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Efficient Recovery of Sub-Nyquist Sampled Sparse
Multi-Band Signals Using Reconfigurable Multi-Channel

Analysis and Modulated Synthesis Filter Banks
Anu Kalidas M. Pillai,Student Member, IEEE,and Håkan Johansson,Senior Member, IEEE

Abstract—Sub-Nyquist cyclic nonuniform sampling (CNUS) of
a sparse multi-band signal generates a nonuniformly sampled sig-
nal. Assuming that the corresponding uniformly sampled signal
satisfies the Nyquist sampling criterion, the sequence obtained
via CNUS can be passed through a reconstructor to recover the
missing uniform-grid samples. At present, these reconstructors
have very high design and implementation complexity that offsets
the gains obtained due to sub-Nyquist sampling. In this paper,
we propose a scheme that reduces the design and implementation
complexity of the reconstructor. In contrast to the existing
reconstructors which use only a multi-channel synthesis filter
bank (FB), the proposed reconstructor utilizes both analysis
and synthesis FBs which makes it feasible to achieve an order-
of-magnitude reduction of the complexity. The analysis filters
are implemented using polyphase networks whose branches are
allpass filters with distinct fractional delays and phase shifts. In
order to reduce both the design and the implementation complex-
ity of the synthesis FB, the synthesis filters are implemented using
a cosine-modulated FB. In addition to the reduced complexity of
the reconstructor, the proposed multi-channel recovery scheme
also supports online reconfigurability which is required in flexible
(multi-mode) systems where the user subband locations varywith
time.

Index Terms—Sub-Nyquist sampling, sparse multi-band sig-
nals, reconstruction, nonuniform sampling, time-interleaved
analog-to-digital converters, filter banks.

I. I NTRODUCTION

It is well recognized that data acquisition (analog-to-digital
conversion) constitutes one of the bottlenecks in signal pro-
cessing and communication systems [1]. In particular, with
the increasing demands for high data rates and resolution,
the power consumption of the data acquisition is becoming
intolerably high, especially in battery-powered widebandcom-
munication systems. An emerging research focus is therefore
to utilize structures (sparsities) in the analog signals inorder
to reduce the average acquisition rate and thereby reduce the
cost [2]–[5]. This is referred to as sub-Nyquist sampling of
sparse signals which has the potential to dramatically reduce
the power consumption. Typically, in uniform sampling, a
signal that is bandlimited tof < f0 is sampled at a rate
of fs ≥ 2f0. In sub-Nyquist sampling, the average sampling
rate is lower than2f0 but still large enough to capture the
information content in the signal. There are essentially two
paradigms within this area. The first covers multi-band (or
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multi-coset) sampling where the use of cyclic nonuniform
sampling (CNUS) enables a reduction of the average sampling
rate to (in principle) the Landau minimal sampling rate which
is determined by the frequency occupancy [4], [6]. The other
paradigm is compressive sampling (or compressed sensing)
[4], [5] which in practice (so far) utilizes modulation with
a (pseudo) random signal, integration, and low-rate uniform
sampling. Both of these approaches have their own unique
advantages and drawbacks and it is likely that both of them in
the future will be employed but in different contexts depending
on the application. In this paper, we are primarily interested
in the CNUS approach.

For CNUS, the sub-Nyquist sampled signal is passed
through a digital reconstructor to recover the uniformly spaced
samples. Thus, assuming that the corresponding uniformly
sampled signal satisfies the Nyquist sampling criterion, the
sampling problem to be considered in this paper corresponds
to the recovery of uniform-grid samples given a subset of
those samples. GivenK samples in each block (period) of
M samples, (K < M ), the problem is to recover theM −K
missing samples. For the CNUS approach, it is known that
the reconstruction can be done, in principle, via a set of ideal
multi-level synthesis filters, given the sampling pattern [7]–[9].
The related problem of selecting the optimal sampling patterns
has also been addressed [9]–[11]. However, the straightforward
CNUS recovery scheme has very high design and implementa-
tion complexities1. Also, in frequency-hopping communication
systems where the active user band locations are different
for different time frames, the reconstruction scheme should
support online reconfigurability with low complexity. Further,
it is noted that here, like in [7]–[9], we only consider the
recovery of the uniform-grid samples corresponding to the
entire sparse multi-band signal. In order to extract the uniform-
grid signal corresponding to the frequency band of each
active user, regular filtering can be used at the output of the
reconstructor. Also, we assume that the location of the active
subbands are known and available beforehand as in [7]–[9].

A. Contributions and Outline of the Paper

In this paper, we will introduce the efficient recovery
scheme shown in Fig. 1, which is derived by first expressing
the reconstructor design problem in terms of multi-channel
analysis and synthesis filter banks (FBs). In this scheme, the

1Typically, in reconstructor implementations, multipliers are the most
expensive components in terms of area and power. Hence, in this paper we
use the number of multiplications per corrected output sample as a measure
of the computational complexity of the implementation.
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Fig. 1. Proposed efficient reconfigurable reconstructor. The scheme is derived using the concepts explained in Section IV.

Fig. 2. Reconstruction using a set of multi-level synthesisfilters [7].

synthesis FB consists ofK regular bandpass filters which are
implemented using a cosine-modulated FB. The analysis FB
makes use ofK unconventional bandpass filters. The bandpass
filters are unconventional in the sense that they contain only
K instead ofM polyphase components. These polyphase
components are allpass filters with distinct fractional delays
and phase shifts and can be implemented based on polynomial
impulse response filters. Due to this, there is no need for online
filter design when the locations of the active subbands are
changed to new positions. This is unlike in [7], which uses
general multi-level synthesis filters that necessitate redesign
for each new mode. Thus, the recovery scheme in [7], shown
in Fig. 2, is costly and unattractive (or even unacceptable)in
low-power applications like hand-held communication devices.
In [8], the design complexity of the multi-level synthesis filters
is reduced by using a polyphase FB. However, as pointed out
in [8], other than for a few combinations ofK andM , the
design method in that paper offers no direct control on the
magnitudes of the residual aliasing terms. It is also noted
that there exist efficient reconstruction techniques for other
types of nonuniformly sampled signals, like lowpass signals in
time-interleaved analog-to-digital converters (TI-ADCs) [12]–
[15], which belong to the class of undersampled multi-channel
systems [16], [17], but those efficient recovery techniques
are not applicable for the CNUS scheme considered here.
Further, even though the reconstruction scheme in Fig. 2 can
be obtained from generalized results like in [7], [16], these
results cannot be straightforwardly used to derive the proposed
scheme in Fig. 1.

Parts of this work have been presented at a conference
[18] where only the basic concept was outlined without
giving any proofs. However, in order to get further insight
and understanding of the efficient reconfigurable scheme, in
Section IV we show that the reconstruction problem can be
expressed in terms of the proposed analysis and synthesis FBs.
Based on this, we introduce a reconfigurable reconstruction

scheme in Section V. Using complexity expressions for the
proposed reconstructor and the polyphase implementation of
the straightforward scheme in [7], we show that order-of-
magnitude reduction of the complexity is achievable using
the proposed reconstructor. Furthermore, in [18], the filters in
the analysis FB were designed using numerical optimization
which can be time-consuming especially for higher filter
orders and/or largerK. In Section VI of this paper, we
propose a least-squares approach for designing these filters so
that their filter coefficients can be obtained via a closed-form
solution. In addition to reducing the design effort, the closed-
form solution enables us to redetermine the filter coefficients
online, if required. Also, in Section VII, we use detailed design
examples to show that the proposed method offers significant
complexity savings, particularly for largerM . In order to
provide the necessary background for the above mentioned
sections, in Section III we review the concept of sub-Nyquist
CNUS of sparse multi-band signals. Immediately following
this introduction, in Section II, we define the notations used
in this paper as well as briefly review some of the signal
processing concepts that will be used in later sections.

II. PRELIMINARIES

A. Notations

Bold lowercase letters are used to denote vectors while
bold uppercase letters are used to denote matrices. Transpose
and conjugate-transpose are represented using(·)T and (·)†,
respectively. For a filter with impulse response coefficients
h(n), we useH(z) to denote its transfer function which is
defined asH(z) =

∑

n h(n)z
−n. The frequency response

of the filter is denoted byH(ejω) and is obtained from the
transfer function by replacingz with ejω .

B. Polyphase Decomposition

Any filter H(z) can generally be expressed in terms of its
polyphase componentsHm(z), m = 0, 1, . . . ,M − 1, as [19],
[20]

H(z) =

M−1
∑

m=0

z−mHm(zM ). (1)

Polyphase decomposition as in (1) along with the noble
identities shown in Fig. 3 [20], can be used to derive efficient
structures for decimation and interpolation. For example,con-
sider the decimator shown in Fig. 4(a). ExpressingH(z) in
Fig. 4(a) as in (1) and then propagating the downsampler to
the left using the noble identity shown in Fig. 3(a), we get the
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Fig. 3. Noble identities.

Fig. 4. (a) Decimator. (b) Equivalent representation of (a)using theM
polyphase branches of the filterH(z).

polyphase structure in Fig. 4(b). It can be seen that, unlikein
Fig. 4(a), in the polyphase structure the filtering takes place
at the lower rate. It is noted that the corresponding polyphase
structure for the interpolator can be obtained by transposing
the structure in Fig. 4(b) and replacing each downsampler with
an upsampler [20].

C. Generalized Fractional-Delay Filter

A generalized fractional-delay (FD) filter has a phase shiftin
addition to the fractional delay [21] and its frequency response
can be expressed as

H(ejω) = ej(ωd+α sgn(ω)), ω ∈ [−π, π] (2)

with d, α ∈ R. Here,d represents the fractional delay,α is the
additional phase shift, andsgn(ω) denotes the sign ofω.

III. SUB-NYQUIST CYCLIC NONUNIFORM SAMPLING OF

SPARSEMULTI -BAND SIGNALS

Assume thatxa(t) is a real-valued continuous-time signal
that carries information within the frequency bandω ∈
(−2πf0, 2πf0), f0 < 1/(2T ). Uniform sampling ofxa(t) at
a sampling frequency offs = 1/T results in a discrete-time
sequencex(n) = xa(nT ). Below, for the sake of simplicity,
we assume thatT = 1. Now it is assumed that the band
ω ∈ [0, π] is divided intoM granularity bands of equal width
π/M . In sparse multi-band signals, at any given time frame,
only K of theM granularity bands (K < M ) are allocated to
users. In this paper,ri ∈ [0, 1, . . . ,M − 1], i = 1, 2, . . . ,K,
denote the active granularity bands. Figure 5 shows the prin-
ciple spectrum of a sparse multi-band signal whenM = 16,
K = 3, and with active granularity bandsr1,2,3 = [1, 4, 10].
A user can occupy one or several consecutive granularity
bands. Further, to be able to design practical filters, we
assume a certain amount of redundancy (oversampling) which
corresponds to transition bands between user bands. In caseof
such sparse multi-band signals, uniform sampling will generate

Fig. 5. Spectrum of a sparse multi-band signal withM = 16 andK = 3.

more samples than what is required to prevent information
loss. The number of samples generated during the sampling
process can be reduced by using CNUS which only uses
a subset of the uniform samplesx(n), i.e., x(Mn − mℓ),
ℓ = 1, 2, . . . ,K with mℓ ∈ [0, 1, . . . ,M − 1]. It can be
viewed as if the available input samplesxℓ(ν) = x(Mν−mℓ),
ℓ = 1, 2, . . . ,K, ν ∈ Z, are obtained from the uniform-grid
samplesx(n) as shown in Fig. 2. A practical implementation
of the CNUS is anM -channel TI-ADC [22] where only a
subset of the channels are used2. A reconstructor can then be
used to recover the uniformly sampled sequencex(n) from
xℓ(ν), ℓ = 1, 2, . . . ,K, for a given set ofK granularity bands,
provided the sampling instantsmℓ are selected properly [11].

A reconstruction scheme using multi-level synthesis filters
Aℓ(z), ℓ = 1, 2, . . . ,K, as shown in Fig. 2, was proposed in
[7]. It was shown that perfect reconstruction, i.e.,x̃(n) = x(n),
can be achieved in principle using ideal multi-level synthesis
filters Aℓ(z). Perfect reconstruction (PR) is generally not
feasible with realizable filters. However, in practice, it is
sufficient to determineAℓ(z) such that PR is approximated
within a given tolerance. This can be carried out by design-
ing Aℓ(z) straightforwardly, assuming no a priori relations
between the filters. However, the reconstructor thus designed
may become intolerably costly in real-time applications as
the computational complexity of this approach is roughly
NAK/M multiplications per corrected output sample, where
NA is the filter order ofAℓ(z). Also, at a later time frame,
if the location of theK bands change, then allAℓ(z) need
redesign. The design complexity ofAℓ(z) is high as regular
filter design with many unknowns is too computationally
intensive and time consuming to be carried out online.

IV. PROPOSEDRECONSTRUCTIONUSING ANALYSIS AND

SYNTHESIS FBS

In this paper, to reduce the complexity, we describe the
reconstruction in terms of both analysis and synthesis filters
as shown in Fig. 6. Expressing the reconstruction in terms
of analysis and synthesis filters as shown in Fig. 6 enables
efficient implementation of the overall reconstructor (to be
considered in Section V). The complexity reduction is due
to the fact that the synthesis filtersCk(z) can be efficiently
realized using a cosine-modulated FB whereas a common
set of fixed subfilters can be utilized to implement all the
filters Bk(z) in the analysis FB as shown in the proposed
reconstructor in Fig. 1. It will be shown below that the

2Like in [7], the proposed reconstructor can be extended to use noninteger
values formℓ. However, since practical implementations of CNUS schemes
make use of TI-ADCs, we assumemℓ to be an integer as this appears to be
the preferred choice.
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Fig. 6. Reconstruction of sub-Nyquist sampled sparse multi-band signal using
analysis and synthesis filters.

Fig. 7. (a) Bandpass decimator in thekth branch of the analysis FB in the
proposed reconstructor. (b) Equivalent representation of(a) whenxℓ(ν), the
available samples inx(n), are obtained via sub-Nyquist CNUS as in Fig. 2.
Due to the CNUS, only the inputs toK polyphase branches of the bandpass
filter Bk(z) are non-zero.

synthesis filtersCk(z) areK different conventional bandpass
filters whereas each analysis filterBk(z) is an unconventional
bandpass filter with onlyK non-zero polyphase components.
Also, it will be shown that the filtersBk(z) and Ck(z),
k ∈ 1, 2, . . . ,K, correspond to the active granularity band
rk.

A. Unconventional Bandpass Filters

Figure 7(a) shows thekth branch of the analysis FB in the
proposed reconstructor. Using polyphase decomposition de-
fined in Section II-B, the filterBk(z) can be expressed in terms
of itsM polyphase componentsBkm(z), m = 0, 1, . . . ,M−1,
as

Bk(z) =
M−1
∑

m=0

z−mBkm(zM ). (3)

Recall from Section III that the available samples inx(n), i.e.,
xℓ(ν), ℓ = 1, 2, . . . ,K, are obtained via sub-Nyquist CNUS
as shown in Fig. 2. Thus it can be seen that, due to the missing
samples inx(n), the inputs toM −K polyphase branches of
the bandpass filterBk(z) in Fig. 7(a) will be equal to zero.
This implies that, for the CNUS scheme, (3) reduces to

Bk(z) =

K
∑

ℓ=1

z−mℓBkmℓ
(zM ) (4)

wheremℓ ∈ [0, 1, . . . ,M − 1], ℓ = 1, 2, . . . ,K, are theK
sampling instants andBkmℓ

(z) are theK non-zero polyphase
components ofBk(z). Hence, the bandpass decimator in Fig.
7(a) can be redrawn as shown in Fig. 7(b). It is noted that
conventional bandpass filters can be considered as a special

Fig. 8. Frequency response of the ideal multi-level synthesis filter A2(z) in
[7] for M = 8, K = 3, and r1,2,3 = [1, 4, 6]. The sampling instants are
m1,2,3 = [0, 3, 5].

case of the unconventional bandpass filter when all the samples
in x(n) are available. We will now state the expression for the
non-zero polyphase components in the following theorem.

Theorem 1:In the proposed reconstructor in Fig. 6, the non-
zero polyphase componentsBkmℓ

(ejω), mℓ ∈ [0, 1, . . . ,M −
1], ℓ = 1, 2, . . . ,K, of the unconventional bandpass filter
Bk(e

jω), k ∈ [1, 2, . . . ,K], in (4) are generalized FD filters
given by

Bkmℓ
(ejω) =

βkmℓ

M
ej(ωmℓ/M+αkmℓ

sgn(ω)), ω ∈ [−π, π]

(5)
with βkmℓ

, αkmℓ
∈ R.

Proof. In order to prove Theorem 1 we show that, with
Bkmℓ

(ejω) as in (5), the reconstructor in Fig. 2 [7] is equiva-
lent to the proposed reconstructor in Fig. 6. In the following
derivation, we assume as in [7] that the reconstruction of a
sub-Nyquist sampled signal withK active bands is performed
using ideal synthesis filtersAℓ(z), ℓ = 1, 2, . . . ,K. As
can be seen from Fig. 8, the frequency response of each
synthesis filterAℓ(z), ℓ ∈ 1, 2, . . . ,K, has non-zero levels
in the occupied granularity bandsri ∈ [0, 1, . . . ,M − 1],
i = 1, 2, . . . , L, and is zero elsewhere. In the granularity band
rk, the frequency response of the synthesis filterAℓ(z) is given
by

Aℓ(e
jω) =

1

M
βkmℓ

ejαkmℓ
sgn(ω)Ck(e

jω) (6)

where ω ∈ {[−(rk + 1)π/M,−rkπ/M ] ∪ [rkπ/M, (rk +
1)π/M ]}, Ck(e

jω) is a bandpass filter with passband at the
granularity bandrk so that

Ck(e
jω) =

{

M, ω ∈ {[−(rk+1)π
M , −rkπ

M ] ∪ [ rkπM , (rk+1)π
M ]}

0, elsewhere
,

(7)
andβkmℓ

, αkmℓ
are the modulus and angle, respectively, of

the complex constantυkmℓ
that correspond to the level of

Aℓ(e
jω) in the bandrk. Considering the contributions from all

the synthesis filtersAℓ(e
jω), ℓ = 1, 2, . . . ,K, to the overall

frequency response in the granularity bandrk, the structure in
Fig. 2 can be redrawn for the bandrk as shown in Fig. 9(a)
where

Bkmℓ
(ejωM ) =

1

M
βkmℓ

ej(ωmℓ+αkmℓ
sgn(ω)). (8)

The termejωmℓ in (8) corresponds tozmℓ in Fig. 2. Using
the noble identities [20] shown in Fig. 3 to propagate each
Bkmℓ

(ejωM ) in Fig. 9(a) to the left through the upsample
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Fig. 9. (a) FB representation of the reconstructed signal inthe granularity
bandrk. (b) Simplified representation of (a) where eachBkmℓ

(ejω) in (a)
are themℓth polyphase component ofBk(e

jω).

and downsample blocks, we get the simplified representation
shown in Fig. 9(b) where

Bk(e
jω) =

K
∑

ℓ=1

e−jωmℓBkmℓ
(ejωM ). (9)

Now, the output of the reconstructor is obtained by adding the
outputs from all theK bands. That is,̃x(n) in Fig. 2 is given
by

x̃(n) =

K
∑

k=1

x̃k(n). (10)

Thus, using the representation in Fig. 9(b) for each of those
granularity bands, we can see that the FB representation using
ideal synthesis filters in Fig. 2 is equivalent to that of the
proposed FB structure in Fig. 6 with the non-zero polyphase
components ofBk(e

jω) as in (5).

From the above discussion it is noted that, in the proposed
reconstructor, the analysis filterBk(z) extracts the signal in the
active granularity bandrk. The filtering byBk(z) is followed
by downsampling byM so as to have the extracted granularity
bandrk at the lower sampling ratefs/M . The low-rate signal
is then placed at the original granularity band locationrk at
the higher ratefs via upsampling byM followed by bandpass
filtering via Ck(z).

B. Determiningβkmℓ
andαkmℓ

Next, we will show that the constantsβkmℓ
andαkmℓ

, ℓ =
1, 2, . . . ,K, mℓ ∈ [0, 1, . . . ,M−1], for all the bandpass filters
Bk(z), k = 1, 2, . . . ,K, can be determined through a single
K ×K matrix inversion.

Theorem 2:Consider the bandpass filtersBk(z), k =
1, 2, . . . ,K, which extract the active subbandsrk ∈
[0, 1, . . . ,M − 1], k = 1, 2, . . . ,K, respectively. Letvk be a
vector (K× 1 matrix) containing all theK complex constants
υkmℓ

corresponding to the non-zero polyphase components of
Bk(z), k ∈ [1, 2, . . . ,K]. Then,vk can be determined using
matrix inversion as

vk = D−1bk (11)

whereD is a K ×K generalized Vandermonde matrix given
by

D =
1

M











ej2πq1m1/M ej2πq1m2/M · · · ej2πq1mK/M

ej2πq2m1/M ej2πq2m2/M · · · ej2πq2mK/M

...
...

. . .
...

ej2πqKm1/M ej2πqKm2/M · · · ej2πqKmK/M











(12)
and bk is a vector (K × 1 matrix) containingK − 1 zeros
and unity for the positionk. In (12), qi ∈ [0, 1, . . . ,M − 1],
i = 1, 2, . . . ,K, depend on the corresponding active subband
locationsri ∈ [0, 1, . . . ,M − 1] and is given by

qi =











ri+1
2 , oddri

M − ri
2 , evenri 6= 0

0, ri = 0

. (13)

Proof. We divide the frequency range[−π/M, 2π − π/M ]
into M adjacent regions of equal width2π/M as shown in
Fig. 10(a). Thus, regionp, p ∈ [0, 1, . . . ,M − 1], covers the
frequencies in[−π/M + 2πp/M, −π/M + 2π(p + 1)/M ].
The passband of the desired bandpass filterBk(e

jω) covers
the bandω ∈ [rkπ/M, (rk + 1)π/M ] and thus alsoω ∈
[2π − (rk + 1)π/M, 2π − rkπ/M ] as shown in Fig. 10(b).
Further, comparing Figs. 10(a) and 10(b), we can see that if an
active subbandri, i ∈ [1, 2, . . . ,K], occupies the left (right)
half of a regionp, it will also occupy the right (left) half of
the regionM − p.

Next, we make use of the fact that the non-zero polyphase
componentsBkmℓ

(ejω) in (5) are 2π-periodic with respect
to ω. This implies thatBkmℓ

(ejω) = Bkmℓ
(ej(ω−2πp)) for

ω ∈ [−π + 2πp, −π + 2π(p + 1)], ∀p ∈ Z. It is further
noted thatBkmℓ

(ejωM ) are compressed (byM ) versions of the
corresponding frequency responsesBkmℓ

(ejω). This means
that Bkmℓ

(ejωM ) for ω ∈ [−π/M + 2πp/M, −π/M +
2π(p+ 1)/M ] equalsBkmℓ

(ejω) for ω ∈ [−π + 2πp, −π +
2π(p + 1)]. Due to the sgn(ω) in (5), Bkmℓ

(ejωM ) =
βkmℓ

ej(ωmℓ−2πpmℓ/M−αkmℓ
)/M in the left part of regionp

whereasBkmℓ
(ejωM ) = βkmℓ

ej(ωmℓ−2πpmℓ/M+αkmℓ
)/M in

the right part of the same region. Using these expressions in
(4), for ω ∈ [−π/M + 2πp/M, 2πp/M ] (left part of region
p), we get3

Bk(e
−jω) =

1

M

K
∑

ℓ=1

βkmℓ
ejαkmℓ ej2πpmℓ/M (14)

and forω ∈ [2πp/M, −π/M + 2π(p+ 1)/M ] (right part of
regionp), we obtain

Bk(e
jω) =

1

M

K
∑

ℓ=1

βkmℓ
ejαkmℓ e−j2πpmℓ/M . (15)

It can be seen that (14) and (15) also correspond to the
right and left half, respectively, of regionM − p. Thus, if
qi ∈ [0, 1, . . . ,M − 1], given as in (13), represent the region
whose left half is occupied by the active subbandri, then

3In (14), we usedBk(e
−jω) since real filters are assumed. For real filters,

Bk(e
jω) = 1 (Bk(e

jω) = 0) in the passband (stopband) region implies
Bk(e

−jω) = 1 (Bk(e
−jω) = 0) as well.
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Fig. 10. (a) Illustrates of the division of the frequency range [−π/M, 2π − π/M ] into M adjacent regions of equal width2π/M . (b) Spectrum of a
bandpass filterBk(e

jω) with passband in the frequency range[rkπ/M, (rk + 1)π/M ].

the requirement onBk(e
jω) in qi is equal to the requirement

in the right half of the regionM − qi. Consequently, for
the bandpass filterBk(e

jω) it suffices to solve a system
of K equations corresponding to the left half of theK
regionsqi, i = 1, 2, . . . ,K. More precisely, the right hand
side of (14) should equal unity in the regionqk and zero
in the K − 1 regions qi, i ∈ [1, 2, . . . ,K], i 6= k. Thus,
using υkmℓ

= βkmℓ
ejαkmℓ in (14), we obtain the system of

equations
Dvk = bk (16)

where
vk = [υkm1 υkm2 . . . υkmK

]T . (17)

The vectorvk corresponding to the bandpass filterBk(e
jω)

can then be determined using (11).

Theorem 2 shows that the vectorsvk corresponding to
all the K bandpass filtersBk(e

jω), k = 1, 2, . . . ,K, can
be determined by inverting a singleK × K matrix. Also,
consistent with the results in [7], it can be seen from (12)
that there is always at least one set of sampling instants that
corresponds to an invertible matrix, namelymℓ = 0, 1, . . . ,K,
since for these sampling points the generalized Vandermonde
matrix D reduces to a Vandermonde matrix. However, these
sampling instants may not guarantee that the matrixD is well
conditioned. In order to ensure thatD is well conditioned,
optimal sampling instants can be selected depending on the
active subband locations as outlined in [9], [11].

V. PROPOSEDEFFICIENT RECONSTRUCTOR

Using the reconstruction scheme described in Section IV,
we will now derive the proposed efficient reconfigurable
reconstructor shown in Fig. 1.

A. Synthesis and Analysis FBs

In order to implement the cosine-modulated synthesis FB,
a lowpass filter with cutoff frequency atπ/2M is used as the
prototype filterP (z) [20]. The coefficients of the synthesis
filters ck(n) can be expressed in terms of the impulse response
of the prototype filter℘(n) as [20]

ck(n) = 2M℘(n) cos

(

π

M
(k + 0.5)(n−

NP

2
)− (−1)k

π

4

)

.

(18)
The overall complexity of the synthesis FB correspond to
that of the prototype filter plus the cost of a real or complex

transform block. By using a fast-transform algorithm, the cost
of such a transform block can be made small when compared
to the cost of the filters.

In the analysis FB, since the polyphase components of
eachBk(z) are as given in (5), all the analysis filters can
be expressed with a common set of fixed subfilters,Fℓ(z)
and Gℓ(z), ℓ = 1, 2, . . . ,K. The different analysis filters
are then obtained via different pairs of values ofβkmℓ

and
θkmℓ

= αkmℓ
+ π/4 such that

Bkmℓ
(z) =

βkmℓ

M
[cos(θkmℓ

)Fℓ(z) + sin(θkmℓ
)Gℓ(z)] (19)

where

Fℓ(e
jω) ≈ ejωmℓ/M , Gℓ(e

jω) ≈ sgn(ω)× jejωmℓ/M . (20)

It is noted that the additional phase ofπ/4 in θkmℓ
is required

to ensure proper matching between adjacent analysis and syn-
thesis filters in the case of overlapping granularity bands and
when cosine-modulated synthesis FB is used. This is similar
to the additional constants used for matching in conventional
cosine-modulated FBs [20]. However, the additional constant
used in θkmℓ

is π/4 instead of (−1)kπ/4 which is used
in conventional cosine-modulated FBs. This is because, in
the proposed reconstructor, the additional phase constants are
applied on the polyphase components of the analysis filter.
In conventional cosine-modulated FBs, the additional phase
constants are applied on the overall analysis and synthesis
filters as in (18).

B. Computational Complexity

In this paper we consider computational complexity as the
number of real multiplications required per corrected output
sample (see Footnote 1). Based on the discussions above, and
polyphase realizations in which all the filtering takes place at
the downsampled rate, the computational complexity of the
proposed reconstructor in Fig. 1 can be approximated as

Cprop ≈
NP

M
+ log2(M) +

2NFK

M
+

2K2

M
. (21)

In (21),NP is the order of the prototype filter for the synthesis
FB and NF is the order of the fixed subfiltersFℓ(z) and
Gℓ(z). The first two terms in the expression forCprop in (21),
correspond to the computational complexity of the cosine-
modulated synthesis FB assuming that the2M×M transform
block is implemented using a fast-transform algorithm [23].
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Fig. 11. Illustration of the estimated complexity savings of the proposed
scheme compared to the polyphase implementation of the straightforward
scheme [7] (Complexity savings =Creg/Cprop).

The third term is the computational complexity of the2K sub-
filters Fℓ(z) andGℓ(z) whereas the fourth term corresponds
to the complexity of the2K2 multipliers whose coefficients
are the scaledcos(·) and sin(·) terms in (19). Typically,NP

is about an order of magnitude larger thanM as explained
below. An approximate estimate of the order of the prototype
filter, NP , is given by [24]

NP ≈ −
2

3
log10(10δcδs)

2π

ωs − ωc
(22)

whereδc, δs, ωc, andωs denote the passband ripple, stopband
ripple, passband edge, and stopband edge, respectively, ofthe
prototype filter. Assuming thatρ is the percentage occupancy
of a granularity band, for a prototype filter with transitionband
centered atπ/2M , ωs − ωc = επ/M whereε = 1 − ρ/100.
For example, ifρ varies between20–60%, for a prototype
filter with passband and stopband ripple of−60 dB, NP will
be between9M–17M . Also, the order of the subfiltersFℓ(z)
andGℓ(z) is NF ≈ NP /M . The complexity of the polyphase
implementation of the straightforward scheme in Fig. 2 can
be estimated as

Creg ≈
NPK

M
. (23)

As exemplified in Fig. 11, which plots the ratioCreg/Cprop for
NP = 13M andNF = NP /M , order-of-magnitude savings
are feasible, via proper choices ofM andK (also see Example
1 in Section VII for a specific example).

C. Reconfiguration Complexity

In the proposed reconstructor, the real-time reconfiguration
is simple and fast as it suffices to determine the multiplier val-
uesβkmℓ

and θkmℓ
using (11). Thus, during reconfiguration,

only the coefficients of the2K2 multipliers corresponding to
the scaledcos(·) andsin(·) terms in (19) need to be updated.
As explained in Section VI below, the subfiltersFℓ(z) and
Gℓ(z), as well as the prototype filter for the cosine-modulated
synthesis FB, are designed once offline and are fixed in

the implementation. Due to this, all the multipliers in the
cosine-modulated FB as well as in the fixed subfilters can be
implemented using fixed-coefficient multipliers. This helps to
reduce the overall implementation complexity since, compared
to variable-coefficient multipliers, efficient techniquescan be
used to implement the fixed-coefficient multipliers [25], [26].
Moreover, using a common set of fixed subfilters to implement
all the analysis filtersBk(z), k = 1, 2, . . . ,K, results in fewer
design variables which helps to reduce the design complexity
of the analysis FB.

VI. D ESIGN OF THEPROPOSEDRECONSTRUCTOR

In this section, we introduce a procedure to design the
proposed reconstructor. Here, we assume that the sampling
instantsmℓ, ℓ = 1, 2, . . . ,K, are selected such that for the
given active subbandsrk, k = 1, 2, . . . ,K, D in (11) is
an invertible matrix. Using the analysis and the synthesis
FB representation in Fig. 6 for the proposed reconstruction
scheme, the Fourier transform of the reconstructed output can
be written as

Y (ejω) = V0(e
jω)X(ejω) +

M−1
∑

ξ=1

Vξ(e
jω)X(ej(ω−2πξ/M))

(24)
where V0(e

jω) is the distortion functionand Vξ(e
jω), ξ =

1, 2, . . . ,M − 1, are thealiasing functionswith

Vξ(e
jω) =

1

M

K
∑

k=1

Bk(e
j(ω−2πξ/M))Ck(e

jω) (25)

for ξ = 0, 1, . . . ,M − 1. As can be seen from (24) and (25),
the analysis and synthesis filters should be designed such that
the distortion and aliasing functions approximate unity and
zero, respectively, in the active subband locations. The overall
design complexity becomes very high if the subfiltersFℓ(e

jω)
andGℓ(e

jω) in (19) and the prototype filter for the cosine-
modulated synthesis FB are designed together. Therefore, to
reduce the overall design complexity, we propose the following
design procedure. First, the prototype filterP (ejω) is designed
and fixed. Next, the coefficients of the2K subfiltersFℓ(e

jω)
and Gℓ(e

jω) are determined such that the distortion and
aliasing terms are kept below a certain desired level. Due
to the large number of constraints that need to be satisfied
during the optimization, we use a least-squares approach so
that the subfilter coefficients can be obtained via a closed-
form solution. Compared to numerical optimization, such a
closed-form solution significantly reduces the design time.
Also, during reconfiguration, if a new set of sampling instants
are selected, the closed-form solution makes it feasible to
redetermine the coefficients online.

A. Prototype Filter Design

The prototype filterP (ejω) is a power-symmetric lowpass
filter with a passband edge atωc = (1 − ε)π/2M and a
stopband edge atωs = (1 + ε)π/2M with ε related to the
percentage occupancyρ of the subband asε = 1 − ρ/100.
Due to the power-symmetry constraints as in (26) below, it
is not possible to use a least-squares approach for the design
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of P (ejω). However, unlike the design of the2K subfilters
Fℓ(e

jω) and Gℓ(e
jω), the prototype filter can be designed

using numerical optimization techniques as the optimization
has fewer constraints. Also, the coefficients ofP (ejω) are
determined offline and only once, since the sameP (ejω)
can be used even if the sampling instants change. In the
subsequent design examples section, we use the MATLAB
minimax optimization functionfminimax for the design of
P (ejω). Using minimax design, the coefficients ofP (ejω)
are determined such that the prototype filter approximates the
passband and the stopband responses with unity and zero,
respectively, as well as the power-symmetry property in the
transition band with tolerancesδ0, δ1, andδ2 according to4

|P (ejω)− 1| ≤ δ0, ω ∈ [0, ωc]

|P (ejω)| ≤ δ1, ω ∈ [ωs, π]

|1− |P (ejω)|2 − |P (ej(ω−π/M))|2| ≤ δ2, ω ∈ [ωc, ωs].
(26)

The coefficients ofP (ejω) can therefore be obtained by
solving the minimax optimization problem:

Given the order of the prototype filterNP , determine
the coefficients℘(n) of the prototype filterP (ejω) and a
parameterδ, to minimizeδ subject to

|P (ejω)− 1| ≤ δ, ω ∈ [0, ωc]

|P (ejω)| ≤ δ, ω ∈ [ωs, π]

|1− |P (ejω)|2 − |P (ej(ω−π/M))|2| ≤ δ, ω ∈ [ωc, ωs]

.

(27)
The filter P (ejω) designed by solving the above optimiza-

tion problem satisfies (26) if, after the optimization,δ ≤
min(δ0, δ1, δ2). A good initial solution for the optimization
problem can be obtained using, for example, the methods in
[27], [28]. Our experiments indicate thatδ should be6–8 dB
lower than the specified amplitude of the residual aliasing
terms after reconstruction.

B. Least-Squares Design ofFℓ(z) andGℓ(z)

After determining the coefficients of the lowpass prototype
filter for the synthesis FB, we use a least-squares approach
to determine the coefficients of the fixed subfiltersFℓ(z)
and Gℓ(z). The coefficients are determined such that they
minimize an error power functionP defined as

P = P0 +

M−1
∑

ξ=1

Pξ (28)

where

P0 =
1

2π

∫

Ω

|V0(e
jω)− 1|2 dω, Ω ∈ Ωri,0 (29)

and
Pξ =

1

2π

∫

Ω

|Vξ(e
jω)|2 dω, Ω ∈ Ωri,ξ (30)

with Ωri,0, ri ∈ [0, 1, . . . ,M − 1], i = 1, 2, . . . ,K, represent-
ing the active subband locations andΩri,ξ, ξ = 1, . . . ,M − 1

4In this paper, to simplify derivations, we assume that all filters are
noncausal. The designed filters can be easily made causal by adding suitable
delays.

represent the2πξ/M -shifted versions of the active subbands
that fall into the band[−π, π]. Let

h = [f1 g1 f2 g2 · · · fK gK ]T (31)

where fℓ and gℓ, ℓ = 1, 2, . . .K, are the impulse response
vectors of Fℓ(e

jω) and Gℓ(e
jω), respectively. In order to

simplify the derivations, we assume that the order of the
subfilters,NF , is even such that

fℓ = [fℓ(−NF /2) fℓ(−NF/2 + 1) · · · fℓ(NF /2)] (32)

and

gℓ = [gℓ(−NF /2) gℓ(−NF /2 + 1) · · · gℓ(NF /2)]. (33)

Then, (25) can be expressed as

Vξ(e
jω) =

1

M
e(ω,NP )CE(ξ, ω)h (34)

where

e(ω,NP ) = [ejωNP /2 ejω(NP /2−1) · · · e−jωNP /2], (35)

NP is the order of the lowpass prototype filter for the synthesis
FB and assumed to be even, the matrixE(ξ, ω) is as shown
in (36), and

C =

















c1(−NP /2) c2(−NP /2) · · · cK(−NP /2)
...

...
...

c1(0) c2(0) · · · cK(0)
...

...
...

c1(NP /2) c2(NP /2) · · · cK(NP /2)

















.

(37)
In (36),

akℓ(ξ, ω) = βkmℓ
cos(θkmℓ

)e−j(ω−2πξ/M)mℓ , (38)

bkℓ(ξ, ω) = βkmℓ
sin(θkmℓ

)e−j(ω−2πξ/M)mℓ , (39)

for ℓ = 1, 2, . . . ,K, and e(ω,NF ) is a row-vector of length
NF + 1 obtained by replacingNP in (35) with NF . In
(37), ck(n), k = 1, 2, . . . ,K, n = −NP /2, . . . , 0, . . . , NP /2,
are the impulse response coefficients of the synthesis filters
Ck(e

jω). Using (34), we can rewrite (29) and (30) as

P0 =
1

M2
hT S0h −

2

M2
u0h +

1

M2
(40)

and
Pξ =

1

M2
hT Sξh (41)

respectively, with

Sξ =
1

2π

∫

Ω

E†(ξ, ω)CTe†(ω,NP )e(ω,NP )CE(ξ, ω) dω,

Ω ∈ Ωri,ξ, (42)

ξ = 0, 1, . . . ,M − 1, and

u0 =
1

2π

∫

Ω

Re{e(ω,NP )CE(0, ω)} dω, Ω ∈ Ωri,0. (43)

The analysis filter coefficientsh, which minimize the er-
ror power function in (28), can be determined by solving
∂P/∂h = 0 which gives

h =





M−1
∑

ξ=0

Sξ





−1

uT
0 . (44)
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E(ξ, ω) =











a11(ξ, ω)e(ω,NF ) b11(ξ, ω)e(ω,NF ) · · · a1K(ξ, ω)e(ω,NF ) b1K(ξ, ω)e(ω,NF )
a21(ξ, ω)e(ω,NF ) b21(ξ, ω)e(ω,NF ) · · · a2K(ξ, ω)e(ω,NF ) b2K(ξ, ω)e(ω,NF )

...
...

...
...

aK1(ξ, ω)e(ω,NF ) bK1(ξ, ω)e(ω,NF ) · · · aKK(ξ, ω)e(ω,NF ) bKK(ξ, ω)e(ω,NF )











(36)

C. Design of Reconfigurable Reconstructors

In a reconfigurable reconstructor, first, the prototype filter
for the cosine-modulated synthesis FB, is designed as outlined
in Section VI-A. Further, the subfiltersFℓ(z) and Gℓ(z) in
the analysis FB are designed and fixed based on the sampling
instants. In applications where all theL possible combina-
tions (L modes) of theK active subbands use the same
set of sampling instants, during reconfiguration, it suffices to
redetermine the complex constantsvk in (11). Following a
least-squares approach similar to the one outlined in Section
VI-B, the coefficients of the subfiltersFℓ(z) andGℓ(z) for the
reconfigurable reconstructor are then determined using

h =





L
∑

γ=1

M−1
∑

ξ=0

S(γ)

ξ





−1
[

L
∑

γ=1

u(γ)

0

]T

(45)

where

S(γ)

ξ =
1

2π

∫

Ω

E(γ)†(ξ, ω)CT e†(ω,NP )e(ω,NP )CE(γ)(ξ, ω) dω,

Ω ∈ Ω(γ)

ri,ξ
, (46)

and

u(γ)

0 =
1

2π

∫

Ω

Re{e(ω,NP )CE(γ)(0, ω)} dω, Ω ∈ Ω(γ)

ri,0
.

(47)
Here, Ω(γ)

ri,0
, γ ∈ [1, 2, . . . , L], ri ∈ [0, 1, . . . ,M − 1],

i = 1, 2, . . . ,K, represent theK active subband loca-
tions corresponding to theγth combination andΩ(γ)

ri,ξ
, ξ =

1, . . . ,M−1 represent their shifted versions which fall into the
band [−π, π]. The matrixE(γ)(ξ, ω) is obtained by replacing
akℓ(ξ, ω) andbkℓ(ξ, ω) in (36) with a(γ)

kℓ (ξ, ω) and b(γ)

kℓ (ξ, ω),
respectively, where

a(γ)

kℓ (ξ, ω) = β(γ)

kmℓ
cos

(

θ(γ)

kmℓ

)

e−j(ω−2πξ/M)mℓ (48)

and

b(γ)

kℓ (ξ, ω) = β(γ)

kmℓ
sin

(

θ(γ)

kmℓ

)

e−j(ω−2πξ/M)mℓ . (49)

The values for the constantsβ(γ)

kmℓ
and θ(γ)

kmℓ
depend on the

location of the active subbands in theγth combination and
are determined using matrix inversion as explained in Section
IV-B.

D. Design Complexity

Splitting the reconstructor design into two parts, as dis-
cussed above, makes it feasible to design and implement a
reconfigurable reconstructor, especially for largerM . This
is exemplified using a design example in Section VII. Dur-
ing reconfiguration, the proposed reconstructor can be re-
configured online by inverting a singleK × K matrix if

all modes use the same set of sampling instants. If each
mode uses a different set of sampling instants, during re-
configuration, the reconfiguration requires only one additional
2K(NF +1)× 2K(NF +1) matrix inversion. In contrast, for
the straightforward scheme [7], the reconfiguration involves
inverting several(NA + 1) × (NA + 1) matrices whereNA

is the order of each multi-level synthesis filterAℓ(z) in Fig.
2. Typically, NA > 2K(NF + 1) as can be seen from the
examples in Section VII.

VII. D ESIGN EXAMPLES

Example 1: In this example, we assume that there
are three active users with two possible combinations
of active band locations. It is assumed that at any
given time frame, the active frequency bands can
be either {[3.2–4.8], [7.2–7.8], [11.2–11.8]} × π/16 or
{[3.2–3.8], [7.2–7.8], [11.2–12.8]} × π/16. Further, it is
assumed that the reconstructor should be designed such that
aliasing terms are kept below−60 dB.

For a given combination of active band locations, the
number of channels,K, required to implement the CNUS
scheme will depend on the total number of granularity bands
M . In this example, the number of granularity bandsM
is chosen so as to get the least implementation complexity
for the reconstructor. In order to have practical filters, a
transition band is included in each active granularity bandand,
depending onM , the percentage occupancyρ (see Section
VI-A) of a granularity band is assumed to be within20–60%.
As shown in Fig. 12, for the two possible combinations
of active band locations assumed in this example, the least
computational complexity is obtained withM = 32. When
the total bandwidth is divided intoM = 32 granularity bands,
with the information containing frequency bands assumed in
this example, onlyK = 8 granularity bands are active at any
given time frame. Thus, at any given time frame, the users can
be allocated either the granularity bands{6–9, 14, 15, 22, 23}
or the bands{6, 7, 14, 15, 22–25}. For the above two possible
combination of band locations (two modes), we used the sub-
Nyquist sampling points,m = 0, 3, 5, 14, 16, 19, 21, 30, which
ensures thatD in (11) is an invertible matrix. The sampling
instants were determined using the method in [29].

Based on the occupied frequencies and the active bands,
the percentage band occupancyρ of the lowpass prototype
filter P (z) is fixed at20%. The prototype filter is designed
to be a power-symmetric lowpass filter of order386 with
ωc = 0.2π/64 and ωs = 1.8π/64. It is found that, for the
16 subfilters,Fℓ(z) and Gℓ(z), a filter orderNF = 14 is
sufficient to keep the aliasing terms below−60 dB.

In order to determine the coefficients of the multi-level
synthesis filters in the straightforward scheme in [7], we used
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Fig. 12. Example 1: Computational complexityCprop vs.M for the two possi-
ble active frequency band combinations{[3.2–4.8], [7.2–7.8], [11.2–11.8]}×
π/16 and {[3.2–3.8], [7.2–7.8], [11.2–12.8]} × π/16. The numbers within
parenthesis represent (M , K, Cprop).

TABLE I
EXAMPLE 1: COMPLEXITY COMPARISON.

Reconstructor Complexity5

C N Reconfiguration

Straightforward 80 2544 Eight [319× 319]
Proposed 29 128 One [8× 8]

the time-varying reconstructor design method in [30] but with
some of the impulse response coefficients set to zero due to
the CNUS scheme. It is found that the straightforward scheme
would require a reconstructor with eight synthesis filters of
orderNA = 318.

Table I tabulates the reconstructor complexity when the
specification in this example is implemented using the straight-
forward and the proposed reconstructor. As can be seen from
Table I, the proposed reconstructor offers significant reduction
in complexity due to the efficient realization in Fig. 1. It can
be seen that during reconfiguration from one mode to the
other, the proposed reconstructor requires significantly fewer
multipliers to be updated online. The coefficients of these
multipliers can be either determined offline and stored in a
memory or determined online using a single8× 8 matrix in-
version. In contrast, the straightforward scheme would require
a larger memory or eight319× 319 online matrix inversions.

Figure 13 shows all the distortion and aliasing terms of
the reconstructor for the two possible combinations of user
band locations. It can be seen that, in the required bands, the
aliasing terms are not greater than−60 dB which validates the
reconfigurability between the two different combinations of
user band locations. The reconfigurability of the reconstructor
is illustrated in Figs. 14 and 15 by configuring it for one set
of active band locations and using it to reconstruct a sub-
Nyquist sampled multi-tone input with tones in the active band
region. The spectrum without reconstruction in Figs. 14 and15
corresponds to the spectrum of the sub-Nyquist sampled signal

5C and N represent the number of multiplications per corrected output
sample and the number of multipliers to be updated during reconfiguration,
respectively. The reconfiguration complexity is the numberof online matrix
inversions. For the straightforward reconstructor, sincewe assume a polyphase
implementation,C is computed as in (23).
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Fig. 13. Example 1: Distortion functionV0(ejω)) and aliasing func-
tions Vξ(e

jω)), ξ = 1, 2, . . . ,M − 1, for the active subband combina-
tions{6–9, 14, 15, 22, 23} (blue-continuous) and{6, 7, 14, 15, 22–25} (red-
dotted).
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Fig. 14. Example 1: Reconstruction of sub-Nyquist sampled multi-tone sig-
nals with tones in the three user bands{[3.2–4.8], [7.2–7.8], [11.2–11.8]}×
π/16, after passing through the reconstructor.

with zeros inserted into the time instants where the samples
are missing.

Example 2: This example illustrates that, for larger
M , the proposed method provides even more significant
savings in the design and implementation complexity of
the reconstructor compared to the straightforward method
that uses only synthesis FBs. This is in line with the
complexity comparison in Section V-B. Here, we consider an
example where the information containing frequency bands are
{[3.21–3.82], [7.21–7.82], [20.21–21.82], [46.01–47.99], [54–55]}×
π/64 and the reconstructor should be designed to
keep the aliasing terms below−40 dB. For the
above frequency bands, the computational complexity
of the reconstructor is least whenM = 128 and
K = 18. Consequently, the active granularity bands
are {6, 7, 14, 15, 40–43, 91–96, 107–110} with ρ = 29%.
Further, we use the sub-Nyquist sampling pointsm =
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Fig. 15. Example 1: Reconstruction of sub-Nyquist sampled multi-tone sig-
nals with tones in the three user bands{[3.2–3.8], [7.2–7.8], [11.2–12.8]}×
π/16, after passing through the reconstructor.

TABLE II
EXAMPLE 2: COMPLEXITY COMPARISON.

Reconstructor Complexity (see Footnote 5)
C N Reconfiguration

Straightforward 164 20934 18 [1163 × 1163]
Proposed 24 648 One [18× 18]

0, 1, 7, 8, 9, 32, 33, 34, 41, 55, 57, 73, 81, 84, 85, 86, 97, 126,
which were determined using the method in [29]. For the
synthesis FB, a power-symmetric lowpass prototype filter of
order1162 is required to keep the aliasing terms below−40
dB at the output of the proposed reconstructor. The order of
each of the36 subfiltersFℓ(z) andGℓ(z) in the analysis FB
turned out to be10. On the other hand, the straightforward
reconstructor would require18 synthesis filters where each
filter has an order of around1162.

Table II compares the complexity of the two reconstructors
for the specification in this example. It can be seen that,
for the given specification, the proposed reconstructor has
around70% lower computational complexity compared to the
polyphase implementation of the straightforward reconstructor.
Moreover, in the straightforward reconstructor, designing a
synthesis FB with20934 coefficients is quite hard if not
impossible. Further, the proposed reconstructor can be recon-
figured online through a single18×18 matrix inversion. Online
reconfiguration, however, is not feasible for the straightforward
reconstructor due to the extremely large sizes of the matrices
that need to be inverted. Figure 16 shows all the distortion
and aliasing terms at the output of the proposed reconstructor
designed to meet the requirements in this example.

VIII. C ONCLUSION

In this paper, we proposed a reconfigurable reduced-
complexity reconstructor for sub-Nyquist sampled sparse
multi-band signals. The reconstructor was derived by express-
ing the reconstruction problem in terms of both analysis and
synthesis FBs. We showed that the nonzero polyphase compo-
nents of the bandpass filters in the analysis FB are generalized
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Fig. 16. Example 2: Distortion functionV0(ejω)) and aliasing func-
tions Vξ(e

jω)), ξ = 1, 2, . . . ,M − 1, for the active subbands,
{6, 7, 14, 15, 40–43, 91–96, 107–110}.

FD filters. Due to this, the analysis filters can be expressed in
terms of a common set of fixed subfilters and a set of mul-
tipliers, thereby reducing the complexity. Moreover, since the
filters in the synthesis FB are regular bandpass filters, further
reduction in complexity was achieved by implementing these
filters using a cosine-modulated FB. We also showed that,
compared to the straightforward reconstructor, the proposed
reconstructor makes it feasible to achieve order-of-magnitude
reduction in the computational complexity. In addition, the
proposed reconstructor provides significant reduction in the
complexity of the online reconfiguration block as only the
coefficients of the set of multipliers in the analysis FB have
to be redetermined.
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