Institutionen for systemteknik

Department of Electrical Engineering

Examensarbete

Parallelization of DIRA and CTmod
using OpenMP and OpenCL

Masterthesis performed itnformation Coding
by
Alexander Ortenberg

LiTH -ISY-EX--15/4834-SE
Link6ping 2015

\ﬁGS UN; P@

I
ka

[’\’ Gs UN‘N{{:Q~

10 L
S ’%O

TEKNISKA HOGSKOLAN
LINKOPINGS UNIVERSITET

Linkdpings tekniska hogskole
Institutionen for systemteknik
581 83 Linkdping

Department of Electrical Engineerin
Link6ping University
S-581 83 Link6ping, Sweden






Parallelization of DIRA and CTmod
using OpenMP and OpenCL

Master thesis itnformation Coding
at Linkdping Institute of Technology

by

Alexander Ortenberg

LiTH -ISY-EX--15/4834-SE

Supervisor: Alexandr Malusek
IMH, Link6éping Universitet
Jens Ogniewski
ISY, Link6pings Universitet
Examiner Ingemar Ragnemalm
ISY, Linkdpings Universitet

Linkoping201506-11






Presentation Date Department and Division —.

201506-01 Department of Electrical Engineering ”t’“

Publishing Date (Electronic version) %, JL

201506-11 Linkdpings universitet
Language Type of Publication

ISBN (Licentiate thesis)

_X_English ___Licentiate thesis L
___Other (specify beloyv || X_ Degree thesis ISRN: LITH -ISY-EX--15/4834-SE
___Thesis Glevel Title of series (Licentiate thesis)
—Thesis Dlevel
—Report
Number of Pages ___Other (specify below)| | Series number/ISSN(Licentiate thesis)

56

URL, Electronic Version
http://www.ep.liu.se

Publication Title
Parallelization of DIRA and CTmod using OpenMP and OpenCL
Author(s)

Alexander Ortenberg

Abstract

Parallelization is the answer to the egeowing demands of computing power by taking advantageudtf-core
processor technology and modern manye graphics compute units. Muttbre CPUs and margore GPUS
have the potential to substantially reduce the execution time of a program but it is often a challengin
ensure that all available hardwre is utilized. OpenMP and OpenCL are two parallel programming frame
that have been developed to allow programmers to focus orlevighparallelism rather than dealing with lo
level thread creation and management. This thesis applies these framewihie area of computed tomograj
by parallelizing the image reconstruction algorithm DIRA and the photon transport simulation toolkit (
DIRA is a modelbased iterative reconstruction algorithm in deaérgy computed tomography, which has
patential to improve the accuracy of dose planning in radiation therapy. CTmod is a toolkit for sin
primary and scatter projections in computed tomography to optimize scanner design and image reco
algorithms. The results presented in thigsiB show that parallelization combined with computati
optimization substantially decreased execution times of these codes. For DIRA the execution time wa
from two minutes to just eight seconds when using four iterations anecard &€PU so apeedup of 15 wa
achieved. CTmod produced similar results with a speedup of 14 when usingoael6PU. The results al
showed that for these particular problems GPU computing was not the best solution.

Number of pages:56

Keywords
Parallelization, OpenMP, OpenCL, Computed Tomography, Iterative Reconstruction







ABSTRACT

Parallelization is theanswerto the evergrowing demands of computing powby

taking advantage afulti-core processor technology and reod manycore graphics
compute units. Multi-core CPUs and marmore GPUs have the potential to
substantially reduce the execution time of a progoaimit is often a challenging tasé

ensure thatll available hardwarés utilized OpenMP and OpenCL are twmarallel
programmingframeworksthat have been developed toav programmers to focus on
high-level parallelism rather than dealing withlow-level thread creation and
management. This thesis applies these frameworks to the area of computed tomography
by parallelizing theimage reconstruction algorithm DIRA and thghoton transport
simulation toolkit CTmod. DIRAs a modelbased iterative reconstruction algorithm in
dualenergy computed tomographyhich has the potential to improve the accuracy of
dose phnning in radiation therapy. @Tod is a toolkit for simulatingprimary and
scatter projections in computed tomography to optimize scanner design and image
reconstruction algorithmd& he results presented in this thesis show that parallelization
combined withcomputational optimizatiosubstantiallydecrease executio times of

these codes. For DIRA the execution timas reduced from two minutes to just eight
seconds when usingudoiterations and a 16ore CPU s@ speedup of 1&as achieved
CTmodproducedsimilar results with a speedup of 14 when using &dr@é CRJ. The

results also shoad thatfor theseparticular problera GPU computing wagsot the best
solution.



ACKNOWLEDGEMENT

I would like to start by thanking my examiner Ingemar Ragnemalmmanslupervisor

Jens Ogniewski for their time and &l during this project. A great thanks to Alexandr
Malusek for making this project possible and supplying me with everything | needed to
complete it; hardware, software, advice, comments and guidéhageks to the people

at Radiofysik fora fun andvelcaming place to work on my thesis.

I would also like to thank NSC, the National Supercomputer Centre at Linkoping
University, for providing scalable hardware on which | could test #réopnance of
DIRA and CTmod. fanks to Peter Kjellstrom for helping meith the Intel Xeon Phi
architecture and trying to compile the ROOT togllmd Peter Minger for setting up
the project at NSCFinally |1 would like to thank Maria Magnusson for having the
patience to explain DIRA and its components as well as suggeltengaiive methods

to use.

To my parents, foineir neverendingsupport Thank you.



TABLE OF CONTENTS

1.

INTRODUCTION

1.1. Purpose and goal

1.2. Related work

2.

BACKGROUND

2.1. Processor Concepts and Parallelization

2.1.1. Multi-core

2.1.2. Cache

2.1.3. Pipeline and branching
2.1.4. Parallelization

2.1.5. Synchronization

2.1.6. Speedup

2.1.7. OpenMP

2.1.8. OpenCL

2.1.9. GPU Architecture
2.1.10.  Xeon Phi

2.2. Principles of Computed Tomography

2.2.1. Photon Interactions
2.2.2. Computed Tomography

2.3. DIRA

2.3.1. Filtered backprojection
2.3.2. Material Decomposition
2.3.3. Forward projection

2.3.4. Polychromatic projections

2.4. CTmod

3.

METHODS

3.1. Hardware

3.2. DIRA

3.2.1. Filtered backprojection
3.2.2. Material decomposition
3.2.3. Forward projection

3.2.4. Polychromatic projections

o

o © ©

10
10
11
12
13
15
17
19

20
20
21

23
24
24
25
27

27

29

29

29
31
32
32
33



3.3. CTmod

4. RESULTS
4.1. DIRA
4.1.1. Filtered backprojection

4.1.2. Material Decomposition

4.1.3. Forward projection

4.1.4. Polychromatic projections

4.1.5. Platform performance
4.2. CTmod

5. DISCUSSION

5.1. DIRA
5.1.1. Code management
5.1.2. Filtered backprojection
5.1.3. Material decomposition
5.1.4. Forward projection

5.2. CTmaod

BIBLIOGRAPHY

APPENDIX A

1. Polychromatic Projections i MATLAB

2. Polychromatic Projections i C

3. Polychromatic Projections i C with OpenMP

4. Polychromatic Projections 1 OpenCL

34

35

35
38
38
39
40
41

41

43

43
43
44
44
45

46

49

53
53
54
55

56



1. INTRODUCTION

Parallelizationis the next step in keeping up with the egeswing ned for additional
computational power. The single processor system isonger able to provide the
performance required due to limitais in clock speedcaused bypower and heat
problems, the restricted instructitevel parallelismavailable and memory ecess
bottlenecks.The limitations of the single processor system lead to the introduction of
multi- and manycore systems, but they require software developers to explicitly write
programs with parallelizadn in mind to fully utilize allcores. To aid t developers a

set of parallel paradigntsave evolved that provide simple and easy to use methods for
unlocking the powers of parallelization apstradng the tedious tasks of lovevel
thread and core managemenn this thesis two of these paradigm®pen
MultiProcessing (OpenMP) and Open Computing Language (Operdté&)used to
parallelize codes ithe area of computed tomograpliry this area therare still many
codes that have not yet been parallelized to take advantage of the additional computing
power provided by mulicore processors and maogre graphics processing units
leading to unnecessarily long execution timesking the user pointlessly waiibr
results Someof these codes inclugbut are not limited tahe iterative reconstruction
algorithm DIRA and the CTmod toolkit.

Using dualenergyCT (DECT) instead of singlkenergy CT has the potential to improve
guantitative tissue classification by providing additionabinfation of the scanned
object and improve dose planning accuracy iniafidn treatment. There are still
problems with beam hardening and scatter artifacts in the reconstructed images alter
the CT values, causing the tissue classification to incorrectly decompose theTihiage

can forexample resulin bone tissue beinglassified as soft tissusuch as protein or

fat. A new method, DECT lIterative Reconstruction Algorithm (DIRA), has been
developed in Linkdping and has the potential to remove the beam hardening artifacts
while keeping the CT numbeirgtact.

Photons thathave not interacted inside a phantom carry useful information to the
detector array, but the scattering of photons causes scatter artifacts, visible as cupping or
streaks when reconstructing images. The scattering of photons is especially strong in
cone bam CT as the amount of scatter is dependent on the beam width, where a wider
beam increases the scatter. Other factors playing a role in the scattering are the tube
voltage, the size of the phantom, the usage of collimators and bowtie filters as well as
the detector array setuphe abilityto study how these factors affect the projections is
helpful in the optimization ofimage reconstruction algorithms a@d scanner design

The simulation toolkit CTmadwritten in C++and based on the analysis framework
ROOT [1] by CERN was developed to calculate scatter projections using the Monte
Carlo methodMany of the tool kitdés features are
Monte Carlo codes like Geant4, MCNP and FLUKA.

no



1.1. PURPOSE AND GOAL

The purpose of this thesis is itmaprove the execution times of DIRA and CTmod by
taking advantage of the multiple c&8 provided by modern CPUs amdny cores by
modern GPUs using the frameworks OpenMP and Openi@e. singlethreaded
executiontime of DIRA is in the range of several minutes per slice, depending on the
hardware used and the number of iterations the algorithm perf@wnse diagnostic
protocols use volumetric scans consisting of tens or hundreds of[glicéhesewvould
require haoirs of computation to complete.

The execution time of CTmod is dependent on the configuration chosen, where the
number of photon histories to simulate, the complexity of the geometry and the detector
array setup are all factoré singlethreaded simulation can take hours to complete.
Parallelization would open up new possibilities regarding the complexity of simulation
application of the code in clinical practiaad execution on new hardware architectures
such as Intel XeoRhi[3].

There are alternative frameworks available for writing parallel programs such as
Message Passing Interface, MIM], for CPUs and Compute Unified Device
Architecture, CUDA5], for GPUs For parallelization on the CPU the choice was made

to use OpenMP instead of MPI as the utilization of a distributed memory system was
not required. For GPU parallelization there are two alternatives, OpenCL and CUDA.
CUDA is deeloped and maintained by NVIDIAnd as such can only be used on their
GPUs. OpenCL does not have the same restriction and can run on a wider range of both
CPU and GPU architectures so in order to make the parallelization as general as
possible the choiceas made to use OpenCL.

1.2. RELATED WORK

DI RA6s approach to image reconstruction has
possibility to compare it with competing projects. More is known about parallelization

of other image reconstruction algorithmgelithe filtered backprojection or noise

suppressing iterative image algorithms, for example describfg].il\ny comparison

is, however, complicated by the fact that vendors often do not disclose implementation

details of thai algorithms.

There areseveralcodes thatansimulate CT scannerSome of them are specialized,

like GATE, MCGPU and CTsim, others are just adaptations of geperpbse MC

codes like MCNPX, EGSnrc and FLUKA. As those codes typically simulate very man
independent particle histories, their parallelization can be done by splitting the
simulation to several smaller jobs, where each job simulates a subset of the histories.
Results from these jobs are then summarized by a master process. Implementation
details of such solutions are listed below for several selected cdtlesopen source
software GATE (Geant4 Application for Tomographic Emissidid] supports
simulations of Computed Tomography, Radiotherapy, PET (Positron Hmitte
Tomography) and SPECT (Single Photon Emission Computed Tomography)
experimentsGATE uses a parallel computing platform to run simulations in a cluster to

6



shorten the setup time and provide fast data output handling. It also supports CUDA for
PET and CTapplications. GATEis an extension ofSeant4[8], a toolkit for the
simulation of the passage of particles through ma@eant4 includes facilities for
handling geometry, tracking, detector response, run management, visualarad user
interface.The parallel implementation ParGATE, using MPI, achieved a speedup of 170
with 100 workers. The superlinear speedup occurred due to inefficiencies in the
sequential program caused by the overhead of writing largdJiles

MCNPX (Monte Carlo NParticle eXtended)10] is a generapurpose Monte Carlo
radiation transport code. It can simul8# particle typesificluding nucleons and light
ions) at almost all energies. It usee MPI library[4] to allow for parallel processing.
According to[11] a speedup of 11 was possible to achigith 31 cores.

The code MCGPU is amassively multthreadedGPUaccelerated xay transport
simulation code that can generate radiographic projection images and CT scans of the
human anatomfl2]. It uses the CUDAS5] library to execute the simulations in parallel

on NVIDIA GPUs. Italso uses the MPI library to allow for execution on multiple
GPUs. The code i the public domain andeveloped by thé&). S. Food and Drug
Administration (FDA) Evaluation showed that MCGPU on a NVIDIA C2070 GPU
achieved a speedup 6fcompared to a gdacore Xeon process¢t3].






2. BACKGROUND

This section serves as an introductionijoprocesor architecture(ii) parallelzation,
and (iii) physics and algorithms of computed tomographyalsobriefly describes the
OperMP and OpenCLframeworks for parallelzation of programsand how the
performanceimprovement of parallelization isneasured The GPU architecture is
shortlydescribedand the neweon Phiarchitecture isntroduced.

2.1. PROCESSOR CONCEPTS AND PARALLELIZATION

2.1.1. MULTI-CORE
A core refers to a processing unit capable of reading and executing program
instructions, such as addition, subtraction, multiplication and conditistatements
(also known asf-thenelsestatements). A muHtore processor is a single coripg
component with two or more independent processing units (cates}termmulti-core
refers to multicore CPUspther hardware architectures such as the GPU or the Intel
Many Integrated Core (MIC), brand name Xeon Rh& not includedin the beginng
of 2015 amoderndesktop CPU typically had cores, while a server CPU from Intel
couldhave up to 18 cord44] or 16 cores for AMO15].

2.1.2. CACHE
The cache is a component acting as a smlfastmemory on the CPU, storing daia
instructions. A modern CPU has multiple independent caches, separating the
instructions and the data. The advantage to using a cache is speed; it is able to more
quickly provide the CPU with the instructions égecue as well adulfill requests for
data, compared to retrieval from main memorycakhe hitrefers to thesituation when
requested datia available in the cache andtcache misss the opposite of a hithe data
is not availablen the cache. A cache nsi€auses a delay as the data is fetched finem
main memory. The execution time of a prograraffected by e number of cache hits
as retrieving data frorthe main memory is much slowelodern CPUs typically have
three cachemamedL1, L2 and L3 whereach core has indidual L1 and L2 but L3s
shared. L1 is the smallest afadtest cache and is checked fidtthere is no hit the L2
is checked and finally the L&aches checkedLatencies of the Intel Core i7 Xeon 5500
Series CPU caches fottlzeoetical CPU clock speed @ GHzare in table 116]:

Table 1: CPU cache and main memory latencies in seconds for thatel® Xeon® Processor 5500 Seriesith a
CPU clock speed of 2 GHz.

Data source Latency

L1 Cache hit ~4 cycles (2 ns)
L2 Cache hit ~10 cycles (5 ns)
L3 Cache hit ~60 cycles (30 ns)
Local DRAM ~60 ns

According to table 1ahit in the L1 cache is 30 times faster ttzaretrievalof datafrom
the main memory.



2.1.3. PIPELINE AND BRANCHING
The kasic instruction cycle is broken up into a series called a pipeline. Rather than
processing each instruction sequentially each instruction is split up into a sequence of

stepswhereseparatestgps are executed concurrentlyy utilizing different components
of the processor cofd7]. Figure 1demonstrates a very simple pipeline with multiple

steps for each instruction.

Inst r No. Pipeline Stage
1 IF | ID | EX [MEM WI;
2 IF | ID | EX [MEM| WB
3 IF | ID | EX [MEM| WB
4 IF [ ID | EX [MEM
5 IF | ID | EX
g;‘:fl'é 1|2|3|4|5|6]7

Figure 1: Classic RISC 5 Stage Pipeline. Source:
http://upload.wikimedia.org/wikipe dia/commons/thumb/6/67/5_Stage_Pipeline.svg/2000px

5_Stage_Pipeline.svg.png

IF = Instruction Fetch

ID = Instruction Decode
EX = Execute

MEM = Memory Access
WB = Register Write-back

A branch is an instruction in a computer program that may, when executed by a

computer, cause the computer to begin execution diffarent instruction sequence
[18]. Depending on the outcome of the branchpieessomay be forced to clear the

pipeline of instructions which will cause it to stall until new instructions have been

loaded. To achieve the highest possible performance branching shoukpto a
minimum in order to ensure that instructions are always execlitesl.is especially

important for a GPU ag does not possess the necessary control logic to effectively

handle branchesModern CPUs have long pipeline&r instancel nt e | vieb
architecture has pipeline length of 1419 stagesndthe AMD Jaguar architecture has a

pipeline length of 14 stages.

Has

HyperThreading TechnologyHT) [19] is an attempt by the processor manufacturer
Intel to solvethe issue of pipeline stalling. Each core of the CPU consists of two

processors, each with their own executing resources, such as cache -andrface.
The shared resources allow the processors to bdmow eachother if either stalls.

This allows fo twice as many threads compared to a CPU with the same number of
cores but without HypefFhreading.The performance increase is highly dependent on

both the operating system supporting HT by efficiently schedulingalest and the

tasks themselves.

2.1.4. PARALLELIZATION

The conversion o& sequential program to a parallel program requires analysis of the

control and data dependencies to ensuat the same results are produdsdboth
programs for all input values. The change from sequential to paralietésion the

decomposition of the program intasks. A task is a series of computations executed by
a single processor or core. The number of tasks a program is decomposed into is an

10



upper limit on the level of parallelism possible and the number of cbatscan be
utilized. The goal of the decomposition is to createugyiotasksothat (i) all available
coresare keptbusyand (ii) the computational part larges enough that the execution
time islong compared to the time required to schedule and thepasksto different
processorsFor example, assume we want to apply a fundiijpfor every element im
matrix A of sizeMxN. If the operations the functigrerforms are independent for every
element in the matrix, then a maximum BIXN tasks canbe created. Buthe
computational complexity df) might be low and it is more efficient to only cre&e
tasks to reduce the time for scheduling and mapping of the tasks to the processors.

Data dependenciesust be taken into account when parallelizimgprogramand
creating tasksThe existence of such dependencies prevents instructionsgpraitel
execution There are three types of data dependencies:

1 Flow/true dependency: Instructio® computes a result that iater used by
instruction'Qy
1 Anti-dependency: Instructio@uses a value latenodified by instructionC8
1 Output dependency: Instructid@andOcomputes separate results stored in the
same location.
YooY gy 4 Y ﬁ YooY
oY 4 Y 0:4 Y Y ( Y oY
flow/true dependency anti-dependency output dependency

The existence of data dependencies and theis@ffectspossible types and sizes of
createdasksas they mugbe independent tallow parallel execution.

A code parallelization requires careful consideration of the sequential bgdthe
programmer Can the code be at all parallelized or are the data dependémaies
prohibit this? If there are dependencies, is it possible to restructure the code in such a
way that they are avoided or can they be dealt with using some other metbwd?
many tasks should the cotbe divided intoso that the available processorge #@est
utilized? What data is required to perform the computations and can they be shared
between tasks as they are not modifiedarertheyused in such a way that accessing it

by multiple tasks is order dependent? What is the cost of using synchiammipati
ensure that data is correctly accessed and how does it compare to theitpsssible,
modifying the code in such a way that synchronizatiaorotsneeded?

2.1.5. SYNCHRONIZATION
In parallel programming, aritical sectionis a part of an algorithm thaccesses a
shared resource (variable or device) that must not be executed at the same time by more
than one thread. Such an execution will lead t@ace conditionwhere two or more
threads use a shared resource and the order of execution betweeadtie Wil affect
the value of the resource. Consider a simple example where tireans T2 use the
shared resourc®, both increasing its value dy

11



Value of A | T1 T2 Value of A | T1 T2

A=0 Read A A=0 Read A

A=0 A=A+1 A=0 Read A
A=1 Write A A=0 A=A+1

A=1 Read A A=0 A=A+1
A=1 A=A+1 A=1 Write A

A=2 Write A A=1 Write A

In the two examples the value ofdiffers due to the different execution orders for
threadsT1 and T2. To ensure that thehared resource is not accessed by multiple
threads at the same tinmautual exclusiommust be guaranteed. The most common way
to do this is by using lbck, a shared object that provide two operati@tsjuire_lock()

and release_lock() The lock can havéwo values,free and locked where the initial
value of the lock idree To enter a critical section the thread must first acquire the lock
by testing its value. If it ifreethen the lock can be taken by the thread, which updates
the value of the lockotlocked If the lock is already taken by another thread it must wait
until the value of the lock is set feee by that thread. When the lock is acquired by the
thread it can enter the critical section and release the lock after finishing execution of
thecritical section20].

2.1.6. SPEEDUP
The benefits of parallelism are measured lmynparing the execution time of a
sequential implementation of program to its parallel counterpart. The comparison is
often based on the relativehang in execution time, expressed as speedup. The
speedupY ¢ of a parallel program with parallel execution tifive¢ is defined as

v & -
Y €

<€)

Y €

wherer) is the number of processors used to solve a probfesize¢ and”Y ¢ is the
execution time of the best sequential implementatiare to difficulties in determining

and implementing the best sequential algorithm, the speedup is often computed by using
the sequential version of the parallel impletaéon.

It is possible for an algorithm to achieseperlinear speedup, wherey ¢ f. This

is often caused by cache effects: A single processor might not fit the entire data set into
its local cacheand thuscache missewill appearduring the conputation. The data set

can be split into fractions when using multiple processorseaicti fraction might fit

into the local cache of each processor, thereby avoiding cache nSsgeslinear
speedup is very rare and it islikely that even theideal speedup (Y ¢ n is
achieved.The parallel implementation introduces additional overhead for managing the
parallelism. Synchronization, uneven load balancing and data exchange between
processorsare all factors that can add overhead. It could also be tkapdhallel
program contains parts that have to be executed in sequence duedepdatdencies,

12



causing the o#r processors to waitf the speedup isinear then it scales with the
number of additional cores used at the same fatet ( 21 wherem Q p.

The number of processors is an upper bound for the possible speedup. Data
dependencies leading to sequential execution also limit the degree of parallelism.
Amdahl 6s Law describes the speedup when a
mustbe executed sequentially. Denoting the fraction of the sequential executidttime

wherert  "Q p, the execution can be divided into two parts, the sequential execution

time"(2 "Y ¢ and the parallel execution time—2 "Y & wherer) is the number of

processors. The attainable speedup is

Y €
& - P 5 %3 c®
Q Y € P ﬂ Y & o P ﬂ
As an example, assume thH1% of a programmust be executedequentidy. This
gives'Q T and"Y ¢ — p m No matter the number of processors used, the

8
speedup cannot be higher tHg{21].

2.1.7. OPENMP
OpenMP is a specification for a set of compiler directives, library routines, and
environment variables that can bged to specify highevel parallelism in FORTRAN
and C/C++ programR2]. It is supported by a wide range of compilers, such as GCC
(the GNU Compiler Collection) and ICC (Intel C++ Compiler), and is supported by
most processomrchitectures and operating systeriisuses a set of preprocessor
directivesand keywordgo generate mulihreaded code at compile tinier a shared
memory systemA short exampleisingsome of the OpenMP directivasailable

#pragma omp parallel private(thread_id)

thread_id = omp_get_thread_num ();
printf  (“thread id: %i \'n", thread_id );
#pragma omp for
for (i =0;i<X++1i)
a[i] =b[i] + c[i];

#pragma ompndicates that OpenMP should be used for the seqtiarallel specifies

that the region should be parallelized dodis used to indicate a féoop. The loop is

split automatically so that each individual thread computes diffeterations. The

directive private(thread_id)indicates that the variabkaread_idshould not be shared

among threads, but a local, private copy needs toréatedand allocatedor each

thread The function call toomp_get thread num(etrieves the the ad 6 s i ntern
identification number. Every thread makes its own call to the fungtiiof, each with

a different value for the argumé, their unique value ahread_id

13



There are multiple ways of handling synchronizationOpenMP. For instance the
critical or atomic directives can be usedepending on the size of the operations
performed The atomicdirective is used to synchronize a single memory access by an
arithmetic operation, such as addition or subtrac@yitical on the other hand applies

lock on a section of code, preventing multiple threads from concurrent execution.

#pragma omp parallel

X

#pragma omp atomic
Counter ++;

}

In the above exampl&ounteris a variable that is increaség each threadh such a
way that mutual exclusion is guaranteed by enguthat only a single thread has access
at a time

#pragma omp parallel private(private_image)
é
#pragma omp critical
for (i=0;i<N*N++1i)
image [i] += private_image [i];

}
}

In the example abovéné variableprivate_imageis a temporary matrix allocated for
each individual thread andiageis the global matrix containing the final valudhe

code combines the temporary results produced by each thread for a matrix\ofiSize
critical specifies a critical section amadock is automatically applieatound the section.

OpenMP provides a wide base for managing parallelism and the popeob&ms that

can arise when creating the multiple tasks to execute the code. The data dependencies
mentioned in section 2.1.4 can be handled by the synchronization keyproxided

and theprivate directive to specify what variables to make copies ofefch thread. It

also supports multiple methods of scheduling the tasks to avoieb&dadcing issues
caused by differences in computational complexity between individual tasks. The
schedule(klause is used to specify hotettasks are allocated betwebneads static

divides the work so that every thread works on the same number of tasks whereas
dynamicassigns new tasks when the thread finishes the presimiguidedstarts with

a large task size and for each partition of work reduces the size ¢égks for the
threads to execute.

14



2.1.8. OPeENCL
Op e n C LaBopensroyaltyfree standard for crogslatform, parallel programming of
modern processors found in personal computers, servers and handheld/embedded
devices [23]. OpenCL is a framework for parallel programming that allows for
execution on a multitude of different llavare architectures such as AMD, Intel, and
IBM CPUs andAMD, NVIDIA and QualcomnGPUs. OpenCL executes alevices
consisting of one or moreompute unit(swhich in turn is divided intgorocessing
elements performng the computations. The device executekeanel by defining
multiple points in an index space and for every point executes an instance of the kernel.
The instance is referred to asmark-item andis identified by its point in the index
space, known asglobal id. Workitemsare grouped into work-group. An example of
a simple OpenCL kernel:

__kernel void sum(global int *a, global int  *b, global int  *c)
int  work_item_id = get_global_id(0);

a[work_item_id] = b[work_item_id] + c[work_item_id];

}

To calculate the sum of matricésmndthe work is divided suchhat a workitem
calculates a single element. The global id is specified outside of the kgrtined host
and each worktem is assigned a unique id.

Private Private Private Private
Memory Memaory Memory Memory

Waorkitern 1| | Workltem M Workltem 1| | Waorkltern M

Compute Unit 1 Compute Unit N

Local Memory Local Memory

Global / Constant Memory Data Cache

Compute Device

Global Memory

Compute Device Memory

Figure 2: OpenCL memory architecture. Source:
http://developer.amd.com/wordpress/media/2012/11/Fig1l.png

OpenCL uses four different types of mem{#¥] as seen in figure: 2

1. Global memory: Any worktem can read and write from all elemen{Ehe
slowest to accesp

15



2. Constant memory: A part of the gldbaemory dedicated to data that is only
read.

3. Local memory: A part of memory available only to a specific wgndup. (Fast
accesy

4. Private memory: A part of memory available only to a specific vileh. (The
fastestccess.)

Global memory should be awt®d at all costs due to the high access latency. Storing
data in local or private memory has a much lower latencytbbhte me mor y 6 s
utilization may be difficult because of its small si2ecording to[25] Appendix Dthe

total amount of local memory available per compute uni% kB on the AMD
RADEON HD 7000 seriesStoring a matrix with the dimensiobd2x512where each

data element i8 bytes large requires a total of

LPGUPGCYS ¢cmwrgua ¢c0O

of memory. The maitx cannot be stored in its entirety in the local memory so the global
or constant memory has to be used. To utilize the speed of the local memory a small
part of the matrix can be read at a tiam&l copied to the local memory; these operations
addadditional overhead when the many threads read their required data.

An OpenCL codéhasa dfferent structure compared to &@penMPcode For OpenCL
the kernel describes what each wagm shall do, whereas for OpenMP the pragmas
and keyword are used to specifgvh to break down the code into tasks that can be
scheduled on multiple processorés OpenCL supports both CPU and GPU
architectureswhich greatly differ incode executionadditional setugs requiredin
order to run the code. First,pdatform with a device must be specified on which the
code is to be executed. In order to usedingcea contextmust be created to mana@e

a queue of commands to the devi@g, memory to and from the kernednd (iii) the
program and kernel objects for code executio

The OpenCL kernel uses the C99 standard with some restriclibese is no support
for classes and templates and dynamic memory allocation is noeelldawimits the
code thatan be writtenThe focus is on solving a single problem of a known, sipg¢
on flexibility and ability tohandle multiple configurations.

16

f



2.1.9. GPU ARCHITECTURE

Control ALU ALU

ALU ALU

CPU GPU

Figure 3: The difference between CPU and GPU transistor allocatiom”A GPU uses a lot more transistor area
for computational units (ALUs) compared to the CPU. The GPU relies on many threads and high bandwidth
to hide high latencies, removing the need for a large cache. The core simplicity and the SIMD model reduce the
amount of control logic needed.

Source: https://mohamedfahmed.files.wordpess.com/2010/05/screenshdtpng

The GPU has become more and more programmable over the last decades, replacing
fixed function logic with programmable processors atibbatingpoint arithmetic
replaced integer arithmeti¢hedesire for more advanced jpaphics from the gaming,

movie and television industry has led to iacrease in parallelisnThe manufacturers

have been adding instructions and memory to support general purpose programming,
turning the GPUs into fully general purpose processors, or GRGPGBPU contains
hundreds or even thousands of processor c(ses table Pto perform graphical
operations. This specialization means that it cannot perform the same operations as a
CPU;sits instruction set is limitedlThe large number of cores on a GRiduires a large
amount of data so the GPU has a high memory bandwidth compared to a CPU. Instead
of relying on the cache to provide the necessary data in a timely fashion, the latency is
hidden by using many cores.

The cache, described in sectiod .2, is used to reduce the latency between requesting
data and it being available. GPUs are designed to be latency tolerant, in that the tasks
performedare not critically dependent on data availability, for example computing pixel
values in a gameélhe smallercache allows for more computational units and a higher
throughput.

A GPU is designed to run simple threads that are independent of each other, using the
model SIMD (Single Instruction Multiple Data). A single instruction, such as an
addition, is applieda multiple data by multiple threads at the same time. The thread
simplicity allows for a smaller Control Unit which in turn allows for more ALUs. The
small size of the cache and the control unit limits the efficiency of the simple threads;
they do not pedrm well when the computations are bramutensive and memory
intensive.The simple threads combined with the absence of a large cache to reduce
latency leads to more transistor area available for compute units, as seen in figure 3.

17



The threads on a GPUeadivided intowarps (NVIDIA) or wavefronts(AMD), the
most basic scheduling uniwhich executeghe same instructiohut on different dataA
warp consists of 32 threads whilewavefrontconsists of 64 threadBranching can be
handledn two ways Thefirst optionis to let dl threads in a warp/wavefroeecuteall
branches andliscardthe results from the brantdsthat evaluates alse The other
option is to alternate what threads are running, switching betwsecution ofthe
branches. For exaple, depending on the value of the threatlid we want to perform
a specific instruction:

if (idx < X
{

}

else

{
}

my_array [idx ] += A

my_array [idx ] *= B;

If the value ofX is a multiple of the warize then there will be no divergence, all
threads will execute the same instroit If it does not match thearp size however,
there will bea divergence and the execution of the branch will be split into two.
Assuming a warp size @82 threads andX=16 the warp is divided into two blocks,
thread€D-15 and thread46-31. Threads wit id 0-15 will evaluate the branch condition
astrue andexecute the addition while threaté31 wait. After their completion threads
16-31 executethe multiplication while thread8-15 wait. The total execution time has
more than doubled due to the adiitl overhead ofhread management aedecution

of both branches

Table 2: Specifications of top of the line GPUdy manufacturers AMD and NVIDIA for both desktop and
workstation.

R9290X[26] FirePro GTX Quadro
W9100[27] Titan Black [28] K6000[27]

Manufacturer AMD AMD NVIDIA NVIDIA
Cores 2816 2816 2880 2880
Clock (MHz) 1000 930 889 700
SP GFLOPS 5632 5240 5121 5196
DP* GFLOPS 704 2675 1707 1732
Memory 4 GB 16 GB 6 GB 12 GB
Bandwidth 320 GB/s 320 GB/s 336 GB/s 288 GB/s
Release Q4620130Q262014 Q162014 Q362013

! Singleprecision floatingpoint format is a computer number format that occugies
bytes (32 bits) in computer memory
2 Doubleprecision floatingpoint format is a computer number format that occupies 8
bytes (64 bits) in computer memory
® FLOPS (FLoatingpoint Operations Per Second) is a measure of computer
performance

18



Table 3: Specifications of the Intel Xeon Phi coprocessor andigh end server CPUs by manufacturers Intel
and AMD.

Xeon Phi Xeon Opteron
7120P[29] E5-2697 v2[29] 6284 SHE[30]
Manufacturer Intel Intel AMD
Cores 61 12 16
Clock (MHz) 1238 2700 2700
SPGFLOPS 2416 518 346
DP GFLOPS 1208 259 173
Memory 16 GB Max 768 GB Max 768 GB
Bandwidth 352 GB/s Max 59.7 GB/s Max 51.2 GB/s
Release Q262013 Q362013 Q262012

There is a significant difference in the amount of raw comjauial power available on
GPUs compared to CPUs for batimgle and doubleprecision. A top of the line GPU

from either AMD or NVIDIA has~10 times the computational power for single
precision calculations and -i® the computational power for douigescision
calculationsThe Xeon Phi lies somewhere between the GPUs and the CPUs where it is
about half as powerful as the FirePro W9100 and Quadro K60084btimes more
powerful than the CPUs.

2.1.10. XEON PHI
Intel Many Integrated Core Architecture or Intel MIC as coprocessor computer
architecture developed by Intel. The curré14)coprocessor family is brand named
Intel Xeon Phi.lt consists of up to 61 processor coreach with support for fetaing
and decodingnstructons from four hardware threatts atotal of up to 244 threads. Its
memory is based on the GDDR5 specification and supports up to 16 GB with a
maximum bandwidth of 352 GB/s. Thmres communicatesing an Interprocessor
Network (IPN) using the Shortest Distance Algorittifigure 4is a coneptual drawing
of the Xeon Phi hardware architecture.

\

501

Memory

- —— —

Coprocessor Cop rocessor Cop 0Cessor GDDRS
Core
Commllev

[ 10 Cache | -rxm'rj 12 Cache |

| 12 Cache
[ PN ] -EZ- -

| GDDRS Coj p Coprocessor GDDRS
| Memory Core
| Controller Contmller

-u-fmm N (D Coche | 10 Cache | [0 Cache |

= I ST BT
_

LI Coprocessor
Memory Core
| Controller

Kv

Figure 4: Conceptual drawing of the general structure of the Intel Xeon Phi coprocessor architecture.
Source: http://www.intel.com/content/dam/www/public/us/en/documents/datsheets/xeofphi-coprocessor
datasheet.pdf

19



The Intel MPI librarycan be used othe Xeon Phi in three different modes: offload,
coprocessor onlgnd symmetric. In offload modée MPI communications occur only
between host processor/s and the coprocesame/used exclusively through the offload
capabilities of the compiler. With coprocessor only mode the MPI processes reside
solely inside the coprocessor. The required libraries and the application to run are
uploaded to the coprocessor and can be lauhétwen either the host or from the
coprocessor. In symmetric mode both the host CPU/s and the coprocessor/s are involved
in the execution of MPI processes and the related MPI communications.

The Xeon Phi architecturalso supports OpenMROpenCL, Intel Theadng Building
Blocks and POSIX threads for parallelizatidProgramsusing these toolsan run
offload and nativenode on the Xeon PhOffload mode starts execution on a CPU and
transfers the heavy computations to the Xeona®hun time For OpenMP his canbe
specified with#pragma omp target data device(1) mag¢gilable on several compilers,
and the Intel specifi¢pragma offloadNative mode compiles the code directly for the
Xeon Phi architecture using thmmicoption andbuilds therequired libraries The files
are then transferred from the hasthie Xeon Phi and run manually by the user.

2.2. PRINCIPLES OF COMPUTED TOMOGRAPHY

2.2.1. PHOTON INTERACTIONS
Photors with energiebetween 1 and 150 keiiteract with the irradiated material via
photoelectric dect, coherent scattering and incoherent (Compton) scattering.
Interactions occurring only outsidethis range, suchas paifproduction, are not
consideredn this thesis.

A photoelectric effect is amteraction between a photon and a tightly bound orbital
electron of an atoni31]. The photonis absorbedind all of its energy is given to the
orbital electron, which is then ejected from the atom with kinetic energy equivalent to
the photon energy minus the binding eneajythe ejeted electron As the photon
energy,O, increases, theross sectiomf the photoedctric effect decreases rapidly; for
instance a®© in the energy region of 100 keV and below. As the atomic nurdber,

of a material increases, theoss sectionf the photoelectric effect increases rayidor
instancethe photoelectric mass attenuation coefficient depend® an the energy
region around 100 keV.

A coherent (Rayleigh) scattering is a photon interaction process in which photons are
elasticallyscattered by bound atomic electrons. The atom is neither excited nor ionized
[31]. Theinteraction causes tttkrection of the phototo change

An incoherent (Compton) scattering is an inelastic scattering of a photon witbnan at

It typically occurs for a loosely bound orbital electron. The energy given to the electron
depends on thénitial photon energy and the scattering anglbe cross sectioms
dependenton the photon energysee figure5. Corresponding linear attenuatio
coefficient is proportional to the electron density.

20



Computed tomography in medical diagnostics typically useayxtube voltages
between 80 and 140 kV. Energy spectrum of photons produced at for instance 80 kV
ranges from several keV to 80 kegee figire §a)) and similarly for other tube
voltages. The dominant interaction in computed tomography is incoherent scattering.
Photoelectric effect dominates for low photon energies. As most of these low energy
photons are absorbed by the patient and thugibate to the patient dose, there is a
trend to remove these photons from they spectrum by additional filters.

Coherent scattering

10° :
Incoherent scattering
— 2 Photoelectric absorption
D 10 Pair production in nuclear field
o . o L
c 1 Pair production in electronic field
) 10 Total attenuation with coherent scattering
c 0
I 10
®©
5107
©
=107
<
107
10-4 3 4 5 6 7 8 9 10 11
10 10 10 10 10 10 10 10 10

Energy (eV)

Figure 5: Mass attenuation oefficient for iron as the function of the photon energy for coherent and
incoherent scattering, the photoelectricabsorption, pair production in both nuclear and electronic fields as

well as total attenuation.
Source: http://commons.wikimedia.org/wiki/File:Ironattenuation.PNG

2.2.2. COMPUTED TOMOGRAPHY
A CT scanner consists of anray tube ad a detector array, which rotate inside a

gantry. The detector array measuths intensity “Q of x-rays passing through the
imaged object as a function of the rotation projection angieaddition, the intensity,
‘0, of photons measured by thetdctor array when the gantry is empgs to be known
to calculate the attenuation value along eaglayxfrom source to detector. For the
simplest case of a homogenous object with a monoenergetic paraligl beam
attenuation is given by

‘0 '0z2Q h &
where'Gs the intensity measured with a detector elemnierg, the linear attenuation

coefficient of the object an@Qis the distance the-ray travelled inside the object. When
the object is inhomogeneous and polyenergetic radiegiosed the intensity is given by

. N g ~ c8
O 00z Q- Q@

21



where OO is the distribution initial intensity with respect to ener@y, is the

maximum photon energy in theray tube energy speain, ‘O Qiis the energy

dependent line integral (the radiological path) through the imaged object placed inside a
circle with diameteQ

In the case of classical image reconstruction algorithms assuming monoenergetic beams
(e.g. the filteredbackprojection), e usage opolyenergetic radiatioheads to image
artifacts for the following reason. The energy spectra of photons entering and #dting
object differ, see figure;&he xray beam hardens as it moves through the object. The
correspading beam hardening artifact manifests itself in the reconstructed images as a
darkening in the center of a homogenous object (cupping), or a darkening between two
highly absorbenobjects in the image. Figureshows the darkening effect between two
highly attenuating objects.

.
|

[

Lt

- Z
=] =]
£ £
e =
=

o B
=} 2
= Z
£ Z
5} =
= ‘B
S &
[

E [keV] L [keV] o
(a) Entering spectrum. (b) Exiting spectrum.
Figure 6: Comparison of energy spectra in front of (a) and behind (b) he | maged o Bjierative Source:

algorithm for quantitative tissue decomposition using DEC

Polyenergetic 0-80kV Monoenergetic 49.9 keV

Figure 7: Images reconstructed using filtered baclprojection. (a) The polyenergetic beam led to a strong beam
hardening artifact. (b) The beam hardening artifact is not present for a monoenergetic beans o u r Ae : i
iterative algorithmforquant i tati ve tissue decomposition using DECTO,

The Xr ay t ub e 0 s affecsthe aaegage efiekgy 9f the photons in thea)

beam. Changing the tuhwltageresults in an alteration dhe averagghoton energy

and a correspaiing modification of the attenuation of ther&y beam in the materials

scannedFor example, scanning an object with 80 kV results in a diffeatahuation
22



than with 140 kV. In addition, this attenuation also depends on the type of material or
tissue sanned (the atomic number of the materialDualEnergy @mputed
Tomography(DECT) exploits this effecby usingtwo X-ray sourcesisiultaneously at
different voltagedo acquire two data sets showing different attenuation levels. In the
resulting imageshe materialspecific difference in attenuation makes a classification of
the elementacomposition of the scanned tissue feasjBl.

2.3. DIRA

The modetbased iterative reconstruction algorithm DIRgeefigure 8 is used for the
determination of elemental composition of tissues. It suppresses the beam hardening
artifact and, when the simulation of scattered radiation is used, it can also suppress the
scatter artifact.

classiﬁted od
fisue, reconstructe
(2) Hi classification Hnage
reconstructe (4)

images

Ky

TR

(1) poly. proj. calc.

_ | ;
monoenergetic
PMUl ﬁ():\ proj. cale.> (3)

measured (6) PEI .
projections poly. proj. calc.

v . P2 ;
monoenergetic
Pm,02 { proj. calc.g (5)

(6) PE2

Figure 8: Data-flowchart of the DECT lterative Reconstruction Algorithm DIRA. S 0 u Anciterative fi
algorithm for quantitative tissue decomposition using DEC

1. Two measureprojectionsp ; and0 5 ,usingtwo different tube voltage®
and"Y, areused asnput.

2. 0 5 and0 j are reconstructed via filterdshckprojectioninto the volumes
* and’' , containng thelinear attenuatio coefficientsapproximately similar to
the effective energie® andO of the spectra for the tube voltag&sand™ .

3. The reconstructed volumés and® are classifiedo presetcted tissues, e.g.
bones and gbtissue in this gample.

4. The soft tissue is then decomposed ughrge material decompositiqiviD3)
and the bone islecomposed usingvo material plus densitgecomposition
(MD2 + ,yepulting in thedecomposed volunie .

5. The monoenergetic projections and0 at the energie® andO, and the
polyenergetic projections0 and 0  for spectra™y and"Y are forward
projectecdu si ng Josephds met hod

23



6. The differences between the monoenergetic projecionsandd and tre
polyenergetic projections and0 are calculated and added to the measured
projections to create the corrected projectiong andd .

7.0 ; and0  are thenused in the next iteration as thmew measured
projections After a number of iterations the beam hardening artifacts are
removed and accurate mass fractions of the base mateialell as thelensity
for the bone tissue obtained.

2.3.1. FILTERED BACKPROJECTION
The Radon transfori®i h— of a function'Qafto is the line integral of the values of
"Qafo along the line inclined at anglefrom the xaxis at a distandefrom the origin

"Qi h— MViweéi— 0i QHOEL 0AT 6 Q& C®

The valueof Qi h—is the sum of value®ahy along theline 0. Backprojection is
defined as

o 3 C®
@ o "Qih—Q -8

Replacing the integral in equatiog® with a sum gives

. o ¥
@ G Qi h— Y-h

wherer) is the number of projections:- is thekth angular position of the detectér,is
the location along the detector avieHs the angular step between 2 projectiddsing
only backprojection will produce a blurthe image The blurrings is removedby
applying a ramp filter on the projection data, befoeeformingthe backprojection. Ais
gives

&
"Qodd "Qi h—Q - 1"Qad "Qi h— Y-h

where"Qi h— and"Qi h— are filtered with a ramp filti33].

2.3.2. MATERIAL DECOMPOSITION
Assume that amixture consistof three separate components, with mass attenuation

coefficients ," j and’ j,definedas* y —, where® is the linear attenuation

coefficient and’ is the densityThe mass attenuation coefficient of the mixture O
at photon energ can be calculated from the mixture law as

24



and
O 0 0 ph ¢ T

where equation¢® T1is a normalization condition for the mass fractians By
expressinghe mass attenuation coefficients at two different energy l&vedsd O,
we get two equations;

0 o O o0o°' O v O ¢P p

and
O] 0 ° (0] 0 ° (0] 0 ° O 8 P C

The densityof the mixureis an unknown parameteAssuming thathe volume of the
mixture is equal to the sum of the volunaseach individual componenthe density
can be written as

" o a p 8 ¢do
o o oo U U U
Combining ¢® p ¢® owe get a matrix equation
©0 0
oy " ey 0
~ A L
Y ro 3 O ny §) T Cfﬁ) T
(o] " O
where
il
20 0 © 0 0 0 0 O] © 0
o ” ” T BV
1 O 0 ©0 0 "0 0 O] 0 .,
u ” 8 " " U

Equation ¢® 1 gives themassfractions0 and0 . The mass fraction can be
obtainedfrom equation ¢® Ttas

b p U 038 QR0

2.3.3. FORWARD PROJECTION
J o s e ph 6 §34],Meectfigu@dddescribes how to produceggections by calculating
line integrals(radiological pathsjhrough a 2D or 3D volum&he method assumes

25



image consists i 0 pixels and that the image functi®®afto is constahover the
domain of each pixel. @sider a straight line K specified as

Ww WAT O <P X
or

W UOAL wh P Y
where—is the angle to the-gxis,w is the crosgoint with thew-axis andw is the

crosspoint with theaaxis. Theline integral’YO i s dependent on wheth
direction is aligned with the direction of tkhe or craxis. It can be written as

L odneo 00 0 0id 08 ——=
’r P o Cav . . P P w
L QWwhnQw "QEWE B ——
YWE 5 — Vic

By using the Riemann sum to approximate, equati@ wcan be written as (for the x
directional integral)

p

T 6 5 _ l~) B L~) B Y Y 8 Tt

§ 08 — YR = Ui R c¥

The terms’Y and”Y represent the first and the last pixel on the line and are treated
separately. is defined as_ o €], whereg] the integer part oo @ .

0 andD f are piel values.If no pixels are treated separatelyy 1 and
“Y 1, and rewriting thenterpolation the final equation becomes

"YU — p=65 _Gﬁ 8 c8g p

Figure 9: Joseph's method of lineintegration along one axis using biinear interpolation. Source: "Conebeam
Reconstruction using Filtered Backprojectionodo, Henri k Thu

26



There are two ways of calculating the projections, either using inveaggping or
forward mapping. The image transfosecan be described as

w 0 & ¢
and

@w U wh & O
wherewis the input imagegathe output image and the mapping function with)
its inverse[35]. Inverse mapping is a destinatidnven method where a pixeh ithe

output image is calculated from the input image. Forward mapping is a sbivee
method where a pixel in the input image is mapped onto the output image.

2.3.4. POLYCHROMATIC PROJECTIONS
The monoenergetic projectian  at effective energyD for base materia with

massattenuation coefficient canbeal cul ated wusing Josephds m

v , " a8 & T
The polychromatic projection is also cal
. LY LY cg v
— — h
0 € 3 a ey

where"Y is the inciderdphoton intensity andy is the existingphoton intensity given
by

Q0
Y 000

and

"Y oj0oQ B h c8 X

where O is the photon energyy) ‘O the number of photons, O the mass
attenuationcoefficient ” the material densitanda the length ofthe intersection
with materiald .

2.4. CTmoOD

CTmod is a toolkit written in C++ that simulates primary and scatter projections in
computed tomography. It can be usadthe optimization of CT scanner design and

image reconstruction algorithms by evaluating the effects of factors like the tube
voltage,phantom size, beam collimators and detector array construction. The toolkit is

based on CERNOs dat a [86] dtisimdates thef trarsspod ofo r k

27

cul

RC



photons emitted from ar-ray tube (approximated by a point soyrtderough a user
defined phantom. The phantoms are constructed from homogenous solids or voxel
arrays. Variance reduction techniques such as the collision density estimator and
survival biasing with Russian roulette are used to increase precision of scored
qguantities. In the collision density estimator technique, each photon interaction
contributes to the quantity scored by each detector element in the detector array, see
figure 10. The photons are simulated independently, i.e. they do not interact with eac
other and no photon history is affected by previous photon histories.

X-ray source
,.,.‘ Y X-ray source

Photon
trajectory
Coherent scattering

Photoelectric

phantom / effect
K g Incoherent o
s : P . Contribution to
o : s, Contribution to scattering
2 : - . HE— o .. detectors
x “ point detectors § 7% W a2
o
Point detectors Point detectors

Figure 10: The primary projection is calculated using line integrals from the Xray source to each detector
element. The scatter projection is calculated bgimulating photon histories and registering their contributions
to each detector element.

28



3. METHODS

This chaptedescribs the changes made theDIRA and the CTmododes. For DIRA
thesechangesnclude rewritingMATLAB -codeto C-code,altering computaions and
the parallelization of thalgorithm. The CTmodcode wasmodified to allow parallel
photontransportsimulation.

3.1. HARDWARE

Several systemsave used to teshe performance improvements@RA and CTmod

and to evaluate how wetlhe parallelizatia scales whenusing multiplecores Table 4
contains informationon the CPUs usedn the performance evaluatian$he Intel
CeleronT1600 and Intel Xeon EB660 were usedto evaluate the performance of
DIRA. For CTmod the Intel Xeon EB660 was used to evaate the performance
scaling and the Xeon W3520 was used to compare the difference between- Hyper
Threading enabled and disabled. &waluate OpenCperformancehe AMD R7 260X
desktop GPUtable 5, was used.

Table 4: Specificationsof the CPUsused to evaluate the performance of DIRANnd CTmod.

Celeron® T1600[37] Xeon® E52660[38] Xeon® W3520[39]

Manufacturer Intel Intel Intel

Cores 2 8 4

Clock speed (MHz) 1.66 GHz 2.2 GHz 2.66 GHz

HT No Yes Yes

L1 Cache 32 KB instruction 32 KB instruction 32 KB instruction
32 KB data 32 KB data 32 KB data

L2 Cache 1 MB 256 KB 256 KB

L3 Cache - 20 MB 8 MB

Access tdntel XeonE5-2660was provided byNSC[40], The National Supercomputer
Centre in Sweden, usintpeir Triolith system Every compute node consists of two
CPUswith HyperThreadingdisabled for a total of 16 cores per nade

Table 5: Specfications of the GPU usedto evaluatethe OpenCL implementationsof DIRA functions.

R7 Series 260441]

Manufacturer AMD
Cores 896
Clock speed (MHz) 1.1 GHz

Singleprecision GFLOPS 1971
Doubleprecision GFLOPS 123
Memay 2GB
Bandwidth 104 GB/s

3.2. DIRA

The first step of an iteration is tcalculate the monoenergetic and polychromatic
projections performed in two step3.he individual materials are forward projected with
thesinogramJdunction to create sinograms of éamaterial. These atbenused as the

base to calculate the projections. The polychromatic projections are calculated with the

29



computePolyProj function. To create the reconstructed volume the filtered
backprojection is applied with the buiit MATLAB iradon function or the new
inversdradon function. The volume is decomposed into materials using the functions
MD2 andMD3. The functiongomputePolyPrqjMD2 andMD3 wereoriginally written

in MATLAB and have beenonverted to Gor C++ code to allow for par#lization
using OpenMP and OpenCL.

The different versions of each updated function are provided in separate files. The user
can select what version to use for each function; it is not limited to the same
implementation for all functiond=or example,comptePolyProjconsists of four files
containingfour different versios:

computePolyProj.mi The old implementation written in MATLAB code.
computePolyProjc.ci The new implementation in €de
openmp_computePolyProjc.d The new implementation in C with @pMP.
opencl_computePolyProjc.cppi The new implementation in C++ with
OpenCL.

hrwbdE

The version to use is dependent bnh e  wawakable software antlardware.All
versions except the original MATLAB codeequire a supported and compatible
compiler. The Ope@L version also requires a supporte®U orGPU to execut¢he
code

Figure 11: Left: A color map of material numbers in the transversal slice of the pelvic region ohe ICRP 110
voxel phantom Ellipses were used to construct a mathematical model dfi¢ slice.Right: Masks defining soft
tissue, bone and prostate regions iDIRA. Darker region inside the prostate was used for calculation of the
average mass fraction.

Two examples wre used when testing DIRA, slicel13 and slice113B. Both are based

on tre ICRP 110 male voxel phantoreee figure 11whereslicel13B centers the

phantom ina smallerfield of view and uses quarter offsédore information on the
phantom is avail abl §2]amlin thehpeoceporgodf thec2018ls we b p .
SPIE onferencd43]. Figures 12and B show theresultingmaterial decomposition of

the original image and material decomposition after 4 iterations of DIRA.

30



Muscle Water

Adipose

Figure 12: Mass fractions (in %) of adipose tisse, water and muscle for the slicel13 example after
iteration of DIRA. Strong artifacts caused by beam hardening are clearly visible.

Adipose Muscle Water

[

A0 o a0 100 150

Figure 13: The same as in figure 12 but after the < keration of DIRA. The suppression of beam hardenig
artifacts is clearly visible.

3.2.1. FILTERED BACKPROJECTION
MATLAB already provides an implementation of the filtered backprojection tii¢h
iradon function call. Figure 14 is an example of the output produced by this function.
This implementationis written in C andparallelized. A new implementation basea
the works ofleff Orchard44] for the backprojection and the filteriigr om MATL ABOG s
iradon function was madeThe general implementation of backprojection is to place
each value of a projection along a line through th@utumage. This implementation
suffersfrom low performance caused by slow memory accesses and cache misses due to
the order of accessing elements in the output image. The new implementation improves
on this by changing the order in which the projectiolues are placed onto the output
image. For each projection the projection values are placed onto each row in the output
image in the correct position.

31



Figure 14: Color maps of reconstructed linear attenuation coefficients (in 1/m) of the slice113 phamtoat 50.0
keV (left) and 88.5 keV (right) after the < keration of DIRA.

3.2.2. MATERIAL DECOMPOSITION
The old implementation calculated the mass fractions) and 0 for every pixel in
the image by solving equatisn¢® 1 and ¢® @using the linear equation solvén
MATLAB. Figure 15 shows the resultingase materiakriplet decomposition for
adipose tissue, muscle and water of the reconstructed, measured projections. The new
implementationis written in C and calculates the mass fiats0 ,0 and 0 for
every pixel in the image by solving equatiorsp 1 and ¢&® ¢ using Gaussian
elimination to solve the linear equation system. The mdltrig always of size ¢ so
the new implementation was written ¢aly handle this sizeDue to the already low
execution time achieved by rewriting the code no parallelization was implemented.
Section 5.1.3 contairmaore information.

Figure 115: Mass fractions of the adipose tissue (left), muscle (center) and wat@ight) calculated from
measured projections of the slice113 phantom.

3.2.3. FORWARD PROJECTION

The old implementation of the projection generatiseda destinatiordriven method,
equation ¢& ¢. Figure 16 is an example of the sinograms calculated wheg tisn
adipose tissue, muscle and watsse material triplet as inputEach value in a
projection is produced by calculating a line integral through the irobigass fractions
Many line integrals are calculated to create one projeclioa drawback ofhis method

is that calculating the line integrals is expens®@alculating the sum of interpolated
values, equation¢& p requires stepping through the image of mass fractions and each
step has to be checked against the boundaries of the image. Thisnsure that no

32











































































