Urban Travel Time Estimation from Sparse GPS Data: An Efficient and Scalable Approach

MAHMOOD RAHMANI

PhD Thesis
Stockholm, Sweden 2015
Abstract

The use of GPS probes in traffic management is growing rapidly as the required data collection infrastructure is increasingly in place, with a significant number of mobile sensors moving around covering expansive areas of the road network. Many travelers carry with them at least one device with a built-in GPS receiver. Furthermore, vehicles are becoming more and more location aware. Vehicles in commercial fleets are now routinely equipped with GPS.

Travel time is important information for various actors of a transport system, ranging from city planning, to day to day traffic management, to individual travelers. They all make decisions based on average travel time or variability of travel time among other factors.

AVI (Automatic Vehicle Identification) systems have been commonly used for collecting point-to-point travel time data. Floating car data (FCD) - timestamped locations of moving vehicles - have shown potential for travel time estimation. Some advantages of FCD compared to stationary AVI systems are that they have no single point of failure and they have better network coverage. Furthermore, the availability of opportunistic sensors, such as GPS, makes the data collection infrastructure relatively convenient to deploy.

Currently, systems that collect FCD are designed to transmit data in a limited form and relatively infrequently due to the cost of data transmission. Thus, reported locations are far apart in time and space, for example with 2 minutes gaps. For sparse FCD to be useful for transport applications, it is required that the corresponding probes be matched to the underlying digital road network. Matching such data to the network is challenging.

This thesis makes the following contributions: (i) a map-matching and path inference algorithm, (ii) a method for route travel time estimation, (iii) a fixed point approach for joint path inference and travel time estimation, and (iv) a method for fusion of FCD with data from automatic number plate recognition. In all methods, scalability and overall computational efficiency are considered among design requirements.

Throughout the thesis, the methods are used to process FCD from 1500 taxis in Stockholm City. Prior to this work, the data had been ignored because of its low frequency and minimal information. The proposed methods proved that the data can be processed and transformed into useful traffic information.

Finally, the thesis implements the main components of an experimental ITS laboratory, called iMobility Lab. It is designed to explore GPS and other emerging data sources for traffic monitoring and control. Processes are developed to be computationally efficient, scalable, and to support real time applications with large data sets through a proposed distributed implementation.

Keywords: map-matching, path inference, sparse GPS probes, floating car data, arterial, urban area, digital road network, iterative travel time estimation, fixed point problem, Stockholm, taxi.
Acknowledgements

I would like to express my special appreciation and thanks to my supervisor Haris Koutsopoulos for his valuable guidance and support. I appreciate all his contributions of time, ideas, and funding to make my Ph.D. experience productive. I would like to thank my assistant supervisor Erik Jenelius for his valuable inputs, support, and collaboration. Special thanks to my wife Fayan for her personal support and great patience at all times. I owe my deepest gratitude to my parents and friends for their help and moral support.

I would also thank the following:

The Mobile Millennium Stockholm project team members at Sweco Infrastructure AB, ITS & Traffic Analysis; Linköping University; UC Berkeley, Department of Civil and Environmental Engineering, and California Center for Innovative Traffic (CCIT); and KTH.

IBM Sweden: especially Erling Weibust and Niklas Dahl for their Hardware and Software support.

My colleagues in the Swedish National ITS Postgraduate School.

My colleagues at KTH: senior researchers, administrators, fellow Ph.D. candidates, and students.

Mahmood Rahmani
KTH Royal Institute of Technology
June 2015
Preface

The thesis includes the following five articles, for which I am the main contributor (from problem specification, research design, methodology development and implementation to the analysis of results and writing):

Figure 1 illustrates a mapping between the five papers and various processing modules.
I have contributed to the following papers (being the main author of one and contributor of the rest):

Paper III is an extended version of VI. My contribution in paper VII is mostly in its Section 2; estimating travel times of the Stockholm-Arlanda route. The paper VIII is divided into arterial and highway sections. My contribution is the arterial part and floating car data. In paper IX, I contributed to the the case study in terms of data handling, network support and discussions. In papers X and XI, my contribution is in their case study where I processed Stockholm taxi data using my map-matching and path inference methods.
Contents

Acknowledgements v
Preface vii
Contents xi

Part I, Introduction 1

1 Introduction 1
 1.1 Background 1
 1.2 Research gaps 5

2 Research focus 7
 2.1 Research questions 7
 2.2 Limitations 8

3 Methodology 11
 3.1 Map-matching and path inference 11
 3.2 Route travel time distribution estimation 12
 3.3 Travel time estimation as a fixed point problem ... 13
 3.4 FCD and ANPR data fusion 14

4 Contributions 15

5 Conclusion and future work 19

Bibliography 23

Appendix 30

A The iMobility Lab 31
 A-1 Introduction 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2 Data infrastructure</td>
<td>31</td>
</tr>
<tr>
<td>A-3 Computing infrastructure</td>
<td>36</td>
</tr>
<tr>
<td>A-4 Information infrastructure</td>
<td>37</td>
</tr>
<tr>
<td>A-5 Application and services</td>
<td>37</td>
</tr>
<tr>
<td>A-6 Automated map error identification</td>
<td>39</td>
</tr>
<tr>
<td>A-7 Software architecture</td>
<td>41</td>
</tr>
<tr>
<td>A-8 Network graphs and spatial indexing</td>
<td>46</td>
</tr>
<tr>
<td>Digital road networks</td>
<td>46</td>
</tr>
<tr>
<td>Spatial 2D indexing</td>
<td>48</td>
</tr>
<tr>
<td>Part II, Papers</td>
<td>49</td>
</tr>
<tr>
<td>Paper I</td>
<td>51</td>
</tr>
<tr>
<td>Requirements and potential of GPS-based floating car data for traffic management: Stockholm case study</td>
<td>51</td>
</tr>
<tr>
<td>I-1 Introduction</td>
<td>53</td>
</tr>
<tr>
<td>I-2 ITS laboratory for real-time traffic data processing</td>
<td>54</td>
</tr>
<tr>
<td>Data Infrastructure</td>
<td>54</td>
</tr>
<tr>
<td>Computing Infrastructure</td>
<td>54</td>
</tr>
<tr>
<td>Information Infrastructure</td>
<td>55</td>
</tr>
<tr>
<td>I-3 Stockholm taxi GPS data analysis</td>
<td>56</td>
</tr>
<tr>
<td>Probe frequency</td>
<td>56</td>
</tr>
<tr>
<td>Temporal coverage</td>
<td>56</td>
</tr>
<tr>
<td>Spatial coverage</td>
<td>57</td>
</tr>
<tr>
<td>Analysis of travel time data</td>
<td>57</td>
</tr>
<tr>
<td>I-4 Conclusion</td>
<td>58</td>
</tr>
<tr>
<td>Paper II</td>
<td>59</td>
</tr>
<tr>
<td>Path inference from sparse floating car data for urban networks</td>
<td>59</td>
</tr>
<tr>
<td>II-1 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>II-2 Problem statement</td>
<td>63</td>
</tr>
<tr>
<td>II-3 Methodology</td>
<td>63</td>
</tr>
<tr>
<td>Map-matching</td>
<td>63</td>
</tr>
<tr>
<td>Path inference</td>
<td>64</td>
</tr>
<tr>
<td>Computational considerations</td>
<td>66</td>
</tr>
<tr>
<td>II-4 Application</td>
<td>67</td>
</tr>
<tr>
<td>Experimental design</td>
<td>68</td>
</tr>
<tr>
<td>Evaluation</td>
<td>68</td>
</tr>
<tr>
<td>Result</td>
<td>68</td>
</tr>
<tr>
<td>II-5 Conclusion</td>
<td>72</td>
</tr>
<tr>
<td>II-6 References</td>
<td>73</td>
</tr>
</tbody>
</table>
CONTENTS

Paper III

Non-parametric estimation of route travel time distributions from low-frequency floating car data ... 75

III-1 Introduction .. 77

III-2 Preliminaries .. 78
- Network route travel time ... 78
- Travel time measurements from FCD .. 79
- Sources of bias .. 79

III-3 Methodology .. 80
- Transformation .. 80
- Weighting ... 82
- Aggregation .. 84

III-4 Application .. 84
- Data ... 84
- Experimental design ... 85

III-5 Results .. 86
- Comparison with ANPR .. 86
- Analysis of FCD bias corrections .. 89
- Correction for non-representative vehicle sample ... 91

III-6 Computational performance .. 93

III-7 Conclusion ... 95

III-8 References .. 95

Paper IV

Travel time estimation from sparse floating car data with consistent path inference: A fixed point approach ... 97

IV-1 Introduction ... 99

IV-2 Methodology .. 102
- Background .. 102
- Problem formulation .. 103
- Fixed point iteration .. 104

IV-3 Application ... 107
- Data and algorithms .. 107
- Experimental design ... 108

IV-4 Results ... 109
- Convergence .. 109
- Impact on link travel times ... 112
- Impact on path travel time and shortest paths between OD pairs ... 114
- Sensitivity analysis ... 114

IV-5 Conclusion .. 118

IV-6 References ... 119

Paper V

.. 121
Floating car and camera data fusion for non-parametric route travel time estimation
V-1 Introduction ... 123
V-2 Methodology ... 123
 Preliminaries .. 123
 Travel time estimation 124
V-3 Application ... 125
 Experimental setup 125
 Results .. 126
V-4 Conclusion .. 126
V-5 References .. 126
Chapter 1

Introduction

1.1 Background

Traffic congestion has become one of the major problems in large cities around the world. With the continuous migration to cities the problem is growing (according to the UN more than 50% of the world’s population now lives in cities). Cities have been trying to alleviate congestion by increasing capacity, e.g. expanding infrastructure, building high throughput roads, and supporting public transport. On the demand side, city officials also try to recognize and change people’s travel habits, and encourage travelers to use public transport alternatives. Other policies include spreading peak hours and limiting traffic in certain areas by introducing congestion pricing. Despite all these measures, the congestion problem is far from solved.

In order to tackle traffic congestion problems, the transport system itself and its interaction with the environment have to be better understood. Municipalities have been trying to increase their knowledge about travel demand by collecting data from different sources. In order to better understand travel patterns, i.e. how, why, when, and from where to where people move, surveys are typically conducted among citizens asking about their daily trips. This data collection method is usually costly and is carried out infrequently, e.g. every several years. Such information helps authorities to make strategic decisions.

Traffic control centers, on the other hand, need real-time data to estimate and predict the state of traffic and make decisions on managing and controlling the network. In this case, data is usually collected via stationary sensors such as loop detectors, radar sensors, or cameras installed in the city. The cost of setting up and maintaining traffic sensors is high. It is impractical to cover the entire road network of a city by stationary sensors. Hence, many cities are looking for alternative or complementary sources of travel and traffic data. In this regard, systems that are built for other purposes but give the opportunity of collecting traffic information are recently receiving a lot of attention.
CHAPTER 1. INTRODUCTION

Monitoring traffic conditions in light of increasing congestion in urban areas is critical for traffic management and effective transport policy. One indicator of traffic conditions is travel time which is used by network operators as an indicator of quality of service. Provision of travel time information is also important as a means of dealing with congestion. Examples of technologies for travel time data collection include loop detectors and automatic vehicle identification (AVI) sensors \[11\]. AVI systems, automatic number plate recognition (ANPR) cameras, and more recently, Bluetooth devices provide direct measurements of travel times.

Devices with built-in GPS (Global Positioning System) receivers have become popular. Many travelers carry with them at least one GPS-enabled device. Furthermore, vehicles are becoming more and more location aware. Dispatching systems for taxis, delivery trucks, public transportation, ambulance services, etc. communicate, one way or another, with their counterparts moving around in the city and collecting floating car data (FCD) which includes their timestamped geo-locations. Such vehicles are also called probe vehicles. This type of opportunistic sensors are already in place. Traffic authorities are interested in FCD because of: (a) no installation cost, (b) no maintenance expenses for third-parties, (c) extensive spatial (and temporal) coverage, and (d) redundancy (if one sensor fails others can cover for it).

Travel time can be estimated from FCD. But, since commonly available FCD is sparse (less than once or twice per minute due to bandwidth limitations and data transmission costs), vehicles may traverse multiple links between consecutive probes, which means it is often challenging to estimate travel times from FCD \[12\].

FCD can be categorized based on penetration rate and frequency of reports. Figure 1.1 illustrates the combinations of the two aspects. FCD that fall in the lower-left category in this chart are difficult to use for traffic state estimation. The number of vehicles is low, so the confidence in the data decreases. The lower-right class provides rich and detailed data for very few vehicles. Although adequate for capturing the dynamics at the link level, this type of FCD has low network coverage. The upper-left category is the type of most of today's available FCD, mainly from fleet management systems. Thousands of vehicles in an urban area report their location once in every 30 sec to 3 minutes. They usually have a small set of attributes, geo-location, timestamp, and ID, and because the systems providing such data use 10-20 years old technologies, they often do not have the ability to add more attributes. Despite all processing difficulties associated with this group of FCD, useful traffic information can be estimated with careful pre-processing. Finally, the upper-right corner of the chart is the class of high-quality FCD. This type of FCD is increasingly becoming popular but still not readily available. They are rich with several attributes, e.g. speed, heading, and acceleration. Today, a typical vehicle is equipped with several sensors and runs millions of lines of code. Car manufacturers collect high resolution data from each vehicle for monitoring and troubleshooting purposes. Such FCD, referred to as extended FCD, potentially increase the accuracy of traffic state estimation. In addition, crowdsourcing FCD becomes more and more common, where in addition to automatic location reports,
travelers may report what they experience, e.g. traffic jams and accidents.

![Figure 1.1: FCD Frequency versus penetration rate chart.](image)

Today’s commonly available FCD are sparse with medium penetration rate. Using such data has its own difficulties: (a) they are usually raw and need to be preprocessed for traffic applications using advanced methods, (b) a digital road network is required to map the geo-location data (latitude and longitude) to streets, in contrast to the predefined locations of stationary sensors, (c) frequency of the reports is low and that requires sophisticated pre-processing methods, (d) privacy of individuals has to be preserved, and (e) the penetration rate of probe vehicles (the ratio of the number of probe vehicles to the total number of vehicles in a region) is usually low.

The challenge of matching geo-location data to digital road networks and path finding can be explained better using a real example shown in Figure 1.2. In this example, two locations are reported by a vehicle at times t_0 and t_1. The first location has four links in its vicinity and the second has two links. Eight paths between the two points are feasible depending on which pair of links is selected (much longer paths would be infeasible because the vehicle’s speed is limited). The problems of matching the location points to a map and finding the most likely path that connects them are known in the literature as the map-matching and path inference problems respectively.

In addition to path inference, another challenge in the estimation of travel times from FCD is the fact that probe vehicles do not report exactly at the beginning and end of links/routes of interest. Therefore, their trajectories may partially overlap
with the link/route of interest.

Figure 1.2: An example showing the challenge of finding path connecting two consecutive probes; 4 candidate links of one probe to 2 candidate links of the next probe.
1.2 Research gaps

The main gaps identified in the literature include:

Off/on-line path inference method for sparse FCD

The problem of map-matching has been addressed in the past mostly in the context of navigation, assuming that frequent GPS probes are available [13]. More recently, there has been a lot of interest in sparse FCD. Traffic authorities are interested in utilizing FCD as means of collecting travel time data, and if possible, link flows as well as origin-destination flows. Sparse FCD requires different approaches for map-matching. A number of path inference methods for sparse FCD have been proposed in the literature [14, 15, 16, 17], but they all rely on instantaneous speed and heading in addition to geo-location and timestamp.

A method is needed for cases where minimum information (latitude, longitude, and timestamp) is provided. Thus, it should be independent of attributes such as heading, speed, and odometer that are used by existing methods.

While existing methods work on a complete set of probes from a trip, there is a need to also be able to perform map-matching and path inference as the stream of data arrives, meaning that the end of the trip data has not yet arrived.

Scalable real-time route travel time distribution estimation

Several studies have shown that link travel times can be estimated from FCD [18, 19, 20, 21]. Estimating different statistics of route travel time distributions based on link travel times is not straightforward and there are few studies on the estimation of route travel time distributions which are scalable. There is a need for a simple and efficient method for estimating route travel time distribution that can be applied to large networks in real-time.

Consistency between path inference and travel time estimation

Path inference for (sparse) FCD, in general, requires the knowledge of a priori link travel times in order to infer paths that are temporally consistent with the observed information. However, accurate link travel times may not always be available (indeed, they are the desired output of the estimation). Due to lack of good initial travel times, the inferred paths of the vehicles are generally not consistent with the estimated travel times. Given the assumption that travelers choose paths to minimize some functions of travel time, it can be concluded that the path inference, and hence travel time estimation, are biased. The mutual dependency of path inference and travel time estimation has only been addressed in a few previous studies [22, 23].
Mobile and stationary traffic data fusion

Each data collection system has its own advantages and disadvantages. Stationary sensors usually have less measurement noise than mobile sensors but their network coverage is limited. On the other hand, mobile sensors, commonly installed in fleet vehicles, cover relatively wider areas of the network but they suffer from low penetration rate and low sampling frequency. Traffic state estimations can benefit from fusion of data collected by various sources as they complement each other and the fusion increases the robustness of the estimations. A recent study shows that average travel times on a highway network can be estimated accurately and reliably by fusion of FCD, loop detector data, and Bluetooth data [24]. There is a gap in the literature when it comes to the fusion of stationary (e.g. ANPR) and FCD for arterial networks [25].

Outline of the thesis

The thesis is organized as a collection of papers. It is divided into two parts: introduction and papers. The introduction part involves five chapters. Chapter 1 gives a background and overview of the problem. Chapter 2 enumerates research questions. Chapter 3 describes the methodology. Chapter 4 summarizes the contributions. Chapter 5 concludes the thesis and illustrates future works. Part two includes 5 chapter, one for each paper. Appendix A describes the development and architecture of an ITS lab, called iMobility Lab, as one of the contributions of the thesis.
Chapter 2

Research focus

This section describes the research focus presented in terms of research questions and the limitations of the research.

2.1 Research questions

The purpose of the research is to develop methods to estimate the state of traffic in an urban area, specifically travel time profiles using FCD. Moreover, the methods are designed with the aim to be computationally efficient and scalable, so that they can be applied on large-scale networks with millions of links and big data sets. Another criterion considered in the development of the methods is the employment of different levels of abstraction to provide flexibility in handling heterogeneous data sources and meta data.

The thesis addresses the following research questions:

RQ1 What is the potential of using floating car/person data in transportation?
FCD are new data in transport systems. Some studies have shown the potential of FCD in various applications, ranging from traffic state estimation to map correction, etc. At this early stage of development, there is a need to further investigate the potential of FCD in transportation.

RQ2 What are the requirements for using floating car data in transportation?
FCD, similar to any other source of data, have their own limitations and difficulties to work with. They require pre-processing, filtering, and a computing infrastructure designed for processing large volumes of data. More research has to be done to identify the requirements for utilizing FCD in a transport system.

RQ3 How to make raw FCD suitable for transport applications?
Raw FCD are a sequence of timestamped locations and have to be translated into elements that are understandable for traffic and transport applications. Thus, the FCD collected by several vehicles have to be converted
to flow, density, speed, travel time, etc per road, segment, region, and so on. Methods have to be developed to perform such transformations.

Sparse FCD are sometimes considered to be not good enough for estimating traffic conditions in dense areas of a city, due to ambiguity in the path taken by the vehicles. The question is whether or not such belief is correct, and if large data sets of sparse FCD can be useful with the help of advanced methods.

RQ4 What are the sources of bias when the probe vehicles do not represent the entire population?
Generalizations of estimates from probe vehicles to the entire population can be biased if the data are collected only by a particular group, e.g. taxis. The reason is that such probe vehicles are not representative of the whole population of vehicles in a city. The question is how to identify the sources of bias and correct them.

RQ5 Is it feasible to develop methods that are computationally efficient for large networks?
Advanced methods for estimating traffic conditions from sensory data are usually computationally heavy. Applying such methods to the entire network of a city is often infeasible. The possibility of developing computationally less demanding methods requires more research.

RQ6 What are the effects of initial assumptions about the traffic in a network on the estimation of traffic state based on FCD?
When processing FCD for estimating travel times, some assumptions have to be made regarding the state of the network. Specifically, many of the proposed methods require an initial estimate of travel times. How does the selection of the initial conditions affect the final estimates?

RQ7 How to fuse stationary and mobile travel time data? What are the gains?
Nowadays, every modern city is equipped with various traffic sensors. The problem is that there is no single type of sensor that covers the entire network and meets all the requirements of traffic applications. Traffic control centers are usually interested in a system that takes into account all available data sources when answering traffic questions. The question is how to fuse different types of data and what the gains are from combining them together.

2.2 Limitations

Although the methods developed in this thesis can also be applied on floating person data, the focus of the research has been on floating car data. The underlying assumption is that the reported locations belong to a vehicle. In the case of floating person data, a pre-processing of the data is required to identify the transport mode.
2.2. LIMITATIONS

The map-matching and path inference methods introduced in this thesis are designed for outdoor movements. This is a different concept compared to indoor map-matching which is a popular topic in the field of mobile robots.

The thesis assumes a static definition of the digital road network. In reality, road networks change over time, from simple changes in the direction of traffic for a street to major changes in the infrastructure. Ideally, a digital road network should be treated as a dynamic entity that changes over time and keeps track of changes. The assumption of a static network is used in many studies and real applications today and is not restrictive.

This thesis focuses on processing FCD after they are collected. How to plan and collect data is an important topic but out of the scope of the thesis (for guidelines see the handbook of travel time data collection [26]).
Chapter 3

Methodology

The thesis tackles the research questions listed in Chapter 2 by developing four methods for:

- Map-matching and path inference,
- Route travel time distribution estimation,
- Travel time estimation as a fixed point problem, and
- Traffic data fusion.

Each method is discussed in detail in a corresponding paper. This chapter summarizes the methods and refers to the corresponding paper.

3.1 Map-matching and path inference

In order to find the most likely trajectory for a given sequence of FCD, a two-step method is proposed: map-matching and path inference.

Map-matching

Map-matching identifies a set of links in the vicinity of each GPS probe and finds a matched point along each link (for details, see Paper II, Section 3).

Path inference

Path inference finds the most likely path for a sequence of candidate map-matched points and corresponding road network. Path inference consists of three steps:

- connecting candidate matched points with shortest paths
- building a candidate graph
• finding the most likely path in the candidate graph.

For details of the path inference method, refer to Paper II, Section 3.

3.2 Route travel time distribution estimation

The methodology for estimating the travel time distribution on a network route using low-frequency FCD is a non-parametric kernel-based approach. The output of the estimation includes statistics of the travel time distribution of interest (moments, percentiles, probability density function, etc.).

The estimation method consists of a sequence of steps: transformation, weighting, and aggregation. The first step transforms map-matched FCD observations that only partially overlap with the network route to observations of the route travel time. Each observation is then weighted according to its relevance as a route travel time observation. The final step is to aggregate all weighted observations and calculate the sought statistics.

Transformation

The first step of the methodology is to transform each FCD observation partially covering the route into an observation of the actual route travel time. The step is performed independently for each observation and consists of four processes: concatenation, allocation, scaling, and route entry time estimation (for details, see Paper III, Section 3.1).

Concatenation. Depending on the length of the network route in relation to the sampling frequency of the FCD, a vehicle may report multiple probes along the route. It is reasonable, however, to consider one passage of a vehicle on the route as one travel time observation. Consecutive observations from the same vehicle are thus concatenated into a single travel time observation. The result is a new, smaller set of FCD observations to be used in the subsequent steps of the methodology.

Allocation. The next step considers the FCD observations that partially traverse the network adjacent to the route. For each observation, the observed travel time is allocated between the network route and the adjacent network. The allocation is based on the prior link travel times and the distance traversed on each link.

Scaling. While the allocation step estimates the time spent on the network route for each FCD observation, the observations do not, in general, traverse the entire route. The next step, therefore, is to scale up the travel time observations to the entire route. Similar to the allocation, the scaling is based on the assumption that the ratio between the travel time on the overlap route and the travel time on the entire network route is the same as for the prior travel time estimates on the same sections.
Route entry time extrapolation. The time that each probe vehicle passes the beginning of the network route (the route entry time) is in general not observed or may not even exist if the vehicle joins the route at some point further along the route. However, the route entry time is the basis for clustering observations and aggregating statistics. For each observation the route entry time, real or hypothetical, is estimated based on the prior travel time estimates along the same lines as the allocation and the scaling.

Weighting

After transformation, each route travel time observation is assigned a weight that determines the influence of the observation in the estimation of route travel time statistics. Observations are weighted for two reasons: to reflect the level of representativeness of the observation in relation to the route; and to correct for sampling bias due to uneven coverage of the route (see Paper III, Section 3.2, for details).

Aggregation

The last step of the estimation process calculates statistics of the route travel time distribution from the travel time observations and the associated weights. The observations are aggregated based on the corresponding route entry time according to pre-specified clusters (i.e., time-of-day intervals, weekday, season, etc.). For details, see Paper III, Section 3.3.

In order to unbias for non-representative vehicle sample, a regression analysis investigates the relation between route attributes and the deviation of FCD-based travel times from those of the entire population observed by the ANPR system. The estimated travel times are corrected by a model using significant explanatory variables from the regression analysis (see Paper III, Sections 5.2 and 5.3).

3.3 Travel time estimation as a fixed point problem

Many map-matching and path inference methods make assumptions about initial link travel times, especially in the application of the shortest path algorithm. However, true travel times are still not known, and the path inference results may thus be inconsistent. This thesis addresses this problem based on a fixed point problem formulation. Let \(f_D \) be a combined function of path inference and travel time estimation and \(D \) a set of FCD. The fixed point \(x^* = f_D(x^*) \) of travel times can be found as follows: initial travel time profiles \(x^0 \) are used in the first iteration to process \(D \) and estimate link travel time profiles, \(x^1 = f_D(x^0) \). For the second iteration, \(x^1 \) is used as a priori profile to compute \(x^2 \), as \(x^2 = f_D(x^1) \). The iterative process continues until a termination criterion is met. Note that the same set of FCD is used throughout the process. The estimates of one iteration \((x^k) \) may be smoothed (by an update rule e.g., the method of successive averages) before being
used in the next iteration. A summary of the process is given by the flowchart of Figure 3.1. For details refer to Paper IV.

![Figure 3.1: The flowchart of travel time estimation as a fixed point problem.](image)

3.4 FCD and ANPR data fusion

A method for fusion of FCD with data from ANPR system is introduced. ANPR data are travel times collected from ordered pairs of cameras which identify vehicles based on optical recognition of license numbers. An ANPR route is defined as the path between the locations of the first and the second camera (more precisely, the locations where vehicles are detected); it is assumed that there is a unique reasonable route between the two locations. A data record is created whenever the same vehicle is identified sequentially by both cameras. A record is a triplet \((h, s, e)\), where \(h\) is a unique ANPR route identifier, and \(s\) and \(e\) are the timestamps of the detection of the vehicle at the first and the second camera, respectively.

The method first converts ANPR reports to timestamped trajectories (consistent with the trajectory format of path inference output), then applies the route travel time estimation method (introduced in Section 3.2) on a mixed data set of ANPR and FCD trajectories. The method is described in detail in Paper V.
Chapter 4

Contributions

The contribution of each paper included in this thesis to the research questions outlined in Chapter 2 are illustrated in Table 4.1.

Table 4.1: Relationship between research questions and papers.

<table>
<thead>
<tr>
<th>Research question</th>
<th>RQ1</th>
<th>RQ2</th>
<th>RQ3</th>
<th>RQ4</th>
<th>RQ5</th>
<th>RQ6</th>
<th>RQ7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papers</td>
<td>I-V</td>
<td>I, II</td>
<td>I-V</td>
<td>III</td>
<td>I-III</td>
<td>IV</td>
<td>V</td>
</tr>
</tbody>
</table>

RQ1: What is the potential of using floating car/person data in transportation?

Authorities, although interested in utilizing FCD, tend to underestimate the usefulness of “sparse” FCD because they believe that the quality of the data is not adequate. The thesis develops models, filters, and processes to turn raw sparse FCD into traffic information (Paper I-III). It investigates how the data covers the road network both spatially and temporally. It shows that reliable traffic information in terms of link/route travel times can be estimated from historical data (collected over months or years) and is comparable to direct travel times observed by dedicated stationary sensors. It demonstrates with a few scenarios (in Paper II) the potential of using FCD to identify digital map issues and inconsistencies and help fixing them. The research concludes that although sparse FCD are not ideal, they can be used as an important resource for generating traffic information.

RQ2: What are the requirements for using floating car data in transportation?

In paper I, the requirements of an ITS Lab are introduced. Although the focus of the research is on FCD, this source of data is seen as one of many sources in
the context of an ITS Lab; hence, a broader and holistic view of the problem is considered in designing the infrastructure. In addition, the potential growth of the number of sensors and their reporting frequency demands a scalable infrastructure. An ITS center should be capable of processing extensive amount of traffic data, both offline and on-line. During recent years, the stream processing paradigm—sometimes referred to as map-reduce (because of one of its successful implementations)—has attracted many big data applications. Paper I selects a stream processing platform, IBM InfoSphere Streams, and demonstrates how a scalable FCD processing system can be built.

RQ3: How to make raw FCD suitable for transport applications?

FCD provide a sequence of timestamped geo-locations. Without path inference, the amount of information that can be extracted from such sequence of locations is low. It only reveals how long it took the vehicle to drive from one geo-location to the next. Therefore, raw FCD may answer questions like how long it takes to travel between two arbitrary points on a network if and only if there have been reported sequences containing the two selected points. With sparse FCD and relatively low penetration rate, it is likely that no data matching such criteria can be found to answer the question. Besides, raw FCD is incapable of answering questions like what the travel time of a given path is. Map-matching and path inference are important filters to turn x-y coordinates to a format that is understandable and useful for traffic and transport applications, i.e. timestamped trajectories.

Several studies have shown that link travel times can be estimated from FCD [18, 19, 20, 21]. In general, these methods allocate the travel time between two consecutive probes to the traversed links. When it comes to routes, average route travel times can be estimated from the average link travel times. However, a drawback of a link-based approach is that statistics of the route travel time distribution (apart from the mean value) are not straightforward to derive from the travel time distributions of the constituent links. For many applications, for example, monitoring of path travel time reliability, estimation of the variance and percentiles is as important as the calculation of the mean. While several models have been proposed [19, 27, 28, 8], they typically rely on strong assumptions about the functional form of the link travel time distributions and the correlation structure. For real-time applications, there is also a trade-off between the complexity of the model and the computational efficiency of route travel time calculations.

Paper I, with the Stockholm-Arlanda example, shows how FCD (without map-matching) can be used for estimating the travel time between origin-destinations of a popular route. Paper II develops scalable map-matching and path inference methods, which are used further to estimate travel times. Paper III introduces a non-parametric travel time estimation method that is suitable for large scale networks. A key point of the method is that it is fast and can estimate the travel time distribution of any arbitrary path (defined on the fly) using years of historical data in a matter a second. The paper compares the estimated route travel times with
direct travel times from stationary sensors and that shows the method accurately estimates the travel time distributions for several routes. It also discusses cases where FCD-based estimates do not match the observed travel times due to some biases, and how to correct them.

RQ4: What are the sources of bias when the probe vehicles do not represent the entire population?

Estimation of traffic conditions based on FCD collected from professional fleets (such as taxis) may be biased for several reasons. One example is the bias due to differences in traffic rules applied to these fleets: e.g. taxis may be allowed to use public transport infrastructure. Other biases may be due to differences in driving behavior, or vehicle types. Paper III enumerates a number of sources of bias. Among them is the fact that taxis are allowed to take bus lanes, which introduces a bias to the estimated travel time of those links. The paper introduces a method for correcting the bias with the help of other data sources.

RQ5: Is it feasible to develop methods that are computationally efficient for large networks?

Computational efficiency is a requirement for today’s transport applications. Data driven methods should be designed so that they can process large volumes of data for a full size city network. The methods developed in this thesis -from path inference to travel time estimation- are designed to be efficient and scalable. They have been tested on large data sets (with \(10^6\) probes) and large-scale networks (with \(10^5\) links) and show good performance. Paper II, Section 4.3 illustrates that the proposed path inference method can handle 50 probes per second (or 3000 probes per minute). Thus, a single instance of the software can handle up to 3000 vehicles reporting their location (on average) once per minute. The method scales up by running multiple instances of the process. Paper III, Section 6, shows that the route travel time estimation method can estimate the travel time distribution of a path in a matter of a second and that it scales well for larger data sets.

RQ6: What are the effects of initial assumptions about the traffic in a network on the estimation of traffic state based on FCD?

Paper IV tackles this question by proposing an iterative process for the joint path inference and travel time estimation problem. The method converges to a fixed point where the input and output link travel times are consistent. Results from the Stockholm case study show that the method converges fast. The iterative method increases the number of links that are included in the travel time estimation, compared to the standard approach (no iteration). In general, the iterative approach makes initial and estimated travel times similar, which results in consistency between path inference and travel time estimation.
RQ7: How to fuse stationary and mobile travel time data? What are the gains?

AVI and FCD have complementary strengths as FCD provide network coverage while AVI data provides more accurate measurements on specific route segments (larger sample size). The combination of AVI data and FCD has not been studied much in the literature [25]. A data fusion methodology for the estimation of freeway space-time speed diagrams based on loop detector data, AVI and FCD has been proposed [29]. A recent study proposes a travel time estimation method based on fusion of FCD, loop detector, and Bluetooth data [24]. To the best of my knowledge, no studies have combined ANPR and FCD to estimate travel time distributions for arterial routes.

Timestamped FCD trajectories (the output of the path inference method) and ANPR travel times are both measures of travel times from one point on a road network to another along a trajectory. Such similarity makes it feasible to combine the two data sets. Paper V proposes a data fusion method and illustrates in a case study that the fusion increases the robustness of the estimation.

Other contributions

This thesis has also contributed to several projects:

- **Establishing the iMobility Lab.** The thesis contributed to the design and implementation of an ITS Lab, named iMobility Lab\(^1\). iMobility Lab was the recipient of IBM’s Shared University Research Grant and IBM’s Smart Planet award 2010. For details of the contribution, see Appendix A.

- **Mobile Millennium Stockholm (MMS).** The MMS project is funded by the Swedish Transport Administration and is a collaboration between Trafik Stockholm, UC Berkeley, KTH, Linköping University and Sweco. The aim of the project is to assimilate the knowledge and experience gained from the Mobile Millennium project at UC Berkeley and develop new methods for data fusion [7]. The methods developed in this thesis have been integrated and are running within MMS at Trafik Stockholm.

- **Real-time stream computing.** The path inference and travel time estimation methods are designed considering real-time stream processing requirements [30]. Hence, they can be used as *operators* in a graph of operators within a stream processing framework. Each operator has a number of inputs and outputs. The stream of input (GPS data) is processed by the path inference operator and a stream of results (timestamped trajectories) is sent out to the travel time estimation operator. The processes can scale up horizontally by adding more operators. For more detail see [6, 1].

\(^1\)www.imobilitylab.se
Chapter 5

Conclusion and future work

The increasing availability of floating car data and data from other emerging sensors facilitates a number of interesting applications related to traffic monitoring and management. The thesis develops and implements the main components of an experimental ITS laboratory designed to provide the functionality needed to support the use of such data. The laboratory takes advantage of different technologies such as stream computing to provide the computational resources needed for real-time processing of the large amounts of (potentially heterogeneous) data.

The thesis proposes a map-matching and path inference algorithm for sparse GPS probes. The performance of the proposed method on data collected for a case study in Stockholm indicates that the method is robust with respect to various probing frequencies and performs favorably compared to methods recently proposed in the literature. The method is used for both, off-line (for historical data) and on-line (for real-time data) applications.

The thesis also presents a non-parametric method for the estimation of the distribution of travel times along routes from sparse FCD. The method provides estimates not only of the mean but also any statistics of the route travel time distribution. FCD has several sources of bias, including incomplete and uneven coverage of the route, and partial coverage of the adjacent network. The method involves a number of steps designed to reduce the impacts of these factors. It is designed to be efficient for real-time, on-demand applications such as trip planning services. Furthermore, many steps in the calculation procedure can be performed in parallel which reduces computing time further. The thesis also discusses correction of the bias due to non-representativeness of the FCD sample, when other data sources, such as ANPR, are available.

An iterative (fixed point) process for a joint path inference and travel time estimation problem is proposed. For evaluation purposes, a case study is used to estimate travel times from taxi FCD in Stockholm, Sweden. The method converges to a fixed point where the input and output link travel times are consistent.

Finally, the route travel time estimation method is used to fuse FCD and ANPR
data. The approach combines the network coverage of FCD with the relatively more accurate measurements on specific route segments of ANPR. Application results suggest that the fusion increases the robustness of the estimation, meaning that the fused estimate is always better than the worst of the two (FCD or ANPR), and sometimes better than the best of them.

A number of future research directions have been identified. The proposed path inference method infers the most likely path for a given sequence of probes. The method can be developed further to capture the uncertainty in inferred paths by generating multiple alternatives, with a measure of confidence provided for each alternative. The confidence factor can be incorporated in the travel time estimation method to put more weight on observations with higher confidence.

Travel time in an arterial network is composed of running time and stopped delay time (due to e.g. intersection delays). The travel time estimation method proposed in this thesis allocates observed travel times from FCD entirely to network links without separating running times from delays. Mixing delays with running times makes it difficult to estimate the time of crossing an intersection in different directions (left or right turn and going straight). A future direction of research is to distinguish running from delay times and estimate delays for left/right turns and going straight.

Another direction for future research is to use digital road networks with histories of changes. Many studies assume a static definition of the digital road network even though network changes take place all the time, ranging from simple changes in speed limits to more serious ones, such as direction of traffic for a street or even major infrastructure changes. There are several research questions in this regard: What is the effect of using static road network? How can the network definition be updated more frequently? Can FCD be used to detect that changes in the road network have taken place early? How to keep track of different versions of a network? How to ensure that traffic data sets and network definitions are used consistently? And finally, how to transfer the results of processing traffic data between different versions of a road network (e.g. developing models to estimate statistics of network links considering the changes of the underlying network over time)?

The proposed method of fusing FCD and ANPR requires further research to evaluate the method on a varied set of network routes and data sources, and to calibrate the parameters of the method to optimize the performance.

Data collection from different sources other than stationary traffic sensors is anticipated to grow in future. Wireless technologies enable vehicle-to-vehicle, vehicle-to-infrastructure and infrastructure-to-vehicle communication. Utilizing such data enriches the available information on traffic conditions and that accelerates needs for data fusion for transport systems.

It is anticipated that in the future there will be higher penetration of mobile phones and connected vehicles. The Internet of Things and high speed data transfer networks will facilitate communication and interaction between consumers, products, and manufacturers. With improvements in battery life, the limitation on the number of probes due to battery consumption will be relaxed, increasing the
number of reports per traveler. These trends will result in the collection of more mobility data. More and better quality data will change systems and services in cities, and consequently how people interact with their environment including their travel behavior. Particularly, high resolution-high penetration floating car/person data can improve existing methods (e.g. path inference, traffic estimation) and also create new opportunities such as modeling the dynamics of traffic along network links in greater detail and better understanding of the demand.
Bibliography

Appendix A

The iMobility Lab

A-1 Introduction

The methods developed in this thesis is a part of a bigger picture, which is the development of an intelligent transport system (ITS) laboratory. It aims at providing the required infrastructure and information technologies for conducting research on transportation problems. That involves traffic data collection, filtering and data mining, organizing the data for future retrieval, simulations and modeling, and providing services for various types of users. This section introduces the ITS lab at KTH, called iMobility Lab, and the contribution of this thesis in the development of the Lab. Figure A.1 summarizes the lab and its interactions with the environment.

A-2 Data infrastructure

Data infrastructure refers to technologies that are already in place and used for data collection. The lab takes advantage of the data, but installation and maintenance of the data collection infrastructure is out of the scope of the lab. However, the research in the lab can result into more effective data collection methods. As an example, a study has shown the impact of sampling by time and distance on travel time estimation of floating car data [81].

The lab works with various types of traffic and traffic-related data: floating car data; counts and speeds from radar sensors; incident, accident, road work data; travel time information from cameras; and weather data.

The main source of FCD is a fleet of more than 1500 taxis operating in the Stockholm area. Each vehicle reports its GPS position, vehicle id, occupancy status (hired or free) and timestamp at certain intervals.
Flow and speed data collected by the Motorway Control System (MCS) in Stockholm is another source of traffic data. The MCS uses a number of microwave sensors placed on a number of highway links in the network to collect the number of passing vehicles and the average speed per lane aggregated in 1-minute intervals. Thus, every record consists of: detector id, timestamp, total flow, and mean speed in the corresponding interval.

Another data source provides the road data which includes accident information, road works, etc. It consists of timestamp, location, and estimated duration of the event.

Automatic number plate recognition (ANPR) based on video processing is used not only by the congestion pricing system, but also by the city to collect travel time data on more than 100 selected routes. The system is deployed to support the development of real-time travel time information for major arterials in the Stockholm downtown area. A travel time observation is obtained from the difference between the time stamps of a vehicle passing two cameras. Each travel time record consists of a route id, a passage time, and time stamps for the detections by the two cameras. Figure A.2 depicts the routes and location of cameras in Stockholm inner city.

Stockholm introduced a congestion charging system with a tax that varies by time of day. The system is based on number plate recognition through video technology.
Figure A.2: The routes and cameras for measurements of travel-times in the city of Stockholm 2009-2013 (source: Swedish Traffic Road Administration).
It provides data on flows by time of day. Figure A.3 shows the 18 detection stations, strategically located at entry points to the inner city.

Buses are equipped with an automatic vehicle location (AVL) system that monitors the performance of the system and broadcasts related information (including for example, how buses are running relative to the schedule).

Swedish Road Weather Information System (RWiS) consists of more than 700 weather stations located around the country, several in the Stockholm area (Figure A.4). Each weather station measures wind speed and direction, air and road surface temperature, air humidity and precipitation.
Other traffic data, typical of legacy systems, are also available, such as counts and speeds from loop detectors. The lab receives the FCD, MCS, ANPR, and incident data in real-time.

Figure A.4: The map of weather stations in Stockholm (source: gis.vv.se/iov).
A-3 Computing infrastructure

Integration and processing of the traffic data from diverse sources requires a computing platform that is scalable and flexible to support the diverse needs of the various applications (ranging from real-time monitoring and control to archiving and long-term planning), and facilitates development and implementation. The computing platform should be able to handle data streams from all relevant sources (motorways, urban streets, tunnels, transit, rail, weather, environmental sensors, etc) and associated databases.

For the last 8 years clock speed of microprocessors has stopped advancing. Instead, CPU core count is increasing at the same rate as clock speed used to increase. That means Moore’s law (the number of transistors on integrated circuits doubles approximately every two years) is now achieved by increasing the number of cores. Therefore, parallel and distributed computing is a way to take advantage of today’s hardware and process huge volume of data. Parallel processing and concurrency has always been a challenge for programmers because of non-determinism caused by concurrent modules accessing shared objects.

On the other hand, applications that demand concurrent processing, particularly on-line social networks, are now more and more common. That resulted in paying a lot of attention to frameworks and languages that provide distributed and parallel computing. Stream processing is a computing paradigm that has the potential to satisfy the demand. The main requirements of (real-time) stream processing include: keeping the data moving, having SQL capability on streams, handling stream imperfections, predictable outcome, high availability, stored and streamed data handling, distribution and scalability [30]. Hadoop\(^1\) and IBM InfoSphere\(^2\) are two examples of stream processing frameworks that have been examined in iMobility Lab.

IBM’s stream processing framework, InfoSphere Streams, can filter, analyze, and perform different tasks on streams of data in real-time. A case study at IBM Watson Lab developed a set of InfoSphere’s operators for GPS data [36]. It performs different tasks such as data cleaning, matching to a map, etc. Figure A.5 shows a data-flow graph that consists of a set of operators connected by streams. Each operator implements data stream analytics. The operators communicate with each other via their input and output ports. InfoSphere framework manages the execution of the graph of operators and can automatically scale up to multiple CPU cores and scale out over a network of machines if it is needed.

\(^1\)http://hadoop.apache.org
\(^2\)http://www.ibm.com/software/data/infosphere/streams
In addition to frameworks, languages that support functional programming, e.g., Scala, Ruby, etc., are also common in order to implement concurrent distributed applications.

Figure A.5: A graph of operators representing a sample stream processing application used to analyze Stockholm taxi FCD.

A-4 Information infrastructure

The amount of traffic data collected over years can be huge. Hence, data management and organization are critical. The data is usually stored in databases with proper indexing to facilitate record retrieval. Data cleaning is needed to detect and remove duplications and outliers. The core traffic processes include: travel time estimation and prediction, traffic simulations, emission models, etc. Examples of the traffic processes developed in the lab are path inference and two travel time estimation methods: a non-parametric high-throughput method [3], and a probabilistic method [8]. Map-matching and path inference are two essential pre-processing units in case of FCD processing.

A-5 Application and services

The vision for the Lab is to facilitate a number of applications spanning operations, evaluation, and monitoring and control of transport systems. Examples include:
Information generation and trip planning. The information can support a number of applications at higher levels of precision than is currently available:

- door-to-door multi-modal trip planning
- traffic information for fleet management

Information about the reliability of the various alternative modes can also be included.

Testing and evaluation. Wide range of new technologies, systems, and concepts can be tested and evaluated for traveler information services, advanced transportation and fleet management, inter-modal services/facilities from an operational point of view, and demand management concepts (for example, new congestion pricing strategies), etc.

Reporting and performance monitoring. The Lab, organized in the way discussed here, can also help the monitoring of the system performance over time by generating high level information appropriate for policy makers. For example, the data collected can be used to estimate aggregate congestion performance measures and help publish related reports for the region.

Travel time variability as a measure performance. Travel times and travel time variability are important measures of quality related to the mobility of the transport system in urban areas.

Archived data for planning and evaluation. The lab can serve as the repository of traffic and transportation related data, properly archived. Archived information is also useful to identify trends, changes in patterns, and point to problematic areas, e.g. bottlenecks, etc.

Visualization. Visualization has an important role in the Lab. Traffic data often includes geographical locations and it is always helpful to visualize such data on a map and annotate streets based on some traffic attributes. In this regard, a tool, called MapViz, was developed [58]. MapViz is a web-based framework that facilitates visualization of geographical and traffic data through a flexible and extensible architecture. Extensibility is of major focus in this framework so that various sources of data such as FCD, public transportation, etc can be fed to the framework and be visualized on city maps. Figure A.6 shows a snapshot of the web interface of MapViz.
A-6 Automated map error identification

FCD can be used to identify map errors (semi-) automatically and continuously. Road networks are subject to change. Their geometry and traffic related attributes, such as speed limit, direction of the traffic, maneuvering restrictions, etc. may change over time. Digital road networks can have different errors or inconsistencies compared to real road networks. iMobility Lab developed a method that detects network errors automatically by processing sparse FCD (other methods, e.g. [83], require frequent FCD). The example in Figure A.7 illustrates how the method works. In this example, the path inference algorithm can successfully connect the first probe to the second probe, but it cannot connect the second one to the third one given network and travel time constraints. It fails because the digital road network is inconsistent with the real road network. The street (denoted by dash line) is in reality a two-way street but it is defined as a one-way street in the digital network. In order to detect this kind of errors, one can run the path inference algorithm for a large historical data against the city network and let the algorithm report frequent problematic locations. Then one needs to check the reported locations manually.

Figure A.6: A snapshot of MapViz web UI. The dots represent taxis and the colorful line segments are the trail of them while moving in the network.
to determine the network errors. The path inference method can also report cases in which probes are reported but in an empty space, i.e. the probes are off the digital road network. An example of this case is shown in Figure A.8. The real road network has changed in this picture because of the road construction. That means vehicles are moving in temporary roads that are undefined in the digital road map. Hence, the probes appear off the road. The path inference detects and reports these cases.

Figure A.8: Norra Länken, Stockholm. The road network has changed because of road constructions, but the changes are not reflected in the digital road network.
A-7. SOFTWARE ARCHITECTURE

A-7 Software architecture

The need for having a well-defined Software architecture originates from the fact that software systems grow quickly as more and more modules are created over time. Organizing and maintaining such big pool of modules after a while becomes cumbersome. Multi-layer architectures are common practice [84]. In a layered architecture, components of each layer access the components in the next lower layer. In technical terms, each layer has dependency to the layer below. The well-known 3-layer architecture consists of the data source, domain logic, and presentation logic layers. The data source is the lowest layer and the presentation logic is the top-most layer. The domain logic can itself be divided into multiple layers. For example, it can involve core processes and on top of that a service layer (Figure A.9).

The data source layer, also called persistent layer, is responsible for storing and retrieving data to/from hard disks. This layer is equivalent to the computing infrastructure block in the ITS Lab’s infrastructure diagram (Figure A.1). Database management systems (DBMSs) and file systems are the most common components of the data source layer. Storing data in files is more suitable for sequential processing purposes. DBMSs, on the other hand, provide fast search and random access...
to individual entries using indexing mechanisms and unique keys. Since traffic data are usually associated with a geo-location, search and filtering based on location is necessary. Many commercial and free DBMSs support geo-spatial indexing and searching by providing GIS plug-ins. Indexing is a software mechanism that helps retrieving data quickly without going through all records of data. Indexing is usually involves creating a tree, known as index tree. Section A-8 explains more detail about geo-indexing.

This layer stores data from a wide range of categories. Sensory data in its raw format (after basic filtering, e.g. removing duplications) are stored for further processes. Intermediate results of the core processes are sometimes temporarily stored on disks. The final output of the system is also stored to be used by end users and services by request. Log files or log tables keep track of every step of the processes and are useful for monitoring and debugging purposes. User profiles, settings, access rights, etc. is also stored in the persistence layer. This layer includes the following components:

- Sensor DB: tables that store different types of sensor data collected from the city, including mobile sensors (FCD), stationary sensors (from radars, cameras, and weather stations), and disruptions (incidents and road works).
- Traffic DB: tables that store the results of the traffic estimations and processes.
- GIS DB: stores the digital road network, maneuvering restrictions, etc.
- User DB: stores information about the users and their access right to various parts of the system.
- Feed readers: are client programs that read data feeds from external sources, for example from the traffic control systems or weather system.
- Log files: files that store different log files. Any component in different layers may have logging requirements and the log files are centralized here.
- Data Access Objects (DAO): is a library of objects that are responsible for read/write from/to the tables and files. These objects can be used by components in different layers to access the data. The only component that has direct access to the database is DAO, the rest must access the data via methods provided by DAO.

The domain logic layer, also referred to as business logic, performs what the software needs to do in the business domain, in this case traffic. It involves processing input and stored data, validation of the data, etc. Traffic simulation, travel time estimation, path inference, traffic prediction, data filtering and mining, and journey planning take place in the domain logic layer. The domain layer consists of
core processes and services, that are equivalent to information infrastructure and applications and services layer of the ITS Lab diagram (Figure A.1) respectively. A brief description of the components in this layer is as follows:

- **Map Server**: loads digital road networks, handles indexing, finds geometrical objects in the vicinity of another object, calculates distances between entities on the map, and serves many other functionalities regarding the digital road network. Any other component in this layer or the layers above that want to use the road network has to work with the Map Server component.

- **Path Inference**: is responsible for map-matching and path inference of FCD data. This component reads raw FCD from the Sensor DB or the Feed Readers, performs path inference and writes the results into the Traffic DB or any other component that is registered as a listener of path inference results. In observer design pattern [84] a subject (in this case the Path Inference component) notifies all its listeners (i.e. any other component that is interested in path inference results, e.g. on-line travel time estimator) automatically.

- **FCD Travel-time Estimator**: estimates travel time of links by processing path inference results. This component works in both off-line and on-line modes. The off-line mode processes the historical data and the on-line mode processes the stream of data from the Path Inference component. This component contains different travel time estimation models (e.g. the non-parametric model [3] and the arterial model [8]).

- **ANPR Process**: handles ANPR data cleaning, filtering, outliers detection, and travel time estimation from ANPR data.

- **MCS Process**: handles MCS data cleaning, filtering, and travel time estimation from MCS data.

- **(Time-dependent) Travel-time Profile**: aggregates travel time information calculated from various types of sensors to answer questions such as travel time from an origin to a destination at a certain time of day and day of week taking into account traffic disruptions. This component reads the traffic information from the Traffic DB and the incident/roadworks from the Sensor DB (all via DAO). Path Inference, FCD Travel-time Estimator, and Journey Planner modules work with Travel-time Profile module in order to access time-dependent travel time of network links.

- **Journey Planner**: is the core component of journey planning. It finds the shortest paths (in time or distance) between origin-destination pairs. The aim of this component is to provide multi-modal journey planning. Journey Planner works with Travel-Time Profile to utilize time-dependent travel-times.
• Visualization Services: provides services that can be used to visualize various types of traffic information. In another words, it prepares the traffic information in a format that can be visualized. Components of the higher level have to communicate with this module if they want to visualize the data in any ways.

• Travel-time Services: is a facade object for all travel time related services (a facade is a component that provides a simplified interface to a larger body of the system [84]). Other modules and external clients call methods of this service to retrieve travel time information. This component is the only entity that invokes the core travel time modules directly.

• Journey Planner Services: is a facade object for journey planning. It works directly with the core component of Journey Planner and with the Travel-time services.

Any external clients (applications) or upper-level components has to work with service modules as opposed to working with the core components directly.

The presentation logic layer is an interface for the services the system provides to other systems, users, and client programs. This can be a command-line, a rich-client graphics UI, a mobile app, or an HTML-based browser UI. The responsibilities of this layer are to present information to the user and to translate user commands to service invocations. The command line UI of map-matcher and the visualization tool of Mapviz are concrete examples of the components that belong to this layer. This software architecture layer fits in the applications and services layer of the ITS Lab diagram (Figure A.1). The modules of this layer are as follows:

• Rich clients: are desktop programs that allows users to work with the different services, from traffic information visualization to reports and demos.

• HTML-based Clients: provide access to the system via web. Mapviz is an example of this type of clients that provides a user interface for the journey planner, shows color-coded city maps with respect to travel time of links, and demonstrates real-time FCD tracking [58].

• Mobile Apps: are applications that run on smart phones and work with the lab’s services via Internet.

Control flow

Performing even a simple task in such a modular system requires a few components interacting with each other. The components interaction is usually described using a control flow diagrams. This section provides two examples of primary flow of data and control in the iMobility Lab. The goal is to give an insight of how different components interact with each other to realize some goals. The complete list of the control flow is out of scope of this thesis.
Feed readers interaction

Traffic data are usually collected by authorities, private companies, or crowd sourcing in a city. The raw data are typically dispatched to consumers using different techniques. Pushing and polling are two common data transfer techniques. In the pushing method, the data provider (or publisher) initiates the request for the transaction. In contrast, in the polling method the data consumer (or client) establishes a connection to the data provider (called server in this case). *Long polling* is a variation of the polling method that emulates the push method. A client requests the server in a similar way to normal polling. The server holds the requests until the data is available for response. Figure A.10 illustrates the interaction between a feed reader and a data provider in the long polling method.

![Figure A.10: Sequence of interactions between objects that realize data transmission in a long polling method together with storing and dispatching.](image)

Path inference interaction

The path inference task requires that a number of components work together. It requires also a digital road network which is provided by the map server component. It needs to know where to read the raw FCD data (source) and where to send the results (sink). This requires working with data access objects (DAO) and consumers of the path inference output. For example, a sink for the path inference results can be a travel time estimator or a visual tracker. Figure A.11 depicts the interaction of the components for the path inference.
A-8 Network graphs and spatial indexing

Digital road networks

One of the essential components of a traffic lab that deals with real FCD is the digital road network (DRN). Almost all traffic related processes (previously mentioned in the software architecture) require access to the underlying DRN. Hence, this component should be carefully designed in order to avoid other components suffering from its future changes. On the other hand, various formats of road networks are available; from commercial ones to free and open source ones. In order to make the underlying DRN transparent from other components, adding a layer of abstraction is necessary. Therefore, there will be an abstract DRN as a reference and all components depend on it. A conversion mechanism is needed to read a DRN and convert it to the abstract one. This also makes it possible to convert from one DRN format to another using the abstract DRN as a mediator. Figure A.12 illustrates the concept of abstract DRN. Network-dependent components only depend on Network Graph, that means it is possible to switch between different representations of the digital road network without affecting the dependent com-
ponents. Each adapter knows how to load a network and convert it to the Network Graph. The figure shows three sample adapters: NVDB (Swedish national digital road network), OSM (Open Street Map) and Navteq.

![Diagram of network graph and adapters]

Network graph The graph representation of the road network contains information about the geometry and connectivity of the network. Edges represent streets, and nodes represent intersections. The network graph is a directed graph, therefore, each bi-directional street is modeled by two links with opposite directions. A link has a number of attributes such as:

1. **unique ID**
2. **longitudes**, a list of longitudes of the points defining the geometry of the link.
3. **latitudes**, a list of latitudes of the points defining the geometry of the link.
4. **beginning node’s ID**
5. **end node’s ID**
6. **speed limit**
7. **next links’ IDs**: determines the possibility of navigating from a link to its succeeding links. The links in the *next links’ IDs* are those to which a vehicle maneuver from this link.
8. **opposite link’s ID**: the ID of the link that provides the opposite direction of this link.
9. **function class**: holds a value between 1 and 5 and represents the throughput of the road. 1 is the highest throughput (e.g. highways) and 5 is the lowest one (e.g. side streets).
10. only bus/taxi lane flag: determines whether or not a link is a bus/taxi-only lane.

11. traffic light: is a flag that is true if the link ends with a traffic light, and false otherwise.

Merging and splitting links. One more consideration about the network is dealing with long and short links. Digital road networks may contain links that are a couple of kilometers long, and also links that are just one or two meters long. Such extreme cases put unnecessary computation demand on the path inference algorithm, and have side effects on travel time estimation as well [8]. Long links, which occur on highways, can be split into shorter links, each a few hundred meters long. Short links, on the other hand, can be merged to the neighboring links if the geometry and network connectivity allows. That results in better path inference performance (fewer number of candidate links) and better travel time estimation.

Spatial 2D indexing

Large-scale networks have thousands of links and finding neighboring links around a particular point can be slow. Spatial indexing helps decrease the order of the process by creating a hierarchy of regions so that eventually a small number of comparisons is needed to find the area in the vicinity of a given point or object. A number of indexing methods are developed for multi-dimensional spaces. Some of them are considered optimum for node or link insertion and deletion. As the network used in path inference remains static - no node or link is being added or removed during run-time - a simple spatial indexing method called Quad tree or Q-tree [85] is implemented.

Geo-spatial plugins Database management systems\(^3\) provide geo-spatial plugins that perform spatial indexing and search. The advantage of using these products is that they are already implemented and tested by communities over years and thoroughly tested. The disadvantage is that the map-matching program will have to heavily use the database, and because database connections are normally slow - especially when the database is running on a different machine than the one running map-matching program - the database becomes the bottleneck of performance.

The software developed for this thesis takes advantage of PostgreSQL and its spatial plugin, PostGIS\(^4\). However, the map-matching software has its own built-in indexing that makes it completely independent to the database.

\(^3\)For example: PostgreSQL (http://www.postgresql.org), MySQL (http://www.mysql.com), Microsoft SQL Server (http://www.microsoft.com/sqlserver), and Oracle (http://www.oracle.com/database)

\(^4\)http://postgis.refractions.net
A Q-tree index is defined as follows: each (usually rectangular) region is divided into 4 subregions. Each subregion refers to the objects located in it. If the subregion still contains large number of objects it is divided into 4 more subregions. The parent region keeps pointers to its 4 children regions. This division continues recursively until the subregions are small enough that hold a handful of objects. The subregions in the lowest level are called leaves of the tree. Figure A.13 shows leaves of a Q-tree index for Stockholm city.

In order to search for links close to a probe, instead of computing the distance between the point and thousands of links, one can first traverse the index tree from the root node to find the leaf containing the probe location by a few comparisons. Then all links in the leaf are examined by checking their perpendicular distance to the point and the ones closer than a threshold are returned as the search results.

Cell borderline problem. Links close to the point of interest but in a different cell than the point’s cell will be excluded in the search results. To overcome this problem, as it is shown in Figure A.14, each cell refers to not only the links intersecting the cell’s box, but also the links located inside a slightly bigger surrounding area. In another words, adjacent cells overlap in terms of the links they are referring to.
Figure A.14: 9 cells representing leaves of a Q-tree index (a), and the network links to which the middle cell refers (b).