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Abstract

In this master thesis project, we study the problem in Visual Sensor Networks
in which only limited bandwidth is provided. The task is to search for ways to
decrease the transmitting data on the camera side, and distribute the data to dif-
ferent nodes.
To do so, we extract the interest points on the camera side by using BRISK in-
terest point detector, and we distribute the detected interest points into different
number of processing node by implementing proposed clustering methods, namely,
Number Based Clustering, K-Means Clustering and DBSCAN Clustering.
Our results show it is useful to extract interest points on the camera side, which
can reduce almost three quarters of data in the network. A step further, by imple-
menting the clustering algorithms, we obtained the gain in overhead ratio, interest
point imbalance and pixel processing load imbalance, respectively. Specifically,
the results show that none of the proposed clustering methods is better than oth-
ers. Number Based Clustering can balance the processing load between different
processing nodes perfectly, but performs bad in saving the bandwidth resources.
K-Means Clustering performs middle in the evaluation while DBSCAN is great in
saving the bandwidth resources but leads to a bad processing balance performance
among the processing nodes.



Chapter 1

Introduction

Today, as the wide deployment of wireless sensor networks (WSNs) has became
more and more useful, the research of WSNs has gained plenty of attention. How-
ever, most of the attention have been concentrated on the collection of scalar
data in terms of temperature, vibration, pressure, brightness, etc. In fact, as the
technology growing fast and fast, merely scalar data is not sufficient for many ap-
plications.
As the processing speed of microchips has been explosively increased in the last
decade, according to Moore’s Law, the number of transistors in a dense integrated
circuit doubles approximately every two years. Though this is only an observa-
tion, no one can deny the fast increasing of processing speed of microchips. Here
the chance is, the traditional WSNs can extend the application to acquire and
process multimedia signals such as still images and videos by using visual sensor
networks(VSNs). The high possibility of implementing low-cost CMOS cameras
enabled the chance of building low-cost VSN platforms which are able to capture,
process and disseminate visual data collectively [1].

1.1 Visual Sensor Networks

VSNs are becoming more and more important due to the huge demand from the
deployment of smart city. They highly support applications related to surveillance,
tracking, and environmental monitoring. High-level analysis using object recogni-
tion and other techniques can intelligently track objects (such as people or cars)
through a scene, and even determine what they are doing so that certain activities
could be automatically brought to the operator’s attention.
In the area of health protection, ambient assisted living and personal care appli-
cations of VSNs have great possibility in both commercial and social aspect. A
variety of sensors (e.g., temperature, camera, sound detecter) and personal com-
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puting devices, or even other objects such as TV or robot, would be connected in
such applications. The sensors will record data and transmit to the user who can
control the devices. In such VSNs, it is possible to improve life quality and also
can help monitoring and assisting elderly or disabled people remotely
Other VSNs’ applications can be for example, in terms of virtual reality, one can
provide the service that the users can remotely visit interesting locations, such as
museums deployed camera sensors via internet. Another possibility is the use of
visual sensor networks in run time monitoring, where the network would automat-
ically select the ”best” view (perhaps even an arbitrarily generated one) of a live
event.
VSNs also raise new challenges that have not been fully addressed by researches
in WSNs. The use of high-resolution images and videos require more resources in
both computational ability and transmission ability. Besides, In most cases, the
VSNs will consume more power than WSNs, thus the study of energy saving in
VSNs is necessary. Furthermore, the nodes (sensors) will also need to be capable
of buffering lots of packets because the data flow in VSNs is larger than WSNs.

1.2 Thesis Objectives

As facing the challenge that the visual analysis is computationally intensive, and
at the same time the transmission of the entire pixel information to a central server
may need high transmission speed, the transmission and the processing needs to
be optimized in the VSNs to realize high performance visual analysis.
Visual processing is typically performed in two steps. In the first step, the charac-
teristic points, denote as interest points of the image are detected by the interest
point detector, then the surrounding area of the interest point will be described
by the descriptor.
Building on the hypothesis that interest points are clustered in the images, we will
consider the scenario, where the camera performs the interest point detection, and
transmits only the interest points of the image to the processing nodes. In this
thesis, we will implement BRISK interest points detection.
Follow then, we will implement three clustering algorithms, namely Number Based
Clustering, K-Means Clustering and DBSCAN Clustering to cluster the detected
interest points and assign to different number of processing nodes.
Finally, we will evaluate the proposed clustering algorithms by considering met-
rics from Interest Point Imbalance, Pixel Processing Load Imbalance and Overhead
Ratio, respectively.
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1.3 Methodology

In this master thesis, we performed target-focused study in the preparing stage.
That is, we’ve been always sticked to the analysis of different distribution schemes,
thus we freed ourself from specifications of digital image process. In the implemen-
tation, we chose OpenCV 2.3 to process the images, and the dataset we utilized
was taken from Nikon D3000 which contains 1161 pictures. The content of the
images are arbitrary, which make the results of our study as general and reliable as
possible. But it is also worth noting that the image content will affect the results
dramatically, as the distribution of interest point highly depends on the image
content.
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Chapter 2

Visual Analysis

For most of VSNs, they consist of cameras, processing nodes, server nodes. as
Figure 1 shows.
Runtime visua analysis thus is possible with the help of VSNs. In this chapter,
we will give a overall review of visual analysis

Figure 2.1: A typical VSN

2.1 Visual Analysis Tasks

Visual analysis cover a wide range of practical use. The visual analysis task can be
generating cognitively useful visual representations of data, for example, diagrams
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and graphs. 2D/3D coordinates often used to form the basis of visual designs in
scientific data. In social media data, the relationship between news items or users
is encoded by the network graphs. On the other hand, visual analysis of social
media could open a wide range of promising applications, such as visual analysis
could provide visual information for situational awareness for disaster response, or
provide surveillance system that can tracking the object movement in the smart
city, for both security purpose and life quality improvement purpose [2].
Another important visual analysis task is image retrieval. The image retrieval
based applications can help us tremendously, such as they can help identify prod-
ucts quickly, compare items when we shopping, search information about movies,
real estate, print media, or even artworks. In this master thesis, we will mainly
focus on visual analysis based on image retrieval.
In the same time, there are also challenges posed by mobile image retrieval ap-
plications. Due to the limited processing resources on the camera node, and the
limited bandwidth on the transmission node, it is critical to decide which part of
the processing is suit to be performed on the camera node, and the others should
be performed at the server, or even at the transmission node. On one hand, it
is very bandwidth consuming to transmit a picture or frame with high resolution
over a slow wireless link. Meanwhile, as mentioned before, even cheap camera
nodes can handle some basic feature extraction of the salient image features.
A typical pipeline for image retrieval is shown in Figure 2.2. First the local features
are extracted from the query image. The set of image features is used to assess
the similarity between query and database images [1]. Second, the query features
are quantized and sent to the database. In the database, the quantization cells
is precomputed, a list of database images containing the quantized feature vector
are associated with the quantization cells[3]-[6].
Finally, a geometric verification(GV) step is applied to the most similar matches
in the database. The GV finds a coherent spatial pattern between features of the
query image and the candidate database image to ensure that the match is plau-
sible [1].
The performance of image retrieval can be measured by taking three metrics into

account, namely, retrieval accuracy,system latency and energy consump-
tion. In [1], the authors defined the percentage of query images correctly retrieved
as recall, a good performance in terms of retrieval accuracy is indicated by a high
recall value at a negligibly low false-positive rate. System latency consists three
components, processing delay on client, transmission delay and processing delay on
server. Processing delay depends on the algorithms used on the client and server
side. The network situation determines the transmission delay, The transmission
time in WLAN is very short compare to 3G network since WLAN has high band-
width. Meanwhile, energy consumption varies a lot in different type of devices,
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Figure 2.2: Pipeline For Image Retrieval

thus we somehow will not consider more on energy consumption in this thesis.

2.2 Feature Descriptor Based Visual Analysis

Feature descriptors can be obtained from three steps: interest points detection, ori-
entation identification, descriptor extraction. The requirements that the descriptor
should achieve are scale− invariance and rotation− invariance. Scale-invariance
ensures that the visual analysis would not be disturbed significantly by the dis-
tance between the camera and the objects. Meanwhile, rotation-invariance ensures
that the visual analysis is free from the angle of camera to objects, together with
scale-invariance, the robustness of feature descriptor based visual analysis thus can
be achieved.
Interest Points Detection When we talk about interest points, we often refer
to two kind of features in the image, one is corner and edge another is blob. Not
only because these two features are visually noticeable, but also when performing
pixel scanning, they are often with significant intensity changes.
There are several tools can be used as interest point detector. For example, Lowe’s
SIFT detector is widely used and proven as one of highest quality detector that
provide promising distinctiveness and invariance. The combination of FAST in-
terest point detector and BRIEF approach is suit for real-time applications since
it can calculate fast when processing images. Another worth-mention method is
SURF, because SURF has been proven to be a robust and fast method.
In this thesis, we are going to use Binary Robust Invariant Scale Key-points
(BRISK) as the interest points detector. Because comparing with SURF, BRISK
can also achieve comparable quality of matching while consume less computation
time (less computation complexity) and generate short descriptors.
Orientation Identification Orientation identification is the method used to
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achieve rotation invariance. To fulfill this task, a common way is changing the
patch around each interest point to canonically oriented in the direction of the
dominant gradient. But it is noticeable that BRISK does not do like this way.
Instead, BRISK will identify the characteristic direction of each interest point to
make the orientation-normalized descriptors. We will introduce more details in
Chapter 5.
Descriptor Extraction The aim of descriptor extraction is to extract the salient
features from the image to support the visual matching or image retrieval. A good
descriptor first should be robust, in terms of scale-invariant and rotation invariant.
It is easy to image that if two cameras in two different places captured the pictures
from the same object, but the descriptors extracted from different pictures (i.e.
different scale, different angle) are showing that ”they” are not the same object,
then the descriptors are totally worthless. Despite of robustness (i.e. scale invari-
ant and rotation invariant), the descriptors in visual analysis are required to be
discriminative since it would not be helpful if the descriptors occur in every image.
There are mainly two categories of descriptors in use today. One of them belongs
to non-binary descriptor such as SURF or SIFT, another is binary descriptor for
example BRIEF or BRISK.
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Chapter 3

Distributed Processing in VSNs

Distributed processing in VSNs is very important since it helps improving the per-
formance of VSNs tremendously. For the camera nodes with limited processing
ability, process most part of the image could take lots of time. Thus one would like
to process the image on the processing nodes or on the server. On the other hand,
the power resources and the transmission bandwidth is limited, so transmit only
part of the image (interest area) would prolong the lifetime of VSNs and decrease
the latency.

3.1 Delegation of Feature Computation

Delegation of feature computation has been proved to be a efficient method of im-
proving the performance of VSNs. We can delegate processing steps from camera
node C to processing node P in order to balance the work-load of VSNs. There
are three ways of delegation as follow:
Area-Split In area-split, camera node C can delegate a part of image i, Gi,j to a
processing node j ∈ P . The Gi,j is a cluster of interest points that is clustered by
the clustering algorithms we proposed.
Scale-Split In scale-split, camera node C can delegate the octave parameters (ef-
fectively the scales) to a processing node of which can be used for detecting interest
point. In such case, the interest points are detected through out the octave layers,
which requires the transmission of the whole image.
A combination of area-split and scale-split can be the third way of delegation of
interest point detection.
In general, for delegation of orientation identification and delegation of descriptor
extraction, the pixel data of Ai,k and Ri,k are required to be transmitted, respec-
tively. Since we are focusing on BRISK, so the Ai,k and Ri,k are the same in this
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case.
The delegation of the processing steps affects the use of the computational and
communication resources of the VSN nodes: the data transmission from C to P ,
the computational load of C and that of the nodes in P , and the data to be trans-
mitted from P to S. These three are strongly coupled, and therefore the delegation
needs to be optimized [3]. There are four schemes that can be used to off-load the
camera node C:
No Detection/ No Extraction (ND/NE): In this case, the camera node C
simply does not do anything about detection and extraction, thus the whole image
will be transmitted to processing node. As illustrated in Figure 3.1.
Partial Detection/ Partial Extraction (PD/PE): Some of the interest points

Figure 3.1: ND/NE scheme, the entire image is transmitted to processing node

are detected in C and also the related descriptors are extracted in C. The redun-
dancy of area − split can be decreased through detecting and extracting interest
points at large scales. As shown in Figure 3.2.
Complete Detection/ No Extraction (CD/NE): In this case, all the interest

points are detected in C and the descriptor extraction are delegated to the pro-
cessing nodes, which means the camera node C only needs to send the pixel data
for each interest area Ai,k. If we require the camera node to compute orientation,
then only the pixel data of Ri,k is required. The vectors of interest point locations
and scales are required to be transmitted as well, as shown in Figure 3.3
Complete Detection/ Partial Extraction (CD/PE): In this case, the camera
detects all the interest points and performs extraction for some of the descriptors.
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Figure 3.2: PD/PE scheme, part of the image is transmitted to processing node

Figure 3.3: CD/NE scheme, interest areas of the image are transmitted to pro-
cessing node

The set of interest points for which descriptors are extracted at the source should
be chosen to minimize the remaining image pixels to be transmitted. Especially,
when interest areas do not overlap, this scheme performs best.
For all these four schemes above, there are two factors can effect the performance.
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First, from the topologic point of view, the computational and transmission re-
sources of the VSN is critical. Second, from the point of view that the locations
and scales distribution on the image.
The load of the processing nodes and the amount of data that need to be transmit-
ted in the network are affected by the number of interest points Ki in an image.
Based on the researches in [2], we find that the density of BRISK interest points
decreases exponentially as a function of the detection threshold in the considered
range, as illustrated in Figure 3.4.

Figure 3.4: CD/PE scheme, interest areas of the image are transmitted to pro-
cessing node, as well as some of the descriptors extracted by camera

3.2 Clustering based off-loading

In this thesis, we are going to consider the scenario that the interest points are
somehow clustered in the image, and the camera performs the interest points
detection, and only transmit the interest area to the processing node in order
to perform descriptor extraction. Considering the delegation schemes aforemen-
tioned, CD/NE scheme is more likely to work well on our case. We will propose
the algorithm and the give the evaluation in Chapter 7.
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Chapter 4

Related work

Related work will be reviewed in this chapter, structured as follow: First, we will
review related descriptor design for VSNs. In this thesis, we are going to use
BRISK as the interest point detector and feature descriptor, while the SURF and
other descriptors are also competitive and perform well in some situation, thus we
will also give an introduction about SURF, and brief review about others.
Second, we will review networking performance of VSNs, with respect to the
paradigms of visual analysis in VSNs.
Finally, a review of distributed processing will be presented.

4.1 Descriptor design for VSNs

4.1.1 Interest point detection

The approach of detecting salient interest points is searching for locations with
pixel intensity changes. Blobs and edges are typic interest points.To realize the
interest point detection, several interest point detectors have been proposed. In
1988, Harris corner detector was invented and soon became the most widely used
detector in the worldwide[7]. In this detector, eigenvalues of the second moment
matrix is used to support the corner detection. But in Harris corner detector,
scale variety affects the performance dramatically. The concept of automatic scale
selection was introduced by Lindeberg in [8]. It enables the detection of interest
points in an image with the characteristic scale on their own.Detecting blob-like
structures were the objective of Lindeberg’s experiment. He made use of both
the Laplacian and the determinant of the Hessian matrix in the detection. Lat-
ter on, this method was refined by Mikolajczyk and Schmid [9]. They created a
robust, scale-invariant and with high repeatability detector which was based on
Harris-Laplace and Hessian-Laplace. In their detector, a Harris measure or the
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determinant of the Hessian matrix was used to select the location and the Lapla-
cian was used to select the scale. Taking the speed as the first priority, a way
of approximating the Laplacian of Gaussians (LoG) by a Difference of Gaussians
(DoG) filter was proposed by Lowe[10].
There are also other proposed scale-invariant interest point detectors. Kadir and
Brady[11] experimented the salient region detector that maximizes the entropy in
the region. Jurie and Schmid[12] proposed an edge-based region detector.
Conclusion of the overall detectors can be made based on [13,14] that a Hessian-
based detector is usually more reliable and repeatable than a Harris-based detector.
Observation can also be made that approximations such as DoG can have a better
trade-off between bringing speed up and lost accuracy.

4.1.2 Interest point description

Descriptor extraction can be performed as long as the interest points are detected.
Interest point descriptors thus are required to perform descriptor extraction. There
are even much more feature descriptors have been proposed so far. For example,
Gaussian derivatives in [15], moment invariants in [16], complex features in [17],
steerable filters in [18], phase-based local features in [19]. Especially, The distribu-
tion of smaller-scale features within the interest point neighborhood proposed by
Lowe[20], has been proven that performs better than the others in [21]. The reason
for that is the large amount of information regarding the spatial intensity patterns
were captured and at the same time is robust against small deterioration or local-
ization errors. Another important descriptor is Scale-Invariant Feature Transform
(SIFT) proposed in [20]. A histogram of local oriented gradients around the inter-
est point is computed and the bins with 128D vector was stored in SIFT.
Based on SIFT scheme, there are lots of refinements coming out through out the
time. For example, a method of applying PCA on the gradient image around de-
tected interest point was proposed in [22] by Ke and Sukthankar. This method is
fast for matching since it only involve 36D vector. But it is shown to be not dis-
tinctive enough compare to the method proposed by Mikolajzcyk and Schmid[30].
And it shows that applying PCA will slow down the feature computation. Miko-
lajzyk and Schmid also proposed a variant of SIFT which name is GLOH, it has
been proved to be reliable with the same number of dimensions. But the problem
here again is GLOH uses PCA for data compression thus it is computationally
expensive.
The SIFT descriptor is distinctive and fast thus it is used widely for online ap-
plications. Seet al. [23] made use of SIFT on a Field Programmable Gate Array
(FPGA) and improved its processing speed. At the same time, Grabner et al. [24]
used integral images to approximate SIFT as well. Compared with SURF, both
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of them achieved the same processing speed while SURF can ensure a relatively
high quality.

4.1.3 SURF: scheme and analysis

Interest point detection The SURF utilizes the basic Hessian matrix approx-
imation. By using the integral images to fit in the more general framework, the
speed can be improved dramatically.
Integral images We denote the entry of an integral image as I∑(x), it represents
that at a location x = (x, y)T , I∑(x) equals to the sum of all pixels in the image
I within a rectangular region.

I∑(x) =

i6x∑
i=0

j6y∑
j=0

I(i, j) (1)

The integral image is a very powerful kit because it makes it possible to releases
the calculation time from the image size. One can easily do this by taking three
additions to calculate the sum of the intensities over any upright, rectangular area.
Figure 3 shows the calculation of integral image.

Figure 4.1: We can see that the sigma region can be easily calculated by the sum
of A minus sum of B minus sum of C, because D is overlap twice, thus we plus D
once at last as compensation
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Hessian matrix interest points and SURF

SURF applies Hessian matrix on its detector because the Hessian matrix performs
good in accuracy. Compared with Hessian-Laplace detector proposed by Miko-
lajczyk and Schmid[26], SURF detector mainly detects blob-like interest points
where the determinant is maximum, and the determinant of the Hessian is used
by SURF detector as well as for scale selection.
Scale space representation Both BRISK and SURF requires that the interest
points should be detected at different scales. In this way, the scale-invariance can
be assured. Scale spaces, both for SURF and BRISK, are implemented as an image
pyramid. The scale spaces are divided into octaves. Consecutive filter response
maps which are calculated by convolving the same input image with a filter of
increasing size are represented by octaves.
Interest point localisation A non-maximum suppression in a 3 neighborhood
then is applied in order to localize the interest points over scales in SURF. Inter-
est point description In SURF, the distribution of the intensity content within
the interest point area is described by the descriptors. Rather the gradient infor-
mation extracted by SIFT, SURF use the distribution of first order Haar wavelet
responses in x and y direction, make use of integral images for speed, and merely
use 64D. This boosts the computation speed as well as bring the robustness. The
steps of doing this is, first use the information from a circular area encompass the
interest point to fix a reproducible orientation. Second, Extract the SURF de-
scriptor from a square region corresponding to the chosen orientation. Last step,
match the features between two images.

4.2 Networking performance of VSNs

4.2.1 Paradigms for image analysis in VSNs

Generally, the basic visual analysis is performed in two steps, as Figure 4.2 shows.
First, the camera capture the image and compresses the image using some com-
pressing algorithms, for example JPEG or H.265/AVC, in order to transmit ef-
ficiently over networks. Visual analysis is performed in the following. Although
the compress-then-analysis approach has been applied on tons of applications suc-
cessfully, but the flaw is the compression may impair the critical features when
analyzed by the central. The reverse of traditional CTA paradigm is analyze −
then− compress paradigm, which first extracts features from original image, then
compress the extracted features with a suitable coding scheme and transmit them
to final destination, as illustrated in Figure 4.3.
The work in [x] compared the ATC and CTA with their rate-accuracy performance
for image retrieval. The results in [x] shows that the performance of ATC and CTA
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depends on the circumstance of the network. The ATC paradigm obtained good
results at low bitrates, meanwhile the CTA performs well at high bitrates [27].

Figure 4.2: (a) Compress-then-analyze (CTA) paradigm

Figure 4.3: (b) Analyze-then-compress (ATC) paradigm

4.2.2 Distributed processing

Distributed systems today is a big concept that refers to the different modern
network-based functional systems. Distributed processing plays an important role
in such systems. There are three essential characteristics of a distributed system,
namely Concurrency, Synchronisationintime, Failures [28].
Specifically, in VSNs, we consider more on the workload of each node of VSNs as
the VSNs can provide only limited resource. In [4], Muhanmmad, Gyorgy, and
Fodor proved that some delegation schemes can balance the workload of VSNs
together with some processing schemes such as area− split and scale− split.
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Area-split: Spatial distribution of interest points

How the interest points distribute in an image is very important when we refer the
efficiency of the area− split.
Characteristics of Spatial Distribution When looking into the interest points
distribution in X-coordinates, the work in [2] revealed it almost obey the uniform
distribution. If one knew the marginal distribution of the X,Y coordinates of in-
terest points, one could perform area-split with equal number of interest points.
To do so, [4] introduces the correlation between the X and Y coordinates. The
results show that the average coefficients ρX,Y is zero, which means there is no
significant relation between X,Y coordinates. Thus, knowing the marginal distri-
butions would not help balancing the processing load in area− split.
Processing load imbalance The research in [2] shows that it is useless to divide
the image according to the marginal distribution of interest points. Another way of
doing this is one can split the image into P pieces of subareas equally and delegate
each area to a processing node. By defining imbalance value H, the results in [2]
show that the most loaded processing node would take three times more workload
over the average value.
Taking the Top-M extraction scheme into consideration for two cases, one is the
ideal situation that the processing nodes P know the threshold Θ that can lead to
the detection of interest point number is M . The results show that the number M
of interest points increases lead to the decreases of the imbalance H, which suggest
that more interest points M can do good to balancing the load in the network.
Another case is the practical case that the processing nodes P have no idea about
the threshold that can detect the M interest points.Thus they need to calculate
which of the interest points in its own area are the Top-M interest points.
In [4], researchers concluded that Area-split could become an efficient solution to
delegate the feature extraction tasks to the processing nodes if the camera node
could obtain the location of the interest points by performing complete detection,
i.e., CD/NE and CD/PE. Alternatively, the camera node could try to predict the
interest point distribution if the subsequent images are correlated, for instance, in
the case of visual analysis of video sequences.

Scale-split: Octave distribution of interest points

Another method of analyzing interest points distribution is scale−split. In scale−
split, one would consider the interest points over different octave layers the are
detected at. When each processing node performs detection based on the scale
space, this distribution plays an important role for understanding the feasibility
of scale− split.
In ND/NE scheme, the parameters of the detection algorithm thus are needed to
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support the delegation. The work in [4] use the default parameters of BRISK with
4 octave as well as intra-octave layers, denoted as c0,d0,c1...d3. The result shows
that most of the interest points are detected at low octaves/layers, at c0 in the
case of BRISK. As the threshold θ increases, the share of interest points detected
at low octaves/layers decreases.
The result in [4] also shows that the average and 5-95 percentile of the probability
mass function (PMF) of the interest point distribution across the octave layers
are very skewed. Further more, the distribution remains skewed even under the
Top-M scheme.
Only using scale − split is not suitable for balancing the load under ND/NE
and PD/PE, as the consequence of the skewed octave layer distribution. But as
being proved in [4], even when combined with area − split, the performance of
scale− split is not good.
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Chapter 5

BRISK:Binary Robust Invariant
Scalable interest points

BRISK is a novel method for resolving computer vision problem of detecting,
describing and matching image interest points. Comparing with other methods
mentioned in related work such as SIFT and SURF, BRISK provides a much
more faster alternative while still keeping comparable matching performance. The
feasibility of BRISK lies on the easy-configurable circular sampling pattern which
computes brightness comparisons to form a binary descriptor string. Thus, BRISK
is adaptable for the cases which require real-time constraints or in the situation of
only limited computation power is available [31].

5.1 Methodologies and Schemes of BRISK

The key steps in BRISK are similar with other tools, but instead of orientation
identification, BRISK takes a step named orientation normalizing to generate ori-
entation normalized descriptors to achieve rotation invariance.

5.1.1 Scale-Space interest point Dectection

BRISK takes advantages of AGAST done by Mair et al [29] which is substantially
an powerful extension of FAST. Based on that, BRISK searches for maxima in
scale-space using the FAST score s as a measure for saliency rather than only
searches in the image plane. Moreover, the BRISK detector uses continuous scale-
space to estimate the real scale of each key point rather than in discrete scale axis.
The scale-space pyramid layers in BRISK consist of n octaves ci and n intra-
octaves di, for i = 0, 1, ..., n − 1,for most cases, n = 4. Above and below each
octave ci, there are intra-octaves di and di−1 enclosing them. The scale space t is
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represented as t(ci) = 2i. BRISK uses the 9-16 mask shape to detect potential key
point. A point is considered to be key point if at least 9 consecutive pixels in the
surrounding 16-pixel circle to be brighter or darker than the central pixel [31].
The process of detecting key points through out the octaves and intra-octaves is as
follow: First, applying the FAST 9-16 detector on each octave and intra-octave us-
ing the same threshold T , to obtain the potential candidates of key point. Second,
these candidates are constrained by a non-maxima suppression in sacle-space. The
point needs to meet the maximum condition concerning its 8 neighboring FAST
scores s in the same layer. The score s is the maximum threshold for judging if a
point in the image should be considered as a corner [31].
BRISK considers that the image saliency as a continuous quantity not only through
out the image but also across the scale dimension. For each detected maximum, a
sub-pixel and continuous scale refinement are performed.

5.1.2 interest point Description

The BRISK descriptor is composed as a binary string by concatenating the results
of simple brightness comparison tests out of a set of interest points. The char-
acteristic direction of each key point is identified for the purpose of normalizing
the orientation of descriptors thus to ensure that the the descriptor is rotation
invariant [31].

Sampling pattern and rotation estimation

In BRISK, sampling the neighborhood of the interest point is the critical step
which utilized the same pattern used in DAISY descriptor [30].
However, BRISK uses that pattern in a different way. The pattern as figure 5.1
shows, defines N locations which are located equally on circles concentric with the
interest point.

BRISK applies Gaussian smoothing with standard deviation σi to the distance
between the points on the respective circle around a point pi in the pattern to
avoid aliasing effects. Considering one of the N × (N − 1)/2 sampling-point pairs
(pi, pj). The local gradient g(pi, pj) can be estimated from the smoothed intensity
values I(pi, σi), I(pj, σj) by

g(pi, pj) = (pj − pi)×
I(pj, σj)− I(pi, σi)

||pj − pi||2
(5.1)

BRISK defines subsets of short-distance pairings S and long-distance pairings L
respectively:

S = {(pi, pj) ∈ A| ||pj − pi|| < δmax} ⊆ A (5.2)
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Figure 5.1: BRISK Sampling Pattern [31]

L = {(pi, pj) ∈ A| ||pj − pi|| > δmin} ⊆ A (5.3)

where A is the set of all sampling-point paris:

A = {(pi, pj) ∈ R2 × R2|i < N ∧ j < i ∧ i, j ∈ N} (5.4)

Then the overall characteristic pattern direction of the interest point can be
iterated through the point pairs in L by taking δmax = 9.75t and δmin = 13.67t

g =

(
gx
gy

)
=

1

L
·
∑

(pi,pj)∈L

g(pi, pj). (5.5)

This estimation takes the long-distance pairs because in [31] it was confirmed
that the local gradients annihilate each other thus does not influence the global
gradient determination.

Descriptor construction

The descriptor of BRIKS is a binary string, denoted as dk. By performing all the
short-distance intensity comparisons of point pairs (pαi , p

α
j ) ∈ S, each bit b in dk

corresponds to:

b =

(
1, I(pαj , σj) > I(pαi , σi)

0, otherwise
(5.6)

∀(pαi , pαj ) ∈ S
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The noticeable characteristics of BRISK descriptor are, first BRISK takes a
deterministic sampling pattern which yields a uniform sampling-point at a given
radius encompassing the interest point. In consequence, The information content of
brightness comparison will not be distorted by the Gaussian smoothing. Moreover,
BRISK constraints the complexity of looking-up intensity values by using fewer
sampling-points than pairwise comparisons. At last, the brightness variations
are well limited (i.e. they are only need to be locally consistent) because the
comparisons are constrained spatially [31].

5.2 Implementation of BRISK with OpenCV

The implementation of BRISK is based on OpenCV 2.3. The reasons we choose
OpenCV as the implementation tool are from different point of view. The most
important reason is OpenCV can work across platform, thus it is possible for us
to immigrate to other platform in the future as the smart camera nodes may
run on different platform. Another reason is OpenCV provides more functional
image storage as we can use cv::Mat class as the container of the image. and we
run BRISK in OpenCV with C++, thus C++ provide a nice container Vector to
store detected interest point. Moreover, OpenCV will accelerate itself if Intel’s
Integrated Performance Primitives on the system is detected.

5.2.1 Brief Introduction of OpenCV

OpenCV, the open source computer vision library, is a library of programming
functions mainly aimed at real-time computer vision, developed by Intel Russia
research center in Nizhny Novgorod, and now supported by Willow Garage and
Itseez [32]. It is free for use under the open source BSD license. The library is
cross-platform. It focuses mainly on real-time image processing.

5.2.2 Implementation Introduction

The image database we use in this thesis is from Nikon D3000, which contains
1161 images and most of the image size is 2400×1900, storage size is between 2
MB to 4 MB, enabling us to observe more than 1000 keypints in most of cases.
The general processing flow can be described as follow:
First, load the image using cv::imread, and store the image in cv::Mat. Sec-
ond, we construct a BRISK detector instance using BRISK’s constructor such
like cv::BRISK detector(threshold, octavelayers, patternScale). Finally,
we store the detected interest points using detector.detect( image, interest-
PointsContainer ). As we mentioned before, C++ provides a good container
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Vector to store the interest point. The basic function of BRISK thus can be real-
ized by these steps.

23



Chapter 6

Clustering of BRISK Interest
Points

6.1 Motivation of Interest Point Clustering

We are motivated by the work of [4], we first analyze the characteristics of interest
point detected by BRISK as the trend function of detecting threshold, as figure 6.1
shows. As we can see, the number of interest point and density of interest point
decrease along with the increasing of detecting threshold exponentially. This result
suggests that increase an already high threshold value will not help decreasing the
number of detected interest point sufficiently thus will not help decreasing the
computation and transmission load in VSN. Considering the Top-M interest point
scheme, we will need to gather sufficient interest point to calculate the descriptor,
thus we are going to use Θ = 60 as the default threshold.

Next, we consider the characteristic of area − split. As we have introduced
area− split in Chapter 3, the easiest way of realizing area− split is splitting the
image equally. In order to obtain the information of distribution of interest point
in each of the sliced image, we use L as the interest point imbalance [4].
The definition of L is

Li =
max1≤j≤P ni,j

Ki/P
(6.1)

Where ni,j denotes the number of interest point in subarea j for image i, P denotes
the number of subarea and Ki denotes the total number of interest point in image
i.
The value of Li implies that when Li closes to 1, the interest point in image i is
almost balanced, e.g, each piece of image contains the same amount of interest
point whereas L = P indicates that all the interest points fall into the same sliced
image ni,j.
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Figure 6.1: Number and Density of Interest Points varying with Threshold

Figure 6.2: Load Imbalance as the Function of Processing Nodes

Figure 6.2 presents the statistic interest point imbalance of processing all the
images from the image dataset. The result shows that the processing imbalance
will increase if we cut the image into more pieces. The more we cut the image, the
higher the processing imbalance will reach, suggesting that there are some parts of
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the image that may contain more interest than other parts. Thus we can consider
extracting images from the sliced image with higher number of interest points.
Another factor that we could consider is we calculate the needed area of the image,
and investigate how large of the empty area can cover over the original image. By
doing this, we first define the needed area ratio R as

R =
||
⋃K
k=1Ak||
S

(6.2)

Where Ak represents kth area of the interest point in the image. S is the size
of the image. The results in Figure 6.3 shows that the mean empty area ratio is
0.2541, suggesting that almost 3/4 area of a random image is not covered by the
interest area. Considering this phenomena, we can combine the processing load
imbalance with it and cut the image into pieces in some manners to distribute the
pixels to each of the processing nodes after detection on the camera node.

Figure 6.3: Needed Area Ratio of CD/NE

6.2 Interest Point Number Based Clustering

Motivated by the results we obtained above, we consider the scenario that we cut
the image into pieces in which each of them containing the same number of the
interest points, and we will examine two statistic properties.
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6.2.1 Division Overhead

Consider the situation, we cut the original image into P pieces, and the overhead
due to cutting is the pixels that belongs to many divisions, that needs to be
transmitted many times.
Figure 6.4 demonstrates how we calculate the overhead. Here we divide the image
into 1,2,3,4 four pieces, and the two interest area overlaps with each other, namely
a,b,c,d. We define the overhead ratio as Ro,i for image i, where

Ro,i =

∑m
j=1Oj,i

Ti × Pi
(6.3)

Where Oj,i represents the jth overhead area of image i, Ti denotes total interest
area of image i and Pi is the number of clusters of image i. One overhead area is
selected if and only if it is an overlapping area and it is assigned to more than two
process nodes. Thus in Figure6.4, the overhead area is a+b+c+d. Overhead ratio
could indicate that whether if it worth to divide the image into more pieces. If the
image is divided into n pieces, but yields out a high overhead ratio, then the gain
from clustering interest points is impaired.

Figure 6.4: Overhead due to image division
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6.2.2 Pixels Processing Load Imbalance

Even we distribute the the same number of interest point into each pieces of
subareas, the number of pixels of interest area in each of the subarea is still not
the same because of the differences of each interest area size. Thus, we consider
the pixels processing load imbalance Zi as

Zi =
max1≤j≤P Nj,i

Ti/P
(6.4)

Where Nj,i stands for the pixels of interest area in subarea j of image i, Ti stands
for the pixels that need to be transmitted of image i (total interest area), P
represents the number of clusters. Zi equals 1 indicates the ideal situation that
each cluster contains the same needed-pixels, whereas the larger the Zi reach, the
more imbalances in the image processing.

6.2.3 Transmission Imbalance

For number based clustering, the dedicated metric that we would like to consider
is Transmission Imbalance. We define the Transmission Imbalance Di as the ratio
that the size of the largest subarea to the average level. Si is the size of an image
i, P is the number of nodes and Wj,i is the size of subarea j of image i.

Di =
max1≤j≤P Wi,j

Si/P
(6.5)

6.3 K-means Clustering

Instead of simply dividing the interest points by numbers, there are different ad-
vanced clustering algorithms, most of them are designed for application in Big-
Data analysis, Data Mining or Bioinformatics [33]. K-means Clustering and
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algo-
rithms are two widely used clustering algorithms. We will introduce these two
clustering algorithms briefly, and implement them in Chapter 7.

6.3.1 Data Clustering

Generally thinking of data clustering is the process that groups data objects, to
reach the goal that make the objects in a given group similar to each other in
some aspect. There is no accurate definition of clustering, rather, there are many
definition of clusters. Depends on the data type, there are one or more definitions
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of cluster can be useful to the specific case.
One of the popular definition in image processing is centroid based clustering.
The main idea behind centroid based clustering is each datasets in a cluster has
the closet distance between the center of that cluster. The measurement of the
distance varies from different application and clustering algorithm.

6.3.2 The k-means Method

The objective of k-means method is, for all clusters, find a way to minimize the
sum of all squared distances in each cluster. The objective function is defined as
below:

arg minSi

k∑
i=1

(
∑
xj∈Si

||xj − µi||2)

where xj represents a data point in the dataset, Si represents a cluster and µi is
the center point of cluster Si
One of the significant feature that k-means method holds is that the number of
clusters in k-means method is predefined when clustering occurs. This feature can
be both advantage and disadvantage, depending on the situation that the method
works at. The positive side is that anomaly data point will not be included in
new cluster, instead the anomaly data point will be sorted to some of existed
cluster that close to the anomaly data point. This feature is especially suite for
our demand, where the number of transmission node are known, thus we can set
the k as the node number. However, the drawback is, in some cases it would be
unwise to divide the data into certain clusters. For example, imaging we have a
dataset that contains three blocks of datapoint that each datapoint in the block
has the significant features close to each other. In such case we obviously hope the
k-means method treat each block as a cluster so we have three clusters basically.
But what if the k is not set to three? In that situation, the performance of k-means
method will be poor.
To find a clustering configuration that minimize the objective function above has
been proven to be difficult because the worst case time complexity is 2σ(n) [34].
Thus heuristic algorithms are used in order to minimize the k-means function.

6.3.3 Lloyd’s Algorithm

In 1957, Lloyd first proposed a heuristic algorithm to perform k-means clustering,
and this algorithm was named in his name [33].
The idea behind Lloyd’s algorithm is simple, one should only iteratively improve
the position of the cluster centroids. But one should bear in mind that the initial
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centroid positions are not generated by Lloyd’s algorithm, instead Lloyd’s algo-
rithm only take the initial centroid positions as arguments and operating based on
that. The initial centroid position will be introduced in Section 6.3.5.
By iterating the flowing two steps, the algorithm can improve the centroid posi-
tions.

• step one: Si = {xj : ||xj − µj|| ≤ ||xj − µc|| ∀1 ≤ c ≤ k}

• step two: µi = 1
Si

(
∑

xj∈Si
xj)

In step one, the algorithm will perform so called nearest neighbor search to assign
all data points to one of its closet centroid µi.
In step two, the algorithm calculate the mean of all data points in the cluster to
update all centroids µ1 · · ·µk.
The iteration of above two steps stops when some type criteria is met. Common
criteria can be when there were no change in the cluster configuration, or the
target function remains stable for a certain time because the change was below a
certain threshold.

The time complexity is O(ndk) for one iteration of the algorithm [35]. n stands
for the number of data points, d represents the dimension of the data and k is the
number of cluster centroids.

6.3.4 K-d Tree

Pelleg and Moore examined a approach to improve Lloyd’s algorithm by reducing
the needed times to assign each data element to its closest cluster [35]. They use a
space partitioning data structure called k−d tree. A k-d tree is a binary tree that
every node consists of a hyperplane defined by a dimension and a point. Space is
split by the hyperplane, each of them is represented by children of the node. Tree
leaves store the data points.

K-d Center

Nearest neighbor search is the necessary process for judging whether a data point
belongs to a cluster in Lloyd’s algorithm. The time complexity of the nearest
neighbor search is nk. However, by building a k-d tree that contains all cluster
centroids, it is possible to reduce the complexity of nearest neighbor search to
dklog2(k)+nlog(k). Because the required time to build a k-d tree is dklog2(k) and
log(k) time to find the nearest neighbor in a k-d tree containing k elements.
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(a) k seeds (k=3) are
randomly generated
within the dataset

(b) k clusters are created
by finding the nearest mean
to each seed for each data
point.

(c) change the new
mean to each of the
centroid in the cluster

(d) repeat step 2 and 3
until convergence has been
reached

Figure 6.5: Convergence of Lloyd’s algorithm.
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Blacklisting

A k-d tree optimization is by using blacklisting to reduce the number of nearest
neighbor searches. This optimization is based on the fact that several data points
may share a common nearest cluster center. The k-d tree is traversed until a sub-
space with only one closest centroid was found to perform one nearest neighbor
search. Thus the cluster center is configured with containing all data points in the
subspace. All data points within a leaf is assigned to its closest cluster if a leaf
is reached. This is similar to Lloyd’s algorithm, the difference is the comparison
only has to be performed for each data point within the closest centroid for corre-
sponding leaf.
K-d tree can be used to improve the second step of Lloyd’s algorithm since the
data in the k-d tree retains between iterations. The update time of µi is linear with
|Si| in Lloyd’s algorithm. This brings the benefit that the calculation of step two
will become linear with the number of subspaces assigned to the cluster instead of
the number of data points.

6.3.5 Initial Centroid Position

Initial centroid position (seed) is the base of iteration in Lloyd’s algorithm. How
to find suitable seeds is critical when performing Lloyd’s algorithm. There are sev-
eral seeding methods, random seeding and partial clustering seeding are relatively
efficient seeding methods and will be introduced as below.

Random Seeding

The simplest way of seeding is using random seeding. Random seeding is realized
by choosing k number of data points randomly from the dataset as the initial
cluster positions. It has been proved to be useful when the dataset is not in the
pattern which has significantly special aggregation [36].

Partial Clustering Seeding

Partial clustering seeding is with higher seeding quality compare to random seed-
ing. It seeks for the seeds by performing clustering on a subset of the dataset and
use the results of the clustering as seeds for the entire dataset. This method pro-
vides more reliable results but impairs the calculation speed, thus partial clustering
seeding requires a tradeoff between cluster quality and clustering time.
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6.4 DBSCAN Clustering Algorithm

Density-based spatial clustering of applications with noise (DBSCAN) is a data
clustering algorithm proposed in 1996 [37]. As its name suggests, DBSCAN is a
density-based clustering algorithm. It is realized by grouping data points that are
closely packed together, and excluding the points that stand lone in low-density
regions. DBSCAN is also one of the most popular clustering algorithms.

6.4.1 Concepts of DBSCAN

DBSCAN defines a set of concepts that helps classifying data points. In the context
of DBSCAN, a cluster is an area with high density of points. Noises are the points
that lie in a low density area. A data point is considered to be a member of a
cluster if and only if for a given distance, there are sufficient data points within the
dedicated area. The distances used can be various of distance metrics, depending
on the data type.
Eps(ε)− neighborhood:

Nε(p) = {q|distance(p, q) ≤ ε}

Where Nε(p) is the set of points q in dataset D that are distant from p by no more
than Eps.
A core point is a point that its Eps − neighborhood contains at least MinPts
points, denoted as |Nε(p)| ≥MinPts.
A density − reachable point is a point that is reachable from p if there is a
pathp1, ..., pn with p1 = p and pn = q, where each pi+1 is directly reachable from
pi.
A directly density − reachable point is a point p that from point q with respect
to ε and MinPts if p ∈ Nε(q) and q is a core point.
Figure 6.6 shows the different types of point in DBSCAN for MinPts=2. Point

A and other black points are core points since under radius of ε, there are at least
two points around it. B and C are not core points, but they are reachable from
core points. Therefore, core points, B and C consist a cluster. Meanwhile, point
N is a noise point since it is neither a core point nor density-reachble.

6.4.2 DBSCAN:Implementation

Two important parameters for DBSCAN are ε and MinPts as aforementioned.
The algorithm starts with picking an unvisited starting point randomly, and re-
trieve the Eps − neighborhood of this point. If there are sufficient points in it, a
cluster is started. Otherwise, the point is marked as noise point. It is noticeable
that this point is temporarily marked as nose unless the iteration is finished, that
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Figure 6.6: Different Types of Point in DBSCAN

is, the noise point still can be made part of a cluster if it can be found in a suffi-
ciently sized ε of a different point.
The iteration happens by checking each point in dataset, if a point is in a dense
part of a cluster, DBSCAN also marks its Eps−neighborhood as part of the clus-
ter. Thus, all points in the Eps − neighborhood will be added. The iteration of
finding one cluster stops until the density-connected cluster is completely found.
After that, DBSCAN will choose a new unvisited point, and continues to find fur-
ther cluster or noise.
Because DBSCAN needs to visit each datapoint several times, the complexity of
DBSCAN is usually O(n2).
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Chapter 7

Performance Evaluation of
Clustering Gain

In this chapter, we will implement the proposed clustering algorithms, and give
out the performance evaluation for each algorithm.

7.1 Number-Based Clustering

The number-based clustering, as we mentioned in chapter 6, of which we distribute
the interest points to each processing node equally, is the first method to cluster
the interest points for processing nodes. By doing this, we first select the top 1000
interest points according to their response value, and divide the original image
into 2,3,4,6,9 pieces:

- Two clusters: one vertical cut so that the number of interest points are the
same on both sides.

- Three clusters: two vertical cuts.

- Four clusters: one vertical cut, and then a horizontal cut in each of the
clusters.

- Six clusters: two vertical cuts, and then each cut horizontally.

- Nine clusters: two vertical cuts, and each sliced pieces with two horizontal
cuts.

As Figure 7.1 shows.
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(a) two clusters (b) three clusters (c) four clusters (d) six clusters (e) nine clusters

Figure 7.1: Different ways of cutting image

We processed the image set through out 1161 images for each of the cut-
ting schemes we proposed, and made the statistic evaluation according to eval-
uation criteria in terms of Overhead Ratio,Pixel Processing Load Imbalance
and Transmission Imbalance in section 6.2.1, 6.2.2 and 6.2.3.

7.1.1 Number Based Clustering-Overhead Ratio

By implementing equation 6.3 for 1161 images and for five different cutting schemes,
we obtained the overhead ratio results, as Figure 7.2 shows. As we divide the im-

Figure 7.2: Number Based Clustering-Overhead Ratio of Different Division
Schemes

age into more clusters, the overhead ratio increases accordingly. This is as what
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we have expected, it is reasonable that if one image is divided into more pieces, the
border lines will increase thus there will be more chance to produce the overhead
area. And another noticeable thing is though the overhead ratio is increasing as
we cut the image into more pieces, the amount of overhead pixels is still relatively
small, mean value of overhead ratio for nine-clusters is less than 0.1.

7.1.2 Number Based Clustering-Pixel Processing Load Im-
balance

As we have analyzed in section 6.2.2, for number based clustering, we distribute
the interest point to each cluster equally, but this still lead to pixel processing load
imbalance because the size of each interest area can vary. The pixel processing
load imbalance in terms of the real pixels that been assigned to the processing
node is defined in equation 6.4, the static results from processing 1161 images for
5 different cutting schemes is shown in Figure 7.3.

Figure 7.3: Number Based Clustering-Pixel Processing Load Imbalance of Different
Division Schemes

The results show us that even if each processing node is assigned to process
the same number of interest points, the actual processing load is still not balanced
perfectly. Specifically, as the image is divided into more parts, the pixel processing
load imbalance goes high. For the worst situation, e.g, the images were cut into 9
pieces, top 5% of the pixel processing load imbalance ratio Z are over 2, indicating
processing node that with heaviest processing load need to process twice as the
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average processing load.
However, it is noticeable that even the worst case can lead to twice pixel processing
load imbalance, the average pixel processing load imbalance is still less than 1.5.
For the 5% of the lowest cases, the pixel processing load imbalance is close to 1.

7.1.3 Number Based Clustering-Transmission Imbalance

For number based clustering, we were also interested in considering transmission
imbalance since we perform number based clustering by cutting the image into
rectangular areas. As defined in equation 6.5, the transmission imbalance can be
indicated by counting transmission imbalance ratio Di, which is the ratio that
reveals the relation from the size of largest sub image to the size of average sub
images. The result is shown in Figure 7.4. As we cut the image into more pieces,

Figure 7.4: Number Based Image Division Imbalance Ratio

the image division imbalance ratio will increase, and the mean value range of
different cut schemes is between 1.2 to 2.3.

7.2 K-means Clustering

We followed the k-means clustering algorithm introduced in Section 6.3. In our
implementation, we utilized basic Lloyd’s algorithm as the iteration algorithm,
and combined it by using k-d tree. For the initial seeds selection, we adopted
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the probabilistic means of initialization for k-means clustering proposed by Arthur
and Vassilvitskii in 2007 [40]. The iteration termination criteria we chose was
by utilizing the in-built stop criteria in OpenCV, that is, either by stoping the
algorithm iteration if specified accuracy is reached, or by stoping the algorithm
iteration if specified number of iterations are reached. We set the accuracy and
iteration attempts to 1.0 and 10 respectively. To be consistent with the number
based clustering, we assumed the number of processing node were the same as
the situation in number based clustering and each processing node take a cluster
of interest points as the processing load. Hence we set the number of clusters to
2,3,4,6,9 accordingly.

7.2.1 K-means Clustering-Overhead Ratio

We first consider the k-means clustering overhead ratio. We set the k value of the
algorithm to 2,3,4,6,9 respectively according to the assumption aforementioned.
Figure 7.5 shows the results. We can easily see the mean value of the overhead
ratio decreased almost an order of magnitude compares to number based clustering.
This is intuitive because k-means clustering algorithm can divide the interest points
into more sophisticated shape, thus reduce the possibility that the edge of clusters
intersecting with each other.
However, it is also noticeable that in Figure 7.5, the lowest overhead ratio comes
from k=6 instead of k=2, suggesting that six clusters might more fit for clustering
the interest points in images from our image dataset compared to other k values.

7.2.2 K-means Clustering-Interest Point Imbalance

As we set the k value of k-means clustering algorithm to 2,3,4,6,9, we obtained
k-means interest point imbalance as Figure 7.6 shows. From the result, we can
see that as we divide the interest points into more clusters, the interest point
imbalance increases accordingly. Especially, when we set the k to 9, the interest
point imbalance goes almost twice as much as six clusters and the average L reach
to 7. This indicates that when we divide the interest points of an image into 9
clusters using k-means clustering, the processing node which is assigned with most
of interest points will take seven times workload among average value.

7.2.3 K-means Clustering-Pixel Processing Load Imbalance

The same as we did in Interest Point Imbalance, we still divide interest points
into 2,3,4,6,9 clusters. Figure 7.7 shows the results. The results compared to
the number based pixel processing load imbalance are almost twice as much as
it. Suggesting k-means clustering would bring almost twice pixel processing load
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Figure 7.5: K-means Overhead Ratio

Figure 7.6: K-means interest point imbalance

imbalance over number based clustering.
It is also noticeable that compared to k-means interest point imbalance, the k-
means pixel processing load imbalance is lower. This is due to characteristic of
the interest point in an image. BRISK will detect a batch of dense but with small
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radius interest points to describe a clear blob while it will use less density but with
larger radius interest points to describe the relatively blurry blob. Hence this will
lead to a cluster with dense interest points has smaller interest area compared to
the cluster with less interest points.

Figure 7.7: K-means Pixel Processing Load Imbalance

7.3 DBSCAN Clustering

We implemented the DBSCAN clustering algorithm based on the description in
Section 6.4. Since DBSCAN clusters interest point into uncertain number of clus-
ters, to be consistent with the evaluation of number based clustering and k-means
clustering, we adjusted the parameters of ε and MinPts to 100 and 10 respectively,
to yield a reasonable range of clusters number of images in the image dataset to
be constraint from 2 to 10.

7.3.1 DBSCAN Overhead Ratio

Figure 7.8 shows the results of overhead ratio of DBSCAN. The results we obtained
is very intuitionistic. The DBSCAN reduced the overhead ratio more efficiently,
compares to k-means and number based clustering. There is over 90 percent chance
for DBSCAN to cluster interest points with overhead ratio less than 10−3, and over
75 percent chance to cluster without any overhead area.
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Figure 7.8: DBSCAN Overhead Ratio

7.3.2 DBSCAN Interest Point Imbalance

After calculation, we obtained the results of DBSCAN interest point imbalance as
Figure 7.9 shows. The mean value of interest point imbalance is higher than the
most unbalanced case in k-means clustering. This suggests that though DBSCAN
can provide better performance in overhead ratio, it can not balance the interest
points among each clusters nicely. That is, some of the clusters will contain lots
of interest point while others only contain a few of interest point.

7.3.3 DBSCAN Pixel Processing Load Imbalance

The results of pixel processing load imbalance of DBSCAN are shown in Figure
7.10. The DBSCAN pixel processing load imbalance is almost the same as DB-
SCAN interest point imbalance, while we have already obtained that in k-means
clustering, the pixel processing load imbalance is lower than interest point imbal-
ance, because of the existence of some less dense points with larger radius.
To explain this, we looked into the details of DBSCAN algorithm. DBSCAN ex-
cludes the noise points but k-means algorithm does not. Therefore, the less dense
interest points with large radius are not likely to be included in any clusters in DB-
SCAN, thus the pixel processing load imbalance is almost the same as the interest
point imbalance for DBSCAN.
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Figure 7.9: DBSCAN Interest Point Imbalance

Figure 7.10: DBSCAN Pixel Processing Load Imbalance

43



Chapter 8

Conclusion and Future Work

In this master thesis project, we explored the critical challenge of visual sensor
networks, that is, both high bandwidth and rich computational resources are re-
quired. In consequence, we were considering to extract the interest points on the
camera side, and transmits only the extracted interest points to the server. After
the calculation, we found the pixels of interest points in the image dataset is only a
quarter on average. This suggests that to extract the interest points on the camera
side can decrease the data flow in the visual sensor networks
To do so, we first extracted the interest points of an image by implementing BRISK
detector, and a step further, we implemented different clustering algorithms (Num-
ber Based Clustering Algorithm, K-Means Clustering Algorithm, DBSCAN Algo-
rithm) on detected interest points, we clustered the interest points into different
clusters, and examined the characteristic of different clustering algorithms with
respect to Overhead Ratio, Interest Point Imbalance and Pixel Processing Load
Imbalance.
From the results, we found that none of the proposed algorithm is overpowering
than others. Indeed, each of them has their own shining spot. Number Based
Clustering can deliver the interest points to the fixed number of processing nodes
nicely, because it was designed to assign interest points to the processing nodes
equally. But Number Based Clustering will lead to highest overhead ratio com-
pares to other algorithms. Thus Number Based Clustering suits for the scenario
that requires the data flow to be balanced restrictedly, but will need to consider a
high level overhead ratio as tradeoff.
DBSCAN algorithm, on the contrary, yields the highest interest point imbalance,
due to its characteristic that it can not pre-set the number of clusters and DB-
SCAN can cluster the interest points into convex or concave shape. This makes
DBSCAN not suit for the scenario that requires high performance on data-flow
balancing. However, DBSCAN performs extremely good in decreasing the over-
head ratio, that is, DBSCAN can cluster the interest points as much as avoiding
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causing of overhead area. This makes the data transmission very effective, and
thus suits for the scenario that the sources are limited.
K-Means Clustering Algorithm, comprises the strong and weak of other two al-
gorithms. K-Means Clustering can pre-set the number of clusters, and thus have
the middle performance regarding the interest point imbalance. And K-Means
Clustering has a better performance in decreasing the overhead ratio compares to
Number Based Clustering.
In our work, we calibrated the Eps and MinPts carefully for DBSCAN to con-
straints the number of clusters that yields by DBSCAN been limited in the range
from 3-10.
To sum up, we found extraction of interest points in a image can reduce the data
that needed to be transmitted in the network a quarter on average. The clustering
methods we proposed can help improving the performances with respect to over-
head ratio, interest point imbalance and pixel processing load imbalance. But the
clustering methods also brings extra computational consumptions on the camera
side. We did not seek for whether there is any trade off between computational
resources consumption due to the time limitation. Future work can be consider-
ing to assign several clusters to a processing node instead of one cluster for one
processing node, thus to be consistent with the results of Number Based Cluster-
ing and K-means Clustering that can preset the number of clusters. Possibilities
also could be searching for the trade off in between the computational resources
consumption and transmission gain due to the interest points clustering.
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