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Abstract

The move from single-core processor systems to multi-core and many-processor
systems comes with the requirement of implementing computations in a way
that can utilize these multiple computational units efficiently. This task of
writing efficient parallel algorithms will not be possible without improving
programming languages and compilers to provide the supporting mecha-
nisms. Computer aided mathematical modeling and simulation is one of the
most computationally intensive areas of computer science. Even simplified
models of physical systems can impose a considerable computational load
on the processors at hand. Being able to take advantage of the potential
computational power provided by multi-core systems is vital in this area of
application. This thesis tries to address how to take advantage of the poten-
tial computational power provided by these modern processors in order to
improve the performance of simulations, especially for models in the Mod-
elica modeling language compiled and simulated using the OpenModelica
compiler and run-time environment.

Two approaches of utilizing the computational power provided by mod-
ern multi-core architectures for simulation of Mathematical models are pre-
sented in this thesis: automatic and explicit parallelization respectively. The
automatic approach presents the process of extracting and utilizing potential
parallelism from equation systems in an automatic way without any need for
extra effort from the modelers/programmers. This thesis explains new and
improved methods together with improvements made to the OpenModelica
compiler and a new accompanying task systems library for efficient represen-
tation, clustering, scheduling, profiling, and executing complex equation/-
task systems with heavy dependencies. The explicit parallelization approach
allows utilizing parallelism with the help of the modeler or programmer. New
programming constructs have been introduced to the Modelica language in
order to enable modelers to express parallelized algorithms. The OpenMod-
elica compiler has been improved accordingly to recognize and utilize the
information from these new algorithmic constructs and to generate paral-
lel code for enhanced computational performance, portable to a range of
parallel architectures through the OpenCL standard.

This work has been supported by Vinnova in the RTSIM and ITEA2 OPEN-
PROD and MODRIO projects, the Swedish Strategic Research Foundation
(SSF) in the Proviking EDOP project, by the National Graduate School of
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Chapter 1

Introduction

1.1 Motivation

Build faster processors. This used to be the way to get computations done
faster in the past. You get the latest fastest processor in the market and
that was all you needed to do. Lately, however, with the power requirements
of yet faster single processors becoming highly uneconomical the trend is
instead towards building many smaller processors and then distribute our
heavy computations between them. The move from single-core and single-
processor systems to multi-core and many-processors systems comes with the
extra requirement of implementing computations in a way that can utilize
these multiple computational units efficiently. This task of writing efficient
parallel algorithms will not be possible without improving programming
languages and compilers to provide the mechanisms to do so. In recent years
substantial research effort is being spent on providing such mechanisms.
This thesis work is one of the efforts. In this work we investigate how
the available potential parallelism in Mathematical models can be used for
efficient parallel computation.

Computer aided mathematical modeling and simulation is one of the
most computationally intensive areas of computer science. Even simplified
models of physical systems can impose a considerable computational load on
the processors at hand. Being able to take advantage of the potential com-
putation power provided by modern multi-core and many-processor systems
is vital in this application area.

Equation-based Object Oriented languages like Modelica provide a very
convenient way of modeling real world cyber-physical systems. Object ori-
entation gives these languages the power to hierarchically model physical
systems. This allows reuse and flexible modification of existing models and
enables users to provide increasingly complex models by building on ex-
isting components or libraries. Complex models in turn require a lot of
computational power to be conveniently usable. This is why parallelization
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1.1. MOTIVATION

in modeling and simulation is an area that needs extensive investigation.
Simulation of ever more complex models will become too time consuming
without efficient automatic and explicit methods of harnessing the power of
multi-core processors.

In this thesis work we have studied the problem of utilizing parallelism
in the context of the Modelica equation-based object-oriented language and
the OpenModelica model compiler and run-time environment. Multiple par-
allelization approaches have been studied in the past by the Programming
Environments Laboratory (PELAB) here at Linköping University where the
OpenModelica compiler is being actively developed. Most of these past par-
allelization approaches were concerned with automatic extraction of paral-
lelism from Modelica models. There have been different prototype imple-
mentations that tried to provide automatic parallelization of simulations on
multi-core CPUs as well as GPUs. Some of them were capable of simulating
full physical models with no restrictions while others had certain restrictions
on the system e.g. restrictions on the Modelica source code, restrictions on
the solvers that can be used, etc. Unfortunately some of these implementa-
tions were rather obsolete by the time these thesis work started due to lack
of maintenance or just simply because they were not relevant anymore due
to continuous changes to the OpenModelica compiler and recent improve-
ments in parallel programming arena. Other recent parallelization attempts
are operational but differ in several ways from the work presented in the the-
sis. More information on these parallelization implementations and methods
is given in the related work Sections 3.3 and 4.3.

This thesis work presents two different but inter-operable approaches
to parallelization of Modelica models evaluated on implementations in the
OpenModelica compiler. Many of these results are valid for EOO languages
and environments in general. The two approaches are:

• Automatic parallelization of equation-based models

• Explicit parallelization of algorithmic models

The first parallelization approach is a task-graph based implementation
concerned with automatically extracting and utilizing parallelism from com-
plex equation systems. This is a very compelling approach due to the fact
that it can handle existing models and libraries without any modification.
The method and implementation mainly consists of two different parts: a
dependency analysis and parallelization extraction phase and a run-time
task system handling and parallelization phase. The dependency analysis
phase is rather specific to the compiler and simulation environment at hand,
in this case OpenModelica. The runtime task-system handling and paral-
lelization part, on the other hand, is implemented as an independent C++
library and can be used in any other simulation environment as long as the
dependency information is readily available.

The explicit parallelization approach is more language and compiler spe-
cific. This approach introduces new explicit parallel programming con-
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CHAPTER 1. INTRODUCTION

structs, for example parallel for-loops, to the Modelica language, imple-
mented as extensions of the OpenModelica compiler. Using these exten-
sions, users can write explicitly parallel algorithmic Modelica code to run
on multi-core GPUs, CPUs, accelerators and so on. Even though this ap-
proach requires users to write their algorithmic Modelica code in specific
ways, the effort is usually worthwhile since they can achieve much higher
performance improvements for suitable algorithms. Moreover explicit paral-
lel programming means that users are expected to have some knowledge of
parallel programming. This might be an issue for modeling language users
who are usually experts in fields other than computer science. However,
with the increasing prevalence of multi-core processors, some knowledge of
parallel programming is bound to be a necessity for anyone working with
any programming language. The explicit parallel programming extensions
are not yet standard Modelica and are currently only available for users of
the OpenModelica compiler. To our knowledge there is no other Modelica
tool that provides similar features at the moment of this writing.

1.2 Main Contributions

The main contribution of these thesis work are:

• Design and implementation of new automatic parallelization support
for the OpenModelica compiler.

• Design and implementation of a highly flexible, efficient and customiz-
able task system handling library with several clustering and schedul-
ing options.

• Design, implementation, and evaluation of the explicit ParModelica al-
gorithmic extensions to allow the Modelica language to take advantage
of modern multi-core and multi-processor architectures.

1.3 Limitations

There were some technical limitations that affected the implementations
done in this thesis work. One of the biggest limitations for the explicit par-
allelization approach is that the compilers and tools used to compile the
generated OpenCL code are very restrictive. OpenCL is based on the C99
standard (ISO/IEC 9899:1999) [28] with many restrictions. For example
only a few headers from the standard C library can be used in an OpenCL
program. The OpenModelica compiler runtime requires many complex op-
erations to be fully operational. This means that it makes quite heavy use
of the C header files as well as other utility libraries.

In order to make sure that generated parallel OpenCL code is compil-
able while maintaining inter-operability with the normal sequential runtime

7



1.4. THESIS STRUCTURE

environment has required many compromises. However, recently there have
been some C++ construct extensions of the core OpenCL language provided
by some hardware vendors e.g. the OpenCL Static C++ Kernel Language
Extension from AMD [1]. These extensions can be used to improve the
current implementation and can several issues. However, being vendor spe-
cific means that they are only available on certain architectures and are not
really fully portable.

1.4 Thesis Structure

The thesis starts by providing a quick common background information on
modeling and simulation as well as on parallel programming in general in
Chapter 2. The rest of the thesis consists of two main topics: chapters
dedicated to automatic and explicit parallelization approaches, respectively.

The first part, Chapter 3, presents the methods and approaches used
to extract and implement automatic parallelization in equation based task
systems. A brief explanation of dependency analysis and extraction of par-
allelism from highly connected equation systems is presented. Then the
features and implementation of Task System Library used for paralleliza-
tion of the resulting task systems are explained in detail. These include
the clustering algorithms, schedulers, profiling and cost estimations meth-
ods and so on. This part of the thesis is partly based on the following two
papers:

• Mahder Gebremedhin and Peter Fritzson
Automatic Task Based Analysis and Parallelization in the Context of
Equation Based Languages
Proceedings of the 6th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, (EOOLT’2014), Berlin,
Germany, October 9, 2014.

• Martin Sjőlund, Mahder Gebremedhin and Peter Fritzson
Parallelizing Equation-Based Models for Simulation on Multi-Core Plat-
forms by Utilizing Model Structure
17th International Workshop on Compilers for Parallel Computing
(CPC 2013), Lyon, France, July 3-5, 2013, 2013.

The second part, Chapter 4, presents and explains the ParModelica al-
gorithmic language extensions. The design of these constructs is inspired
by OpenCL and is implemented as an extension of the Modelica language
supported by the OpenModelica compiler. The extensions and the available
mechanisms for runtime support of this explicit parallelization approach are
explained in this part of the thesis and are based partly on these two papers:

• Mahder Gebremedhin, Afshin Hemmati Moghadam, Kristian Stav̊aker
and Peter Fritzson
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A Data-Parallel Algorithmic Modelica Extension for Efficient Execu-
tion on Multi-Core Platforms
Proceedings of the 9th International Modelica Conference (Modelica
2012), Munich, Germany. 2012.

• Afshin Hemmati Moghadam, Mahder Gebremedhin, Kristian Stav̊aker
and Peter Fritzson
Simulation and benchmarking of Modelica models on multi-core archi-
tectures with explicit parallel algorithmic language extensions
Fourth SwedishWorkshop on Multi-Core Computing MCC-2011, 2011.

Corresponding introductions, background information and previous work
are presented in each part of the thesis.

Other publications by the author not used in this thesis work but are
related to modeling and parallelization are:

• Alachew Shitahun, Vitalij Ruge, Mahder Gebremedhin, Bernhard Bach-
mann, Lars Eriksson, Joel Andersson, Moritz Diehl and Peter Fritzson
Model-Based Dynamic Optimization with OpenModelica and CasADi
IFAC-AAC 2013, 2013.

• Bachmann, Bernhard, Lennart Ochel, Vitalij Ruge, Mahder Gebremed-
hin, Peter Fritzson, Vaheed Nezhadali, Lars Eriksson, and Martin
Sivertsson.
Parallel multiple-shooting and collocation optimization with OpenMod-
elica.
In Proceedings of the 9th International Modelica Conference (Model-
ica 2012), Munich, Germany. 2012
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Chapter 2

Background

2.1 Modelica

Modelica [46] is a non-proprietary, object-oriented, equation based, multi-
domain modeling language for component-oriented modeling of complex
physical systems containing, e.g., mechanical, electrical, electronic, hydraulic,
thermal, control, electric power or process oriented subcomponents. Its de-
velopment is managed by the non-profit Modelica Association [47]. The
Modelica Association also overlooks the development of the open source
Modelica Standard Library which contains components and example mod-
els from different application domains.

2.1.1 Modelica for Mathematical Modeling

Modelica is quite well suited for modeling of complex cyber-physical sys-
tems. This is not surprising since the language was designed and continu-
ously improved for that specific purpose. Like many other complex object
oriented languages Modelica has classes, support for advanced features like
inheritances (extends), operator overloading, generic programing (redecla-
rations) and so on. However, what makes Modelica especially well suited
for modeling is its ability to capture physical systems in an intuitive way.

Modelica is an Object Oriented language. This means that it can be
used to create models in a hierarchical manner by combining and extending
different model components. Connector classes, connectors and connect

equations enable modelers to create relationships and interactions between
these components in an intuitive way.

Probably the most important feature that makes of Modelica so powerful
is its support for acausal modeling. Modelica allows equations in addition to
assignment statements which are common in most programming languages.
Assignments always have their left-hand sides as outputs, i.e., variables as-
signed to. Equations, on the other hand, do not specify which variables are

11



2.1. MODELICA

inputs and which are outputs. It is the specific Modelica compiler’s job to
sort equations in data-flow order and generate the causal structure for the
system. This makes for a very flexible modeling environment where mod-
els can express physical systems in a natural way. A brief overview of this
symbolic manipulation process is presented in Section 3.4.

In addition, having different specialized classes such as models, records,
blocks, connectors, etc., gives Modelica the ability to represent physical
components in a way that resembles their real world attributes. For example
record classes are used to represent a collection of data about a physical
component e.g. A record class for a point in space contains the x,y, and z
co-ordinates of the point. Model classes are used to represent components
with dynamic behaviors. A model class for a rocket can contain the vari-
ables that represent its dynamic behavior, e.g., its current mass, velocity,
acceleration, etc together with the equations that govern the behavior of the
rocket. Connector classes and connect equations enable modelers to create
relationships and interactions between components in an intuitive way.

There are many other Modelica features that are interesting for phys-
ical modeling. However we will not go in to a detailed explanation here
since these features are all well documented. Very detailed explanations
and examples can be found in [18], [42] among many others.

2.1.2 Modelica for Scientific Computing

A rather overlooked application area of Modelica is its usability in general
scientific computations. The language, as it is right now, is quite well suited
to be used in heavy scientific computations and not just in modeling areas.
Most scientific computation algorithms involve linear algebra operations on
large amounts of data usually organized as vectors, matrices, and higher
dimensional arrays. Modelica provides a very powerful array representation
and related features that can make writing these complicated algorithms
more convenient. It is of course not possible to cover all the features Model-
ica provides for convenient algorithmic code implementation here. However,
this section presents a few selected features that can give a general idea of
what Modelica has to offer for the scientific computation community.

Modelica arrays can be declared with unknown sizes, specified by colons
as dimension sizes, as shown in Listing 2.1. Here the size of the array x which
is the input to the function unknowInputSizeArray is not specified. The
actual size is of this input array is determined at call time by the argument
passed to it, as demonstrated by the calls in the function callMultiple.
The output array y of the function is also flexible. Its size is determined by
the size of the first dimension of the input array via the call size(x,1).

function unknowInputSizeArray

input Real x[:];

output Real y[size(x,1)];

...

12



CHAPTER 2. BACKGROUND

end unknowInputSizeArray;

function callMultiple

...

protected

Real[2] x2,y2;

Real[3] x3,y3;

algorithm

x2 := ones(2);

y2 := unknowInputSizeArray(x2);

x3 := ones(3);

y3 := unknowInputSizeArray(x3);

...

end callMultiple;

Listing 2.1: Unknow size arrays

This kind dynamic adjustment of array sizes makes functions more generic
and reusable. For example without the ability to work with unknown size
arrays we would need one function for each size to perform the same oper-
ation.

Indexing and Slicing: there are many of ways to index Modelica arrays.
Indexing an array can result in a scalar or an array of selected elements of
the original array. The latter is what we call array slicing. Simple examples
of array slicing operations are shown in Listing 2.2.

function SliceTest

input Real x[10,10];

...

protected

Real y[10] := x[1,:]; // y is the first row of Matrix x

Real z[10] := x[:,1]; // z is the first column of Matrix x

Real a[3,10] = x[1:3, :] // indexing with range. The first 3 rows

of x

Real b[3,10] = x[{1, 3, 5}, :] // indexing with array. The 1st,

3rd and 5th rows of x

y[2:10] := y[1:9]; // shifting elements of y 1 index to the left.

for i in 1:9 loop // equivalent for loop implementation.

y[i+1] := y[i];

end loop;

end SliceTest;

Listing 2.2: Array slicing

Slicing allows algorithms to be more concise and provides the opportu-
nity to take advantage of code structure to generate a more efficient code.
More complex usages of slicing than shown in this examples enable model-
ers/programmers to manipulate arrays in a convenient way.
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Modelica overloads the normal built-in arithmetic operators (+,-,*,/,ˆ)
for vector, matrix and array arithmetical operations. Depending on the
type of operands involved in the arithmetic operations these operators are
resolved to the specific mathematical operation. For example

C = A ∗B

is resolved as matrix multiplication if A and B are matrices and the multi-
plication dimensions match (mxn∗nxk) and results in matrix C(mxk). This
kind of resolving of operators is done for more combinations of operands.
The full list can be found in [45].

In addition to overloading the common arithmetic operators, Modelica
also provides a set of element-wise operators for arrays. These operators
operate on an element by element basis on arrays of matching dimensions
and dimension sizes. For example

C = A. ∗B

is an element by element multiplication of A(mxn) and B(mxn) which results
in the matrix C(mxn). The full list and semantic rules of the element-wise
operators can be found in [45].

Yet another interesting example of using Modelica for computations is
the use of range expressions and reduction operations for concise and read-
able representation of algorithms. Consider that we want to compute the
sum of the first n odd numbers starting from 1. That is

S =

n∑
i=1

(2 ∗ i− 1) (2.1)

Using for ranges expressions and the built-in sum reduction operator we can
write this in Modelica as

S = sum(2i-1 for i in 1:n)

Listing 2.3: Array slicing

In addition to these array and range related features the object oriented
features of Modelica can help to further simplify scientific computation al-
gorithms. For example records (which, in some extents are, the Modelica
equivalent of C++ classes) with operator overloading can be used to ma-
nipulate structured data sets in a very convenient manner. A good example
of this usage is the Complex numbers library from the Modelica Standard
Library.

There are many more simple and advanced features that make Modelica
very suitable for algorithms of scientific computations. Yet it seems like
Modelica has been rather overlooked by the scientific computation commu-
nity so far. This might be due to two main reasons:
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• Modelica is originally intended for physical system modeling. Hence
the focus of the user community is more on what it has to offer for
modeling. Being such a powerful language for modeling has somehow
over shadowed its convenience and power in the other areas. Even
modelers who use Modelica frequently seem to use other languages
e.g. Matlab when they have the need to do some sort of complex
scientific computation.

• With regard to scientific computations Modelica has a crippling lack
of library support. The only substantial library for scientific compu-
tations that is available is the Modelica.Math library which mostly
provides interfaces to external LAPACK routines. This lack of library
support might be the main reason why even frequent Modelica users
prefer other languages and tools for their computations.

. This brings us to the second possible reason which is that
The explicit data-parallel programming extensions presented in these

thesis (Chapter 4) provide an even further improvement on how Modelica
can handle complex heavy computations on modern multi-core and multi-
processor architectures.

2.2 Modelica Standard Library (MSL)

The Modelica Standard Library [48] provides model components in many
domains that are based on standardized interface definitions. It is available
freely and usually is bundled with many Modelica tool distributions. The
library is quite extensively used and well tested. Selected models from this
library are used to test the performance of the implementations presented
in this thesis. MSL version 3.2 is used in this work.

2.3 OpenModelica

OpenModelica [1] is an open-source Modelica-based modeling and simulation
environment intended for industrial and academic usage. Its long-term de-
velopment is supported by a nonprofit organization The Open Source Model-
ica Consortium (OSMC) [10]. The Programming Environments Laboratory
(PELAB) at Linköping University, together with OSMC, is developing the
OpenModelica Compiler (OMC) for the Modelica language (including the
MetaModelica [51], ParModelica [19] and Optimica [4] extensions) and the
accompanying simulation environment.

The research prototypes developed in this thesis work are all done in
the OpenModelica Compiler. The implementations and additions to the
compiler presented here are have been developed within several phases of
the compiler. This is a direct consequence of the specific parallelization
paradigm and programmability intended in each investigation. A rough
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depiction of the OpenModelica compiler’s compilation phases is shown in
Figure 2.1.

The automatic task parallelization approach presented in Chapter 3 re-
quired some modifications to the Back-end and Code Generator stages of
the compiler. However, most of the work for this approach was put into the
runtime support of parallel execution by providing the rather independent
Task Systems Library presented in Section 3.5.

On the other hand, the explicit parallel programming extensions pre-
sented in Section 4 required modification to almost all phases of the com-
piler starting from the parser all the way to the code generation and runtime
support. Obviously adding new constructs to a language means that the
compiler will have to recognize the new constructs, make sure any syntactic
and semantic rules for these constructs are obeyed, generate appropriate
code for the usage, and finally provide runtime support for any new features
required. The compiler has been modified for these changes.

Modelica Model

Parser

Front-End

Back-End

SimCode

CodeGen

Simulation

Figure 2.1: OpenModelica Compiler Compilation Phases

2.4 Parallel Programming

Parallel programming is concerned with the simultaneous or parallel use of
multiple computational units or resources to solve a given computational
problem. A given computational problem can be broken down into smaller
less computationally intensive problems and computed on different process-
ing units with a system wide control of problem structures and coordination.

There are many different paradigms and flavors of parallel programming
in existence today. Especially in recent years, with the advent of widespread
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availability of multi-core and multi-processor architectures, researchers are
in a rush to provide and utilize even more efficient and powerful paradigms
and implementations.

Of course there is no universally best solution to all the computational
problems that exist in the physical world. Different kinds of applications re-
quire different approaches and implementations to take full advantage of the
computing power of the available resources. Moreover, different processor
architectures are suited for different paradigms and approaches.

User preferences and programmability are other important character-
istics that are influencing the development of these parallel programming
paradigms. Some approaches are intended for advanced users with a good
knowledge of the problems of parallel programming who are looking to take
the last drop of performance out of the computational resources available
to them. Others approaches are intended for less experienced users looking
for a quick and efficient way of improving the performance of their compu-
tations.

Within the scope of this thesis, we categorize parallel programming ap-
proaches in two ways. The first categorization is concerned with the pro-
grammability of the approach from a user’s perspective. How will users be
able to take advantage of the potential parallelization? Do they need to write
their programs in a specific way? Will they have to modify existing code
to take advantage of the method? The second categorization is concerned
with the type of threading model or the types computations the approach is
suitable for. Some parallelization paradigms are geared towards performing
the same operations on a large amounts of shared data sets while others are
intended for performing possibly different tasks on possibly distributed data
sets.

2.4.1 Programmability

With regards to programmability, we can classify parallelization approaches
as automatic parallelization and explicit parallelization. These approaches
are briefly explained in the next sections.

2.4.1.1 Automatic Parallelization

Automatic parallelization is the process of automatically detecting, optimiz-
ing, and parallelizing a computation. This parallelization method involves
enhancements to compilers while the language stays the same. It imposes no
or a quite small amount of work from the user’s perspective. Users would not
have to write their model or code in any different way than they would with
no parallelization in mind. The compiler has full responsibility of finding
and utilizing any potential parallelism from the user’s model or algorithm.

Improving existing compilers for supporting automatic parallelization
requires a considerable effort. However, it is naturally the most preferred
way for end-users since it enables them to use models and algorithms without
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having to learn the details of complicated parallel programming languages.
This is especially useful for communities like Modelica where most users
working with the language/compiler are experts in a different field than
Computer Science.

Another advantage of automatic parallelization approaches is that they
allow the parallelization of existing code. The possibility of parallelized
execution of existing libraries and implementation without any need for
changes is quite appealing. Of course some sort of consideration might need
to be made when writing code in order to assist the compiler with better
extraction of parallelism.

2.4.1.2 Explicit Parallelization

Explicit parallelization, unlike automatic parallelization, is based on users
explicitly stating where, when, and how their code should be parallelized.
Explicit parallelization requires modifications to the compiler as well as to
the language itself, i.e., if it doesn’t have support for explicit parallelization
yet, which currently is the case for the standard Modelica language.

To utilize this kind parallelization users have to write programs that
uses these constructs explicitly where parallelism is needed. This means
that users need to have some knowledge and expertise about how to write
efficient parallel code.

Despite the fact that users have to spend extra effort in developing their
programs to utilize explicit parallelism, this can result in huge performance
improvements for many kinds of algorithms. Humans usually have a better
understanding of their algorithms than the compilers. By implementing
their programs or models in an optimized explicit way, they can achieve
higher performance gains than the compiler would have done automatically.

2.4.2 Threading Model

With regard to threading models, we can classify parallelization approaches
into data parallel and task parallel methods. These are briefly presented in
the next sections.

There is no clear-cut distinction between these two models of parallel
computation. Computations are rather loosely attributed to each paral-
lelization model based on how close they resemble the corresponding pure
model.

2.4.2.1 Data Parallelism

Data parallelism involves multiple computational units simultaneously per-
forming the same or very similar operations to different items/parts of a
given data set. Ideally this would involve every processing unit involved in
the computation performing exactly the same operation on different data
elements. A good example of data parallelism would be a simple element-
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wise addition of two vectors where each processing unit performs addition
on the corresponding single elements from each the two arrays. Of course
not all processing units can perform exactly the same operation on different
data for all physical problems. There are many cases where a few selected
units might be doing additional operations or fewer operations based on the
specifics of the problem at hand.

Data parallel programing usually involves operations on data structured
into arrays and different processing units operating on these arrays. Since
these operations are mostly similar there are not as many parallel control
structures (barriers, synchronizations) needed as task parallelism.

Most parallel architectures are designed with heavy data parallelism re-
quirements in mind. This is especially true in recent years with the ever-
increasing power and complexity of multi-core CPU and GPU architectures.

2.4.2.2 Task Parallelism

Task parallelism lies at the other end of the spectrum compared to data
parallelism. In an ideal task parallel operation each involved computational
unit performs a potentially completely different operation on the same or
different data compared to other units. This is in contrast to data parallelism
where all units perform the same operation on different parts of the data
set.

Some task parallel algorithms can be considered as a special case of data
parallelism. In the element wise addition example given for data parallelism
there are usually different operand pair values for each addition operation
on corresponding array elements. Now consider a given task parallel appli-
cation. Assume that our data is an array of tasks. Each computing unit
takes on task from these array and operates on it. Just like the values of the
array members for the element-wise addition, the members of the task array
have different values. From an abstract point of view it is possible to con-
sider this “task parallel” algorithm as “data parallel” with data consisting
of tasks.

2.4.3 Combined Parallelism: Programmability with Thread-
ing Model

The two classifications of parallelization models explained above can be com-
bined and used to take advantage of different algorithms. For example, it is
possible and common to have compilers extract data parallelism automati-
cally or to have users write explicit task parallel programs.

In this work the explicit parallel programming extensions were designed
mainly for data parallel operations. This is a direct consequence of the pro-
gramming model they mimic, which is OpenCL. However, users can of course
use some of these extensions to implement their task parallel algorithms.

On the other hand, the automatic parallelization methods and implemen-
tation presented here are, currently, limited to extracting task parallelism
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Automatic Explicit
Data Parallel

Task Parallel

Table 2.1: Supported Parallelism

from complex equation systems. This does not mean that parallelization is
always done as task parallelism. It simply means that right now the compiler
doesn’t look for and does not extract possible data parallel operations from
a given algorithm in a Modelica model. It is only concerned about finding
dependencies at an equation level which can affect the dependency relation-
ship for parallelization purposes. How the extracted parallelism is utilized
is a different matter. Depending on the kind of scheduler and executor this
task parallelism can be converted to a data parallel approach with tasks as
data. The Level Scheduler implementation presented in Section 3.5.5.1 is
a good example. Here clustered tasks within each level are represented as
arrays of tasks and a simple data parallel iteration loop is used to execute
this task array.

Table 2.1 shows what kinds of parallelism can be used with or are ex-
tracted by OpenModelica compiler for Modelica models at the moment of
this writing only based on this work alone. To summarize:

• Users can write explicitly data parallel or task parallel algorithms.

• The compiler can currently extract task parallelism automatically from
equation systems.

It is rather straight-forward to implement the missing parallelization
which is automatically extracting data parallelism. For example it should
be rather easy to locate arithmetic expressions like element-wise multipli-
cation of two arrays which can benefit from data parallelism. Once these
operations have been extracted the runtime functionality already available
for the explicit data parallel implementation can be used to perform the rest
of the work.
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Chapter 3

Automatic Parallelization

3.1 Introduction

This chapter presents our task-graph based automatic parallelization de-
sign and implementation for handling complex task systems with heavy
dependencies. Methods for analyzing dependencies, representing them in a
convenient way and processing the resulting task graph representations are
presented. We present a library based task system representation, cluster-
ing, profiling and scheduling approach to simplify the otherwise tedious and
complicated process of parallelizing complex task systems. The implementa-
tion offers a flexible and robust task system handling library to manipulate
and parallelize these complex task systems on shared memory multi-core
and multi-processor systems.

A brief background information on some fundamental scheduling prob-
lems, the algorithms used for dealing with these problems, and 3rd party
tools used in the implementation is first provided. Then a simple approach of
extracting dependency information from equation systems and representing
them in a convenient graph based system is presented. The core ParModel-
ica Task System library is presented next, in Section 3.5, with explanations
of the different clustering, scheduling and profiling algorithms and options.

3.2 Background

3.2.1 The Bin Packing Problem

The Bin Packing problem is a classical optimization problem that deals with
partitioning a set of items into as few bins as possible while making sure
that the total sum of some selected attribute of all items packed into the
same bin does not exceed a specified value. The problem can be formally
defined as:
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Given a set of items C = {c1,c2 . . . ,cn} where 0 < ci ≤ 1, ∀ci ∈ C
and a set of bins B = {b1,b2 . . . ,bm} with capacity of 1

Find a mapping C → B so that the number of non-empty bins is
minimized.

The Bin Packing problem is interesting in clustering applications where
there are cost considerations of tasks. We are often interested in collecting
or merging tasks into clusters based on some proximity criteria while making
sure that the overall cost of the resulting cluster does not exceed a given
cost limit.

Bin packing is an NP-hard problem [30] [5]. However there are constant
factor approximate heuristics for the problem. Three of these algorithms
are presented briefly below.

3.2.2 Next fit, First Fit, and First Fit Decreasing Heuris-
tics

The Next Fit(NF), First Fit(FF) and First Fit Decreasing(FFD) algorithms
provide approximate solutions for the Bin Packing problem. Consider a
given the set of items C = {c1,c2 . . . ,cn} where 0 < ci ≤ 1, ∀ci ∈ C and a
set of bins B = {b1,b2 . . . ,bm} each with a capacity of 1. Assume that all
bins are initially empty:

- NF: start by adding the first item, i1, to the current bin bi (initially
b1). Then consider the rest of the items one after another and add
them to the current bin if it has enough capacity. If at any point the
item being considered doesn’t fit in to the current bin, open the next
bin, bi+1, and repeat the same process until there are no more items
left.

- FF: start by adding the first item to the current bin bi (initially b1).
Iterate over all remaining items adding them to the current bin if it
has capacity. If there are no more items left that can fit to the current
capacity of the current bin then open the next bin, bi+1, and repeat
the same process until there are no more items left.

- FFD: Sort the items of set C in descending order into set S and apply
FF to S .

The First Fit Decreasing is the best-possible approximation algorithm
for Bin Packing [31] [30] [5]. FFD is the algorithm used as part of some of the
clustering algorithms implemented in this thesis work. An explanation of the
packing problem in the context of task systems for mathematical equation
systems and adaptation of the FFD algorithm is presented in Section 3.5.3.
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3.2.3 k-way Linear Partitioning Problem

The k-way Linear Partitioning problem is a complementary problem to Bin
Packing. The general problem is to try and partition a given set of items into
a specified number of disjoint sets while a selected objective is minimized.
Formally:

Given a set of items C = {c1, c2 . . . , cn}, find a mapping of C in to
k disjoint sets B1, B2, . . . , Bk where (B1 ∪ B2 ∪ · · · ∪ Bk) = C and
Bi ∩Bj = ∅ for 1 ≤ i, j ≤ k, so that a given objective function F (Bk)
is minimized.

This linear partitioning problem is very similar to the MinimumMakespan
Scheduling problem on identical processors. The general Makespan Schedul-
ing problem can be defined as

Given a set of k machines M = {m1,m2, . . . ,mk} and n jobs J =
{j1, j2, . . . , jn} where job j takes tij time units to execute to comple-
tion on machine i. If Ji is the set of jobs scheduled on machine i and
the total load on machine i is Li =

∑
j∈Ji

. The problem is to schedule
the jobs so that the maximum load, Lmax = maxi∈M is minimized.

If all machines are identical, i.e., tij = tj for all i ∈ M and all j ∈ J ,
then the Minimal Makespan Scheduling problem is equivalent to a k-way
linear partitioning where the objective function is the maximum load over
the set of machines.

There are a number of approximate algorithms that aim to generate a
schedule that is within some specified worst case bounds [22], [38], [23], [14].
One group of heuristics for generating approximate schedules is the List
Scheduling based algorithms.

3.2.4 List and Sorted List Scheduling

The List scheduling class of heuristics has many variations depending on
how priorities are assigned to the jobs. Jobs that are ready for execution
are sorted into what is referred to as ready list according to some specific
criteria of priority. These candidate jobs are assigned to a specific machine
when it is available.

One of the simplest List Scheduling algorithm is Graham’s List Schedul-
ing [20]. Given a set of jobs and machines the algorithm considers the jobs
in the original order and adds them to the ready list. Then it removes the
first job from the ready list and assigns it to the machine with the least load
at the moment. The load of a machine being the total run-time cost of all
jobs assigned to it so far. Repeat the process until there are no more jobs
left. Although rather simple, the notable advantage of this algorithm is that
it is an online algorithm. Even if jobs arrive one after another and there is
no knowledge about what jobs may arrive next or when they will arrive, the
algorithm can still be applied.
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This simple algorithm can be improved by introducing some ordering or
priority to the jobs. The Sorted List Scheduling algorithm provides a better
approximation [21] by first sorting the job list in decreasing order of cost.
Once sorted the simple List Scheduling algorithm is applied.

The Sorted List Scheduling is used as part of the clustering implemen-
tations presented in this work with minor adaptations. Specifically as part
of the MLC clustering algorithm. This is discussed later in Section 3.5.3.

3.2.5 Boost Graph

The Boost Graph Library (BGL, boost::graph) [9] is a generic library that
provides advanced data structures and algorithm for conveniently imple-
menting graph computations. It is an open source library which is developed
by Boost [10] and is part of the Boost library suite which contains collec-
tions of different industry standard C++ libraries and tools. It is available
under the Boost Software License [11] which encourages both commercial
and non-commercial use.

The task-graph based parallelization presented in this chapter makes
heavy use of the Boost Graph library. The Task Systems Library presented
in Section 3.5 basically extends the Boost graph library and provides ex-
tra clustering, scheduling, and execution mechanisms for the graphs. The
library, being built on top of Boost, tries to resemble and mimic the struc-
tures of the graph library as much as possible to keep the implementation
as generic as possible and allow potential inter-operation with other Boost
graph algorithms and implementations.

The OpenModelica simulation environment is dependent on a couple of
Boost libraries other than the graph library. Hence the whole Boost library
suite is already distributed together with the OpenModelica source code as
part of the OMDev suite on Windows. On Unix systems users need to get
Boost separately but it is rather straight-forward to setup and use.

3.2.6 Intel Threading Building Blocks

The Threading Building Blocks (TBB) [26] is a C++ template library devel-
oped by Intel. The library provides multiple data structures and algorithms
that significantly simplify parallel programming in C++ compared to other
native threading packages like POSIX Threads [8] or OpenMP [7]. It pro-
vides a flexible, generic and efficient implementation that has simplified the
work in this thesis. It is available under the GPLv2 [17] license.

The ParModelica Task Systems library uses TBB for two different pur-
poses. The primary use of TBB is for its flow-graph (tbb::flow) sub-library
which is available in TBB 4.0 and later. The flow-graph library provides
support for representing dependencies between tasks as messages passed be-
tween nodes. This flow-graph library is at the heart of the Flow Graph
Based Scheduler presented in Section 3.5.5.2. In addition to its use for the
flow-graph implementation, TBB is used throughout the Task System li-
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brary to simplify and improve flexibility of other parallelization needs. It is
not really mandatory to use TBB for these reasons. All these extra uses of
TBB can be excluded and replaced by other native implementations (e.g.
using POSIX Threads or boost:threads) if the dependency on TBB would
not be desired any longer.

3.3 Related Work

Substantial previous research have has been done on automatic paralleliza-
tion related to the OpenModelica compiler and the Modelica language in
general. Perhaps the closest research work compared to the work described
in this thesis is the modpar parallelization design and implementation [6].
The modpar implementation is based on task graphs and graph re-writing
rules to merge tasks. It also used the Boost Graph library and implemented
some similar clustering/merging algorithms. However there are two main
differences between modpar and the work presented in this thesis:

• modpar was targeted towards distributed memory parallel architec-
tures while the current implementation is for shared memory architec-
tures. This makes modpar more general than the current implemen-
tation since it can also run on shared-memory implementations using
shared-memory based message passing implementations.

• modpar built an initially very fine-grained task-graph, essentially one
task for each expression node, which was merged into a more coarse-
grained task using clustering algorithms. Building such a fine-grained
task graph turned out to be very memory and computationally de-
manding. The approach was not scalable to large models. The ap-
proach taken in this thesis work is slightly less fine-grained. Tasks and
dependencies are extracted at the equation level or blocks of equations
level, see Section 3.4.1. This decreases the complexity and memory
requirements of the resulting task system without losing significant
parallelism potential.

• Clustering and Scheduling were done at compile time with modpar. In
our work both scheduling and clustering stages are done at simulation
time. This opens up opportunities for dynamic cost estimation which
can improve task graph clustering outputs considerably and allows to
perform dynamic rescheduling that can adaptively fit to the behavior
of the system throughout simulation.

The modpar design and implementation was later extended to support
pipelined parallelism at the solver level [41]. That kind of solver parallelism
could also be potentially used together with our current approach

A recent automatic parallelization effort called HPCOM [53] at Dresden
University of Technology also develops a similar task graph based approach.
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Like modpar this approach performs all operations other than execution
at compile time as part of the OpenModelica compiler. However HPCOM
has tried to improve the estimation by implementing mechanisms to utilize
profiling informations from previous simulations to create a more efficient
scheduling outputs. While this should improve performance significantly, it
is still not be possible to do the adaptive scheduling at runtime mentioned
above .

A previous work by the author and colleagues also investigated a paral-
lelization approach that utilized model structures and decoupling of equation
systems with the help of transmission line modeling. This is presented in
more detail in Section 3.4.3.

One more distinction of the current implementation compared to some
of those mentioned above is that it is implemented a standalone flexible task
system handling implementation that is not tied to a specific environment.
It only expects very small interfacing consistencies from the OpenModelica
compiler. This means that it is not affected by most of the changes to
the compiler and can be maintained and improved separately. This might
simplify the work of the developers who want to use the implementation
as well as OpenModelica compiler developers who don’t want to bother
themselves with the parallelization issues in their daily work. On the other
hand, there are also disadvantages with such a separate implementation
choice. It might open the way to the implementation being overlooked
with regard to changes to the rest of the OpenModelica environment. It
is necessary to make sure that the implementation can efficiently handle
and adapt to changes that affect the behavior of simulations. For example
improvements to the OpenModelica back-end, e.g. new tearing algorithms,
can affect the complexity of the resulting systems. The scheduling and
clustering implementations of the library need to keep track of these changes
and perform corresponding adjustments to benefit from them.

3.4 Mathematical Modeling

3.4.1 Equation Systems and Dependency Analysis

The OpenModelica compiler front-end accepts an object oriented acausal
Modelica model as input and translates it to a flat Modelica model after
performing a number of compilation phases like syntactic checks, instantia-
tion, typing and type matching, etc. The compiler back-end takes this flat
acausal model representation, sorts the equations, performs a number of op-
timizations, and creates a low-level model representation that is suitable for
generating simulation code in some low level language (C, C++, C#, Java,
etc.). The methods and algorithms of these transformations are explained
in detail in [13] [18].

The most relevant part of this low level representation, for the sake of
parallelization, is that it contains all the equations of the system divided into
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x1 x2 x3 x4 x5 x6 x7

f1
f2
f3
f4
f5
f6
f7

Table 3.1: Original Incidence Matrix

sub-systems of equations (so-called strongly-connected components, SCCs).
Most of these of sub-systems are simple assignment equations while others
might be blocks or sub-systems of SCC equations that involve linear or
nonlinear systems. This sorting and causalization of equations results in a
system which can be represented as an incidence matrix of equations and
variables in block lower triangular (BLT) form.

Consider the system of acausal equations shown in Equation 3.1. This
system of equations can be represented with a structural incidence ma-
trix where equations are represented by rows, variables are represented by
columns and there is an entry with value 1 at location [i,j] if the ith variable
appears in the jth equation. The incidence matrix for the system is shown
in Table 3.1.

f1(x1, x2, t) = 0

f2(x3, t) = 0

f3(x1, x3, x4, t) = 0

f4(x3, x5, t) = 0

f5(x1, x4, x5, t) = 0

f6(x6, t) = 0

f7(x6, x7, t) = 0

(3.1)

Note that these equations are in implicit form and it is not yet known
which equation can be used to solve for which variable. In order to be able
to solve the system the compiler has to sort the equations and match them
with the variables. The sorting process should result in a system of strongly
connected components (SCCs) representing subsystems of equations. In
simple cases such SCCs only contain a single-assignment equations for which
it is explicitly known which variable to compute for in each equation.

One possible way to achieve this causalization and sorting of the system
is by manipulating the incidence matrix. The idea is to convert the given
incidence matrix in to a Lower Triangular Matrix (LT) if possible or to a
Block Lower Triangular Matrix (BLT) otherwise. If the incidence matrix of
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the system is in LT form it can be guaranteed that every variable can be
solved by the equation at the same level as itself, i.e., all SCCs contain only
a single equation. In addition we make sure that no variable will be used
before it is evaluated or computed.

An alternative is to represent the system as a bipartite graph and apply
Tarjan’s algorithm. The bipartite graph for the system in Equation 3.1 is
shown in Figure 3.1. The algorithm starts by coloring all edges between
equations and variables as black. It Initializes counters i to 1 and j to N
where N is the number of equations in the system. Then applies these two
rules recursively.

• If an equation has only one black line attached to it, color that edge
green, follow it to the variable it connects to and color all remaining
edges of that variable blue. Number the equation i and increment i.

• If a variable has only one black line attached to it, color that edge
green, follow it to the equation it connects to and color all remaining
edges of that equation blue. Number the equation j and decrement j.

If the algorithm terminates successfully it will produce a causalized
system of blocks containing subsystems of inter-dependent equations, also
called algebraic loops, representing strongly connected components (SCCs)
in the graph. The associated incidence matrix is said to be of Block Lower
Triangular (BLT) form. In the trivial case where each subsystem consists of
a single equation the system will be completely causalized with an incidence
matrix in the Lower Triangular (LT) form. There are methods of eliminat-
ing or at least reducing the size of SCCs loops in order to solve the whole
system more efficiently. The sorting and matching process as well as the
methods for reducing SCCs are discussed in detail in [13].

Figure 3.1 shows some of the iterations of applying this algorithm to the
system of Equation 3.1. Figure 3.1c depicts the strongly connected subsys-
tem of equations problem explained above shown with the edges marked
red. The final mostly causalized system is shown in Figure 3.1d.

Now, if the equations from the final stage of the matching process are
extracted and each variable is solved for in the corresponding matched equa-
tion the system shown in Equation 3.2 will be produced. The corresponding
incidence matrix is shown in Table 3.2. Note that the matrix is in BLT form
and not completely LT.

x3 := g2(t)

x5 := g4(x3, t)

g3(x1, x3, x4, t) = 0

g5(x1, x4, x5, t) = 0

x2 := g1(x1, t)

x6 := g6(t)

x7 := g7(x6, t)

(3.2)
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Figure 3.1: Matching of Equations

3.4.2 Strongly Connected Components

Five of the equations in the system are causalized to single assignment state-
ments of the form:

x := f(
v, t) (3.3)

where t represents time and v is the vector of variables involved in the
computation of x. Equations g3 and g5, however, are strongly connected,
i.e., mutually dependent on each other, thus forming a subsystem of equa-
tions which needs to be solved simultaneously for the variables x1 and x4.
Although rather simple here, such blocks of equations, forming linear or
nonlinear systems, can consist of tens or hundreds of equations.

Solving such simultaneous subsystem of equations is usually the most
computationally expensive part of a simulation since these subsystems usu-
ally involve multiple assignments, complex linear algebra operations, some
kind of iterative method for solution, etc. These complex blocks of equa-
tions often give rise to potential data parallelism within the block since most
linear algebra operations can be parallelized. However this thesis work is
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x3 x5 x1 x4 x2 x6 x7

g2
g4
g3
g5
g1
g6
g7

Table 3.2: Incidence Matrix of causalized system

x3 x5 {x1,x4} x2

g2
g4
g35
g1

g6
g7

x6 x7

Table 3.3: Incidence Matrix in Lower Triangular form

not concerned with this potential and treats such complex blocks as atomic
units of computation that need to be executed non-preemptively as a whole
by a single processing unit. The system of equations formed by such blocks
of equations can be represented as


x := f(
v, t) (3.4)

where x is now the vector of variables being updated by the system of
equations. In the above example the equations g3 and g5 are treated as one
single vector equation of the form:

{x1, x4} := g35(x3, x5, t) (3.5)

resulting in the incidence matrix of Lower Triangular form shown in Table
3.3.

3.4.3 Decoupled Systems and TLM for Coarse-grained
Parallelization

From the Incidence matrix in Table 3.3 it can be observed that the sys-
tem contains two sets of connected components. The sets {g6,g7} and
{g2,g4,g35,g1} form two completely independent subsystems or partitions.
Having these kinds of equation systems with multiple decoupled system
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gives a potential for parallelism in each time step of a simulation. Since
the two sets have no equations with dependencies outside their set they can
potentially be computed simultaneously for each time step. This provides
the opportunity to utilize a coarse-grained automatic parallelization mech-
anism to improve the simulation performance of models with such multiple
systems.

If a system has many such decoupled subsystems of equations then a
load balancing method needs to be available in order to make sure that the
parallelized simulation can distribute work approximately equally to each
processing unit involved in computation. However before any load balancing
is performed there need to be some kind of cost/load estimation mechanism
which can be either static or dynamic.

The simplest cost estimation mechanism would be a static cost estima-
tion based on the size of the subsystem, i.e., the size of a partition is defined
to be its cost. The load balancing can be done by trying to move and merge
these partitions with each other to end up with sets of partitions with equal
size or cost. This, obviously, is not the most effective method since not
all equations have the same computational cost. Different expressions in
different equations result in different computation load. Things are further
complicated by the presence of linear and non-linear systems, loops, func-
tion calls, etc. More effective static and dynamic cost estimation methods
are discussed later in Section 3.5.4.

Once the partitions have been balanced then code for parallel execution
can be generated in a rather straight-forward fashion. Generate each system
separately, use as many processing units as the number of partitions if there
are no restrictions on the number of units. If the number of processing
units is specified or restricted then merge the partitions further to match
the number of processing units. Then synchronize all the processing units at
the end of each time step. Of course things are not so straight-forward for an
actual implementation and a number of factors should be taken into account.
The most important one of which is runtime thread safety, i.e, there should
be mechanisms ensuring that shared data structures are manipulated in a
manner that guarantees safe and correct execution.

The coarse-grained parallelization approach discussed above should work
sufficiently well if the system in question contains many partitions and has a
rather uniform cost for each individual equation. Unfortunately, in practice,
most physical models are rather highly connected. This is not surprising
since modelers and engineers are usually interested in modeling a specific
aspect of a system that contains variables which are dependent on each other
and ignore aspects of the system that does not affect or is not affected by
what they want to observe.

The decoupling of systems can be further improved by a modeling tech-
nique called Transmission Line Modeling (TLM). We have previously inves-
tigated this approach [52] and implemented a parallelization that is based on
balancing these completely independent systems and executing them in par-
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allel. Although we have found quite satisfactory results with this approach
it has limited genera usability for two reasons. First many application mod-
els are heavily connected. Modelers and engineers are usually interested in
modeling a specific aspect of a system which contains variables that are de-
pendent on each other and ignore aspects of the system that does not affect
or is not affected by what they want to observe. This limits the amount of
decoupling we can utilize.

The second reason is that improving the system decoupling with the
TLM approach requires modifying the original Modelica model which is
also something most modelers and engineers are not excited about. They
like their models to resemble the natural system they are modeling and
TLM may add some obscurity to the model. However, other models who
are using TLM argue that TLM improves the model structure by making
existing physical delays or decoupling more explicit. In addition there are
quite large number of Modelica models and libraries around already in use
which can benefit with some parallelization without the need for them to be
rewritten or revised.

For these reasons we have decided to improve the previous implementa-
tion to analyze not just connected components but the whole system and
extract more parallelism. To this end we have designed and implemented a
task graph based approach to better represent the system and enable a more
convenient analysis. This approach uses graph structures and algorithms to
represent the complete equation system as a task graph and processes it
further to extract parallelize and improve performance overall.

An alternative approach of extracting parallelism by further analyzing
and manipulating the BLT incidence matrix is proposed by Casella [12].

3.4.4 From Equation Systems to Task Graphs

The parallelization process starts by converting the incidence matrix into
an adjacency list representing a directed acyclic graph (DAG). A directed
acyclic graph DAG, where each node represents an equation block and each
directed edge from block i to block j represents a dependency of block j to
the variable defined (assigned to) in block i, can be built using the informa-
tion provided in the incidence matrix. Assuming the incidence matrix (IM)
has N entries the graph can be constructed as shown in Listing 3.1. The re-
sulting DAG after applying this algorithm to the lower triangular incidence
matrix shown in Table 3.3 is shown in Figure 3.2.

From now on we will refer to equation blocks (both simple and complex)
as tasks and treat both kinds of blocks as atomic tasks. This, naturally, gives
rise to a task system with tasks of variable length (computation times) and
width (the number of variables involved). Clearly some sort of scheduling is
needed in order to balance this task system and execute it efficiently.
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v0 = add_node()

for i in 1:N-1 loop

vi = add_node()

for j in i-1:0 loop

if IM[i,j] != 0

add_edge(vj,vi)

end if

end for

end for

Listing 3.1: Incidence Matrix to Adjacency List

3.4.5 Data Dependency

Each edge in the task graph from one task/equation to another represents
some kind of data dependency between these tasks. A directed edge from
equation A to equation B means that equation B will have to be evaluated
after equation A has been fully evaluated. These data dependency edges
are created by analyzing which variables are used and/or updated in each
equation and finding the intersections between the variable sets of the two
equations.

Before we can discuss the data dependencies to equation systems result-
ing from a mathematical modeling environment like Modelica we need to
explain the types of data dependencies that can appear in task systems.

Generally there are three types of data dependencies between different
tasks: flow dependency, anti dependency and output dependency. Theses are
described below. For all explanations assume we have three tasks A, B and
C which appear respectively in sequence in the original sequential flow.

Flow Dependency

Flow dependency or true data dependency is the dependency created as a
result of task B using data produced as a result of task A. This is a read
after write dependency and has to be strictly obeyed, i.e, the corresponding
task need to be executed in the original order. Consider

A : a = b+ c

B : d = sin(a)

Here the second statement uses the value a which is produced by the first
statement to compute the value of d.

Anti Dependency

Anti dependency is the dependency created as a result of task B producing a
new value of data that was used in A. This is a write after read dependency.
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Figure 3.2: Resulting task graph of equation system

Consider

A : a = b+ c

B : b = sin(d)

C : e = b− c

Here the second statement produces a new value for the variable b which
has already been used by the first statement to compute the value of a. If
some parallelization mechanism manages to execute task B before A then
the result of A will be wrong. Furthermore, if they were to execute simul-
taneously on different processing units the result will be undefined since we
are trying to read and write to the same variable b at the same time.

It is possible to resolve these dependencies by renaming. For example
we can introduce a new variable t to hold the value of b as output of B and
rename all subsequent uses of b to t as shown below.

A : a = b+ c

B : t = sin(d)

C : e = t− c

Output Dependency

An output dependency is the dependency created as a result of task some
task B producing a new value of data that was also produced by some other
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task A. This is a write after write dependency. Consider

A : a = b+ c

B : a = sin(d)

C : e = a− c

Here the second statement produces a value for the variable a. However,
the first statement also produces a value for the same variable. Unlike anti
dependency modifying the execution order these tasks will not invalidate a
correct result. However, if they were to run simultaneously with different
processing units then there might be undefined behavior since the two units
will be trying to write the same variable b from at the same time.

A renaming operation can also resolve these dependencies completely.
For example we can introduce a new variable t to hold the value of a as
output of B and rename all subsequent uses of a to t resulting in the same
resolved structure shown for anti dependency.

Data Dependencies in Mathematical Equation Systems

Now that the different kinds of dependencies found in task systems are
explained, the question is how would systems of equations resulting from
mathematical modeling environments would appear in regard to these de-
pendencies. Task graphs created from theses equation systems have some a
few characteristics that are interesting for dependency analysis.

Modeling environments and languages have certain restrictions on the
structure of the equation system that is to be solved. This restrictions can
simplify the job dependency analysis for parallelization by eliminating or
preventing certain types dependencies.

The causalized equation systems generated from Modelica models will
have the same number of equations as variables. In other words the incidence
matrices for these systems need to be square matrices. The sorting and
matching processes explained in 3.4.1 result in systems with some useful
properties.

• Causalization/Matching: Every variable in the equation system will be
assigned to only once. That means that the variable will be updated
by only one equation (left hand side variable updated in one and only
one equation). This in turn insures that we will have no output de-
pendencies in the generated system. This also applies for SCC blocks
of the from shown in Equation 3.5.

• Sorting: Every variable is assigned a value before it is used. That is it
appears on the left hand side of an equation before it is used by the
right hand side in any equation. Since, by the previous rule, a variable
can only be assigned by only one equation there will be no cases where
a variable can be written to after it is read. This in turn ensures that
there will be no anti dependencies in the system.

35



3.5. THE TASK SYSTEMS LIBRARY

These two properties can also be observed by realizing that the incidence
matrix for the system is in lower triangular form where the diagonal elements
specify the equation which updates the corresponding variable (black cells
in Table 3.3).

The only dependency types that need to be considered are true depen-
dencies. These are the kinds of dependencies that define the structure of
task systems created corresponding to a mathematical equation systems.

3.4.6 Data Memory

Task systems represented by directed acyclic graphs usually associate some
attributes to the edges of the graph in addition to just using edges to repre-
sent dependencies. The most common attribute, for edges of task systems
intended for parallel execution, is communication cost. This cost is the time
used for sending data from the source node of the edge to the destination
node.

In distributed memory computer architectures, this communication cost
is an important attribute that can affect the scheduling process as well as
execution performance of the parallelized system. Therefore considerations
need to made to make sure that data is communicated only when necessary.
For example it might be better to accumulate data to be sent from one node
(possibly originating from multiple tasks) and forward this data to another
node at one time in order to reduce the overhead involved with many send
operations.

In this work however we are solely interested in shared-memory multi-
core architectures. This essentially renders the need for communication
non-existent. Data is shared by all processing units and is visible to all
throughout the simulation process. Therefor edges in this task system rep-
resentation have no cost attributes needed. In fact edges currently have no
extra attributes apart from representing dependencies.

In the future it might be useful to improve the implementation to also
handle distributed memory computer architectures as well. In that case the
issues mentioned above for those systems need to be taken in to considera-
tion.

3.5 The Task Systems Library

The task systems library, developed as part of this thesis work, is a generic
task representation, clustering, profiling and execution library written in
C++. It uses C++ templates heavily and is built on top of the Boost
Graph and Intel Thread Building Blocks Libraries. Boost Graph is used to
represent the underlying graph primitives for the task systems and TBB for
the parallelization primitives. The library can be used for the whole task
representation and parallelization process including clustering, profiling and
execution. However it is also possible to only use the library for one or
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more of these purposes. For example it can be used to perform a specific
set of clustering algorithms on the task system. The resulting system can
be used for other purposes. The idea is to provide a framework that is easy
to extend, for example by adding a new custom clustering algorithm or a
new scheduling algorithm while the rest of the system representation stays
intact. Currently the library supports only shared memory systems.

3.5.1 Task Parallelism and Scheduling

The task parallelization approach and the accompanying Task System li-
brary presented here is originally implemented for the OpenModelica simu-
lation compilation and runtime system. However the theory can be applied
to any system that implements an abstraction of tasks and dependencies.
This can, for example, be a train scheduling problem with connections, ex-
ecutable code generated from compilers, a system of equations with depen-
dencies, etc. The library is a generic C++ template library. It is designed to
be as generic as possible and to provide a lot of flexibility in how clustering
algorithms and schedulers are implemented and used.

This thesis work presents automatic parallelization of systems of equa-
tions in the context of code generation and execution of the OpenModelica
compiler for models provided in the Modelica language.

3.5.2 Task Systems

The library uses an adjacency list to represent a directed acyclic graph
(DAG) that models a given task system. The task system can be represented
by the tuple

G = (
V , 
E, c) (3.6)

where V is the set of vertices, E is the set of directed edges and c is the
execution cost of each vertex. Each vertex in the graph corresponds to
one task and each directed edge represents a data dependency between the
source vertex/task and the destination vertex/task.

An abstract root node/task is added to each task graph. All tasks in
the system which would otherwise be root nodes, i.e., have no parent task,
are added as children of this root node. This abstract node is used to
conveniently manipulate the task system. The level of a node is defined as
the longest path from the root node to the node. Since the task system is
represented as a DAG with non-weighted directed edges it is possible find
the level of each node with a breadth first visit.

The abstract root node is the only level 0 node and all tasks that do not
depend on another task in the system become level 1 nodes with the root
node as parent.
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3.5.2.1 Tasks and Clusters

A user defined task can be represented as a C++ class. This class must
inherit from the abstract class Task provided by the library. The abstract
base class provides the necessary information for the clustering and schedul-
ing algorithms. For example a modified version of an equation task for the
OpenModelica compiler is shown in Listing 3.2

struct Equation

: public Task

{

Equation();

long index;

std::set<long> depends;

std::set<long> updates;

virtual bool depends_on(const Task&) const;

virtual void execute();

};

Listing 3.2: A custom class representing an equation task

A node in the internal task graph representation is not a task but rather
a cluster of tasks. Each cluster initially consists of a single task i.e. when
the library is asked to create a new task it creates a new cluster with a single
task. Later the different clustering algorithms rewrite the system graph by
moving tasks from one cluster to another. If a cluster becomes empty due to
one of these task movements it gets detached from the system and destroyed.
Clusters are responsible for the profiling and execution of their tasks. Tasks
in a single cluster are always executed sequentially and in the order they are
added to the cluster.

3.5.2.2 Task System Construction

The construction of a task system starts by creation and addition of tasks.
The library can read the necessary dependency information from an XML
file and create the system automatically. Tasks can also be added manually
and one by one directly into the task system. This method can be used if it
is not possible to generate an XML representation of the system.

Creation of edges or dependency representations can be handled in two
ways as well. The first method involves the programmer/compiler directly
creating edges between vertexes. Another option is to let the library handle
the analysis to some extent. Whenever a task is added to the system the
library traverses each existing task and determines if there is a dependency
between the existing task and the new task.

If creation of edges or dependencies is to be handled by the library as
explained above then the new task class should override and implement the
method depends on(const Task). This function is used to determine if
a given task depends on another task and is used by the system to create

38



CHAPTER 3. AUTOMATIC PARALLELIZATION

edges between new tasks and existing tasks. It is completely up to the
programmer/compiler to specify how dependencies are decided between the
tasks. The library will just call this method for each task instance and
creates a dependency if it gets a true return value. For example in the
OpenModelica equation task class shown in Listing 3.2 this function will
check the if any of the variable ids in the depends set of the current task
exist in the set updates of the other task passed as a parameter to it as
shown in Listing 3.3. Note that there is no need to check for output or anti
dependencies as explained in Section 3.4.5.

bool Equation::depends_on(const Task& other_b) const {

const Equation& other = static_cast<const Equation&>(other_b);

bool found_dep = false;

// True dependency

found_dep =

utility::has_intersection(this->depends.begin(),this->depends.end(),

other.updates.begin(), other.updates.end());

// // Anti-dependency

// if(!found_dep)

// found_dep =

utility::has_intersection(this->updates.begin(),this->updates.end(),

// other.depends.begin(),

other.depends.end());

// // output-dependency

// if(!found_dep)

// found_dep =

utility::has_intersection(this->updates.begin(),this->updates.end(),

// other.updates.begin(),

other.updates.end());

return found_dep;

}

Listing 3.3: Depdency Detection for OpenModelica Equation Task

If the execution of tasks is also to be handled with the system then
the new derived task class should also override and implement the method
execute() which is used by the executors of schedulers to launch each task.

3.5.3 Clustering Algorithms

The library also provides a few methods for clustering the system graph
as well as mechanisms for writing customized clustering algorithms. These
algorithms traverse the task system and move tasks from one cluster to an-
other depending on a specific criteria. The available algorithms can generally
be divided in two categories as: cost-based and non-cost-based.
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for each node N in breadth_first_visit()

if number_of_parents(N) > 1 then

FP = get_next_parent(N)

FPL = get_level(FP)

while P in get_next_parent(N)

if get_level(P) == FPL then

merge_nodes(FP,P)

end if

end while

end if

end for

Listing 3.4: MLP clustering

3.5.3.1 Merge Single Parent (MSP)

The simplest clustering available is the merge single parent (MSP) rule.
This clustering algorithm traverses the system graph and merges all tasks
that have only one parent task to their parents. There are a number of
advantages with this simple rule. The first advantage is that it eliminates the
need for treating cheap tasks, i.e., tasks with low execution time, separately
by the schedulers thereby reducing overheads for schedulers. Furthermore,
since a dependency (parenthood/childhood) means sharing of some data
between the two tasks, it improves temporal locality (cache for CPUs and
local/shared memory spaces for GPUs) and makes sure data is used as soon
as it is available for the next task. If a cheap child task is left unmerged then
it might end up further away from the parent task in terms of execution
order either due to application of other clustering rules or scheduler task
selections. This will result in a poor temporal locality for data without any
gain in potential parallelism.

3.5.3.2 Merge Level Parents (MLP)

The second available algorithm is called Merge Level Parents (MLP). This
clustering rule utilizes the level of a node and parenthood relationships be-
tween nodes to apply merging rules. It starts by finding the level of each
node in the task graph. Then nodes are traversed in a breadth first manner
starting from the third level (level 0 contains only the root node and nodes
at level 1 have no parent apart from the root node). Then the merging rule
is applied as shown in Listing 4 2.

The rule visits each non root node or task and merges its parents. If the
node has only one parent then nothing is done). However parents are not
merged if they are different level tasks. This restriction is enforced in order
to avoid creating paths that will potentially create cycles in the graph. For
example consider the system shown in Figure 3.3. If the MLP rule is applied
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to node 5 of this task system without the level restriction on parent node
merging the system will end up with a cycle between the merged nodes
1,3,4 and 2. Although it is possible to check if merging of nodes would
introduce a cycle prior to performing a merge, we have opted not to do
this for performance reasons. Path finding is an expensive operation and
performing it for every single merge can severely impact the efficiency of the
whole algorithm.

Figure 3.3: Example Cycles in MLP clustering

The two algorithms explained so far (MSP and MLP) are cost oblivious.
They do not consider the cost of the child task, the parent task, or the
merged task while applying the merging rules. They are useful for improving
temporal locality so that tasks that operate on the same portion of data are
executed as close in time as possible.

For task systems composed of tasks with relatively uniform costs these al-
gorithm are convenient since they are fast and can generate balanced merged
tasks. However for systems with tasks of varying cost they can end up
with unbalanced branches that can affect parallelization severely for some
scheduling algorithms, for example the level scheduler described in Section
3.5.5.1.

It should be noted that it is possible and rather easy to extend these
algorithms to consider costs or to provide cost aware alternatives of them.
The library already provides all the cost information needed as well as meth-
ods for cost based analysis e.g. selecting and sorting of tasks according to
cost. However for now we have implemented other cost based algorithms.

The cost based algorithms traverse the task system and perform cluster-
ing of tasks until a given cost target is achieved. The target cutoff cost for
a specific algorithm should be provided by the programmer/compiler. The
cutoff costs for these algorithms should be selected carefully so that unnec-
essary clustering is avoided since this will limit the amount of parallelization
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available for the schedulers. Selecting too high cutoff cost means that more
tasks will be merged into a single cluster. As mentioned before, tasks in
a single cluster are always executed sequentially and in order. Selecting a
high cutoff cost can result in forcing theses algorithms to merge two tasks
that could have run in parallel. This will limit the amount of parallelization
later available for the schedulers. On the other hand selecting a too small
cutoff cost will prevent the algorithms form merging tiny tasks together.
Having too many tiny tasks in the system, in turn, incurs extra overhead
for the schedulers. The extra potential parallelization obtained by keep-
ing these small tasks separate is not worth the overhead involved in keeping
track of, scheduling and thread management of launching them individually.
Therefore it is better to cluster them together.

For these reasons the cutoff cost should be selected cautiously for each
of these algorithms. However, there is no universally convenient cost to be
used for each algorithm since differences in architecture and intended use
govern the decisions to be made. For example a task can be considered too
small on a fast architecture with a high thread context switching overhead
due to the fact that the architecture incurs more overhead to schedule the
task separately than to merge it with another high cost task. On the other
hand it might be better to keep it separate on a slow architecture but with
very efficient thread management (e.g. GPU systems).

As mentioned earlier, the library can also handle profiling of the system
for estimating costs (see Section 3.5.4 for detail). In this case, the effec-
tiveness of these cost based algorithms is also very dependent on the clock
resolution of the architecture.

Before describing the available cost based clustering algorithms we need
to define the bin packing problem and related algorithms in the context of
our task systems and cost model. For cost analysis of our task systems we
define the upper bounded bin packing problem as

• given a set of nodes with costs C = {c1,c2 . . . ,cn} where

ci ≤ cc, ∀ci ∈ C

partition C to a number of mutually disjoint subsets B = {B1,B2

. . . ,Bn} such that
∑

x∈Bi

x ≤ cc, ∀Bi ∈ B

where cc is the cutoff cost.
(3.7)

And the lower bound bin packing problem can be defined as

• given a set of nodes with costs C = {c1,c2 . . . ,cn} partition C to a
number of mutually disjoint subsets B = {B1,B2 . . . ,Bn} such that

∑
x∈Bi

x ≥ cc, ∀Bi ∈ B

where cc is the cutoff cost.
(3.8)
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Sorted_Nodes = sort_nodes_descending(Given_Nodes)

if cc < get_cost_first_Node(Sorted_Nodes) then

cc = get_cost_first_Node(Sorted_Nodes)

end if

while node N in get_next_node(Sorted_Nodes) loop

gap = cc - get_cost(N)

if gap > tolerance then

while node M in visit_next_node(Sorted_Nodes) loop

if get_cost(M) < gap then

gap = gap - get_cost(M)

merge_nodes(N,M)

end if

end while

end if

end while

Listing 3.5: Upper bound FFD

We have implemented a modified versions of the First Fit Decreasing
(FFD) packing [16] algorithm for problems of upper bound bin packing as
well as lower bound packing problems.

Given a set of nodes both algorithms start by sorting nodes in descending
order according to cost. Once sorted the upper bound FFD starts by select-
ing the first node as the first bucket. Notice that for upper bound packing
the provided cutoff cost must be at least as big as the largest cost in the
set. If the given cutoff cost is less than the cost of the largest task, then it
is raised to this highest task cost. Then the algorithm iterates starting from
the next node until it finds a node with a cost that can fit in to the first
bin with in some pre-specified acceptable gap. If such a node is found it is
added to the bin and removed from the set. Iteration continues until either
the bin is full within the accepted tolerance or there are no more nodes to
visit. Then the next available node is selected as the second bin (this is the
biggest node in set now) and the process is repeated. This is performed until
there are no more nodes left in the original set. Simplified pseudo-code for
upper bound FFD is shown in Listing 3.5.

The lower bound FFD partitioning also starts by selecting the first node
as the first bin. If the cost of the node is already bigger than the cutoff
cost cc then the node is accepted as a bin and the next node is selected as
the new bin. If the cost of the first node is less than cc then the algorithm
iterates over the set of nodes in reverse order (i.e starting from the last node
which is the smallest to the node next to itself). The first visited node (the
last node) is added to the bin. If the merged cost is higher than cc then the
next biggest node is selected as a new bin and iteration starts again. If not
the next smallest node is added to the current bin and so on until the cost
of the bin exceeds cc. Once the bin is full (cost exceeded) the next biggest
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Sorted_Nodes = sort_nodes_descending(Given_Nodes)

while node N in get_next_node(Sorted_Nodes) loop

gap = cc - get_cost(N)

while gap > 0 loop

M = get_last_node(Sorted_Nodes)

gap = gap - get_cost(M)

merge_nodes(N,M)

end while

end while

Listing 3.6: Lower bound FFD

node and selected and the whole iteration is started. Simplified pseudo-code
for lower bound FFD is shown in Listing 3.6.

3.5.3.3 Merge Children Recursive (MCR)

The first cost based algorithm available is the merge children recursive
(MCR) rule. This algorithm is somehow a mix of both MSP and MLP rules
with some modification and cost considerations. The algorithm traverses all
nodes of the graph in a depth first manner. For each node it collects all
children of the node which have single parent (i.e. the current node). This
subset of children nodes is then partitioned in to bins of minimum cost cc
by applying the lower bound FFD.

Merging all single-parent children has improves temporal locality since
all these tasks use portions of data which is updated by the parent task. If
these tasks are merged together then it can be guaranteed that they will
not be moved in to other clusters (merged with other nodes with different
parents) later by additional clustering algorithms. Considering the cost of
the tasks helps to achieve a trade-off between parallelizability and overhead
involved in dealing with many small tasks. By removing tasks below the
cutoff cost in the task system we make sure that tasks with higher over-
head than execution time will not keep schedulers busy. In addition the
lower bound FFD algorithm gives optimally balanced clusters that can be
launched in parallel as soon as the parent task has finished execution.

3.5.3.4 Merge Level for Cost (MLC)

Another available cost based algorithm is the merge level for cost (MLC)
rule. This rule is implemented primarily to be used with the Level Scheduler
presented in Section 3.5.5.1. However it can be used together with other
schedulers which requires the number of processing units (cores, machines...)
that can execute tasks to be known beforehand.

Given the number of bins N, the algorithm tries to collects all nodes
at the same level and tries to pack them in to N bins while keeping the
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cumulative cost of each bin as close as possible to each other. This is a
k-way spectral partitioning problem where we are interested in partitioning
a given set S in to k subsets

Bk

so as to minimize some predefined objective function

F (Bk)

For our task system we can define the problem as

• given a set of nodes with costs C = {c1,c2 . . . ,cn} partition C in to
k mutually disjoint subsets of costs CB = {CB1,CB2 . . . ,CBk} such
that

k∑
i=1

|copt − CBi|

where copt =
1

k

k∑
i=1

ci

(3.9)

is minimized.

That is given a set of nodes we have to partition them in to k bins where
the cost of each bin is as close as possible to the optimal parallel cost.
The optimal parallel cost is where all the bins are of equal cost guaranteeing
that, when run on k identical processing units, all bins will finish at the same
time. Our implementation uses approximations to convert this problem in
to a upper bound bin packing problem followed by a sorted list scheduling .
While the optimality of this approximation is open for interpretation it has
turned out to be effective and fast for practical needs.

The algorithm works in two steps. The first step starts by calculating
the optimal parallel cost copt. That is the sum costs of all nodes divided
by the number of bins. Now consider we have an upper bound bin packing
problem where the cutoff cost cc is copt. The upper bound FFD algorithm is
applied to the sorted nodes as copt as the cutoff cost. Since tasks cannot be
broken down to fit gaps and and upper cost limit is imposed on bin sizes the
algorithm might not be able to fit all nodes into bins. These remaining nodes
are handled in the next step of the algorithm. In this steps the algorithm
picks the largest task from the set of remaining tasks and adds it to the
bin with the smallest cost. This process is repeated until there are no more
tasks remaining.

3.5.4 Profiling and Cost Estimation

There are two ways of handling cost estimation for tasks. The first method
is static cost estimations. In a static cost estimation approach tasks are
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assigned costs when the task system is constructed. In other words these
cost are decided by the compiler at compile time or by the user at task system
construction stage. The second method of cost estimation is dynamic. It
is dynamic in the sense that task costs are estimated by actually executing
and profiling each task at least once. This means estimations are done at
run-time. These two cost estimation methods are discussed here in detail.

3.5.4.1 Static Cost Estimation

Static cost estimation relies on user provided cost values for the whole op-
eration of clustering and scheduling. Users have to set costs of task either
at task creation time or later but before applying any clustering rules.

Static cost estimation is suitable for handling tasks that are executed
only once or very few times per program or whole system execution. For
systems of this nature task costs have to be estimated manually during
compile time since there will be no opportunity to actually measure and store
execution times of the tasks at run time. This can be done by analyzing
the internal representation of tasks (e.g., traversing abstract syntax trees
or intermediate representations at compile time and estimating costs per
expression).

Static cost estimation is also mandatory when the library is used just for
offline scheduling. Since there is no execution of tasks in this case, all cost
information should be provided by the user. Task costs can vary between
executions due to multiple reasons. For example differences in architecture
and current load on executing machines can significantly affect costs of tasks.
In addition compile time analysis of abstract syntax or internal representa-
tions of code to estimate cost is not always possible. For example calls to
external or library routines cannot be traversed to estimate cost at compile
time since the source code is not available.

3.5.4.2 Dynamic Cost Estimation

Most modeling and simulation languages and environments, in contrast to
computation languages like C++ or Java, can involve different kids of it-
erations over a certain set of tasks to solve the given problem (e.g. DAE
solvers, numerical iterations...). This provides the opportunity to measure
and store execution costs of tasks at runtime and to use this information to
perform more effective clustering and scheduling.

In dynamic cost estimation mode the implementation always assumes the
first request to evaluate the whole task system as a profiling stage. More
specifically the library will not perform scheduling before executing the task
system once. In this first execution step all tasks are executed sequentially
and in profiling mode. Execution times are recorded and stored in each
task. Once the whole system has been executed the library will schedule the
system. In all subsequent steps or calls for evaluation of the system, parallel
execution is performed using the existing schedule unless rescheduling is
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requested explicitly. Periodic rescheduling might be useful since task costs
might change significantly between evaluations of the task system due to
state changes in the system.

To illustrate the dynamic cost estimation and execution process we can
look at the simulation process of the OpenModelica Compiler (OMC). As
mentioned earlier OMC takes an object oriented acausal Modelica model
representation and generates a system of DAEs to be solved. This system of
DAEs is then solved by OMC’s runtime system. For example consider the
system of ODEs only. Once initialization of the model system is completed,
the ODE solvers of the runtime system evaluates the ODE system over
multiple time steps. The first evaluation call of ODE systems is considered as
a profiling step. Each equation or block of equations is evaluated sequentially
and execution times recorded. As soon as the ODE system finishes one
whole evaluation (i.e., one time step) the scheduling is performed. Every
subsequent time step will involve parallel evaluations of each equation in the
ODE system using this schedule.

Accurate cost measurements are vital for the effectiveness of clustering
rules. Especially in systems containing relatively small and highly vary-
ing costs from task to task. Since all the cost based algorithms explained
above utilize the cost times collected by the profiling stage, inaccurate or too
crude timing results can reduce the effectiveness of the resulting clustering
task system by forcing them to apply/not apply the optimal clustering. For
this reason time measurements should have satisfactory resolutions to suc-
cessfully measure even the smallest cost tasks in the system. On Windows
systems the library uses the QueryPerformanceCounter API function. On
POSIX systems the Boost chrono library is used. Although both of these
systems should provide sufficient clock resolution for most task system pur-
poses it should be noted that resolutions might vary from one architecture
or configuration to another. As a result performance of parallelization can
also vary respectively due to different scheduling outputs.

3.5.5 Schedulers

Currently two simple scheduler implementations are available in the library.
The first scheduler is a level based scheduler. This is a lock step or wave
front based scheduler. The second scheduler is built on top of Intel Thread
Building Blocks’ flow graph implementation .

Schedulers in the library are implemented as standalone C++ template
classes. These classes are responsible for executing clusters in parallel and
synchronizations in their own specific way. Actual clustering (if needed) is
provided by the clustering classes presented in Section 3.5.3. These cluster-
ing classes are provided as template parameters for the schedulers and are
applied in the order they are passed. For example the Level Scheduler class
used mainly in the current OpenModelica parallelization implementation is
shown in Listing 3.7.
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3.5.5.1 Level Scheduler

The level scheduler algorithm schedules tasks of the system one level at a
time synchronizing between levels only. Node or tasks in the same level or
wavefront are completely independent of each other and can run in parallel.
Level schedulers are simple and incur very low overhead in managing tasks
and synchronization since the only requirement is that we make sure all tasks
of one level are finished before starting any task in the next level. This can
be implemented as a single barrier between sets of tasks. No thread starts
working on the next task before all threads have reached the barrier thereby
guaranteeing that all tasks in the level have finished. This is provided by
the core executor class StepSync.

The actual level scheduler class is a specialization of this core algorithm
with specific clustering algorithms. Variations of this level scheduling ap-
proach can be created simply by specializing the StepSync executor with a
different set of clustering algorithms in different orders.

Despite being a ”simple” scheduler, a level scheduler can be a quite
effective and fast scheduling algorithm when combined with appropriate
clustering algorithms to make sure that merged tasks (clusters or bins) at the
same level are as balanced as possible. For example the actual level scheduler
class that is mainly used in the OMC parallelization is a StepSync executor
with two clustering stages: the Merge Children Recursive rule applied first
and then the Merge Level for Cost. This is the class shown in Listing 3.7.

template<typename TaskType>

struct LevelScheduler :

StepSync < TaskType

,MCR

,MLC

> {};

Listing 3.7: Level Scheduler Class for OpenModelica

To illustrate the effect of applying specific clustering algorithms and their
influence on the effectiveness of the level scheduling approach let us consider
a Four Bit Binary Adder model (Modelica.Electrical.Spice3Examples.
Spice3BenchmarkFourBitBinaryAdder) from the Modelica Standard Li-
brary (MSL) . The original task graph for the ODE system of this model
is shown in Figure 3.4. The system contains 1122 nodes or tasks and
1360 edges. Scheduling all these tasks with the corresponding dependencies
obeyed is clearly a very expensive task. Performance can further deteriorate
if most of these tasks happen to incur more overhead than the gain from
parallelization.

Applying MCR (Section 3.5.3.3) clustering algorithm to this task system
reduces the number of individual tasks (now clusters with possibly multiple
tasks) and the number of edges to 569 and 620 respectively.

After applying MLC clustering(Section 3.5.3.4) clustering algorithm with
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Figure 3.4: Original task system of Four Bit Binary Adder model

k=8 (i.e., targeted for 8 core execution with the level scheduler) to the
resulting task graph we are left with a graph of 27 clusters and 121 edges.
If instead we apply MLC with k = 4 (i.e., targeted for 4 core execution),
the resulting task system ends up with a graph of 18 clusters and 72 edges.
The resulting graphs for the task systems with application of 8-way and 4
way MLC are shown in Figure 3.5 respectively.

Note that many edges in the resulting task graphs of Figure 3.5 are
shortcut edges. Given vertices v1, v2, and v3 with directed edges e(v1,v2)
and e(v1,v1), edge e(i,k) is a shortcut if there is a path from j to k, i.e, k is
reachable from j.

Scheduling these simplified and balanced clusters is rather easy and
straight-forward. Once the graph have been simplified as shown the StepSync
executor traverses the final graph and collects the nodes based on levels.
Then each level is executed one after the other and clusters at each level are
launched in parallel.
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(a) 4 way clustered (b) 8 way clustered

Figure 3.5: Task system of Four Bit Binary Adder model after MCR and
MLC

3.5.5.2 Intel Flow Graph Based Scheduler

This scheduler uses the Intel TBB’s Flow Graph (TBBFL) [27] implemen-
tation as core executor. The Intel TBB Flow Graph implements its own a
message based work stealing algorithm to dynamically execute tasks in the
graph.

This scheduler class is implemented as a wrapping scheduler for TBBFL.
The scheduler incorporates clustering and hides the details of TBB related
primitives from the user. Similar to the Level Scheduler presented in section
3.5.5.1 this class is responsible for the profiling cost estimation and execution
of tasks. It automatically creates the additional flow graph once profiled
cost values are obtained and specified clustering rules are applied to the
task system.

It should be noted here that it is possible to directly create a flow-graph
representation from the original equation system. However there two main
drawbacks to such an approach. The first drawback is that this will remove
any flexibility we have with our Task System library. For example for the
OpenModelica runtime system with a given task system switching between
the Level Scheduler and Dynamic Scheduler is a matter of a single typedef
change in the C++ code. Direct implementation with TBBFL would require
a complete new implementation to be employed if any other scheduling
algorithm is to be substituted later.

The second drawback is concerned with performance. Directly creating
the flow-graph representation from the equation system eliminates the possi-
bility of applying any clustering algorithms. Applying clustering rules based
on dynamic cost estimations as previously presented above (3.5.4) consider-
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ably reduces the complexity of the original graph. This in turn reduces the
number of individual tasks the flow graph has to deal with thereby reducing
the overall overhead.

3.6 Performance Measurements

To evaluate the performance of the task scheduling implementation and
the schedulers tests have been performed using models from the Modelica
Standard Library. In the following two selected models with satisfactory
performance improvements are presented.

3.6.1 Measurement Setup

All tests have been performed on a 64-bit Intel(R) Xeon(R) W3565 CPU
with 4 cores at 3.2 GHz (3.46 GHz turbo) frequency. The machine is running
Windows 7 professional Edition. Simulations have been performed from time
0 to 1 second with a step of 0.002 seconds. All simulations are done using
the default OMC solver which right now is DASSL. Only ODE systems of
models are currently parallelized.

The time results presented do not include model compilation time. Only
simulation executable running times are measured. However, all paralleliza-
tion related execution times are included. This includes all the extra over-
head from task system creation, clustering and scheduling plus a sequential
first step computation performed to collect cost information. Therefore the
timing results here are what users should expect when running simulations
normally (sequential or parallel).

For each model we have presented the estimated speedup with level
scheduling and actual achieved speedup with level scheduling as well as
the Intel flow graph based scheduler. The estimated speedup for the Level
Scheduler is the ratio of the sequential cost to the ideal parallel cost. Se-
quential cost is obtained by summing the costs of all individual tasks in the
system. The parallel cost is obtained by summing the costs of the largest
tasks at each level in the clustered task graph.

• given a task system with tasks T of nodes {t1,t2 . . . ,tn} with costs C
= {c1,c2 . . . ,cn} and with the levels of each node calculated and given
as a set of sets of nodes of same level as L = {L1,L2 . . . ,Lm} where m
is the critical path (maximum level)

Cseq =

n∑
i=1

ci

Cpar =

m∑
j=1

lcj where

lcj = max(ci) ∀ci ∈ Lj

(3.10)
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3.6.2 Results

The first test model presented is a fifth order low-pass-filter model (Cauer-
LowPassSC) from the Electrical Analog library of MSL. Speedup curves for
this model are shown in Figure 3.6. The second model presented is the
Branching Dynamic Pipes model from the Fluid library of MSL demon-
strating the use of distributed pipe models with dynamic energy, mass and
momentum balances. The results for this model are shown in 3.7
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Figure 3.6: Speedup for CauerLowPassSC model

For the CauerLowPassSC model the Level Scheduler implementation
outperforms the dynamic flow graph scheduler for both 2-threaded and 4-
threaded executions. On the other hand for the BranchingDynamicPipes
model the flow graph based scheduler outperforms the Level Scheduler on
both runs. One reason for this behavior can be the different nature of equa-
tion system composition in the two models. The BranchingDynamicPipes
model results in an ODE task system with 48 nonlinear systems while the
CauerLowPassSC has no nonlinear systems at all. Nonlinear equation blocks
are by far the most expensive parts of the simulation executable (i.e., they
are large tasks). Having such large tasks in abundance gives the dynamic
flow graph scheduler a higher parallelization to overhead ratio since threads
spend most of their time working on these large tasks.

On both test cases we can observe that the level scheduler shows very
promising estimated speedups. Although it is not practically possible to
achieve this ideal speedup the implementation can be improved to achieve
close to estimated speedups.
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Figure 3.7: Speedup for BranchingDynamicPipes model

3.7 Conclusion

The current automatic parallelization implementation already shows signif-
icant performance improvements over sequential execution. This perfor-
mance gain is expected to improve even further in the future with introduc-
tion of more powerful schedulers and clustering rules as well as improvements
of the current ones.

We have presented a simple approach to analyze, extract, and represent
dependencies in complex equation systems. We have also presented a task-
graph based approach of extracting parallelism from these equation systems
and utilizing it in a convenient way with the help of the Task Systems library.

The clustering algorithms that are available right now have already
shown satisfactory clustering capabilities for generating efficient schedules.
Combinations of these available algorithms can be used to manipulate the
task graph to offer a more customized output that is fit for a selected sched-
uler approach as demonstrated by the scheduler implementations presented
in Section 3.5.5.

Two scheduler implementations have been developed. These schedulers
have demonstrated good speedup results on a few test models, typically 2
to 3 on a 4-core laptop. Different flavors of the existing schedulers can al-
ready be created by using different combinations and orders of the available
clustering algorithms while keeping the same core execution routine. De-
pending on the target architecture and application area this can improve
performance.
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It is possible to extend the implementation by adding new clustering
or scheduling algorithms. The necessary mechanisms to ease the introduc-
tion of new scheduling and clustering algorithms is available. This allows
users to focus on their actual algorithms and spend less time and effort on
implementing the routine support procedures.

3.8 Future Work

There is substantial room for further improvement. First of all, more clus-
tering algorithms should be implemented in order to give users/compliers a
wider range of options to use with the existing schedulers. Better clustering
algorithms lead to even better data temporal locality which should improve
performance by increasing cache usage efficiency in CPU systems. Addi-
tional scheduling algorithms should also be implemented. Even though the
two available schedulers show some performance improvement, they are by
no means suitable for all kinds of systems. This can be observed by seeing
how the two schedulers already provide different performance behaviors for
models from different application areas as presented in Section 3.6.2.

Perhaps the most important improvement needed is the introduction of
rescheduling or adaptive scheduling support. The current implementation,
as discussed earlier in Section 3.5.4, always uses the first execution of the task
system as a profiling stage. For simulations this is normally the first time
step. Of course it is preferable to perform profiling as early as possible since
it is not possible to apply the cost-based clustering algorithms and scheduling
without having the cost information available. No schedule available in turn
means no parallelization can be done and the system has to be executed
sequentially.

On the other hand the first execution of the system (or the first time
step of simulation) is usually not the best representation of the execution
behavior of the system. Simulation is dynamic by nature and the execution
cost of complex tasks can vary considerably throughout the duration of
simulation. Therefore it is vital to have adaptive rescheduling mechanisms
to keep up with the changes in the system behavior. This can be realized by
introducing periodic profiling of the system to detect variations in execution
costs of tasks. If the execution cost behavior of the system has changed
considerably then a new schedule should be generated using the current
cost information. This new schedule can be used for subsequent executions
or time as long as the system behavior remains consistent. The support for
adaptive scheduling is already planned to be added to the implementation
and will hopefully help reduce the gap between the estimated speedups and
achieved speedups.
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Chapter 4

Explicit Parallelization

4.1 Introduction

As mentioned earlier most previous work regarding parallel execution sup-
port in the OpenModelica compiler has been focused on automatic paral-
lelization where the burden of finding and analyzing parallelism has been
put on the compiler. In this work, however, this responsibility is left to the
end user programmer. The compiler provides additional high level language
constructs needed for explicitly stating parallelism in the algorithmic part
of the modeling language. This among others includes parallel variables,
parallel functions, kernel functions and parallel for loops indicated by the
parfor keyword. There are also some target language specific constructs and
functions (in this case for OpenCL). All these extensions are collectively
called ParModelica Extensions. These will all be presented in this chapter.

4.2 Background

4.2.1 General Purpose Graphic Processing Unit (GPGPU)
programming

A GPGPU is a general purpose Graphics Processing Units (GPUs) designed
for use in data-parallel graphic as well as non-graphic computations. Tradi-
tionally the use of most GPUs has been limited to processing of only graphics
data. However, in recent years it has become more common to use them
also for processing of non-graphic scientific and engineering computations.

GPGPU programming is based on the concept of using the CPU and
GPU as heterogeneous computing units. The CPU is used to execute se-
rial parts of the computation and manage the GPU whereas the GPU is
used as another highly parallel processing unit to perform parallel parts of
the computation. Different frameworks of programming for GPUs are avail-
able now. OpenCL, CUDA, DirectX [44], OpenGL [36] and DirectCompute
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[43] are some examples. The last three frameworks are more focused on
the traditional use of using GPUs for processing of graphic data. However
CUDA and OpenCL provide rather complete support for proper GPGPU
programming. These two are used widely to implement non-graphic heavy
computations.

4.2.2 OpenCL

4.2.2.1 The OpenCL Architecture

OpenCL is the first open, royalty-free standard for cross-platform, parallel
programming of modern processors found in personal computers, servers
and hand-held/embedded devices. The OpenCL programming language is
based on C99 with some extensions for parallel execution management. By
using OpenCL it is possible to write parallel algorithms that can be easily
ported between multiple devices with minimal or no changes to the source
code. The framework is composed of the OpenCL; programming language,
API, libraries and a runtime system to support software development. The
OpenCL framework can be divided in to a hierarchy of models: Platform
Model, Memory model, Execution model and Programming model. A brief
description of these models is given in the following sections. However, for a
complete understanding of the OpenCL framework it is recommended that
the reader accesses [37].

4.2.2.2 Platform Model

The OpenCL platform model is defined as a Host processor connected to one
or more OpenCL devices. The OpenCL devices are divided into one or more
Computing Units (CU) which in turn are divided into one or more Processing
Elements (PE). The host is responsible for managing the executions on
OpenCL devices. This management includes: identifying and initializing
OpenCL devices, data copy operations and submitting parallel jobs to the
OpenCL device.

4.2.2.3 Execution Model

The execution of an OpenCL program consists of two parts. The Host
program which executes on the host processor and the OpenCL program
which executes on the OpenCL device. The host program manages the
execution of the OpenCL program. An OpenCL program is a collection of
kernels which execute as separate and independent programs. Kernels are
executed simultaneously by all threads specified for the kernel execution.
The number and mapping of threads to Computing Units of the OpenCL
device is handled by the host program. Each thread executing an instance
of a kernel is called a work-item. Each thread or work-item has unique
id to help identify it. A work-item can have additional id fields depending
on the arrangement specified by the host program. Work-items can be
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arranged into work-groups. Each work-group has a unique id. Work-items
are assigned a unique local id within a work-group so that a single work-
item can be uniquely identified by its global id or by a combination of its
local id and work-group id. The work-items in a given work-group execute
concurrently on the processing elements of a single compute unit.

A wide range of programming models can be mapped onto this execution
model. OpenCL explicitly supports two of these models; the data parallel
programming model and the task parallel programming model.

4.2.2.4 Memory Model

The OpenCL memory space is divided into four parts:

• Global Memory: This memory region permits read/write access to all
work-items in all work-groups. Work-items can read from or write to
any element of a memory object. Reads and writes to global memory
may be cached depending on the capabilities of the device.

• Constant Memory: A region of global memory that remains constant
during the execution of a kernel. The host allocates and initializes
memory objects placed into constant memory.

• Local Memory: A memory region local to a work-group. This mem-
ory region can be used to allocate variables that are shared by all
work-items in that work-group. The local memory space maybe im-
plemented as dedicated regions of memory on the OpenCL device.
Alternatively, it may be mapped onto sections of the global memory.

• Private Memory: A region of memory private to a work-item. Vari-
ables defined in one work-item’s private memory are not visible to
another work-item.

This division of memory spaces is shown in Figure 4.1.1. The access and
allocation rights of the host and kernels to these memory spaces are shown
in Table 4.1.

4.2.2.5 Programming Model

The OpenCL execution model supports data parallel and task parallel pro-
gramming models, as well as supporting hybrids of these two models. The
primary programming model driving the design of OpenCL is data parallel.
The data parallel programming model defines a computation in terms of a
sequence of instructions applied to multiple elements of a memory object.
In a strictly data parallel model, there is a one-to-one mapping between
the work-item and the element in a memory object over which a kernel
can be executed in parallel. OpenCL implements a relaxed version of the

1Picture taken from [37]
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Figure 4.1: OpenCL Memory Model.

Global Constant Local Private

Host Dynamic
allocation,
Read/Write
access

Dynamic
allocation,
Read/Write
access

Dynamic al-
location, No
access

No alloca-
tion, No
access

Kernel No allo-
cation,
Read/Write
access

Static al-
location,
Read-only
access

Static al-
location,
Read/Write
access

Static al-
location,
Read/Write
access

Table 4.1: OpenCL Allocation and Memory Access Capabilities

data parallel programming model where a strict one-to-one mapping is not
a requirement.

OpenCL provides a hierarchical data parallel programming model. There
are two ways to specify the hierarchical subdivision. In the explicit model
a programmer defines the total number of work-items to execute in parallel
and also how the work-items are divided among work-groups. In the implicit
model, the programmer only specifies the total number of work-items to
execute in parallel, and the division into work-groups is managed by the
OpenCL implementation.

The OpenCL task parallel programming model defines a model in which
a single instance of a kernel is executed independent of any index space. It
is logically equivalent to executing a kernel on a Compute Unit with a work-
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group containing a single work-item. Under this model, users can express
parallelism by:

• Using vector data types implemented by the device,

• Enqueing multiple tasks, and/or

• Enqueing native kernels developed using a programming model or-
thogonal to OpenCL.

4.3 Related work

There hasn’t been as much research focused on explicit parallelism around
Modelica as automatic approaches. One implementation that offered the
potential for explicit parallel programming was the NestStepModelica [32]
that was based on NestStep [33] targeting BSP (Bulk-Synchronous Parallel)
computation model which is an abstraction of a restricted message passing
architecture and charges cost for communication.

The focus of the work presented here is on parallelizing executions for
highly data parallel SPMD (Single Program, Multiple Data) architectures.
It generates OpenCL code for parallel algorithms. OpenCL was given pri-
ority over CUDA because of its portability. Generating OpenCL code en-
sures that simulations can be run with parallel support on OpenCL enabled
Graphics and Central Processor Units (GPU and CPU). This includes many
multi-core CPUs from Intel [25] and Advanced Micro Devices (AMD) [2] as
well as a range of GPUs from NVIDIA [49] and AMD (for a complete list of
supported devices see [35]). However explicit CUDA code generation is also
planned to be supported and the current implementation provides most, if
not all, constructs needed for CUDA code generation and execution as well.

4.4 ParModelica Extensions

The ParModelica explicit parallel programming extensions available with the
current implementation are explained in this section. There are a number
of programmability and usage differences compared to the base OpenCL
extensions. These are explained in the sections for their respective counter-
parts.

4.4.1 Parallel Variables

Parallel variables are variables allocated in the memory space of the device
used for parallel computation. OpenCL code can be executed on host CPU
as well as on GPUs whereas CUDA code executes only on GPU. Since the
OpenCL and CUDA enabled GPUs use their own local (different from CPU)
memory for execution all necessary data should be available on the specific

59



4.4. PARMODELICA EXTENSIONS

function parvar

protected

Integer m = 1000; // Host Scalar

Integer A[m,m]; // Host Matrix

Integer B[m,m]; // Host Matrix

// global and local device memories

parglobal Integer pm; // Global Scalar

parglobal Integer pA[m,m]; // Glob Matrix

parglobal Integer pB[m,m]; // Glob Matrix

parlocal Integer pn; // Local Scalar

parlocal Integer pS[m]; // Local Array

end parvar;

Listing 4.1: ParModelica device variables

A := B Serial assignment.
pA := A Copy from host memory (A) to device global memory

(pA). write operation
B := pB Copy from device global memory (pB) to host mem-

ory (B). read operation
pA := pB Copy from one device global memory (pB) to other

memory space on the same device (pA).
pm := m

Scalar versions of the above three assignments.n := pm
pn := pm

Table 4.2: Parallel Variable Assignment Operation

device’s memory. Even when running OpenCL computations on CPU the
variables used for parallel execution need to be explicitly stated so that the
OpenCL drivers and APIs can handle them properly.

ParModelica parallel variables are declared simply by preceding the vari-
able declaration with the corresponding keyword for the intended memory
space. The implementation currently does not support allocations or ac-
cesses to the constant mmory space, i.e., only global variables identified by
parglobal and local variables identified by parlocal are allowed.

Usage of these parallel variables is shown in Listing 4.1.The first three
variables are allocated in the host memory. The last four variables are
allocated in the corresponding memory space of the device used for parallel
execution. In OpenCL case this can be the host CPU itself or any available
GPU.

These parallel variables can be passed between functions as arguments.
Copying data between host and parallel device memory is as simple as as-
signing the variables to each other. The compiler and the runtime system
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handle the details of the copy operation. The assignments shown in Table
4.2 would all be valid in the function shown above.

Parallel variables can only be declared inside a serial function. Variables
in kernel (Section 4.4.3) and parallel functions (Section 4.4.2) with out
the qualifiers parglobal or parlocal are allocated as private variables.

The current implementation has some restrictions on parallel variables:

• Any computational algorithmic statements involving parallel variables
should be in either in parallel for loops, parallel functions or kernel
functions. These include arithmetic operations on scalar parallel vari-
ables and indexing of parallel arrays. Assignments are allowed any-
where in the algorithmic section of Modelica.

• Parallel variables cannot be initialized with default values. The first
declaration in Listing 3.2-1 shows a default value initialization. Some
initialization options for arrays currently work. However it is not prop-
erly tested and is not supported with this implementation. Full sup-
port for default initialization should be supported soon.

4.4.2 Parallel Functions

ParModelica parallel functions in this implementation correspond to OpenCL
functions defined in kernel files or CUDA’s device functions. These are func-
tions available independently to every thread executing on a device. Parallel
functions in ParModelica are defined in the same way as normal Modelica
functions except that they are preceded by the parallel keyword as shown
in Listing 4.2.

parallel function multiply

input Integer a;

input Integer b;

output Integer c;

algorithm

c := a * b;

end multiply;

Listing 4.2: ParModelica parallel functions

The code for parallel functions is generated in the target language for
parallel execution. In the current implementation OpenCL code is gener-
ated. Parallel functions have some constraints

• They cannot have parallel for loops in their algorithm sections.

• They can only call other parallel functions or supported built-in func-
tions.

• Recursion is not allowed.
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• They can only be called from a body of a parfor loop or from kernel
functions, i.e., they are not directly accessible to serial parts of the
algorithm.

4.4.3 Kernel Functions

parkernel function arrayElemWiseMultiply

input Integer m;

input Integer A[m];

input parglobal Integer B[m];

output parglobal Integer C[m];

Integer id;

algorithm

id = oclGetGlobalId(1);

C[id] := multiply(A[id],B[id]);

end arrayElemWiseMultiply;

Listing 4.3: ParModelica kernel functions

Kernels functions correspond to OpenCL and CUDA kernel functions
and global functions respectively. These are entry functions to execution
on a device. They can be called from serial parts of Modelica code to start
parallel execution on a parallel device. Kernel functions are independently
executed by every thread.

ParModelica kernel functions are defined in the same way as normal func-
tions except that they are preceded by the parkernel keyword. A possible
implementation example is shown in Listing 4.3. multiply is the parallel
function listed in 4.2. The special built-in utility function oclGetGlobalId

is discussed in Section 4.4.6. The number of threads to be used for the
kernel execution can be set by using the function oclSetNumThreads also
discussed in Section 4.4.6. This function should be called before any kernel
call if the number of threads and their dimensional arrangement is needed
to be different than the default behavior. Otherwise the default number of
threads will be used to execute the kernel function which maximum number
of threads of the parallel execution device in a one dimensional arrange-
ment. The implementation supports full three dimensional arrangement of
work groups and threads.

There are some constraints on usages of ParModelica kernel functions :

• They cannot have parfor loops in their algorithm body.

• They can only call parallel functions or supported built-in functions.
They cannot call other kernel functions.

• They cannot be called from a body of parfor loop or from other kernel
functions.
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parfor i in 1:m loop

for j in 1:pm loop

ptemp := 0;

for h in 1:pm loop

ptemp := multiply(pA[i,h], pB[h,j]) + ptemp;

end for;

pC[i,j] := ptemp;

end for;

end parfor;

Listing 4.4: ParModelica parallel for loops

4.4.4 Parallel For Loop: parfor

ParModelica parallel for loops are syntactically very similar to normal for
loops with some additional constraints on the body of the loop. These
constraints are needed to make sure the iterations can be run simultaneously
and independently without any specific order while giving the desired result,
i.e., no loop-carried dependencies from one iteration to the next. A Modelica
parallel for loop is identified by the keyword parfor as shown in Listing 4.4.
multiply is the parallel function listed in Listing 4.2.

The iterations of a parfor loop are equally distributed among available
processors. If the range of the iteration is smaller than or equal to the
number of threads the parallel device supports, each iteration will be done
by a separate thread. If for example our device supports 1024 threads and
the loop has 512 iterations then 512 threads will be launched and will each
execute a separate iteration. If the number of iterations is larger than the
number of threads available then some threads might perform more than
one iteration. If for example we have a loop with 768 iterations and a device
with a 512 thread limit then 512 threads will be launched which will execute
iterations 1 to 512. The remaining 256 iterations will be done by the first
256 threads out of the 512 as a second step. In future enhancements parfor
will be given the extra feature for specifying the desired number of threads
explicitly instead of automatically launching threads as described above.

The choice of target architecture and language has put some constraints
on parfor loops.

• All variable references in the loop body must be to parglobal vari-
ables.

• Iterations should not be dependent on other iterations : no loop-
carried dependencies.

• All function calls in the body should be to parallel functions or
supported built-in functions only.

• The iterator of a parallel for loop must be of integral type.
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• The start, step and end values of a parallel for loop iterator should be
integral types.

The first constraint is needed since OpenCL executions can be run on
another device than the host CPU where the rest of the simulation code
is being executed. To make sure that desired data is made available in the
device memory before start of parallel execution this rule must be obeyed. If
for example OpenMP has been used for the parallel execution then we would
not need this constraint since OpenMP code always runs on the CPU with
threads accessing CPU shared memory. There is a reason why the compiler
does not automatically detect and copy all variables used or referenced in
the loop body. Even if it would be reasonable to automatically copy all
needed variables to the device memory, which variables should be copied
back? Copying all variables back after the execution of the parfor loop
means that means potentially unnecessary copy operations would have to
be performed. In addition this gives the programmer a better control over
the rather expensive memory operations.

4.4.5 Built-in Functions

Some built-in functions have been extended to accept parallel variables as
arguments. Accepting parallel arguments means that the computations of
the function will be performed on the parallel execution device instead of
a single thread on the host CPU. The return values from these extended
parallel built-in functions are currently only parallel variables. For example
consider the built-in function transpose which is used to compute the trans-
pose of a matrix. If a serial matrix is passed to this function as argument the
computation will be done on the host CPU and a serial matrix is returned.
However if a parallel matrix is given as argument then the computation will
be done in parallel on the available device. The return variable will be a
parallel variable.

The serial/parallel combination of arguments/return values should be
diversified in the future to give more options for the programmer. The
compiler should detect the types assigned to return variables and handle
any necessary copying automatically. The rules set above on serial/parallel
arguments/return-values combination are not hard rules. They are more of
choice of implementation and might change in the future. However according
to the current implementation any built-in function call involving parallel
arguments will return parallel variables.

4.4.6 Synchronization and Thread Management

A number of functions related to Synchronization and thread management
are also available. These functions are very similar to the OpenCL work-item
function (see [34]). These functions are:
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• oclSetNumThreads(..., ...) : is used to specify the number of
threads to be used for a kernel function execution. The implemen-
tation supports full three dimensional arrangement work groups and
items. The function is overloaded for each corresponding dimensional
arrangement and should only be called from inside a serial function.
It should be called prior to any kernel function call if the number of
threads is to be specified for the kernel. Otherwise the kernels will
execute with the default number of threads which is the supported
maximum. This function is also overloaded to take just one Integer
argument. In this case the given integer value will specify the number
of threads or work-items to be launched. The actual arrangement of
these threads into work-groups will be decided automatically by the
OpenCL runtime system. This usage can be seen in 4.5.

• oclGetWorkDim() : returns the number of dimensions used in thread
arrangement.

• oclGetGlobalSize(Integer) : returns the total number of threads
currently executing the function or kernel. This function should only
be called from inside a parallel function or kernel function.

• oclGetLocalSize(Integer) : returns the total number of threads in
the work-group of the calling thread in the given dimension. This
function should only be called from inside a parallel function or kernel
function.

• oclGetGlobalId(Integer) : returns the global id of the calling thread
in the given dimension. This function should only be called from inside
a parallel function or kernel function.

• oclGetLocalId(Integer) : returns the local id of the calling thread
in the given dimension. This function should only be called from inside
a parallel function or kernel function.

• oclGetNumGroups(Integer) : returns the number of work groups in
the given dimension. This function should only be called from inside
a parallel function or kernel function.

• oclGetGroupId(Integer) : returns the work group id of the calling
thread in the given dimension. This function should only be called
from inside a parallel function or kernel function.

• oclGlobalBarrier() : will either flush any variables stored in local
memory or queue a memory fence to ensure correct ordering of memory
operations to local memory of the parallel device. corresponds to
OpenCL barrier(CLK GLOBAL MEM FENCE). This function can only be
called from inside a parallel function, kernel function or body of parfor
loop.
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• oclGLocalBarrier() : is used to queue a memory fence to ensure
correct ordering of memory operations to global memory of the paral-
lel device. corresponds to OpenCL barrier(CLK LOCAL MEM FENCE).
This function can only be called from inside a parallel function, kernel
function or body of parfor loop.

4.4.7 Extra OpenCL Functionalities

Automatically generated code might not always be as efficient as a manually
written code. If the need arrives for a finer control over operations like
data distribution and synchronization built-in functions are available for
compiling and executing user-written OpenCL code directly from another
source file.

• oclbuild(String) : This function takes only one String argument.
The argument is the name of the OpenCL source file to be built. It
returns an integer (type defined as cl program for clarity) which is
used as an id of the built program. This id is used in consequent calls
to refer to this OpenCL program. Users can have as many as 10 files
built in the same Modelica code (10 within scope) at a time. This
limit can be increased in the future. It is just assumed to be enough.

• oclkernel(oclprogram, String) : This function takes two argu-
ments. The first one is the id (Integer) of the OpenCL program built
by a previous call to oclbuild. The second argument is the name
the kernel or function in that specific program which the user wants
to create a kernel for. Users can create as many as 10 kernels at any
time. This function also returns an Integer (type defined as cl kernel)
for the same reason as oclbuild.

• oclsetargs(oclkernel,...) : This function is used to set argu-
ments to an OpenCL kernel. It takes a variable number of arguments.
However the first argument should be the id of the kernel to be ex-
ecuted (an Integer or cl kernel). After the first argument a variable
number of parallel variables follow. These are the actual arguments
to the OpenCL kernel. This function does not return anything.

• oclexecute(oclkernel) : This function is used to execute a kernel.
It takes the id of the kernel as an argument. After executing the kernel
the user can copy back any of the arguments attached to the kernel
earlier to obtain just the desired results.

Users can declare OpenCL programs as cl program and kernels as cl kernel.
These types are just normal type definitions of Integer made just for clarity
purposes. They are included with built-in functions so they can be used
readily any time. A simple usage of theses utility functions is shown in List-
ing 4.5. The OpenCL kernel function can perform any operation as long as
the arguments match.
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function externalKernel

input Integer m;

parglobal input Integer pA[m,m];

parglobal input Integer pB[m,m];

parglobal output Integer pC[m,m];

cl_program pro;

cl_kernel ker;

algorithm

// build the opencl program from the file

pro := oclbuild("testmat.cl");

// create the desired kernel from

// the available kernels in the built program

ker := oclkernel(pro, "user_func");

// set the arguments to the kernel created

oclsetargs(ker,pA,pB,pC,m);

// set m threads to run.

oclSetNumThreads(m);

// run the kernel

oclexecute(ker);

end externalKernel;

Listing 4.5: Loading and executing external OpenCL kernels

All of the above operations are synchronous in OpenCL jargon. They will
return only when the specified operation is completed. Further functionality
is planned to be added to these functions to provide better control over
execution.

4.5 ParModelica OpenCL Runtime

The ParModelica OpenCL runtime provides support for execution and inter-
operation of the generated OpenCL code and the existing OpenModelica
runtime system. The runtime system implementation mainly consists of
the ParModelica OpenCL-C runtime library and the ParModelica OpenCL
utility headers.

4.5.1 ParModelica OpenCL-C Runtime Library

The OpenCL-C runtime library provides the mechanisms for connecting
the OpenCL device execution and the host serial C execution. The library
provides a number of functionalities which allow the OpenModelica normal
runtime system and the generated OpenCL code work seamlessly.

It defines the data structures used to represent parallel variables. These
data structures are used to characterize parallel variables in the serial C
code. The device integer array structure representing an integer array on a
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parallel device is shown in Listing 4.6.

struct gi_array

{

int ndims;

__global modelica_integer* dim_size;

__global modelica_integer* data;

};

typedef struct gi_array integer_array;

Listing 4.6: ParModelica device array

The library is also responsible for all OpenCL related initialization oper-
ations like device selection, creating contexts on devices, building OpenCL
source code from a source file or a string buffer, setting arguments to and
launching kernels an so on. It provides clear and concise functions for
OpenCL operations by hiding the rather long and complicated OpenCL
operations in the background. It also provides all the mechanisms neces-
sary for data transfer operations between the host and the OpenCL device.
These include allocation and copy operations of: host to device, device to
host and device to device.

Parallel implementations of some built-in functions (e.g. transpose())
are also available in the library. All the necessary mechanism for runtime
error reporting related to OpenCL operations are also part of this library.
Functions for debugging operations are also available in the library.

4.5.2 ParModelica OpenCL Utility Headers

Simulating a model using the OpenModelica compiler and runtime system
involves C code generation. The generated C code is then compiled and
linked with the libraries which provide operations for the simulation. For
example the OpenModelica SimulationRuntimeC library (SimulationRun-
timeC.a Windows or SimulationRuntimeC.so Linux) provides, among many
other things, the structures and operations necessary to represent arrays.

With C/C++ it is possible to implement operations in one library and
link them later if they are needed. OpenCL, on the other hand, has no
linking mechanisms. This lack of linking mechanisms means that any utility
methods needed by the implementation have to be in source code format
and have to be compiled with the rest of the generated OpenCL code. the
ParModelica utility headers provide this functionality. These headers pro-
vide the structures used for representing arrays, methods for copying and
manipulating these arrays, a number of Modelica built-in functions, device
specific configurations and so on.
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4.6 Performance Measurements

To be able to evaluate the relative performance and behavior of the new
language extensions, performing systematic benchmarking on a set of appro-
priate Modelica models is required. For this purpose we have constructed
a benchmark test suite containing some models that represent heavy and
high-performance computation, relevant for simulation on parallel architec-
tures.

4.6.1 The MPAR Benchmark Suite

The MPAR benchmark test suite is a set of Modelica test models written
using the new parallel extensions. It was developed as a separate Master’s
thesis work [3] to evaluate the performance of the ParModelica implemen-
tations.

The suite contains seven different algorithms from well-known bench-
mark applications such as the LINear equations software PACKage (LIN-
PACK) [15], and Heat Conduction [40]. These benchmarks have been col-
lected and implemented as algorithmic time-independent Modelica models.
The algorithms implemented in this suite involve rather large computations
and impose well defined work-loads on the OpenModelica compiler and the
run-time system. Moreover, they include different kinds of for-loops and
function calls which provide parallelism for domain and task decomposition.

Performance results for three out of the seven test models: Matrix Mul-
tiplication, Eigen value computation, and Stationary Heat Conduction, are
presented in the next section. Time measurements have been performed for
both sequential and parallel implementations of three models on both CPU
and GPU architectures. For executing sequential codes generated by the
standard sequential OpenModelica compiler an Intel Xeon E5520 CPU [24]
which has 16 cores, each with 2.27 GHz clock frequency is used. For exe-
cuting generated code by our the OpenCL based parallel code generator, we
have used the same CPU as well as the NVIDIA Fermi-Tesla M2050 GPU
with 448 cores [50].

4.6.2 Results

The first test case that is presented is the classic Matrix Multiplication
computation. the function computes the result of multiplication of two
square matrices of size N as shown in Equation 4.1.

cij =

N∑
i=1

N∑
j=1

N∑
k=1

aik ∗ bkj (4.1)

Although rather straight forward, matrix multiplication is a good way to
evaluate the performance of the new extensions and implementation. There
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are a number of ways to parallelize matrix multiplication with the available
extensions. It can be implemented as a simple parfor loop, a parfor loop
combined with parallel functions or a complete optimized parallelization us-
ing kernels and better thread and management features. This model presents
a very large level of data-parallelism for which a considerable speedup has
been achieved as a result of parallel simulation of this model on parallel
platforms. Figure 4.2 shows the achieved speedups for the computation of
different matrix sizes.
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Figure 4.2: Speedups for matrix multiplication

The second test model performs eigenvalue computation which is also a
common linear algebra routine with a wide range of applications in many
modeling areas. The test model computes all the eigenvalues of computation
of a tridiagonal symmetric matrix. The observed speedups for this model
are show in Figure 4.3.

The third test models specifies a stationary thermal conduction in a 2-
dimensional plate. The heat conduction problem computes the temperature
distribution of a surface square plate [0,1] x [0,1] with given initial boundary
conditions/temperatures. The thermal distribution can be represented by
the differential equation shown in Equation 4.2.

∂2T

∂x2
+

∂2T

∂y2
= 0, 0 < x, y < 1 (4.2)

By defining an equidistant grid (xi, yi)
N+1
i,j=0 as shown in Figure 4.4 and us-
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Figure 4.3: Speedups for Eigenvalue computations

yj−1

yj

yj

xi−1 xi xi+1

Figure 4.4: Equidistant computation grid

ing finite difference approximation methods [39] the heat distribution equa-
tion can be discretized as shown in Equation 4.3

−4Ti,j + Ti+1,j + Ti−1,j + Ti,j−1 + Ti,j−1 = 0, (4.3)

where Ti,j = T (xi, yj) is the approximated temperature at point (xi, yj) in
the discretized plate.

Direct numerical methods such as Gaussian Elimination can be used to
solve the system of linear equations. However, if the number of grid points
is large, iterative methods such as Jacobi method are better suited. The
iteration tries to approximate the next solution of the equation using the
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obtained solutions in previous iterations. If the approximate temperature
T k
i,j is known for point (xi, yj) at the kth then the value at T k+1

i,j can be
approximated as shown in Equation 4.4.

T k+1
i,j =

T k
i+1,j + T k

i−1,j + T k
i,j−1 + T k

i,j−1

4
1 ≤ i, j ≤ N − 1 (4.4)

This computation is a bit more complicated to parallelize since iterations
should be synchronized properly and data dependencies should be obeyed
strictly. Specially since values from previous iterations are used to compute
values for subsequent iterations.

The achieved speedups for the 2d plate thermal conduction model are
shown in Figure 4.5.
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Figure 4.5: Speedups for Eigenvalue computations

4.7 Future Work

There are a number of things that can be improved or added to the current
implementation of explicit parallel programming approach of ParModelica.
Some of these are discussed here.

• CUDA code generation might be supported. This is relatively easy
since the high level constructs are available and reusable. The only
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parts of OMC that will require changes are the SimCode module and
the OpenModelica text template Code Generation.

• Semantic Error detection and reporting:

– Currently there is support for semantic error checking for issues
related to parallel operations and scopes of parallel environments.
For example calling a parallel function from a non parallel envi-
ronment (function, model, class ...) will be reported as error by
the OpenModelica compiler with an error message. Assignments
are also checked for semantic consistency. for example assign-
ing a parglobal variable to a parlocal variable is detected and
reported as an error. However the error detection and report-
ing right now does not cover all parallelization related issues.
This is rather important when and if users start writing paral-
lel code with complex data structures. For example declaring a
parlocal record (corresponds to local struct in OpenCL C)
with parglobal variables, which is an error, is not reported.

• The current parallel for loop implementation should be enhanced to
support the following features:

– Explicitly stating the desired number of threads to be used for
parallel execution.

– Automatically detecting the parallel variables used in the parfor
loop and using only those as arguments to kernels to get a more
concise target code. See 4.2.1.1.

– Specifying the desired target language using annotations. This
is important if other parallel programming paradigms are added
to the extension e.g. if CUDA or OpenMP code generation is
supported, the desired target language can be stated here.

• More built-in functions should be added or extended for parallel execu-
tion. The serial/parallel arguments/return-values combination should
be extended.

• The extra OpenCL functionalities discussed in Section 4.4.7 should
be improved to provide a better control over thread management and
execution.

• Overloading of parallel functions should be implemented.
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Chapter 5

Conclusion

We have presented two parallelization approaches: automatic and explicit.
Both approaches already, with our current prototype, show significant per-
formance improvements over sequential executions and promise further im-
provements.

The automatic parallelization support by the OpenModelica compiler
gives modelers the opportunity to take advantage of their modern high-
end multi-core processors without having to learn the details of parallel
programming. Support for automatic parallelization is very desirable since
it provides the means of parallelizing existing models and libraries without
modifications. There are quite a large number of Modelica models already
in use. Having to modify or rewrite parts of this large resource of libraries
would be too time consuming and error prone.

We have presented a task graph based approach to extract and repre-
sents dependency information from equation systems to identify and utilize
potential parallelism. The Task Systems library described in this thesis,
designed and implemented for handling automatic parallelization, provides
the mechanisms to handle this parallelization process conveniently. The li-
brary currently provides four clustering algorithms, two schedulers, as well
as dynamic profiling and cost estimation mechanisms. The implementation
performs clustering and scheduling at runtime. This means that it has the
potential to continuously adapt to changes in behavior of the model system
throughout simulation. We have also presented the parallelization perfor-
mance results for selected models from the Modelica Standard Library.

The library is implemented as a loosely coupled, partly independent part
of the existing OpenModelica runtime system. This allows for a concur-
rent development of the parallelization implementation and the rest of the
OpenModelica environment. The parallelization implementation requires a
minimal interface to be kept consistent by the compiler. For a continuously
developing environment like OpenModelica, this minimal interface means
that the parallelization can continue to function properly regardless of most
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changes to the rest of the compiler and simulation environment.
The ParModelica explicit parallel programming constructs presented in

Chapter 4 allow modelers to write parallel algorithmic code directly in Mod-
elica. These extensions provide the opportunity for Modelica parallel pro-
gramming which has been missing so far. These constructs are well inte-
grated with the rest of the language and will hopefully simplify learning
and using parallel programming by modelers who are already familiar with
Modelica.

Previously the only way to explicitly parallelize an algorithm that is
part of a Modelica implementation was to write it as an external function
targeting some low level language, usually C/C++, write the algorithm
in that language, and parallelize it. To take advantage of modern GPUs
this approach needed one more indirection to the GPU framework as well,
e.g. Modelica external function calling a C function which in turn uses
OpenCL/CUDA. This essentially requires modelers to be familiar with all
the languages or frameworks involved. This thesis work has tried to simplify
this complicated and error prone process by providing the means to write
parallel code directly in Modelica.

The explicit parallel programming approach already shows significant
performance improvements over sequential execution for highly data-parallel
algorithms as demonstrated by the test results for small set of selected ap-
plications presented. Algorithms like matrix multiplication and LU decom-
position are used directly or indirectly by more complex algorithms. This
means that many models using these kinds of algorithms can benefit from
the performance gains for the data parallel portions. Many linear algebra
algorithms are already available for Modelica users as either built-in func-
tions or as part of libraries. However not all algorithms implemented by
users can be written using only these existing algorithms. Users who need
to write their own algorithmic code can use these extensions to improve the
performance of their implementation.

The explicit parallel programming extensions, even though they resem-
ble the design of OpenCL and CUDA frameworks, can be used or targeted
towards many parallelization frameworks. The implementation currently
generates OpenCL code which is portable across a wide range of devices
and architectures. However, this does not mean OpenCL is the only target
framework that can be used to parallelize models with the current ParModel-
ica extensions. Support for parallelization frameworks other than OpenCL
can be added to the OpenModelica compiler by introducing new specific
code generator implementations. Modelica code written with these exten-
sions can then be used with the new framework with no or minor changes
to the original code.
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