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Abstract

This master’s thesis concerns the implementation of a GPU-
accelerated version of Mehrotra’s predictor-corrector inte-
rior point algorithm for large-scale linear programming (LP).
The implementations are tested on LP problems arising
in the financial industry, where there is high demand for
faster LP solvers. The algorithm was implemented in C++,
MATLAB and CUDA, using double precision for numerical
stability.

A performance comparison showed that the algorithm can
be accelerated from 2x to 6x using an Nvidia GTX Ti-
tan Black GPU compared to using only an Intel Xeon E5-
2630v2 CPU. The amount of memory on the GPU restricts
the size of problems that can be solved, but all tested prob-
lems that are small enough to fit on the GPU could be
accelerated.





Referat

GPU-accelererad inrepunktsmetod för
storskalig linjärprogrammering

Detta masterexamensarbete behandlar implementeringen
av en grafikkortsaccelererad inrepunktsmetod av predictor-
corrector-typ för storskalig linjärprogrammering (LP). Im-
plementeringarna testas på LP-problem som uppkommer i
finansbranschen, där det finns ett stort behov av allt snab-
bare LP-lösare. Algoritmen implementeras i C++, MAT-
LAB och CUDA, och dubbelprecision används för numerisk
stabilitet.

En prestandajämförelse visade att algoritmen kan accele-
reras 2x till 6x genom att använda ett Nvidia GTX Ti-
tan Black jämfört med att bara använda en Intel Xeon
E5-2630v2. Mängden minne på grafikkortet begränsar pro-
blemstorleken, men alla testade problem som får plats i
grafikkortsminnet kunde accelereras.
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Chapter 1

Introduction

Linear Programming (LP), has been described as “without doubt the most natural
mechanism for formulating a vast array of problems with modest effort.”[23, p. 2]
Linear programming is a certain type of optimization problem with a linear objective
function and linear constraints. It has been an important concept since the 1940s
when the simplex method was developed by George B. Dantzig. LP is used in a
variety of fields, such as engineering, statistics, logistics and finance. The reason
for its popularity is partly because it is a natural way to formulate many real-
world problems. Even for problems that are not actually linear, it is often easier
to transform it into a linear form than to try to formulate a nonlinear objective
function and constraints.

One of the most important innovations in the field of LP was Karmakar’s 1984 pa-
per[21] describing an Interior Point Method (IPM), which is a nonlinear approach to
the linear programming problem. It has proven polynomial worst time complexity,
a significant theoretical improvement to the exponential time complexity that the
simplex method has been shown to have for certain problems.[17, p. 2]. The IPM
has been studied in depth and many improvements have been suggested. In 1992,
Mehrotra [29] described a predictor-corrector approach which is now the basis of
most existing interior point implementations [43, p. 14]. In a comparison of 15
open-source and commercial LP solvers [4], the predictor-corrector approach was
found to be used by 11 solvers.

In certain applications the computational time it takes to solve an LP problem is
critical and in order to push the limits of lower computation times further, new
strategies have to be considered.

Using a Graphics Processing Unit (GPU) to solve mathematical problems allow
professionals in a number of fields to perform large and complex calculations very
quickly with consumer grade hardware. Compared to a general purpose Central
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CHAPTER 1. INTRODUCTION

Processing Unit (CPU), a GPU typically contains hundreds of times as many cores,
allowing for massively parallel computations. It is becoming more common for
supercomputers to use GPUs in addition to CPUs, since GPUs often offer more
performance per Watt.

This thesis aims to join the field of predictor-corrector interior point methods
(PCIPM) with that of GPU computing. By accelerating the PCIPM with a GPU,
we can potentially arrive at solvers faster than those available today.

1.1 Problem Statement
In this thesis two versions of the predictor-corrector method are implemented, one
with GPU-acceleration and one without. Comparing the performance of the two
versions allow us to answer the primary problem statement:

For what sizes of linear programming problems is it possible to use a
GPU to speed up the predictor-corrector interior point method, compared
to using only a CPU?

This problem statement is investigated for a certain class of problems arising in
financial applications. The implementations are optimized for sparse constraint
matrices, with number of constraints and variables in the order of 10 000. The con-
straint matrix is not assumed to be of any specific structure. The specific problems
for which the problem statement is investigated are described in detail in section
3.2.

The IPM investigated is based on Mehrotra’s predictor-corrector method, described
by Lustig, Marsten and Shanno[24] and Zhang[44].

The hardware on which the algorithm performance is investigated is an Intel Xeon
E5-2630v2 with an Nvidia GTX Titan Black, based on the Kepler architecture.
CUDA v.7 is used as the GPU programming framework. The test system is de-
scribed in detail in section 3.4.

1.2 Purpose
Determining the feasibility of accelerating the calculations of Mehrotra’s predictor-
corrector interior point method (PCIPM) on a GPU has a number of purposes. The
PCIPM is one of the most commonly used methods for solving the LP problem.
Accelerating the method with a GPU for problems with large and sparse constraint
matrices not assumed to have any specific structure is a field where not much study

2



1.3. OUTLINE

has been done. Therefore the result of this master’s thesis would be of interest
to anyone who is looking to accelerate their implementation of the PCIPM, and
possibly for researchers in the optimization field.

Another interested party is the project provider TriOptima. They are a world-
leading provider of financial services in the post-trade Over-The-Counter (OTC)
derivatives market with customers including the world’s largest banks and financial
institutions. They use optimization algorithms in a variety of financial applications,
and are interested in this thesis for use in an internal research project.

Note that the purpose of this thesis is not to include all the best mathematical
optimizations to create a linear programming solver that is as fast as possible, or
to create a practically useful software package. Rather, it is hoped that the results
of this thesis can serve as a proof of concept and a basis for implementing a GPU
accelerated version of the PCIPM, as well as be used as a basis for future research.

1.3 Outline

This report is organized into the following chapters:

1. The Introduction chapter contains an introduction of the subjects of Linear
Programming and GPU computing, the exact problem statement and purpose of
this thesis, and what is new and interesting about it.

2. The Background chapter contains more in-depth background information on
the subject of interior point methods, specifically the predictor-corrector interior
point method and how it works. There is also an explanation of the architecture of
a GPU, and how to leverage it for fast computations. Finally, previous research is
presented with a focus on the results of GPU-accelerated interior point methods.

3. The Method chapter contains a description of the benchmark problems and of
the implemented CPU and GPU versions of the algorithm. There is also information
about the hardware set-up that was used when doing the performance tests, and
how they were done.

4. The Results chapter contains the main results of this thesis, including various
computation time measurements and the memory consumption of the implemented
solvers.

5. The Discussion chapter contains a discussion of the implementation as well as
the results and their validity. It also contains an answer to the problem statement
and some ideas for further research.
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CHAPTER 1. INTRODUCTION

6. The Conclusion chapter contains in broad strokes the conclusions that can be
drawn from the results of this thesis.
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Chapter 2

Background

In this chapter, the mathematical foundation needed to understand the report is
explained. The Predictor-Corrector Interior Point Method (PCIPM) is then studied
so that an algorithm can be developed. An overview of GPU computing and CUDA
is provided, as well as a compilation of previous research related to GPU-accelerated
interior point methods.

2.1 Mathematical Foundation

The mathematical foundation needed to understand the PCIPM is presented in
this section. Newton’s method is the method that the IPMs are based on. The
performance of the Cholesky factorization is crucial for the performance of the
PCIPM, which is the reason why it is explained here.

2.1.1 Computer Linear Algebra

The foundation of all implementations of numerical methods are computer libraries
performing linear algebra operations. These can be divided into two approaches,
using either dense or sparse matrix representations. The dense representations store
all values in the matrix, often arranged contiguously in the memory. Sparse matrix
representations are slightly more involved, and are used when the matrices consid-
ered contain many zeros. Sparse matrix operations are generally memory bandwidth
bound, instead of being bound by the speed of which arithmetic operations can be
performed.[3] The density of a matrix is defined as the ratio between the number
of non-zero elements (or nnz) and the total number of elements.

In order to efficiently store sparse matrices on a computer, it is advantageous to
not store the zeros explicitly but instead only store the non-zero elements and their
position. There are a number of different formats in which these kinds of matrices
can be stored, including the COO (coordinate) format. It is perhaps the most
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CHAPTER 2. BACKGROUND

straight-forward way of storing sparse matrices. Every non-zero element is stored
with one element in each of three vectors containing: column, row and element
value.

The CSR (compressed sparse row) format is almost like the COO format, except
it has compressed the row coordinate vector. It now contains m + 1 elements (for
an m× n matrix), where the element i describe at which matrix element the row i
begins. The m+ 1 element contains the number of non-zero matrix elements. The
CSC (compressed sparse column) format works like the CSR format, but instead
of compressing the row indices, it compresses the column indices. An example of
the COO, CSR and CSC format can be seen in Figure 2.1. For a symmetric matrix
A = AT it is worth noting that the CSR format can easily be converted to the
CSC format by swapping the row and column vector. The CSR and CSC formats
do not enforce that the vectors containing the indices and values are sorted with
respect to increasing indices. However, sorted vectors give better performance for
most applications.

A =

0 1 0
5 0 4
3 6 2



COO format
row 0 1 1 2 2 2
column 1 0 2 0 1 2
value 1 5 4 3 6 2

CSR format
row 0 1 3 6
column 1 0 2 0 1 2
value 1 5 4 3 6 2

CSC format
row 1 2 0 2 1 2
column 0 2 4 6
value 5 3 1 6 4 2

Figure 2.1. COO, CSR and CSC sparse matrix formats explained with an
example.

Another sparse matrix format is HYB, the hybrid matrix storage. It uses a special
format for storing relatively dense sub blocks of the matrix and the COO format
for irregular data that lies outside the dense sub blocks.

There are a number of computer libraries for linear algebra operations.

OpenBLAS is an optimized open-source implementation of the BLAS (Basic Lin-
ear Algebra Subprograms) library for dense matrices. BLAS is a set of functions
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2.1. MATHEMATICAL FOUNDATION

performing most basic linear algebra operations, such as matrix multiplication and
dot products. OpenBLAS supports parallel computations of these operations. Many
higher-level libraries use BLAS to perform the most basic operations, and by compil-
ing them with OpenBLAS they can take advantage of multicore processors. Open-
BLAS also includes the LAPACK library. LAPACK is a library containing some
more advanced linear algebra functions, such as solving linear systems and eigen-
value problems.

SuiteSparse is a library created by Timothy A. Davis, containing the module
CHOLMOD which specializes in fast Cholesky factorizations of sparse matrices.[7]
It uses a supernodal method, which works by dividing the matrix into a number of
smaller dense matrices, which are solved with dense BLAS matrix operations. The
supernodal method is suited for sparse matrices with relatively high density. There
is also support for a number of reordering methods, decreasing the number of non-
zeros in the resulting Cholesky factor. SuiteSparse can be called from MATLAB
or C++. By compiling the library with OpenBLAS, the dense matrix operations
become multi-threaded. There is also support for GPU-acceleration of these dense
matrix operations.[9] CHOLMOD is one of the fastest sparse Cholesky libraries,
especially for problems where many factorizations with identical sparsity patterns
are performed.[16] It is used in many applications, including the built-in sparse
Cholesky factorization in MATLAB. CHOLMOD does not support single precision
calculations, only double precision.

Eigen is an open-source C++ library for linear algebra started by Benoît Jacob.[10]
It is widely used, for example in the Google’s Ceres solver, the Space Trajectory
Analysis Project at the ESA, and the Multiprecision Toolbox for MATLAB. Eigen
supports both dense and sparse linear algebra and is considered one of the fastest
linear algebra libraries. The Eigen library has support for using CHOLMOD for
the Cholesky factorization.

Blaze is another open-source C++ library which focuses on high performance
and parallel execution of its operations.[5] The Blaze library was started by Klaus
Iglberger of the University of Erlangen-Nuremberg. He has published two related
articles including [18], where the blaze library is benchmarked favourably against
libraries such as Eigen and Intel MKL. Blaze exploits the AVX instruction set of
modern Intel x86 CPUs, can be compiled with OpenBLAS for parallel BLAS calls
and it also performs its own parallelizations on a higher level than BLAS.

2.1.2 The Cholesky Factorization

The Cholesky factorization of a Symmetric Positive Definite (SPD) matrix A ∈
Rm×m is the decomposition into

UTU = A (2.1)
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CHAPTER 2. BACKGROUND

where U is an upper triangular matrix with positive diagonal. An SPD matrix is
symmetric and it holds that for every vector x 6= 0, xTAx > 0. All SPD matrices
have a unique Cholesky factorization. The time complexity of the Cholesky factor-
ization for dense matrices is O(m3). Factorization of SPD matrices is numerically
stable without pivoting.[41]

The Cholesky factorization is mainly used to solve the linear system Ax = b. This
is done by solving two triangular systems:

UT y = b (2.2)
Ux = y (2.3)

Each of these triangular solutions requires O(m2) operations (for dense matrices).

In the context of interior point methods, the Cholesky factorization is sometimes
modified to allow for semi-definite matrices. Described in [44], the Cholesky-Infinity
method is basically the same as the standard Cholesky, but it can handle semi-
definite matrices as well, where it holds that for every vector x 6= 0, xTAx ≥ 0.
When the matrix is found to be semi-definite (which would require division by a
zero pivot element in the standard Cholesky method) the pivot element is set to
infinity. This modification has been shown to increase the numerical stability when
used in the context of interior point methods.[44]

There are many computer libraries dedicated to performing the Cholesky factoriza-
tion, using different methods. Some libraries that perform the Cholesky factoriza-
tion on sparse matrices are compared in [16], among others the CHOLMOD library
which was measured to be one of the fastest.

The Cholesky factorization is often parallelized using a blocked version of the algo-
rithm.[1] Instead of traversing the diagonal one element at a time as in the unblocked
factorization, the algorithm traverses the diagonal in larger blocks. The operations
used to process these blocks include matrix multiplication and subtraction, for which
parallel implementations exist.

2.1.3 Newton’s Method

Newton’s method is a numerical scheme with local quadratic convergence used to
find the roots of nonlinear functions or nonlinear systems of equations. It is an
iterative method which requires the derivative of the function.[11, p. 74] For a
scalar function f(x), the iterations look like

xn+1 = xn −
f(xn)
f ′(xn) . (2.4)

8



2.1. MATHEMATICAL FOUNDATION

For a system of equations F (x) = 0 we use the Jacobian JF (x) instead of the
derivative, giving us

xn+1 = xn − J−1
F (xn)F (xn)

=⇒ xn+1 − xn = −J−1
F (xn)F (xn)

=⇒ ∆x = −J−1
F (xn)F (xn)

(2.5)

where ∆x is the step from one iteration to the next, using xn+1 = xn + ∆x. Of
course in practice the inverse of the Jacobian is never calculated, instead the system

JF (xn)∆x = −F (xn) (2.6)

is solved using a linear system solver.

2.1.4 Linear Programming
Linear Programming (LP) is a type of optimization problem which can be written
on the standard form

Minimize cTx

subject to Ax = b

x ≥ 0
(2.7)

where x ∈ Rn is a column vector of the variables to be determined, c ∈ Rn, b ∈ Rm

are given column vectors and A ∈ Rm×n is a given matrix. The function cTx is
called the objective function, and the matrix A is called the constraint matrix. It
consists of m constraints over n variables.

A linear programming problem can always be expressed in this standard form. For
constraints with inequalities instead of equalities, it is transformed into standard
form with the introduction of so called slack variables. An example of such a
transformation is

4x1 − 5x2 ≤ 10, xi ≥ 0, i = 1, 2
=⇒ 4x1 − 5x2 + x3 = 10, xi ≥ 0, i = 1, 2, 3

where x3 is introduced as a slack variable.

It is known that the optimal solution of the linear programming problem lies on
a constraint boundary.[23, p. 33] The simplex method works by searching for the
optimal solution in the set of boundary vertices.

The linear programming problem is in the class of P-complete problems. These
problems are inherently difficult to parallelize effectively (assuming that NC 6= P,
which is very likely but not proven).[40]
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CHAPTER 2. BACKGROUND

2.1.5 The Dual Problem
Associated with any primal problem on the form of Equation (2.7) is a dual prob-
lem. In the dual problem, the variable coefficients of the primal problem become the
constraint coefficients, and the constraint coefficients of the primal problem become
variable coefficients.[30, p. 145] Every constraint in the primal problem corresponds
to a variable in the dual problem, and every variable in the primal problem corre-
sponds to a constraint in the dual problem. The dual problem is written on the
form

Maximize bT y

subject to AT y + z = c

z ≥ 0
(2.8)

where y ∈ Rm are the dual variables and z ∈ Rn are the slack variables for the dual
problem.

The relationship between the objective functions of the primal and dual problem is
expressed in the Weak Duality Lemma:

bT y ≤ cTx

for all feasible vectors (x, y).[23, p. 83] This means that the primal and dual ob-
jective functions bound each other; the dual objective function gives a lower bound
on the primal objective function, and the primal objective function gives an upper
bound on the dual objective function. When the optimal solution (x*, y*) is found,
it holds that bT y* = cTx*, which can be used for determining the optimality of the
solution.

One way to express the solution of both the primal and dual linear programming
problem is by a specialization of the Karush-Kuhn-Tucker (KKT) conditions (for-
mulation taken from [43, p. 4]):

The vector x* ∈ Rn is a solution of Equation 2.7 if and only if there exist vec-
tors z* ∈ Rn and y* ∈ Rm for which the following conditions hold for (x, y, z) =
(x*, y*, z*):

AT y + z = c

Ax = b

xizi = 0, i = 1, ..., n
x ≥ 0
z ≥ 0

(2.9)
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2.2. INTERIOR POINT METHODS

Here, the y and z variables can be regarded as either the variables of the dual
problem, or Lagrange multipliers for the conditions Ax = b and x ≥ 0 in the primal
problem.

2.2 Interior Point Methods
Interior point methods (IPM) is a class of methods which finds a solution by iterating
in the set of feasible points, i.e. the points which fulfil the conditions Ax = b and
x ≥ 0. This is a nonlinear approach to a linear problem, and the IPMs can be
regarded as search algorithms.

One class of IPMs is the primal-dual IPMs, which simultaneously solves the primal
and dual problem. They solve the LP problem by applying Newton’s method to
the KKT conditions to find the solution to this system of equations. The resulting
system (which is an application of Equation 2.6 on the KKT system 2.9) is0 AT I

A 0 0
Z 0 X


∆x

∆y
∆z

 =

 0
0
−Xz

 (2.10)

where X is the matrix with the components of x on the diagonal, and Z is the
matrix with the components of z on the diagonal. The direction of the solution to
this pure Newton system is called the affine-scaling direction. An iteration in the
affine-scaling direction looks like

(x, y, z)k+1 = (x, y, z)k + (∆x,∆y,∆z) (2.11)

Without modifications, the Newton iterations would lead us to the infeasible set
of solutions where xi < 0 or zi < 0 for some i, which is not allowed. In order to
counter this problem the central path is introduced, which is an important concept
in the field of IPMs. The central path is described by a modified version of the
KKT conditions:

AT y + z = c

Ax = b

xizi = µ, i = 1, ..., n, µ > 0
x ≥ 0
z ≥ 0

(2.12)

The central path is a path in the feasible region, which converges to the optimal
solution as µ→ 0. The basic idea of the IPMs is to iterate towards the solution of
this system with decreasing µ.[23, p. 122]
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CHAPTER 2. BACKGROUND

If µ is chosen to be small initially, the resulting system will be highly ill-conditioned.
If µ is chosen to be µ = xT z/n instead, µ will decrease as the optimal solution is
approached while ensuring that the iterations stay close to the central path, stay
clear of the boundaries of the infeasible set and avoid ill-conditioning. However, the
iterations will mostly approach the central path, and not the optimal solution.[43,
p. 8] By scaling down µ using a centering parameter σ ∈ (0, 1), the iterations will
move in a cone-like fashion towards the optimal solution which is on the bound-
ary, without stepping over the boundary in any iteration.[43, p. 10] Choosing the
centering parameter σ, so that a balance is struck between moving towards the op-
timal solution and staying clear of the boundaries, is usually an important part of
formulating an IPM. A system of equations expressing a Newton iteration of this
new approach can be written as

0 AT I
A 0 0
Z 0 X


∆x

∆y
∆z

 =

 0
0

−Xz + σµ

 (2.13)

The system of equations (2.13) is usually solved by eliminating ∆z and ∆x, yielding
the normal equations[39][24]

(ADAT )∆y = g (2.14)

where D = XZ−1 is a diagonal matrix and g is an expression involving the vectors
and matrices given in the problem. When ∆y is calculated, we can use it to calculate
∆x and ∆z as well.

The matrix H = ADAT is a symmetric positive definite (SPD) m × m matrix.
The positivity condition holds because we require (x, z) > 0. Unfortunately, it is
usually much less sparse than A [39] which increases the computation time of solving
systems involving this matrix. H is also ill-conditioned, which makes many solvers
unsuitable.

A full step is rarely taken, since it may violate the conditions xi ≥ 0, zi ≥ 0. Instead
the new position can be expressed as

(x, y, z)k+1 = (x, y, z)k + α(∆x,∆y,∆z) (2.15)

where α ∈ [0, 1] is the step length. Choosing a good value of α is an important
part of an IPM. The most important criteria is that the step cannot violate the
positivity conditions of x and z.

The theoretical complexity of IPMs has been determined to be O(n3) in average.
However, the practical performance is actually much better.[30, p. 290]
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2.3 Predictor-Corrector Interior Point Method
The Predictor-Corrector Interior Point Method (PCIPM) is a type of primal-dual
method, originally described by Sanjay Mehrotra[29], and it has since then been
researched and developed extensively. The PCIPM has two features that stand out
from other primal-dual solvers[43, p. 14].

The first feature is that the algorithm works in two steps: first a predictor step in
the affine-scaling direction is calculated, then a corrector step is calculated which
brings the algorithm closer to the central path. The PCIPM uses the same Cholesky
decomposition of the normal equation (2.14) twice, in both the Predictor step and
the Corrector step. This ensures that the computation time only increases by one
back-substitution compared to a method that only solves one linear system with
a centering parameter 0 < σ < 1. Usually a PCIPM requires fewer iterations,
which makes up for the slightly longer computation time per iteration.[24]. Before
computing the Cholesky decomposition, a reordering method is commonly used in
order to reduce the fill-in of the matrix. Since the non-zero structure does not change
from iteration to iteration, the reordering method only has to be calculated once,
and used for all later iterations. A commonly used algorithm is the Approximate
Minimum Degree algorithm (AMD), which is a good heuristic ordering method for
reducing the number of non-zeros in the Cholesky decomposition.[14]

The second feature is the centering parameter σ used in the Correction step is dy-
namically chosen from the results of the Prediction step. This allows the algorithm
to do more centering when the Predictor step is small and less centering if the Pre-
dictor step is large. The algorithm also uses different step lengths αP , αD for the
Primal and Dual problems, making it move more efficiently towards the optimal
solution.

The algorithm used in this thesis is based on the methods developed by Lustig et
al.[24] and the LIPSOL package for MATLAB. The LIPSOL package solves the
linear programming problem using a variant of the PCIPM, and was presented
and explained in an oft-cited report from 1996 by Yin Zhang.[44] The LIPSOL
method allows infeasible points in the iterations. This means that the algorithm
can be started with initial values that lies outside the bounds, and the iterates
will move towards the feasible set of points. The initial values of x and z only
has to be positive[43, p. 11], but the algorithm works better if the values are
relatively large.[24] For methods that do not allow bound infeasibility, finding a
starting point is a difficult problem having the same complexity as solving the
optimization problem itself.[23, p. 135]
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In the LIPSOL algorithm, the primal and dual forms of the problems are slightly
changed from the standard form to allow upper bounds for the variables[44]

Primal:
Minimize cTx

subject to Ax = b

xu + s = u

x ≥ 0, s ≥ 0

Dual:
Maximize bT y − uTw

subject to AT y + z − w = c

z ≥ 0
w ≥ 0

(2.16)

where xu ∈ Rnu is the vector containing x-variables with upper bounds, u ∈ Rnu

is the vector with the upper bounds, s ∈ Rnu is the slack variables for the upper
bounds, and w ∈ Rnu is the corresponding slack variables for the dual problem.

The KKT conditions for this form of the LP problem looks like

F (v) =


Ax− b

xu + s− u
AT y + z − w − c

Xz
Sw

 = 0 (2.17)

where v is a vector with x, y, z, s, w. Here, the diagonal matrices with vectors
x, z, s, w on the diagonal is denoted X,Z, S,W . This system is solved iteratively
with a variant of Newton’s method, until a stop criteria consisting of feasibility
measures and duality gap has reached a specified tolerance. Every iteration can be
considered to consist of 4 phases:

Phase 1, predictor direction. We solve the system

J(v)∆P v = −F (v) (2.18)

where J is the Jacobian of the KKT conditions F in (2.17) and ∆P v is a vector with
the predictor steps ∆Px,∆P y,∆P z,∆P s,∆Pw. This is a pure Newton step in the
affine-scaling direction, which does not take into consideration the centrality term.
We do not explicitly use the Jacobian J , but instead use the normal equations

(ADAT )∆P y = −(Ax− b+AD(AT y + z − w − c))
∆Px = D(AT ∆P y +AT y + z − w − c)

X∆P z = −(Z∆Px+Xz)
∆P s = −(∆Px+ x+ s− u)

S∆Pw = −(W∆P s+ Sw)

(2.19)

to solve this system, where the diagonal matrix D = (X−1Z + S−1W )−1.
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Phase 2, centering parameter. After the prediction step is computed we choose
µ and σ in accordance to [44], with

µ = g

n+ nu

σ =
(
ĝ

g

)2

g = xT z + sTw

ĝ = (x+ α̂P ∆x)T (z + α̂D∆z) + (s+ α̂P ∆s)T (w + α̂D∆w)

(2.20)

The step lengths α̂P , α̂D are chosen by ratio test, ensuring that the positivity con-
ditions for the variables x, s, z, w would hold if the step v+ α̂∆pv were taken. This
ratio test is performed as

α̂P = min
(

1, min
j:∆xj<0

xj

−∆xj
, min

j:∆sj<0

sj

−∆sj

)

α̂D = min
(

1, min
j:∆zj<0

zj

−∆zj
, min

j:∆wj<0

wj

−∆wj

) (2.21)

If both α̂P and α̂D are larger than 1, we skip the corrector step (Phase 3) and just
take a predictor step of length 1. For most iterations, this is not the case.

Phase 3, corrector direction. When µ has been approximated, we compute the
corrector step by solving the system

J(v)∆Cv = −


0
0
0

∆XP ∆ZP − σµ
∆SP ∆WP − σµ

 (2.22)

making the total step ∆v = ∆P v + ∆Cv. This system is solved using the same
Cholesky factorization of the normal equations as is used in the Predictor direction
phase.

Phase 4, taking the step. The step lengths αP , αD for the dual and primal
variables are found by ratio test in the same way as in Equation (2.21), ensuring
that the variables x, s, z, w stay positive after taking the step. The steps

x = x+ αP ∆x
y = y + αD∆y
z = z + αD∆z
s = s+ αP ∆s
w = w + αD∆w

(2.23)

are taken, concluding this iteration.
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2.4 General-Purpose Computing on a GPU
The graphics processing unit (GPU) is the processing unit of the computer’s graph-
ics card. The GPU was developed for quickly being able to render complex 3D
geometry and texture on the computer’s screen, primarily for the purposes of com-
puter games and 3D modeling. However, in recent years the GPU has increasingly
been used for general computations as a massively parallel processing unit. The term
for this is GPGPU, or General-Purpose computing on a GPU. Unlike the CPU’s
multi-core architecture which commonly has 2-16 cores, the GPU’s many-core ar-
chitecture can have thousands of cores all executing simultaneously. Individually,
the GPU cores are slower than the CPU cores but due to the amount of cores,
the theoretical number of floating point operations per second (FLOP/s) is sub-
stantially higher on GPUs.[36] The memory bandwidth of GPUs is usually higher
than that of CPUs as well, making GPUs suitable for problems that are memory
bandwidth bound.[31] The amount of memory even for high-end hardware is usually
around 4-6 GB, which often implies a restriction of the problem sizes. For certain
parallelizable algorithms, the GPU can be used to accelerate computations signif-
icantly. However, the GPU cannot be expected to be faster for all algorithms and
computations due to a number of reasons:

• Some algorithms or parts of algorithms are inherently sequential and cannot
be parallelized. Practically, even parallelizable problems do not scale perfectly
with the number of cores due to overhead, synchronization and communication
costs.

• GPUs are faster for data-parallel problems. Data-parallel means that a num-
ber of threads work on their own independent subset of some data, performing
the same operations. For many algorithms, data-parallelism is not feasible.

• Practical aspects such as memory transfer between CPU/GPU and using the
global memory within the GPU limit the amount of time spent on computa-
tions. For performance reasons, it is desired is to have a large proportion of
computations to memory operations, so called high arithmetic intensity. To
some extent, the GPU will try to automatically reduce the memory latency
by executing threads which are not waiting for memory transfers.

• There is not as much caching and flow control on a GPU as on a CPU. Memory
access delay can sometimes be masked by doing computations on other threads
while waiting for the memory operations,[31] but this is not always possible
to do.

• GPUs in general have a floating point performance which is much higher for
single precision than double precision.[35] Some algorithms require double pre-
cision arithmetic for numerical stability, and the higher accuracy is sometimes
required for certain applications.
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CUDA

Historically when programming the GPU, it was necessary to use APIs that was
designed with only graphics processing in mind. Now, there are a number of APIs
that abstract away the graphical nature of the GPU, and expose a framework for
general computations.[36] Compute Unified Device Architecture (CUDA) is a pop-
ular proprietary computing platform developed by Nvidia to be used with their
graphics cards. There are a number of reasons for choosing to work with CUDA in
this thesis. The Nvidia CUDA framework is highly optimized for Nvidia graphics
cards. Both the framework and graphics drivers are developed by Nvidia, and the
CUDA framework can take advantage of the latest hardware features of the graphics
cards. Other frameworks, such as OpenCL, support many different types of graph-
ics cards but are not as optimized to specific hardware. The code does not need to
work on many different architectures and computers. The idea of this thesis is to
provide insight in whether it is feasible to accelerate the predictor-corrector method
using GPUs, not to provide a software library that can be used on any computer.
CUDA also includes some convenient tools such as a profiler that can be used to
assess the performance of the code, and there are many CUDA libraries containing
mathematical operations that can be used in the algorithm.

In CUDA, there are bindings for languages such as C, C++ and Fortran.[34] A
CUDA C program consists of host methods executed on the CPU and device meth-
ods executed on the GPU. The device methods are called kernels. They are written
similarly to C functions, and all C operators and some common math functions
are available. Unlike C functions, calling a kernel will start a specified number
of threads all executing the same code. Creating CUDA threads incurs much less
overhead compared to creating CPU threads. One common way to write CUDA
code is to replace loops in the algorithm with the creation of as many threads as
there are loop iterations. A code example of a vector addition in ordinary C code
can be seen in Figure 2.2, which can be compared with a corresponding operation
performed on a GPU with CUDA C in Figure 2.3. Some common operations such
as memory allocation, memory copy and a kernel call can be seen in this figure.

int main ()
{

/* generate vectors a_host , b_host , c_host of length N... */

for (int i = 0; i < N; i++)
c_host [i] = a_host [i] + b_host [i]

/* free relevant vectors ... */
}

Figure 2.2. C code for the example program performing vector addition.

17



CHAPTER 2. BACKGROUND

__global__ void SumArrays (float* a, float* b, float* c)
{

/* find the ID of the current thread */
int id = threadIdx .x;
/* sum the element corresponding to the thread ID */
c[id] = a[id] + b[id];

}

__host__ int main ()
{

/* generate vectors a_host , b_host , c_host of length N... */

/* allocate vectors on GPU global memory */
cudaMalloc (( void **) &a_device , N);
cudaMalloc (( void **) &b_device , N);
cudaMalloc (( void **) &c_device , N);

/* copy vectors from CPU to GPU */
cudaMemcpy (a_device , a_host , N, cudaMemcpyHostToDevice );
cudaMemcpy (b_device , b_host , N, cudaMemcpyHostToDevice );

/* run kernel with one thread for every
element and perform sum on GPU */

SumArrays <<<1, N>>>( a_device , b_device , c_device );

/* copy the vector back to the CPU */
cudaMemcpy (c_host , c_device , N, cudaMemcpyDeviceToHost );

/* free relevant vectors ... */
}

Figure 2.3. CUDA code for the example program performing vector addition.
The vector is assumed to be smaller than the maximum block size.

The threads of a CUDA program are grouped into sets of 32 threads called warps.
A warp will serially execute any conditional branch of its threads, which may lead to
many threads idling.[31] A number of warps are further grouped into blocks, which
are executed on hardware units called Streaming Multiprocessors (SM). A number
of blocks are automatically scheduled on a certain SM, decided at runtime. If the
GPU contains a large number of SMs, more blocks will execute in parallel than if
the number of SMs was lower. Nvidia calls this automatic scalability.[31] The size
of the blocks, and how to group the blocks into a grid is decided by the programmer
during a kernel call. The maximum number of threads in a block is 1024, but there
is no limit to the number of blocks in the grid. Each kernel will have access to
a unique ID in the grid/block structure which is commonly used to decide which
subset of the data it performs its operations on.

Choosing the optimal number of threads in a block is simplified by Nvidia’s Oc-
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cupancy Calculator. It takes into account the number of registers per thread, the
number of threads per block and the amount of shared memory per block. It tells
you the occupancy of each multiprocessor, which is the ratio of active warps to the
total number of warps. For example, if a thread uses too many registers, the mem-
ory in the SM will run out. This is compensated by limiting the amount of active
threads, at the same time limiting performance.

It is possible to execute more than one kernel simultaneously, using streams. Streams
are created and destroyed by the programmer and each time a kernel is called, it is
assigned to a specific stream. The kernels assigned to a specific stream execute in
order, but there is no guarantee whether instructions in separate streams execute
simultaneously or in any particular order. If no stream is specified in a kernel call,
it will be assigned to the default stream.

CUDA Memory Types

The global memory is usually 1 GB or larger with high access times. The mem-
ory performance of the global memory largely depends on coalesced reads of data.
If consecutive threads in a half-warp (16 threads) perform reads from consecutive
memory addresses, it can be performed with a single transaction. Since the global
memory is very slow compared to other memory types, access to it should be min-
imized. The global memory is the memory to which most data from the CPU is
transferred. These transfers are relatively slow and can thus affect the performance
of the program. Newer GPUs have the ability to transfer data to and from the
CPU simultaneously as computations are performed. Also accessible from the CPU
are the constant memory and the texture memory which are read-only from ker-
nels. The texture memory has some special functions, such as the ability to linearly
interpolate values when accessing a fractional memory address.

The shared memory, which is common to all threads within a block, has about 2
orders of magnitude faster access times than global memory. The shared memory
resides inside the SM. Instead of reading the same data from the global memory
multiple times for different threads in a block, shared memory should be used for
caching. In fact, the shared memory and the L1 cache uses the same memory and it
can be specified whether to allocate a larger part of the memory as shared memory
or as L1 cache.

When declaring variables inside a kernel function, they are stored in the per thread
memory. The physical storage of the per thread memory is in registers in the SM.
If there is not enough free memory in the registers, a certain region of the global
memory called the local memory will be used instead (this is called register spilling).
The registers are approximately as fast as the shared memory.

In conclusion, there are a number of things to consider for optimal performance
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when writing a CUDA program. Since the global memory is comparatively slow
access to it should be minimized. When accessed, it should be performed in a
coalesced manner. This can sometimes be achieved using the shared memory as
cache. Furthermore, data transfer between the host and the GPU memory is slow
and should also be minimized. It can be accelerated up to 2.4x by copying to
and from pinned host memory allocated with the function cudaMallocHost.[6] It
is often a good idea to use the asynchronous memory copy function and perform
computations simultaneously. When using local variables in the CUDA kernels, care
should be taken so that register spilling does not occur since this will slow down
access to the local variables considerably. Also, using too many registers in a kernel
may reduce the number of warps that can execute on the SM.

CUDA Libraries

There exists a number of libraries built upon Nvidia CUDA. Some of them will be
used in this thesis:

cuSPARSE is an Nvidia library[33] that performs sparse BLAS functions, such as
sparse matrix-vector (SpMV) and sparse matrix-matrix (SpMM) multiplications.
It is included in the CUDA Toolkit. Its functions include csrmv which solves the
SpMV problem for matrices in CSR format and csrgemm which performs the SpMM
multiplication for matrices in CSR format.

cuSOLVER is another Nvidia library[32] that is included in CUDA Toolkit, start-
ing with version 7.0. This library contains, among other direct linear system solvers,
a dense Cholesky factorizer.

SuiteSparse is a library that was described in section 2.1.1. It can be compiled
with the Nvidia CUDA C compiler, which enables GPU-acceleration.

MAGMA is a library for dense linear algebra with a LAPACK like syntax. It aims
to utilize both the CPU and the GPU for computations, which include the Cholesky
factorization.[25] The MAGMA library is developed at the University of Tennessee.
The library has been successfully used in GPU-acceleration of the PCIPM, see [13]
and section 2.5.

2.5 Previous Research
There has been significant previous research in the field of accelerating linear pro-
gramming with GPUs, specifically Interior Point Methods.

Smith, Gondzio and Hall at the University of Edinburgh showed in a report[39]
from 2011 that the matrix-free IPM[15] could be accelerated using a GPU. They
achieved a speedup for several classes of linear programming problems, including
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some problems with sparse constraint matrices of size 16000 × 16000 to 256000 ×
256000. The speedup was approximately the same as the one that could be achieved
using parallel algorithms on an 8-core CPU.

Jung and O’Leary describe in an article from 2008[20] an implementation of a
variant of the PCIPM on a CPU-GPU system. They used the GPU for tasks such
as Cholesky factorization. However, on tasks such as solving the linear system,
they achieved better results using only the CPU. For small (sizes up to 516× 758)
and dense problems they found that the GPU did not provide any advantage to
a CPU solver, the reason of which was attributed to the high cost of transferring
data between the CPU and GPU. For dense random problems with m > 640, n =
4m, they did however see a speedup with the GPU solver. The article ends on
an optimistic note, saying that they “expect that GPUs will be an increasingly
attractive tool for matrix computation in the future”.

Gade-Nielsen, Jørgensen and Dammann [13] studied GPU-acceleration of the PCIPM
for Model Predictive Control problems. They implemented a MATLAB CPU, a
MATLAB GPU and a CUDA C version of the algorithm. All matrices were stored
in a dense format for all versions. The MATLAB GPU version used the GPU for
the Cholesky factorization and the matrix-matrix multiplication. In the CUDA
version the GPU was used for all operations. For large and dense enough prob-
lems, they managed to achieve a speedup of approximately 2x with the MATLAB
GPU version, and a speedup of approximately 6x with CUDA C (still compared
to the MATLAB CPU version). MATLAB’s built-in linprog function performed
approximately as good as the MATLAB CPU version of their algorithm for dense
problems, but when the problems were sparse enough linprog was as much as 3x
faster than their CUDA GPU version.

Some more results are available in Gade-Nielsen’s PhD thesis [12]. Here, in one of
the MATLAB GPU versions, the constraint matrix is stored in a sparse format, and
only the Cholesky factorization is performed on the GPU. This version achieved
a speedup of up to 2x compared to a MATLAB CPU version also using sparse
matrices. Compared to this MATLAB CPU version, the CUDA version with dense
matrices achieved a speedup of up to 4x. This version imposes lower problem size
restrictions than the other versions, due to the memory limits of the GPU and the
requirements of storing the constraint matrix as dense.

In [42], Vuduc et al. discuss the viability of using GPU-acceleration for some prob-
lems, including sparse Cholesky factorization and iterative sparse linear system
solvers. They argue that for these problems, well-tuned GPGPU code is roughly
equivalent to well-tuned multi-core CPU code regarding performance. This is rele-
vant to this thesis since both of these operations are major parts of the computa-
tional effort of the PCIPM.
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In a presentation on a GPU Technology Conference, Rennich, Davis and Vander-
mersch[37] present their work on a sparse Cholesky factorization performed on the
GPU. It was found that CHOLMOD using a combination of CPU and GPU was
successful in accelerating the factorization for matrices with more than 1.5 million
non-zero elements, compared to using only a CPU.

In the report [3] by N. Bell and M. Garland, it was found that the SpMV operation
could be accelerated on the GPU, but that it largely depends on the storage format
of the matrix. For unstructured sparse matrices, it was found that HYB generally
was the fastest format. The CSR format compared favourably to other formats on
matrices with large row sizes. They also note that CSR is commonly used for the
SpMM multiplication as well.

S. Rose[38] has examined the SpMM multiplication with CSR format. He found
that his GPU implementation is faster than the MATLAB CPU version of the
algorithm, as long as the density of the matrix is high enough. For large matrices
with a density of 10−2 the GPU code is faster, while for large matrices with a density
of 10−4 MATLAB is faster.
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Method

In this chapter, the method with which the problem statement is investigated is
presented. First, the background behind the benchmark problems is explained along
with relevant numbers describing the problems. The implementations are described
in detail for scientific repeatability and so that the reader is convinced that the
various choices that have been made are well motivated and investigated, lending
credibility to the subsequent performance comparison. This chapter also contains
a description of the testing environment in which the performance comparison was
made.

3.1 Choice of Method
The method chosen to be used for answering the problem statement is to implement
two versions of the PCIPM: one using only a CPU and one that is accelerated by
a GPU. These versions can then be compared and the result can be seen as an
indication of the feasibility of using a GPU to accelerate an arbitrary implementation
of the PCIPM. This method of investigating the problem statement was chosen for
a number of reasons:

• By implementing the method from start to finish, an understanding is gained
of what makes it work and how to best use a GPU to accelerate it.

• Timing the two versions can be done using the same libraries and methods.

• By implementing a minimal version of the algorithm without preprocessing
and only the most basic optimizations, the result may be seen as more general
and applicable to a larger set of existing LP solvers.

In order for this method to give reliable results, some criteria have to be fulfilled:
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• The benchmark problems should be realistic LP problems that arise in some
application where someone is interested in the solution.

• The optimization level of the CPU and GPU version should be as similar as
possible. If one version is optimized to a larger degree than the other, the
performance comparison will not give a fair result.

• All benchmarks should be performed in a way that gives consistent results
and represents some real-world scenario in which the solvers could be used.

Whether these points are fulfilled in this thesis is discussed in the rest of the report,
and in particular the rest of this chapter.

3.2 Benchmark Problems
The benchmark problems come from the project provider TriOptima. They are real
problems which are solved in the company’s internal work process. The structure
of these problems are typical for linear programming in a financial context, where
bilateral trades from a set of parties need to be constrained on several time-bucketed
risk figures. The risk figures are derivatives calculated numerically by looking at
the change in some financial attribute resulting from a small change in some risk
factor. This risk figure calculation is performed on several time-buckets, i.e. future
time intervals, which makes up the constraint matrix A.

The sizes of the benchmark problems can be seen in Table 3.1.

Name Constraints Variables density A nnz AAT density AAT

lp6x7 5 825 6 540 0.013 12 000 063 0.35
lp7x7 6 821 7 296 0.005 11 395 721 0.24
lp10x10 9 500 9 974 0.004 28 588 426 0.32
lp13x19 12 669 19 351 0.016 45 639 661 0.28
lp23x29 23 003 29 391 0.008 103 409 439 0.20
lp31x39 31 334 39 079 0.004 128 429 628 0.13
lp46x51 46 458 51 149 0.002 267 669 484 0.12

Table 3.1. The benchmark problems used in this thesis. nnz refer to the
number of non-zero elements in a matrix and the density is defined as nnz
divided by the matrix size, which is relevant for choosing between using sparse
and dense linear algebra.

For all the problems, the original constraints consist of inequalities which are con-
verted into equalities by the introduction of slack variables. The slack variables are
included in the number of variables in Table 3.1, but due to the way that they are
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introduced in the matrix A they do not contribute to the number of non-zeros in
AAT .

The problems are stored in a data format described in Appendix A. They are parsed
and converted to standard form in the same way for the CPU and GPU versions of
the code.

3.3 Implementations

The algorithm which was implemented is listed in pseudocode in Algorithm 1. It
follows the LIPSOL implementation, adhering to the description of the algorithm
in section 2.3. One reason for choosing LIPSOL is that it is described in detail
in [44]. Another reason is that it is the same code which the MATLAB linprog
interior point method is based upon, which increases its credibility. By basing the
algorithm of this thesis on a standard implementation, the performance investigation
will presumably be more relevant to current projects.

The initial point is found in the same way as in [24] and LIPSOL. The last step in
each iteration consists of calculating a stop criteria. The value of the stop criteria
is a combination of the primal, dual and upper feasibility, as well as the duality
gap. This value can be thought of as the accuracy of the current iteration, with a
smaller value indicating a higher accuracy.

Some implementations of the PCIPM uses a method to increase the sparsity of
the ADAT matrix by separating the most dense columns of A into a matrix U
and performing the Cholesky factorization on a matrix P without the most dense
columns. After doing this, the Sherman-Morrison formula [2] can be used to solve
the system. This method of increasing the sparsity of the Cholesky decomposition
has not been implemented in this thesis. The reason for this is that for these
benchmark problems, the relatively even density of the columns prevented any large
gain in sparsity. For example, by removing the 500 most dense columns in the
lp13x19 problem, the density of ADAT and P respectively was reduced from 0.28
to 0.20. This was not deemed a large enough reduction to motivate the increase in
code complexity in the implemented algorithm.

Most commercial implementations of the PCIPM include some kind of preprocessing
or presolve, which can have a number of effects on the actual computations per-
formed. For example, MATLAB’s linprog preprocessing[27] make sure that fixed
variables are removed and that the constraint matrix has full structural rank, among
other things. CPLEX is an example of a solver which goes further and can in many
cases leverage redundancies to decrease the number of constraints and variables.[19]
The goal of this thesis is to investigate whether the PCIPM can be accelerated by
a GPU. Decreasing the size of the problem before running the algorithm does not
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Algorithm 1 Predictor-Corrector Interior Point Method: detailed description
1: τ0 = 0.9995
2: Find initial values for x, y, z, s, w.
3: while stop > tol do
4: D = (X−1Z + S−1W )−1

5: H = ADAT

6: Compute U such that UTU = H by Cholesky factorization
7: rb = Ax− b . Primal feasibility residual.
8: ru = x+ s− u . Upper bounds feasibility residual.
9: rc = AT y + z − w − c . Dual feasibility residual.

10: rxz = Xz
11: rsw = Sw
12: rcp = rc −X−1rxz + S−1(rsw −W−1ru)
13: ∆y = U−1(U−T (−(rb +ADrcp)))
14: ∆x = D(AT ∆y + rcp

15: ∆z = −X−1(Z∆x+ rxz)
16: ∆s = −(∆x+ ru)
17: ∆w = −S−1(W∆s+ rsw)
18: Compute αP and αD such that x+αP ∆x, s+αP ∆s, z+αD∆z, w+αD∆w > 0
19: if τ0αP < 1 or τ0αD < 1 then
20: g = xT z + sTw
21: ĝ = (x+ min(1, αP )∆x)T (z+ min(1, αD)∆z) + (s+ min(1, αP )∆s)T (w+

min(1, αD)∆w)
22: µ = ĝ2/g/(n+ nu)
23: rxz = ∆X∆z − µ
24: rsw = ∆S∆w − µ
25: rcc = −X−1rxz + S−1rsw

26: ∆Cy = U−1(U−T (−ADrcc))
27: ∆Cx = D(AT ∆Cy + rcc)
28: ∆Cz = −X−1(Z∆Cx+ rxz)
29: ∆Cs = −∆Cx
30: ∆Cw = −S−1(W∆Cs+ rsw)
31: ∆v = ∆v + ∆Cv . Containing variables ∆x,∆y,∆z,∆s,∆w.
32: Compute αP and αD such that x + αP ∆x, s + αP ∆s, z + αD∆z, w +

αD∆w > 0
33: end if
34: x = x+ min(1, τ0αP )∆x
35: y = y + min(1, τ0αD)∆y
36: z = z + min(1, τ0αD)∆z
37: s = s+ min(1, τ0αP )∆s
38: w = w + min(1, τ0αD)∆w
39: stop = ||rb||

max(1,||b||) + ||ru||
max(1,||u||) + ||rc||

max(1,||c||) + |cT x−bT y+uT w|
max(1,|cT x|,|bT y−uT w|)

40: end while

26



3.3. IMPLEMENTATIONS

help answering this question, but may actually make the results more difficult to
interpret. Because of this, preprocessing is not implemented in the program of this
thesis.

It is worth noting that generally the fastest way of solving linear systems of equa-
tions on the GPU is to use iterative methods, such as the PCG method. In the
PCIPM this is not feasible, since one of the main points of the algorithm is to use
the same Cholesky factorization twice. This means that two solves can be performed
for practically the same cost as one solve. The Cholesky factorization is also more
stable than iterative methods. Iterative methods in the context of IPMs require
a regularization of the mathematical formulation as well as special precondition-
ing.[15] Leveraging the GPU’s capabilities of using iterative solvers to solve linear
programming has already been studied, most notably by Smith et al.[39] This thesis
does not aim to replicate these results, but rather to investigate another method
which is based on using a direct solver.

The specific structure of the benchmark problems will not be exploited in this
thesis. The motivation for this is that the results of this thesis should be applicable
to PCIPMs in general. Certainly, some things such as the density and structure
of the matrices differ from one problem to another and it may be the case that
the structure of these benchmark problems gives different performance results than
other problems would.

A compressed description of the main algorithm (seen in Algorithm 1) is listed in
Algorithm 2. This version will be used to explain the GPU implementations in
section 3.3.3.

3.3.1 Parallelization

Parallelizing the PCIPM is a difficult problem. Since all IPMs are iterative and the
iterations must be taken one at a time, these methods are inherently sequential.

It is possible to parallelize some of the separate operations of each iteration. There
are two operations that make up most of the computation time: the sparse matrix-
matrix (SpMM) multiplication used to compute ADAT , and the Cholesky factor-
ization of the same matrix, corresponding to line 5 and 6 in Algorithm 2. For dense
matrices, the Cholesky factorization use O(m3) operations and the matrix-matrix
multiplication of ADAT use O(m2n) operations, where m is the number of con-
straints and n is the number of variables. These operations are hence candidates
for parallelization. All other operations, apart from for Cholesky factorization and
SpMM, have a time complexity of O(n2) or less making them practically irrelevant
for the overall time consumption of the solver.

Unfortunately, these two most costly operations are dependent on one another:
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Algorithm 2 Predictor-Corrector Interior Point Method: compressed description
1: τ0 = 0.9995
2: Find initial values for x, y, z, s, w.
3: while stop > tol do
4: D = (X−1Z + S−1W )−1

5: H = ADAT

6: Compute U such that UTU = H by Cholesky factorization
7: Compute residuals rb, ru, rc, rxz, rsw, rcp.
8: Compute predictor direction ∆y using UTU∆y = rhs.
9: Compute predictor direction ∆x,∆z,∆s,∆w.

10: Compute αP and αD such that x+αP ∆x, s+αP ∆s, z+αD∆z, w+αD∆w > 0
11: if τ0αP < 1 or τ0αD < 1 then
12: Compute centering parameter µ.
13: Compute residuals rxz, rsw, rcc.
14: Compute corrector direction ∆Cy using UTU∆Cy = rhs.
15: Compute corrector direction ∆Cx,∆Cz,∆Cs,∆Cw.
16: ∆v = ∆v + ∆Cv
17: Compute αP and αD such that x + αP ∆x, s + αP ∆s, z + αD∆z, w +

αD∆w > 0
18: end if
19: Take steps in the ∆v direction.
20: stop = ||rb||

max(1,||b||) + ||ru||
max(1,||u||) + ||rc||

max(1,||c||) + |cT x−bT y+uT w|
max(1,|cT x|,|bT y−uT w|)

21: end while

the Cholesky factorization uses the result of the SpMM multiplication, and the
SpMM multiplication uses data that are computed using the previous Cholesky
factorization. This means that these two operations cannot be run simultaneously.

Much research has gone into developing fast methods for Cholesky factorization and
sparse matrix-matrix multiplication, since these are two very common operations.
This includes versions that take advantage of GPUs. Because of this, developing
faster methods for performing these operations is deemed out of the scope of this
thesis. Instead, existing research and software libraries are leveraged when the
PCIPM is implemented for two different architectures: the multi-core architecture
of the CPU and the many-core architecture of the GPU. Details about these versions
are described in the following two subsections.
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3.3.2 CPU Implementation
In order to have something to compare the GPU-accelerated PCIPM to, it is impor-
tant to implement a well-optimized CPU version which is mathematically equivalent
to the GPU version. The CPU versions also serve as a basis for the GPU imple-
mentations, since the same mathematical steps are followed.

Two CPU versions of the algorithm were implemented. They both perform the same
operations, but make use of different algebra libraries and data representations.
Both versions use the multi-threading capabilities of the CPU. Both versions store
the constraint matrix A in some compressed sparse way (CSR or CSC), and all
operations on this matrix are hence operations optimized for sparse matrices. All
vectors are stored in a dense way, since they are comparatively full of non-zeros.
Double precision is used since it is required for the benchmark problems to prevent
the ADAT matrix from becoming too ill-conditioned and only positive semi-definite
(instead of the required positive definite).

CPUDense

The version CPUDense is a MATLAB implementation of the algorithm. MATLAB
uses the Intel MKL library for the BLAS functions, which is one of the fastest BLAS
libraries. In this version, the matrix ADAT is converted into a dense representation
before the Cholesky factorization is performed, since that matrix is comparatively
dense (approximately 25% non-zeros, more details in Table 3.1). This strategy was
implemented and tested in MATLAB, the Armadillo C++ library and the Eigen
C++ library. The MATLAB version uses multi-threading and was found to be the
fastest and was selected to be used in the benchmarks. Unfortunately the SpMM
multiplication does not use multi-threading, but the Cholesky factorization does.

The densities of the constraint matrices A are approximately 1%. Because of this,
they are stored in a sparse way. A version where the constraint matrix is stored in
a dense way was tested as well, the computation time result of which can be seen
in Figure 3.1. The version with a dense A matrix performed much worse than the
version where A is stored as a sparse matrix. The speedup achieved by using sparse
matrices compared to dense matrices is 2x - 8x.
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Figure 3.1. Speedup achieved by using sparse linear algebra compared to dense
linear algebra for the constraint matrix A using solver CPUDense. A higher bar
implies a faster solution time.

CPUSparse

The version CPUSparse is implemented in C++ and uses the library Eigen, de-
scribed in section 2.1.1. This library is single-threaded, and the SpMV and SpMM
multiplications are performed on only one core. However, it contains bindings for
computing the Cholesky factorization using CHOLMOD which is multi-threaded.
In the CPUSparse version the matrix ADAT is kept in its sparse representation
when performing the Cholesky factorization with CHOLMOD. Another way of im-
plementing a CPU version with a sparse Cholesky factorization would have been to
modify the MATLAB CPUDense version so that it uses a sparse Cholesky factoriza-
tion. This was tested and found to be slightly slower than the version with Eigen
and CHOLMOD.

A C++ library was not found in which the SpMM multiplication utilizes more
than one core. A number of different libraries were tested for the computation
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of the SpMM multiplication, to find the fastest library and therefore achieve a
fair comparison in the performance analysis. Three libraries were tested: Eigen,
CHOLMOD and blaze. The Eigen library has a built-in SpMM multiplication,
requiring no matrix format conversion and allowing the code to be as simple as
possible. The CHOLMOD library can also be used for the SpMM multiplication
and can be integrated into the Eigen library quite easily, since the data structures
are similar in the two libraries. Lastly, the blaze library was tested. Unfortunately,
this library uses another type of storage for the matrices which means that the
matrix data has to be copied before and after the SpMM multiplication.

The result of the performance comparison of the SpMM multiplication can be seen
in Figure 3.2. The three libraries perform similarly, with blaze being slightly quicker
for some matrices and CHOLMOD being slightly quicker for other matrices. Since
there is no large performance difference and the matrix format of CHOLMOD better
matches that of Eigen, CHOLMOD was chosen to be used for the performance
comparisons in section 4.
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Figure 3.2. Comparing different SpMM libraries for the CPUSparse solver.
Plot shows speedups of full solutions of the specified LP problems.
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In order to reduce the number of non-zeros in the Cholesky factor, a few reordering
algorithms are tested during the first factorization of every solution. The algorithms
tested include the Approximate Minimum Degree algorithm. Finding a good re-
ordering only has to be performed once in each solution, since the non-zero pattern
of the matrix ADAT does not change between iterations. The same reordering can
thence be used for all subsequent factorizations.

3.3.3 GPU Implementation

The main result of the report is dependent on having a well-thought-out and op-
timized GPU version of the PCIPM. The GPU versions of the algorithm should
perform the same mathematical calculations as the CPU versions, so that the per-
formance comparisons become as fair as possible. But, while the mathematical
optimizations should be equivalent, optimizing the computations becomes slightly
more involved in the GPU versions, since you can leverage the capabilities of both
the CPU and GPU. As described in the section 2.4 there are also a number of
performance strategies to consider, such as minimizing memory transfers. The
GPU implementations are based on the framework CUDA from Nvidia, described
in section 2.4. Specifically, version 7.0 of the CUDA Toolkit was downloaded from
Nvidia’s web page. This version is the latest at the time of writing this report,
and was the first version to include a function for Cholesky factorization, which is
interesting to study for this thesis.

The fact that double precision has to be used for stability in these benchmark
problems is problematic for performance reasons, since GPUs are much slower with
double precision arithmetic than single precision. If the algorithm could be con-
structed such that single precision could be used instead, the GPU would be better
utilized and the performance would presumably increase significantly.

Two GPU versions were implemented, having some things in common. The con-
straint matrix A, which has a density of approximately 1%, is stored in a sparse
matrix format in order to save memory and reduce computation time. For sparse
matrix operations, both GPU versions use the cuSPARSE library described in sec-
tion 2.4. These operations include the SpMV and the SpMM multiplications. Since
cuSPARSE only performs the SpMM multiplication on matrices stored in the CSR
format, this format was chosen to be used in this thesis. As noted in [3], CSR
is not the best format for the SpMV operation. However, in the implementations
of this thesis the SpMV operation only uses a small fraction of the computation
time, so the CSR format was considered good enough. The CPU was in both ver-
sions responsible for orchestrating the algorithm (which is inherently sequential),
delegating computations to the GPU.

The SpMM multiplication is performed in the same way on both GPU versions
of the algorithm. In cuSPARSE, this operation is performed with two function
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calls: cusparseXcsrgemmNnz which returns the number of non-zero elements and
the vector with row indices in the CSR matrix format (see section 2.1.1 for more
details). cusparseDcsrgemm which returns the vector with column coordinates and
the vector with values. The result of the SpMM multiplication in each iteration has
the same non-zero pattern. Because of this, the cusparseXcsrgemmNnz function is
only called once per solution and the result is reused in each iteration.

GPUDense

The version GPUDense uses the MAGMA library for the Cholesky factorization.
The MAGMA library accepts matrices that reside on GPU memory, allowing this
version of the algorithm to be completely free of any explicit memory transfers.
The MAGMA library uses both the CPU and GPU for its computations however,
to ensure that the CPU does not idle while waiting for the GPU computations to
complete. The result of performing the SpMM multiplication on ADAT is a sparse
matrix. This matrix has to be converted to dense format before performing the
factorization with the MAGMA library. The cuSPARSE library includes a func-
tion for performing this conversion, which is fast and does not affect performance
significantly. The GPUDense version of the algorithm is listed in Algorithm 3.

In order for the MAGMA library’s Cholesky factorizer to work with the highly
ill-conditioned matrices which occur in the context of the PCIPM, it has to be
modified. The MAGMA Cholesky factorizer uses a blocking algorithm which calls
the LAPACK function dpotrf for individual blocks in the factorization. This LA-
PACK function was replaced by a Cholesky-Infinity function described in section
2.1.2 and implemented in accordance to [44]. Since LAPACK functions are gen-
erally highly optimized, a performance comparison was done to ensure that the
modified Cholesky-Infinity function did not perform much worse than the original
one. This is important so that the performance comparison in section 4 does not
misleadingly indicate that the MAGMA solver is slower than it actually is. As can
be seen in Figure 3.3, the modified algorithm is slightly slower but does not reduce
performance more than 5% for any test case.
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Algorithm 3 Version GPUDense. Light green color indicates conversion between
sparse and dense matrix format. Orange color indicates operations performed by
the MAGMA library. No color indicates computations performed on the GPU,
using libraries that is included in the CUDA Toolkit or kernels developed for this
thesis.
1: τ0 = 0.9995
2: Find initial values for x, y, z, s, w.
3: while stop > tol do
4: D = (X−1Z + S−1W )−1

5: H = ADAT

6: Convert H to dense format.
7: Compute U such that UTU = H.
8: Compute residuals rb, ru, rc, rxz, rsw, rcp.
9: Compute predictor direction ∆y using UTU∆y = rhs.

10: Compute predictor direction ∆x,∆z,∆s,∆w.
11: Compute αP and αD such that x+αP ∆x, s+αP ∆s, z+αD∆z, w+αD∆w > 0
12: if τ0αP < 1 or τ0αD < 1 then
13: Compute centering parameter µ.
14: Compute residuals rxz, rsw, rcc.
15: Compute corrector direction ∆Cy using UTU∆Cy = rhs.
16: Compute corrector direction ∆Cx,∆Cz,∆Cs,∆Cw.
17: ∆v = ∆v + ∆Cv
18: Compute αP and αD such that x + αP ∆x, s + αP ∆s, z + αD∆z, w +

αD∆w > 0
19: end if
20: Take steps in the ∆v direction.
21: stop = ||rb||

max(1,||b||) + ||ru||
max(1,||u||) + ||rc||

max(1,||c||) + |cT x−bT y+uT w|
max(1,|cT x|,|bT y−uT w|)

22: end while
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Figure 3.3. Comparing the standard MAGMA Cholesky factorizer to the
modified Cholesky-Infinity version. Plot shows speedups of full solutions of the
specified LP problems.
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In addition to the main GPUDense version, a version was implemented where the
dense MAGMA Cholesky solver is replaced by the new cuSOLVER library intro-
duced in CUDA Toolkit v.7.0. A performance comparison was made, and the result
can be seen in Figure 3.4. Since MAGMA was found to be slightly faster for all test
cases but the smallest one, it was chosen to be used for the performance comparisons
in section 4.
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Figure 3.4. Comparing the MAGMA Cholesky factorizer to the corresponding
function in cuSOLVER. Plot shows speedups of full solutions of the specified
LP problems.
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For completeness, a version of the GPUDense solver was implemented which uses a
dense matrix representation for the matrix A. This version is slower, as was the
case for the corresponding CPU version, but the performance difference is not as
large as for the CPU version. The speedup can be seen to be no more than 2.5x in
Figure 3.5 and for the smallest problem which is relatively dense, storing A as dense
gives a slightly faster solver. Because of memory restrictions, the largest problem
tested is lp13x19.
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Figure 3.5. Speedup achieved using sparse linear algebra compared to dense
linear algebra for the constraint matrix A using solver GPUDense. Plot shows
speedups of full solutions of the specified LP problems.

GPUSparse

The version GPUSparse uses the CHOLMOD library for the Cholesky factoriza-
tion. Since this library requires the input matrix to be located on the CPU mem-
ory, a memory transfer has to be performed before doing the factorization. The
CHOLMOD library requires the matrix to be on the CSC sparse matrix format,
but the matrix is stored as CSR on the GPU. Since the matrix ADAT is symmet-
ric, the row indices of the CSR format can simply be copied into the column indices
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of the CSC format, eliminating the need for a costly conversion. Apart from copying
the large ADAT matrix some other copies between CPU and GPU is required as
well, but only small data in the form of vectors of lengthm. The host memory which
is used for the GPU-CPU copies is allocated as pinned, using the cudaMallocHost
function. The pinned host memory is allocated only once per solution and reused
in all iterations.

As in the GPUDense version, the Cholesky factorizer was modified into a Cholesky-
Infinity algorithm. It was done using the same strategy, replacing a LAPACK
function call in the CHOLMOD library with a version implemented in accordance
to [44]. This modification increased the performance slightly, as can be seen in
Figure 3.6. Using the standard Cholesky factorization, it was able to achieve an
accuracy of 10−4 for all problems except lp46x51. This seems to indicate that it
is less sensitive to numerical errors than the MAGMA Cholesky factorizer in the
GPUDense version.

lp6x7 lp7x7 lp10x10 lp13x19 lp23x29 lp31x39
0

0.2

0.4

0.6

0.8

1

1.2

problem

sp
ee
du

p

Speedup (compared to standard Cholesky)

Standard Cholesky
Cholesky-Infinity

Figure 3.6. Comparing the standard CHOLMOD Cholesky factorizer to the
modified Cholesky-Infinity version. Plot shows speedups of full solutions of the
specified LP problems.
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As in the CPUSparse version, a reordering algorithm is used in order to reduce the
number of non-zero elements in the Cholesky factor U . The GPUSparse version of
the algorithm is listed in Algorithm 4.

Algorithm 4 Version GPUSparse. Light green color indicates memory transfer
between CPU and GPU. Light blue color indicates operations performed by the
CHOLMOD library. No color indicates computations performed on the GPU, using
libraries that is included in the CUDA Toolkit or kernels developed for this thesis.
1: τ0 = 0.9995
2: Find initial values for x, y, z, s, w.
3: while stop > tol do
4: D = (X−1Z + S−1W )−1

5: H = ADAT

6: Copy H to CPU memory.
7: Compute U such that UTU = H.
8: Compute residuals rb, ru, rc, rxz, rsw, rcp.
9: Copy rhs to CPU memory.

10: Compute predictor direction ∆y using UTU∆y = rhs.
11: Copy ∆y to GPU memory.
12: Compute predictor direction ∆x,∆z,∆s,∆w.
13: Compute αP and αD such that x+αP ∆x, s+αP ∆s, z+αD∆z, w+αD∆w > 0
14: if τ0αP < 1 or τ0αD < 1 then
15: Compute centering parameter µ.
16: Compute residuals rxz, rsw, rcc.
17: Copy rhs to CPU memory.
18: Compute corrector direction ∆Cy using UTU∆Cy = rhs.
19: Copy ∆Cy to GPU memory.
20: Compute corrector direction ∆Cx,∆Cz,∆Cs,∆Cw.
21: ∆v = ∆v + ∆Cv
22: Compute αP and αD such that x + αP ∆x, s + αP ∆s, z + αD∆z, w +

αD∆w > 0
23: end if
24: Take steps in the ∆v direction.
25: stop = ||rb||

max(1,||b||) + ||ru||
max(1,||u||) + ||rc||

max(1,||c||) + |cT x−bT y+uT w|
max(1,|cT x|,|bT y−uT w|)

26: end while

Kernels

Both GPU versions use some kernels which were implemented specifically for use in
this thesis. One example of such a kernel can be seen in Figure 3.7, which is used for
updating the matrix D = (X−1Z + S−1W )−1. Other examples are coefficient-wise
multiplication and division and the step length calculation. The kernels imple-

39



CHAPTER 3. METHOD

mented specifically for this thesis only perform O(m) and O(n) operations. The
Nvidia Nsight Profiler was run on the program in order to ensure that the kernels
did not use a disproportionate amount of time. The profiler ranks the kernels based
on how much the performance of the program will be affected by optimizing that
kernel. A rank of 100 means that it is an important kernel which should be opti-
mized, and a rank of 1 means that optimization probably will not have a significant
effect. All kernels implemented specifically for this thesis received a rank of 1. Be-
cause of this, not much time has been spent optimizing these kernels. All kernels
that received a higher rating than 1 belong to some CUDA library.

template <typename T>
__global__ void buildD_kernel (T* __restrict__ valD ,

const T* __restrict__ x, const T* __restrict__ z,
const T* __restrict__ s, const T* __restrict__ w,
int n, int nu)

{
int id = blockIdx .x* blockDim .x + threadIdx .x;
if (id < n)

valD[id] = z[id]/x[id];
if (id < nu)

valD[id] += w[id]/s[id];
if (id < n)

valD[id] = 1/ valD[id];
}

Figure 3.7. Kernel for calculating the diagonal matrixD = (X−1Z+S−1W )−1.
The array valD contains the diagonal of D.

3.4 Performance Analysis
The hardware specifications for the system on which all performance tests are per-
formed can be seen in Table 3.2.

CPU Intel Xeon E5-2630 v2
CPU Cores 6
CPU Clock Speed 2.60 GHz (3.10 GHz turbo)
CPU Memory Bandwidth 51 GB/s
RAM 32 GB
GPU Nvidia GTX Titan Black
GPU Memory 6 GB
GPU Memory Bandwidth 288 GB/s

Table 3.2. Test system hardware.

The Intel Xeon E5-2630 v2 is based on the Ivy Bridge architecture and was released
in Q3 2013. It currently retails for around 6 000 - 7 000 SEK at the time of writing
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this report. The Nvidia GTX Titan Black is based on the Kepler architecture
(GK110) and was released in Q1 2014. It currently retails for around 10 000 SEK.
What sets the GTX Titan apart form other graphics cards in the GTX series is
that it has a double precision mode which increases double precision performance
to 1/3 of the single precision performance, instead of the default 1/24. This makes
the card suitable for this thesis, since double precision is required for numerical
stability. However, by activating the double precision mode the memory bandwidth
of the GPU is reduced from 336 GB/s to 288 GB/s.

All implementations of the algorithm are compiled with nvcc on a Ubuntu 14.04
machine, using the -O3 compiler optimization flag. For the C++ parts of the code,
nvcc uses the gcc compiler set to the C++11 standard. CUDA Toolkit v.7.0, gcc
4.8.2, OpenBLAS 0.2.8, and Eigen 3.2.3 were used. Some of the libraries have to
be compiled before use. SuiteSparse 4.4.3 was compiled using gcc with support
for multithreading using OpenBLAS, and with support for GPU-acceleration with
compute capability 3.5 using nvcc. Other than these settings, the default settings
in SuiteSparse were used. Magma 1.6.1 was compiled for the Kepler architecture
using nvcc, gcc and gfortran, and using the BLAS package OpenBLAS.

The CPUDense version is run by a 64-bit version of MATLAB R2014b with Intel
MKL 11.1.1.

Two different ways of measuring the computation times were used for each solver.
One version measures the total solution time including finding the initial point and
all iterations until the point where a tolerance of 10−4 was achieved. The other
version measures the time the program spends doing various operations, such as
the Cholesky factorization, SpMM and SpMV. The time it takes to read and parse
the file containing the problem is not included in the measurements for any solver.
All times measured and presented in this report are wall clock times. Most times are
measured using the std::chrono time library introduced in the standard library
of C++11.[8] All times that are not measured using std::chrono instead use the
cudaEventElapsedTime, which is used for the per-operation time measurements of
the GPU versions.

The memory used is measured for the GPU versions of the algorithm. The number
presented signify the most memory that is occupied on the GPU during the entire
solution run of a problem. The measurement is updated at some specific times
during the algorithm, usually preceding a freeing of some temporary variables. This
number is supposed to signify the memory that is required on the graphics card in
order to solve the given problem.

The implemented program takes a number of parameters: the input file describing
the LP problem; whether to print debug outputs; whether to use per-operation
time measurements; and a list of solvers that will be executed sequentially. These
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parameters combined with bash scripts make it possible to batch the performance
measurements which in total takes a few hours to run through. The timings are
written to a file which is then parsed with special MATLAB functions in which the
plots are generated.

The performance measurements were all done with the CPU governor set to Performance
instead of the default Ondemand, to ensure that the CPU clock speed is not throttled
and the turbo mode is activated. The graphics card was set to its CUDA Double
Precision Mode, which increases the theoretical double precision performance from
213 GFLOP/s to 1700 GFLOP/s. The graphics card governor was also changed
from the default Adaptive to Prefer Maximum Performance. The graphics card
used for the performance measurements does not have any monitor plugged in, and
is hence used as dedicated computation hardware. The graphics card is plugged in
to a PCIe 3.0 x16 bus.

The problems are all solved on the same Ubuntu machine as was used for the
compilation. A problem is considered solved when the stop criteria is smaller than
10−4.
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Results

In this chapter, the results of the performance measurements are presented. The
results are split into three sections: first a comparison of achieved accuracy of
the solvers, then various computation time measurements and lastly the memory
requirements.

4.1 Accuracy

The implemented solvers are able to achieve different accuracies for different prob-
lems. The accuracy refers to the value of the stop criteria, i.e. a smaller value
indicates a higher degree of accuracy. In Table 4.1 the highest achieved accuracy is
presented for each solver and problem. The solvers with Inf in the Cholesky column
use the Cholesky-Infinity factorization and the solvers with Std use the standard
Cholesky factorization. For the rest of the report the GPUDense and GPUSparse
versions with the Cholesky-Infinity method are the ones that are being used in all
benchmarks.

Solver
Name Cholesky lp6x7 lp7x7 lp10x10 lp13x19 lp23x29 lp31x39 lp46x51
CPUSparse Std 3.2e-7 7.9e-9 3.3e-6 1.1e-6 1.1e-7 7.5e-8 *
CPUDense Std 3.0e-7 7.9e-9 3.3e-6 5.4e-7 6.3e-7 5.7e-8 **
GPUSparse Std 2.6e-7 7.9e-9 3.3e-6 3.0e-7 6.3e-7 3.0e-7 7.2e-1
GPUSparse Inf 3.1e-8 6.1e-11 2.9e-8 6.0e-8 2.4e-7 4.4e-9 3.1e-4
GPUDense Std 2.6e-7 7.9e-9 3.3e-6 * 6.3e-7 ** **
GPUDense Inf 6.1e-8 8.7e-10 1.5e-9 2.4e-7 1.4e-7 ** **

Table 4.1. Achievable accuracy of different solvers. A smaller value indicates a
higher degree of accuracy.
* numerical error
** out of memory
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As can be seen in Table 4.1, the versions using the Cholesky-Infinity algorithm
are consistently able to achieve a higher degree of accuracy than their standard
Cholesky counterparts.

The reason why there are differences between the solvers in regard to accuracy for
a given problem may have to do with which Cholesky factorization implementation
is used. For all solvers, the achievable accuracy is limited by the matrix ADAT .
When this matrix becomes semi-definite or indefinite, the algorithm aborts. Imple-
mentation details may include different pivot element limits for when the matrix
is considered non-definite. Different factorization strategies may also cause slight
numerical differences between the algorithms. Mostly however, the solvers using
the standard Cholesky factorization achieve very similar accuracies.

It is not clear why the lp13x19 problem does not work with the unmodified GPUDense
solver. It is suspected that the structure and density of the problems are important
factors in regards to the ill-conditioning of ADAT , but this has not been studied
further.

Solver
Name Cholesky lp6x7 lp7x7 lp10x10 lp13x19 lp23x29 lp31x39 lp46x51
CPUSparse Std 20 18 20 22 21 23 *
CPUDense Std 20 18 20 22 21 23 **
GPUSparse Std 20 18 20 22 21 23 *
GPUSparse Inf 20 18 20 22 21 23 *
GPUDense Std 20 18 20 * 21 ** **
GPUDense Inf 20 18 20 22 21 ** **

Table 4.2. Number of iterations to reach an accuracy of 10−4 for different solvers.
* numerical error
** out of memory

Table 4.2 shows that for each problem all successful solvers require the same number
of iterations to reach an accuracy of 10−4. Since all solvers are based on the same
mathematical operations, this is expected and can be seen as an indication that the
solvers are working as intended. For all problems, there are almost no differences in
the convergence of the four solvers. To illustrate this, Figure 4.1 shows convergence
of the four solvers for the problem lp10x10. The solvers converge so similarly that
they appear to be identical in the plot. The only visible difference between the
solvers can be seen on the last iteration where GPUSparse achieves a slightly better
accuracy than the other solvers.
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Figure 4.1. Convergence for problem lp10x10. The convergence of the four
solvers are almost identical.

4.2 Computation Time Analysis

In this section, the main results of this thesis are presented. This thesis aims
to answer for which sizes of linear programming problems it is possible to speed
up the predictor-corrector interior point method. The results of the performance
measurements are shown in the following subsections, and using these results the
problem statement can be answered.

The speedups presented in this section follow the formula

S = Tref

Tnew

where S is the speedup, Tref is the time of the reference solver and Tnew is the time
of the solver that is being considered.
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4.2.1 Benchmark Consistency
All benchmarks were run with the same hardware settings, as described in section
3.4. As many applications as possible were closed before performing the benchmark
tests. There is no randomness in the algorithm, so every run should in theory
perform the exact same instructions. In Table 4.3, the relative difference of the
computation time of two test runs is presented. The relative difference is calculated
as d =

∣∣∣ t1−t2
t2

∣∣∣.
Solver lp6x7 lp7x7 lp10x10 lp13x19 lp23x29 lp31x39
CPUSparse 0.1% 0.2% 0.1% 0.1% 0.1% 0.1%
CPUDense 0.1% 1.1% 2.5% 2.4% 0.4% 2.2%
GPUSparse 0.1% 0.8% 0.4% 0.4% 0.4% 0.4%
GPUDense 0.2% 0.1% 0.1% 0.0% 0.0%

Table 4.3. Benchmark consistency. Relative difference in measured computation
time between two runs of the benchmark suite. All numbers rounded to a tenth of a
percent.

As can be seen in Table 4.3, the benchmarks times are quite consistent. The consis-
tency was worst for the CPUDense solver, having a relative difference in computation
time of less than 3%. All others solvers have a relative difference in computation
time of less than 1%. The results presented in the rest of the report are means of
three different test runs. Because of the small relative difference in computation
time between runs, it is believed that this manner of constructing the final results
is accurate enough for the purposes of this thesis.

4.2.2 Total Solution Time
The total solution times for each solver and problem are shown in Figure 4.2. The
corresponding speedups are shown in Figure 4.3. These times have been measured
as described in section 3.4.

The GPU solvers are faster than the CPU solvers for every tested problem. The
figures shows that the GPUDense solver achieves a speedup of 4x - 6x compared to
the best CPU solver. The GPUSparse solver achieves a speedup of 2x - 3x compared
to the best CPU solver. Comparing the best CPU solver and the best GPU solver
for each individual problem, a speedup of at least 2x can be achieved by the GPU
solver.
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Figure 4.2. Total solution time for each solver and problem. Note that
GPUDense cannot solve lp31x39 since the memory requirements are too high.
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Figure 4.3. Speedup of all four solvers compared to the fastest CPU solver
for each problem. Note that GPUDense cannot solve lp31x39 since the memory
requirements are too high.

48



4.2. COMPUTATION TIME ANALYSIS

4.2.3 Per-Operation Time
In Figure 4.4, the time for individual operations in the four solvers are shown. These
timings were first measured to be able to see which operations are worth trying to
optimize, and later also to compare how well certain operations can be accelerated
using the GPU.

It is clear from Figure 4.4 that the computation time of all solvers consists almost
exclusively of the SpMM multiplication and the Cholesky factorization. All other
operations consist of less than 3% of the total time for any combination of solver
and problem. Both the Cholesky factorization and the SpMM multiplication are
accelerated significantly using a GPU.

For the GPUDense solver, the SpMM multiplication dominates the other operations
as the problem size grows. The dense Cholesky factorization scales well on the
GPU. For the GPUSparse solver, the relation is reversed: the Cholesky operation
uses a larger ratio of the computation time as the problem size grows. The SpMM
multiplication is performed in the same way in both GPU solvers and uses a similar
amount of time.

Since both the CPUSparse and GPUSparse versions use CHOLMOD to factorize the
sparse constraint matrix, this data can be used to find the speedup of CHOLMOD
when it utilizes the GPU to factor these matrices. The speedup of CHOLMOD was
found to be 1.4x - 3.9x compared to using only a CPU.

The GPUSparse version is the only version where memory operations are not com-
pletely negligible. This is expected since in this version the large ADAT matrix
is copied from device memory to host memory every iteration. Despite this large
copy, memory operations use less than 1% of the total computation time for any
problem.
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Figure 4.4. Execution time for individual operations in the four solvers. Note
that the scale differs between the solvers. Note that GPUDense cannot solve
lp31x39 since the memory requirements are too high.
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4.2.4 Comparison to the MATLAB linprog Function

In order to convince the reader that the solvers that have been developed during
this thesis are comparable in computation time to existing solvers, the GPU ver-
sions of the algorithm are compared to MATLAB’s built-in linear programming
solver linprog set to use the default solver interior-point.[28] The result of this
comparison is shown in Figure 4.5.
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Figure 4.5. Speedup compared to MATLAB’s linprog linear programming
solver. Note that GPUDense cannot solve lp31x39 since the memory require-
ments are too high.

For the smallest studied problem, linprog is slightly faster than the GPU imple-
mentations. This is probably related to the various optimizations implemented in
linprog, as discussed in section 3.3. For all problems but the smallest, linprog is
slower than the GPUDense solver.

For large problems, linprog is very slow compared to the GPU versions. linprog
solves the lp31x39 problem in 5.5 hours. This corresponds to a speedup for
GPUSparse of 58. The interior-point solver of linprog does not seem to be
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developed for such large problems as these, though MathWorks recommends it for
solving large-scale sparse LP problems.[26]

4.2.5 Graphics Card Comparison
The graphics card used for all comparisons, the Nvidia GTX Titan Black, is an
expensive card with very high double precision speed. It may be of interest to
see how a slower GPU would perform in these tests, in order to understand what is
required in terms of hardware to speed up the PCIPM. Because of this, a comparison
has been made with the double precision mode of the GTX Titan Black switched
off (213 GFLOP/s) and the standard configuration with double precision mode
switched on (1700 GFLOP/s). The result of this comparison can be seen in Figure
4.6.

Note that the SpMM multiplication is not accelerated by activating the double
precision mode, instead it actually seems to be slightly slower. This is presumably
caused by the fact that the memory bandwidth is slightly higher (up from 288 GB/s
to 336 GB/s) when the double precision mode is switched off. It is mentioned in
[3] that sparse matrix operations are usually bound by memory bandwidth, which
may explain these results.

The sparse Cholesky factorization is accelerated slightly. This effect is offset by
the slight increase in SpMM time, which means that the GPUSparse solver is ap-
proximately equally fast whether the GPU is set to work with 213 GFLOP/s or
1700 GFLOP/s.

These results suggest that double precision mode should be activated for the sparse
Cholesky factorization and then deactivated for the SpMM multiplication in the
GPUSparse solver. Unfortunately, the double precision mode setting cannot be
changed in the program code. It is actually changed in the Nvidia X Server Setting
on an operating system level.

From the results regarding GPUDense it is clear that the dense Cholesky factorization
is accelerated significantly by activating the double precision mode on the GPU.

These results suggest that compared to the CPU versions of the algorithm a speedup
of 2x - 3x can be expected using the GPUSparse solver, even for GPUs with low
floating-point performance. The memory bandwidth may be an important factor,
but more research is required before anything conclusive can be said about this.
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Figure 4.6. Comparison of two GPU speeds for the two GPU solvers. The
left bar in each group corresponds to GTX Titan Black 213 GFLOP/s and the
right bar in each group correspond to GTX Titan Black 1700 GFLOP/s. Note
that the scale differs between the solvers.

53



CHAPTER 4. RESULTS

4.3 Memory Requirements Analysis

Since the graphics card only has 6 GB of memory, the maximum problem size is
limited. Figure 4.7 shows the observed memory consumption of each GPU solver
and problem.
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Figure 4.7. Memory consumption of each solver and problem.

As can be expected, the dense solver uses more memory than the sparse one even
though the density of ADAT is quite high. The results of this study suggest that the
maximum problem size for the GPUDense solver is approximately the size of lp23x29
and the maximum problem size for the GPUSparse solver is approximately the size
of lp46x51. In the sparse solver, CHOLMOD needs to allocate a large amount
of GPU memory in order to perform its computations quickly. In [37], they use
3 GB for every problem, but the memory allocations are not taken into account in
the performance comparisons. Since the memory allocations are taken into account
in this project and they constitute a non-negligible part of the computation time,
the memory allocated to CHOLMOD was set to m2 bytes which was deduced by
experiment to be faster than both m2/2 and 2m2.
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For LP problems arising in other contexts the density may be much lower, which
will make a large difference in the memory consumption of the GPUSparse solver,
but not much difference for the GPUDense solver. The reverse is true as well: if the
density is higher, the memory consumption of the GPUSparse solver will increase
but the memory consumption of the GPUDense solver will stay approximately the
same. A rule of thumb may be that the memory requirements of the GPUDense solver
depend mostly on the number of constraints (i.e. the dimension of ADAT ) and the
memory requirements of the GPUSparse solver depend mostly on the number of
non-zeros in ADAT .
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Discussion

In this chapter, we discuss the results and whether they can be trusted or not. Some
ideas on potential future research is also presented.

5.1 Threats to Validity

Doing a completely fair performance comparison of an algorithm between a CPU
and a GPU is impossible. First, the comparison will be highly dependent on which
hardware is being used. In this thesis we have been comparing a high-end CPU
to a high-end GPU, which has been selected to be roughly on par in terms of
performance. Second, the respective architectures of the CPU and the GPU are
different, where the CPU is based on a multi-core (2-16 cores) architecture and the
GPU is based on a many-core (thousands of cores) architecture. Because of this, the
implementations must be made using different strategies. Since the performance
comparison is highly dependent on the implementation, this is likely a source of
unfairness. In [22], it is argued that many CPU vs GPU comparisons are flawed
and that a GPU speedup of no more than 2.5x is reasonable. They argue that the
reason why performance comparisons often show a higher speedup is because the
CPU version is not as well optimized as the corresponding GPU version. It can
be argued that this flaw is present in this thesis, due to the fact that the SpMM
multiplication on the CPU is single-threaded. The reason why it is single-threaded
is that no C++ library was found which performed this operation using more than
one core. It was investigated thoroughly and the fastest library was chosen. It is
unclear how important multi-threading is for sparse matrix operations since these
operations commonly are bound by memory bandwidth.[3] We have shown in this
thesis (see Figure 4.6) that arithmetic speed does not significantly affect the speed
of the SpMM multiplication on the GPU, and it may be reasonable to assume that
the same would be true for the CPU as well.

In addition to the problem with the hardware comparison and the SpMM mul-
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tiplication, the CHOLMOD library may not have been used entirely correctly in
the GPUSparse version. Using only the CPU, the symbolic factorization and the
allocated workspace of this library can be reused every iteration. Unfortunately,
activating the GPU support lead to errors using the same strategy. This problem
was solved using costly reallocations (of pinned host memory) every iteration. This
may be a limitation of the CHOLMOD library, but if it is an implementation er-
ror in this project the comparisons in chapter 4 may underestimate the potential
performance of the GPUSparse version.

Another thing that may be criticized is that the initial data copy of the problem
onto the GPU is not included in the performance comparisons, even though that op-
eration is non-present in the CPU version. The reason is that the code is structured
in such a way that the data is set once, and then the solvers can be run multiple
times without having to read the problem from disk every time. The time it takes to
copy the data is negligible compared to the solution time, in the order of 0.1 seconds
even for the lp31x39 problem, so this unfairness cannot be considered severe. The
reason why the data copy cost is not higher is that the largest data being copied is
the constraint matrix A, which is a relatively sparse matrix (around 0.01 density).
The ADAT matrix, which is the one using the most memory, is generated on GPU.

The preceding arguments tell us that the performance comparison is not necessarily
fair, which is a fact that must be accepted. However, we have made an effort to
increase the fairness as much as possible:

• Although the optimizations for the respective architecture are different, the
same mathematical operations are performed in the CPU versions of the al-
gorithm and the GPU versions. This claim is backed up by Figure 4.1 and
Table 4.2.

• The CPU and the GPU hardware are comparable in retail price, and represent
feasible choices for heavy computations.

• All timings are wall-clock times. Most measurements are of the total time
for a converged solution, which should be relatively fair and unambiguous. A
solution is considered converged when the stop criteria has reached a size of
less than 10−4.

• The reported timings are averages of three different test runs.
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5.2 GPU-Acceleration of the Predictor-Corrector Method
The problem statement of this thesis was formulated as

For what sizes of linear programming problems is it possible to use a
GPU to speed up the predictor-corrector interior point method, compared
to using only a CPU?

The results of this thesis indicate that it is indeed possible to use the GPU to
accelerate the predictor-corrector interior point method for all evaluated problem
sizes between 6 000 and 31 000 constraints. The problem size is restricted by the
available GPU memory, but the results suggest that until that problem size limit
is reached we can expect a speedup of at least 2x by using the GPU compared to
using only the CPU.

The speedup achieved is 4x - 6x for all problems except lp31x39 where a speedup of
2x was achieved. This result seem to correspond quite well to other efforts to accel-
erate the PCIPM on the GPU, notably by Gade-Nielsen et al.[13] where a speedup
of 2x - 6x was achieved for smaller and denser problems. A large difference between
Gade-Nielsen’s solver and ours is that our implementations store the constraint
matrix A sparsely. While linprog is as much as 3x faster than Gade-Nielsen’s
GPU solver for large sparse problems, our fastest GPU solver is shown to be as
much as 58x faster than linprog without exploiting any specific structure of our
benchmark problems. However, our implementation perform worse than linprog
for small problems where Gade-Nielsen’s solver seem to excel. Since Gade-Nielsen’s
report and ours use different benchmark problems and different hardware nothing
conclusive can be said of our relative performance.

The speedup of CHOLMOD when using a GPU was investigated as well, in the
context of the interior point method for the first time (to the best of our knowledge).
This was mentioned in [12] as something interesting to consider for future research.
The achieved speedup was found to be 1.4x - 3.9x. These numbers can be compared
to [37], where the speedup was found to be 0.6x - 3.5x when the memory allocations
were not taken into account. The reason why the GPU-acceleration works well in
the context of this thesis is probably related to the high density and large size of
the matrices considered. We are also using a later version 4.4.3 of SuiteSparse in
this thesis, compared to version 4.3.0 in [37].

5.3 Implementation Comments
It is worth to note that the implemented solvers using the standard Cholesky fac-
torization was not able to achieve an accuracy of 10−8 on most problems before the
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numerical instabilities made the solution break down. This is part of the reason
why 10−4 was selected as the required accuracy. As discussed in section 3.3.3, the
Cholesky factorizer in the MAGMA library was more sensitive to numerical errors
than the other tested libraries. Before it was modified to use Cholesky-Infinity, it
was not even able to do one iteration of the lp13x19 problem. After the modi-
fication, the same problem was solved to an accuracy of 10−7. The CHOLMOD
library was found to be less sensitive, but for the lp46x51 problem, it was not
able to converge to a reasonable accuracy before the matrix became semi-definite.
This problem was relieved by implementing the Cholesky-Infinity method in the
CHOLMOD library as well. These experiments highlight the need to modify the
Cholesky factorizers before using them in a large-scale interior point method con-
text, and that it is possible to do so in a GPU context.

There are two reasons why the lp46x51 problem was not used for the performance
comparisons. First, an accuracy of 3.1 × 10−4 was the best accuracy achieved,
which is slightly worse than the accuracy of 10−4 used for the other performance
comparisons. Second, the Cholesky-Infinity algorithm was tested for the CPUSparse
version of the algorithm, but was found to be very slow compared to the standard
Cholesky algorithm. This is because our implemented version of the LAPACK
function dpotrf is not blocking and hence single-threaded. This is not important for
the GPU versions, since in that algorithm the dpotrf calls are for small individual
blocks of a larger algorithm which is already multi-threaded. There are no reason
why a multi-threaded CPU version of the Cholesky-Infinity algorithm could not be
implemented, but it has not been done in this thesis. The above stated arguments
imply that the performance comparison would be biased in the GPU version’s favour
and it was therefore excluded.

It may seem strange that a sparse Cholesky solver was chosen to be part of the
performance tests when the matrices that are being factored have a density of
around 0.25. There is no universal density limit for when a matrix should be
treated as sparse, but for most purposes a matrix with a density of 0.25 would
be treated as dense. One reason for why a sparse representation was tested in
this thesis is because it allowed us to use the CHOLMOD library, which is highly
optimized and reputable. Since it uses a supernodal factorization strategy, it is
suited for relatively dense matrices. As can be seen from the results, this approach
worked quite well for large matrices where the sparse solver was almost as fast as
the dense solver. Another reason for using a sparse matrix representation is that
despite the relatively high density, the memory requirements of the sparse version
of the algorithm is significantly lower than that of the dense version, allowing us to
solve larger problems on the GPU. It is worth noting however, that the densities
of the largest studied problems were lower (around 0.13) than the smaller studied
problems. The total solve time in Figure 4.2 seem to indicate that the performance
of the sparse solver is a function of the number of non-zeros in ADAT , rather
than the number of constraints or variables. This is what we expect for a well-
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implemented sparse algorithm.

Another approach to this thesis would have been to try to use a GPU to accelerate an
existing open-source software package implementing the predictor-corrector interior
point method. Possible candidates could have been the BPMPD or CLP package.[4]
This approach would probably have lead to a more practical solver, since various
optimizations, file-type support and pre-solving would have been included from the
beginning. However, by implementing our own solver, we gain more understanding
of the code and what makes the IPM work. We are also more free to implement
the GPU versions using any strategy that we can come up with instead of having
to adapt the strategy to the existing code base.

5.4 Further Research

Currently, the implemented GPU solvers have only been compared to CPU coun-
terparts and the MATLAB linprog solver. Both of these comparisons have been
favourable for the GPU solvers. It would be interesting to compare the solvers
to other GPU LP solvers, such as the matrix-free IPM by Smith et al.[39]. Since
iterative solvers are often faster on the GPU and do not require as much mem-
ory, it would be an interesting comparison presumably in favour of the matrix-free
IPM. Comparing it to the PCIPM solver by Gade-Nielsen et al.[13] would also be
interesting.

Developing this solver into a more usable software package for solving general LP
problems would require a number of improvements to be able to compete in per-
formance with existing software. Generalizing the allowed problem structure would
be necessary, as well as implementing a presolver and other optimizations such as
dense column separation. The GPUDense version could be used for all problems that
is below a certain size, with GPUSparse taking over when the memory requirements
become too high.

As always when doing performance comparisons, the chosen benchmark problems
will affect the result. Inevitably, some problems are better suited for some solution
strategies. In this thesis we have used relatively homogeneous benchmark problems
arising from the same context. It may be the case that these problems are better
or worse suited for GPU-acceleration than other problems would have been. It
would be interesting to test the implemented solvers on other unrelated benchmark
problems as well.

The GPU solvers in this thesis have been optimized to such an extent that the
SpMM multiplication and the Cholesky factorization consist of at least 97% of the
computation time for any given problem. In order to accelerate the GPU solvers fur-
ther, we believe that it is these two operations that must be optimized. CHOLMOD
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is being developed continuously at the time of writing this report. An improved
version of CHOLMOD has potential to accelerate the GPUSparse solver. The library
cuSOLVER from Nvidia was recently released and includes a Cholesky factorizer.
The cuSOLVER Cholesky factorizer was found to perform almost as good as the
more mature MAGMA solver. There may also be strategies overlooked in this thesis
and different from the ones realized in GPUSparse and GPUDense, that can be used
to implement a GPU-accelerated PCIPM. Apart from optimizing the implementa-
tions, we know that mathematical optimizations such as dense column separation
can make a large differences in some types of LP problems. Further research is
required to see if these optimizations are easily implemented in GPU versions of the
algorithm.
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Chapter 6

Conclusion

This thesis concerns the possibility of accelerating the predictor-corrector interior
point method by using a GPU.

Studies of interior point methods lead us to the LIPSOL algorithm, presented in [44],
the theoretical foundation of which is what our algorithm is based upon. CUDA
was selected as the GPU programming framework, since it allows for optimized im-
plementations tailored for specific hardware and the fact that many useful libraries
are based upon it.

The CPU versions of the algorithm were developed in C++ to be used for perfor-
mance comparisons, and based upon these the GPU versions were developed. Two
versions were developed that only used the CPU and two corresponding versions
that were accelerated with the GPU: one that that performs the Cholesky factor-
ization where the matrix ADAT is represented as a sparse matrix and one where it
is represented as a dense matrix.

In order to answer the problem statement, a set of large and relatively sparse bench-
mark problems arising in financial applications was collected. The performance of
the CPU and GPU versions of the algorithm was compared for these benchmark
problems. We have shown that a speedup of 2x - 6x can be achieved using the GPU,
despite the inherently sequential nature of the interior point method and the fact
that double precision arithmetic had to be used for numerical stability. The GPU
solver with the dense matrix representation was the fastest for all problems where
it could be used. We have shown that the relatively small memory of the GPU
imposed a limit on the problem size for which the GPU could be utilized, at least
with the methods used in this thesis. Problems with between 6 000 and 23 000 con-
straints could be accelerated at least 4x using the dense GPU solver. The problem
with 31 000 constraints required too much memory to be solved by the dense GPU
solver, but could be accelerated 2x using the sparse GPU solver.
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CHAPTER 6. CONCLUSION

In order to achieve high accuracy in the context of the interior point methods,
standard Cholesky factorizers have to be modified to compensate for numerical
instabilities. One way to do this is to use the Cholesky-Infinity algorithm, described
in [44]. We have shown that this modification works well with the GPU solvers,
increasing the achievable accuracy without incurring a significant performance loss.

The implemented GPU solvers were also compared to the built-in linprog function
in MATLAB. This comparison showed that linprog is faster for small problems,
but that the implemented GPU solvers is significantly faster for large problems.

We have also shown that a speedup of 2x - 3x was possible even when the arith-
metic performance of the graphics card was throttled from 1700 GFLOP/s to
213 GFLOP/s. The results from this study indicate that the arithmetic perfor-
mance is not the most important factor for the sparse matrix operations.

In conclusion, we have shown that a GPU can indeed be used to accelerate the
predictor-corrector interior point method for all problem sizes considered in this
thesis. Our GPU implementations compare favourably to MATLAB’s built-in solver
linprog. We have also shown that the algorithm can be accelerated modestly using
a GPU even if the arithmetic performance of the GPU is throttled to one eighth of
its maximum speed.
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Appendix A

Data Format

An example of the file format used in this thesis for describing an LP problem looks
like

2 3
Maximize
obj: 2 x#0 + 1.5 x#1

Subject To
c#0: 12 x#0 + 24 x#1 >= 120
c#1: 16 x#0 + 16 x#1 >= 90
c#2: 30 x#0 + 12 x#1 >= 120

Bounds
0 <= x#0 <= 15
0 <= x#1 <= 20

End

The file begins with the number of variables and number of constraints followed by
either Minimize or Maximize, after which the objective function is entered. Then,
after the line Subject To, the constraints are entered in the form shown above.
The constraints may be either of <=, >=,=. In the section Bounds, the upper and
lower variable bounds are entered. The file ends with the keyword End.
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