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Abstract

The recent studies on sensor networks are causing a huge development of wire-
less communications. These studies are motivated by the wide-range promising
applications. However, this development faces multiple challenges. The privacy
issue is one of these challenges. The study on the privacy-constrained sensor
networks is presented in previous works where the eavesdropping privacy risk is
taken into account in the physical-layer distributed detection design. Nonethe-
less, a rigorous study on the receiver operating characteristics (ROC) is missing.

In this thesis, we will focus on a parallel distributed detection network
with one fusion node that makes the final decision. We show how the fusion
ROC changes against different settings when considering the privacy constraints.
First, a Bayesian detection scenario is considered. Second, some parameters are
modified for the purpose of studying the affect on the ROC. Finally, an other
scenario is analyzed where the eavesdropping is modeled a Neyman-Pearson
detection attach while the settings of the Bayesian distributed with detection
system is kept.



Sammanfattning

De senaste studierna om sensornätverk är föranledd av en snabb utveckling inom
tr̊adlös kommunikation. Studierna motiveras av de lovande tillämpningar som
finns inom ett flertal omr̊aden. Utvecklingen av sensornätverk st̊ar dock inför
ett antal utmaningar. Den personliga integriteten är en utav dessa utmaningar.
Studien om sekretessbegränsade sensornätverk finns presenterad i tidigare verk
där integritetsrisken vid avlyssnings tas i beaktning inom det fördelade fysiska
lagrets detektionsdesign. Dock saknas en rigorös underökning p̊a mottagarens
driftegenskaper (ROC).

Denna avhandling kommer att fokusera p̊a ett parallellt distribuerat detek-
tionsnätverk med en fusions nod som fattar det slutgiltiga beslutet. Vi visar hur
fusions ROC ändras med olika inställningar när man tar hänsyn till begränsad
sekretess. Först studeras ett Bayesianskt detekteringsscenario. Sedan kommer
vissa parametrar modifieras i syfte att studera dess inverkan p̊a ROC. Slutligen
analyseras det andra scenariot där avlyssningen modelleras som en Neyman-
Pearson detektion medan inställningarna för det Bayesiansk distribuerade de-
tekteringssystemet fortfarande h̊aller.
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Chapter 1

Introduction

1.1 Motivation

Sensor networks have attracted much attention recently due to the fast devel-
opment of the communications and electronic technologies over the last years.
Specifically, wireless communications are playing an important role in our daily
life. Moreover, a wide-range of applications related to daily life routines have
been developed nowadays. An example of these applications is the smart envi-
ronment, where this networks are completely necessary there.

The objectives of deploying sensor methods are to achieve human comfort
and to keep the best conditions for our life and health. Currently, one fact that
we have to think about is that people spend a huge amount 85% of their time
inside one room. This reason caused the development of these systems is so
attractive. However, some data is required to improve the indoor conditions. A
wide variety of sensors are able to monitor different ambient conditions such as
temperature, humidity, CO2 concentration, light conditions, pressure, among
others.

The design of these networks needs to guarantee the privacy of the data.
Privacy is required and therefore challenges arise. People need to protect their
data because it could be used against them. Nowadays we are surrounded by
smart applications all day, and the tendency is to keep increasing this number.
This fact introduces the danger of a person intercepting or modifying data
from these applications. For example, the occupancy of a room is important
for different smart-house applications, such as turning off or on lights, room
temperature, etc. If a thief has knowledge of this information, it would be much
easier for him to accomplish the robbery, since he knows the house is empty.
Another example could be the situation where a president of a company needs
to take an important decision for his business. The data must be secret in order
to avoid the competitors to take advantage of it. There are plenty of examples
which enforce numerous reasons to call attention to the necessity of data privacy.
Recently, several efforts have been made to design secure and robust networks,
taking into account the privacy problem.

A fundamental tool to ensure privacy is cryptography. However, it usually
is not suitable for wireless sensor since these methods require high computation
capabilities and power consumption. Therefore, a novel idea has been studied.
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This idea is presented in this thesis and it takes into account the privacy in the
design of physical-layer distributed detection.

Furthermore, these networks can be organized in several different topological
structures; one of the most common is parallel fusion topology. In this thesis,
we are going to consider the model of a parallel topology with one fusion node.
The overall objective of the thesis is to extend the study of [6] doing a rigorous
study on the receiver operating characteristic (ROC) and the impact of a privacy
threat.

1.2 Methodology

This thesis is a study of a system ROC comprised of two sensors and one fusion
node. First of all, Bayesian Detection Theory is introduced. This theory is
applied in our system in order to define it. Afterwards, we obtain the data
and analyze the system without taking into consideration any privacy theory.
Subsequently, we apply privacy to all the system considered Bayesian, including
the eavesdropper. Because of the differences introduced, we repeat the process
of obtaining the ROC of the sensor intercepted and fusion node. Therefore, we
change some parameters to observe how the ROC varies and how they influence
the system. Finally, we consider the eavesdropper with Neyman-Pearson theory,
the rest of the system being Bayesian. Again, we evaluate how this scenario
affects the ROC.

1.3 Thesis Outline

This thesis follows:

• In Chapter 2, we will introduce the theory later employed such as Bayesian
detection theory, parallel distributed Bayesian detection with privacy con-
straint, Neyman-Pearson theory, and the studied models.

• In Chapter 3, we will study the system without taking into account the
eavesdropper and privacy requirements. Moreover, the sensor and the
fusion node are studied and the ROCs are plotted.

• In Chapter 4, the fusion ROC is studied with the privacy constraint. Then,
we also modify some parameters to check how the fusion ROC varies with
these changes.

• In Chapter 5, the case studied is the one where the eavesdropper follows
the Neyman-Pearson detection manner and the detection system is still
considered Bayesian. Then, we plot again the fusion ROC to observe what
happens in this setting.

• In Chapter 6, the conclusions of the study and future potential topics are
presented.

2



Chapter 2

Background

In this thesis project, we work on a widely used model of wireless sensor net-
work. It consists of two sensors and a fusion node. The sensors observe the
same phenomenon and send the data to the fusion node which makes the final
decision. In our work, we assume that the observations are conditionally in-
dependent and each sensor makes local decision based on its own observation
independently. Regarding to the phenomenon, we always assume a binary hy-
pothesis in this study. Finally as we are going to explain later, we consider a
passive eavesdropper.

2.1 HVAC

Firstly, we are going to explain the test-bed used in the work. A Heating
ventilation and air conditioning (HVAC) system collects real-time data and
controls the indoor environment. This system is implemented on the 2nd floor
of Q building at KTH. On that floor, there are four laboratories equipped with
different types of sensors.

From the HVAC website, we can find different easy queries to download all
data needed. There are several measurements available such as temperature
(indoor or outdoor), humidity, CO2, light, pressure, occupancy, and etc.

In this thesis, the hypothesis is about the occupancy of the room. We choose
the measurements of CO2 and temperature sensors to infer the room occupancy
because the occupiers have a significant influence on these parameters and we
have the models for these measurements done in [6]. In addition, we also need
to choose one laboratory. In this study, it will be the same as [6], the laboratory
A:225.

3



Figure 2.1: This picture shows a map of Test-bed room A:225. We can find it
in [6].

Figure 2.1 illustrates the deployment of sensors in A : 225. The green circle
is a CO2 sensor; the orange ones are temperature sensors; and the red ones are
temperature and CO2 sensors. In our study, we use the measurements from
Sensor #1043 for the temperature information and Sensors #1042 and #1043
for the CO2 information.

2.2 Steady–State Model

After know from where the data is obtained, it is needed to know how is it. To
study this network, we need a model to characterize the observations of both
sensors. As described in [6], two models are developed. We are going to apply
the steady-state model.

Then according to [6], the model for the CO2 sensor is:

f (yco2 |H1) =
1√

2πσco2
exp

(
−
(
y2co2 −K − I

)2
2σ2

co2

)
(2.1)

f (yco2 |H0) =
1√

2πσco2
exp

(
−
(
y2co2 − I

)2
2σ2

co2

)
(2.2)

where I represents the CO2 concentration of the test-bed when there is not an
occupier and without disturbance; and K represents the impact of one occupier.

And the model for the temperature sensor is:
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f (yt|H1) =
1√

2πσt
exp

(
−
(
y2t − P − λN

)2
2σ2

t

)
(2.3)

f (yt|H0) =
1√

2πσt
exp

(
−
(
y2t − P

)2
2σ2

t

)
(2.4)

where P represents the temperature of the test-bed when there is not an occupier
inside the room and without disturbance; and λN denotes the impact of one
occupier.

Note that it is rarely to have more than one person in the laboratory. Then,
the probability of having more than one occupiers is too small.

2.3 Bayesian Detection Theory

In [10], the Bayesian detection theory is given. We consider a binary hypothesis
phenomenon H0 or H1 and a detector makes a detection on the hypothesis based
on its observation. The observation is denoted as y and the prior probabilities
are P0 and P1 for H0 and H1 respectively.

Another parameters, which are used in Bayesian detection theory, are the
costs. The cost is defined by Cij i, j ∈ {0, 1} it means the cost of declaring Hi

to be true when Hj is present. We assume that the cost of making a correct
decision is smaller than making a wrong one, max{C00, C11} < min{C01, C10}.

Bayesian formulation determines the decision rule that minimizes the average
cost. The average cost or Bayesian risk is:

R =

1∑
i=0

1∑
j=0

CijPjP (Decide Hi|Hj is present) =

1∑
i=0

1∑
j=0

CijPj

∫
Zi

p (y|Hj) dy

(2.5)
where Zi is the region where we decide the hypothesis Hi.

The Bayesian risk R can be further rewritten as:

R = P0C10 + P1C11 +
∫
Z0
{[P1 (C01 − C11) p (y|H1)]− [P0 (C10 − C00) p (y|H0)]}dy

The Bayesian risk can be minimized by employing a likelihood radio test
LTR:

p (y|H1)

p (y|H0)

H1

>
<
H0

P0 (C10 − C00)

P1 (C01 − C11)
. (2.6)

where P0 and P1 are the prior probabilities, p (y|H1) and p (y|H0) are the con-
ditional probabilities of y given the hypothesis H1 and H0 respectively. The
other values are the different types of costs.

Then, it is also important to know some probabilities which are going to be
useful in the next chapters. The probability of false alarm PF is the probability
of declaring H1 when H0 is present. When H1 is present, the probability of
miss PM is the probability to declare H0 while the probability of detection PD
is defined as the probability of declaring H1.

PF = P (Decide H1|H0 is present) =

∫
Z1

p (y|H0) dy (2.7)
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PM = P (Decide H0|H1 is present) =

∫
Z0

p (y|H1) dy (2.8)

PD = 1− PM = P (Decide H1|H1 is present) =

∫
Z1

p (y|H1) dy (2.9)

Finally, we should highlight how we can express LRT graphically. This
representation is called receiver operating characteristic (ROC). This curve is
a plot as a function of PD against PF . ROC is always non-decreasing, concave
downward, above the line PD = PF , and with end points (0, 0) and (1, 1). Figure
2.2 illustrates a ROC curve.

Figure 2.2: Example of a ROC.

As it is shown in Figure 2.2, the line above is called ”ROC” and then the line
below is called ”inverse ROC” which is the symmetric to ROC and it delimits
the region.

2.4 Distributed Bayesian Detection: Parallel Fu-
sion Network

There are several possible topologies for a distributed detection network. The
topologies commonly studied are parallel, serial and, tree networks. In this the-
sis as we have said at the beginning, we will work on the parallel network with
a fusion node which makes the final decision. Two local detectors observing
the same phenomenon and making their decisions based on their own observa-
tions. We assume a binary hypothesis with the associated prior probabilities
known and the system illustrated in Figure 2.3. Moreover, we also consider that
there is no communication between both detectors and we know that the local
observations are conditionally independent.
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In Figure 2.3, the considered distributed detection model is shown. A binary
hypothesis (H) is considered in the thesis such that H0 means there are no
occupiers in the room while H1 indicates that some people are inside. The model
consists of two sensors, as has been explained one measuring the temperature
and the other one measuring the CO2. Their own observations are yt and yco2
respectively. The local decisions are denoted as ut and uco2 . Finally, there is
a fusion node (F) which makes the final decision uF . These decisions are also
binary, ut, uco2 and uF ∈ {0, 1}

H

CO2 Temp

F

uco2

yco2 yt

utuco2

uF

Figure 2.3: The distributed detection model.

We want to obtain the decision rules that minimize the average cost of the
final fusion decision. To this end, we apply the person-by-person optimization
(PBPO) methodology in [10] which optimizes one decision rule by fixing the
others. Once we have found this value, the rule is fixed and then, another rule
is optimized keeping fixed the others until the optimum value for all of them is
found. It is important to note that is not necessary to reach the global optimum
design.

We can find in [10] the person-by-person optimal decision rules for the two
detectors by using the PBPO method. These rules are LRTs as:

For the CO2 sensor:

p (yco2 |H1)

p (yco2 |H0)

uco2
=0

>
<

uco2
=1

CF
CD

pFt (P100 − P101 + P111 − P110) + (P101 − P100)

pMt (P101 − P100 + P110 − P111) + (P111 − P110)

(2.10)
For the temperature sensor:

p (yt|H1)

p (yt|H0)

ut=0
>
<
ut=1

CF
CD

pFco2 (P100 − P110 + P111 − P101) + (P110 − P100)

pMco2 (P110 − P100 + P101 − P111) + (P111 − P101)

(2.11)
where:

CF = P0 (C10 − C00) (2.12)

7



CD = P1 (C01 − C11) (2.13)

and Pabc = P{uF = a|ut = b, uco2 = c}. Finally, pFt and pFco2 are the probabili-
ties of false alarm of both sensor and, pMt and pMco2 are the probabilities of miss
of both sensors.

In the next chapters it is going to be useful to have some nomenclatures.
Looking of the right side of the equations (2.10) and (2.11) we can find theses
expressions:

Tco2 =
CF
CD

pFt (P100 − P101 + P111 − P110) + (P101 − P100)

pMt (P101 − P100 + P110 − P111) + (P111 − P110)
(2.14)

Tt =
CF
CD

pFco2 (P100 − P110 + P111 − P101) + (P110 − P100)

pMco2 (P110 − P100 + P101 − P111) + (P111 − P101)
(2.15)

Now, zt and zco2 are defined as the observation threshold. Substituting the
conditional probabilities for the Gaussian functions and applying the function
logarithm in the equations (2.10) and (2.11), this threshold is found.

zt =
σ2
t

λN
∗ log(Tt) + P − λN (2.16)

zco2 =
σ2
co2

K
∗ log(Tco2) + I −K (2.17)

Regarding to the fusion node, there are 16 possible decision rules for the
case with two sensors and making binary decisions. These rules are shown in
Table 2.1.

ut uco2 φF1 φF2 φF3 φF4 φF5 φF6 φF7 φF8 φF9 φF10 φF11 φF12 φF13 φF14 φF15 φF16

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Table 2.1: Possible fusion rules.

Note that φF2 and φF8 are also known as AND and OR rules.

2.5 Parallel Distributed Bayesian Detection with
Privacy Constraints

In this thesis, our the CO2 sensor decision is intercepted by an eavesdropper.
The eavesdropper intercepts only the decision of this detector. Also, we assume
that it is informed and greedy to cause the worst privacy problem, it has full
knowledge of the system and always employs the optimal strategy. However,
the system is aware about the existence of the eavesdropper.
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H

CO2 Temp

E F

uco2

yco2 yt

uco2 utuco2

uFuE

Figure 2.4: The studied system model.

Figure 2.4 is the same system as Figure 2.3 but adding the eavesdropper
(E) which takes its own decision uE based on the intercepted decision of CO2

sensor.
In [8], a study of parallel distributed Bayesian detection with privacy is

made. The privacy model, which is explained there, is applied in this thesis.
Regarding to the eavesdropper, there are four possible detection rules as we

can listed in Table 2.2.

uco2 φE1 φE2 φE3 φE4

0 0 1 0 1
1 0 1 1 0

Table 2.2: Possible detection rules of the eavesdropper

The eavesdropper performs Bayesian detection. The worst case takes place
when the eavesdropper optimizes its performance by minimizing its own detec-
tion average cost. The minimal average detection cost of the eavesdropper is
presented in [8] as:

CEmin = min
iε{1,2,3,4}

cEi (2.18)

where cEi is the average detection cost when employing φEi. A lower CEmin means
a system guaranteeing a weaker privacy, and vice versa.

cE1 = P0c
E
00 + P1c

E
01,

cE2 = P0c
E
10 + P1c

E
11,

cE3 = c1E + pFt P0

{
cE10 − cE00

}
+ pDt P1

{
cE11 − cE01

}
cE4 = c2E + pFt P0

{
cE00 − cE10

}
+ pDt P1

{
cE01 − cE11

} (2.19)

where cEij is the cost of the eavesdropper to declare Hi true when Hj is present.
In [8], the idea of minimizing the fusion cost by taking into account the

eavesdropping risk is presented. If we want to guarantee the privacy of the
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system, we set an additional condition: cmin
E ≥ β. Then, a privacy-constrained

distributed Bayesian detection problem is formulated as:

min
φt,φco2

,φF

R

s.t.β ≤ cE1 ≤ cE1 + cE2 − β,
β ≤ cE2 ≤ cE1 + cE2 − β,
gL
(
pFco2

)
≤ pDco2 ≤ gU

(
pFco2

)
,

(2.20)

where φt and φco2 are the decision rules of the temperature and CO2 sensors.
Then, gL

(
pFco2

)
and gU

(
pFco2

)
are the lower and upper boundaries of the CO2

operation region. They are defined as:

gL
(
pFco2

)
=

P0(cE10−c
E
00)p

F
co2

+β−c2E
P1(cE01−cE11)

gU
(
pFco2

)
=

P0(cE10−c
E
00)p

F
co2
−β+c1E

P1(cE01−cE11)

(2.21)

There are two important properties of gL
(
pFco2

)
and gU

(
pFco2

)
functions:

• The graphic lines pDco2 = gL
(
pFco2

)
and pDco2 = gU

(
pFco2

)
are symmetric

with respect to (0.5, 0.5) because gL
(
pFco2

)
+ gU

(
1− pFco2

)
= 1.

• Taking the line pDco2 = pFco2 as reference, it is known that pDco2 = gL
(
pFco2

)
is always below and pDco2 = gU

(
pFco2

)
is above.

It is important to realize that the CO2 operation region with privacy con-
straint is decided by the ROC curve and the boundary. The points (0, 0) and
(1, 1) are always included.

2.6 Neyman-Pearson Detection

In some cases, we are not able to know the prior probabilities and to deter-
mine the detection costs. So in some practical situations we may not apply
the Bayesian detection formulation. In this case, we can employ the Neyman-
Pearson criterion. Usually, we want to achieve a larger probability of detection
and a lower probability of false alarm. Keeping this idea in mind, the Neyman-
Pearson formulation is to maximize the probability of detection under a con-
straint that the probability of false alarm is below a threshold. The concept can
be expressed as

max
φ
PD

s.t.PF ≤ λ
(2.22)
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Chapter 3

Study on The Receiver
Operating Characteristic
without Privacy Constraints

As a prior work, we first study the distributed detection network without eaves-
dropping risk.

In [6], some algorithms and variables are explained which are necessary in
this report. However, there are some values that it has been necessary to modify.
One example of these changes is the prior probability which was obtained based
on the data of [6] in only four days. The studied room is a laboratory and the
occupancy depends on the course schedule so, we decided to adjust these values
for our measurement. The data was obtained on Monday 20th of October. The
prior probabilities are considered as the probabilities of the hypothesis for that
day P0 = 0.55 and P1 = 0.45. In addition, we also need to change more values.
For example, the standard derivation of both sensors are also modified. As we
know, the standard derivation is the squared variance and the variance is equal
to the expected value of the squared derivation from the mean. Following this
definition, the variances are calculated, the temperature standard derivation
(σt) is 0.14 and, the CO2 standard derivation (σco2) is 12.6.

3.1 Temperature Sensor

We employ the steady-state model to determine the observation distribution of
the temperature sensor. Following [6], the values of the coefficients in (3.1) and
(3.3) are set as P = 21.8 and λN = 0.2. Now, we will characterize the ROC of
the temperature sensor. Firstly, we need to obtain the probability of detection
and the probability of false alarm.

The probability of detection is characterized by:

pDt = Q

(
zt − P − λN

σt

)
. (3.1)

where zt is the observation threshold as it was introduced in equation (2.16).
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And Q function is defined as:

Q (x) =
1√
2π

∫ ∞
x

exp

(
−u

2

2

)
du (3.2)

And the probability of false alarm is defined by:

pFt = Q

(
zt − P
σt

)
(3.3)

Finally, the temperature sensor ROC can be plotted, as shown in Figure 3.1.

pDt = Q

(
Q−1

(
pFt
)
− λN

σt

)
(3.4)

where Q−1 is the inverse function of Q function.

Figure 3.1: Temperature ROC

3.2 CO2 Sensor

We adopt the steady-state model in (3.5) and (3.6) to characterize the distri-
bution of the measurement of the CO2 sensor. The values obtained with the
algorithms explained in [6] are I = 402.43 and K = 20.

Then, the probabilities of detection and false alarm can be expressed as:

pDco2 = Q

(
zco2 − I −K

σco2

)
, (3.5)

pFco2 = Q

(
zco2 − I
σco2

)
(3.6)
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where zco2 is the observation threshold as it was introduced in equation (2.17).
Then, the ROC of the CO2 sensor is shown in Figure 3.2.

pDco2 = Q

(
Q−1

(
pFco2

)
− K

σco2

)
(3.7)

Figure 3.2: CO2 ROC

3.3 Fusion Node

The next step is to characterize the decision rule of the fusion node. The fusion
decision is made based on the local binary decisions from both sensors. In
our studied model, the fusion node does not have a direct observation of the
phenomenon.

As we discussed before, there are 16 different fusion rules, which are illus-
trated in Table 2.1. For each fusion rule, the fusion decision’s probabilities
of detection and false alarm are different in terms of sensors’ probabilities of
detection and false alarm.

First of all, it is assumed that the observations are conditional independent
to calculate the probabilities. The calculation of them is the same procedure
for all the different rules. AND rule is chosen to use as example:

pDF = P{uF = 1|H = 1} = P{ut = 1 and uco2 = 1|H = 1} =
P{ut = 1|H = 1} ∗ P{uco2 = 1|H = 1} =

∫
Z1
p (yt|H = 1) dyt ∗

∫
Z1
p (yco2 |H = 1) dyco2

pFF = P{uF = 1|H = 0} = P{ut = 1 and uco2 = 1|H = 0} =
P{ut = 1|H = 0} ∗ P{uco2 = 1|H = 0} =

∫
Z1
p (yt|H = 0) dyt ∗

∫
Z1
p (yco2 |H = 0) dyco2

Then the result for AND rule, φF2, is:

pDF = Q
(
zt−P−λN

σt

)
Q
(
zco2−K−I

σco2

)
pFF = Q

(
zt−P
σt

)
Q
(
zco2−I
σco2

)
13



Now, the probabilities for each rule are shown:

φF1

pDF = 0
pFF = 0

φF3

pDF = Q
(
zt−P−λN

σt

)(
1−Q

(
zco2−K−I

σco2

))
pFF = Q

(
zt−P
σt

)(
1−Q

(
zco2−I
σco2

))
φF4

pDF = Q
(
zt−P−λN

σt

)(
1−Q

(
zco2−K−I

σco2

))
+Q

(
zt−P−λN

σt

)
Q
(
zco2−K−I

σco2

)
pFF = Q

(
zt−P
σt

)(
1−Q

(
zco2−I
σco2

))
+Q

(
zt−P
σt

)
Q
(
zco2−I
σco2

)
φF5

pDF =
(

1−Q
(
zt−P−λN

σt

))
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))
Q
(
zco2−I
σco2

)
φF6

pDF =
(

1−Q
(
zt−P−λN

σt

))
Q
(
zco2−K−I

σco2

)
+Q

(
zt−P−λN

σt

)
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))
Q
(
zco2−I
σco2

)
+Q

(
zt−P
σt

)
Q
(
zco2−I
σco2

)
φF7

pDF =
(

1−Q
(
zt−P−λN

σt

))
Q
(
zco2−K−I

σco2

)
+Q

(
zt−P−λN

σt

)(
1−Q

(
zco2−K−I

σco2

))
pFF =

(
1−Q

(
zt−P
σt

))
Q
(
zco2−I
σco2

)
+Q

(
zt−P
σt

)(
1−Q

(
zco2−I
σco2

))
φF8

pDF =
(

1−Q
(
zt−P−λN

σt

))
Q
(
zco2−K−I

σco2

)
+Q

(
zt−P−λN

σt

)(
1−Q

(
zco2−K−I

σco2

))
+Q

(
zt−P−λN

σt

)
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))
Q
(
zco2−I
σco2

)
+Q

(
zt−P
σt

)(
1−Q

(
zco2−I
σco2

))
+Q

(
zt−P
σt

)
Q
(
zco2−I
σco2

)
φF9

pDF =
(

1−Q
(
zt−P−λN

σt

))(
1−Q

(
zco2−K−I

σco2

))
pFF =

(
1−Q

(
zt−P
σt

))(
1−Q

(
zco2−I
σco2

))
φF10

pDF =
(

1−Q
(
zt−P−λN

σt

))(
1−Q

(
zco2−K−I

σco2

))
+Q

(
zt−P−λN

σt

)
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))(
1−Q

(
zco2−I
σco2

))
+Q

(
zt−P
σt

)
Q
(
zco2−I
σco2

)
φF11

pDF =
(

1−Q
(
zt−P−λN

σt

))(
1−Q

(
zco2−K−I

σco2

))
+Q

(
zt−P−λN

σt

)(
1−Q

(
zco2−K−I

σco2

))
pFF =

(
1−Q

(
zt−P
σt

))(
1−Q

(
zco2−I
σco2

))
+Q

(
zt−P
σt

)(
1−Q

(
zco2−I
σco2

))
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φF12

pDF =
(

1−Q
(
zt−P−λN

σt

))(
1−Q

(
zco2−K−I

σco2

))
+Q

(
zt−P−λN

σt

)(
1−Q

(
zco2−K−I

σco2

))
+Q

(
zt−P−λN

σt

)
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))(
1−Q

(
zco2−I
σco2

))
+Q

(
zt−P
σt

)(
1−Q

(
zco2−I
σco2

))
+Q

(
zt−P
σt

)
Q
(
zco2−I
σco2

)
φF13

pDF =
(

1−Q
(
zt−P−λN

σt

))(
1−Q

(
zco2−K−I

σco2

))
+
(

1−Q
(
zt−P−λN

σt

))
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))(
1−Q

(
zco2−I
σco2

))
+
(

1−Q
(
zt−P
σt

))
Q
(
zco2−I
σco2

)
φF14

pDF =
(

1−Q
(
zt−P−λN

σt

))(
1−Q

(
zco2−K−I

σco2

))
+
(

1−Q
(
zt−P−λN

σt

))
Q
(
zco2−K−I

σco2

)
+Q

(
zt−P−λN

σt

)
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))(
1−Q

(
zco2−I
σco2

))
+
(

1−Q
(
zt−P
σt

))
Q
(
zco2−I
σco2

)
+Q

(
zt−P
σt

)
Q
(
zco2−I
σco2

)
φF15

pDF =
(

1−Q
(
zt−P−λN

σt

))(
1−Q

(
zco2−K−I

σco2

))
+Q

(
zt−P−λN

σt

)(
1−Q

(
zco2−K−I

σco2

))
+
(

1−Q
(
zt−P−λN

σt

))
Q
(
zco2−K−I

σco2

)
pFF =

(
1−Q

(
zt−P
σt

))(
1−Q

(
zco2−I
σco2

))
+Q

(
zt−P
σt

)(
1−Q

(
zco2−I
σco2

))
+
(

1−Q
(
zt−P
σt

))
Q
(
zco2−I
σco2

)
φF16

pDF = 1
pFF = 1

Depending on the employed fusion rule, we plot the corresponding ROC of
the fusion decision. These plots can be found in the appendix.

The algorithm used to plot the ROC for each rule is shown in Algorithm 1.

Algorithm 1 Algorithm to plot the fusion ROC.

Constants:

1: Determine the parameters of the steady-state models following the algo-
rithms explained in [6].

2: Generate a vector, which is the fusion probability of false alarm pFF , from
0 to 1.

Iteration:

3. while i is smaller than the length of the false alarm probability vector.

4. Fix a false alarm probability and set x = pFt = Q
(
zt−P
σt

)
. The range of x

depends on the fusion rule. For example for AND rule it is from the value
of pFF (i) to 1.
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5. Calculation of zt and zco2 as it is explained in (2.16) and (2.17).

6. Calculation of pDF for each value of zt and the corresponding zco2 . This
equation depends on the rule that you are using. The different rules are
explained above in this section.

7. Maximization of pDF . Generate a vector with the maximum value of this
probability for each value of pFF .

8. i = i+ 1

9. end while.

Output: The plot of the ROC.

3.4 PBPO Algorithm

We applied the PBPO1 method to obtain the optimal decision rules and the
corresponding detection performance.

Algorithm 2 shows the PBPO method to optimize the decision rules of the
sensors when the fusion rule is fixed.

Algorithm 2 The PBPO method

Constants:

1: Determine the parameters of the steady-state models following the algo-
rithms explained in [6].

2: Determine the prior probabilities.

3: Set the cost assignment.

4: Determine the probabilities: P100, P101, P110, and P111 which depend on
each fusion detection rule.

5: Calculation of CD and CF as it is explained in the equations (2.13) and
(2.12).

6: Determine two initial values of zt to start the loop because it is needed
two values for the condition (zt(i) 6= zt(i− 1)).

Iteration:

7. while zt(i) 6= zt(i− 1)

8. Calculation of the value of pDt using equation (3.1) and the value of zt for
each iteration.

9. Calculation of the value of pFt using equation (3.3) and the value of zt for
each iteration.

1Note that employing the PBPO method does not necessarily derive the global optimal
distributed detection design.
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10. Calculation of Tco2 with equation (2.14).

11. Calculation of a component of the vector of zco2 with equation (2.17).

12. Calculation of the value of pDco2 using (3.5) and the value of zco2 for each
iteration.

13. Calculation of the value of pFco2 using (3.6) and the value of zco2 for each
iteration.

14. j = j + 1 (index for zco2)

15. Calculation of Tt with equation (2.15).

16. i = i+ 1 (index for zt)

17. Calculation of zt using equation (2.16).

18. end while

Output: The calculation of the different probabilities of both sensors and fu-
sion. Also the Bayesian Risk is calculated.

As we can see in Algorithm 1, the while condition is so strict that we do not
stop until the threshold in the next iteration is the same. In practice, we change
the stop condition by the following one: the difference between the thresholds of
the last three iterations should be smaller than 0.01. We compare the results of
Algorithm 1 by employing different fusion rules and setting the cost assignment
as C00 = C11 = 0, C01 = C10 = 1 in Table 3.1.

Fusion Rule pDt pFt pDco2 pFco2 pDF pFF Bayesian Risk
AND 0.9969 0.9045 0.9990 0.9328 0.9959 0.8437 0.4743
φF9 0.0098 4.3006e−4 0.9987 0.9236 0.0013 0.0764 0.4822
φF10 0.9973 0.9112 0.9992 0.9400 0.9964 0.8619 0.4842
OR 0.6355 0.1396 0.9935 0.8144 0.8838 0.8403 0.5217
φF15 0.9969 0.9045 0.9990 0.9328 0.0041 0.1563 0.5257
φF7 0.9678 0.8021 0.9995 0.9565 0.0327 0.2243 0.5512
φF12 0.9999 0.9861 0.7747 0.2025 0.9999 0.9972 0.5585
φF5 0.9999 0.9861 0.7747 0.2025 1.1077e−4 0.0028 0.4415

Table 3.1: Results of the optimal distributed detection designs obtained by the
PBPO method

The results in Table 3.1 are ordered by the Bayesian risk: the first one is
the smallest value and the last one is the highest. The minimum Bayesian risk
is obtained when the AND fusion rule is employed.
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Chapter 4

Fusion ROC under Privacy
Constraints

In this section, we are going to study the fusion ROC and check how it changes if
we a apply privacy constraint in CO2 sensor and regarding to the fusion node,
the different fusion rules are used. Also, we will plot it for different privacy
constraints β.

4.1 Privacy-Constrained Fusion ROC

First of all, as explained in [8] and in the background of this thesis, the privacy-
constrained distributed Bayesian detection design is considered. Then in Figure
4.1, it is shown the CO2 ROC which is delimited by the red gU privacy boundary
and the green gL privacy boundary as explained in (2.21).

Figure 4.1: CO2 ROC with privacy constraint
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In the following fusion ROC plots, we will use the same eavesdropper cost
assignment: CE00 = CE11 = 0.05, CE10 = CE01 = 0.95. Moreover, the privacy
constraint is feasible if β ≤ min

{
c1E , c

2
E

}
. In this case, c1E = 0.455 and c2E =

0.545 so, β should be small or equal to c1E . Here, our choice is β = 0.405.
In [8], the authors have proved that it is sufficient to consider deterministic

LRTs on the ROCs for the optimal privacy-constrained distributed Bayesian
detection design. Here, we consider to plot the privacy-constrained fusion ROC
given a fusion rule corresponding to deterministic LRTs of both sensors.

Some fusion rules correspond to special cases of fusion ROCs. For example,
φF1 and φF16 are the two rules which always make the same decision (H0 or
H1) regardless of the received decisions of sensors. Then their ROCs reduce
to the points (0, 0) and (1, 1). In addition, φF4 and φF13 only depend on the
temperature sensor decision. Thus, the privacy constraint does not have impact
on their fusion ROCs. In the contrary, φF6 and φF11 depend on the CO2 sensor
decision only.

The algorithm, which is used to plot the fusion ROC, is explained in Algo-
rithm 3.

Algorithm 3 Algorithm to plot the ROC with privacy.

Constants:

1: Determine the parameters of the steady-state models following the algo-
rithms explained in [6].

2: Generate two vectors which are the fusion probability of false alarm pFF
one for each loop. The values of the vectors are from 0 to 1.

Iteration:

3. while i is smaller than the length of the first false alarm probability vector

4. Fix false alarm probability and set x = pFt = Q
(
Zt−P
σt

)
. The rank of x

depends on the fusion rule. For example for AND rule it is from the value
of pFF (i) to 1.

5. Calculation of zt and zco2 as it is explained in equations (2.16) and (2.17).

6. Calculation of pDF for each value of zt and the corresponding zco2 . This
equation depends on the rule that you are using.

7. Maximization of pDF . Generate a vector with the maximum value of this
probability for each value of pFF .

8. i = i+ 1

9. end while

10. while i is smaller than the length of the second false alarm probability
vector.

11. Fix false alarm probability and set x = pFt = Q
(
Zt−P
σt

)
. Again, the range

depends on the fusion rule.
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12. Calculation of zco2 with equation (2.17).

13. for j ≤ length of zco2

14. if the value of zco2 is not between both thresholds. (This thresholds are
found in the points of the gU line which intersects the ROC).

15. Calculation of zt with the equation (2.16).

16. Calculation of pDF with privacy as before but saving the values in a new
vector.

17. end if

18. j = j + 1

19. end for

20. Maximization of pDF as it was done before but generating a new vector.

21. Get the corresponding false alarm probability and save it in a new vector.

22. i = i+ 1

23. end while

Output: The plot of both ROC’s.

First of all, it is relevant to understand that the blue line is the Fusion
ROC and the red one is the Fusion ROC with privacy constraint applied. The
following graphs show the fusion ROCs of AND and OR decision rules with and
without the privacy constraint by the red and blue lines. The cases of other
fusion rules are shown in the appendix.

Figure 4.2: Fusion ROCs of the AND
rule. Figure 4.3: Fusion ROCs of the OR rule.

Once the plots have been shown, we can reach some conclusions. It is con-
cluded that a smaller region is the cost of detection performance degradation.
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Because the region with privacy performance is a subset of the region and then,
the cost can not be optimal as it is in the fusion ROC.

Also, it is concluded that if the smaller ROC is not a convex set, it does not
violate the conclusions of [8] that the deterministic strategies are optimal for
Bayesian scenarios.

To prove this fact, OR rule is used as an example.

uco2 ut uF
0 0 0
0 1 1
1 0 1
1 1 1

Table 4.1: OR rule

As we know, our objective is to minimize the Bayesian Risk:

R =
∑
i=uF ,j=H

Ci,jp (Hi, Hj) =

= C0,0p (0, 0) + C0,1p (0, 1) + C1,0p (1, 0) + C1,1p (1, 1) =

= C0,0p (0|0)P0 + C0,1p (0|1)P1 + C1,0p (1|0)P0 + C1,1p (1|1)P1 =

= C0,0

(
1− pFF

)
P0 + C0,1

(
1− pDF

)
P1 + C1,0

(
pFF
)
P0 + C1,1

(
pDF
)
P1

so, the objective is a linear function of pDF and pFF .
Now, looking with more detail the OR plot is required :

Figure 4.4: Section of the ROCs of the OR rule.

Considering that a convex region can be achieved by randomized strategies,
the optimal point would be on the boundary but not the line segment, specifi-
cally between two ends ”x”, when the slope of the objective line is not equal to
that of the line segment.

In the contrary, the optimal point can be any point on the line segment
including its two ends.

Therefore, we can conclude that it is sufficient to consider the optimal point
to achieve the minimum Bayesian objective on the boundary but not the line
segment. That agrees with the conclusion in [8] although the region is not
convex.
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After these conclusions, there are some comments about the plots of the
different rules. As discussed before and presented in Figures 16 and 23, in the
appendix, the φF4 and φF13 rules do not depend on the CO2 sensor decision
and the privacy constraint does not take effect. That is why they are not taken
into account in the following cases.

However, similar situation is presented for the φF6 and φF11 rules. They
only depend on the CO2 sensor then, the region is the same as this sensor. In
Figures 17 and 22, which are also in the appendix, show these ROCs.

In the rest of the figures the expected result is obtained. The region confined
by the ROC after applying the privacy constraint is smaller.

4.2 Impact of Privacy Constraint β

Now we want to observe how the fusion ROC changes if we modify the parameter
β. As we can see in (2.21), modifying β will lead to different boundaries but with
the same slope. This study is done with ten different values equally separated.
We start with β = 0.25 because it is the smallest value such that the privacy
constraint boundaries intersect the CO2 ROC. We will take the highest value
as β = 0.450. Since it should be equal or smaller than cmin

E to guarantee the
privacy.

In the following, it is presented the CO2 ROC applying privacy constraints
of different β.

Figure 4.5: CO2 ROC with β = 0.25.
Figure 4.6: CO2 ROC with β =
0.27222.
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Figure 4.7: CO2 ROC with β = 0.2944. Figure 4.8: CO2 ROC with β = 0.3166.

Figure 4.9: CO2 ROC with β =
0.33889.

Figure 4.10: CO2 ROC with β =
0.3611.
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Figure 4.11: CO2 ROC with β =
0.3833.

Figure 4.12: CO2 ROC with β =
0.40556.

Figure 4.13: CO2 ROC with β =
0.42778. Figure 4.14: CO2 ROC with β = 0.45.

As shown in the graphs, if β is increasing, the available region is smaller.
That is because gU shifts downwards and gL shifts upwards when β is increased.

It can be interpreted from the perspective of trade-off between the detection
performance and the privacy performance. When β is increased, that means
the minimal Bayesian risk of the eavesdropper is constrained to be higher and
the system privacy is enhanced. As a cost of the privacy enhancement, the
detection performance will be degraded which leads to a smaller region for the
CO2 sensor.

After obtaining the 10 new thresholds, we are going to plot the fusion ROCs
to observe the impact of this parameter on the privacy-constrained fusion ROC.

In the following, we show the privacy-constrained fusion ROCs of the AND
rule. Algorithm 3 is used to plot the privacy-constrained fusion ROCs corre-
sponding to different settings of the privacy constraint.

The results are obtained in the case of the AND rule:
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Figure 4.15: AND decision rule with
β = 0.25.

Figure 4.16: AND decision rule with
β = 0.27222.

Figure 4.17: AND decision rulewith β =
0.2944.

Figure 4.18: AND decision rule with
β = 0.3166.
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Figure 4.19: AND decision rule with
β = 0.33889.

Figure 4.20: AND decision rule with
β = 0.3611.

Figure 4.21: AND decision rule with
β = 0.3833.

Figure 4.22: AND decision rule with
β = 0.40556.
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Figure 4.23: AND decision rule with
β = 0.42778.

Figure 4.24: AND decision rule with
β = 0.45.

After obtaining these results, some conclusions can be made. Firstly, when
φF6 and φF11 are employed, the privacy-constrained ROCs are the same as
the ROC the CO2 sensor since these fusion rules make decisions based on the
decision of the CO2 sensor only.

Regarding the remaining rules, it is concluded that the region confined by the
fusion ROCs gets smaller as β is increased. This effect is the cost of the privacy
enhancement. They are not plotted because the impact of the β parameter is
the same.

Before OR rule has been used as example to explain that the privacy-
constrained fusion ROC does not need to be convex to achieve the minimum
Bayesian objective. The same problem is observed for AND rule and same
conclusions are achieved.

Moreover in the appendix, the plots obtained with the OR rule are also
shown.
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Chapter 5

Neyman-Pearson
Eavesdropping

In this chapter, we propose a new privacy scenario. Now, the operation of the
eavesdropper is modeled as a Neyman-Pearson detection and the settings of the
distributed Bayesian detection network still hold. So, the eavesdropper maxi-
mizes its probability of detection subject to an upper bound of the probability
of false alarm as we can find explained in [7].

pD,γE = maxφE
pDE

s.t.PFE ≤ γ
(5.1)

To guarantee the privacy of the network, we set a privacy constraint as
pD,γE ≤ δ. This privacy constraint results in a big change of the CO2 ROC. First,
recall the properties of the ROC of a sensor without the privacy constraint:

• The ROC is concave and non-decreasing.

• The inverse-ROC is convex and non-decreasing.

• The region confined by the ROC and inverse-ROC is always convex.

Figure 5.1 shows the available region of CO2 sensor satisfying the privacy
constraint pD,γE ≤ δ.

Then, we can decompose the intercepted-non-convex region into two over-
lapping convex parts. One part is confined by the boundaries (0, 0)−B (blue),
B − (1, 1) (green), (1, 1)−B′ (blue), and B′ − (0, 0) (green). The other region
is confined by the boundaries (0, 0) − C (green), C − (1, 1) (blue), (1, 1) − C ′
(green), and C ′ − (0, 0) (blue).

It is sufficient to consider deterministic LRTs for the sensors in the optimal
Neyman-Pearson privacy-constrained distributed Bayesian detection design. By
fixing the fusion rule and the decision rule of the temperature sensor, we study
the point of the person-by-person optimal privacy-constrained decision rule of
the CO2 sensor. The objective of the Bayesian risk to be minimized is a linear
function of pFco2 and pDco2 . As discussed before, the available region of the CO2

sensor can be decomposed into two convex regions. For each convex region,
the optimal point must be on the boundary to minimize the linear objective.
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Then, we just need to optimize it over the boundary of each convex region. The
boundary of the convex part can be further decomposed to be on the ROC,
inverse-ROC, and line-segments.

We know that the optimal point of a line segment that minimizes the Bayesian
risk is always at its ends. A line-segment end is also a point on the ROC or
inverse-ROC. Therefore, it is sufficient to consider that the optimal point is on
the ROC or inverse-ROC. That means it is sufficient to consider a LRT for the
person-by-person optimal Neyman-Pearson privacy-constrained decision rule of
the CO2 sensor.

Figure 5.1: Example CO2 ROC with δ = 0.8 and γ = 0.4.

The algorithm used to find the fusion ROC is similar to Algorithm 3 but
modifying the threshold zco2 . Figure 5.2 illustrates a privacy-constrained fusion
ROC exemplified with the AND rule.
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Figure 5.2: Illustration of a fusion ROC with δ = 0.8 and γ = 0.4.

We can observe similar results in the last chapter which can be interpreted
using similar arguments. In the next section, the impact of δ is studied.

5.1 Impact of Privacy Constraint δ

In this section, the impact of the privacy constraint δ on the privacy-constrained
fusion ROC is studied by fixing γ. W.l.o.g., we only discuss the cases of δ ≥ γ
because when the probability of detection is higher than probability of false
alarm, the eavesdropper has better performance.

Firstly, the following plots show the CO2 ROCs and regions subject to dif-
ferent privacy constraints.
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Figure 5.3: CO2 ROC with δ = 0.5 and
γ = 0.4.

Figure 5.4: CO2 ROC with δ = 0.7 and
γ = 0.4.

Figure 5.5: CO2 ROC with δ = 0.9 and
γ = 0.4.

When δ = 0.5, the CO2 region is reduced significantly. So, we can expect a
large shrink of the region confined by the privacy-constrained fusion ROC. For
the last case of δ = 0.9, the available region of CO2 sensor with the privacy
constraint is almost the same as the region without the privacy constraint.
Therefore, we can expect a small difference between the fusion ROC and privacy-
constrained fusion ROC.

In the following, we compare the privacy-constrained fusion ROCs of differ-
ent δs with the fusion ROC without the privacy constraints when the AND rule
is employed. We can find the equivalent plots for OR rule in the appendix.
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Figure 5.6: AND decision rule with δ =
0.5 and γ = 0.4.

Figure 5.7: AND decision rule with δ =
0.7 and γ = 0.4.

Figure 5.8: AND decision rule with δ =
0.9 and γ = 0.4.

As expected before, the region confined by the privacy-constrained fusion
ROC is larger when the privacy constraint δ is increased, and vice versa.

From the perspective of the trade-off between the detection performance
and privacy risk, an increased δ means a higher privacy risk and the detection
performance can be better as a compensation to lead to a larger ROC region
for the fusion node.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

In this thesis, we focus on a parallel distributed detection network under pri-
vacy constraints. Our system consists of a binary hypothesis phenomenon, two
sensors and one fusion node which makes the final decision. The fusion node
has sixteen possible detection rules for the two sensors. It is assumed that the
observations are conditionally independent and each sensor makes local decision
based on its own observation independently.

Firstly, a Bayesian detection scenario is considered and it is optimized by
PBPO method without privacy constrains. Bayesian Risk is obtained for all
the rules. Then, it is observed that the rule with the minimum risk is AND,
whereas OR rule is the fourth. As it is known AND and OR rules are the most
common rules.

After the study of the network without eavesdropper, it is evaluated with
privacy constrains and the differences between both performances are shown.
The privacy-constrained fusion ROC is smaller than the previous fusion ROC,
so there is detection performance degradation. This is because the Bayesian
risk for this ROC is not optimal as it is in the fusion ROC without privacy
constraint. It is concluded that even the ROC is not a convex set, it does not
violate that the deterministic strategies are optimal for Bayesian scenarios. This
is due to the fact that it is sufficient to consider the optimal point to reach the
minimum Bayesian risk on the boundary, although the region is not convex.
Also, there are some rules without degradation because they only depend on
one of the sensors so; their ROCs are the same as the sensor which they depend
on.

Then, β parameter is varied to observe the impact on the privacy-constrained
fusion ROC. If β increases, the minimal Bayesian risk of the eavesdropper is
constrained to be higher and the privacy is enhanced. The privacy-constrained
fusion ROC gets smaller as β is increased. This degradation is the cost of the
privacy enhancement.

Finally, the operation of the eavesdropper is modeled by Neyman-Pearson
detection and the network still follows Bayesian detection. It is sufficient to
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consider that the optimal point is on the ROC or inverse-ROC of the CO2

sensor. We can observe similar results because the ROC is also reduced as it
was expected. At the end, it is also studied the impact of the privacy constraint
δ on the privacy-constrained fusion ROC keeping γ fixed. With the small values
of δ the CO2 ROC is reduced significantly and vice versa. The increased δ
means a higher privacy risk and the detection performance can be better as a
compensation to lead to a larger region for the fusion node.

6.2 Future work

Nowadays, a new necessity which consists in guaranteeing the privacy in the
networks has become indispensable. During the last years, smart environments
have been developing fast but with a security leak in the networks. Therefore,
the society is worried about the security and privacy of their data. For these
reasons, a big progress in that field is needed and this is why it has attracted
much attention recently. Consequently, investments in this area are required.

The future work follow the direction of the optimization of the system to
obtain better results for the fusion node and at the same time deteriorate the
eavesdropper detection. Also, a study about the improvement of the security
in the network is required. Moreover, a deep investigation of a system using
different topologies is also needed, due to the fact that the last studies are done
with parallel distribution.

In this thesis, the hypothesis has been binary. Another interesting possibility
would be to take into consideration what could happen if it is not binary. All
the study would change, therefore important aspects of the analysis would have
to be reconsidered. Moreover, we could also evaluate what will be different if the
eavesdropper intersected both sensors. In this case, both sensor ROCs would be
restricted by the privacy constraint, thus the fusion ROC would change again.

Finally, in this thesis it is assumed that there is one occupier in the test-bed
when the Steady-state model has been developed. An extension could be taking
into account that there is more than one occupier and then, develop the data
models for this case. Because it can be interesting for future applications due
to the fact that usually the rooms are occupied for more than one person.
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Appendix A

Fusion ROC plots

All the ROC fusion for the fusion decision rules are presented in the following
sections. φF1 and φF16 are not shown because they result in trivial outcomes.

.1 Fusion ROC

Figure 1: Fusion ROC of the AND rule. Figure 2: Fusion ROC of the φF3 rule.
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Figure 3: Fusion ROC of the φF4 rule. Figure 4: Fusion ROC of the φF5 rule.

Figure 5: Fusion ROC of the φF6 rule. Figure 6: Fusion ROC of the φF7 rule.

Figure 7: Fusion ROC of the OR rule. Figure 8: Fusion ROC of the φF9 rule.
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Figure 9: Fusion ROC of the φF10 rule. Figure 10: Fusion ROC of the φF11 rule.

Figure 11: Fusion ROC of the φF12 rule. Figure 12: Fusion ROC of the φF13 rule.

Figure 13: Fusion ROC of the φF14 rule. Figure 14: Fusion ROC of the φF15 rule.
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.2 Privacy constraint applied

Figure 15: Fusion ROCs of the AND
rule. Figure 16: Fusion ROCs of the φF4 rule.

Figure 17: Fusion ROCs of the φF6 rule. Figure 18: Fusion ROCs of the φF7 rule.
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Figure 19: Fusion ROCs of the OR rule. Figure 20: Fusion ROCs of the φF9 rule.

Figure 21: Fusion ROCs of the φF10

rule.
Figure 22: Fusion ROCs of the φF11

rule.
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Figure 23: Fusion ROCs of the φF13

rule.
Figure 24: Fusion ROCs of the φF15

rule.

.3 Impact of Privacy Constraint β

Figure 25: CO2 ROC with β = 0.25. Figure 26: CO2 ROC with β = 0.27222.
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Figure 27: CO2 ROC with β = 0.2944. Figure 28: CO2 ROC with β = 0.3166.

Figure 29: CO2 ROC with β = 0.33889. Figure 30: CO2 ROC with β = 0.3611.

Figure 31: CO2 ROC with β = 0.3833. Figure 32: CO2 ROC with β = 0.40556.
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Figure 33: CO2 ROC with β = 0.42778. Figure 34: CO2 ROC with β = 0.45.

Figure 35: AND decision rule with β =
0.25.

Figure 36: AND decision rule with β =
0.27222.
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Figure 37: AND decision rulewith β =
0.2944.

Figure 38: AND decision rule with β =
0.3166.

Figure 39: AND decision rule with β =
0.33889.

Figure 40: AND decision rule with β =
0.3611.
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Figure 41: AND decision rule with β =
0.3833.

Figure 42: AND decision rule with β =
0.40556.

Figure 43: AND decision rule with β =
0.42778.

Figure 44: AND decision rule with β =
0.45.
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Figure 45: OR decision rule with β =
0.25.

Figure 46: OR decision rule with β =
0.27222.

Figure 47: OR decision rule with β =
0.2944.

Figure 48: OR decision rule with β =
0.3166.
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Figure 49: OR decision rule with β =
0.33889.

Figure 50: OR decision rule with β =
0.3611.

Figure 51: OR decision rule with β =
0.3833.

Figure 52: OR decision rule with β =
0.40556.
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Figure 53: OR decision rule with β =
0.42778.

Figure 54: OR decision rule with β =
0.45.

.4 Neyman-Pearson

Figure 55: CO2 ROC with δ = 0.5 and
γ = 0.4.

Figure 56: CO2 ROC with δ = 0.7 and
γ = 0.4.
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Figure 57: CO2 ROC with δ = 0.9 and
γ = 0.4.

Figure 58: AND decision rule with δ =
0.5 and γ = 0.4.

Figure 59: AND decision rule with δ =
0.7 and γ = 0.4.
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Figure 60: AND decision rule with δ =
0.9 and γ = 0.4.

Figure 61: OR decision rule with δ =
0.5 and γ = 0.4.

Figure 62: OR decision rule with δ =
0.7 and γ = 0.4.

Figure 63: OR decision rule with δ =
0.9 and γ = 0.4.
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