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An Efficient Method for Solving Frequency Responses
of Power-Line Networks

Bing Li*, Daniel Månsson, and Guang Yang

Abstract—This paper presents a novel approach for solving the frequency responses of a power-
line network, which is a two-parallel-conductor system with multiple junctions and branches. By
correcting the reflection coefficient and transmission coefficient of each junction, a complex network
can be decomposed into several, single-junction, units. Based on the Baum-Liu-Tesche (BLT) equation,
we preliminarily propose the calculation method of frequency responses for single-junction network. In
accordance with the direction of power transfer, we calculate the frequency responses of loads connected
to each junction sequentially, from the perspective of the network structure. This approach greatly
simplifies the computational complexity of the network frequency responses. To verify the proposed
algorithm, networks with various numbers of junctions and branches are investigated, and the results
are compared with a commercial electromagnetic simulator based on the topology. The analytical results
agree well with the simulated ones.

1. INTRODUCTION

For the frequency response calculation of a power-line network, Anatory et al. [1–5] gave the transfer
function of power-line networks from excitation source to load responses, establishing an overall
model of broadband power-line communication network with irregularly distributed branched networks,
arbitrary terminal loads, various line lengths and characteristic impedances. This method gives the
relationships of voltages and currents between transmitting and receiving ends, but it cannot be applied
to simultaneously obtain the frequency responses at other terminal loads. Also, to take the effects of
all the other loads into account, the calculation equations require to be nested for relatively more times
than the method proposed in this paper.

Due to the multiple junctions in the power-line network, there are multiple reflections between
junctions, which results in a multi-path propagation in the network, and the theoretical number of the
propagation paths is infinite. After listing the probable propagation paths between the transmitter
and receiver as much as possible, Ding and Meng [6] derived the transfer function by using a recursive
model. However, it is merely suitable for the point-to-point case and the accuracy of the model depends
on the selection of the number of multiple reflections. Considering the effects of the adjacent junctions,
Shin et al. [7] defined a degree of distantness, where the junctions are not in the direct propagation
path linking the transmitting and receiving terminals. However, the complexity of the network increases
with the number of the adjacent junctions or the branches connected to the adjacent junctions, and the
accuracy of the model is heavily affected by the choice of the degree of distantness. Departing from the
perspective of two-port networks, Zheng et al. [8] established the power-line channel model that solves
the matrix equations of the network and obtains the frequency responses of target load, by using the
admittance matrix as well as the relationship between branch admittance matrix and node admittance
matrix.
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Originating in the EMC community, the Baum-Liu-Tesche (BLT) equation [9–14], proposed by
Baum, Liu and Tesche, can also be applied to solve this kind of problem. The equation describes
the electromagnetic waves leaving and entering junctions, and the wave propagation along tubes in a
transmission-line network, by using the scattering matrix and propagation matrix of the network. But
the scattering parameter between two waves is difficult to obtain, as any wave is the superposition
of many other waves. In addition, conventional methods do not work when facing the super matrix
equations in Zheng’s model [8] and the BLT model [9–14] above. Besides, a super matrix requires fairly
large space for storage and its computation is time-consuming.

In our study, a more efficient approach based on the BLT equation is proposed to solve the frequency
responses. The calculation results include all load frequency responses at each termination. The main
idea is to divide a complex power-line network with arbitrary structure into multiple local single-
junction units, instead of establishing a global model which includes the relationships between all
loads. In the single-junction model, there are no multiple reflections, hence there is no need to provide
any approximation on the number of reflections. By adopting a tree structure in the algorithm, all
junctions and loads at the layer is simultaneously computed, in the processes of coefficients correction
and frequency responses calculation, and the algorithm converges fast even if the network is fairly
complex.

2. METHODS OF CALCULATING LOAD RESPONSES

In a power-line network, with the number of arbitrary distributed junctions and branches increasing,
the complexity of the network increases. Different branch lengths, load values and line characteristic
impedances also increase the diversity of the network configuration. In our study, with respect to
various network complexities, six typical power-line networks shown in Figure 1 are investigated, and
the calculation of the frequency responses at each load will be discussed subsequently in the following
sections.

In this paper, In represents the n × n identity matrix, 0 the matrix with entries 0, diag(∗) the
diagonal matrix, and adiag(∗) the anti-diagonal matrix. �(∗) and �(∗) respectively denote the real
part and the imaginary part of a complex number, and (∗)T stands for transpose.

2.1. The BLT Equation

To solve the frequency responses, for the simplest power-line network (see Figure 1(a)), the BLT
equation [11] is applied. Assuming that the line length is L, propagation constant is γ, characteristic
impedance is Zc, and the load impedances are ZL1 and ZL2, respectively. The excitation source consists
of a lumped voltage source Vs and a lumped current source Is, which are located at a distance of xs

from the left load ZL1 (see Figure 2).
When the excitation source (Vs and Is) act on the power-line, the voltage waves propagate along the

power-line. Note that the voltage consists of the incident waves Vinc = [V inc
1 , V inc

2 ]T and the reflected
waves Vref = [V ref

1 , V ref
2 ]T shown in Figure 3, by following the BLT equation in the matrix way, we have

Vinc = ΓVref + S, (1)

where Γ = adiag
(
e−γL, e−γL

)
. Besides, S = [S1, S2]

T in (1) represents the excitation vector, which is
given by [

S1

S2

]
=

⎡
⎢⎣ −1

2
(Vs − ZcIs)e−γxs

1
2
(Vs + ZcIs)e−γ(L−xs)

⎤
⎥⎦ .

Generally, the propagation constant γ =
√

jωμ(σ + jωε) is a complex number. Let α = �(γ) and
β = �(γ) be the attenuation constant and phase constant, respectively. According to [15], we have

α = ω

√
με

2

(√
1 +

( σ

ωε

)2 − 1

)1/2

and β = ω

√
με

2

(√
1 +

( σ

ωε

)2
+ 1

)1/2

.
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Figure 1. Different types of power-line network. (a) Two loads without junction; (b) four loads with
one junction; (c) four loads with two junctions; (d) eleven loads with five junctions; (e) fifteen loads
with seven junctions; and (f) fifteen loads with seven junctions with different excitation.
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Vs
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Figure 2. The network of Figure 1(a). (a) Geometry; and (b) tube model.

Here, ω is angular frequency, and μ, ε and σ are permeability, permittivity and conductivity of the
medium between two conductors in a transmission line. Particularly, if the media is lossless, that is
σ = 0, then α and β are reduced to

α = 0 and β = ω
√

με =
ω

v
=

2πf

v
=

2π
λ

, (2)

where v is the velocity of wave and λ the wavelength.
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Figure 3. Voltage travelling waves on the power-line.

Following the transmission line theory, the incident voltage and reflected voltage at a load satisfies

V ref = ρV inc, (3)

where ρ is the reflection coefficient shown as

ρ =
ZL − Zc

ZL + Zc
. (4)

Thus, in the network shown in Figure 1(a), given the reflection coefficients ρ1 and ρ2 at two terminals
respectively, the reflected voltage can be expressed as

Vref = PVinc, (5)

where P = diag (ρ1, ρ2).
Note that the frequency responses V = [V1, V2]T is the superposition of the incident and reflected

voltages, say
V = Vinc + Vref , (6)

by combining (1), (5) and (6), we finally obtain the frequency responses by

V = (I2 + P) (I2 − ΓP)−1 S. (7)

2.2. The Modified BLT Equation

In this section, we extend our case to the network with one junction and four branches, as shown in
Figure 4. At the branch i, i = 1, 2, 3, 4, the length is Li, the propagation constant is γi, and the
characteristic impedances are Zci. Besides, at the end of the branch i, the load is given by ZLi, which
has the same index with branch. The excitation sources are located on the first branch.

Due to the junction in this network, the BLT equation needs to be modified. We suppose that
TEM is the main mode of wave propagation, and if this mode is dominant also through the junction (as
seen in [16]), then the reflection can be described by the transmission line theory. The voltage travelling
waves propagate along all branches connected to a junction, since they are connected in parallel. The
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Figure 4. Specific network of Figure 1(b). (a) Geometry; and (b) tube model.
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reflection coefficients ρ(i) and the transmission coefficients T (i) for each branch at the junction, where
the superscript i corresponds to the branch i, are respectively given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(1) =
Zc2//Zc3//Zc4 − Zc1

Zc2//Zc3//Zc4 + Zc1

ρ(2) =
Zc1//Zc3//Zc4 − Zc2

Zc1//Zc3//Zc4 + Zc2

ρ(3) =
Zc1//Zc2//Zc4 − Zc3

Zc1//Zc2//Zc4 + Zc3

ρ(4) =
Zc1//Zc2//Zc3 − Zc4

Zc1//Zc2//Zc3 + Zc4

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T (1) = 1 + ρ(1)

T (2) = 1 + ρ(2)

T (3) = 1 + ρ(3)

T (4) = 1 + ρ(4)

, (8)

Note that, for n parallel-connected power line with characteristic impedance Zk, k = 1, 2, . . . , n, we
have

Z1//Z2//. . .//Zn =

(
n∑

k=1

Z−1
k

)−1

, (9)

without loss of generality, for any i ∈ {1, 2, 3, 4}, the reflection coefficients and transmission coefficients
in (8) can be formulated as

ρ(i) =

⎛
⎝∑

j �=i

Z−1
cj

⎞
⎠

−1

− Zci

⎛
⎝∑

j �=i

Z−1
cj

⎞
⎠

−1

+ Zci

and T (i) = 1 + ρ(i). (10)

Particularly, if the branches have the identical characteristic impedance, say Zci = Zc, i = 1, 2, 3, 4,
the reflection coefficient ρ(i) at each branch can be reduced to

ρ(i) =
Zc/3 − Zc

Zc/3 + Zc
= −1

2
. (11)

Based on the reflection coefficient and the transmission coefficient at the junction, we modify the
original BLT equation. Similar to the analysis in Section 2.1, for the voltage travelling waves shown in
Figure 5, we have the relationship between the incident voltages and the reflected as shown in (1), with
Vinc = [V inc

1 , V inc
2 , V inc

3 , V inc
4 ]T , Vref = [V ref

1 , V ref
2 , V ref

3 , V ref
4 ]T , the transmission matrix

Γ =

⎡
⎢⎢⎢⎣

ρ(1)e−2γ1L1 T (2)e−(γ1L1+γ2L2) T (3)e−(γ1L1+γ3L3) T (4)e−(γ1L1+γ4L4)

T (1)e−(γ1L1+γ2L2) ρ(2)e−2γ2L2 T (3)e−(γ2L2+γ3L3) T (4)e−(γ2L2+γ4L4)

T (1)e−(γ1L1+γ3L3) T (2)e−(γ2L2+γ3L3) ρ(3)e−2γ3L3 T (4)e−(γ3L3+γ4L4)

T (1)e−(γ1L1+γ4L4) T (2)e−(γ2L2+γ4L4) T (3)e−(γ3L3+γ4L4) ρ(4)e−2γ4L4

⎤
⎥⎥⎥⎦ , (12)

#1

#2

#3

#4

ref
1V

inc
1V

ref
2V inc

2V

inc
3V ref

3V
inc

4V

ref
4V

Figure 5. Voltage travelling waves in the network of Figure 1(b).
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and the excitation vector

S =

⎡
⎢⎢⎣
S1

S2

S3

S4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
(Vs − ZcIs)e−γ1xs + ρ(1) · 1

2
(Vs + ZcIs)e−γ1(2L1−xs)

T (1) · 1
2
(Vs + ZcIs)e−(γ1(L1−xs)+γ2L2)

T (1) · 1
2
(Vs + ZcIs)e−(γ1(L1−xs)+γ3L3)

T (1) · 1
2
(Vs + ZcIs)e−(γ1(L1−xs)+γ4L4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Additionally, given the reflection coefficient ρi at the terminal i, i = 1, 2, 3, 4, we have

P = diag (ρ1, ρ2, ρ3, ρ4) . (14)

Following the relationships for the reflected and incident waves in (1) and (5), as well as the
superposition law in (6), we similarly obtain the frequency response matrix V = [V1, V2, V3, V4]T as

V = (I4 + P) (I4 − ΓP)−1 S. (15)

Comparing (15) with (7), we can easily find that they have the same form of expression, but with
completely different matrices (vectors).

3. UNIT CALCULATION METHOD BASED ON COEFFICIENT CORRECTION

Here, a power-line network with multiple junctions is discussed. We take the network with two junctions
and four branches (loads) as an example and conduct the analysis, and subsequently develop an
algorithm for computing multiple distributed junctions and branches. Within the network shown in
Figure 1(c), we assume the branch lengths, propagation constants, characteristic impedances and load
values are distinct. The excitation source is still located on the first branch. Besides, the length of the
line between the two junctions is L.

The algorithm idea consists of two steps. We first divide the network into two single-junction
network units, as shown in Figure 6. The cut is located at the second junction, and the equivalent
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#2 ' #4#1
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#3'
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#3

Figure 6. The divided two-junction network. (a) Dividing point; (b) the first unit with excitation
source; and (c) the second unit with a virtual branch of zero length.
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loads in two units are labelled as 3′ and 2′, respectively. To hold the structure of the second unit, i.e.,
ensure that there are still three branches connected to the junction, a virtual branch of length zero is
introduced to the second junction. For the single-junction network shown in Figure 6(b), we use the
modified BLT equation to solve the load responses. Afterwards, according to the transfer direction of
power, the power absorbed by the load 3′ is put as the excitation source of the second single-junction
network, and compute the load responses in the second unit. More details are provided in the following
parts.

3.1. Coefficient Correction

To calculate the frequency responses of the first unit, the reflection coefficient and the transmission
coefficient are required. At the second junction of the network shown in Figure 6(a), the coefficients
can be obtained by using (8). To take the circled part shown in Figure 7 as a super load, the effects of
load 3 and load 4 need to be taken into account.

For the super load, we set S = 0 since no excitation source participates. Considering the length of
the virtual branch is zero, by applying (12), we obtain⎡

⎢⎣
V ref

3′

V inc
3

V inc
4

⎤
⎥⎦ =

⎡
⎢⎢⎣

T2 − 1 T
(3)
2 e−γ3L3 T

(4)
2 e−γ4L4

T2e
−γ3L3 ρ

(3)
2 e−2γ3L3 T

(4)
2 e−(γ3L3+γ4L4)

T2e
−γ4L4 T

(3)
2 e−(γ3L3+γ4L4) ρ

(4)
2 e−2γ4L4

⎤
⎥⎥⎦
⎡
⎢⎣

V inc
3′

V ref
3

V ref
4

⎤
⎥⎦ , (16)

where ρ
(3)
2 , ρ

(4)
2 are the reflection coefficients, and T2, T

(3)
2 , T

(4)
2 are the transmission coefficients at the

second junction for the connected line and two branches. The superscript represents the branch index
and the subscript is junction number.

Besides, by following the definition of reflection coefficient, we have[
V ref

3

V ref
4

]
=
[
ρ3 0
0 ρ4

] [
V inc

3

V inc
4

]
, (17)

where ρ3 and ρ4 are the reflection coefficients at load 3 and 4, respectively. Substituting (17) into (16),
the corrected reflection coefficient for the load 3′ is derived as

ρ3′ � V ref
3′

V inc
3′

= (T2 − 1) +
T2T

(3)
2

A

(
1 −

(
T

(3)
2

A
+

T
(4)
2

B

)) +
T2T

(4)
2

B

(
1 −

(
T

(3)
2

A
+

T
(4)
2

B

)) , (18)

where A = 1+
1

ρ3e−2γ3L3
, B = 1+

1
ρ4e−2γ4L4

. From (18), we can see that the calculation of the reflection

coefficient for the super load 3′ involves the terminal load reflection coefficients, propagation constants,
branch lengths and branch transmission coefficients.
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Figure 7. Voltage travelling waves in the network
of Figure 1(c).
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Figure 8. Single-junction network with N + 1
branches.
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Without loss of generality, for the junction with N +1 branches, as shown in Figure 8, the corrected
coefficient at the junction is

ρ′ = (T − 1) +

T

(
T (1)

A1
+

T (2)

A2
+ . . . +

T (N)

AN

)

1 −
(

T (1)

A1
+

T (2)

A2
+ . . . +

T (N)

AN

) = T

(
1 −

N∑
i=1

T (i)

Ai

)−1

− 1 = T ′ − 1, (19)

where Ai = 1+
1

ρie−2γiLi
, T (i) is the transmission coefficients for branch i, and T denotes the transmission

coefficient for the connected line. Here, T ′ is regarded as the equivalent transmission coefficient, from
the angle of the connected line to characterize the single-junction unit.

3.2. Calculation of Frequency Response at Each Load

The calculation of the frequency response at each load runs recursively. In our specific model, since we
decompose the network into two units, we should first solve the unit one, regarding the load 1, 2 and
3′. After obtaining the frequency response at load 3′, we access the unit two to compute the frequency
responses of the loads in unit two.

(1) For Unit One: there are three branches connected to the junction. Supposing that the value
of the super load 3′ is ZL3′ , the equivalent model is shown in Figure 9. By applying the modified BLT
approach proposed in Section 2.2, we obtain the frequency responses at the three loads.

(2) For Unit Two: we use the frequency responses of load 3′ as excitation source, as shown in
Figure 10(a). Since V3′ is a voltage determined by Unit One, the symbol of the controlled voltage source
is used here. The length of the virtual branch where the excitation source are placed is set to zero.
To apply the modified BLT equation, we construct a network similar to the one shown in Figure 4(a).
Therefore, the location of the excitation source shifts to the place xs away from the terminal. Because
the length of the virtual branch is zero, the value of xs should also be zero. In addition, to show the
integrity of analysis, technically we add an equivalent controlled current source (see Figure 10(b)) at the
same position of the controlled voltage source, but the value of the current should be zero. Considering
that the terminal of the virtual branch is shorted, a virtual load, ZL2′ , is added at the terminal, as
shown in Figure 10(b), and the load value is zero. According to (4), the reflection coefficient is set to
be ρ2′ = −1. Then, the frequency responses of the loads in unit two are obtained. So far, all load
frequency responses in the entire network are solved.

#1

#2

#3'

Excitation

ref
3'V

inc
3'V

3'V
3' L3'Zρ

Figure 9. Equivalent model of the super load.

4. ALGORITHM

In this section we first describe the principle, which is followed by its complexity analysis. In the
complexity analysis part, we compare with two other related methods, and we show that our proposed
algorithm is more efficient.
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L3Z
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L3Z

ZL2'Z

3'V

3'IL4Z

(a) (b)

L4

Figure 10. The second unit of the network. (a) The second unit with equivalent excitation source;
and (b) deformation of the second unit.

4.1. Algorithm Description

In what follows, we develop an algorithm that is applied to the complex power-line networks with
multiple distributed junctions and branches, such as the networks in Figure 1(e) and Figure 1(f), aiming
at computing the frequency response in an efficient way.

Taking the network in Figure 1(e) as an example, there are three main branches, seven junctions
and fifteen branches with loads. It is evident that the network is tree-structured and can be displayed
in the topology given by Figure 11. The junction that connects to the excitation source is placed at the
top point, and is set to be root node of the tree. Throughout the tree, there are totally seven layers,
which is one more than the height of the tree.

Given that we have the knowledge of all load values, branch lengths, junctions and the excitation

J1

J2 #2 #1

J3 #4 #3

J4 #7 #6

J6 J5 #9

#5

#8

J7 #12 #11 #10

#15 #14 #13

Figure 11. Tree structure of the network shown in Figure 1(e).
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source, the algorithm consists of two phases and the main steps are outlined as follows:

(i) From the bottom to the top: recursively correct the reflection coefficient at junctions on the upper
layer until the root (top point) is reached;

(ii) From the top to the bottom: after correcting all the reflection coefficients, recursively calculate the
load response for the associated child nodes until the bottom layer is reached.

For a tree-structured network with n layers, the procedure of the algorithm is illustrated in
Figure 12.

4.2. Algorithm Complexity Analysis

Given a tree-structure network of height n, equivalently n + 1 layers, we denote by Xi, i = 1, 2, . . . , n,
the set of child nodes number for the parents at layer i. To be more precise, at layer i, assuming there
are li parents, then Xi is shown as

Xi = {Xi,1,Xi,2, . . . ,Xi,li} , (20)

where Xi,k, k = 1, 2, . . . , li, corresponds to the number of child nodes for the kth parent at layer i.
To quantify the algorithm efficiency, a straightforward and effective way is to count the number of

arithmetic operations (i.e., the addition and multiplication) when conducting the calculation. Based on
the complexity metric given above, we analyze the efficiency performance of the following three methods:
our proposed method, the recursive time domain method [6], and simulations made with the numerical
software, EMEC [17]. As we will discuss, those three schemes are all involving the matrix inversion,
which contributes most among all possible operations in terms of the computational complexity.

Although the time complexity of matrix inversion can be improved through designing related
algorithms (as stated in [18, 19], the steps of arithmetic operations of inversion or multiplication for
a matrix of order m are bounded by O(mw), where 2 < w ≤ 3 is determined by the algorithms.
Here, the notation O(∗) describes the limiting behaviour of a function when the argument tends
towards a particular value or infinity, which is widely used in time complexity analysis to classify
algorithms [20, 21]), we here take the Gaussian-Jordan elimination method for matrix inversion as

Begin

i < 2

Correct all the reflection coefficients of the 
father nodes at layer i, by using the reflection 

coefficients at their associated child nodes

i  = i − 1

N

Compute the load responses at layer (j + 1), by 
setting the reflections coefficients of the 

ancestor node at layer (j − 1) as −1

j= j + 1

Y Compute the load responses at layer (j + 1), by 
using the input source information

j > 1 N

j > n − 1

End
Output load 
responses

Set i =  n − 1

Set  j = 1

N

Y

Y

Figure 12. Flow chart of the algorithm.
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the standard approach to obtain the matrix inversion, whose number of arithmetic operations can be
expressed [22] as f(N) =

∑3
k=1 akN

k, where ak, k = 1, 2, 3, are certain scalars such that f(N) is
monotonically increasing with N , and N is the order of matrix. Commonly, we consider the worst case
to test the complexity of algorithm, then the numbers of additions and multiplications are respectively
given by [23]

fA(N) =
1
3
N3 +

1
2
N2 − 5

6
N and fM(N) =

1
3
N3 + N2 +

1
3
N, (21)

thus the total operations is

f(N) � fA(N) + fM (N) =
2
3
N3 +

3
2
N2 − 1

2
N ≈ f̃(N) � 2

3
N3, for N 	 1. (22)

where f̃(N) is an approximation of f(N) for sufficiently large N . For the sake of simplicity, in the
following analysis, we adopt the metric f̃(∗) to evaluate the complexity.

• In our proposed algorithm, we assume each parent node has the capability of processing data locally,
individually, then the total number of operations M1 is given by:

M1 = 2
n∑

i=1

li∑
j=1

f (Xi,j) ≈ 2
n∑

i=1

li∑
j=1

f̃ (Xi,j) =
4
3

n∑
i=1

li∑
j=1

X3
i,j (23)

where the factor 2 comes from the round-trip procedure, i.e., from bottom to top, then back to
bottom.

• By the recursive time domain solution proposed in [6], we need to establish a global N ×N matrix
A to represent the reflection/transmission coefficients, and the order N is twice of edges in the tree
graph, say

N = 2m = 2
n∑

i=1

li∑
j=1

X
(i)
j . (24)

Note that the recursive time domain solution involves the multipath, strictly speaking, to
achieve the perfect ideal theoretical results of load responses, we should consider all potential
paths. In graph theory and matrix theory, we follow the concept of transition matrix to
verify if the destination is reachable after several transitions. To be more precise, in [6], the
reflection/transmission matrix coefficient matrix A is the transition matrix, and the following
operation to calculate the frequency response value is recursively multiplying A and conducting
the superposition on the derived values of each iteration. Equivalently, the manipulation can be
summarized by

lim
K→∞

K∑
i=0

Ai = IN + A + A2 + · · · = (IN − A)−1 , (25)

where K is referred to as the iterations, IN is an identity matrix of size N . It is easy to see, the
above closed-form expression derives the load response with perfect precision. In this manner, the

M2 ≈ f̃(N) =
2
3

⎛
⎝2

n∑
i=1

li∑
j=1

Xi,j

⎞
⎠

3

>
16
3

n∑
i=1

⎛
⎝ li∑

j=1

Xi,j

⎞
⎠

3

>
16
3

n∑
i=1

li∑
j=1

X3
i,j ≈ 4M1 (26)

• In the software EMEC, nodal analysis is used. The employed algorithm is based on the admittance
matrix for the whole network, which is inverted into a system impedance matrix, and the voltage
in all nodes is calculated by multiplying the impedance with the current vector [17]. Note that, the
order of the admittance matrix is the number of all nodes (including the root node), thus, following
the previous notations, we have the N × N admittance matrix with

N = m + 1 =
n∑

i=1

li∑
j=1

X
(i)
j + 1, (27)
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it is easy to show that, the metric M3 satisfies

M1 < M3 ≈ f̃(N) =
2
3

⎛
⎝1 +

n∑
i=1

li∑
j=1

Xi,j

⎞
⎠

3

< M2 (28)

In light of above analysis, we observe, for the distributed calculation methods (i.e., the first scheme),
the complexity merely relies on the maximum degree of the tree graph, however, the subsequent two
algorithms require the sum of all degrees. Obviously, given the fixed height of tree-structured network
n, by increasing the number of loads, we can see that, M1 
 M3 < M2, which implies the significant
improvement in efficiency.

5. COMPARISON OF CALCULATING RESULTS

To validate the algorithm, we take the commercial software EMEC [17] as the benchmark, which is
based on electromagnetic topology. For test purpose, the parameters chosen for the variables in the
power-line networks are given in Table 1–Table 5. The characteristic impedances for each power line
are all 45Ω, which are consistent with the cable data given in the datasheet of the software EMEC.

Table 1. Parameters for the network shown in Figure 1(a).

Parameter
Load (Ω) Length (m) Distance (m) Voltage (V) Current (A)

ZL1 ZL2 L xs Vs Is

Value 200 400 10 1 100 0

Table 2. Parameters for the network shown in Figure 1(b).

Parameter
Load (Ω) Length (m) Distance (m) Voltage (V) Current (A)

ZL1 ZL2 ZL3 ZL4 BL1 BL2 BL3 BL4 xs Vs Is

Value 10 10 100 200 10 10 10 10 5 100 0

Table 3. Parameters for the network shown in Figure 1(c).

Parameter
Load (Ω) Length (m) Distance (m) Voltage (V) Current (A)

ZL1 ZL2 ZL3 ZL4 BL1 BL2 BL3 BL4 L xs Vs Is

Value 10 10 100 200 10 10 10 10 10 5 100 0

Table 4. Parameters for the network shown in Figure 1(d).

Parameter
Load (Ω) Length (m) Distance (m)

ZL1 ZL2 ZL3 ZL4 BL1 BL2 BL3 BL4 BL5 xs

Value 60 70 60 70 10 12 10 12 10 5

Parameter
Load (Ω) Length (m) Voltage (V)

ZL5 ZL6 ZL7 ZL8 BL6 BL7 BL8 BL9 BL10 Vs

Value 60 70 80 60 12 14 10 12 10 100

Parameter
Load (Ω) Length (m) Current (A)

ZL9 ZL10 ZL11 BL11 L1 L2 L3 L4 Is

Value 70 60 70 12 10 12 14 12 0
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Table 5. Parameters for the network shown in Figure 1(e) and Figure 1(f).

Parameter
Load (Ω) Length (m) Distance (m)

ZL1 ZL2 ZL3 ZL4 ZL5 BL1 BL2 BL3 BL4 BL5 BL6 BL7 xs

Value 60 70 60 70 60 10 12 10 12 10 12 14 5

Parameter
Load (Ω) Length (m) voltage (V)

ZL6 ZL7 ZL8 ZL9 ZL10 BL8 BL9 BL10 BL11 BL12 BL13 BL14 Vs

Value 70 80 60 70 60 10 12 10 12 10 10 12 100

Parameter
Load (Ω) Length (m) Current (A)

ZL11 ZL12 ZL13 ZL14 ZL15 BL15 L1 L2 L3 L4 L5 L6 Is

Value 70 60 60 70 80 14 10 12 14 12 10 12 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
×10 7

Load response

Frequency [Hz]

 

 

#1(M)
#2(M)
#1(E)
#2(E)

20

40

60

80

100

120

140

160

180

200

V
ol

ta
ge

 [
V

]

Figure 13. Calculation results of the network
shown in Figure 1(a).
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Figure 14. Calculation results of the network
shown in Figure 1(b).
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Figure 15. Calculation results of the network
shown in Figure 1(c).
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Figure 16. Calculation results of the network
shown in Figure 1(d).

Sweeping the frequency of the excitation source from 1Hz to 20 MHz, the comparison between the
calculated results by the proposed algorithm and by the commercial software EMEC are shown in
Figure 13–Figure 18. In the results figures, solid curves represent the frequency responses calculated
by applying the algorithm, while dashed curves represent the results obtained from EMEC. Simulation
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Figure 17. Calculation results of the network
shown in Figure 1(e).
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Figure 18. Calculation results of the network
shown in Figure 1(f).

results show that, the frequency responses from the algorithm and the EMEC software coincide very
well. This agreement shows the proposed method is accurate. The maximum error found in any studied
case presented here is less than 5%.

6. CONCLUSION

We study the conventional approaches in computing the frequency responses and point out their
application limitations when the power-line network grows complex. Based on the classic BLT equation,
we conduct the corresponding modifications to make it applicable to the scenarios with one junction as
well as multiple ends. We further propose a generic and efficient algorithm for computing the frequency
responses at each load in complex power-line networks with multiple distributed junctions and branches
with loads. The key idea of the algorithm is to deal the whole network with an equivalent composition
of units. The reflection coefficients can be recursively achieved by regarding the units as the super
loads, and the frequency responses at each load can be eventually obtained by recursively entering the
units and applying the modified BLT equation locally. Results comparison shows that the algorithm
converges fast and highly coincides with solutions by the EMEC software. Compared to the graphical
interface based EMEC software, the proposed algorithm is much easier for the implementation as well
as the adjustment of power-line network structure with various parameters.
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