To create the reconstructed volume the filtered 

backprojection is applied with the built-in MATLAB iradon function or the new 

inverseRadon function. The volume is decomposed into materials using the functions 

MD2 and MD3. The functions computePolyProj, MD2 and MD3 were originally written 

in MATLAB and have been converted to C or C++ code to allow for parallelization 

using OpenMP and OpenCL. 

The different versions of each updated function are provided in separate files. The user 

can select what version to use for each function; it is not limited to the same 

implementation for all functions. For example, computePolyProj consists of four files 

containing four different versions: 

1. computePolyProj.m – The old implementation written in MATLAB code. 

2. computePolyProjc.c – The new implementation in C code. 

3. openmp_computePolyProjc.c – The new implementation in C with OpenMP. 

4. opencl_computePolyProjc.cpp – The new implementation in C++ with 

OpenCL. 

The version to use is dependent on the user’s available software and hardware. All 

versions except the original MATLAB code require a supported and compatible 

compiler. The OpenCL version also requires a supported CPU or GPU to execute the 

code.  

 

Figure 11: Left: A color map of material numbers in the transversal slice of the pelvic region of the ICRP 110 

voxel phantom. Ellipses were used to construct a mathematical model of the slice. Right: Masks defining soft 

tissue, bone and prostate regions in DIRA. Darker region inside the prostate was used for calculation of the 

average mass fraction. 

 

Two examples were used when testing DIRA, slice113 and slice113B. Both are based 

on the ICRP 110 male voxel phantom, see figure 11, where slice113B centers the 

phantom in a smaller field of view and uses quarter offset. More information on the 

phantom is available on the project’s webpage [42] and in the proceedings of the 2014 

SPIE conference [43]. Figures 12 and 13 show the resulting material decomposition of 

the original image and material decomposition after 4 iterations of DIRA.  
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Figure 12: Mass fractions (in %) of adipose tissue, water and muscle for the slice113 example after 𝟎𝒕𝒉 

iteration of DIRA. Strong artifacts caused by beam hardening are clearly visible. 

 

 

Figure 13: The same as in figure 12 but after the 𝟒𝒕𝒉 iteration of DIRA. The suppression of beam hardening 

artifacts is clearly visible. 

 

3.2.1. FILTERED BACKPROJECTION 

MATLAB already provides an implementation of the filtered backprojection with the 

iradon function call. Figure 14 is an example of the output produced by this function. 

This implementation is written in C and parallelized. A new implementation based on 

the works of Jeff Orchard [44] for the backprojection and the filtering from MATLAB’s 

iradon function was made. The general implementation of backprojection is to place 

each value of a projection along a line through the output image. This implementation 

suffers from low performance caused by slow memory accesses and cache misses due to 

the order of accessing elements in the output image. The new implementation improves 

on this by changing the order in which the projection values are placed onto the output 

image. For each projection the projection values are placed onto each row in the output 

image in the correct position.  
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Figure 14: Color maps of reconstructed linear attenuation coefficients (in 1/m) of the slice113 phantom at 50.0 

keV (left) and 88.5 keV (right) after the 𝟒𝒕𝒉 iteration of DIRA. 

 

3.2.2. MATERIAL DECOMPOSITION 

The old implementation calculated the mass fractions 𝑤1, 𝑤2 and  𝑤3 for every pixel in 

the image by solving equations (2.14) and (2.16) using the linear equation solver in 

MATLAB. Figure 15 shows the resulting base material triplet decomposition for 

adipose tissue, muscle and water of the reconstructed, measured projections. The new 

implementation is written in C and calculates the mass fractions 𝑤1, 𝑤2 and  𝑤3  for 

every pixel in the image by solving equations (2.14)  and (2.16)  using Gaussian 

elimination to solve the linear equation system. The matrix 𝑴 is always of size 2 × 2 so 

the new implementation was written to only handle this size. Due to the already low 

execution time achieved by rewriting the code no parallelization was implemented. 

Section 5.1.3 contains more information. 

 

Figure 115: Mass fractions of the adipose tissue (left), muscle (center) and water (right) calculated from 

measured projections of the slice113 phantom. 

 

3.2.3. FORWARD PROJECTION 

The old implementation of the projection generation used a destination-driven method, 

equation (2.22). Figure 16 is an example of the sinograms calculated when using the 

adipose tissue, muscle and water base material triplet as input. Each value in a 

projection is produced by calculating a line integral through the image of mass fractions. 

Many line integrals are calculated to create one projection. The drawback of this method 

is that calculating the line integrals is expensive. Calculating the sum of interpolated 

values, equation (2.21) requires stepping through the image of mass fractions and each 

step has to be checked against the boundaries of the image. This is to ensure that no 
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wrong values are accessed. Checking the boundaries of the image is expensive as it 

introduces a branching operation for each check.  

The new implementation of the projection generation uses a source-driven method, 

equation (2.23). Each individual pixel’s contribution to each projection is calculated. 

Pixels outside of a circle with its center in the middle of the image of mass fractions and 

a radius of ⌈
𝑖𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

2
⌉ , can produce coordinate values outside of the sinogram, 

depending on the angle 𝜃𝑘 and are excluded. A pixel in the input image must have a 

non-zero value to contribute to the projections. All pixels with a value of zero are also 

excluded. The number of pixels to process depends on the input image. As an example, 

excluding half of the pixels in the mass fraction image reduces the computational load 

by half and the execution time is halved. 

 

Figure 16: Sinograms containing calculated forward projections for individual base materials of the slice113 

phantom. The base material triplet consisted of adipose tissue (left), muscle (center) and water (right). 

 

3.2.4. POLYCHROMATIC PROJECTIONS 

A polychromatic projection sinogram contains radiological paths (line integrals) 

through the imaged object as functions of projection angle and detector element index, 

see figure 17. Such a sinogram can be calculated by summing contributions from 

individual base material sinograms (section 3.2.3) weighted with energy spectra of 

photons, see equation (2.27). For every pixel in the polychromatic sinogram the sum 𝑆0 

in equation (2.27)  can be calculated independently of other pixels. The old 

implementation of calculating the polychromatic projections was changed from “for 

every energy calculate the sum for the entire image” to “for every pixel in the image 

calculate the sum for all energies”. The largest number of individual tasks possible 

equals the total number of pixels. For instance 367 920 tasks can be created for an 

image size of  511×720. For a GPU with thousands of computational units this gives 

each compute unit hundreds of pixels to process. The change in computational order 

also affects the memory allocation. Instead of allocating the entire matrix to store 

temporary results, each task allocates one floating-point number. The GPU 

implementation uses the much faster private memory to store temporary data, instead of 

storing the entire image in high latency global memory. The CPU implementation with 

OpenMP creates one task for each row of the polychromatic projection sinogram. 
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Figure 17: Sinograms of polychromatic projections of the slice113 phantom calculated for tube voltages 80 keV 

(left) and 140 keV (right). 

3.3. CTMOD 

The simulation of a photon history is independent of other photon histories. A thread 

handling the transport of one photon does not need to know what another thread is 

doing. This is not the case however in two cases: (i) For scoring contributions to the 

detector array from photon interactions, which is used in the collision density estimator 

variance reduction technique. Every homogenous solid or voxel array keeps track of 

what interactions happened inside it (photoelectric, coherent, Compton), and whenever 

an interaction occurs a contribution to the scored physical quantity needs to be recorded 

by the detector array for every detector element. (ii) For scoring contributions to each 

solid (solid-scoring) as the photons can interact in the same object at the same time, 

although not with each other. To avoid synchronization in this case each thread created 

a vector of copies of the solid-scoring class objects. When a thread finishes, the content 

of the vector is added to the original solid-scoring class objects. To avoid 

synchronization in the first case, each thread is assigned a copy of the detector array. 

When the thread is finished the contents of the copy is added to the original detector 

array. This solution comes at the cost of additional memory required to the additional 

objects. The example consisting of a single cylindrical water solid required an 

additional 2 MB of memory for 8 threads. The memory cost for this example is 

negligible.  

CTmod relies on the generation of random numbers. The serial version of CTmod uses 

the pseudo-random number generator Mersenne Twister, which has a period of   

219937 − 1 or ~4.3 × 106001. The parallelized version of CTmod assigns one copy of 

the number generator to each thread. Each thread generates the initial seed by calling 

the C function rand(). It generates integral numbers between 0 and RAND_MAX, where 

RAND_MAX is a library dependent value guaranteed to be at least 32 767. The 

generation of the initial seed by the rand() function is the weak point in this 

implementation as it is may lead to very similar sequences of random numbers.  
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4. RESULTS 

This section contains the results of the optimization and parallelization of DIRA and the 

parallelization of CTmod. All results were taken from systems where the CPU could be 

fully utilized; no other tasks were scheduled to run at the same time. DIRA consists of 

three parts: (i) Loading the necessary data, (ii) performing the computations and (iii) 

saving the results. The performance impact of the loading and saving parts is 

mentioned. The performance of each considered function for the computational part is 

presented as well as the overall performance of DIRA. For CTmod only the 

performance of the computational part is presented, not the performance of the loading 

and saving part as it varies with the complexity of the geometry. 

4.1. DIRA 

The changes made to DIRA were (i) MATLAB code was converted to C code, (ii) 

forward projections, polychromatic projections, material decomposition and the filtered 

backprojection functions were optimized and (iii) parallelized via the OpenMP and 

OpenCL libraries. Figure 18 shows the speedup of the computational part of DIRA for 

two CPU setups, the dual-core Intel T1600 CPU and two 8-core Intel E5-2660 CPUs, 

and the AMD R7 260X GPU. Execution times presented in this section were recorded 

using four iterations of DIRA. The number of iterations affects the size of the parallel 

sections compared to the sequential sections of loading and saving data. All results are 

from the slice113 example code performance. The only exception is the performance 

comparison of the forward projection functions for slice113 and slice113B example 

codes. 

 
 

Figure 18: The speedup factor for the original implementation (combination of C and MATLAB), the 

optimized implementation in C and the parallel implementations using OpenMP and OpenCL on the Intel® 

Celeron® T1600 CPU (left), two Intel® Xeon® E5-2660 CPUs (right) and the AMD R7 260X GPU. 
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Table 6: Execution times for the forward projection, polychromatic projection, filtered backprojection, 

material decomposition, loading, saving and the total time for the original, the C and the OpenMP 

implementations on the Intel T1600 CPU. 

 

  Function Original (s) C (s) OpenMP (s) 

Forward projection 
 

117.54 12.65 7.14 

  Polychromatic projection 57.83 18.22 11.59 

  Filtered backprojection 17.64 13.08 10.38 

  Material decomposition 5.68 0.24 0.20 

  Loading 2.35 2.34 2.32 

  Saving 1.31 1.30 1.29 

  Total time 202.35 47.81 32.93 

 

Table 7: Execution times for the forward projection, polychromatic projection, filtered backprojection, 

material decomposition, loading, saving and the total time for the original, the C and the OpenMP 

implementations on two Intel E5-2660 CPUs as well as the OpenCL implementations on the AMD R260X 

GPU. 

 

  Function Original (s) C (s) OpenMP (s) OpenCL (s) 

Forward projection 
 

106.45 10.59 0.97 3.25 

  Polychromatic projection 8.90 11.25 1.18 1.03 

  Filtered backprojection 1.63 22.11 1.96 4.29 

  Material decomposition 2.56 0.06 0.08 0.07 

  Loading 1.78 1.79 1.79 1.44 

  Saving 1.95 1.91 1.93 0.33 

  Total time 123.28 47.71 7.92 11.25 

 

 

Figure 19: Speedup factor as a function of the number of cores when using parallelized implementation on two 

Intel® Xeon® E5-2660 CPUs. 

 

Figure 19 shows how the overall performance of DIRA and the performance of each 

parallelized function scales with additional cores. The scaling is neither linear nor ideal. 

The drop-off in performance is due to (i) the overhead introduced with the 

parallelization and (ii) the limitations in cache and memory bandwidth when reading 

and writing data. The time it takes to create and terminate threads in the parallel 

implementation increases as the number of threads increases. For every thread memory 
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holding the temporary matrices used to avoid synchronization issues need to be 

allocated and local, private variables need to be copied. Partial results produced by the 

threads are combined serially to avoid conflicts when writing the results to memory. 

This introduces additional overhead that negatively affects the performance. The 

computations an individual thread has to perform decreases as the total number of 

threads increases, but the reduction of the partial results must still be performed on the 

same sized matrices. There is a limit to the speedup, as the computational part for each 

thread decreases, the overhead increases so much that it cancels out the performance 

increase of additional threads. The total amount of data that must be written to memory 

is constant so the reduced execution time when using additional cores leads to higher 

memory bandwidth usage. 

 

Figure 20: Total execution time of DIRA divided into computations (blue bars) and loading and saving (red 

bars) for different number of cores on two Intel® Xeon® E5-2660 CPUs. 

 

From tables 6 and 7 it is clear that the time spent on loading and saving does not vary 

between implementations. These operations cannot be parallelized and do not benefit 

from adding additional cores. Instead they rely on memory speed and type of storage 

device the data is located on. Figure 20 shows the total execution time of DIRA for a 

selected number of cores. Loading and saving operations are one of the limiting factors 

when it comes to decreasing the overall execution time. According to table 7 the 

computational part takes 4.20 s for the OpenMP implementation when using the 16-core 

system, while the loading and saving part takes 3.72 s. For this particular setup almost 

half of the total execution time is spent on operations that cannot be improved by 

parallelization. This is in accordance with Amdahl’s law, section 2.1.5, which states that 

the possible attainable speedup is limited by the sequential execution time. It is possible 

to reduce the time spent on saving data by reducing the amount of data saved. What 

iterations of DIRA to save data from is controlled by the user. 
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4.1.1. FILTERED BACKPROJECTION 

  
 

 Figure 21: Speedup comparisons of the provided iradon function and new inverseRadon function on the Intel 

T1600 CPU (left) and two Intel E5-2660 CPUs (right). 

 

Figure 21 shows that the OpenMP implementation of the filtered backprojection gave a 

small increase in speedup on the dual-core Intel T1600 CPU and a slightly decreased 

speedup on the two Intel E5-2660 CPUs when compared to the old implementation 

using MATLAB’s iradon function. The large difference between the old 

implementation and the new implementation in C presented in figure 21 for the Intel 

E5-2660 indicates that the iradon function runs in parallel. The exact cause the 

performance difference is unknown as the source code for the iradon function is not 

available. Figure 19 shows that the speedup for the filtered backprojection matches the 

overall speedup of the algorithm with a factor of 11.3 when using 16 cores. The non-

ideal speedup is due to the parallelization overhead, which is too large compared to the 

low execution time of each function call. According to table 7 the total execution time 

of the filtered backprojections is 1.96 s for the Intel E5-2660 CPUs. This is for 10 

function calls, with an average execution time of 0.196 s per function call. The size of 

computations for each thread decreases as more threads are added, but the reduction 

operation of combining the partial results from the threads increases in size, limiting the 

potential speedup. 

4.1.2. MATERIAL DECOMPOSITION 

 

Figure 22: Comparison of the old implementation in MATLAB and the new in C for the material 

decomposition on the Intel T1600 CPU. 
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Figure 22 shows that the C code was much faster than the MATLAB code. According to 

tables 6 and 7 the execution time was reduced from 5.68 s to 0.24 s for the Intel T1600 

CPU and from 2.56 s to 0.08 s for the two Intel E5-2660 CPUs. There was no need to 

parallelize the material decomposition for either CPU or GPU. The C code reduced the 

overall execution time such that it is very likely that the parallelization overhead would 

increase the execution time, not reduce it. 

4.1.3. FORWARD PROJECTION 

 

Figure 23: Speedup for the old implementation in C, the new implementation in C, the new implementation 

with OpenMP and the new implementation with OpenCL on two Intel E5-2660 CPUs and the AMD R7 260X 

GPU.  

 

Figure 24: Execution time of the new implementation and the new implementation with OpenMP for slices 113 

and 113B on the Intel T1600 CPU. 

 

Figure 23 shows the execution times for the old implementation, the new 

implementation and the new implementation with OpenMP for the two Intel E5-2660 

CPUs. For the same system we get 106.5 s for the original implementation and 10.6 s 

for the new implementation from table 7. The parallel implementation with OpenMP 

reduced the value to 0.97 s; the total speedup was 110. The changes made to the forward 

projection function provided the largest performance improvement for DIRA. Originally 

58% and 86% of the total execution time was spent on calculating the forward 

projections for the Intel T1600 CPU and the Intel E5-2660 CPUs respectively. As 

described in section 3.2.3, the performance of the new implementation depends on the 

number of non-zero values the input data contains. This can be seen in figure 24, which 

compares the performance of slice113 and slice113B code examples with differing 

number of projection values to calculate. For the dual-core Intel T1600 CPU calculating 
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the forward projections for the slice113 example is almost twice as fast compared to the 

slice113B example. This matches the differences in the number calculated projection 

values. For the slice113 example a total of 202 171 projection values are calculated and 

for the slice113B example the number is 394 462; the ratio of the number of projections 

values is  
394 462

202 171
= 1.95. 

4.1.4. POLYCHROMATIC PROJECTIONS 

  
 
Figure 25: Speedup for the old MATLAB implementation, the new C implementation and the OpenMP 

implementation on the Intel T1600 (left). Speedup for the old MATLAB implementation, the new C 

implementation and the OpenMP implementation on two Intel E5-2660 CPUs  and the OpenCL 

implementation on the AMD R7 260X GPU (right). 

 

There is a noticeable performance difference between the MATLAB implementation 

and the C implementation for the two systems used. The Intel T1600 shows a significant 

performance increase, while the Intel E5-2660 shows a slight performance decrease. It 

is difficult to pinpoint the exact reason for this difference, but it could be caused by the 

large matrix needed for the old MATLAB implementation: a matrix of size 511 ×

720 × 134 × 8 𝐵 ≈ 376 𝑀𝐵  is allocated to hold temporary results. How the two 

systems handles allocating and managing this amount of data could be the reason why 

there is a large performance difference between them. 

Figure 25 shows that the OpenCL implementation running on the AMD R7 260X GPU 

outperforms the OpenMP implementation running on the 16-core system. The changed 

order of computations produced a large number of independent calculations and allowed 

for full usage of the GPU architecture. The OpenCL implementation initializes the 

kernel to perform the computations and perform the actual computations. The total 

execution time is 1.03 s for four function calls, with an average of 0.25 s or 250 ms for 

one function call. Of this about 100 ms is spent on building the kernel and the remaining 

150 ms on executing the kernel. The time it takes to build the kernel is static; it does not 

change between function calls. A faster GPU would only be able to improve the 150 ms 

of executing the kernel, not the 250 ms total time for the function call. Changing the 

structure of DIRA so that the kernel is only built once would require a converting all 

MATLAB code to C code and was not performed. The additional complexity of this 

would make future updates more difficult. Usability was chosen over performance. 
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4.1.5. PLATFORM PERFORMANCE 

A comparison between two different operating systems running on the same hardware 

was made. Windows 7 with Microsoft Visual Studio 2014 was tested against Ubuntu 

14.04 with GCC, both utilizing the Intel 3570K quad-core CPU and using MATLAB 

R2014b. 

Table 8: Execution times for the original, C and OpenMP implementations on Windows 7 with Visual Studio. 

 

  Function Original (s) C (s) OpenMP (s) 

Forward projection 
 

28.28 4.02 1.33 

  Polychromatic projection 8.24 5.24 1.92 

  Filtered backprojection 2.22 4.60 1.73 

  Material decomposition 2.33 0.07 0.05 

  Loading 0.70 0.89 0.73 

  Saving 0.63 0.85 0.84 

  Total time 42.39 15.66 6.59 

 

Table 9: Execution times for the original, C and OpenMP implementations on Ubuntu 14.04 with GCC. 

 

  Function Original (s) C (s) OpenMP (s) 

Forward projection 
 

99.94 8.48 3.39 

  Polychromatic projection 8.53 7.08 3.17 

  Filtered backprojection 3.24 5.13 7.08 

  Material decomposition 2.59 0.04 0.05 

  Loading 1.02 0.74 0.98 

  Saving 0.24 0.24 0.24 

  Total time 115.57 21.71 14.91 

 

Execution on Ubuntu showed some unexpected results for the forward projections 

where the original implementations was 3 times slower, the C implementation was 2 

times slower and the OpenMP implementation 3 times slower. This can be seen in 

tables 8 and 9. The results for the filtered backprojection were odd: the parallel 

OpenMP implementation was slower than the single-threaded C implementation. The 

exact cause of this behavior is unclear, but it is likely due to differences in how the two 

systems compile and execute C code. It is possible to specify the level of optimization 

to use when compiling the code by using compiler-specific optimization flags. For GCC 

these are -Ox where 0 ≤ 𝑥 ≤ 3  and for Visual Studio /Ox is used, where 𝑥 =

1, 2, 𝑏, 𝑑, 𝑔, 𝑖, 𝑠, 𝑡, 𝑥 𝑜𝑟 𝑦. Tests showed that there was no performance increase when the 

flags were used, for both platforms. These results are from execution on two specific 

systems and do not reflect the performance of other systems. 

4.2. CTMOD 

The performance of CTmod was evaluated on two Intel Xeon E5-2660 CPU with 8 

cores each, for a total of 16 cores. Two example codes were used to measure the 

performance: cylinder01 which uses a single solid cylinder as the geometry, and 

spr_voxel_array which uses a voxel array to represent the human body. Both example 
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codes simulated 100 000 photon histories. Only the time to simulate the photon histories 

was measured, not the time to load the geometry and save the results. 

 

Figure 26: Speedup achieved for the cylinder01 code example and the spr_voxel_array example code using two 

Intel Xeon E5-2660 CPUs with a total of 16 cores. 

 

As figure 26 shows, the performance of CTmod scales nearly linearly when additional 

cores are used and it is almost ideal with a speedup factor of 14 when using 16 cores for 

both examples. This was expected given the structure of the code. Each photon history 

is independent of the others; there are no interactions between the simulated photons. 

Allocation of individual detector arrays for each thread removed the need for 

synchronization of the scoring. The execution time was large compared to the parallel 

overhead and combination of partial thread results: 75 s for the voxel array example and 

15 s for the single cylinder example when using 16 cores. The difference in total 

execution time is due to the complexity of the voxel array geometry compared to the 

cylinder geometry. 

 

Figure 27: Difference in performance with Hyper-Threading Technology disabled and enabled for the 

cylinder01 and spr_voxel_array example codes when using the Intel Xeon W3520 CPU. 

 

Hyper-Threading (HT) increased performance by 30% for both examples, see figure 27. 

CTmod contains a large amount of branching operations. The additional threads that can 

be used with HT enabled can keep the CPU pipelines more saturated than with HT 

disabled. Not all CPUs are equipped with HT or techniques like it, but it should be 

enabled to achieve maximum performance when using CTmod. 
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5. DISCUSSION 

This section discusses the changes made to the DIRA and CTmod codes and the 

resulting performance improvements. It also contains a discussion on why the OpenCL 

implementations of the filtered backprojection and forward projection functions in 

DIRA did not provide the expected performance and why a GPU implementation of the 

CTmod code was not made. 

5.1. DIRA 

The change to C code from MATLAB code and updating how the forward projections 

of individual base materials are calculated gave a speedup of 4.2 for the dual-core Intel 

T1600 CPU and 2.6 for the two 8-core Intel E5-2660 CPUs. With parallelization using 

OpenMP speedups of 6.1 and 15.6 where achieved respectively. The code speedup did 

not scale linearly with additional cores as 16 cores only gave an increase of a factor 10. 

This was due to the many short function calls in DIRA creating a large parallelization 

overhead compared to the computation time and the fixed time to load and save data 

that cannot be reduced. 

The forward projection and filtered backprojection functions were parallelized for GPU 

but the implementations did not give a performance increase. Both functions are very 

memory-intensive and produce more output data than what is given as input. This meant 

either synchronizing memory accesses (which introduce large overheads) or limit the 

task parallelization. Using OpenCL instead of OpenMP also introduces additional 

overhead due to building the kernel that executes the code. 

Section 4.1.5 contains a comparison between two platforms, Windows and Ubuntu, both 

using the same hardware and MATLAB version. These results depend on many factors 

affecting code execution time such as operating system, compiler and compiler version 

as well as MATLAB version. One test is not enough to draw generally valid 

conclusions. The user should, if possible, examine the performance of different 

platforms to achieve the best results. 

5.1.1. CODE MANAGEMENT 

Table 10 lists implementation files of functions analyzed and optimized in this thesis. 

Selecting the correct file to use is dependent on what software and hardware is available 

to the user. This makes maintaining and updating the code complex as there are many 

combinations of files that the user can select from. The user also has to be 

knowledgeable on how to compile the files not written in MATLAB code. For the C 

implementation the files are converted into binary MEX-files with the MATLAB 

command mex filename. For the OpenMP implementations the user also has to indicate 

that the code is to use the OpenMP framework by specifying compiler flags. For 

Windows this is done with mex filename COMPFLAGS="/openmp $COMPFLAGS" 

and for UNIX systems mex filename CFLAGS="\$CFLAGS -fopenmp" 

LDFLAGS="\$LDFLAGS -fopenmp". The OpenCL version also requires that the user 

have the correct drivers installed for the GPU as well as the APP SDK by AMD or the 

CUDA toolkit by NVIDIA. A compilation script is provided for both Windows and 
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UNIX to automatically compile the files. Any future updates to the parallel sections of 

DIRA will require knowledge on how to write parallel code as well as how to compile 

it. This introduces another level of complexity that was not in the single-threaded 

version of DIRA. 

Table 10: Available implementations of the filtered backprojection, material decomposition, forward 

projection and polychromatic projection functions in DIRA. 

 
 MATLAB C OpenMP OpenCL 

Filtered backprojection - Old + New New New 

Material decomposition Old New - - 

Forward projection - Old + New New New 

Polychromatic projection Old New New New 

 

5.1.2. FILTERED BACKPROJECTION 

Each projection in the sinogram is backprojected over the output image. With 𝑘 

projection angles and an output image size of 𝑁 × 𝑁 a total of 𝑘 × 𝑁 × 𝑁 values are 

placed onto it, meaning more data is produced than what is given as input to the 

function. Where to place the values in the output image is dependent on the angle and 

multiple projections place values on the same position in the output image, which 

requires synchronization. The simplest way to avoid the need for synchronization is by 

allocating matrices to store temporary results and combining the results after execution. 

Doing so will limit the number of tasks that can be created as the number of matrices 

that can be allocated is limited by the available memory. An alternative to allocating 

temporary matrices is to instead assign each task to an output row, which reads the 

projection values from the sinogram and places them onto that row. This avoids the 

synchronization issue but the number of tasks that can be created limited by the number 

of rows in the output image. Either method of implementation is limited in the number 

of tasks that can be created and will not allow for full GPU utilization. The GPU 

implementation is also limited by the overhead of building the kernel. Filtered 

backprojection is performed a total of five times, once for the initial reconstruction and 

once for each iteration of DIRA. The code structure of DIRA means that the kernel is 

built each time filtered backprojection is performed. Building the kernel each iterations 

gives a large overhead compared to building the kernel only once. 

5.1.3. MATERIAL DECOMPOSITION 

The large improvement in the execution time is due to the differences in the MATLAB 

and C languages and how they manage and execute code. MATLAB is an interpreted 

language; the MATLAB interpreter converts each line of code for direct execution by 

the processor. C is a compiled language; a compiler compiles the code to machine code 

which is stored in a binary file for later execution. The compilation introduces a delay 

before code execution but additional optimization can be performed to improve 

performance. 

As described in section 3.2.4, mass fractions are calculated by solving equation (2.14). 

For every pixel value in the image, the matrix 𝑴 is assigned new values. The old 
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MATLAB implementation allocated and returned the memory needed for matrix 𝑴 for 

every pixel processed, introducing a significant amount of overhead. The new 

implementation in C allocates and de-allocates the memory only once for the whole 

matrix 𝑴. 

5.1.4. FORWARD PROJECTION 

From tables 7 and 8 we get that the total execution time for all calls to the sinogramJc 

function takes 0.97 s for the 16-core Intel E5-2660 CPUs and 1.33 s for the quad-core 

Intel 3570K CPU using the parallel OpenMP implementation. Four iterations of DIRA 

and five forward projections in each iteration equal a total of 20 function calls. This 

gives an average execution time of  
0.97 𝑠

20
= 0.0485 𝑠 ~0.05 𝑠  and  

1.33 𝑠

20
=

0.0665 𝑠 ~0.07 𝑠 respectively. 

In order to assess how well the forward projection function can be parallelized we need 

to look at the operations it performs. The old implementation used the destination-

driven method of calculating a line integral through the image of mass fractions to 

produce one projection in the sinogram. Using 𝑑 detector elements gives 𝑑 projection 

values for one projection and with 𝑘 angles 𝜃1 . . 𝜃𝑘  a total of 𝑝 × 𝑘 projection values 

are computed for one sinogram. If one line integral is one task a total of 𝑝 × 𝑘 tasks can 

be created. The problem with this method is, as previously mentioned in section 3.2.3, 

the branching operations required to ensure that each step of the line integral is within 

the bounds of the image. The memory accesses are also a problem as the entire input 

image must be available to every task as it is not possible to determine beforehand what 

pixel values in the image the line integral cuts through. For an OpenCL implementation 

the input image is too large to fit into private or local memory and must be kept in 

global memory. The OpenCL implementation of the destination-driven method 

computed one sinogram in ~0.7 𝑠 when using the AMD R7 260X GPU, compared to 

the ~0.05 𝑠 for the OpenMP implementation using two Intel E5-2660 CPUs. 

The alternative is to use the new, source-driven method. Each pixel value in the input 

image produces two projection values in the sinogram for every projection angle 𝜃1 . . 𝜃𝑘 

for a total of 2𝑘 values per pixel. With an input image size of 𝑁 ×𝑁 this creates at most 

2𝑘 × 𝑁 × 𝑁 values if all pixels in the input image contribute to the projections. The 

problem with this method is that multiple pixels will produce values for the same index 

in the sinogram and synchronization is required. Synchronization is only supported in 

OpenCL between work-items in a work-group, not between work-groups so this is not 

an option. Matrices could be allocated to hold temporary results, but this would limit the 

number of tasks as the GPU memory is limited and the summation of the temporary 

results causes significant overhead. The synchronization issues were avoided by 

switching the order of computations such that each calculated projection is one task and 

each task iterates over all pixels in the input image. As each angle produces a projection 

the number of tasks was limited to the number of angles. This meant that a GPU with 

more cores than angles to calculate projections for was not fully utilized. The source-

driven method computed the forward projections in 3.25  s when using the AMD 
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R7 260X GPU, compared to the 0.97 s for the two Intel E5-2660 CPUs and the 1.33 s 

when using the Intel 3570K CPU. 

The article [6] describes an implementation of an iterative reconstruction algorithm 

using NVIDIA’s toolkit CUDA for parallelization using GPU. The authors used the 

ordered subset convex algorithm, which updates the image estimate in multiple steps 

using a subset of all projections. For the forward projection they used a destination-

driven method by multi-sampling x-rays through the voxels and averaging the results. 

Each thread on the GPU was assigned a single detector pixel. No performance numbers 

are mentioned in the article and no comparison is made to a CPU implementation 

making it difficult to determine if the GPU implementation is better. Testing showed 

that for DIRA the source-driven method implemented for CPU is faster than both a 

source-driven and destination-driven GPU implementation. 

5.2. CTMOD 

An OpenCL version of CTmod was planned but due to time constraints and unsuitable 

code structure it was not implemented. The transport of the photons is dependent on the 

geometry they are transported through, how the geometry is represented and what setup 

is used for the detector array. This allows for many different configurations but it is also 

the cause of the code’s complexity; CTmod consists of over 100 classes. OpenCL uses 

a kernel that is separate from the main code so all necessary data, structures and 

functions need be accessed from the kernel. OpenCL does not support classes making 

the task of converting CTmod to support OpenCL very time consuming. A complete 

rewrite of the code was required and the time to do so was not available. 

A parallel random number generator was implemented in CTmod by creating thread-

local copies of the Mersenne Twister generator, where the initial seeds were generated 

randomly by the C-function 𝑟𝑎𝑛𝑑(). The drawback to this implementation is that it can 

produce sequences that are nearly identical for many iterations before diverging, if the 

initial seeds are almost the same. An updated version of the Mersenne Twister addresses 

this issue by improving the initialization, but the problem of initial seeds still persists in 

the CTmod implementation. One solution to this problem is to implement a parallel 

version of the Mersenne Twister, described for example in [45]. In the article CUDA is 

used to parallelize the random number generator for NVIDIA GPUs, but the method 

described can be used for both CPU and GPU. The generation of random numbers is 

divided into blocks where each block skips ahead to a given point in the sequence and 

from there generate the random numbers. 

The time consuming section of CTmod is the scoring of contributions from individual 

photon interactions by the detector array, not the transport of the photons. The code 

could be modified to perform the photon transport and detector array scoring in two 

separate steps. The photon transport generates random numbers and evaluates branches 

based on these numbers, which the CPU does better than a GPU. The less branch-

intensive detector array scoring is then run on the GPU as each detector array element is 
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independent of others, allowing for tasks as many as the number of detector array 

elements. 

Utilizing the Intel Xeon Phi architecture for CTmod was planned, but it was not 

possible due to compilation issues with CERN’s toolkit ROOT. Figure 27 shows that 

CTmod scales almost ideally with additional cores and it is very likely that it would be 

able to fully utilize the ~60 cores and ~240 threads available.  

Even though CTmod was not implemented for GPU it is possible to utilize the 

computational power for Monte-Carlo simulations if the code is specifically written for 

GPU. For example, in [46] the results of a GPU-implementation for calculating proton 

dose using Monte-Carlo methods are described. The calculation time for a single beam 

decreased from 4 CPU hours per million particles (2.8 GHz Intel X5600) to 2.4 s per 

million particles (NVIDIA Tesla C2075). These results are very good but it should be 

noted that the code was designed for a specific purpose and is not a general-purpose 

simulation code. This allowed for optimizations of calculations that greatly reduced the 

computation time. A speedup of 6 000 is not possible by only switching from CPU to 

GPU.   
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APPENDIX A 

 

1. POLYCHROMATIC PROJECTIONS – MATLAB 

 

 

function [Ap] = computePolyProj(E, uE, N, p, mu) 

   
  sizeE = size(E); 
  sizeP = size(p); 

   
  sl = zeros(sizeP(1), sizeP(2), sizeE(1)-1); 

   
  for k = 2:sizeE-1; 
    tmpSum = zeros(size(p(:, :, 1))); 
    for i = 1:sizeP(3) 
      tmpSum = tmpSum+(-mu(E(k), i)*100.*p(:, :, i)); 
    end 
    sl(:, :, k) = (E(k)*N(k))*(E(k+1)-E(k-1)).*exp(tmpSum); 
  end 
  up = sum(sl, 3)/2; 

   
  Ap = -log(up/uE); 
end 
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2. POLYCHROMATIC PROJECTIONS – C 

 

static void  
computePolyProj(int *ePtr, double ue, double *nPtr, double *pPtr, double 

*muPtr, double *apPtr, int e_Size, int p_Size, int mu_Size, int N, int M) 
{     
  int x,y; 
  int k; 
  int l; 
   
  int energy; 
  int image_size; 
   
  double temporarySum; 
  double result; 
   
  image_size = M*N; 
   
  for(y=0;y<M;++y) 
  { 
    for(x=0;x<N;x++) 
    { 
      result = 0; 
  
      for(k=1;k<e_Size-1;++k) 
      { 
        temporarySum = 0; 
         
        energy = ePtr[k]; 
         
        for(l=0;l<p_Size;++l) 
        { 
          temporarySum += -muPtr[l*mu_Size + energy - 1]*100* 
                           pPtr[y*N + x + l*image_size] ; 
        } 
         
        result += (energy * nPtr[k])*(ePtr[k + 1] - ePtr[k - 1])* 
               exp(temporarySum); 
      } 
      apPtr[y*N + x] = -log((result/2)/ue); 
    }   
  }     
} 
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3. POLYCHROMATIC PROJECTIONS – C WITH OPENMP 

 

static void  
computePolyProj(int *ePtr, double ue, double *nPtr, double *pPtr, double 

*muPtr, double *apPtr, int e_Size, int p_Size, int mu_Size, int N, int M) 
{     
  int x,y; 
  int k; 
  int l; 
   
  int energy; 
  int image_size; 
   
  double temporarySum; 
  double result; 
   
  image_size = M*N; 
   
  #pragma omp parallel for private(x, result, k, temporarySum, energy, l) 
  for(y=0;y<M;++y) 
  { 
    for(x=0;x<N;x++) 
    { 
      result = 0; 
  
      for(k=1;k<e_Size-1;++k) 
      { 
        temporarySum = 0; 
         
        energy = ePtr[k]; 
  
        for(l=0;l<p_Size;++l) 
        { 
          temporarySum += -muPtr[l*mu_Size + energy - 1]*100* 
                   pPtr[y*N + x + l*image_size] ; 
        } 
         
        result += (energy * nPtr[k])*(ePtr[k + 1] - ePtr[k - 1])* 
               exp(temporarySum); 
      } 
      apPtr[y*N + x] = -log((result/2)/ue); 
    }   
  }     
} 
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4. POLYCHROMATIC PROJECTIONS – OPENCL 

 

__kernel void computePolyProj(__global int *ePtr, const double ue, __global 

double *nPtr, __global double *pPtr, __global double *muPtr 

__global double *apPtr, const int e_Size, const int p_Size, const int mu_Size,  

const int total_size)  

{  

    #define energies 140  

  

    int t_id = get_global_id(0);  

   

    int k;  

    int l;  

  

    __private int energyLevels[energies];  

  

    for(k=1;k<energies;++k)  

        energyLevels[k] = ePtr[k];  

    

    double temporarySum = 0;  

    double result = 0;  

  

    for(k = 1; k < e_Size-1; ++k)  

    {  

      temporarySum = 0;  

                 

      for(l = 0; l < p_Size; ++l)  

      {  

        temporarySum += (-*(muPtr + l*mu_Size + energyLevels[k] - 1))*  

                         100*(*(pPtr + t_id + l*total_size));  

      }  

       result += (energyLevels[k] * (*(nPtr + k))) *  

                 (energyLevels[k+1] - energyLevels[k-1]) *  

                  exp(temporarySum);  

    }  

    *(apPtr + t_id) = -log(result/2/ue);  

}  

 


