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Abstract—Sub-Nyquist cyclic nonuniform sampling (CNUS) of multi-coset) sampling where the use of cyclic nonuniform
a sparse multi-band signal generates a nonuniformly samptesig-  sampling (CNUS) enables a reduction of the average sampling
nal. Assuming that the corresponding uniformly sampled sigal rate to (in principle) the Landau minimal sampling rate whic

satisfies the Nyquist sampling criterion, the sequence obitzed . .
via CNUS can be passed through a reconstructor to recover the 'S determined by the frequency occupancy [4], [6]. The other

missing uniform-grid samples. At present, these reconstrctors ~ Paradigm is compressive sampling (or compressed sensing)
have very high design and implementation complexity that dsets  [4], [5] which in practice (so far) utilizes modulation with

the gains obtained due to sub-Nyquist sampling. In this pape g (pseudo) random signal, integration, and low-rate unifor
we propose a scheme that reduces the design and implementati sampling. Both of these approaches have their own unique

complexity of the reconstructor. In contrast to the existirg o .
reconstructors which use only a multi-channel synthesis tér advantages and drawbacks and it is likely that both of them in

bank (FB), the proposed reconstructor utilizes both analyis the future will be employed but in different contexts depegd
and synthesis FBs which makes it feasible to achieve an order on the application. In this paper, we are primarily intezdst
of-magnitude reduction of the complexity. The analysis filers jn the CNUS approach.

are implemented using polyphase networks whose branchesar g, CNUS, the sub-Nyquist sampled signal is passed

allpass filters with distinct fractional delays and phase slits. In . .
order to reduce both the design and the implementation comix- through a digital reconstructor to recover the uniformigepd

ity of the synthesis FB, the synthesis filters are implementeusing  Samples. ThUS: 33§Uming that th? COfreSp_Onding u.niformly
a cosine-modulated FB. In addition to the reduced complexjt of sampled signal satisfies the Nyquist sampling criterioe, th
the reconstructor, the proposed multi-channel recovery steme sampling problem to be considered in this paper corresponds
also supports online reconfigurability which is requm_ad |aneX|l_:)Ie to the recovery of uniform-grid samples given a subset of
(multl-mode) systems where the user subband locations vanyith those samples. Givel® samples in each block (period) of
time. :
. ) ) . M samples, i < M), the problem is to recover thef — K
Index Terms—Sub-Nyquist sampling, sparse multi-band sig- issing samples. For the CNUS approach, it is known that
nals, reconstruction, nonuniform sampling, —time-interieaved the reconstruction can be done, in principle, via a set ddlide
analog-to-digital converters, filter banks. ) e S P p 1
multi-level synthesis filters, given the sampling pattefx-[9].
The related problem of selecting the optimal sampling paste
[. INTRODUCTION has also been addressed [9]-[11]. However, the straigbrifaok

It is well recognized that data acquisition (analog-toidig CNUS recovery scheme has very high design and implementa-
conversion) constitutes one of the bottlenecks in signat prion complexities. Also, in frequency-hopping communication
cessing and communication systems [1]. In particular, wiffyStems whe_re the active user band Ioc_atlons are different
the increasing demands for high data rates and resolutif¥, different time frames, the reconstruction scheme shoul
the power consumption of the data acquisition is becomifyPPort online reconfigurability with low complexity. Fher,
intolerably high, especially in battery-powered widebaoch- it 1S noted that here, like in [7]-[9], we only consider the
munication systems. An emerging research focus is theref6gcovery of the uniform-grid samples corresponding to the
to utilize structures (sparsities) in the analog signalsriger €ntire sparse multi-band signal. In order to extract théoum-
to reduce the average acquisition rate and thereby redece $Hd Signal corresponding to the frequency band of each
cost [2]-[5]. This is referred to as sub-Nyquist sampling @ctive user, regular filtering can be used at the output of t_he
sparse signals which has the potential to dramaticalchredJeconStrUCtor- Also, we assume that the location of. thevacti
the power consumption. Typically, in uniform sampling, gubbands are known and available beforehand as in [7]-[9].
signal that is bandlimited tof < f, is sampled at a rate o )
of f, > 2f,. In sub-Nyquist sampling, the average sampling- Contributions and Outline of the Paper
rate is lower tharf, but still large enough to capture the In this paper, we will introduce the efficient recovery
information content in the signal. There are essentiallp twscheme shown in Fig. 1, which is derived by first expressing

paradigms within this area. The first covers multi-band (dhe reconstructor design problem in terms of multi-channel
analysis and synthesis filter banks (FBs). In this schene, th
This work was supported by the Swedish Research Council ,(ER)IIT,
and Security-Link. 1Typically, in reconstructor implementations, multiperare the most
The authors are with the Division of Communication SysteDepartment expensive components in terms of area and power. Hencejsirpéiper we
of Electrical Engineering, Linkoping University, Linktng, Sweden (email: use the number of multiplications per corrected output $arap a measure
kalidas@isy.liu.se, hakanj@isy.liu.se). of the computational complexity of the implementation.
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Fig. 1. Proposed efficient reconfigurable reconstructoe $theme is derived using the concepts explained in Sedfion |

Synthesis FB A scheme in Section V. Using complexity expressions for the
: proposed reconstructor and the polyphase implementafion o
the straightforward scheme in [7], we show that order-of-
magnitude reduction of the complexity is achievable using
the proposed reconstructor. Furthermore, in [18], ther§ilte
the analysis FB were designed using numerical optimization
which can be time-consuming especially for higher filter
orders and/or larger<. In Section VI of this paper, we
Fig. 2. Reconstruction using a set of multi-level synthditiers [7]. propose a least-squares approach for designing thess Slier
that their filter coefficients can be obtained via a closeatafo
solution. In addition to reducing the design effort, theseld-

Synthesis FB consists df regu|ar bandpass filters which aréorm SO|uti0n enab|eS us to redetermine the flltel’ Coefﬂ:sien
implemented using a cosine-modulated FB. The analysis ©Bline, if required. Also, in Section VI, we use detailecsifm
makes use o unconventional bandpass filters. The bandpag¥amples to show that the proposed method offers significant
filters are unconventional in the sense that they contaiy ofiomplexity savings, particularly for largeb/. In order to

K instead of M polyphase components. These po|ypha§govide the necessary background for the above mentioned
components are allpass filters with distinct fractionalagtel Sections, in Section IIl we review the concept of sub-Nytjuis
and phase shifts and can be implemented based on polynorfllUS of sparse multi-band signals. Immediately following
impulse response filters. Due to this, there is no need fanen| this introduction, in Section Il, we define the notationsdise
filter design when the locations of the active subbands dfethis paper as well as briefly review some of the signal
changed to new positions. This is unlike in [7], which uselrocessing concepts that will be used in later sections.
general multi-level synthesis filters that necessitateesiggh

for each new mode. Thus, the recovery scheme in [7], shown 1. PRELIMINARIES

in Fig. 2, is costly and unattractive (or even unacceptable) o Notations

low-power applications like hand-held communication desi
In [8], the design complexity of the multi-level synthesltefis
is reduced by using a polyphase FB. However, as pointed
in [8], other than for a few combinations df and M, the
design method in that paper offers no direct control on t
magnitudes of the residual aliasing terms. It is also not
that there exist efficient reconstruction techniques fdreot
types of nonuniformly sampled signals, like lowpass sigiial
time-interleaved analog-to-digital converters (TI-ADC52]-
[15], which belong to the class of undersampled multi-cleinn

systems [16], [17], but those efficient recovery techniqudés Polyphase Decomposition

are not applicable for the CNUS scheme considered hereAny filter H(z) can generally be expressed in terms of its

Further, even though the reconstruction scheme in Fig. 2 G§flyphase componenfd,,(z), m = 0,1,..., M — 1, as [19],
be obtained from generalized results like in [7], [16], mesizo]

Bold lowercase letters are used to denote vectors while

d uppercase letters are used to denote matrices. Treaspo
and conjugate-transpose are represented usjdgand (-)f,
rqgspectively. For a filter with impulse response coeffigent
&), we useH(z) to denote its transfer function which is
defined asH(z) = ), h(n)z~". The frequency response
of the filter is denoted by (e’“) and is obtained from the
transfer function by replacing with e/«.

results cannot be straightforwardly used to derive the @seg M-1
scheme in Fig. 1. H(z) = Z 2T H,, (2M). (1)
Parts of this work have been presented at a conference m=0

[18] where only the basic concept was outlined witholRolyphase decomposition as in (1) along with the noble
giving any proofs. However, in order to get further insighidentities shown in Fig. 3 [20], can be used to derive efficien
and understanding of the efficient reconfigurable scheme,stiuctures for decimation and interpolation. For examgbe-
Section IV we show that the reconstruction problem can Ilséder the decimator shown in Fig. 4(a). Expressiigz) in
expressed in terms of the proposed analysis and synthesis FBg. 4(a) as in (1) and then propagating the downsampler to
Based on this, we introduce a reconfigurable reconstructithe left using the noble identity shown in Fig. 3(a), we get th
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Fig. 3. Noble identities. Fig. 5. Spectrum of a sparse multi-band signal with= 16 and K = 3.
(a)
(n)—>{H (2) > M| y(v) . . : .
- more samples than what is required to prevent information

loss. The number of samples generated during the sampling
process can be reduced by using CNUS which only uses
a subset of the uniform samplegn), i.e., x(Mn — my),
¢ = 1,2,...,K with m; € [0,1,...,M — 1]. It can be
viewed as if the available input samplegv) = x(Mv—my),
¢t =1,2,....K, v € Z, are obtained from the uniform-grid
samplese(n) as shown in Fig. 2. A practical implementation
of the CNUS is anM-channel TI-ADC [22] where only a
subset of the channels are u&edl reconstructor can then be
used to recover the uniformly sampled sequen¢e) from
xze(v), £ =1,2,..., K, for a given set ofK granularity bands,
polyphase structure in Fig. 4(b). It can be seen that, uniike provided the sampling instanis, are selected properly [11].
Fig. 4(a), in the polyphase structure the filtering takes@la A reconstruction scheme using multi-level synthesis 8lter
at the lower rate. It is noted that the corresponding polgphad,(z), ¢ = 1,2,..., K, as shown in Fig. 2, was proposed in
structure for the interpolator can be obtained by transmpsi[7]. It was shown that perfect reconstruction, i®n) = xz(n),
the structure in Fig. 4(b) and replacing each downsamplér wican be achieved in principle using ideal multi-level sysike
an upsampler [20]. filters A,(z). Perfect reconstruction (PR) is generally not
feasible with realizable filters. However, in practice, & i
sufficient to determined,(z) such that PR is approximated
_ ) ] ~within a given tolerance. This can be carried out by design-
A_g_enerahzed fraptlonal-delay(FD) fllt_er has a phase shift ing Ay(z) straightforwardly, assuming no a priori relations
addition to the fractional delay [21] and its frequency @ petween the filters. However, the reconstructor thus design
can be expressed as may become intolerably costly in real-time applications as
H(e®) — ilwdtasen) ) ¢ [—7, 7] ) the computational complexity of this approach is roughly
N 4K /M multiplications per corrected output sample, where
with d, o € R. Here,d represents the fractional delay,s the N, is the filter order ofA,(z). Also, at a later time frame,
additional phase shift, angin(w) denotes the sign ab. if the location of theK bands change, then all;(z) need
redesign. The design complexity af,(z) is high as regular

1. SUB-NYQUIST CycLIC NONUNIFORM SAMPLING OF filter design with many unknowns is too computationally
SPARSEMULTI-BAND SIGNALS intensive and time consuming to be carried out online.

Fig. 4. (a) Decimator. (b) Equivalent representation of a)ng the M
polyphase branches of the filtéf (z).

C. Generalized Fractional-Delay Filter

Assume thatr,(t) is a real-valued continuous-time signal

that carries information within the frequency band € !V. PROPOSEDRECONSTRUCTIONUSING ANALYSIS AND
(=27 fo, 27 fo), fo < 1/(2T). Uniform sampling ofz,(t) at SYNTHESISFBS
a sampling frequency ofs = 1/T results in a discrete-time In this paper, to reduce the complexity, we describe the
sequencer(n) = z,(nT). Below, for the sake of simplicity, reconstruction in terms of both analysis and synthesigdilte
we assume thaf" = 1. Now it is assumed that the bandas shown in Fig. 6. Expressing the reconstruction in terms
w € [0, n] is divided intoM granularity bands of equal width of analysis and synthesis filters as shown in Fig. 6 enables
m/M. In sparse multi-band signals, at any given time framefficient implementation of the overall reconstructor (te b
only K of the M granularity bandsX < M) are allocated to considered in Section V). The complexity reduction is due
users. In this paper; € [0,1,...,M —1],7=1,2,...,K, to the fact that the synthesis filte€s;(z) can be efficiently
denote the active granularity bands. Figure 5 shows the priralized using a cosine-modulated FB whereas a common
ciple spectrum of a sparse multi-band signal whén= 16, set of fixed subfilters can be utilized to implement all the
K = 3, and with active granularity bands » 3 = [1,4,10]. filters Bx(z) in the analysis FB as shown in the proposed
A user can occupy one or several consecutive granularigconstructor in Fig. 1. It will be shown below that the
bands. Further, to be able to design practical filters, we
assume a certain amount of redundancy (oversampling) whichike in [7], the proposed reconstructor can be extended énasinteger

L. values form,. However, since practical implementations of CNUS schemes
corresponds to transition bands between user bands. lro€asg e use of TI-ADCs, we assume, to be an integer as this appears to be
such sparse multi-band signals, uniform sampling will gatee the preferred choice.
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Fig. 8. Frequency response of the ideal multi-level synghiéer A>(z) in
[7] for M =8, K = 3, andry,2.3 = [1,4,6]. The sampling instants are
m1,23 = [0,3,5].

Fig. 6. Reconstruction of sub-Nyquist sampled sparse fbattid signal using

analysis and synthesis filters.

case of the unconventional bandpass filter when all the ssmpl
in 2(n) are available. We will now state the expression for the
non-zero polyphase components in the following theorem.

Theorem 1:In the proposed reconstructor in Fig. 6, the non-
zero polyphase component,,, (e/*), my € [0,1,..., M —

1], £ = 1,2,..., K, of the unconventional bandpass filter
Br(e’*), k € [1,2,...,K], in (4) are generalized FD filters
given by

ug(v)

Fig. 7. (a) Bandpass decimator in théh branch of the analysis FB in the (5)
proposed reconstructor. (b) Equivalent representatiotapfvhenz,(v), the  with ﬁkm[,akme cR.
available samples in(n), are obtained via sub-Nyquist CNUS as in Fig. 2.

Due to the CNUS, only the inputs t& polyphase branches of the bandpasProof. In order to prove Theorem 1 we show that, with

Biom, (¢7) = ﬂj\;e eme/M-tain, se0@) ) € [, 7]

filter By (=) are non-zero. Bim, (¢7¢) as in (5), the reconstructor in Fig. 2 [7] is equiva-

lent to the proposed reconstructor in Fig. 6. In the follagvin

synthesis filter<™y, (z) are K different conventional bandpassd€rivation, we assume as in [7] that the reconstruction of a
filters whereas each analysis filty,(z) is an unconventional SUP-Nyquist sampled signal with” active bands is performed

bandpass filter with onlys’ non-zero polyphase componentsUSing ideal synthesis filtersl,(z), ¢ = 1,2,..., K. As
Also, it will be shown that the filtersB;,(z) and Cy(z), C€an be seen from Fig. 8, the frequency response of each

k e 1,2,...,K, correspond to the active granularity bangynthesis filterd.(z), £ € 1,2,..., K, has non-zero levels
in the occupied granularity bands < [0,1,...,M — 1],

Tk
g 1=1,2,...,L, and is zero elsewhere. In the granularity band
) ) i, the frequency response of the synthesis filtgfz) is given
A. Unconventional Bandpass Filters by

Figure 7(a) shows théth branch of the analysis FB in the
proposed reconstructor. Using polyphase decompositien de

fined in Section II-B, the filteB; (z) can be expressed in terms
) - wherew € {[—(rx + 1)7/M, —rpm/M] U [rpm/M, (ry, +
of its M polyphase componentdy, (2), m =0, 1,.... M=1, 1y iy o (ciw) s a bandpass filter with passband at the

. 1 . - ;
Ag(ej“’) _ M/Bkmee]akm[ bgn(W)Ck(er) (6)

as M-1 granularity band-;, so that
By(z) = Z 27 B (2M). (3) i e
A= Cu(e) = {M’ w € (=5, S U 7, S5 )
Recall from Section Il that the available samples:im), i.e., 0, elsewhere

xe(v), £ = 1,2,..., K, are obtained via sub-Nyquist CNUS _ ()

as shown in Fig. 2. Thus it can be seen that, due to the missffifl fkm.» @rm, are the modulus and angle, respectively, of
samples inz(n), the inputs toM — K polyphase branches ofthe cpmplex constantyy,, t_hat.correspond.to .the level of
the bandpass filteBy(z) in Fig. 7(a) will be equal to zero. Ag(e’*) in the band-;. Considering the contributions from all

This implies that, for the CNUS scheme, (3) reduces to  the synthesis filtersi, (), £ = 1,2,..., K, to the overall
frequency response in the granularity bafdthe structure in

i , Fig. 2 can be redrawn for the bamg as shown in Fig. 9(a)
Bi(2) = Zz *Biom, (21) 4 where
=1
; 1 ; o
wherem, € [0,1,...,.M — 1], ¢ = 1,2,..., K, are theK Bim, (e79M) = Mﬂkmeeﬂ“m”ame sen(@)  (8)

sampling instants andy.,, (z) are theK non-zero polyphase

components of3;(z). Hence, the bandpass decimator in Figlhe terme“™¢ in (8) corresponds ta™ in Fig. 2. Using
7(a) can be redrawn as shown in Fig. 7(b). It is noted thtte noble identities [20] shown in Fig. 3 to propagate each
conventional bandpass filters can be considered as a speBigl,, (¢/“) in Fig. 9(a) to the left through the upsample



whereD is a K x K generalized Vandermonde matrix given

by
x(n) ei2rami/M  gi2mquma/M . pi2mqumi /M
| . . . . ! 1 ed2mqemi /M gj2mgama/M L. pj2mqemk /M
: : : : : : H D- —
ol | My - o
ejQTrqul/M ejQTrqug/]W . eleWquK/]W

® : — (12)
x(n) Ze(n) and by, is a vector {{ x 1 matrix) containing’k’ — 1 zeros
and unity for the positiork. In (12),¢; € [0,1,..., M — 1],

Fig. 9. (a) FB representation of the reconstructed signahéngranularity . - .
bandry,. (b) Simplified representation of (a) where eabfy,, (e’~) in (a) i=1,2,..., K, depend on the corresponding active subband

are them,th polyphase component @8, (e7«). locationsr; € [0,1,..., M — 1] and is given by
”T-’_l, OddT‘i
and downsample blocks, we get the simplified representation g =qM~-75, evenr; #0. (13)
shown in Fig. 9(b) where 0, r; =0
K Proof. We divide the frequency rande-7/M, 27 — w/M]
Br(e?¥) = Ze*jwmeBkme (eIM)), (9) into M adjacent regions of equal widthr/M as shown in
=1 Fig. 10(a). Thus, regiop, p € [0,1,..., M — 1], covers the

_ _ ~ frequencies in—n/M + 27p/M, —n/M + 2w(p + 1)/M].
Now, the output of the reconstructor is obtained by addi®g thhe passband of the desired bandpass fillgfe’~) covers
outputs from all thei” bands. That isi(n) in Fig. 2 is given the pandw € [rpm/M, (r, + 1)r/M] and thus alsav €

by 27 — (rx 4+ 1)7/M, 27 — rpw/M)] as shown in Fig. 10(b).
K Further, comparing Figs. 10(a) and 10(b), we can see that if a

z(n) = Zik(n). (10)  active subband;, i € [1,2,..., K], occupies the left (right)

k=1 half of a regionp, it will also occupy the right (left) half of

. — the regionM — p.
Thus, using the representation in Fig. 9(b) for each (.)f thos.eNex? we ma]k?e use of the fact that the non-zero polyphase
granularity bands, we can see that the FB representatiog uséompohentsB (7 in (5) are 2r-periodic with respect
ideal synthesis filters in Fig. 2 is equivalent to that of thF s o kme i (w—27p)
L . i 0 w. This implies thatBy,, (e?“) = Bim, (e ) for
proposed FB structure in Fig. 6 with the non-zero polyphase is furth
components o3, (/%) as in (5) W € [~m +2mp, —7m+2n(p+1)], ¥p € Z. Itis further
noted thatBy,,,, (e’ ) are compressed (by/) versions of the
] o _ corresponding frequency responsBg,,, (/). This means
From the above discussion it is noted that, in the proposmg,jlt B, (e9M) for w € [—n/M + 2ap/M, —n/M +
reconstructor, the analysis filté (z) extracts the signal in the 2 (p + 1)'Z/M] equals By, (¢7%) for w € [~ +’ 97, —7 +
active granularity bandy. The filtering by By(z) is followed 2n(p + 1)]. Due to theesgn(w) in (5), Bim (ejujl\l) _
by downsampling byl so as to have the extracted granulari%k ed(wmi=2mpme/M—cum,) /)] in the left par'f of regionp
my

bandr;, at the lower sampling ratg; /M. The low-rate signal whereasBjn,, (¢74M) = By, el @me=2mpme/Mtarm,) /N in

. - . . my my

is then placed at the original granularity band locatignat ¢ right part of the same region. Using these expressions in
the higher ratef,, via upsampling by\/ followed by bandpass (4), for w € [—7w/M + 27p/M, 27xp/M] (left part of region
filtering via Cj(2). p), we get

K
—Jjw 1 j o j2Tpm
Bule™) = g7 22 Bomeemee e (14
Next, we will show that the constant.,,,, and o, , t = and forw € [2np/M, —7/M + 27 (p + 1)/M)] (right part of
1,2,...,K,mg€[0,1,..., M—1], for all the bandpass filters regjon p), we obtain
Bi(2), k =1,2,..., K, can be determined through a single
K x K matrix inversion.

B. Determiningf.,, and am,

K
By(e™) = % D Brm e emeems2mrme/M (15)
Theorem 2:Consider the bandpass filter8;(z), & = =1
1,2,..., K, which extract the active subbands; € |t can be seen that (14) and (15) also correspond to the
0,1,....,M —1], k =1,2,..., K, respectively. Lev; be a right and left half, respectively, of region/ — p. Thus, if
vector (K x 1 matrix) containing all thei complex constants ¢ < [0,1,..., M — 1], given as in (13), represent the region

vkm, corresponding to the non-zero polyphase components\giose left half is occupied by the active subband then
Bi(z), k € [1,2,...,K]. Then,v, can be determined using
matrix inversion as 3In (14), we usedB,?(e*J'W) since real filters are assumed. For real filters,
By (e?¥) = 1 (Bg(e?¥) = 0) in the passband (stopband) region implies
vi = D7 tby (11) Br(e7%) =1 (Bg(e %) = 0) as well.
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Fig. 10. (a) lllustrates of the division of the frequency garji—= /M, 27 — w/M] into M adjacent regions of equal widthr /M. (b) Spectrum of a
bandpass filteBy, (e?“’) with passband in the frequency range /M, (ry + 1)w/M].

the requirement o (/) in ¢; is equal to the requirementtransform block. By using a fast-transform algorithm, tiestc

in the right half of the regionM — ¢;. Consequently, for of such a transform block can be made small when compared
the bandpass filtel3,(e/«) it suffices to solve a systemto the cost of the filters.

of K equations corresponding to the left half of the In the analysis FB, since the polyphase components of
regionsg;, ¢ = 1,2,..., K. More precisely, the right hand each B, (z) are as given in (5), all the analysis filters can
side of (14) should equal unity in the regign and zero be expressed with a common set of fixed subfiltérg,z)

in the K — 1 regionsg;, @ € [1,2,...,K], i # k. Thus, and Gy(z), £ = 1,2,..., K. The different analysis filters
using vkm, = Brm, e’ in (14), we obtain the system ofare then obtained via different pairs of values&f,, and

equations Okm, = Qkm, + m/4 such that
Dvy = by (16) Biem
Bim, (2) = Me [cos(Okm, ) Fe(z) + sin(Okm, )Ge(2)] (19)

where
Vi = [Ukimy Ukmo - -+ Ukmg) - (17)  where

The vectorvy, corres_pondin_g to the bandpass filtBf. (¢~) Fz(ej”) ~ ejwm[/M’ Gg(ejW) ~ sgn(w) x jejwm@/M' (20)
can then be determined using (11). O

It is noted that the additional phase©f4 in 6y.,, is required

to ensure proper matching between adjacent analysis ard syn
thesis filters in the case of overlapping granularity bamis a

. ; . 4 hen cosine-modulated synthesis FB is used. This is similar
conS|stent_W|th the results in [7], it can be seen from (1 the additional constants used for matching in conveation
that there is always at least one set of sampling instants t 8sine-modulated EBs [20]. However, the additional cartsta

corresponds to an invertible matrix, namety = 0,1, ..., K, Lﬁsed in 4, is /4 instead of (—1)ér/4 which is used

since for these sampling points the generalized Vandermor?

Theorem 2 shows that the vectovg corresponding to
all the K bandpass filtersB,(¢’~), k = 1,2,...,K, can
be determined by inverting a singl® x K matrix. Also,

sampling instants may not guarantee that the mdris well
conditioned. In order to ensure thBt is well conditioned,
optimal sampling instants can be selected depending on
active subband locations as outlined in [9], [11].

applied on the polyphase components of the analysis filter.
In _conventional cosine-modulated FBs, the additional phas

Shstants are applied on the overall analysis and synthesis
filters as in (18).

V. PROPOSEDEFFICIENT RECONSTRUCTOR

Using the reconstruction scheme described in Section I@; Computational Complexity
we will now derive the proposed efficient reconfigurable In this paper we consider computational complexity as the

reconstructor shown in Fig. 1. number of real multiplications required per corrected atitp
sample (see Footnote 1). Based on the discussions above, and
A. Synthesis and Analysis FBs polyphase realizations in which all the filtering takes plat

@e downsampled rate, the computational complexity of the

In order to implement the cosine-modulated synthesis Fpt‘oposed reconstructor in Fig. 1 can be approximated as

a lowpass filter with cutoff frequency at/2M is used as the

prototype filter P(z) [20]. The coefficients of the synthesis _Np 2NpK  2K?
filters ¢, (n) can be expressed in terms of the impulse response Corop ~ ar log, (M) + v T (21)
of the prototype filterp(n) as [20] In (21), N is the order of the prototype filter for the synthesis

T BT FB and Ny is the order of the fixed subfiltergy(z) and

cr(n) = 2Mp(n) cos (M(k +0.5)(n — T) - (=1) 1) Gu(z). The first two terms in the expression Gop in (21),
(18) correspond to the computational complexity of the cosine-

The overall complexity of the synthesis FB correspond tmodulated synthesis FB assuming that 2f¢ x M transform
that of the prototype filter plus the cost of a real or compldxock is implemented using a fast-transform algorithm [23]



the implementation. Due to this, all the multipliers in the

[92] 0
§ 3 g 8 cosine-modulated FB as well as in the fixed subfilters can be
g, &6 implemented using fixed-coefficient multipliers. This hetp
2 = reduce the overall implementation complexity since, comgpa
a1 = ) to variable-coefficient multipliers, efficient techniquesn be
§ o § 0 used to implement the fixed-coefficient multipliers [25]6]2

1 1 Moreover, using a common set of fixed subfilters to implement

all the analysis filterd3,(2), k = 1,2,..., K, results in fewer

5 10 =) 20 design variables which helps to reduce the design complexit
§ § of the analysis FB.

> 2

3 > g VI. DESIGN OF THEPROPOSEDRECONSTRUCTOR

§ o § In this section, we introduce a procedure to design the

[N

proposed reconstructor. Here, we assume that the sampling
instantsmy, £ = 1,2,..., K, are selected such that for the
given active subbands;, ¥ = 1,2,...,K, D in (11) is

Fig. 11. lllustration of the estimated complexity savingstioe proposed an invertible matrix. Using the analysis and the synthesis
scheme compared to the polyphase implementation of thegisieward  FB representation in Fig. 6 for the proposed reconstruction
scheme [7] (Complexity savings Ereg/ Corop) scheme, the Fourier transform of the reconstructed oufmut ¢
be written as

The third term is the computational complexity of th&” sub- " " " M-1 " (w—2mE /M)
filters F,(z) and Gy(z) whereas the fourth term corresponds ¥ (¢/*) = Vo(e™) X (%) + > V() X (! )
to the complexity of the2 K2 multipliers whose coefficients £=1

(24)
where V,(e/*) is the distortion functionand V¢ (e/*), ¢ =
.., M — 1, are thealiasing functionswith

are the scaledos(-) andsin(-) terms in (19). TypicallyNp
is about an order of magnitude larger thah as explained
below. An approximate estimate of the order of the prototyy:}e2’ '
filter, Np, is given by [24 ) K . .
s guenby 4 Ve(eh) = =30 B0 () (@25)
M
(22) k=1
s e for £ =0,1,...,M — 1. As can be seen from (24) and (25),
whered, 5, we, andw, denote the passband ripple, stopbanghe analysis and synthesis filters should be designed sath th
ripple, passband edge, and stopband edge, respectivehg ofthe distortion and aliasing functions approximate unityl an
prototype filter. Assuming that is the percentage occupancysero, respectively, in the active subband locations. Theail
of a granularity band, for a prototype filter with transitioand design complexity becomes very high if the subfilt&jge’)
centered atr/2M, w; — we = em/M wheree =1 — p/100.  and G,(e7*) in (19) and the prototype filter for the cosine-
For example, ifp varies betweer20-60%, for a prototype modulated synthesis FB are designed together. Therefore, t
filter with passband and stopband ripple-e80 dB, Np will  reduce the overall design complexity, we propose the fatigw
be betweerd \/-17M. Also, the order of the subfiltetB;(z)  design procedure. First, the prototype filfefe’) is designed
andG(z) is Np ~ Np/M. The complexity of the polyphaseand fixed. Next, the coefficients of thK subfilters Fy (ei+)
implementation of the straightforward scheme in Fig. 2 caghd G,(¢7~) are determined such that the distortion and
be estimated as NoK aliasing terms are kept below a certain desired level. Due
P . . .
Creg ~ T (23) to the large number of constraints that need to be satisfied
during the optimization, we use a least-squares approach so
As exemplified in Fig. 11, which plots the ratfeq/Cprop fOr  that the subfilter coefficients can be obtained via a closed-
Np = 13M and Ny = Np/M, order-of-magnitude savingsform solution. Compared to numerical optimization, such a
are feasible, via proper choicesf and K (also see Example cjosed-form solution significantly reduces the design time

21

2
Np ~ —3 log10(105c55)w

1 in Section VII for a specific example). Also, during reconfiguration, if a new set of sampling inssan
are selected, the closed-form solution makes it feasible to
C. Reconfiguration Complexity redetermine the coefficients online.

In the proposed reconstructor, the real-time reconfigomati _ _
is simple and fast as it suffices to determine the multiplagr v A- Prototype Filter Design
ues Brm, and by, using (11). Thus, during reconfiguration, The prototype filterP(e’) is a power-symmetric lowpass
only the coefficients of the K2 multipliers corresponding to filter with a passband edge at. = (1 — ¢)7/2M and a
the scalectos(-) andsin(-) terms in (19) need to be updatedstopband edge at; = (1 + ¢)x/2M with ¢ related to the
As explained in Section VI below, the subfiltef$(z) and percentage occupangy of the subband as = 1 — p/100.
Gy(z), as well as the prototype filter for the cosine-modulatddue to the power-symmetry constraints as in (26) below, it
synthesis FB, are designed once offline and are fixed i;inot possible to use a least-squares approach for thendesig



of P(e“). However, unlike the design of th&K subfilters represent th&x¢/M-shifted versions of the active subbands
Fy(e’*) and G,(e?*), the prototype filter can be designedhat fall into the band—r, 7]. Let

using numerical optimization techniques as the optimirati _ T

has fewer constraints. Also, the coefficients Bfe’~) are h=If o f2 0 Fie gK_] (31)
determined offline and only once, since the safg’~) wheref, andg,, ¢ = 1,2,... K, are the impulse response
can be used even if the sampling instants change. In t¥Rctors of Fy(e/~) and G(e’), respectively. In order to
subsequent design examples section, we use the MATLABNpify the derivations, we assume that the order of the
minimax optimization functiorf mi ni max for the design of subfilters, N, is even such that

P(e?v). Us_mg minimax design, the coe_ff|C|ents (ﬂ_(eﬂw) fo=[fo(—Np/2) fo(~Np/2+1) - fo(Np/2)] (32)
are determined such that the prototype filter approximétes t

passband and the stopband responses with unity and z@l‘lﬁ

respggtively, as vyell as the power-symmetry pro_perty in thegg =[ge(=Nr/2) go(—Np/2+1) --- go(Np/2)]. (33)
transition band with tolerance®, ¢;, andd, according t6

. Then, (25) can be expressed as
|P(e’*) — 1] < §p, w € [0, w,]

" 1
|P(e?*)] < 61, w € [ws, 7 Ve(e!) = Me(w,Np)CE(g,w)h (34)
11— [P(e@)P =[PP < 65, w € Jwe, ws).  Where
) (26) e(w, Np) = [eJ'WNP/2 eJw(Np/2=1) e*jWNP/Q] (35)
The coefficients of P(¢’“) can therefore be obtained by ’ ’
solving the minimax optimization problem: Np is the order of the lowpass prototype filter for the synthesis

Given the order of the prototype filteNp, determine FB and assumed to be even, the mai,w) is as shown
the coefficientsp(n) of the prototype filterP(¢’~) and a in (36), and

parametep, to minimized subject to c1(=Np/2) ca(—Np/2) -+ cg(—Np/2) ]
[P(e™) =1 <6, we 0, w] : : :
|P(e?)] <0, w e [ws, 7] . C= c1(0) c2(0) B ¢k (0)
11— |P(e7)]? — |P(e? @™ MO 2| <6, we [we, ws
. . . . (27) a(Np/2)  c(Np/2) -+ cx(Np/2) |
The filter P(e’*) designed by solving the above optimiza- 37)

tion problem satisfies (26) if, after the optimizatiof, < In (36),
min(dg, d1,d2). A good initial solution for the optimization B —j(w—2m€/M)m

problem can be obtained using, for example, the methods in ke (§, @) = Brm, co8(0rm, )e _ K (38)
[27], [28]. Our experiments indicate thatshould be6—8 dB bie(€,w) = Brm, Sin(Ogm, eI @72m8/Mme - (39)
lower than the specified amplitude of the residual aliasiqgr /=19 K. ande

) (w, Nr) is a row-vector of length
terms after reconstruction.

Nr + 1 obtained by replacingVp in (35) with Ng. In

(37),¢ck(n), k=1,2,...,K,n=—Np/2,...,0,...,Np/2,

B. Least-Squares Design &%(z) and G(z) are the impulse response coefficients of the synthesissfilter
After determining the coefficients of the lowpass prototype’(e’“’). Using (34), we can rewrite (29) and (30) as

filter for the synthesis FB, we use a least-squares approach 1

1 7 2
to determine the coefficients of the fixed subfiltefs(z) Po = Wh Soh — Wu0h+ M2 (40)
and G¢(z). The coefficients are determined such that theynd
minimize an error power functio defined as Pe = %hTSEh (41)
M—1 . .
P =Py + Z P 28) respectniely, with
=t Sf = 2_ ET(ng)CTeT(waNP)e(vaP)CE(ng) dwa

where TJa

1 Qe e, (42)

_ Jwy _ 112
Po—zw/ﬂﬂ/o(e? )= 1)*dw, Q€ Q0 (29) €=01,...,M—1, and
1
and 1 } Up = — [ Re{e(w, Np)CE(0,w)} dw, Q€ Q0. (43)
Pe=— / [Ve(e)Pdw, Q€ Qe (30) 2m Jo
2m Jo The analysis filter coefficient, which minimize the er-
with Q,., 0, 7 €[0,1,...,M —1],i=1,2,..., K, represent- ror power function in (28), can be determined by solving
ing the active subband locations afid, ¢, ¢ =1,...,M —1 JP/0oh = 0 which gives
-1
4In this paper, to simplify derivations, we assume that allefd are M-l

noncausal. The designed filters can be easily made causaldiygasuitable h= Z Se Uy (44)
delays. £=0



all(g,w)e(w,Np) bll(g,w)e(w,NF) alK(g,w)e(w,Np) blK(g,w)e(w,Np)

az1(§,w)e(w, Nrp)  bai(§w)e(w, Nrp) -+ asx(§w)e(w, Nr) bar(§w)e(w, Nr)
E(¢,w) = : : . . (36)
ax1(§,w)e(w, Nr) bxi1(§,w)e(w,Nr) -+ axk(§w)elw,Nr) brk({,w)ew, Nr)
C. Design of Reconfigurable Reconstructors all modes use the same set of sampling instants. If each

In a reconfigurable reconstructor, first, the prototyperfiltdnode uses a different set of sampling instants, during re-
for the cosine-modulated synthesis FB, is designed asedtli configuration, the reconfiguration requires only one addl
in Section VI-A. Further, the subfilter§;(z) and Gy(z) in 2K (Nr+1) x 2K(Np+1) matrix inversion. In contrast, for
the analysis FB are designed and fixed based on the samplfify Straightforward scheme [7], the reconfiguration ineslv
instants. In applications where all the possible combina- INverting severa(Na + 1) x (N4 + 1) matrices whereV
tions (L modes) of thek active subbands use the sami® the prder of each multi-level synthesis filtdy(z) in Fig.
set of sampling instants, during reconfiguration, it suiee 2 Typically, Na > 2K(Np + 1) as can be seen from the
redetermine the complex constans in (11). Following a €Xamples in Section VII.
least-squares approach similar to the one outlined in @ecti
VI-B, the coefficients of the subfilters,(z) andG,(z) for the VIl. DESIGN EXAMPLES

reconfigurable reconstructor are then determined using Example 1:In this example, we assume that there

L M—1 1o, T are three active users with two possible combinations
h= s uo 45y Of active band locations. It is assumed that at any
;1; ‘ [; O] (43) given time frame, the active frequency bands can
' be either {[3.24.8],[7.2-7.8],[11.2-11.8]} x =/16 or
where {[3.2-3.8],[7.2-7.8],[11.2-12.8]} x =/16. Further, it is

| T assumed that the reconstructor should be designed such that
S =5 /QEMT(&“’)C el(w, Np)e(w,Np)CE(E, w) dw, aliasing terms are kept below60 dB.
Qe Q?)ga (46) For a given combination of active band locations, the
number of channelsk, required to implement the CNUS
and scheme will depend on the total number of granularity bands

M. In this example, the number of granularity bands

is chosen so as to get the least implementation complexity
(47) for the reconstructor. In order to have practical filters, a

Here, Q, v € [1,2,...,L], r;, € [0,1,...,M — 1], transition band is included in each active granularity band,

2

1
wo = L /QRe{e(w,NP)CEwo,w)}dw, Qe 0,

i = 1,2,...,K, represent theK active subband loca- depending on)M, the percentage occupangy(see Section
tions corresponding to theth combination and2”’,, & = VI-A) of a granularity band is assumed to be witi6-60%.
1,..., M —1represent their shifted versions which fall into theé\s shown in Fig. 12, for the two possible combinations

band [, 7]. The matrixE™(¢,w) is obtained by replacing of active band locations assumed in this example, the least
are(€,w) andby (&, w) in (36) with af) (£, w) andb) (£, w), computational complexity is obtained with/ = 32. When
respectively, where the total bandwidth is divided intd/ = 32 granularity bands,
i(w—2mt /M )m with the information containing frequency bands assumed in
o (6.) = B, con (O, ) e 720 larity bands

ke this example, onlyK' = 8 granularity bands are active at any
and given time frame. Thus, at any given time frame, the users can
_ be allocated either the granularity bands-9, 14,15, 22,23}
3 —j(w—27E/M)m ’ ’ ’ ) p
bl (6,w) = By, sin (6)),,) eI e2me/M0me, (49)  or the bandg6,7, 14, 15,22-25}. For the above two possible

The values for the constanty” and ¢ depend on the comb.ination of band. locations (two modes), we used t.he sub-
‘ ‘ Nyquist sampling pointsy, = 0, 3, 5, 14, 16, 19, 21, 30, which

location of the active subbands in theh combination and : . _ ) _ |
ensures thab in (11) is an invertible matrix. The sampling

are determined using matrix inversion as explained in 8acti’ _ . .
IV-B instants were determined using the method in [29].

Based on the occupied frequencies and the active bands,
. . the percentage band occupaneyof the lowpass prototype

D. Design Complexity filter P(z) is fixed at20%. The prototype filter is designed

Splitting the reconstructor design into two parts, as dise be a power-symmetric lowpass filter of ord&s6 with
cussed above, makes it feasible to design and implemenva= 0.27/64 andw, = 1.87/64. It is found that, for the
reconfigurable reconstructor, especially for larger. This 16 subfilters, F;(z) and G¢(z), a filter order Ny = 14 is
is exemplified using a design example in Section VII. Dusufficient to keep the aliasing terms belev60 dB.
ing reconfiguration, the proposed reconstructor can be redn order to determine the coefficients of the multi-level
configured online by inverting a singl& x K matrix if synthesis filters in the straightforward scheme in [7], wedus
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Fig. 12. Example 1: Computational complexityrop vs. M for the two possi- 0 8 1?32 d 24 32
ble active frequency band combinatiofis.2—4.8], [7.2-7.8], [11.2-11.8]} x ® [xm32rad]
w/16 and {[3.2-3.8], [7.2-7.8], [11.2-12.8]} x 7/16. The numbers within
parenthesis represent/( K, Cprop)- Fig. 13. Example 1: Distortion functiorip (e7«)) and aliasing func-
tions Vg(eJ“’)), £ = 1,2,...,M — 1, for the active subband combina-
TABLE | tions {6-9, 14, 15, 22, 23} (blue-continuous) and6, 7, 14, 15, 22-25} (red-
EXAMPLE 1: COMPLEXITY COMPARISON. dotted).
Reconstructor Complexity
C | N | Reconfiguration Spectrum without reconstruction
Straightforward | 80 | 2544 | Eight [319 X 319] = O T o ey e e
Proposed 29 | 128 One[8 x §] 3 20 | K CA At ‘ ; 1 I
< —40jil |
ERN | |l
_ _ _ . 5 M | |
the time-varying reconstructor design method in [30] butwi g *80 § ; § ||
some of the impulse response coefficients set to zero due ~ 10 3 16 24 1
the CNUS scheme. It is found that the straightforward schem ® [xmw32rad]
would require a reconstructor with eight synthesis filtefs o O Spef‘f‘{“f ?ftefrf’cf"fsfrf‘ftlo‘f N
order N4 = 318. Z
Table | tabulates the reconstructor complexity when the &
specification in this example is implemented using the giitai § ~60 |
forward and the proposed reconstructor. As can be seen fro é" —go Rk |
Table I, the proposed reconstructor offers significant céida -100, . g L s 24 32

in complexity due to the efficient realization in Fig. 1. Itnca o [x /32 rad]

be seen that during reconfiguration from one mode to the

other, the proposed reconstructor requires significartlyef Fig. 14. Example 1: Reconstruction of sub-Nyquist sampledtirtone sig-

multipliers to be updated online. The coefficients of theg®ls with tones in the three user bar{d8.2—4.8], [7.2-7.8], [11.2-11.8]} x

multipliers can be either determined offline and stored in '6: after passing through the reconstructor.

memory or determined online using a singlex 8 matrix in-

version. In contrast, the straightforward scheme wouldireq . _ . . .

a larger memory or eight19 x 319 online matrix inversions. with zeros inserted into the time instants where the samples
Figure 13 shows all the distortion and aliasing terms gye missing. . ,

the reconstructor for the two possible combinations of userExample 2: This example illustrates that, for larger

band locations. It can be seen that, in the required bands, > the proposed method provides even more significant

aliasing terms are not greater tha0 dB which validates the Savings in the design and implementation complexity of

reconfigurability between the two different combinatiorfs ghe reconstructor compared to the straightforward method

user band locations. The reconfigurability of the recomsgnu that uses only synthesis FBs. This is in line with the

is illustrated in Figs. 14 and 15 by configuring it for one séf®MPlexity comparison in Section V-B. Here, we consider an

of active band locations and using it to reconstruct a sufX@mple where the information containing frequency banels a

Nyquist sampled multi-tone input with tones in the activada {[3.21-3.82], [7.21-7.82], [20.21-21.82], [46.01-47.99], [54_55]}X

region. The spectrum without reconstruction in Figs. 14#d 7/64 and the reconstructor should be designed to

corresponds to the spectrum of the sub-Nyquist sampledisighteP the aliasing terms below-40 dB. For the
above frequency bands, the computational complexity
5C and NV represent the number of multiplications per corrected wutpof the reconstructor is least whed/ = 128 and

sample and the number of multipliers to be updated duringnféguration, r — 18, Consequently the active granularity bands
respectively. The reconfiguration complexity is the numbkpnline matrix ! .

inversions. For the straightforward reconstructor, sineeassume a polyphase are {6v 7,14,15,4043,91-96, 107__110} With P - 29%.
implementationC is computed as in (23). Further, we use the sub-Nyquist sampling points =



Spectrum without reconstruction
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Fig. 15. Example 1: Reconstruction of sub-Nyquist sampledtistone sig- Fig. 16. Example 2: Distortion functioriy(e/*)) and aliasing func-

nals with tones in the three user bar{d8.2-3.8], [7.2-7.8], [11.2-12.8]} x
/16, after passing through the reconstructor.

TABLE Il
EXAMPLE 2: COMPLEXITY COMPARISON.

tions Ve(e/*)), ¢
{6,7,14,15,40-43,91-96, 107-110}.

1,2,...,M — 1, for the active subbands,

Reconstructor Complexity (see Footnote 5)

C | N | Reconfiguration

Straightforward | 164 | 20934 | 18 [1163 x 1163]
Proposed 24 648 One[18 x 18]

0,1,7,8,9,32,33,34,41, 55,57, 73, 81, 84, 85, 86, 97, 126,

which were determined using the method in [29]. For the

synthesis FB, a power-symmetric lowpass prototype filter
order 1162 is required to keep the aliasing terms belew0
dB at the output of the proposed reconstructor. The order

0]

FD filters. Due to this, the analysis filters can be expressed i
terms of a common set of fixed subfilters and a set of mul-
tipliers, thereby reducing the complexity. Moreover, sirthe
filters in the synthesis FB are regular bandpass filtershéuart
reduction in complexity was achieved by implementing these
filters using a cosine-modulated FB. We also showed that,
compared to the straightforward reconstructor, the pregos
reconstructor makes it feasible to achieve order-of-ntagei
r(?duction in the computational complexity. In additiong th
proposed reconstructor provides significant reductionhia t
coqmplexity of the online reconfiguration block as only the
coefficients of the set of multipliers in the analysis FB have

each of the36 subfiltersFy(z) and G¢(z) in the analysis FB
turned out to bel0. On the other hand, the straightforwar
reconstructor would requiré8 synthesis filters where each
filter has an order of arountl62.

Table Il compares the complexity of the two reconstructors
for the specification in this example. It can be seen that!!
for the given specification, the proposed reconstructor has
around70% lower computational complexity compared to the[2]
polyphase implementation of the straightforward recarcstr.
Moreover, in the straightforward reconstructor, designa 3]
synthesis FB with20934 coefficients is quite hard if not
impossible. Further, the proposed reconstructor can benrec [4]
figured online through a singlis8 x 18 matrix inversion. Online (5]
reconfiguration, however, is not feasible for the straigitiard
reconstructor due to the extremely large sizes of the neggtric
that need to be inverted. Figure 16 shows all the distortio
and aliasing terms at the output of the proposed reconstruct
designed to meet the requirements in this example.

VIIl. CONCLUSION 71

In this paper, we proposed a reconfigurable reduce 8
complexity reconstructor for sub-Nyquist sampled spars
multi-band signals. The reconstructor was derived by esgre

ing the reconstruction problem in terms of both analysis an ]

synthesis FBs. We showed that the nonzero polyphase compo-

nents of the bandpass filters in the analysis FB are genedaliz

éo be redetermined.

REFERENCES

J. Singh, S. Ponnuru, and U. Madhow, “Multi-gigabit conmication:
the ADC bottleneck,” inProc. IEEE Int. Conf. Ultra-Widebandvan-
couver, BC, Sep. 2009, pp. 22-27.

J. Selva, “Regularized sampling of multiband signallEEE Trans.
Signal Process.vol. 58, no. 11, pp. 5624-5638, Nov. 2010.

M. Fleyer, A. Linden, M. Horowitz, and A. Rosenthal, “Mirhte
synchronous sampling of sparse multiband signdsEZE Trans. Signal
Process. vol. 58, no. 3, pp. 1144-1156, Mar. 2010.

M. Mishali and Y. Eldar, “Sub-Nyquist samplinglEEE Signal Process.
Mag., vol. 28, no. 6, pp. 98-124, Nov. 2011.

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and@R.
Baraniuk, “Beyond Nyquist: Efficient sampling of sparse dianited
signals,” IEEE Trans. Inf. Theoryvol. 56, no. 1, pp. 520-544, Jan.
2010.

] P. Feng and Y. Bresler, “Spectrum-blind minimum-ratenpling and

reconstruction of multiband signals,” ifroc. IEEE Int. Conf. Acoust.,
Speech, Signal Processiol. 3, Atlanta, GA , USA, May 1996, pp.
1688-1691.

Y.-P. Lin and P. Vaidyanathan, “Periodically nonuniforsampling of
bandpass signalslEEE Trans. Circuits Syst. Ilvol. 45, no. 3, pp. 340—
351, Mar. 1998.

P. P. Vaidyanathan and V. C. Liu, “Efficient reconstroati of band-
limited sequences from nonuniformly decimated versionsubg of
polyphase filter banksJEEE Trans. Acoust., Speech, Signal Progess.
vol. 38, no. 11, pp. 1927-1936, Nov. 1990.

R. Venkataramani and Y. Bresler, “Optimal sub-Nyquiginaniform
sampling and reconstruction for multiband signal§EE Trans. Signal
Process. vol. 49, no. 10, pp. 2301-2313, Oct. 2001.



12

[10] L. Berman and A. Feuer, “Robust patterns in recurremhing of
multiband signals,”IEEE Trans. Signal Processvol. 56, no. 6, pp.
2326-2333, Jun. 2008.

A. Owrang, M. Viberg, M. Nosratinia, and M. Rashidi, “few method
to compute optimal periodic sampling patterns,”Rroc. IEEE Digital

(11]

Signal Process. Workshp@edona, AZ, USA, Jan. 2011, pp. 259-264.

[12] S. Tertinek and C. Vogel, “Reconstruction of nonunifily sampled
bandlimited signals using a differentiator—-multiplier scade,” IEEE
Trans. Circuits Syst., Ivol. 55, no. 8, pp. 2273-2286, Sep. 2008.

K. M. Tsui and S. C. Chan, “New iterative framework foedfuency
response mismatch correction in time-interleaved ADCssidre and
performance analysis/|EEE Trans. Instrum. Measvol. 60, no. 12, pp.
3792-3805, Dec. 2011.

H. Johansson, “A polynomial-based time-varying filstructure for the
compensation of frequency-response mismatch errors &tititerleaved
ADCs,” IEEE J. Sel. Topics Signal Procesgol. 3, no. 3, pp. 384-396,
Jun. 2009.

K. M. Tsui and S. C. Chan, “A versatile iterative frameWwdor the
reconstruction of bandlimited signals from their nonunifosamples,”
J. Signal Process. Systol. 62, no. 3, pp. 459-468, Mar. 2011.

A. Papoulis, “Generalized sampling expansiolEEE Trans. Circuits
Syst, vol. 24, no. 11, pp. 652-654, Nov. 1977.

Y.-M. Zhu, “Generalized sampling theoremEEE Trans. Circuits Syst.
I, vol. 39, no. 8, pp. 587-588, Aug. 1992.

A. K. M. Pillai and H. Johansson, “Efficient reconfigutatscheme for
the recovery of sub-Nyquist sampled sparse multi-bandassgnin Proc.
IEEE Global Conf. Signal Information Proceséwustin, TX, USA, Dec.
2013, pp. 1294-1297.

P. P. Vaidyanathan, “Multirate digital filters, filterabks, polyphase
networks, and applications: a tutoriaProc. IEEE vol. 78, no. 1, pp.
56-93, Jan. 1990.

——, Multirate Systems and Filter Banks Prentice-Hall, Englewood
Cliffs, NJ, USA, 1993.

H. Johansson and A. Eghbali, “Two polynomial FIR filtéustures with
variable fractional delay and phase shit€EE Trans. Circuits Syst, |
vol. 61, no. 5, pp. 1355-1365, May 2014.

W. C. Black and D. A. Hodges, “Time interleaved convergerays,”

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

IEEE J. Solid-State Circuitsvol. 15, no. 6, pp. 1022—-1029, Dec. 1980.

[23] H. S. Malvar, “Extended lapped transforms: propertagsplications, and
fast algorithms,1EEE Trans. Signal Processcol. 40, no. 11, pp. 2703—
2714, Nov. 1992.

M. Bellanger, “On computational complexity in digitélters,” in Proc.
Eur. Conf. Circuit Theory DesignThe Hague, The Netherlands, Aug.
1981, pp. 58-63.

L. WanhammarPSP Integrated Circuits Academic Press, 1999, ch. 11,
pp. 461-530.

O. Gustafsson, “Lower bounds for constant multipliwat problems,”
IEEE Trans. Circuits Syst. |livol. 54, no. 11, pp. 974-978, Nov. 2007.
C. Creusere and S. Mitra, “A simple method for designimgh-quality
prototype filters forAM-band pseudo QMF bankslEEE Trans. Signal
Process. vol. 43, no. 4, pp. 1005-1007, Apr. 1995.

f. harris, C. Dick, S. Seshagiri, and K. Moerder, “An iroped square-
root Nyquist shaping filter,” ifProc. Software Defined Radio Tech. Conf.
Orange County, CA, USA, Nov. 2005, pp. 15-17.

M. Rashidi and S. Mansouri, “Parameter selection inigaic nonuni-
form sampling of multiband signals,” iRroc. Int. Symp. Elect. Electron.
Eng, Galiti, Romania, Sep. 2010, pp. 79-83.

H. Johansson and P. Ldwenborg, “Reconstruction ofundarmly
sampled bandlimited signals by means of time-varying disetime FIR
filters,” EURASIP J. Advances Signal Processl. 2006, pp. 1-18, Jan.
2006.

[24]

[25]
[26]

[27]

(28]

[29]

(30]

Anu Kalidas M. Pillai (S'11) received the Bach-
elor of Technology degree in applied electronics
and instrumentation engineering from University of
Kerala, India, in 2002. He received the Master of
Science degree in electrical engineering and the
Doctoral degree in Communication Systems from
Linkoping University, Sweden, in 2011 and 2015,
respectively. From 2002 to 2009, he was with Cap-
tronic Systems Pvt. Ltd., India, and was involved
in the design and development of automated test
equipments for automotive and aerospace applica-
tions. Currently, he is a researcher at the Division of Comication Systems

at Linkoping University. His research focus is on signalgassing algorithms
for parallel analog-to-digital interfaces.

Ha&kan Johansson (S'97-M'98-SM’'06) received
the Master of Science degree in computer science
and the Licentiate, Doctoral, and Docent degrees
in Electronics Systems from Linkoping University,
Sweden, in 1995, 1997, 1998, and 2001, respec-
tively. During 1998 and 1999 he held a post doctoral
position at Signal Processing Laboratory, Tampere
University of Technology, Finland. He is currently
Professor in Electronics Systems at the Department
of Electrical Engineering of Linkdping University.
Prof. Johansson’s research encompasses theory, de-
sign, and implementation of efficient and flexible signalgassing systems for
various purposes. He is one of the founders of the compamaBRyocessing
Devices Sweden AB that sells advanced signal processingiaw. Prof.
Johansson is the author or co-author of 4 books and some f&tdational

journal and conference papers. He is the co-author of theggerp that

have received best paper awards and he has authored twedirpaipers in
IEEE Transactions and four invited chapters. Prof. Jolmnsgs served as
Associate Editor for IEEE Trans. on Circuits and Systemsd #n |IEEE
Trans. Signal Processing, and IEEE Signal Processingrkette is currently
Associate Editor of IEEE Trans. on Circuits and Systems | Areh Editor
of the Elsevier Digital Signal Processing journal, and a renof the IEEE
Int. Symp. Circuits. Syst. DSP track committee.



