
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at The 2015 International Conference on Unmanned
Aircraft Systems (ICUAS), Denver, Colorado, USA, June 9-12, 2015.

Citation for the original published paper:

Vedder, B., Eriksson, H., Skarin, D., Vinter, J., Jonsson, M. (2015)

Towards Collision Avoidance for Commodity Hardware Quadcopters with Ultrasound

Localization.

In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 193-203).

http://dx.doi.org/10.1109/ICUAS.2015.7152291

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-28169



Towards Collision Avoidance for Commodity Hardware
Quadcopters with Ultrasound Localization

Benjamin Vedder1,3, Henrik Eriksson1,4, Daniel Skarin1,5,
Jonny Vinter1,6, and Magnus Jonsson2,7

Abstract— We present a quadcopter platform built
with commodity hardware that is able to do local-
ization in GNSS-denied areas and avoid collisions by
using a novel easy-to-setup and inexpensive ultrasound-
localization system. We address the challenge to accu-
rately estimate the copter’s position and not hit any
obstacles, including other, moving, quadcopters. The
quadcopters avoid collisions by placing contours that
represent risk around static and dynamic objects and
acting if the risk contours overlap with ones own comfort
zone. Position and velocity information is communicated
between the copters to make them aware of each other.
The shape and size of the risk contours are continuously
updated based on the relative speed and distance to the
obstacles and the current estimated localization accuracy.
Thus, the collision-avoidance system is autonomous and
only interferes with human or machine control of the
quadcopter if the situation is hazardous. In the develop-
ment of this platform we used our own simulation system
using fault-injection (sensor faults, communication faults)
together with automatically-generated tests to identify
problematic scenarios for which the localization and
risk contour parameters had to be adjusted. In the
end, we were able to run thousands of simulations
without any collisions, giving us confidence that also many
real quadcopters can manoeuvre collision free in space-
constrained GNSS-denied areas.

I. INTRODUCTION

In order to test and demonstrate different appli-
cations on Micro Air Vehicles (MAVs), a platform
that is easy to set-up and safe to operate can be
very useful. We envision a quadcopter platform built
from inexpensive hardware that can be set up at
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new locations in less than 15 minutes. Our targeted
environments have constraints on space and lack
of Global Navigation Satellite Systems (GNSSs),
which makes it difficult to navigate autonomously
compared to outdoor environments. This platform
should give the pilot, who can be a human or
a machine, full control in normal circumstances
while preventing collisions when the situation gets
hazardous, regardless of pilot input. Thus, the
quadcopters have to be aware of their own positions
and the positions of static and moving objects in the
area. They also have to be aware of the accuracy
of their position and the physics that restrict how
they can manoeuvre.

Our platform is designed to meet the following
requirements:

• No sensitivity to lighting conditions and back-
ground contrast, as is the case with camera-
based systems [1]–[4].

• The computations for estimating the position
and avoiding collisions should be inexpensive
enough to be handled by on-board microcon-
trollers (as opposed to offloading them to
external computers [3], [4]).

• The extra equipment on each quadcopter
should be light enough to allow extra payload
and spare the battery. There are solutions with
relatively heavy laser range finders that do not
meet this requirement [5], [6].

• There should be fault tolerance to e.g. handle
occasional faulty distance measurements.

• Pilot errors should be handled by automatically
taking over control if the situation becomes
hazardous.

To meet these requirements, we have created a
localization system that uses ultrasound to measure
the distance between the copters and several station-



ary anchors. The ultrasound-localization hardware
is based on open-source radio boards [7]. To make
the copter’s aware of each other, they communicate
their positions and velocities to each other on a
regular basis.

Testing the system has been a significant part
of this work. We have developed a simulator
that operates together with fault injection [8] and
property-based testing [9] techniques to evaluate
how a larger system with quadcopters behaves while
hardware faults and/or pilot misbehaviour occurs.
This way, we could randomly generate pilot control
commands and inject faults during thousands of
automatically generated simulations to see when
a collision occurs. For fault injection, we used
the FaultCheck tool [10] and for generating tests
we used the Erlang QuickCheck tool [11]. When
we had a sequence of pilot and fault injection
commands that led to a collision, we used the
shrinking feature of QuickCheck to get a shorter
test sequence of commands that leads to a collision.
We could then run this sequence of commands in
the simulator repeatedly, while adjusting the system
parameters, until it would not lead to a collision
anymore.

Dealing with the slow update rate of the anchors,
with the simulation-hardware relation, and with the
occasional measurement faults of the system was
challenging. Even so, we achieved a result with a
functioning copter platform and much shared code
between the simulator and the hardware.

The contributions of this work are the following:
• A novel hardware and software solution for

doing localization in GNSS-denied areas based
on ultrasound measurements fused with Iner-
tial Measurement Unit (IMU) data using easily
available, inexpensive hardware.

• A technique to take over control in hazardous
situations to avoid collisions between moving
quadcopters by using communication between
them and risk contours.

• We show how performance and fault tolerance
can be evaluated with automatically generated
tests using our previously proposed platform
that utilizes fault injection and property-based
testing [10].

The rest of the paper is organized as follows.
Section II presents related research, Section III de-

scribes our hardware platform, Section IV describes
our ultrasound distance measurement technique and
Section V shows how we do position estimation.
Further, in Section VI we describe our collision-
avoidance technique, Section VII describes our
simulations and in Section VIII we present our
conclusions from this work.

II. RELATED WORK

Much research has been devoted to autonomous
MAVs, such as quadcopters. Early systems worked
only outdoors as they relied on GNSS position-
ing systems [12]. Recently, part of this research
has been devoted platforms that operate in GPS-
denied areas such as indoor environments [1]–[6],
[13], [14]. One approach is to use cameras either
mounted on the copters to identify the environ-
ment [2], [4], [13]; or external cameras that identify
markers on the copters [1], [3]. Limitations with
the camera-based solutions are that they require
much computational power and good light/contrast
conditions. Many camera-based solutions run the
computation on a stationary computer and send
the results back to the copter [1]–[3], [13], [14].
Another approach is to use laser range finders
mounted on the copters to run Simultaneous Local-
ization and Mapping (SLAM) algorithms [5], [6].
This approach often works without modifying the
external environment with e.g. anchors or cameras,
but relies on the environment having walls that are
close enough to be detected. Limitations with laser
range finders are that they are relatively expensive
and quite heavy, adding much payload to the weight-
constrained copter.

Similar to our platform, there is one early system
that relies on infra-red and ultrasound sensors
mounted on quadcopters that measure distances
to walls and the floor [15]. These copters can avoid
collisions, but did not have enough accuracy to
perform a stable hover. More recently, a platform
has been presented by J. Eckert that uses ultrasound
localization with inexpensive hardware to manoeu-
vre quadcopters [14], [16], [17]. This platform uses
a swarm of small robots that spread out on the floor
and allow a consumer (a quadcopter in this case)
to hover above them. Compared to our platform,
Eckerts’s ultrasound system has a shorter range, of
2 m when there is noise from quadcopters, while



Fig. 1. A photo of one of our quadcopters.

our system can operate at distance of up to 12 m
from the anchors with the current configuration.
Eckert’s quadcopter also relies on optical flow
sensors aimed towards the floor and ceiling because
the update rate from their ultrasound system is too
low and not as tightly coupled to the control loop
as our system. Thus, their localization depends
on having relatively good contrast and lightening
conditions and a ceiling that is low enough, which
makes it difficult to use outdoors.

To our knowledge, beside our quadcopter system,
there is currently no other indoor quadcopter system
that can do a stable hover and collision avoidance
with only ultrasound localization and IMU-based
dead reckoning. Our system also has a unique
approach on collision avoidance and fault tolerance.

III. HARDWARE SETUP

Our platform consists of several quadcopters and
several (at least two) stationary anchors, as shown
in Figure 3. A photo of one of our quadcopters is
shown in Figure 1 and a photo of the anchors is
shown in Figure 2. The anchors and quadcopters
have synchronized clocks to do Time of Flight
(ToF) measurement of ultrasound to determine the
distance between them. The copters also have one
ultrasound sensor each that measures the distance to
the floor. Since the [x, y, z]T position of the anchors
is known by the copters, they can calculate their
own position based on the distances to the anchors.
Two anchors are enough for this system to work if
the copters never pass the line between the anchors,
but any number of anchors can be used to provide
more accuracy and/or redundancy.

A block diagram of the hardware components
on each quadcopter and their connections can
be seen in Figure 4. There is one custom main

Fig. 2. A photo of four ultrasound anchors mounted on tripods.
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Fig. 3. The ultrasound-localization system with anchors. The
measured distances from the copters to the anchors are marked D
a:b.

controller board that is responsible for the high-
speed (1000 Hz) attitude control loop. The position
control loop and part of the position estimation is
also done here. The components and their functions
on the mainboard are:

• The STM32F4 microcontroller is responsible
for all computation and communicates with
the other components on the mainboard.

• The MPU9150 IMU sensor provides the raw
data that is used for attitude estimation. It
has a three-axis accelerometer, a three-axis
gyroscope, and a three-axis magnetometer;
thereby providing nine degrees of freedom.

• The barometer measures the air pressure and
is currently not used in any algorithm. Later, it
could be used for redundancy when measuring
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the altitude.
• The CC2520 radio transceiver is used to

communicate with the ground station and other
quadcopters.

• Standard Pulse-Position Modulation (PPM)
signals are sent to motor controllers that drive
the propeller motors.

The STM32BV-mote is responsible for clock
synchronization and distance measuring. An ultra-
sound receiver is connected to an Analog to Digital
Converter (ADC) pin with a simple amplifier
to capture pulses from the anchors. The mote
also communicates with an ultrasound altitude
sensor to measure the distance to the floor. These
measurements together are sent to the mainboard
that computes the position of the copter based on
them.

IV. ULTRASOUND DISTANCE MEASUREMENT

The ultrasound distance measurements are done
by synchronizing the clocks of all anchors and
quadcopters, and having timeslots assigned when
pulses are sent from different anchors. The pulses
are then recorded by the receivers on the quad-
copters during these timeslots. The receiver then
uses the ToF of the pulse to calculate the distance
to the anchor.

Clock synchronization is done by having a node
sending out a clock value and using a hardware
interrupt on the receiving nodes that saves the local
clock value at the time the packet starts being
received. When the whole clock packet is received,
the difference between the time stamp and the
received clock value is subtracted from the own
clock. This difference is also used to estimate the
clock drift and compensate for that over time. With
clock packets sent every 2 s, the clock has a jitter

Fig. 5. Ultrasound samples recorded for a time corresponding to
10 meters and the cross correlation result.

of less than 5 µs, which is good enough to measure
the ToF of sound.

In order to reject noise on the ultrasound measure-
ments, the pulses sent out by the anchors are created
by multiplying the 40 kHz carrier with a sinc pulse.
The received signal is then cross-correlated with
the same sinc pulse to find the first peak above a
certain threshold. In order to speed up the cross
correlation, it is performed using overlapping Fast
Fourier Transforms (FFTs) [18]. Figure 5 shows the
recorded ultrasound pulse and the cross correlation
result from an anchor that is placed 10 m away.
It can be seen that the noise amplitude is rejected
on the correlated signal, making analysis of the
distance easier.

V. POSITION ESTIMATION

The software on the quadcopter mainboard does
the bulk of all the computational work required
for the copter to operate. This section gives a brief
overview of the discrete-time calculation performed
in software to update the state of the system at time
n regularly with interval dt.

The algorithm that runs at the highest rate of
the control system is the attitude estimation and
control. We have used a slightly modified version
of an Attitude and Heading Reference System
(AHRS) algorithm [19] to get a quaternion-based
representation of the current attitude, from which
we calculate Euler angles as:θr(n)θp(n)

θy(n)

 =

atan2(2(q0q1 + q2q3), 1− 2(q21 + q22))
arcsin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), 1− 2(q22 + q23))

 (1)

where [q0, q1, q2, q3]
T is the quaternion representa-

tion of the current attitude, atan2 is a function



for arctan that takes two arguments to handle all
possible angles and [θr(n), θp(n), θy(n)]

T are the
roll, pitch, and yaw Euler angles. Then, there is one
Proportional-Integral-Derivative (PID) controller
for each Euler angle to stabilize the copter. There
is also a PID controller for the altitude. In order
to get as little altitude-variations as possible, feed-
forward is used on the throttle output from the roll
and pitch-angles, calculated as:

FF fac(n) =
√
tan(θr(n))2 + tan(θp(n))2 + 1 (2)

The feed-forward term FF fac(n) is calculated at a
higher rate than the altitude measurements arrive
and represents a compensation factor that makes the
vertical thrust component constant while the roll
and pitch angles [θr(n), θp(n)]T vary. This equation
has singularities when the roll or pitch angles are
at 90°, but the attitude control loop truncates its
inputs to prevent the roll and pitch angles from
exceeding 45°.

After several manual aggressive flight tests with
altitude hold activated, we had confidence that our
altitude control loop was working properly.

To estimate the position of the copter, we use
one high-rate update based on dead reckoning from
its attitude. The assumption is that the throttle is
controlled such that the altitude remains constant or
slowly changing. Additionally, one low-rate update
is used on the position every time new ultrasound
ranging values arrive. For the high-rate dead reck-
oning, the first thing we calculate for each iteration
is the velocity-difference [dvx(n), dvy(n)]

T and add
it to the integrated velocity value [Vx(n), Vy(n)]

T ,
rotated by the yaw angle:[

dvx(n)
dvy(n)

]
=

[
9.82tan(θr(n) + θrofs(n))dt
9.82tan(θp(n) + θpofs(n))dt

]
(3)

[
cy
sy

]
=

[
cos(θy(n))
sin(θy(n))

]
(4)

[
Vx(n)
Vy(n)

]
=

[
Vx(n− 1) + dvx (n)cy + dvy(n)sy
Vy(n− 1) + dvx (n)sy + dvy(n)cy

]
(5)

where θrofs(n) and θpofs(n) are offsets that could be
estimated over time to compensate for misalignment
of the accelerometer. Again, the singularity when
the roll or pitch angle [θr(n), θp(n)]

T are 90° is
not an issue because these angles are limited
at 45°. This is then used to update the position
[Px(n), Py(n)]

T :[
Px(n)
Py(n)

]
=

[
Px(n− 1) + Vxdt
Py(n− 1) + Vydt

]
(6)

As the velocity integration drift is unbounded even
when there is a small offset on the attitude estima-
tion, the anchor distance measurements have to be
used to estimate the velocity drift in addition to
the roll and pitch error. For the anchor corrections,
which arrive at a lower rate, we first compute the
difference between the expected distance to the
anchor from the dead-reckoning and the measured
distance to the anchor:dax (n)day(n)

daz (n)

 =

Px(n− 1)− Px ,anchor

Py(n− 1)− Py,anchor

Pz(n− 1)− Pz ,anchor

 (7)

da(n) =
√
dax (n)2 + day(n)2 + daz (n)2 (8)

err(n) = da(n)− dmeasured(n) (9)

Fc(n) =
err(n)

da(n)
(10)

where [Px(n), Py(n), Pz(n)]
T is the position of

the copter, [Px ,anchor , Py,anchor , Pz ,anchor ]
T is the

position of the anchor this measurement came from
and [dax (n), day(n), daz (n)]

T is the difference be-
tween them. Further, da(n) is the magnitude of the
calculated difference, dmeasured(n) is the measured
magnitude, err(n) is the difference between the
calculated and the measured magnitude and Fc(n)
is a factor that is used in later calculations for
correction. Notice that there is a singularity when
da(n) approaches 0, but this would imply that the
copter is located exactly on one anchor which
means that the copter collides with that anchor.
This should not happen because the copters should
keep a safety distance from the anchors at all times.

At this point, if the error is larger than a certain
threshold, we discard this measurement and lower
the position quality because something is likely to
be wrong. If too many consecutive measurements
have a large error, we stop discarding and start using
them in case this is the initial position correction
at start-up.

Next, the position differences
[dax (n), day(n), daz (n)]

T are used to correct
the current position and the velocity error where
we compute proportional and derivative parts,
[Pxpos(n), Pypos(n)]

T and [Dxpos(n), Dypos(n)]
T ,

on the position error. The gain components in
the following equations (Gp,vel , Gp,pos , Gd ,pos)
were derived experimentally and the simulation
presented in Section VII has been an important
aid for doing that.[

Pxpos(n)
Pypos(n)

]
=

[
dax (n)FcGp,pos

day(n)FcGp,pos

]
(11)



Fig. 6. The estimated position during a 60 s long hover.

[
Dxpos(n)
Dypos(n)

]
=

[
(dax (n)Fc − dax (n− 1)Fc)Gd,pos

(day(n)Fc − day(n− 1)Fc)Gd,pos

]
(12)

Then, apply this to the position:[
Px(n)
Py(n)

]
=

[
Px(n− 1) + Pxpos(n) +Dxpos(n)
Py(n− 1) + Pypos(n) +Dypos(n)

]
(13)

The height Pz(n) could also be updated as above,
but using the ultrasound sensor directed towards the
floor directly gave better results in our experiments.

Updating the velocity state [Vx(n), Vy(n)]
T is

done in a similar way:[
Vx(n)
Vy(n)

]
=

[
Vx(n− 1) + daxFc(n)Gp,vel

Vy(n− 1) + dayFc(n)Gp,vel

]
(14)

A test flight of 60 s where a simple PID control
loop is issuing control commands to hold the [x, y]T

position based on the estimated position is shown
in Figure 6. The overlapping red dots represent
estimated position samples during this flight, and it
can be seen that the deviation was below 20 cm for
the entire flight. Notice that we did not have a more
accurate positioning system to compare with in this
test. The distribution of the estimated position gives
an impression about the performance.

Because of the complexity we did not attempt to
make an analytical stability analysis of the position-
estimation algorithm. We did an experimental
stability analysis using fault injection presented
in Section VII-A.

VI. COLLISION AVOIDANCE

In this study, collision avoidance is attempted
by placing risk contours around copters and static

objects from the perspective of every copter, and
steering away if the risk contours overlap with the
comfort zone of the copter [20]. This means that
the risk contours are not a global state, but different
from every copter’s perspective based on its relative
velocity to the object and when the positions
of other copters were last received. The comfort
zone is represented as a circle placed around the
quadcopter with a radius that is calculated based
on the confidence of the position estimation.

The risk contours are represented as ellipses and
sized/rotated based on the squared relative velocity
vector to the copters/objects they surround. To share
the knowledge about the position of all copters, they
broadcast this information one at a time to everyone
else. When a copter receives a position update from
another copter, it will update its Local Dynamic
Map (LDM) with this information. Between the
position updates, the risk contours around other
copters will be moved and reshaped based on the
velocity the other copters had when their position
was last received. What this looks like can be seen
in the screenshot in Figure 7 of the visualization and
control program we developed for this application.

The risk contour around every neighbouring ob-
ject in each copter’s LDM looks like the following:[

dvx
dvy

]
=

[
Vx ,r − Vx
Vy,r − Vy

]
(15)

dv =
√
d2vx + d2vy (16)

where [dvx , dvy ]
T are the X and Y velocity differ-

ence between this copter’s own velocity and the
velocity [Vx ,r , Vy,r ]

T of the copter corresponding
to this risk contour in the LDM. The position
[Rpx , Rpy ]

T , width, height [Rw, Rh]
T and rotation

θr of the risk contour are calculated as:[
Rpx

Rpy

]
=

[
Px ,c +Rgxdvxdv
Py,c +Rgxdvydv

]
(17)[

Rw

Rh

]
=

[
Rr +Rgxdvxd

2
v

Rr +Rgydvyd
2
v

]
(18)

θr = atan2(dvy , dvx ) (19)

where Rr is a safety margin around the copter in
the LDM that this risk contour surrounds. Rr is
scaled based on the time that has passed since the
copter corresponding to this risk contour was heard
the last time. [Px ,c, Py,c]

T is the position of the
copter corresponding to this risk contour. Further,



Rgx and Rgy are factors that scale the size of the
risk contour that we found suitable values for in
the auto-generated tests described in Section VII.

When an overlap between the comfort zone of
a copter and a risk contour occurs, the collision-
avoidance mechanism will take over control and
steer away from the overlapping risk contour in
the opposing direction. If there are several simul-
taneous overlaps, a vector will be calculated from
a weighted sum of all overlapping risk contours
and their relative direction, and used to steer away
from the collision, calculated as:[

Cx

Cy

]
=

N∑
i=0

[
Cx ,iMi

Cy,iMi

]
(20)

[
Cr

Cp

]
=

[
−cos(θy)Cx − sin(θy)Cy

−sin(θy)Cx + cos(θy)Cy

]
(21)

where [Cx, Cy]
T are the relative [X, Y ]T direction

sums of all risk contours i that overlap with the
comfort zone of the copter. [Cr, Cp]

T are the roll
and pitch output commands calculated from all
overlapping risk contours, rotated by the yaw angle
θy of the copter. Further, Mi is the amount of
overlap with every overlapping risk contour i. Thus,
the more overlap there is for one risk contour, the
more influence it will have on the output.

It should be noted that collision avoidance is
done in two dimensions. This is because our copters
are not able to fly over each other even if they are
at different heights, since the height sensor of each
copter requires a free path to the ground. Since the
position-estimation algorithm relies on an altitude
controller that keeps the altitude constant or slowly
changing, collision avoidance in the Z direction is
not necessary if truncation is used on the set point
of the altitude controller.

VII. SIMULATION AND FAULT INJECTION

To evaluate and optimize our quadcopter system,
we have created a simulator with the architecture
shown in Figure 8. Our simulator is a library
written in C++ with an interface where copters
can be added, removed, or commanded to move.
The block named coptermodel runs the same code
for position and velocity estimation, shown in
Equation 5 and 6, as the real implementation
on the hardware copters. The angles [θr, θp, θy]

T

are updated from the movement command with

Fig. 7. A screenshot of the risk contours from the perspective of
Quad 4. The red contour is red because there is an overlap between
the copters own comfort zone (Quad 4) and the risk contour around
the right upper wall.

a similar response to that of the actual hardware,
and then the position and velocity state is updated
based on these angles. For this update, we do not
inject any faults and assume that it represents the
true position of the copter.

There is also a position and velocity state that
is updated in the same way, but where we inject
various faults. This perceived position is then
corrected from simulated ultrasound measurements
as described in Equation 13 and 14, while we inject
faults on these ultrasound measurements. Addi-
tionally, each simulated copter has the collision-
avoidance mechanism described in Section VI,
shown as Intelligent Transportation System (ITS)-
station in Figure 8. The simulated ITS-station on
each copter broadcasts and receives ITS-messages
to and from the other copters every 100 ms, where
we also inject faults. The CopterSim library can
either be used from a Graphical User Interface
(GUI) to manually add and move copters, or from a
program that auto-generates tests and injects faults.
All fault injection is done with probes from the
FaultCheck tool [10], linked to the simulator.

We have created a model for the QuickCheck
tool [11] that sends commands to the simulator
where we add a random number of copters at ran-
dom non-overlapping positions and run commands
while checking the property that they do not collide.
These randomly-generated commands can either
be steering commands for the copters, or fault-
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injection commands passed to the FaultCheck tool.
The whole set-up can be seen in Figure 9.

The parameters for the steering commands are:
• Which copter to command, randomly chosen

from all the copters present in the simulation.
• The roll output, randomly chosen between
±15°.

• The pitch output, randomly chosen between
±15°.

• The yaw rate output, randomly chosen between
±90° per second.

Further, the fault injection commands have the
following parameters:

• Which copter to affect, randomly chosen from
all the copters present in the simulation.

• The fault type, randomly chosen from:
– Communication bit-flip, which flips a

randomly chosen bit of the broadcast ITS
message.

– Packet loss, where ITS-messages are lost.
– Repetition, where ITS-messages are re-

peated.
– Ultrasound ranging faults, where a ran-

dom offset is added to the ultrasound
distance measurements.

CopterSim
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(C++)
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Fig. 9. CopterSim with FaultCheck connected to a visualization
tool and QuickCheck.

– Offsets on the [θr, θp, θy]
T angles.

When a collision occurred during these auto-
generated tests, we used the QuickCheck tool to
shrink the sequence of commands to a smaller one
that led to a collision, in order to make it easier
to identify the problem. Then, we replayed this
smaller sequence of commands while adjusting
the gains described in Section V and the risk
contour parameters described in Section VI until
this command sequence did not lead to a collision
any more. This also gave us insight into the number
of simultaneous faults the copters can handle.

A. Experimental Performance and Stability Analy-
sis

Here we show specific injected faults and their
impact on the position and velocity error under
different gain values, which are described in Section
V. This is not a full analysis of all possible
combinations of faults and gains, but it gives
a general impression about the fault tolerance
and performance of the system under different
conditions. Running many auto-generated tests with
different combinations of injected faults gave us
confidence that the chosen parameters gave a robust
position correction.

Figure 10 shows how the position recovers when
a position offset fault of 1.5 m is injected. The
left part of the graph shows the recovery with
Gp,pos = 0.2 and the right part with Gp,pos = 1.0.
It can be seen that the higher position gain makes
the position error recover faster. A similar relation is



Fig. 10. Fault injection with 1.5 m position offset. The lower
part shows when the faults are active and the upper part shows the
position and velocity errors. The first activation had Gp,pos = 0.2
and the second one had Gp,pos = 1.0.

shown in Figure 11 where a pitch offset is injected
for different values of Gp,vel . When the gain is too
high, an oscillation such as in Figure 12 where a
position offset of 1.5 m is injected while Gp,pos =
2.0 can occur.

In Figure 13 a position offset fault is shown with
Gp,vel = 0.0 and Gp,vel = 2.0. It can be seen that
when only a position offset is injected, the velocity
gain does not help at all. However, a roll or pitch
offset such as in Figure 11 requires Gp,vel > 0 to
recover. An example where both a ranging offset
and a pitch offset are injected at the same time can
be seen in Figure 14, where the difference between
low and high Gp,vel can be seen. The injected pitch
fault requires Gp,vel > 0, but the ranging fault
recovers the same way with lower Gp,vel .

A dynamic example, where one copter is moved
forth and back, is shown in Figure 15 for different
values of Gp,pos while an amplification on the
pitch of 0.95 is injected. If there were not any
acceleration the pitch amplification fault would
remain unnoticed, but the acceleration makes it
appear. It can be seen that higher gain keeps the
position error lower during the flight.

VIII. CONCLUSIONS

We have created a quadcopter platform that has
a novel approach to localization using ultrasound
distance measurement combined with IMU-based
dead reckoning for accurate positioning, while we

Fig. 11. Fault injection with 5° pitch offset. The lower part shows
when the faults are active and the upper part shows the position
and velocity errors. The first activation had Gp,vel = 2.0 and the
second one had Gp,vel = 0.5.

Fig. 12. Fault injection with 1.5 m position offset and Gp,pos = 2.0.
The lower part shows when the faults are active and the upper part
shows the position and velocity errors.

use risk contours to avoid collisions with static
objects and other copters. Additionally, we have
created a powerful simulation environment where
we can auto-generate tests and inject faults with
many copters simultaneously, making it possible to
scale up the tests beyond what our hardware allows.
Our current platform has a limited size, because the
anchors can be no further away from the copters
than 12 m. Future work includes implementation
of handover, both in simulation and hardware,
between flying zones to handle more anchors spread
out in a larger area. Another improvement would
be handover between GNSS positioning and the



Fig. 15. Fault injection with 0.95 pitch amplification. The lower
part shows when the faults are active and the upper part shows the
position and velocity errors. The first activation had Gp,pos = 0.3
and the second one had Gp,pos = 1.0.

Fig. 13. Fault injection with 1.5 m position offset. The lower
part shows when the faults are active and the upper part shows the
position and velocity errors. The first activation had Gp,vel = 0.0
and the second one had Gp,vel = 2.0.

Fig. 14. Fault injection with 5° pitch offset and 0.5 m anchor
distance offset. The lower part shows when the faults are active
and the upper part shows the position and velocity errors. The first
activation had Gp,vel = 2.0 and the second one had Gp,vel = 0.3.

positioning method proposed in this work, when
higher position accuracy is required during landing
and take-off.
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