
“output” — 2015/5/19 — 20:03 — page — #1

Institutionen för datavetenskap
Department of Computer and Information Science

Final thesis

Workflow graph editing and

visualization in HTML5 and

Javascript

by

Marcus Alfredsson and Eric Lundmark

LIU-IDA/LITH-EX-A–15/018–SE

May 19, 2015

Linköpings universitet
SE-581 83 Linköping, Sweden

Linköpings universitet
581 83 Linköping

“output” — 2015/5/19 — 20:03 — page — #2

“output” — 2015/5/19 — 20:03 — page i — #3

Linköpings universitet
Institutionen för datavetenskap

Final thesis

Workflow graph editing and

visualization in HTML5 and

Javascript

by

Marcus Alfredsson and Eric Lundmark

LIU-IDA/LITH-EX-A–15/018–SE

May 19, 2015

Supervisor: Anders Fröberg

Examiner: Erik Berglund

“output” — 2015/5/19 — 20:03 — page ii — #4

“output” — 2015/5/19 — 20:03 — page iii — #5

Abstract

Being able to run applications written in a single language on multiple plat-
forms is a strong incentive for migrating applications to the web. This
along with the possibility to avoid the sometimes problematic procedure of
installing software, makes the case even stronger. This thesis investigates
how to migrate a workflow graph editing system into a web technology in
order to publish it on the web. We will evaluate a number of different tech-
nologies such as WebGL, HTML5 canvas and SVG. SVG is deemed as the
preferred technology due to its advantages when it comes to interaction. As
it can leverage JavaScripts event system we get a potent way of handling
events without writing a single line of code. When combining this with the
framework D3JS we achieve a great tool for writing workflow management
systems.

iii

“output” — 2015/5/19 — 20:03 — page iv — #6

“output” — 2015/5/19 — 20:03 — page v — #7

Contents

1 Introduction 1
1.1 Background . 1
1.2 Domain . 1
1.3 Problem description . 1
1.4 Purpose . 1
1.5 Approach . 2
1.6 Limitations . 2

2 Method 3
2.1 Literature study . 3
2.2 Requirement elicitation . 3
2.3 Case study . 4

2.3.1 Case study design and planning 4
2.3.2 Data collection . 5
2.3.3 Validity . 6
2.3.4 Triangulation . 6
2.3.5 Data analysis . 7
2.3.6 Scrum . 7
2.3.7 Our approach . 9

3 Theory 10
3.1 Workflow management systems 10
3.2 Visualisations on the web . 11

3.2.1 Raster graphics . 11
3.2.2 Vector graphics . 11
3.2.3 Document Object Model 11
3.2.4 Flash . 12
3.2.5 VML . 12
3.2.6 Canvas . 12
3.2.7 WebGL . 13
3.2.8 SVG . 14
3.2.9 Canvas vs. WebGL . 14
3.2.10 Canvas vs. SVG . 16
3.2.11 Comparing canvas, WebGL and SVG 17

v

“output” — 2015/5/19 — 20:03 — page vi — #8

CONTENTS CONTENTS

4 Results 19
4.1 Literature study . 19

4.1.1 Key findings from workflow management systems . . . 19
4.1.2 A comparison of technologies 19
4.1.3 Hypothesis . 21

4.2 Requirements elicitation . 22
4.3 Selecting framework . 22
4.4 D3JS . 23

4.4.1 Selections . 23
4.5 Design decisions . 23

4.5.1 Platform . 23
4.5.2 Extra library for data-bindings 23

4.6 Key findings from developer diary 24
4.7 Implementation . 25

4.7.1 Flowchart . 25
4.7.2 Nodes . 26
4.7.3 Transitions . 29
4.7.4 Menu . 29
4.7.5 Route points . 30
4.7.6 Event handling . 30
4.7.7 Graph editor . 31

5 Discussion 33
5.1 Method . 33

5.1.1 Diary . 33
5.1.2 Triangulation . 34
5.1.3 SCRUM . 34

5.2 Result . 35
5.2.1 First hypothesis . 35
5.2.2 Second hypothesis . 36
5.2.3 Third hypothesis . 36
5.2.4 Low level of abstraction 36
5.2.5 Performance does not matter 37
5.2.6 Diary analysis . 37

6 Conclusion 38
6.1 Future work . 38

Appendices 43

A Diary 44
A.1 First sprint . 44
A.2 Second sprint . 46
A.3 Third sprint . 48
A.4 Fourth sprint . 50
A.5 Evaluation . 50

vi

“output” — 2015/5/19 — 20:03 — page vii — #9

CONTENTS CONTENTS

B Requirements 51
B.1 View mode . 51
B.2 Edit mode . 52

B.2.1 Flowchart . 52
B.2.2 Nodes . 53
B.2.3 Transitions . 58

vii

“output” — 2015/5/19 — 20:03 — page viii — #10

CONTENTS CONTENTS

viii

“output” — 2015/5/19 — 20:03 — page 1 — #11

Chapter 1

Introduction

1.1 Background

This master thesis was conducted at Ida Infront in Linköping, Sweden. Ida
Infront is a company that is eminent in e-Government. They produce sys-
tems for e.g. document handling, process support and case management.
They have 70 employees spread out among their offices in Linköping, Stock-
holm and Sundsvall.

1.2 Domain

The graphs that we will handle can be considered relative small. They will
consist of a maximum of 200 nodes and 200 transitions. The application
will be designed to handle these quantities.

1.3 Problem description

There exists many different technologies to build systems that visualise infor-
mation. These technologies have their respective advantages and drawbacks.
The problem in this case is to find a technology that address the needs of a
workflow application.

1.4 Purpose

The purpose of this report is to investigate which different technologies
exists for implementing a workflow graph editing and visualisation tool.
Our research question incurred from the issue in migrating graphic intense
software to the web. The research question investigated in this thesis is:

1

“output” — 2015/5/19 — 20:03 — page 2 — #12

1.5. APPROACH CHAPTER 1. INTRODUCTION

• How can a workflow graph editing and visualisation tool be imple-
mented in web technology?

1.5 Approach

In this study, the starting point is a feasibility study where focus will lie
on a literature study. The literature study will result in a number of hy-
pothesis, which will be analysed after the case study. The case study will
consist of implementing the workflow tool, which will be performed with an
agile work approach. After the case study is complete an evaluation of the
used technique will be performed. In the evaluation the hypothesis will be
confirmed or denied based on the empirical findings from the case study.

1.6 Limitations

These are the limitations of this thesis:

• A limitation is that the researcher of this case study are the partici-
pants that perform the study.

• We have limited experience of Scrum.

• Due to the limited amount of time we will not have the recommended
30-days per sprint.

• The implemented tool shall be represented in a 2D format.

• The selection of frameworks is limited to those free of charge.

• As we are inexperienced programmers the implementation may not be
the best solution.

2

“output” — 2015/5/19 — 20:03 — page 3 — #13

Chapter 2

Method

This chapter will describe the method used in this study. First, it consists
of theory behind the method and at the end our approach as a conclusion
of the theory.

2.1 Literature study

Webster and Watson(2002) describes a framework, consisting of three steps
when identifying relevant literature:

1. Start with leading journals as these will likely contain the major
contributions to the subject.

2. Go backward by reviewing references to determine prior articles.

3. Go forward by reviewing citations.

The review is considered complete, when there are no new concepts discov-
ered. [35]

2.2 Requirement elicitation

Requirement elicitation is the process of identifying the system to be de-
veloped. One of the most important techniques are interviews. Paetsch et
al.(2003) states that interviews allow mistakes and misunderstandings to be
identified and cleared up. [25] There exists two different kind of interviews:

• Closed - Pre-defined set of questions

• Open - No pre-defined questions, instead the engineer and stakehold-
ers engage in a discussion

Paetsch et al.(2003) concludes that the researcher get a rich collection of
information during open interviews, but it can be hard to analyze due to
the amount. [25]

3

“output” — 2015/5/19 — 20:03 — page 4 — #14

2.3. CASE STUDY CHAPTER 2. METHOD

2.3 Case study

When conducting a case study, it can vary depending on the purpose of
the study. One research methodology does not fit all case studies, it is
therefore important to establish the purpose. [30] Robson(2002) describes
four different methods for conducting a case study:

• Exploratory - When the purpose of the research is seeking new in-
sights or generating ideas for future research.

• Descriptive - Used for research when the purpose is to describe a
situation or phenomenon

• Explanatory - When the research is seeking an explanation to a
situation or problem.

• Improving - Used for research that is trying to improve certain as-
pects of the studied phenomenon

Depending on which type of purpose is defined, different methodologies can
be applied when analysing the empirical findings. This is why it is important
to know the type of purpose before continuing with a case study. [29]

According to Runeson and Höst(2009) there are five major steps that
need to be walked through in a case study:

1. Case study design - described under the section ”Case study design
and planning”.

2. Preparation for data collection - described under the section ”Case
study design and planning”.

3. Collecting evidence - described under the section ”Data collection”.

4. Analysis of collected data - described under the section ”Data analy-
sis”.

5. Report - The report will consist of the hypothesis confirmation, which
is presented in the discussion section.

2.3.1 Case study design and planning

In the beginning of the case study it is important to define the objectives of
the case study. A plan should be defined to make sure that all elements are
included and in that plan the following questions must be answered:

• Objective - what to achieve?

• Case - what is studied?

• Theory - frame of reference?

4

“output” — 2015/5/19 — 20:03 — page 5 — #15

2.3. CASE STUDY CHAPTER 2. METHOD

• Research questions - what to know?

• Methods - how to collect data?

• Selection strategy - where to seek data?

These questions will handle the first two steps of the five major steps in
Runeson and Höst(2009), that should be walked through in a case study. [30]

2.3.2 Data collection

When collecting data there are usually many different data sources included
to minimise the effect a single data source can have on the empirical findings.
In a case study it is also important to take different opinions of different roles
into account, like different projects and products. [30]

Lethbridge(2005) has identified that data collections techniques can be
divided into three different tiers:

• First degree - the research has direct contact with the subjects and
collect data in real time. This can for example be interviews, focus
groups and work diaries. This technique require the most resources
and has lowest reliability of the three. On the other hand it is the
most flexible, leading to e.g. that research questions are interpreted
in the correct context.

• Second degree - the researchers collect data in real time without in-
teracting with the subjects. Can be used when observing video records
for example and documentation analysis.

• Third degree - the researchers analyse the already available data.
This can for instance be analysis of requirement specification and fail-
ure reports. This technique has the lowest requirement regarding re-
sources and has the highest reliability. However this method is also
the least flexible, as there can not be any alteration to the research
question.

[19]
According to Runeson and Höst(2009) data can be collected either in a

qualitative or quantitative way. Quantitative data collection usually consists
of numbers and facts, which can be seen as statistics. This gives a very clear
picture of the empirical findings but also gives a quite shallow understanding.
Qualitative data collection offers a deeper understanding in the empirical
findings. [30]

Work diaries are a first degree data collection technique, as described
by Lethbridge(2005). Work diaries are a qualitative data source as they
consist of reflections rather than numbers and facts. Work diaries are a
good way to obtain accurate information about developers work practices.

5

“output” — 2015/5/19 — 20:03 — page 6 — #16

2.3. CASE STUDY CHAPTER 2. METHOD

This method has advantages when it comes to reporting events. For in-
stance, this method report events and decisions as they occure rather than
in retrospective. Random sampling of events also gives researchers a good
way of understanding how software engineers spend their day without re-
quiring a great deal of observation. Work diaries has some disadvantages
which needs to be considered. One of them being that participants require
to recall events of significance with accuracy. Another disadvantage is that
the diary can infer with the engineers normal workflow. For instance, if the
diary should include how often the participants ask for help from colleagues,
this can lead to the participants avoid asking for help. [19]

2.3.3 Validity

Validity is vital when conducting a case study. It is crucial to know that the
study provides trustworthy results. The results should be accurate and the
researchers point of view should not be biased and reflected in the study. [30]

Construct validity measures if the operational measurements are what
the researchers expect and that the participants interpret the research ques-
tion in the same way as the researchers. For instance if a research question
is interpreted differently by researchers and interviewed persons, there is a
threat to validity. [30]

External validity checks to what extent the empirical findings can be
generalized and to what extent the findings are of value to people not a part
of the investigated case. In the analysis regarding this aspect, researchers
will try to find in which extent the empirical findings can be used in other
cases. The intention is to be able to generalize findings so they can be used
in other case studies with similar characteristics and therefore the findings
are relevant for these cases as well. [30]

Internal validity is measured when causal relations are examined and
which impact underlying factors have. When researchers examine how one
factor influence another, a risk exists that other factors are affected. If
researchers are unaware of this correlation there is a threat to validity. [30]

The reliability aspect is concerned to which extent data and analyse,
depends upon the researchers performing the case study. The study should
reach the same result with another research team. Threats to validity can
be an unclear description of how data is collected or if certain interview
questions are poorly described. [30]

2.3.4 Triangulation

One of the most important aspects of empirical findings is that they are
reliable and validated. To arrive at reliable and validated findings, there is
a need for structure. Triangulation is a protocol of different ways to collect
empirical findings that are valid and accurate. There are four different
protocols for triangulation:

6

“output” — 2015/5/19 — 20:03 — page 7 — #17

2.3. CASE STUDY CHAPTER 2. METHOD

• Data source triangulation - This protocol checks if the case remains
the same at different times for a data source. If the observed and re-
ported data source has the same meaning when observed and reported
under different circumstances, the data source fulfills the triangulation
protocol.

• Investigator triangulation - In this triangulation protocol several
researchers investigate the same case. This results in several interpre-
tations of the empirical findings and therefore, a more accurate inter-
pretation. Researchers that can be used in this triangulation protocol
are colleagues or a panel of experts.

• Theory triangulation - Whenever two investigators compare their
findings, there is a theory triangulation, since two investigators never
entirely interpret data in the same way. When findings are compared,
and matched, the findings are valid. Otherwise more research is re-
quired to produce findings that is interpreted in the same way by both
investigators.

• Methodological triangulation - This protocol uses multiple meth-
ods for data collection, to make sure that the empirical findings will
be complete and nothing is missed.

[33]

2.3.5 Data analysis

This is the fourth step of five in Runeson and Höst(2009) steps towards
a successful case study. The analysis of data will be based on qualitative
empirical findings. The intent of the analysis is to derive conclusions from
data and to have a clear chain of evidence. Each part of this chain must
carry sufficient information from the study and every decision taken by the
researcher must be presented. [30]

Qualitative data collection is seen as a flexible technique and it is there-
fore important to analyse data in parallel with the data collection. This
technique gives a better and more complete analyse, because analysing data
during the collection process can lead to new insights. These insights can
be used to alter some approaches in the data collection process to arrive at
better empirical findings and a better analysis of the empirical findings. [30]

Analysing qualitative data is usually done with hypothesis and when
analysing a case study with explanatory purpose, hypothesis confirmation is
the most common technique [30]. Hypothesis confirmation can be confirmed
through analysing the empirical findings. [32]

2.3.6 Scrum

The rapid development of the web sets high demands on the development
process. There is a need to quickly adopt to new requirements in order to

7

“output” — 2015/5/19 — 20:03 — page 8 — #18

2.3. CASE STUDY CHAPTER 2. METHOD

accommodate the demands of the users. [5]
Agile methodologies is an attempt to achieve this, as stated in the agile

manifesto, ”by rapid, incremental delivery of software” [6].
There are several different agile methods and one of the most popular is

Scrum. Meyer(2014) describes ”the most distinctive characteristic of Scrum”
as the ”closed-window rule”. It is stated in the agile manifesto that agile
processes are open to change. But Scrum does limit the window where
change can be introduced, it is only allowed if the change does not disrupt
the current iteration. [21]

Scrum is built up by small groups of people called Scrum teams. Scrum
teams work in short iterations called sprints. A sprint consists of 30 consec-
utive calendar days. Every sprint starts with a planning meeting where the
product owner and the team decides upon what should be done during the
sprint. [21]

The work that should be performed is described in a Backlog. There
are two different Backlogs, the Product and the Sprint Backlog. The Prod-
uct Backlog is a dynamic list of requirements which evolves as the project
evolves. During each sprint a selection of items from the Product Backlog
that will make up a new release is put into the sprint Backlog. The sprint
Backlog is an overview of the work that should be done during the current
sprint. [21]

The Scrum team is divided into three roles:

• Product Owner - The representative of the stakeholders in the project

• Scrum Master - Ensures that the rules of Scrum are followed, not a
regular project manager

• The team - Members that perform tasks from the backlog

[31] The product owner is the face of the stakeholders. The product owner
should work closely with both the Scrum Master and the team trying to
figure out how to get the most value from the business. The requirements
produced goes into the Product Backlog. The product owner is responsible
for managing the backlog in such a way that functionality with the most
customer value is produced first. [31]

The Scrum Master is responsible for teaching and making sure that the
rules of Scrum are followed. It is also the responsibility of the Scrum master
to make sure that the Scrum process fits the organisation, if not it should be
tweaked so that the expected benefits of Scrum is realized. The Scrum Mas-
ter is also responsible for maximising return on investment and removing
any barriers that disables the customer from directly driving the develop-
ment. [31]

The team is responsible for developing the functionality described by
the backlog. It should be performed in a top-down approach, developing
the most valuable functionality first. The team should be self-organizing,

8

“output” — 2015/5/19 — 20:03 — page 9 — #19

2.3. CASE STUDY CHAPTER 2. METHOD

self-managing and cross-functional. The members are responsible for the
success of each iteration and as such, the whole project. [31]

Coram and Bohner(2005) states that releasing a functional product in
short cycles allows the product to be evaluated as the development continues.
The evaluation can then act as a foundation when deciding and changing
the priority of upcoming features making sure the product evolves in the
desired direction based on customers needs. [9]

It is not only the aspect of customers being able to influence the direction
that the product evolves in, that ensures quality. Quick releases also gives
the possibility to test often, or as said in Begel and Nagappan(2007), ”When
you integrate early and often, the product can be tested early and often,
too”. [7]

2.3.7 Our approach

Our approach starts with conducting a literature study as part of the fea-
sibility study. The feasibility study contains requirement elicitation, which
consists of analysing the previous system and interviewing the product owner
in an open interview. The purpose of the interview is partly to check that
conducted requirements were correct and to acquire new requirements which
is not a part of the previous system. From the result of the feasibility study
we derive some hypothesis which are answered in the discussion section. The
empirical data from the case study consists of a developer diary. This diary
is written on a daily basis and documents every day reflections of using the
chosen technique. We use Scrum as development methodology in the case
study. Scrum is used to provide a flexible methodology that can handle
alternations in requirements during the development process. Scrum is also
used so we can get feedback from the product owner and product supervisor
about which aspects of the product that can be improved. In the discussion
section we argue for the case, that our empirical findings are valid and re-
liable using triangulation. From the result of the literature study we follow
a series of hypothesis. These hypothesis are be analysed with regards to
the empirical findings from the diary, leading to that the hypothesis being
confirmed or denied in the discussion section.

9

“output” — 2015/5/19 — 20:03 — page 10 — #20

Chapter 3

Theory

This chapter will describe theory about workflows and visualisation tech-
nologies.

3.1 Workflow management systems

A workflow management system is used to help people reduce workload
by organising business processes, also known as workflows. In a workflow
management system it is important to analyse the workflow, in order to make
sure that all important concepts are included. The important concepts are:

1. Case - A case can be described as the purpose of the workflow. Each
case has a limited lifetime, with a starting and ending point in the pro-
cess. Under this lifetime each case consists of a specific state depending
on which tasks that has been performed. A case can have attributes,
that can e.g. control under which circumstances a task can be super-
seded. A case can also have conditions which reflect the progress in
a case and thereby reflect which tasks that have been performed and
which that are left.

2. Task - A workflow is structured by a sequence of tasks and can be
e.g. checking personal data or stamping papers. A task can be either
automatic, semi-automatic or manual. A automatic task is performed
exclusively by a machine, a manual task is performed exclusively by
humans and a semi-automatic task is performed by humans assisted
by machines.

3. Process - This part describes in which order that certain tasks should
be carried out to complete a successful case. A process can also consist
of several subprocesses. The process has a limited lifetime and the
lifetime is the same as for the case.

10

“output” — 2015/5/19 — 20:03 — page 11 — #21

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

4. Routing - Routing describe how workflows can choose to perform
different tasks. Routing can perform tasks in four different ways:

• Sequential - executes tasks in order, one after each other.

• Parallel - executes several tasks simultaneously.

• Selective - executed one of several paths, depending on input.

• Iteration - executes a task several times.

5. Enactment - This part describes how a task is triggered. The trigger
often depends on the type of task e.g. a manual is triggered when a
person takes initiative to start it, and an automatic task triggers when
an required resource becomes available.

These properties should be represented in all workflow managment systems.
[1]

3.2 Visualisations on the web

This section will describe different approaches to visualisation on the web.

3.2.1 Raster graphics

”Raster graphics are image files made up of individual color pixels or dots”.
This can for example be an image taken by a digital camera. The downside
with raster images is that it is made up of individual color pixels or dots,
the image will not handle scaling as the image will be seen as unclear and
grainy. [27]

3.2.2 Vector graphics

Vector graphics are made up of mathematical formulas. The image is based
on vectors which make the image cope very well with scaling, compared to
raster images. Vector graphics can be used as the underlying technique in
native file formats such as the scalable vector graphic(SVG) format. [27]

3.2.3 Document Object Model

The Document Object Model(DOM) is a representation of a website. It can
be interpreted and manipulated through Javascript. The model is built up
as a tree structure where html, the document, is the root element. There
exists several different node types, such as:

• Element nodes.

• Text nodes.

11

“output” — 2015/5/19 — 20:03 — page 12 — #22

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

A notable thing about elements is, as stated by Keith(2005), that ”not all
elements contain attributes, but all attributes are contained by elements.”.
[15]

3.2.4 Flash

Flash is a vector graphics format standardisation. It has been one of the
most used and widespread technologies, when it comes to visualisations on
the web [24]. Though it is a format for vector graphics, a flash file can contain
a combination of raster and vector graphics [26]. Flash uses Actionscript
in combination with simple frame-based animation to ”create high-impact
moving images to make attention-grabbing Websites”. These websites are
often used in commercial contexts [28]. Being widely used in commercial
contexts has made Flash a target for attackers. To be able to use graphics
written in Flash, the user needs to install a plug-in in the browser. This
plug-in has proven to be a security risk as it opens a hole in the sandboxed
environment, in which websites run. [2, 10]

Flash programs are stored as pre-compiled executables, and as a result
the file size is large compared to HTML and Javascript files. There are
also issues with accessibility and performance. Screen reader support only
exist in Windows and a lot of Flash applications has poor support for use
of keyboards. Flash applications are known to be CPU intensive, especially
on Linux and Mac. The flash format is also not indexable as it is stored in
an executable and not the web page, resulting in the information not being
available in search engines. This issue can though be avoided by creating a
second web page, where instead of the content, a description is provided. [34]

In 2010 Apple publicly announced that they would not support Flash on
their products iPad and iPhone. Instead they favored their own technologies,
now incorporated in HTML5. [4]

3.2.5 VML

Vector Markup Language(VML) defines a certain format for encoding in-
formation of vectors with additional markup. Markup that describes how
information may be edited and visualised. [8]

VML is now a deprecated technique and as stated by Microsoft ”SVG,
implemented in Windows Internet Explorer 9, provides the functionality
needed to replace VML in websites and applications that use it.”. Microsoft
also states that VML is deprecated for Internet Explorer 10 standard mode.
[23]

3.2.6 Canvas

Canvas is an HTML element which got capabilities that allows for rendering
raster graphics. It is one of the most popular technologies for drawing
graphics in web applications. The canvas element itself does not allow for

12

“output” — 2015/5/19 — 20:03 — page 13 — #23

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

drawing graphics. But it provides a context that allows access to the canvas
area through Javascript, which then can draw pixels. [20] Johnson(2008)
explains that

”Since this rendering is procedurally generated, only the final
image must be stored in memory once the Javascript code is ex-
ecuted; the canvas raster image is cached and only re-generated
on request.” [14]

Canvas is an immediate-mode API. There is no model stored within the
graphics library that describes what to be drawn. Instead the instructions
are sent directly to the application when a new frame is to be drawn. [22]
There are no DOM elements generated inside the canvas element [34]. As a
result of this the graphics library does not support events, this needs to be
implemented by the developer.

Canvas has the ability to draw text using fonts, but it is an expensive
operation. Canvas needs a lot of resources, compared to other technologies,
to draw vector fonts as it needs to rasterize the given font before drawing
it. There is support for raster fonts, but the same issues apply here as with
regular graphics, it is not zoomable. [11]

In an article investigating image manipulation in Internet applications,
Steenbergen(2010) concludes that ”Canvas has the strongest papers for im-
age manipulation since it has the capability to access and change a single
pixel on the drawing canvas using a few lines of Javascript code. Any exist-
ing image effect can therefore be recreated within the browser”. He further
states that ”the only limiting factor to the technology is the Javascript pro-
cessing speed of the web browser.” [34]

3.2.7 WebGL

WebGL is designed as a Document Object Model(DOM) API which creates
3D graphics in the web browser. WebGL is based on OpenGL, which offers
the similar API but in a desktop environment. WebGL is also fully inte-
grated with browsers, an application built with WebGL can use Javascript
infrastructure and DOM fundamentals. WebGL gives another rendering
context on the canvas element and can therefore be cleanly combined with
HTML. [16] Using WebGL gives several advantages, such as an API that
is widely accepted as a 3D graphics standard. WebGL has gained trac-
tion lately and is now supported in every major browser. This allows for
implementation of cross-platform hardware-accelerated 3D graphics appli-
cations. [11, 17]

According to Hui et al.(2012) other benefits of using WebGL is that due
to the hardware-accelerated 3D graphics, battery savings can be made [13].
However this is contradicted by Garaizar et al.(2012), which states that
WebGL should not be used for applications with low power consumption
[11]. One benefit of using the hardware-accelerated graphics is that it gives

13

“output” — 2015/5/19 — 20:03 — page 14 — #24

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

a fast application, since more of the hardware capabilities are used than
in other technologies. WebGL also use less CPU with high performance
compared to the standard canvas technique. [13]

3.2.8 SVG

”Scalable Vector Graphics (SVG) is an XML dialect used to describe vec-
tor graphics wherein images are composed of drawing elements rather than
raster pixel colors”. A picture in an SVG model consists of a list of paths,
basic shapes and text, each one of these XML elements has its own appro-
priate graphical attributes. The vector image is then turned into a bitmap
by the web browser. One great benefit of SVG visualisations is that they
become very concise, since the entire pixel plane does not have to be speci-
fied, only the visual elements for the figure. One downside for SVG is if the
visual elements exceeds the bitmap size, the visualisation will become very
memory expensive. [14]

SVG is in contrary to WebGL and VML open source. It is also an
official W3C recommendation but was not present in the initial HTML5
specification. However SVG has now been adopted to the specification. [18]
It is supported natively in the browser, reducing security risks. [24] SVG is a
retained-mode graphics API in contrary to canvas and WebGL. This means
that the graphics library keeps an internal representation, a model, of the
graphics elements. Every time a new frame is to be drawn the model is first
updated, allowing the library to handle initialisation, state maintenance and
cleanup. [22] The model consists of elements in the DOM and this allows
for user interactivity through Javascript as event handlers can be attached
to the elements. These event handlers can listen for events such as click,
making it easy to implement functionality for moving objects. [11, 14] One
other advantage described by Garaizar et al.(2012) is the zooming operations
which SVG handles well.

As with all technologies there are some disadvantages, one technique can
not be best in every aspect. For SVG the most concerning disadvantage is
that it can be perceived as slow. This problem arises when SVG has to
handle a big number of shapes. [11]

3.2.9 Canvas vs. WebGL

As previously stated WebGL is hardware accelerated and canvas is not. Hui
et. al.(2012) has performed a comparative study on visualising objects. In
the study the difference between the two technologies can be seen.

14

“output” — 2015/5/19 — 20:03 — page 15 — #25

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

Figure 3.1: Results from the study performed by Hui et. al. [13]

The study shows that the difference in performance grows larger as the
the number of sprites increase. But it is not until there is a vast amount
of sprites that a significant difference can be detected. The bottleneck in
rendering graphics, using HTML5 canvas, resides in the Javascript engine.
This is a result of canvas not being able to leverage the GPU in the same way
as WebGL. Instead the CPU is used, the difference can be seen in figure 3.2
where the CPU load increase exponentially as the number of sprites increase
when using HTML5 canvas.

Figure 3.2: CPU use rate from the study performed by Hui et. al. [13]

It has been discussed that the CPU usage may have an impact on the
battery life of mobile devices. As the clock frequency increases on the CPU
the power consumption increases. Keeping the clock frequency to a mini-
mum is essential for managing the power consumtion. [12,13] Here it can be
seen that WebGL has a clear advantage when there is more than 10 sprites.

15

“output” — 2015/5/19 — 20:03 — page 16 — #26

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

3.2.10 Canvas vs. SVG

Johnson and Jankun-Kelly(2008) performed a comparison between Canvas
and SVG to determine which has the best performance in information vi-
sualisation [14]. The result of their comparison is shown in figure 3.3 and
3.4.

Figure 3.3: Results on car drawing comparison, measured in milliseconds,
by Johnson and Jankun-Kelly(2008) [14]

Figure 3.3 shows different performance metrics that describe how the
canvas and SVG perform when drawing the cars dataset. The metrics that
are used measure

• layout - creating an SVG/canvas structure.

• display - actual rendering.

• selection time - time from click to selected.

Johnson and Jankun-Kelly(2008) also describe how Canvas and SVG per-
form on drawing more complex images, where SVG also is the slightly better
alternative. What can be conducted from this table is that SVG is better at
image processing than canvas in this case of creating SVG/canvas structure
and rendering. [14]

Figure 3.4: Results on small datasets, measured in milliseconds, by Johnson
and Jankun-Kelly(2008) [14]

Figure 3.4 shows performance metric for small datasets and how canvas
and SVG performs for this dataset. Johnson and Jankun-Kelly(2008) de-
scribes that canvas and SVG both have advantages in different areas. In

16

“output” — 2015/5/19 — 20:03 — page 17 — #27

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

this comparison SVG is better for performing rendering and canvas is the
better option for creating SVG/canvas structure. [14]

3.2.11 Comparing canvas, WebGL and SVG

Canvas, WebGL and SVG has been compared in a study by Andrew and
Wright(2014). The comparison is based on five randomly generated datasets,
which are measured in dimensions/record. One important factor in this
comparison is that the study is only based on visualisation and not on in-
teractivity.

To compare these technologies, WebGL and Canvas uses FluidDiagrams(FD)
in 3D respectively 2D and SVG uses Data-Driven Documents(D3). Fluid-
Diagrams is a Javascript framework that can use both WebGL and canvas.
FluidDiagram uses WebGL for both 2D and 3D rendering when available
and uses canvas when WebGL is not available. D3 is a Javascript library
that uses SVG. [3]

Each element created in SVG provides a memory overhead. Canvas and
WebGL does not have this issue as it does not retain a model in the DOM.
However, this has an impact on the performance of the application. When
creating applications that relies heavy on user interactivity, the memory
overhead can be ignored as implementing interactivity in WebGL can not
be done as effective as when using the DOM. [14]

Figure 3.5: FPS for canvas, WebGL and SVG, by Andrews and Wright(2014)
[3]

The result of this study shows that WebGL is superior to both Canvas
and SVG when it comes to frames per second(FPS). WebGL is the best

17

“output” — 2015/5/19 — 20:03 — page 18 — #28

3.2. VISUALISATIONS ON THE WEB CHAPTER 3. THEORY

technique, in this study, for all datasets. The next best option is SVG,
which comes in second place for all datasets. [3]

18

“output” — 2015/5/19 — 20:03 — page 19 — #29

Chapter 4

Results

This section will present the result of the literature study, requirement elic-
itation and case study.

4.1 Literature study

This section will present the result of the literature study, which aspects of
workflows that need to be supported by the chosen technology and which
technology that is the best fit for workflow management systems.

4.1.1 Key findings from workflow management systems

From the concepts of workflows there arise some important aspects of work-
flow management systems:

• Structurable - The system must be able to create tasks in a way that
allows for a sequence to be created.

• Re-arrangeable - Tasks must be re-arrangeable in a sequence, the
system must support the ability to move tasks.

• Visualisation - It is important to visualise a sequence of tasks and
the entire workflow. This importance of clarity make it necessary to
zoom and pan the flowchart.

These findings must be supported by the chosen technology.

4.1.2 A comparison of technologies

All of the technologies mentioned in the theory section have their respective
advantages and drawbacks, and some are obsolete. VML is not supported
in Internet Explorer 10. Flash has issues with security and is no longer
supported by Apple. This has led us to ignore both VML and Flash in this

19

“output” — 2015/5/19 — 20:03 — page 20 — #30

4.1. LITERATURE STUDY CHAPTER 4. RESULTS

study as the application must be supported in future browsers and at least
Internet Explorer 11.0.

Using WebGL will result in a fast application that uses less CPU com-
pared to canvas and SVG. One advantages of using WebGL is the cross-
browser support, which is important in order to reach out to the most users
possible. But cross-browser support does not mean that performance is
equal on all platforms. This was an issue in Flash where there were a
severe difference in performance between different platforms. The experi-
ence of Flash on Mac OS X and Linux did not come close to the the one
on Windows. WebGL does however provide a some what equal experience
cross-device and cross-browser.

When comparing Canvas, WebGL and SVG, we see that WebGL clearly
has the upper hand when it comes to FPS. One factor to the much higher
FPS in WebGL is the hardware accelerated graphics, which gives a faster
application.

The comparisons in the theory section only handled visualisation and this
is only one part of the tool which will be implemented. The key findings
of workflow management systems were that tasks shall be structural, re-
arrangeable and that it shall be possible to display the whole workflow with
zooming capabilities. As described, editing is just as an important part and
can be the more difficult to implement. Therefore it is also an important
part to look at advantages and disadvantages of canvas, WebGL and SVG
to see if any of the techniques are more suitable in an editing application.
These are the aspects that are most important when further comparing the
technologies.

WebGL and canvas are immediate mode API’s, where on the other hand
SVG is a retained mode API. This is an advantage for SVG over WebGL and
canvas, if the developer prefers simplicity over control. Since SVG has the
internal representation of the scene integrated into the library, it is easier to
use if the representation fits the domain. Using SVG, the developer has to
accept how the technology handles internal representation of images, which
is not the case in WebGL and canvas.

Looking at advantages and drawbacks for SVG, we can see that SVG has
an advantage when it comes to redraws and movement of shapes. This comes
from the integration with DOM elements. This is an important feature
when it comes to workflow visualisation and editing tools, as described in
the key findings. One other important feature is that SVG can handle
zoom operations well, which is part of the visualisation finding of workflow
management system. The memory overhead disadvantage that is mentioned
will not be a problem. This is due to the fact that we are utilizing the built-
in event system. As stated earlier it would be less efficient to implement the
same behaviour in technologies such as WebGL.

Canvas lack support of events, since this is a desirable feature in the
graph-editor this is a big drawback. Text readability is important in our
case and is something that is very expensive to perform with canvas. These

20

“output” — 2015/5/19 — 20:03 — page 21 — #31

4.1. LITERATURE STUDY CHAPTER 4. RESULTS

two drawbacks makes canvas a bad match for the graph-editor.
Most of the advantages of WebGL is concerning 3D. Since this tool will

be in 2D, these advantages does not affect this case. WebGL suffers from
the same problem as canvas when it comes to interactivity. Moving items
around is an expensive operation as the whole scene needs to be re-rendered.

As can be seen by the advantages and disadvantages of each technique,
SVG is the most suitable technique for an editing tool. One of the more
important feature is the ability to move shapes, which is an easy task to
perform in SVG and more difficult to perform in canvas and WebGL. Even
if WebGL has better FPS for visualisation, we can not know that the FPS
is better in WebGL when it comes to movement of objects and shapes.

4.1.3 Hypothesis

By selecting SVG as the underlying technique we strive to achieve a set of
goals. These goals are the result of the feasibility study and reflected in the
hypothesis. The hypothesis are formulated as:

1. All of our requirements are possible to implement using SVG

2. The graph-editor will not lose performance when displaying a great
number of nodes(according to the domain).

3. We will not be forced to implement our own event model in order to
achieve interactivity

In order to implement a graph editor, one must choose a technology
which fits the domain. This is required to ensure that the requirement
specification can be implemented. The first hypothesis is declared to answer
if this is possible.

One of the main concerns when choosing technique, was the great deal
of interactivity involved in a graph editing management tool. Hence, it is
important that SVG implements an event system that fits our application.
The second hypothesis is formulated out of this concern, that our applica-
tion will not appear to be slow when interacted with. This performance
aspect of our application will be controlled by observing the frame rate per
second(FPS).

Using an SVG technology ensures that events such as moving objects
has support from SVG, allowing developers to implement this functionality
relatively easy. This functionality is one of the more important, when devel-
oping an interactive tool such as a graph-editor. This is described in the key
findings of workflow management systems, where features like moving object
are important in order to re-arrange a sequence of tasks in expected order.
The third hypothesis is formulated to ensure that this is the case when us-
ing a framework that is built on SVG technology for workflow management
systems.

The formulated hypothesis will be analysed and confirmed or denied in
the discussion section.

21

“output” — 2015/5/19 — 20:03 — page 22 — #32

4.2. REQUIREMENTS ELICITATION CHAPTER 4. RESULTS

4.2 Requirements elicitation

The requirements elicitation resulted in a set of properties which are impor-
tant to our specific project rather than general to all graph-editors.

• Active - Ensures that upcoming bugs are handled in the framework

• Internet Explorer 11 (IE11) - A minimum requirement is to sup-
port IE11

• Touch - In order to support smart devices, touch events must be
available

• Route points in essence curved lines - Desirable feature to be
able to structure the layout of the flowchart

To check if the project still remains active, the commit history was examined
to determine if someone was working on the project continuously. External
dependencies, support for Internet Explorer 11 and touch support was de-
termined by looking at the projects website and github page. Route points
was more of a subjective opinion on how difficult it would be to implement
in the corresponding framework, it does not reflect how easy it is to perform
in reality.

4.3 Selecting framework

A thorough investigation of existing visualisation frameworks resulted in the
following matrix.

Technique Active IE11 Touch Route points
jsPlumb SVG and VML uncertain yes yes maybe

JIT Canvas inactive yes no maybe
PixiJS WebGL and Canvas active yes yes hard/impossible

Raphael SVG and VML active yes yes hard/impossible
JointJS SVG active yes yes possible
SigmaJS WebGL and Canvas active yes yes possible

VisJS SVG and Canvas active yes yes hard/impossible
D3js SVG active yes yes possible

From this table two frameworks emerged as the most suitable for the
graph-editor, D3JS and JointJS. When deciding between these two, we went
with D3JS over JointJS. We did this as the community around D3JS is a
lot more active. It is also the most used and there were a lot of examples.

22

“output” — 2015/5/19 — 20:03 — page 23 — #33

4.4. D3JS CHAPTER 4. RESULTS

4.4 D3JS

D3JS is a visualisation framework that uses SVG as underlying technology.
D3 uses JavaScript to manipulate HTML documents based on data. It
uses the same vocabulary as standard technologies such as HTML, CSS and
SVG. This is useful as there is no need for a patch to be able to use new
functionality in the given standards.

4.4.1 Selections

Selections is the way that D3 handles data. A selection is a set of elements in
the document and these can be joined with data. D3 provides enter, update
and exit selections and these are the selections that different D3 operations
can be performed on:

• Enter is a set of placeholder elements, created to bind with new data.

• Update is a set of elements that is bound to existing data.

• Exit is a set of elements that has its corresponding data removed.

Using these selections allows us to set styles and do computations only on
those elements that require it.

4.5 Design decisions

In this section the most important design decisions are described and anal-
ysed.

4.5.1 Platform

The requirements specified that the editor should support both tablet and
desktop platform, which requires the support of touch events. However the
main focus was on desktop platform and getting existing functionality ported
from the previous application. This resulted in tablet support to be a low
priority putting it at the bottom of our backlog, resulting in never being
implemented. The choices we made allow tablet support to be implemented
in the future.

4.5.2 Extra library for data-bindings

To avoid writing a lot of code to handle data-binding, which is not central
for this thesis, we decided to add a library to handle the view part of our
application. After evaluating RactiveJS and ReactJS we decided to go with
the latter. This was mainly because of the structure which React provides.
Also, Ractive did not feel as easy to use and intuitive as React. The doc-
umentation and community surrounding React was also a big factor when
deciding which one to go with.

23

“output” — 2015/5/19 — 20:03 — page 24 — #34

4.6. KEY FINDINGS FROM DEVELOPER DIARYCHAPTER 4. RESULTS

4.6 Key findings from developer diary

This is a summary of the most important findings. They are extracted from
the diary produced by the developers during the case study:

• A need for databinding, since D3 is only a visualisation framework and
the support for updating data in forms is limited.

• Developers had difficulties knowing which solution was best for creat-
ing SVG shapes, HTML or Javascript.

• It would be beneficial to set coordinates to an SVG group. Present
solution is to transform the element instead.

• D3 can not be controlled from css entirely, some properties need to
be controlled through JavaScript. Placing the styling in two different
locations.

• D3 has a lot of support for interactivity, such as movement and zoom-
ing. However, a difficult task was to move a SVG object between two
different SVG elements.

• The ability to enter an array of data into a D3 selection and later look
at the data before setting attributes and other features at no cost.
This makes it easy and efficient to make minor changes to the same
type of element e.g having dashed lines.

• SVG groups is a central part of using an SVG technology like D3 and
is mostly used for grouping SVG shapes together.

• Using enter, update and exit selections can improve performance. Us-
ing selections in the correct way will minimize the amount of times the
DOM is modified, increasing performance. If not used correctly every
element can be altered every time.

• Code structure can sometimes be confusing. Chaining makes it hard
to reason about the code and which value that is modified.

• Even though the D3 API, for the most part, is well documented,
there are some methods that are lacking complete documentation and
thereby are difficult to understand what they return and how they
work.

• D3 has behavior for interpolating lines, which was useful when adding
route points to transitions.

24

“output” — 2015/5/19 — 20:03 — page 25 — #35

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

4.7 Implementation

From the requirement elicitation, details about the implementation emerged.
The requirements unveiled three main components:

• Flowchart

• Node

• Transition

There is also an apparent need for some sort of component that can be
used to control input of data. We decided to go with a menu.

4.7.1 Flowchart

The requirements state the need of a component that can hold child compo-
nents of different types. This component is referred to as a flowchart. The
flowchart is split up into two different objects. One object holds the data
associated with a flowchart, seen in listing 4.1. The other is the graphical
representation, which consists of a single SVG element. This is the drawing
surface of the application which we will add child elements to, seen in listing
4.2.

f unc t i on FlowchartModel (name , type , d e s c r i p t i o n ,
warningTimeout , storageTime) {

t h i s . name = name ;
t h i s . d e s c r i p t i o n = d e s c r i p t i o n ;
t h i s . c reateDate = ’ ’ ;
t h i s . warningTimeout = warningTimeout ;
t h i s . storageTime = storageTime ;
t h i s . type = type ;
t h i s . s tartNodeId = ’ ’ ;
t h i s . p r o p e r t i e s = [] ;

} ;
FlowchartModel . prototype . c on s t ruc to r = FlowchartModel ;

Listing 4.1: Flowchart data model

<svg id=”f l owchar t”></svg>

Listing 4.2: Flowchart graphical model

Adding child elements is done using D3. In D3 you can add items by ap-
pending them to a selection. A simple example can be seen in listing 4.3.
The returned element is a D3 selection allowing the developer to chain com-
mands.

25

“output” — 2015/5/19 — 20:03 — page 26 — #36

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

s e l e c t (’# f lowchart ’) . append (’ rect ’) ;

Listing 4.3: Adding single element

But if you want to append many items and bind them to data there is a
more efficient way, this is by doing a join. The code in listing 4.4 describes
how to join elements with data in D3.

s e l e c t (’# f lowchart ’) . s e l e c t A l l (’ r ec t ’) . data (data) .
ente r () . append (’ rect ’) ;

Listing 4.4: Adding items in batch

First we select all rects that are children to svg and bind some data to the
selection. The enter() command will then return the enter selection. As
described earlier the enter selection is a set of placeholders for elements not
having any data bound to them. With append(’rect’) we will replace these
placeholders with rect elements bounded to a specific data item. This pro-
cess of joining data to elements is used to a great extent in our application.
It allows us to react to data and set attributes accordingly using dynamic
properties.

4.7.2 Nodes

One of the two main components that a flowchart should be able to contain
as a child is a node. Nodes are represented in the same way as a flowchart,
with a data model and a view representation. One difference is that we use
inheritance to achieve our node hierarchy, seen in figure 4.1. This is used as
we have a number of different node types with some common properties.

26

“output” — 2015/5/19 — 20:03 — page 27 — #37

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

Node

ExternalManual ExternalAutomatic Split Join Synchronize SubChart

Batch

Automatic

Figure 4.1: Node hierarchy

func t i on Node (name , p rope r t i e s , d e s c r i p t i o n ,
warningTimeout , alarmTimeout) {

t h i s . name = name | | ’ ’ ;
t h i s . d e s c r i p t i o n = d e s c r i p t i o n | | ’ ’ ;
t h i s . c reateDate = new Date () ;
t h i s . warningTimeout = warningTimeout | | ’ ’ ;
t h i s . alarmTimeout = alarmTimeout | | ’ ’ ;
t h i s . p r o p e r t i e s = p r o p e r t i e s | | [] ;
t h i s . x = 0 ;
t h i s . y = 0 ;

}

Listing 4.5: Base type inherited by all node types

The base type in listing 4.5 can be extended as described in listing 4.6 using
JavaScripts prototypal inheritance.

Automatic . prototype = Object . c r e a t e (Node . prototype) ;
Automatic . prototype . c on s t ruc to r = Automatic ;

f unc t i on Automatic (name , plugin , pluginParameters ,
p rope r t i e s , d e s c r i p t i o n ,
warningTimeout , alarmTimeout) {

27

“output” — 2015/5/19 — 20:03 — page 28 — #38

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

Node . c a l l (th i s , name , p rope r t i e s ,
d e s c r i p t i o n , warningTimeout , alarmTimeout)

;
t h i s . type=’Automatic ’ ;
t h i s . p lug in = plug in | | ’ ’ ;
t h i s . p luginParameters = pluginParameters | |

[] ;
}

Listing 4.6: Example of inheritance

Using inheritance in this way allows us to reuse code and take advantage of
polymorphism. An instance of a specific type of Node can now be checked to
see if it is an instance of Node, and more specific, an instance of Automatic.

A node’s graphical representation is built up by three different SVG
elements:

• g - a SVG group element

• rect - a SVG shape element

• text - D3 text element

We build our nodes by creating SVG groups and then appending SVG shapes
to that group. We first append the rect element, and secondly, the text
element to our g element. By adding the text as the second object we make
sure that the text will be placed on top of the rectangle. The end result can
be seen in listing 4.7.

<g c l a s s =”node” trans form=”t r a n s l a t e (290 ,10)”>
<r e c t c l a s s =”node−r e c t ” width=”40” he ight=”20”></

rect>
<t ex t c l a s s =”node−t ex t ” x=”1” y=”15”>Skapa</text>
<r e c t c l a s s =”avatar ” width=”7” he ight =”7” x=”1” y

=”1” rx=”1” ry=”1”></rect>
<t ex t c l a s s =”avatar−t ex t ” x=”2.5” y=”6.5”>A</text>

</g>

Listing 4.7: SVG representation of a node

The purpose of building nodes like this is to be able to treat both the text
and the rect as one element. The group element allows us to achieve this,
as we can add attributes to the g element. In listing 4.8 we see how adding
a SVG group containing a node looks like.

var node = svg . s e l e c t A l l (’ . node ’) . data (data) . append (’ g
’) . a t t r (’ c l a s s ’ , ’ node ’) ;

node . append (’ rect ’) ;
node . append (’ text ’) ;

Listing 4.8: adding node in D3

28

“output” — 2015/5/19 — 20:03 — page 29 — #39

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

The first append in listing 4.8 will return a SVG group which is what the
node variable will contain. We can then append different SVG shapes and
D3 elements to this group, in order to create node types. Also notice the
attr method which stands for attribute. This method handles manipulation
of SVG and D3 elements. In this case we set a class name on the group to
later be able to recognise that this group contains nodes. The node SVG
group can later be used for movement instead of moving every object which
is a part of the node.

4.7.3 Transitions

The second component a flowchart should be able to have, as a child, is a
transition. A transition is a possible route between two nodes. As seen in
listing 4.9, a transition’s data model is similar to the other data models, an
object holding data.

var Trans i t i on = func t i on () {
t h i s . name = ’ ’ ;
t h i s . d e s c r i p t i o n = ’ ’ ;
t h i s . from = ’ ’ ;
t h i s . to = ’ ’ ;
t h i s . type = ’ ’ ;
t h i s . p r o p e r t i e s = [] ;

} ;

Trans i t i on . prototype . c on s t ruc to r = Trans i t i on ;

Listing 4.9: adding node in D3

The transitions graphical representation is a bit more complex due to the
requirement to support route points. If we would only have had the need
for a straight line between two nodes we could have used the SVG line
element. Instead we need to use a path element. The path element is the
most powerful of the basic shapes, as it can be used to create all of the other
shapes. We use the path element as it can interpolate over a set of dots.
This will result in a curved line, which cannot be achieved with SVG line.

4.7.4 Menu

The menu emerged as an essential part of the application. This was a result
of the amount of data connected with the different parts of the flowchart,
which should be possible to edit. As the nodes have different properties
we need to be able to display the fields connected with a specified node,
transition or flowchart. This was solved by checking the selected object and
determining from that what should be visible. In order to handle this flow
of data and control we introduced a second library called React.

29

“output” — 2015/5/19 — 20:03 — page 30 — #40

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

We created three different menus called TransitionMenu, NodeMenu and
FlowchartMenu.

4.7.5 Route points

Route points provides a way to alter how transitions are drawn in the
flowchart. By adding route points to a transition, the transition will need
to pass through these. A path is built up by several lines. This gives us a
line between the set of points provided. However, this results in very sharp
edges. To get a more fluid appearance, we apply an interpolation function,
giving us a curvy line.

Figure 4.2: Print screen of route point without interpolation function

Figure 4.3: Print screen of route point with interpolation function

4.7.6 Event handling

As described earlier there exist a possibility to join data with elements. By
doing this we can access the data connected with an element that is involved
in an event, in the event function. D3 leverages JavaScripts event system
and extends it with its own special events. One of these special events is
extra useful in a Workflow Management System, the drag event. Our pre-
study shows that it is essential to be able to move nodes around in the
flowchart, in order to improve readability. The drag behavior which can be
applied using D3 is shown in listing 4.10

30

“output” — 2015/5/19 — 20:03 — page 31 — #41

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

d3 . behavior . drag ()
. o r i g i n (func t i on (d) { re turn d ; })
. on (’ drags tar t ’ , f unc t i on () {

d3 . event . sourceEvent . stopPropagat ion () ;
})
. on (’ drag ’ , f unc t i on (d) {

d3 . event . sourceEvent . stopPropagat ion ()
;

d . x = d3 . event . x ;
d . y = d3 . event . y ;
s e l f . props . onNodeMoved(d) ;

})
. on (’ dragend ’ , f unc t i on (d) {

d3 . event . sourceEvent . stopPropagat ion ()
;

s e l f . props . onNodeMoved(d) ;
})

Listing 4.10: Drag event implemented in the prototype

4.7.7 Graph editor

In figure 4.4, we provide a print screen of the graph editor. This figure
displays nodes, transitions and a menu. The selected item is marked with
a green border. As a node is selected, the menu represent this state by
showing information about the selected node.

31

“output” — 2015/5/19 — 20:03 — page 32 — #42

4.7. IMPLEMENTATION CHAPTER 4. RESULTS

Figure 4.4: Print screen of the graph editor

The menu will always display information about the current selected
item. This can be seen as we select a transition, the menu will switch. This
can be seen in figure 4.5

Figure 4.5: Print screen of the graph editor

32

“output” — 2015/5/19 — 20:03 — page 33 — #43

Chapter 5

Discussion

This section will analyse and discuss the result provided in the previous
section.

5.1 Method

This section will analyse the methods applied in this thesis.

5.1.1 Diary

Using the findings from the diary as empirical findings needs to be motivated
by how we have handled the disadvantages of using a diary. One of the
disadvantages of using a diary is that it can infer with the normal workflow
and lead to an unnatural workflow. This disadvantage was mitigated by only
doing observations at the end of the day, such as reflections and important
design decision.

Since there are two participants, we get two different versions of the
diary. We are thereby given different perspectives on the findings. These
versions can be used to, when analyzing, to compare how the perspectives
differ. One other approach would be to discuss important findings at the
end of each day and later document these. However, this would influence
the findings and the different perspectives may be lost.

When writing in the dairy, entries should have been a lot more spe-
cific and exhaustive. During the evaluation it was hard to draw conclusions,
instead one had to try and remember which issues occurred during the devel-
opment process. The entries mainly consisted of the work produced during
each day. It should have consisted of more reflections and thoughts about
the implementation.

There was also a lack of commitment when writing the diary, resulting
in poor quality. Then entries were often short and sometimes, stated the

33

“output” — 2015/5/19 — 20:03 — page 34 — #44

5.1. METHOD CHAPTER 5. DISCUSSION

same thing several times. From time to time there were also empty entries.
The routine was simply none existent.

5.1.2 Triangulation

As was described in the method section, triangulation can be used to make
sure that empirical findings are validated and reliable. The empirical find-
ings of the literature study as well as the case study has to be triangulated.
This triangulation is performed to make sure that this thesis provide valid
and reliable empirical findings as foundation for this thesis.

The literature study is triangulated both through theory and investigator
validation. We have achieved theory triangulation as both investigators have
found relevant information to the literature study at different sources. These
findings have later been compared to check what different source describe
about the same topic. By achieving theory triangulation we can be sure
that the result of the literature provides accurate and reliable information.
We also triangulate our findings in the literature study through investigator
triangulation. That is, we have both investigated the same material to give
different interpretations of the meaning on the findings in the literature
study. This triangulation gives a more accurate interpretation of the result
in the literature study.

Now that we know that the literature study provides reliable and accu-
rate information we can use this data as part of the case study. The case
study can be triangulated through investigator triangulation. The empiri-
cal findings that are triangulated in this case is the diary. The diary can be
triangulated using investigator triangulation because both researcher wrote
diaries through out the case study, providing different perspectives on im-
portant findings during the case study. This gives more valid and reliable
empirical findings since its more likely for two researchers reflecting on all
important aspects than one.

5.1.3 SCRUM

Using SCRUM during the development has allowed us to adapt to change.
We can not say that it has been positive nor negative, as the project has not
changed direction during the development process. Our backlog has been
consistent throughout the sprints and the order of the user stories has not
changed. We could probably have used a waterfall model as well as SCRUM
if we had known this at the beginning. But, it is impossible to know which
direction a project will go in the beginning, and it is better to plan for
change as it is time consuming to change methodology.

The backlog has not been used in the right way as the user stories has
not been picked in the order they appear. Instead we have just picked the
stories we feel is the most important ones at the beginning of each sprint.
This has probably resulted user stories that do not maximize customer value,
being implemented. The reason to this could be the lack of a designated

34

“output” — 2015/5/19 — 20:03 — page 35 — #45

5.2. RESULT CHAPTER 5. DISCUSSION

product owner. Having a designated member in the team to manage the
backlog would probably allow that person to spend more time on ranking
and ordering tasks. As time was tight we often overlooked parts of the
method, that was more of a administrative nature.

As neither of us have enough experience regarding the rules of SCRUM,
none could take on the role of SCRUM master. This lead to no SCRUM
master being appointed and that the SCRUM methodology, may not have
been exercised in the right way.

Our sprints were not the recommended 30 days, instead we had 14 day
sprints, as our total development time was very limited. The short sprints
were not recognized as a serious problem. Only impact this had on us was
that we had to plan less stories per sprint.

It was not until the third release that we had a working release candidate.
This was not a major problem as this was a prototype and not a product.
Though it could have been handy at the demo meetings, after each sprint,
to have a working release. We also pondered about having a code stop the
day before, when no new code is allowed to be merged into the development
branch. The purpose with code stops would be to minimize new, potentially
error prone, code to be merged with the code base and not noticed until the
demo.

5.2 Result

In the results section we formulated a set of hypothesis that was extracted
from our pre-study:

1. All of our requirements are possible to implement using SVG

2. The graph-editor will not lose performance when displaying a great
number of nodes(according to the domain).

3. We will not be forced to implement our own event model in order to
achieve interactivity

5.2.1 First hypothesis

As researchers and developers in this case study, we can confirm that this
hypothesis is fulfilled and that SVG is well suited for building visualisation
applications depending on a high functioning event system. We draw this
conclusion as most of the requirements listed in appendix B has been im-
plemented. Requirements that has not been implemented is due to lack of
time and not because a lack of support from SVG.

One other aspect that can confirm this hypothesis, is the key findings
from workflow management systems. That is, the graph-editor can structure
nodes in a sequence by drawing transitions between nodes, the graph-editor
has the ability to move nodes and it is possible to visualise entire workflows.

35

“output” — 2015/5/19 — 20:03 — page 36 — #46

5.2. RESULT CHAPTER 5. DISCUSSION

However there was a need of using a binding framework as well, mostly
for visualisation of information related to a graph. This was something
that SVG was missing in order to be the complete solution for our domain.
However including to much functionality in a framework can also result in
overhead. We appreciate the possibility to decide which binding framework
to use our self instead of being forced to use some implementation.

5.2.2 Second hypothesis

We discovered quite early that performance was not going to be an issue.
We did a simple test by adding a lot of nodes, and it was not until we had
around 6000-7000 that we noticed that the program was sluggish. But as
our domain is around 100 nodes, we are not even close to the limits of D3.

From the diary we can conclude that when not using placeholders se-
lections enter, update and exit, performance decreases drastically. This
conclusion motivates the importance of using the right methods in D3 in
order to arrive at the most efficient solution.

5.2.3 Third hypothesis

JavaScript provides an event system which can be connected with SVG
elements. This can be conducted, from the diary, as one of the great features
of SVG. The event system provides the developer with a way to implement
behaviours, like movement and zooming, without being forced to write them
from scratch.

As most of the events in D3 is not library, but standard specific. As
a result all browsers that support SVG will support D3, when support for
selections is added. This entails that it is possible to utilize new events
added to the SVG standard without a need to update D3. This would limit
the risk if the library would stop receiving updates.

We like D3 as it enhances SVG but not hiding it. It adds the ability to
manipulate documents based on data and does it really well.

5.2.4 Low level of abstraction

One issue with D3 was the level of abstraction. As you are working almost
directly with SVG, you work in terms of shapes, like circle and line. This
makes D3 domain agnostic which has its pros and cons. A higher abstraction
level, that is domain specific, would probably decrease the development
time. This would in that case be the result of working in terms of nodes and
transitions instead of shapes. Our framework study showed that frameworks
with this kind of abstraction are not cheep and if they are, they lack tests
and the documentation is inadequate.

36

“output” — 2015/5/19 — 20:03 — page 37 — #47

5.2. RESULT CHAPTER 5. DISCUSSION

5.2.5 Performance does not matter

In the beginning of this study there were a lot of focus on the performance
of different technologies in different situations. We have discovered that
these kind of applications does not use a lot of resources and does not need
the most efficient technique. The calculations performed are light and the
amount of elements can be considered few. Most importantly there are no
spectacular animations performed.

5.2.6 Diary analysis

This section analyse and discuss important findings from the diary.

SVG groups

The graph-editor uses SVG groups in a large extent and mostly for grouping
several SVG elements together to define different shapes. However SVG
groups does not have a property for global coordinates to the root SVG
element. If the SVG element is the only part on display this is not a problem.
In our case we have a menu to the left on the screen, leading to that we have
to calculate how large the menu is and offset this to the global coordinates
on the screen. If our graph-editor is plugged into another system and this
system has a left-sided menu on its own, this will lead to more problems.

Visualisation data binding

The data binding functionality provided by D3 has made it easy to connect
data with SVG elements. Since the data is connected to the element it is
possible to reach this data inside D3 methods. With this ability it is possible
to check the data and set attributes accordingly. Reaching data in this way
allows us to alter data in a very convenient way, reducing the amount of
code.

Menu data binding

Data binding for the menu was not as obvious to obtain with D3 and there-
fore we decided to go with another binding framework for the menu.

Interactivity

D3JS provided us with a number of events for handling interactivity, such
as moving object and zooming. This was one of the functionalities that was
vital in the selection of framework and D3JS has proven that these event
are easy to implement and requires few lines of code to make them work.

One of the benefits of using an SVG technology is that when zooming,
shapes will still be sharp. This is a something that would have required extra
functionality in another technology, but not necessary when using SVG.

37

“output” — 2015/5/19 — 20:03 — page 38 — #48

Chapter 6

Conclusion

As we only worked with SVG in a D3 context, we can only say that pairing
these two technologies together has worked well for us. Workflow manag-
ment systems are a lot about connecting data to a process and visualising
it. The initial belief of using efficient technologies being critical to the sys-
tem proved to be false. We concluded that the key points when choosing
technique is more about writing as small amount of code possible by e.g.
using a high abstraction.

We have also seen indications that there is a need to be able to apply
automated tests, so the technique should have good support for this. Though
we have not been able to investigate this leaving it for future work.

6.1 Future work

If more time had been available it would have been interesting to compare
a flowchart written in SVG to a identical one written in a framework us-
ing canvas or something similar that does not support event handling. The
comparison should check how much more code that is written and the per-
formance difference.

Automated tests is a big part of software development. It would be
interesting to investigate to which extent you can execute end-to-end(E2E)
tests when using different visualisation technologies. There will probably
be differences in how easy E2E tests is to performed, depending on if the
technique utilises the DOM or not. Being such an important factor this
could be a deal breaker when deciding technology.

38

“output” — 2015/5/19 — 20:03 — page 39 — #49

Bibliography

[1] Wil van der Aalst and Kees Max van Hee. Workflow management.
[Elektronisk resurs] : models, methods, and systems. Cooperative in-
formation systems. Cambridge, Mass. : MIT Press, 2002, 2002.

[2] Mustafa Acer and Collin Jackson. Critical vulnerability in browser
security metrics. Proceedings of W2SP, 2010.

[3] Keith Andrews and Benedict Wright. Fluiddiagrams: Web-based in-
formation visualisation using javascript and webgl. Eurographics Con-
ference on Visualization (EuroVis), 2014. Editors: N. Elmqvist, M.
Hlawitschka, and J. Kennedy.

[4] Gary Anthes. Html5 leads a web revolution. Commun. ACM, 55(7):16–
17, July 2012.

[5] M. Aoyama. Web-based agile software development. Software, IEEE,
15(6):56–65, Nov 1998.

[6] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. Manifesto for agile software development.
2001.

[7] Andrew Begel and Nachiappan Nagappan. Usage and perceptions of
agile software development in an industrial context: An exploratory
study. In Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on, pages 255–264. IEEE,
2007.

[8] World Wide Web Consortium. Vector Markup Language,
1998 (Accessed: 2015-02-11). http://www.w3.org/TR/1998/

NOTE-VML-19980513.

[9] Michael Coram and Shawn Bohner. The impact of agile methods on
software project management. In Engineering of Computer-Based Sys-
tems, 2005. ECBS’05. 12th IEEE International Conference and Work-
shops on the, pages 363–370. IEEE, 2005.

39

http://www.w3.org/TR/1998/NOTE-VML-19980513
http://www.w3.org/TR/1998/NOTE-VML-19980513

“output” — 2015/5/19 — 20:03 — page 40 — #50

BIBLIOGRAPHY BIBLIOGRAPHY

[10] P. De Ryck, M. Decat, L. Desmet, F. Piessens, W. Joosen, T. Aura,
K. Jarvinen, and K. Nyberg. Security of web mashups: a survey.
Katholieke Universiteit Leuven, IBBT-DistriNet, Leuven, 3001, Bel-
gium, 2012.

[11] Pablo Garaizar, MA Vadillo, and Diego Lopez-de Ipina. Benefits and
pitfalls of using html5 apis for online experiments and simulations. In
Remote Engineering and Virtual Instrumentation (REV), 2012 9th In-
ternational Conference on, pages 1–7. IEEE, 2012.

[12] Lee Garber. Gpus go mobile. Computer, 46(2):16–19, 2013.

[13] Xu Hui, Wei Lihao, Wang Tian, and Luo Xiaoben. Webgl based html5
application performance analyzer. Journal of Convergence Information
Technology, 7(23), 2012.

[14] Donald W. Johnson and T. J. Jankun-Kelly. A scalability study of web-
native information visualization. In Proceedings of Graphics Interface
2008, GI ’08, pages 163–168, Toronto, Ont., Canada, Canada, 2008.
Canadian Information Processing Society.

[15] Jeremy Keith. DOM scripting. [Elektronisk resurs] : web design with
JavaScript and the Document Object Model. Berkeley, Calif. : Friends
of ED ; New York : Distributed to the book trade by Springer-Verlag,
c2005, 2005.

[16] Khronos. WebGL and OpenGL, 2009 (Access 2015-02-11). https:

//www.khronos.org/webgl/wiki/WebGL_and_OpenGL.

[17] Khronos. WebGL overview, 2011 (Accessed: 2015-02-11). https://

www.khronos.org/webgl/wiki/Getting_Started.

[18] E.N. Kim, D.P. Schissel, G. Abla, S. Flanagan, and X. Lee. Web-
based (html5) interactive graphics for fusion research and collaboration.
Fusion Engineering and Design, 87(12):2045 – 2051, 2012. Proceedings
of the 8th {IAEA} Technical Meeting on Control, Data Acquisition,
and Remote Participation for Fusion Research.

[19] Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying
software engineers: Data collection techniques for software field studies.
Empirical Softw. Engg., 10(3):311–341, July 2005.

[20] Wen Tao Liu. Applied information technology in graphics algorithm
implementation based on the web canvas. Advanced Materials Research,
908:543–546, 2014.

[21] Bertrand Meyer. Agile! [Elektronisk resurs] : the good, the hype and
the ugly. [Zurich?], Switzerland : Springer, c2014, 2014.

40

https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL
https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL
https://www.khronos.org/webgl/wiki/Getting_Started
https://www.khronos.org/webgl/wiki/Getting_Started

“output” — 2015/5/19 — 20:03 — page 41 — #51

BIBLIOGRAPHY BIBLIOGRAPHY

[22] Microsoft. Retained Mode Versus Immediate Mode, Accessed: 2015-
02-11. https://msdn.microsoft.com/en-us/library/windows/

desktop/ff684178%28v=vs.85%29.aspx.

[23] Microsoft. VML is no longer supported, Accessed: 2015-02-
11. https://msdn.microsoft.com/en-us/library/ie/hh801223(v=

vs.85).aspx.

[24] Andreas Neumann and Andréas M Winter. Time for svg—towards high
quality interactive web-maps. International Cartographic Association,
2001.

[25] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements
engineering and agile software development. In 2012 IEEE 21st Inter-
national Workshop on Enabling Technologies: Infrastructure for Col-
laborative Enterprises, pages 308–308. IEEE Computer Society, 2003.

[26] MP Peterson. Maps and the internet: an introduction. Maps and the
Internet, 1:1–16, 2003.

[27] Olympus Press. Vector & Raster graphics in offset printing, 2009
(Access 2015-02-11). https://www.khronos.org/webgl/wiki/WebGL_
and_OpenGL.

[28] Stian Reimers and Neil Stewart. Adobe flash as a medium for online
experimentation: A test of reaction time measurement capabilities. Be-
havior Research Methods, 39(3):365–370, 2007.

[29] C. Robson. Real World Research: A Resource for Social Scientists and
Practitioner-Researchers. Regional Surveys of the World Series. Wiley,
2002.

[30] P. Runeson and M. Host. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131 – 164, 2009.

[31] Ken Schwaber. Agile project management with Scrum. [Elektronisk
resurs]. Redmond, Wash. : Microsoft Press, c2004, 2004.

[32] Carolyn B. Seaman. Qualitative methods in empirical studies of soft-
ware engineering. IEEE Trans. Softw. Eng., 25(4):557–572, July 1999.

[33] Robert E. Stake. The Art of Case Study Research. SAGE Publications,
1995.

[34] Thomas Steenbergen and Michael S Lew. Analysis of using browser-
native technology to build rich internet applications for image manip-
ulation. arXiv preprint arXiv:1101.0235, 2010.

41

https://msdn.microsoft.com/en-us/library/windows/desktop/ff684178%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff684178%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ie/hh801223(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ie/hh801223(v=vs.85).aspx
https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL
https://www.khronos.org/webgl/wiki/WebGL_and_OpenGL

“output” — 2015/5/19 — 20:03 — page 42 — #52

BIBLIOGRAPHY BIBLIOGRAPHY

[35] Jane Webster and Richard T Watson. Analyzing the past to prepare
for the future: Writing a literature review. Management Information
Systems Quarterly, 26(2):3, 2002.

42

“output” — 2015/5/19 — 20:03 — page 43 — #53

Appendices

43

“output” — 2015/5/19 — 20:03 — page 44 — #54

Appendix A

Diary

A.1 First sprint

The diary will consist of todays work and important reflections and major
findings regarding the framework and workflow tool.

Bad selection of frameworks in SVG that has the required functions for a
flowchart application. Jointjs seems to be a little unstable and may require
some rewritings.

Since there are not that many different good options when it comes to
flowchart frameworks, it feels like a big limitation to also have to use the
best technique.

Changing framework to D3js. Mostly because D3js is a widely used
framework and can be seen as well developed framework with quick response
to documented bugs on their github.

2015-02-23

Marcus: Today we started our first sprint, consisted of creating modal
window for creating flowcharts. Struggled a little with compatibility with
IE. Reflections are how node objects will be created and how much objects
oriented thinking can be used for these objects. No major findings.

Eric:

2015-02-24

Marcus: Created an node type and realised the importance of interactivity
with the nodes to be able to move nodes and transition and will require a lot
of work if the technique does not support this. Eric: To allow updates in the
user interface when the model is changed we need some kind of databinding.
D3 is only a visualisation framework, and as such it does not support this
feature. D3 does support updating data from forms, but in a more limited

44

“output” — 2015/5/19 — 20:03 — page 45 — #55

A.1. FIRST SPRINT APPENDIX A. DIARY

fashion. I have investigated different solutions to this problem and settled
with RactiveJS. Working with implementing it in the development pipeline.

2015-02-25

Marcus: No implementation regarding framework today. Working on
Node types.

Eric: Been working on the menu. The development pipeline is now
working.

2015-02-26

Marcus: Been working with drawing nodes. The SVG area moves side-
ways when clicking on screen. Also the get bounding box of text element
does not handle characters that go under the writing line, like j g etc. can be
solved with either padding or chosing another method for calculating text
width and height. //side note: this was solved with checking text length
instead of text width and therefore not using boundingbox.

Eric: Been working on the menu. Been looking at how to work with
D3 and templates. Question is if it is better to represent d3 elements as tem-
plates and manipulate attributes through moustaches or to create them in
JavaScript. Moustaches is a HTML template engine supported by RactiveJS

2015-02-27

Marcus: Continued drawing nodes and have been looking at if drawing
them in javascript or html with two way binding is the best way. Eric:
Menus needs to be tested in order to determine if they work. Creating
the view part of nodes etc. is placed in templates to separate view and
logic. This direction is still being evaluated, it is still unclear if D3JS can
be leveraged in this way. Events seems to be smooth to implement.

2015-03-02

Marcus: Creating nodes in html with two way bindings and tied it up
with the menu bar. Two-way binding makes it easy to draw many nodes
with a small amount of code.

Eric:

2015-03-03

Marcus: Started working on moving nodes in flowchart. Since we use a
svg group element that contain both node(SVG rect element) and text(SVG
text element) it gives some difficulties. The limitation with SVG group is
that it does not have coordinates, but can be translated to different locations

45

“output” — 2015/5/19 — 20:03 — page 46 — #56

A.2. SECOND SPRINT APPENDIX A. DIARY

in the parent group. The benefit of having relative coordinates in the group
is that it becomes easier to place e.g. node text.

Eric: The ability to use css together with SVG seems severely lim-
ited. Issues with Ractive, does not work as good as expected, problem with
performance is already present. The structure of the code is also not that
intuitive.

2015-03-05

Marcus: Adding functionality to move nodes. Making nodes move was
relatively easy task to perform, since d3 has event that handle movement
of nodes and therefore easier to implement movement. One difficulty is to
truncate text to the size limitation of the node box. Since text is drawn in
an svg text element it does not support all common css tricks for this task.
One other issue that had to be addressed was to get coordinates relative to
the flowchart, which has some offset for menu bar.

Eric: In order to handle the issues with performance I have elaborated
with ReactJS. It seems already more robust and measurements points at an
increase in performance. This can however be a result of some errors in the
implementation in RactiveJS as it was somewhat unclear how to structure
the code and implement some parts of the program.The result of switching
framework seems to be positive.

2015-03-06

Marcus: Been working on append text to nodes with SVG and adding all
different types of nodes to flowchart. appending text works well when used
in svg group so text is relative to the node instead of the flowchart. Events
in D3 also works well with click events on different elements.

Eric: Implemented functionality in react. The structure is much better.
Trouble with dragging nodes form a menu onto the drawing area, context
menu is used instead. The issue was dragging nodes from one SVG surface
to another, seamless. This was determined to difficult for us.

A.2 Second sprint

2015-03-09

Marcus: Changed binding framework from ractive to reactjs to get a bet-
ter structure. This causes some problems when wanting to render javascript
code instead of HTML, which is necessary for nodes since events with
drag and drop are easier to perform when elements are rendered through
javascript. Eric: Implemented the context menu in react and other parts.

46

“output” — 2015/5/19 — 20:03 — page 47 — #57

A.2. SECOND SPRINT APPENDIX A. DIARY

2015-03-10

Marcus: Struggling with learning structure of new framework together
with d3js. The problem when drawing nodes in HTML when trying to create
composable html object. Eric: Issues with D3JS and composing reusable
objects was discovered. The ability to encapsulate nodes into objects and
then create them by running ’new Node’ was limited.

2015-03-11

Marcus: Learned some of reactjs and was able to develop the same func-
tionality regarding drawing nodes as with ractice, only offset problems left.
Think D3 works well with appending data array for to later append SVG
groups, also very easy to call drag behavior for nodes. Eric: Worked with
offset issues when adding nodes through the context menu. The coordinates
must be relative to the upper left corner of the SVG surface and not the
window. This may require some computation to be done if not available as
a property.

2015-03-12

Marcus: Behavior for nodes. Needs to delete all nodes before drawing
all nodes, result of sending D3 all node data for every draw and just not
the new nodes. The was later solved with enter and exit selections. Eric:
Worked with implementing menu functionality. Discovered problems with
D3 and removing nodes. It seems as if we need to remove and create the
element tree to accomplish it.

2015-03-13

Marcus: Worked with adding and removing properties in the menu. Eric:
Worked with integrating our project into wicket and caseapp.

2015-03-16

Marcus: Worked with changing properties and plugin parameters. So
have been working with react js and nothing with d3. Using HTML events
for changing from text to input field to be able to edit text. React js has
a nice data flow with event handling for keys which was used today. Eric:
Worked with parsing XML files described with chartdescription.

2015-03-17

Marcus: Mostly work regarding layout with bootstrap for key-value input
field. Also added text to node, where it seems that not all nodes and all
text for nodes can be appended in the same statement, which is the result of

47

“output” — 2015/5/19 — 20:03 — page 48 — #58

A.3. THIRD SPRINT APPENDIX A. DIARY

what an append returns. In this case a text element cant be appended on a
rect and this is one of the reasons why svg groups are used. Eric: Worked
with parsing XML files described with chartdescription.

2015-03-18

Marcus: Finished working on properties and plugin parameters and then
worked on rewriting some code structure. Also looked at transitions, where
it seems like events on a circle cant stop dragbehavior for dragevents on the
same svg group. So dragging a circle which is located in a SVG group that
has a dragging behavior results in dragging the circle, even this is tried to
be prevented in events on the circle. Eric: Worked with parsing XML files
described with chartdescription.

2015-03-19

Eric: Worked with wicket and publishing of resources so that charts can
be accessed through a HTTP GET.

2015-03-20

Marcus: Worked with zooming, which according to example from the
API should be in a overlaying SVG group with in SVG groups beneath.
D3 handles zooming so not much work needs to be done to implement the
zooming behavior. Eric: Worked with testing integration with wicket.
Collecting data from inside of React using jquery AJAX calls was easy.

A.3 Third sprint

2015-03-23

Eric: Fixed import from server. It uses a mock API during production.
Have also looked at different ways of limiting pan and zoom.

Marcus: Worked with bugs regarding zooming behavior in D3js. One
issue regarding D3js zooming behavior is that one using zoomend event,
every zoom event can only last 50 ms. Which leads to difficulties when
knowing when a zoom operation is finished.

2015-03-24

Eric: Worked with transitions. Encountered implications with react and
updating location of a node. In order to move the position of the transition
there is a need to update the node data on drag. This will cause the update
of state to be called a lot during drag, causing an update of data in D3JS.

48

“output” — 2015/5/19 — 20:03 — page 49 — #59

A.3. THIRD SPRINT APPENDIX A. DIARY

2015-03-25

Eric: Worked with transitions. Using enter, update, and exit selections
drastically increases performance. Discovered that if used incorrectly the
application tends to be very slow. The code is often hard to interpret and
it is not always clear that the same statement can mean different things
depending on the order. Data the is only updated stays in the DOM and it is
up to the developer to limit the amount of updating to keep the application
responsive. Marcus: Finished zooming functionality. Using d3 linear
scale to restrict zooming window and calculate current zoomed window by
using domain function on x and y coordinates. It requires some calculations
when want to get the upper right corner of the zoomed screen to be able
to translate the zoom function. The zooming behavior is somewhat lacking
in documentation and specially the domain() function, which required a lot
of thinking to figure out and is still not perfectly clear. But the domain
function and the zooming function can be used to calculate the current
zoomed window.

2015-03-26

Marcus: Worked on drawing transitions from XML import and placing
transitions based on angles. There was some confusion when the y-axle went
downwards, causing the angle to be inverted for the y-axle. Eric:

2015-03-30

Marcus: Worked with creating new transitions, adding menu for transi-
tions. The ability to use functions with datum for operations on selection
is very often useful and is a nice feature in d3js. Eric: It is now possible
to create new transitions. The ability of looking at the data before setting
attributes and other features at no cost, makes it easy and efficient to make
minor changes to the same type of element. E.g having dashed lines,

2015-03-31

Eric: Worked with re-factoring large parts of the d3 code. The problem
with not being able to keep all styles in css has forced us to extract some
into a globals object and some into the CSS. This separation of information
is not desired but unfortunately necessary. Marcus: Started looking on
route points, mostly laborating regarding how to interpolate lines.

2015-04-01

Marcus: Worked on route points. Arrived at the conclusion that svg
paths will be used to interpolate lines. Paths are a line generator which is
used to interpolate over points and create curved lines. paths are part of svg.

49

“output” — 2015/5/19 — 20:03 — page 50 — #60

A.4. FOURTH SPRINT APPENDIX A. DIARY

Easy to implement in jsfiddle, harder to implement in the application. Eric:
Problems when trying to add knees to transitions. The knees are stored as
an array under the transition object. We want to add them directly to the
flowchart. Adding them together with the transitions would force us to use
a group and the coordinates would have to be relative to the group. But
adding them to the flowchart would force us to iterate over every transition
and pick out the knee data before adding them.

2015-04-02

Marcus: Came across some issues when adding route points to the
flowchart, where the transitions hold the data that we want to use to add
route points, e.g. a circle. However we cant append a circle on the transi-
tion selection since this selection is of type path. This could be solved by
iterating over every transition again and append circle to all route points.
However this seems unnecessary and will instead be solved by only drawing
route points for a transition once it has been selected.

A.4 Fourth sprint

A.5 Evaluation

50

“output” — 2015/5/19 — 20:03 — page 51 — #61

Appendix B

Requirements

1. The system shall be responsive

2. The system shall have two modes, view and edit

3. The system shall support Internet Explorer 11.0

4. The system shall have a rightside menu

5. The rightside menu shall contain all the different node types

6. The rightside menu shall switch to another view displaying information
about the selected item, when selecting an item

7. As a user I shall be able to zoom the flowchart by scrolling in on a
location

8. As a user I shall be able to zoom by pinching when using a mobile
device

B.1 View mode

1. As a user I shall be able to move nodes

2. As a user I shall be able to filter out information in the flowchart

3. As a user I shall be able to view flowcharts

4. As a user I shall be able to locate the route the courier has taken

5. As a user I shall be able to keep track of where the courier is located
at the moment

51

“output” — 2015/5/19 — 20:03 — page 52 — #62

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

B.2 Edit mode

B.2.1 Flowchart

1. As a user I shall be able to create a flowchart with the following prop-
erties

(a) name, string, not empty

(b) description, string (optional)

(c) create-date, date (optional)

(d) warning timeout, integer (optional)

(e) alarm timeout, integer (optional)

(f) storage time, integer (optional)

(g) start-node-id, string, not empty (optional)

(h) type, case or broker

2. As a user I shall be able to change the following parameters of the
flowchart

(a) name

(b) description

(c) type, between case and broker

3. As a user I shall be able to add nodes to the flowchart

4. As a user I shall be able to add transitions to the flowchart

5. As a user I shall be able to remove nodes from the flowchart

6. As a user I shall be able to remove transitions from the flowchart

7. As a user I shall be able to move nodes

8. As a user I shall be able to connect nodes with a transition

9. As a user I shall add a minimum of one node

10. As a user I shall be able to save the flowchart to disk

11. As a user I shall be able to save the flowchart to server

12. As a user I shall be able to upload a saved flowchart from file to server

13. As a user I shall be able to open file from disk

14. As a user I shall be able to import flowchart from server

15. As a user I shall be able to create a new flowchart

52

“output” — 2015/5/19 — 20:03 — page 53 — #63

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

16. As a user I shall be able to add a timer event to the flowchart with
the following properties

(a) name, string, not empty

(b) event-type, either of

i. close

ii. open

iii. flush

(c) when, string, not empty

(d) period, string, not empty

17. As a user I shall be able to structure the nodes in swim lines

18. As a user I shall be able to move to a subchart by first selecting a
subchart node, then select go to subchart in the leftside menu

B.2.2 Nodes

1. As a user I shall be able to create a node of type Automatic with the
following parameters

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

(d) create-date, date (optional)

(e) plugin, string(fully qualified class name)

i. plugin-parameter, key-value pair (optional)

(f) warning timeout, type integer (optional)

(g) alarm timeout, type integer (optional)

(h) properties, key-value pair (optional)

2. As a user I shall be able to create a node of type ExternalManual with
the following parameters

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

(d) create-date, date (optional)

(e) plugin, string(fully qualified class name) (optional)

i. plugin-parameter, key-value pair (optional)

(f) warning timeout, integer (optional)

53

“output” — 2015/5/19 — 20:03 — page 54 — #64

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

(g) alarm timeout, integer (optional)

(h) properties, key-value pair (optional)

3. As a user I shall be able to create a node of type ExternalOther with
the following parameters

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

(d) create-date, date (optional)

(e) warning timeout, integer (optional)

(f) alarm timeout, integer (optional)

(g) properties, key-value pair (optional)

4. As a user I shall be able to create a node of type Split with the following
parameters

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

(d) create-date, date (optional)

(e) warning timeout, integer (optional)

(f) alarm timeout, integer (optional)

(g) properties, key-value pair (optional)

5. As a user I shall be able to create a node of type Join with the following
parameters

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

(d) create-date, date (optional)

(e) warning timeout, integer (optional)

(f) alarm timeout, integer (optional)

(g) properties, key-value pair (optional)

6. As a user I shall be able to create a node of type Synchronization with
the following parameters

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

54

“output” — 2015/5/19 — 20:03 — page 55 — #65

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

(d) create-date, date (optional)

(e) warning timeout, integer (optional)

(f) alarm timeout, integer (optional)

(g) properties, key-value pair (optional)

(h) event-listener, string

(i) event-type, either of

i. close

ii. open

iii. flush

(j) status, string (optional)

7. As a user I shall be able to create a node of type SubChart with the
following parameters

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

(d) create-date, date (optional)

(e) plugin, ”subChart”

i. plugin-parameter, key-value pair (optional)

(f) warning timeout, integer (optional)

(g) alarm timeout, integer (optional)

(h) properties, key-value pair (optional)

8. As a user I shall be able to create a batch node with the following
properties

(a) name, string, not empty

(b) description, string (optional)

(c) chart-id, string, not empty (backwards compatability)(optional)

(d) create-date, date (optional)

(e) plugin, ”batch”

i. chart, string, not empty

ii. count, integer, integer

iii. timeout, integer (optional)

iv. plugin-parameter, key-value pair (optional)

9. The system should set SubChart as type by default on Batch nodes

10. As a user I shall be able to change the following properties on a auto-
matic node:

55

“output” — 2015/5/19 — 20:03 — page 56 — #66

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

(e) type of node

(f) key-value pair of properties

(g) plugin

(h) key-value pair of parameters

11. As a user I shall be able to change the following properties on a Ex-
ternalManual node:

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

(e) type of node

(f) key-value pair of properties

(g) plugin

(h) key-value pair of parameters

12. As a user I shall be able to change the following properties on a Sub-
Chart node:

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

(e) type of node

(f) key-value pair of properties

(g) plugin

(h) key-value pair of parameters

13. As a user I shall be able to change the following properties on a Ex-
ternalOther node:

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

56

“output” — 2015/5/19 — 20:03 — page 57 — #67

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

(e) type of node

(f) key-value pair of properties

14. As a user I shall be able to change the following properties on a Split
node:

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

(e) type of node

(f) key-value pair of properties

15. As a user I shall be able to change the following properties on a Join
node:

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

(e) type of node

(f) key-value pair of properties

16. As a user I shall be able to change the following properties on a Syn-
chronization node:

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

(e) type of node

(f) key-value pair of properties

17. As a user I shall be able to change the following properties on a Batch
node:

(a) name

(b) description

(c) warning timeout

(d) alarm timeout

(e) type of node

(f) key-value pair of properties

57

“output” — 2015/5/19 — 20:03 — page 58 — #68

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

(g) plugin

(h) key-value pair of parameters

18. As a user I shall be able to add a retry policy to a node

19. As a user I shall be able to add intervals, with count and interval, to
the retry policy

20. When specifying the subchart in a subchart node there should be a
possibility to create a new flowchart

21. When specifying the subchart in a subchart node there should be a
possibility to select an existing flowchart

B.2.3 Transitions

1. As a user I shall be able to create transitions between two nodes of
type Forward with the following properties

(a) name, string, not empty

(b) description, string (optional)

(c) create-date, date (optional)

(d) from-node-id, string, not empty

(e) to-node-id, string, not empty

(f) properties, key-value pair (optional)

2. As a user I shall be able to create transitions between two nodes of
type End with the following properties

(a) name, string, not empty

(b) description, string (optional)

(c) create-date, date (optional)

(d) from-node-id, string, not empty

(e) properties, key-value pair (optional)

3. As a user I shall be able to create transitions between two nodes of
type Back with the following properties

(a) name, string, not empty

(b) description, string (optional)

(c) create-date, date (optional)

(d) from-node-id, string, not empty

(e) to-node-id, string, not empty

(f) properties, key-value pair (optional)

58

“output” — 2015/5/19 — 20:03 — page 59 — #69

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

4. As a user I shall be able to change the following parameters of a
transition

(a) name

(b) description

(c) type of transition

(d) key-value pair in properties

5. As a user I should be able to add key-value pair to properties

6. As a user I should be able remove key-value pair if any exists in prop-
erties

7. As a user I shall be able to add route points to a transition

59

“output” — 2015/5/19 — 20:03 — page 60 — #70

B.2. EDIT MODE APPENDIX B. REQUIREMENTS

60

“output” — 2015/5/19 — 20:03 — page 61 — #71

P̊a svenska

Detta dokument h̊alls tillgängligt p̊a Internet – eller dess framtida ersättare
– under en längre tid fr̊an publiceringsdatum under förutsättning att inga
extra-ordinära omständigheter uppst̊ar.

Tillg̊ang till dokumentet innebär tillst̊and för var och en att läsa, ladda
ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat
för ickekommersiell forskning och för undervisning. Överföring av upphovs-
rätten vid en senare tidpunkt kan inte upphäva detta tillst̊and. All annan
användning av dokumentet kräver upphovsmannens medgivande. För att
garantera äktheten, säkerheten och tillgängligheten finns det lösningar av
teknisk och administrativ art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovs-
man i den omfattning som god sed kräver vid användning av dokumentet p̊a
ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras
i s̊adan form eller i s̊adant sammanhang som är kränkande för upphovsman-
nens litterära eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet – or its possible
replacement – for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission
for anyone to read, to download, to print out single copies for your own use
and to use it unchanged for any non-commercial research and educational
purpose. Subsequent transfers of copyright cannot revoke this permission.
All other uses of the document are conditional on the consent of the copy-
right owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be pro-
tected against infringement.

For additional information about the Linköping University Electronic
Press and its procedures for publication and for assurance of document in-
tegrity, please refer to its WWW home page: http://www.ep.liu.se/

c©Marcus Alfredsson and Eric Lundmark

	Introduction
	Background
	Domain
	Problem description
	Purpose
	Approach
	Limitations

	Method
	Literature study
	Requirement elicitation
	Case study
	Case study design and planning
	Data collection
	Validity
	Triangulation
	Data analysis
	Scrum
	Our approach

	Theory
	Workflow management systems
	Visualisations on the web
	Raster graphics
	Vector graphics
	Document Object Model
	Flash
	VML
	Canvas
	WebGL
	SVG
	Canvas vs. WebGL
	Canvas vs. SVG
	Comparing canvas, WebGL and SVG

	Results
	Literature study
	Key findings from workflow management systems
	A comparison of technologies
	Hypothesis

	Requirements elicitation
	Selecting framework
	D3JS
	Selections

	Design decisions
	Platform
	Extra library for data-bindings

	Key findings from developer diary
	Implementation
	Flowchart
	Nodes
	Transitions
	Menu
	Route points
	Event handling
	Graph editor

	Discussion
	Method
	Diary
	Triangulation
	SCRUM

	Result
	First hypothesis
	Second hypothesis
	Third hypothesis
	Low level of abstraction
	Performance does not matter
	Diary analysis

	Conclusion
	Future work

	Appendices
	Diary
	First sprint
	Second sprint
	Third sprint
	Fourth sprint
	Evaluation

	Requirements
	View mode
	Edit mode
	Flowchart
	Nodes
	Transitions

