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Abstract 

 

This paper treats the concept of Reinforcement Learning (RL) applied 

to finding the winning strategy of the mathematical game Nim. Two 

algorithms, Q-learning and SARSA, were compared using several 

different sets of parameters  in three different training regimes. An 

analysis on scalability was also undertaken.  

 It was found that tuning parameters for optimality is difficult and 

time-consuming, yet the RL agents did learn a winning strategy, in 

essentially the same time for both algorithms. As for scalability, it 

showed that increased learning time is indeed a problem in this 

approach.  

  The relevance of the different training regimes as well as other 

conceptual matters of the approach are discussed. 

     It is concluded that this usage of RL is a promising method, although 

laborious to optimize in this case and quickly becomes ineffective 

when scaling up the problem. Ideas are discussed and proposed for 

future research on solving these limiting factors. 

 

 

  



  

Abstrakt 

 

Denna rapport behandlar konceptet Reinforcement Learning (RL) och 

RL-agenters förmåga att lära sig den vinnande strategin i det 

matematiska spelet Nim. Två algoritmer, Q-learning och SARSA, med 

flera olika parameterinställningar jämfördes i tre olika träningsregimer. 

Därutöver analyserades effekterna av storleksökning av spelet. 

I undersökningen visade det sig att bestämmandet av parametrar för 

ett optimalt beteende var väldigt svårt och tidskrävande, även om RL-

agenterna med de funna parametrarna lyckades lära sig den vinnande 

strategin, och båda algoritmerna verkade lära sig ungefär lika snabbt. 

Att ökningen av inlärningstid vid växande uppgifter är ett problem 

verifierades också i undersökningen. 

Relevansen av de olika träningsregimerna behandlas, likväl andra 

konceptuella frågor. 

Som slutsats kan sägas att denna tillämpning av RL är en lovande 

metod men komplicerad att optimera och med nackdelen att den lätt 

blir ineffektiv vid större problem. I rapporten diskuteras idéer om 

föreslagen forskning på lösningar till de begränsande faktorerna.  
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1 Introduction 

 

Since the first computer was created, its importance to humankind has grown rapidly. By 

making calculations and simulations easier, computers propel technological development. As 

most of the things we use in our everyday lives have become digitized, our modern society has 

become dependent on computer systems. 

Fascinated as humankind is by the power of our own minds, a growing interest has 

presented itself in what intelligence is and if we can create it. In trying to answer these questions 

fields of science are rapidly growing which cover modelling of neural networks and brain-

inspired computations [1, 2, 3].  

In psychology, the theory of behaviourism describes how animal behaviour can be 

changed as a consequence of reinforcement due to reward or punishment. Analogously to this 

[1], a branch of artificial intelligence has developed that makes use of rewards in order to let 

an agent learn to perform a certain task. This method is called Reinforcement Learning (RL) 

and will be studied in this paper. 

RL is a method of programming a computer (the agent) in order for it to be able to learn 

how to carry out tasks autonomously. Learning can be carried out either under the supervision 

of a human (supervised learning) or the agent can be left alone to explore its environment 

(unsupervised learning) [4]. To enable the agent to learn, rewards are given to encourage the 

agent to find the optimal solution to a given task.  

RL provides vast potential to the area of artificial intelligence, with opportunities for 

human-like behaviour in robots, search algorithms and more. One example of human-like 

behaviour in robots is the torque-controlled robotic arm learning the task of flipping a pancake 

[5]. This task, which may seem trivial, is hard to perform even for some humans and even 

harder to implement in code, was successfully implemented using RL. However, the purpose 

of RL is not necessarily to imitate human behaviour. The fact that the agent teaches itself by 

trial-and-error means that it will try many different strategies before finding the optimal. This 

can lead the way to previously unknown solutions, as in the case of the early RL agent TD-

gammon which came up with its own completely new strategies of playing backgammon [6].  

Applications of artificial intelligence are already widely spread. What is unique in RL 

however, is that it does not require explicit programming of each situation [7], rather the agent 

learns from the ground up how to perform a task. Therefore, complex tasks can be learnt with 

much less programming. Furthermore, this creates a much more flexible agent than one coded 
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with a single purpose since in this way agents can learn to perform more tasks in many different 

ways [8] as well as how to perform tasks that humans might not know how to describe in code 

[5]. 

A focus of contemporary research in RL (and of this paper) is on letting agents learn to 

play games. A recent example published in the journal Nature was work carried out by Deep 

Mind concerning an agent learning to play 49 classic Atari games [8].  

This paper will focus on the mathematical game Nim. It is of interest as it is a rather 

simple game, yet representative for combinatorial games [9] and has a known solution [10]. 

Having a known solution makes measuring performance easier.  

Applicability of RL to Nim has already been subject to research [11], however the 

feasibility of using RL with Nim as the dimensions of the game are increased was not studied. 

Scalability is a known problem of RL [7]. As the number of degrees of freedom of the agent 

increases, the time taken for the agent to complete its training period also increases, which is 

known as the curse of dimensionality [12]. This leads to the question of how effective RL 

applied to Nim will be when scaling up the game. Being a rather simple game, Nim is easily 

scaled up and suitable for studying scalability. 

RL can be implemented using different algorithms with different parameter tunings, 

which leaves much room for investigation. In the preceding research on RL applied to Nim 

[11], one algorithm was studied. In this paper it is investigated how a slightly different 

algorithm would perform in comparison. 

 

1.1 Problem Statement 

 

We will implement RL agents using two algorithms in order to let them find the winning 

strategy of the mathematical game called Nim. In doing so, which algorithm and set of 

parameters will have optimal performance in terms of learning time and precision? Since 

dimensionality is known to be a problem to RL, an important question is raised of how much 

longer it takes an agent to find the optimal solution as the number of states increases. 
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1.2 Scope 

 

Carrying out this project, the RL algorithms Q-learning and SARSA were used. There are other 

algorithms available to RL problems and many interesting areas to study, however as Q-

learning has been previously studied this was considered a suitable benchmark. SARSA is a 

variant form of Q-learning with a slight difference and was therefore considered a possible and 

interesting subject of research. 

    The main problem studied was scalability, being a relevant and interesting subject. However, 

restrictions in computational power did not leave very much room for scaling. As number of 

states and actions increased, computation times increased accordingly and simulations soon 

became too long to be carried out within the frame of this project. Another aspect of the project 

subject to restrictions was tuning the parameters of the algorithms. In theory, there is an infinite 

amount of parameter combinations available for each algorithm. The entire spectrum of 

parameter combinations was not studied. Instead, a few interesting combinations were chosen. 

Furthermore, performance measures were made on data from one simulation run. Averaging 

over multiple runs was not done. 

 

2 Theory & Background 

 

2.1 Reinforcement Learning 

 

In RL, learning is done by what is known as an agent. The agent exists in an environment and 

is equipped with sensors to allow it to observe and interact with the environment. Through a 

process of a trial-and-error the agent explores its environment, making decisions on the next 

action to take based on the rewards it receives and on its past experience. As an example, Deep 

Mind’s game-playing agent uses only the score and pixels from the screen as inputs [8]. Most 

interestingly, this agent learns different tasks independently, which is considered a big step 

towards genuine artificial intelligence. 

RL consists of four main components: the policy, reward and value functions as well 

as a model, which are described below and are treated more thoroughly by Barto [4]. The policy 
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guides the agent’s behaviour outlining which action to take given a specific state. While 

learning to perform a certain task, the agent looks for an optimal policy that will provide the 

agent with the maximum reward going from a starting state to a terminal state.  

The reward function assigns reward to the agent either after each action or after a series 

of actions depending on the task. The reward function is there to define the main goal of the 

agent. 

The value function is a measure of how advantageous it is to be in a certain state or to 

take a certain action whilst in a certain state, if following the policy. It controls whether or not 

the agent should seek short-term gain or pursue a long-term strategy, and makes way for finding 

an optimal policy.  

Finally, a model would consist of any prior information of the environment. The agent 

and environment can be coded model-free [4, 7]. In the model-free case it is necessary for the 

agent to discover the value and reward functions by exploring the environment. 

In the model-free case, a question of exploration vs exploitation is raised when it comes 

to acquiring a maximum reward [4, 7]. The agent can choose to exploit what is already known 

and perform the actions it knows to generate the highest reward, or it can choose to explore 

new actions with unknown rewards for a chance of finding a better policy.  

By combining these four main components the agent can teach itself the optimal 

behaviour given any state it will encounter. 

 

2.2 Markov Decision Processes 

 

The mathematical basis of RL rests on Markov Decision Processes (MDP) [4,7]. An 

MDP consists of a set of states S and a set of actions A. In each state s ∈  S the agent may 

execute one of a number of actions a ∈ A. The reward function R maps a reward to each action 

carried out from a state. The state transition function T maps the probability of arriving in state 

s’ from s after having taken action a. Further one makes the assumption of the Markov property 

which states that the result of an action depends only on the current state in which the agent 

finds itself and is independent of the history of actions and states leading up to the current state. 
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Each state has a value V(s) which is the expected reward the agent will receive if it 

follows the current policy from this state. Throughout the training stage the value of each 

state  V(s) is updated, as is the policy which the agent follows. The policy and the value function 

V(s) are updated simultaneously.  Over time these converge to V* and π*, the optimal solutions 

for the value and policy functions respectively. 

 

2.3 Reinforcement Learning Algorithms 

 

RL algorithms search for optimal policies by updating the expected value of a state based on 

the expected value of successor states. In other words they make estimations based on 

estimations which is known as bootstrapping [4]. While updating these value estimations, 

policies are also updated and agents can then easily be programmed to follow an optimal policy, 

that is, a policy generating maximum reward.  

    Among different RL algorithms Q-learning has become popular [7]. This algorithm, as well 

as another one named SARSA, are focused on in this paper. 

 

2.3.1 Q-Learning  

 

In Q-Learning the expected value of states and actions are stored in what is known as 

the Q-table. In the Q-table every element (state-action pair) is assigned a value Q(s,a) 

indicating to the agent the expected reward for taking action a in state s. This is illustrated in 

figure 1. 

The values of the Q-table are updated using equation (1). In Q-learning the values are 

updated with respect to the action that maximizes expected reward in the successor state with 

equation (2). The parameters of the update formula (1) must be tuned in order for the agent to 

converge to the optimal policy as fast as possible. 

 �ሺݏ, �ሻ ← �ሺݏ, �ሻ + ݎ]� + � ����′�ሺݏ′, �′ሻ − �ሺݏ, �ሻ]  (1) 

 ����′�ሺݏ′, �′ሻ      (2) 
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Figure 1. A Q-table of state-action pairs. This example has four states and four 

possible actions per state. The elements contain values for taking a specific action 

in a specific state, for example the value -10 of taking action 2 in state 1. 

 

The parameter α is the learning rate parameter and takes a value between 0 and 1. The closer α 

is to 1 the more emphasis is placed on recent rewards, where α = 1 means that the new state-

action value completely overwrites the old. An α value of 0 means that no learning will take 

place while a value close to 0 means altering the old values slightly with every update. This 

could be likened to long-term memory.  

The discount factor γ also takes a value between 0 and 1. If γ = 0 then importance is 

placed on maximising current reward and no propagation of reward will occur, whereas  γ = 1 

means more importance is placed on future rewards. In this case, rewards will be propagated 

from state-action pairs to predecessor state-action pairs [13]. 

The Q-learning algorithm is rather straightforward (see figure 1). The agent starts in 

state s, it then chooses an action a according to a policy which controls its behaviour.  The Q-

table is updated as described above. This process is then repeated from the new state until a 

terminal state is reached. 

For an agent to learn from its environment it is necessary for it to explore. The policy 

assigned to the agent tells it how much exploring it should do and how much it should exploit 

the knowledge it has already gained, also known as the exploration/exploitation trade-off [4]. 

At the beginning of training it pays for the agent to explore as much as possible in order to find 

out what rewards are available. 
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Figure 2. The Q-learning algorithm ([4]). 

 

A standard exploration policy is known as ε-greedy [4,7]. In ε-greedy  the agent chooses 

the best action (action with highest Q-value) with a probability of ε. Conversely with 

probability 1 - ε it chooses an action randomly from a uniform distribution. The purpose of this 

policy is to encourage exploration. As the number of training rounds increases the value of ε 

can be increased until no further exploration is made. In this way the agent will explore in the 

beginning of its training regime before beginning to exploit its knowledge of the environment. 

Interestingly, Q-learning is exploration insensitive. In other words the agent will find the 

optimal policy if it is allowed to visit each state-action pair an infinite number of times [4]. The 

role of an exploration policy in this light is to speed-up the learning process [7]. 

The Q-learning algorithm is what is known as an off-policy algorithm [7]. In other 

words the agent estimates the optimal policy while following another (for example ε-greedy). 

 

2.3.2 SARSA 

 

SARSA is a variant form of Q-learning also using a Q-table although it differs from Q-learning 

in the updating of the Q-table [7]. Whereas Q-learning updates the Q-table using the state-

action pair with the highest value, SARSA updates the table according to the policy being 

followed. In this way, the exploration policy becomes a part of the optimal policy. SARSA is 

known as an on-policy learning algorithm [7]. The algorithm for SARSA is given in figure 3. 

 



8 
 

 

Figure 3. The SARSA algorithm [4]. 

 

2.4 Nim 

 

The game of Nim is a mathematical game in which two players take turns on removing an 

arbitrary amount of counters from one of the heaps that make up the game (for example four 

heaps of 1, 3, 5 and 7 counters). At least one marker must be removed by the player in each 

move. In each move the player is allowed to remove counters from only one heap. The players 

continue taking alternate turns until all the heaps are empty. The player who takes the last 

marker, i.e. leaves the board empty, is the winner (see figure 4).  

 

 

Figure 4. A complete game of Nim of three heaps. The game proceeds with 

moves from left to right. Player B makes the last move and wins. 
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2.4.1 Binary Digital Sum And Winning Strategy Of Nim 

 

A digital sum works as an ordinary sum with the exception that carry-overs are rejected. This 

is best illustrated by writing the numbers that are to be summed above one another. Writing 

numbers in binary notation this way produces the binary digital sum. This way of finding the 

digital sum is illustrated along with a completed game of Nim in figure 5. 

Nim has a winning strategy based on binary digital sums [10]. This winning strategy is, 

when possible, to make moves such that the binary digital sum of the heaps becomes zero. A 

combination of heaps with binary digital sum zero is called a safe combination [10]. Leaving 

the board with a safe combination of heaps in every move guarantees winning [10]. If player 

A makes a move leaving a safe combination, player B cannot do so. A safe combination means 

that there is an even number of ones in every column of the binary digital sum as illustrated 

above. Any valid move now removes a one from at least one column and makes it impossible 

to leave a safe combination. Instead, this leaves an uneven number of ones in at least one 

column which can easily be compensated for in the next move by reducing a heap so that each 

column again contains an even number of ones, and thus again leaves a safe combination.  

 

Figure 5. A completed game of Nim of three heaps including binary digital 

sums. Heaps are illustrated as rows of counters and binary digital sums are 

written below each state. The game proceeds with moves from left to right. 

Player B makes the last move and wins. 
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Accordingly, the player starting in a winning position, having the opportunity to leave the board 

with a safe combination of heaps, will win the game, if familiar with the winning strategy. 

Conversely, if the board comprises a safe combination in the initiation of a game round, the 

second player will win, if familiar with the winning strategy. The existence of this strategy will 

allow us to observe the performance of the agent as it converges to the optimal solution.   

3 Methodology 

 

In this work, the environment and the agent were implemented in Python 3.4.2. For the 

interested reader, code is available at https://github.com/NimQ/NimRL.git. 

 

3.1 Environment, states and actions 

 

The environment in the game of Nim is the board itself. A state is any permutation of the board. 

The number of individual states possible in a game of Nim can be calculated quite easily. For 

a board containing three heaps of x1, x2, and x3 counters the total number of states is given by 

(x1 + 1)( x2 + 1)( x3 + 1).  

Agents interact with the environment by removing counters from the board. From a 

heap of x counters an agent can take anything from 1 up to x counters. The agent must however 

only take counters from one heap in each move. The total number of actions available to the 

agent is therefore equal to x1 + x2 + x3.  

Unless otherwise stated the board used in this work was of four heaps with 1, 3, 5 and 

7 counters in each heap respectively. The total number of states in this case is 

(1+1)(3+1)(5+1)(7+1) = 384. The total number of actions is therefore 1+3+5+7 = 16.  

According to Barto [4] rewards are regarded as part of the environment. In this work 

the agents received a reward of +1 if it won a game, -1 if it lost and 0 for each transitioning 

state during the games. 

 

3.2 The Agent 

 

At the beginning of training the entries in the agent’s Q-table were set to zero. The agents were 

programmed to read the board and choose an action according to one of the algorithms given 

https://github.com/NimQ/NimRL.git
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in section 2.3. If a legal action was chosen the agent performed the action and the board was 

changed accordingly. In both Q-learning and SARSA the policy sometimes instructs the agent 

to choose an action based on the state-action pair with the largest value. At the start of training 

when many entries in the Q-table have the same value this can lead to the agent choosing an 

illegal move. In such a case the move was ignored while the Q-table was updated with a value 

of -10 and the board remained unchanged, much like getting hit on the fingers when reaching 

for a cookie. The agent then chose a new valid move. In this way the agent ignored these actions 

in the future and as these invalid actions could never be chosen they have no bearing on the 

agent’s ability to learn. 

The reward was given to the agent after each pair of moves: the agent moved, then the 

opponent moved, in this way the agent saw the ultimate consequences of its actions and its Q-

table was updated. If on the other hand the opponent made the first move of the game, the 

agent’s Q-table was first updated after the opponent made its second move.  

In this work there exist two criteria one can observe when looking for optimal behaviour 

in the agent: either the percentage of matches won or how often the agent makes a safe 

combination move when one is possible. A safe combination is checked for in code with the 

XOR operator. The XOR operator returns 0 if the heaps add up to a safe combination and 1 if 

not. 

 

3.3 Training the Agent 

 

Several methods of training the agents were looked at. These are listed in sections below.  

In Nim the initial configuration of the board can leave the player who starts in an 

advantageous or disadvantageous position [10]. To avoid letting this become a limiting factor 

in the agent’s learning process the player to make the first move was chosen at random. 

Furthermore, the random generator was seeded to ensure a better comparison of the results. In 

finding out which set of parameters were best for the task at hand, the agents were tested over 

a large number of training games for different tunings. These tunings were all possible 

combinations of α = {0.1, 0.5, 0.99}, γ = {0.1, 0.5, 1} and ε = {0.2, 0.8} with ε either being 

constant, εc, or increasing regularly over time εi . 
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3.3.1 Agent vs. Smart 

 

The smart opponent played a ‘perfect’ game. If a move was possible which left the board with 

a binary sum of 0, in other words a winning move, then the smart opponent would make this 

move. If a winning move was not possible, the smart opponent made a random move. 

 

3.3.2 Agent vs. Random 

 

Analogously to the method above, the agents were also trained against an opponent who made 

only random moves. That is, the opponent took a valid number of counters from a randomly 

chosen non-empty heap on the board.  

 

3.3.3 Agent vs. Agent 

 

In this regime, the Q-learning and SARSA algorithms underwent training against each other.  

 

3.4 Evaluating the Agent 

 

At regular intervals the agents were tested by competing against the smart opponent for 250 

games using their latest estimations of the optimal policy. From these games the agent’s 

winning rate and ratio of moves leaving a safe combination when possible were recorded. As 

mentioned in Section 2.4.1, an agent can start in a winning position. Starting in this winning 

position is the only chance the agent has of winning against the smart opponent. For this reason, 

the winning rate was defined as the number of games won to the number of games starting in 

such a winning position. Also from Section 2.4.1 it is known that making optimal moves will 

guarantee staying in winning position and eventually winning the game. Thus the ratio of 

winning moves was defined as the number of winning moves made to the number of times a 

winning move was a possible action. 
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Plots of the winning move ratio against number of training games were studied as a 

measure of performance since a value of 1 for this ratio ensures optimal moves are always 

taken and thus that a winning strategy has been learned.  

 

3.5 Scaling 

 

With the environment and agent already implemented, scaling the game was simple. With an 

increasing number of heaps the above mentioned training regimes were repeated. More heaps 

were added to the board in steps taking it from {1,3,5,7} to {1,3,5,7,9,11}. When adding more 

heaps to the game the total amount of training games and regular interval at which the agents 

were tested was made longer.  

 

4 Results & Discussion 

 

4.1 Parameter Selection 

 

The parameters α, γ and ε play a very important role in the how quickly the agent finds the 

optimal policy. However, tuning the parameters is a very time-consuming and inexact process. 

The difficulty lies in finding a pattern in exactly how different combinations of the parameters 

affect the learning process.  

Before training a presumption was made. The Nim environment is static in the sense 

that an optimal move will always be an optimal move. A state-action pair representing an 

optimal move in the Q-table should therefore keep a high value when one has been acquired. 

This suggests setting α rather low (for example α = 0.1). 

Considering how the Nim environment looks - the goal is to win and this is where the 

agent is rewarded - it would be reasonable to put emphasis on future rewards to improve early 

game performance. This means a γ = 1 should deliver the best results.  

A low value for ε would be considered a good thing in the beginning of training to make 

sure all (or at least as many as possible) states are visited by the learning agent. However, later 

during training the agent should have encountered enough situations to have figured out the 
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optimal strategy and exploring would now lead to making bad moves when the strategy is 

already known. To avoid this, ε should be increased over time to 1. 

By analysing collected data trends within the parameter selection were discerned. An 

example of how this appeared is shown in figure 6. The best combination of parameters causes 

the agent to learn quickest and thereby converge to a winning move ratio of 1 fastest. Figure 7 

compares the effect on convergence of a good set of parameters with a not so good set of 

parameters. 

We found that our presumptions were somewhat verified. That is, α should be low and 

γ high. The parameter controlling exploration ε was found to provide best results when rather 

high and increasing εi  rather than constant εc. 

Figure 6. A plot of performance of the SARSA agent with all sets of parameters 

trained against smart opponent on a board of four heaps. Some groups of similar 

parameter sets showed better performance than others. 

 

A further difficulty was noted when switching on or off the seed function of the random 

number generator. During training the random generator was seeded after initialising the agent. 

The idea was that agents with different combinations of parameters would face the same pattern 

of numbers created by the random generator. From this one can compare the performance of 

different parameter combinations in roughly the same situations. However, once the random 

generator was not seeded, noticeable differences in convergence could be seen for the same 

parameter combinations as illustrated in figure 8. This behaviour was observed in both the Q-

learning and SARSA algorithms. This can be taken as evidence of the difficulty in tuning 

parameters for both these algorithms as well as suggesting that the differences between the 

graphs for different parameters could be due to differences in how training turns out rather than 



15 
 

due to changed parameter values alone. One solution to this problem could be to take an 

average over multiple simulations of the same parameter combination. However, this would 

increase simulation times significantly and was not performed in this work.  

             

Figure 7. Graphs of Q-learning agents trained against the smart opponent on a 

board of four heaps using good and not-so-good parameter combinations. 

 

As the optimal set of parameters is unknown and is laborious to find the one wonders 

if possibly it may be a task for an RL agent to carry out. Would it be possible to have RL agents 

learn to find optimal parameters? 

 

Figure 8. Graphs of Q-learning agent trained against a smart opponent on a board 

of four heaps using same set of parameters for three training simulations. The 

right plot is a close-up of the plot to the left. One can see randomness in 

performance between the different simulations. 
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4.2 Agent vs. Smart 

 

Following the training method outlined in Section 3.3 the best parameters were found to be 

close to what was presumed in Section 4.1. For both Q-learning and SARSA these were α = 

0.1, γ = 1 and ε = 0.8, with ε increasing to 1 after 10000 games. A comparison of the Q-learning 

and SARSA algorithms performance is shown in figure 9. 

Figure 9. Plots of Q and SARSA agents’ ratio of winning moves against number 

of training games when trained against a smart opponent on a board of four 

heaps.  

 

    From figure 9 one can see that convergence to 1 occurs around 10000 training games for 

both algorithms, although it seems that SARSA lags somewhat behind Q-learning in reaching 

the optimal strategy. It should be noted however that these are not the definitive optimal 

parameters for these algorithms rather they are the optimal parameters of all the combinations 

implemented in this project. 

 

4.3 Agent vs. Random 

 

When the RL agent was in training against an opponent making random moves it was 

found  that performance was lower than for an agent training against a smart opponent (see 

figure 10). Convergence speed (if it ever learned completely) was evidently much lower. This 

can be explained by the nature of the environment for this task. Since the agent trained against 

an opponent making random moves, the agent would win many games when making non-
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optimal moves. Making these non-optimal moves and still winning, the agent would propagate 

positive reward to non-optimal moves, and thus miss the optimal strategy. The agent would be 

confused as to why it was rewarded. Most noticeable was that the Q-learning agent almost 

reached convergence, but with a lower value of ε than in the agent vs. smart regime, meaning 

much more exploration of the state space was needed. 

   

Figure 10. Performance of Q-learning (left) and SARSA (right) agents with 

different parameter sets (ε reaches 1 at 400000 training games) trained against 

an opponent making random moves.  Convergence toward optimal behaviour 

could be seen for some of the parameter sets for the Q-learning agent. SARSA 

did not converge to optimal behaviour. 

 

Unfortunately, this training regime did not provide satisfactory levels of performance 

on a board of four heaps. Consequently, this training regime was discarded when scaling up 

the number of heaps. 

 

4.4 Agent vs. Agent 

 

A comparison of the behaviour of a SARSA agent and a Q-learning agent trained by playing 

against each other and tested against the smart opponent is shown in figure 11. Both agents 

reached  convergence after approximately 8000 training games. From this, one cannot observe 

a large difference in performance of the algorithms. 
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    A very interesting behaviour occurred in this training regime. In contrast to figure 9 in 

Section 4.2 Agent vs. Smart, the agents winning move ratio no longer fluctuated below 1. When 

reaching optimal behaviour the agents continued making optimal moves when possible for the 

rest of the simulation. The agents learned better in this regime of playing against an opponent 

who was also in the process of learning the game than in both previous regimes. 

Figure 11. Performance of Q and SARSA when trained against each other in a 

game of four heaps using the same set of parameters (ε reaches 1 at 10000 training 

games). Both agents learn optimal behaviour in roughly the same time. Once 

optimal behaviour is learned both agents continue playing optimally. 

 

4.5 Scaling 

 

Scaling up Nim to larger boards increased an agent’s learning time. This is illustrated for boards 

of five and six heaps respectively in figure 12, showing plots of performance of both the Q-

learning and SARSA agents trained against the smart opponent. In this regime, on a board of 

five heaps, the Q-learning agent converged to a winning move ratio of 1 at approximately 

13000 training games. SARSA was a little slower, just as in the case of four heaps, and 

converged to 1 at approximately 17000 training games. On a board of six heaps, SARSA 

climbed toward the optimal strategy with a gentler slope, yet settled at a winning move ratio of 

1 before the Q-learning agent which converged more quickly but continued to fluctuate 

slightly. For both agents optimal behaviour occurred at approximately 1.5⋅106 training games. 

For a better perspective on increased learning time with added heaps, the convergence for four, 

five and six heaps respectively is plotted in figure 13. 
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Figure 12. Q and SARSA agents vs smart on boards of 5 heaps (left)  

and 6 heaps (right). 

 

 

Figure 13. Plots of Q-learning vs. Smart for boards of four, five and six heaps 

showing ratio of winning moves plotted against number of training games on a 

logarithmic scale. Convergence time is much higher on a board of six heaps. 
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Figure 14. Plot showing the exponential relation between number of states and 

number of games required for an agent to converge to a winning move ratio of 1.  

 

 

In order to study the trend of training time with respect to number of states, data was 

added from a simulation of Q vs. Smart on a board of three heaps of one, three and five 

counters. Convergence on this board of three heaps was only on the order of several hundred 

training games. The data from the number of states per board plotted to the number of training 

games required to reach optimal performance was found to agree with an exponential curve 

(see figure 14). This suggests that the agents quickly become rather ineffective in finding the 

optimal strategy when the game is scaled up. 

Training Q-learning agents against SARSA agents on boards of more heaps showed 

similar results to those of Q vs. Smart. Convergence time increased with added heaps and 

quickly became inefficient. Interestingly, in some cases one could for a board of five heaps see 

convergence time of one agent very close to that of an agent learning on a board of four heaps. 

In these cases the other agent’s performance was lower, see plot for five heaps in figure 15. 

This suggests that possibly, agents may be coupled so that one learns faster while the other 

works as a catalyst. However, these results were clearly subject to how the training sessions 

turned out. As mentioned in Section 4.1, the sequence of random numbers can affect the 

performance of the agent under its training period. Running the training again with a different 
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value for the seed in the random number generator at times resulted in SARSA outperforming 

Q-learning. Hence, it is difficult to draw conclusions on the effects of scaling in this regime.     

 

 

Figure 15. Q and SARSA in training against one another on a board of five heaps 

(left) and six heaps (right). Parameters for both agents are the best obtained from 

training against a smart opponent. Both agents converge to optimal behaviour. On 

the five heap board (left plot) the Q agent converges fast while the SARSA agent 

converges slower.  

 

As in the case of boards of four heaps, once the optimal strategy was found the agents 

continued playing with a 100% optimal move rate. However, a peculiar behaviour could be 

noted for both algorithms when training against each other on boards of 5 and 6 heaps. At times 

an agent’s performance fell drastically to a ratio of 0 optimal moves before suddenly rising 

towards convergence. The exponential behaviour seen in figure 14 can be explained by 

examining the number of entries in the Q-table as the number of heaps on the board increases 

(see table 1). Nim is a simple game with a strategy that an RL agent can learn, yet the seemingly 

trivial action of adding extra heaps to the board quickly poses problems in terms of 

computational time required and storage of large matrices in a computer’s memory.  

A possible remedy to decrease the time taken to convergence when adding extra heaps 

could be to use state-action values from an agent who has already undergone training on smaller 

boards and knows the optimal strategy. Optimal moves will always be optimal moves 

regardless of the number of heaps on the board. In other words training the agent in stages may 

speed up the learning process. 
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Table 1. Increase in size of Q-table corresponding to size of board. 

Board States Actions Entries in Q-table 

1,3,5,7 384 16 6144 

1,3,5,7,9 3840 25 96 000 

1,3,5,7,9,11 46 080 275 1.27 ∙107 

1,3,5,7,9,11,13 645 120 3575 2.31∙109 

1,3,5,7,9,11,13,15 10 321 920 53 625 5.5∙1011 

 

 

4.6 Other Observations and Remarks 

 

A known problem in RL is where during a training episode one should assign credit to the 

agent [7]. During the initial phase of programming, the Q-table was updated after the agent had 

completed its move but before its opponent’s move. We found however that the agent was not 

learning optimally and would win at most around half of its matches, even against a naive 

random player. This result led us to instead let the agent see the consequences of its actions 

and update the Q-table after the opponent’s move. This slight alteration enabled the agent to 

learn the optimal strategy. 

    It is clear that the RL agents can learn the optimal strategy of Nim, although performance 

differs between the training regimes. When faced with an opponent using the optimal strategy 

the agents soon learned which actions are optimal. However, it can be argued how 

representative of a relevant RL problem this regime is since the optimal strategy is already 

known and implemented, whereas RL has been classified as suitable for solving problems with 

unknown solutions. Yet, it has been shown that RL agents applied to problems with known 

solutions can discover completely novel solutions [6]. Additionally, RL can be relevant when 

a solution is known, but difficult to implement as in the case of the pancake flipping robot [5]. 

These examples suggest the Agent vs. Smart regime might be of some relevance. 

    For problems with completely unknown solutions the other two training regimes are more 

relevant since in these regimes both players start with no knowledge of how the game is won. 
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Unfortunately, the results of the agent vs. Random regime did not provide satisfactory levels 

of performance. However, when letting Q and SARSA undergo training against each other it 

was found that performance was even better than when training agents against the smart 

opponent. This result is very pleasing since it shows that two RL agents can be played against 

each other to find the optimal strategy, even if it were previously unknown. 

In the cases of training and evaluating the performances of agents in the Agent vs. Agent 

regime with more than four heaps it seems like the agent suffers from something akin to 

‘amnesia’ (see figures 12 and 13). This may be due to the large state space and many state-

action pairs having the same value in the Q-table while at the same time learning against an 

opponent making occasionally sub-optimal moves. It is possible that after having learned a 

somewhat good strategy an agent continues to explore when it should have made an optimal 

move. In this way it overwrites and reduces the value of what previously were good actions to 

take while in a given state. 

As mentioned in 1 Introduction, RL is based on behaviourism [1]. With the results in 

mind it can be questioned if this really is a good model of animal learning. It is true that this 

works for a computer program. However, the human brain is a very complex organism. RL 

may be  seen to be applicable as a model for simple cases: for example teaching a very young 

child how to behave or learn to ride a bike. In terms of more complicated tasks such as learning 

a musical instrument it is harder to see where the immediate rewards or even long term rewards 

fit in such a scenario. RL agents demanded a very large number of training games for learning 

an optimal strategy when scaling up. However, when learning a complicated task or skill, 

humans also require a large amount of practice.  

 

 

5 Conclusion 

It is completely feasible for an RL agent to learn the optimal strategy of Nim in all three training 

regimes treated in this paper. This verifies previous work [11] and expands on it with the use 

of SARSA as an RL algorithm applied to an agent  learning Nim.  

Tuning parameters was difficult but the initial presumption of low α and high γ was 

confirmed while it was found that ε should take a rather high value.  

Training against a smart opponent was initially thought to be the best way for the agents 

to learn the winning strategy. However, this training regime is not very relevant to problems 

with no previously known solution, although it might be of relevance to problems for which a 
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solution is known but too complicated to implement or for finding alternative solutions to 

problems. Nevertheless, it turned out that when training Q-learning agents against SARSA 

agents learning was not only faster, the agents also performed with higher stability once the 

optimal strategy was learned. This training regime is more representative for problems with no 

previously known solution. However, this result was extremely sensitive to how games were 

played during training and the results were clear only on a board of 4 heaps. 

The curse of dimensionality proves itself to be an apt term for what happens with Nim 

as the number of heaps is increased. The exponential growth of the state space makes the 

learning time for an agent unfeasibly long. For this reason, it may be worthwhile to carry out 

research into training an agent in stages, using Q-tables from smaller dimensional problems 

and building on this previous knowledge when scaling up. 
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