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Abstract

Partial least squares is a common technique for multivariate re-
gression. The procedure is recursive and in each step basis vectors
are computed for the explaining variables and the solution vectors. A
linear model is fitted by projection onto the span of the basis vectors.
The procedure is mathematically equivalent to Golub-Kahan bidiago-
nalization, which is a Krylov method, and which is equivalent to a pair
of matrix factorizations. The vectors of regression coefficients and pre-
diction are non-linear functions of the right hand side. An algorithm
for computing the Frechet derivatives of these functions is derived,
based on perturbation theory for the matrix factorizations. From the
Frechet derivative of the prediction vector one can compute the num-
ber of degrees of freedom, which can be used as a stopping criterion
for the recursion. A few numerical examples are given.

Keywords Partial Least Squares, PLS, regression, least squares, predic-
tion, Golub-Kahan bidiagonalization, Krylov method, Frechet derivative,
recursion, perturbation theory, degrees of freedom
Classification Codes 62J05, 65F10

1 Introduction

Partial least squares regression (PLSR) [8, 10] is a frequently applied tech-
nique for multivariate regression in the case when the explaining variables
(predictor variables) are highly correlated. It iteratively constructs an or-
thonormal sequence of latent components (basis vectors) from the explain-
ing variables, which have maximal covariance with the response variable. In
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each step of the procedure, the data and the solution vectors are projected
onto subspaces of low dimension, where a linear model is fitted. PLSR can
be used as an alternative to principal components regression (PCR), and
often a good fit is obtained with a model of considerably smaller dimension
than with PCR, see, e.g., [3].

The PLS procedure is mathematically equivalent to a Krylov method,
Golub-Kahan bidiagonalization [4, 9]. While the so-called NIPALS variant of
PLS [9] constructs the basis vectors by successively deflating the data matrix
(the predictor variables) and the right hand side (the response variable), the
Krylov method generates them by a recursion without modifying the data
matrix, see e.g. [3]. The Krylov recursion is equivalent to a pair of matrix
factorizations.

A basic problem in PLSR is to determine the “optimal” number of com-
ponents, i.e. to derive a stopping criterion for the recursion. There are two
alternatives, essentially. The standard approach is to use cross validation.
Alternatively, in [5] an information criterion is applied and the complexity
of the fitted model is defined as the number of degrees of freedom (DOF).

Let y ∈ Rm be a vector of observations of the response variable, and
X ∈ Rm×n be a matrix, whose columns are the observations of the explaining
variables. Consider the least squares problem

min
β
‖Xβ − y‖, (1)

to which an approximate solution is computed by PLS. Denote the solution
after k steps of PLS by βk, and the prediction by yk = Xβk. It turns
out that yk and βk are non-linear functions of y; we write yk = Fk(y) and
βk = Hk(y). The number of degrees of freedom of the model, Dk, is defined

Dk = 1 + tr

(
∂Fk
∂y

)
= 1 + tr

(
X
∂βk
∂y

)
, (2)

where ∂Fk/∂y is the Frechet derivative of the function. Note that, with
ȳ = y + εδy a perturbed data vector,

‖yk − ȳk‖ ≤ ε
∥∥∥∥∂F∂y

∥∥∥∥ ‖δy‖+O(ε2).

Thus the Frechet derivative defines a condition number of the function,
which is a measure of the sensitivity to perturbations in the data.

The quantity Dk and the Frechet derivative of Fk can be computed
by differentiation of the PLS recursion, which gives a recursion for partial
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derivatives [5]. For m large this is very costly in terms of computation,
because it involves matrix multiplications of m×m matrices in every step of
the recursion. In addition, storage of derivative matrices of dimension m×m
can be prohibitive. Also, numerical experiments show that this method is
unstable, especially for large problems.

The main result if this paper is the derivation of a computable expres-
sion for the Frechet derivative ∂Fk/∂y, based on perturbation analysis of
the matrix decompositions obtained from the Krylov recursion. For large
problems this new method is much faster than that based on differentiation
of the recursion, and our preliminary numerical tests indicate that it does
not suffer from stability problems.

We will also consider the function βk = Hk(y), and derive its Frechet
derivative.

The paper is organized as follows. We start by reviewing the Krylov
formulation of PLS in Section 2. Then in Section 3 we give computable
expressions for the Frechet derivatives of the prediction vector (Section 3.2)
and the regression coefficients (Section 3.3). Those expressions are based on
perturbation theory for the Krylov factorization, which we derive in Section
3.1. Numerical examples illustrating the derivatives are given in Section 4.
In an appendix we first give the NIPALS version of PLS, and then briefly
review the method for computing Frechet derivatives by differentiation of
the Krylov recursion. Finally we give pseudo codes for the computation of
certain quantities in the perturbation theory.

1.1 Notation

The Euclidean vector norm is denoted ‖y‖ = (yT y)1/2. The same notation
is used for the spectral matrix norm ‖A‖ = sup‖x‖=1 ‖Ax‖. We use Ik to
denote the k × k identity matrix. Standard unit vectors are denoted ei,
where all components are zero except the i’th, which is equal to 1.

2 Partial Least Squares Regression

PLSR was originally formulated in terms of the NIPALS algorithm, which
deflates the data matrix and the right hand side [9], see Appendix A. This
method has good stability properties [2] and can easily be adapted for prob-
lems with missing data [10]. However, it does not display very well the
structure of the algorithm, and therefore we find it unsuitable for our analy-
sis of the procedure. Instead we will use the equivalent Golub-Kahan (GK)
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bidiagonalization [4], [1, Section 7.6], [3], which is related to the Lanczos
tridiagonalization procedure.

2.1 PLS: GK Bidiagonalization

The GK bidiagonalization algorithm was originally designed as a first step
in the algorithm for computing the singular value decomposition of a matrix
[4]. Later it has become a method of choice for solving large and sparse least
squares problems. There is a variant, LSQR [7], that avoids storing all the
basis vectors and computes recursively also the least squares solution1.

GK Bidiagonalization

1. v1 = 1
‖XT y‖X

T y; α1u1 = Xv1

2. for i = 2 : k

(a) γi−1vi = XTui−1 − αi−1vi−1
(b) αiui = Xvi − γi−1ui−1

The coefficients γi−1 and αi are determined so that ‖vi‖ = ‖ui‖ = 1.

It is easy to show that the ui vectors are orthogonal, but in floating
point arithmetic they should be reorthogonalized for better accuracy [2].
The same applies to the vi vectors.

Define Vk = (v1, . . . , vk) and Uk = (u1, . . . , uk), and

Bk =


α1 γ1

α2 γ2
. . .

. . .

αk−1 γk−1
αk

 . (3)

After k steps, we can write the recursion in matrix form,

XVk = UkBk.

XTUk = VkB
T
k + γkvk+1e

T
k .

(4)

1LSQR is related to GK bidiagonalization in much the same way as the Conjugate
Gradient algorithm is related to Lanczos tridiagonalization for a symmetric matrix
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We refer to this as the GK factorization.
The approximate least squares solution after k steps of the recursion is

βk = VkB
−1
k UTk y,

and the prediction is

yk = XVkB
−1
k UTk y = UkU

T
k y, (5)

due to (4).
The Frechet derivatives of βk and yk as functions of y can be computed

by differentiation of the recursion, giving a recursion for the derivatives of
the computed quantities. Note that all quantities computed in the recursion
depend on y. We outline this algorithm in Appendix B. It has the drawback
that in each step it involves the multiplication of matrices potentially of large
dimension.

One can show that GK bidiagonalization is mathematically equivalent
to applying Lanczos tridiagonalization to XXT and XTX simultaneously.
In [5] an algorithm for computing the Frechet derivative is given, based on
differentiation of the recursion for the Lanczos tridiagonalization algorithm
for XTX. For cases when m � n it has the advantage that it avoids
computing and multiplying m × m matrices, but it suffers from stability
problems.

3 Computing Frechet Derivatives

We will now derive an algorithm to compute the Frechet derivatives by
performing a perturbation analysis of the GK algorithm. Let ȳ = y(ε) =
y + εδy, where ‖δy‖ = 1, be a perturbation of y; we will first use a bar2 to
denote all the quantities that are computed in the GK recursion for ȳ and
X. The matrix B̄k is analogous to Bk in (3) with elements ᾱi and γ̄i. The
perturbed quantities satisfy

XV̄k = ŪkB̄k.

XT Ūk = V̄kB̄
T
k + γ̄kv̄k+1e

T
k ,

(6)

for k = 1, 2, . . . , t.

2We will use ȳ and y(ε) as synonyms; the first is preferred in some places because it
makes the equations look somewhat less complicated. The same convention applies to the
other perturbed quantities.
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Assume that altogether we have performed t steps of the GK bidiago-
nalization recursion, giving the matrices Ut, Vt, and Bt. The reason why we
have stopped may be that the regression residual has been reduced so much
that we are sure that we do not want to pursue the recursion any longer. If
min(m,n) is not very large we may run the recursion to completion and have
t = min(m,n). We will investigate numerically the case when t < min(m,n)
in Section 4.

Having taken a decision that we are content with t steps of GK or less,
then we are, in fact, considering a regression problem, where we have pro-
jected the data to a t-dimensional subspace of Rm spanned by Ut, and the
solution to a t-dimensional subspace of Rn spanned by Vt. We assume that

αi 6= 0, i = 1, 2, . . . , t (7)

γi 6= 0, i = 1, 2, . . . , t− 1. (8)

We now want to compute the sensitivity of βk and yk, for 1 ≤ k ≤ t, with
respect to perturbations in the data vector y in the subspace spanned by
the columns of Ut. If we let ȳ = y(ε) = y+ εδy, with ‖δy‖ = 1, then Ūk and
V̄k will be functions of ε. Partition

Ut = (Uk Uk), Uk ∈ Rm×(t−k), Vt = (Vk Vk), Vk ∈ Rn×(t−k). (9)

It is convenient to parameterize Ūk and V̄k as follows,

Ūk = UtQk(ε) = (Uk Uk)Qk(ε), Qk(ε) ∈ Rt×k,
V̄k = VtPk(ε) = (Vk Vk)Pk(ε), Pk(ε) ∈ Rt×k,

(10)

where Qk(ε), and Pk(ε) have orthonormal columns, and then perform the
perturbation analysis in terms of a GK factorization for Qk and Pk given in
Lemma 1 below.

Since the starting vector for the perturbed problem is

v1(ε) = 1/‖XT y(ε)‖XT y(ε),

and since v1(ε) = Vtp1(ε), the projected starting vector becomes

p1(ε) =
1

‖BT
t U

T
t y(ε)‖

BT
t U

T
t y(ε), (11)

where we have normalized to length 1. Note that p1(0) = V T
t v1 = e1.

With these definitions (6) translates into an equivalent GK factorization
for Pk(ε), Bk(ε), and Qk(ε).
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Lemma 1. Given the perturbed starting vector p1(ε), the perturbed bidiago-
nal matrix Bk(ε) and the quantities Qk(ε) and Pk(ε) defined in (10) satisfy
the GK factorization

BtPk(ε) = Qk(ε)Bk(ε),

BT
t Qk(ε) = Pk(ε)B

T
k (ε) + γk(ε)pk+1(ε)e

T
k ,

(12)

for 1 ≤ k ≤ t− 1.

Proof. Since Ut = (Uk Uk) and Vt = (Vk Vk) are the matrices of basis vectors
from the GK recursion run t steps we have UTt XVt = Bt. Writing the first
equation in (6) using the parameterization (10), and multiplying by UTt we
get BtPk = QkB̄k.

The derivation of the second equation in (12) is analogous.

From the lemma we see that the reparametrization is equivalent to re-
placing the perturbed least squares problem minβ ‖Xβ − ȳ‖ by

min
z
‖Btz − UTt ȳ‖, β = Vtz. (13)

If m ≥ n = t, then the two least squares problems are completely equivalent.
If t < n, (13) gives an approximate solution.

Thus, if the starting value p1(ε) were known, along with Bt, we could
compute the matrices Qk(ε), Pk(ε), and Rk(ε) by a GK recursion. However,
without that knowledge we can estimate the sensitivity by performing a
perturbation analysis of the GK factorization (12).

3.1 Perturbation Theory

Consider the GK factorization (12) of the perturbed quantities. We will
differentiate these equations to estimate Q̇k(0), where the dot denotes dif-
ferentiation with respect to ε. From the Taylor expansion Qk(ε) = Qk(0) +
εQ̇k(0) +O(ε2), we see that εQ̇k(0) is a first order estimate of the perturba-
tion of Qk. Analogous statements hold for Pk(ε) and Bk(ε).

Before differentiating (12), we introduce some notation. We define Qk =
Qk(0), and similarly for the other ε-dependent quantities. Note that

Qk = Pk =

(
Ik
0

)
, (14)

Define the partitioning

Q̇k =

(
Q̇

(1)
k

Q̇
(2)
k

)
∈ Rt×k,
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and similarly for Ṗk.
Differentiating the identity QTk (ε)Qk(ε) = Ik, we get

Q̇Tk (ε)Qk(ε) +QTk (ε)Q̇k(ε) = 0. (15)

Evaluating (15) for ε = 0, and using the expression (14) for Qk, we get

Q̇
(1)T
k + Q̇

(1)
k = 0,

i.e., Q̇
(1)
k is skew-symmetric. Similarly, we see that Ṗ

(1)
k is skew-symmetric.

We now differentiate (12) in a neighborhood of ε = 0, and put ε = 0:

BtṖk = Q̇kBk +QkḂk,

BT
t Q̇k = ṖkB

T
k + PkḂ

T
k + γ̇kpk+1e

T
k + γkṗk+1e

T
k .

(16)

To derive a recursion from (16), we define the partitionings

Bt =

(
Bk 0
0 Ck

)
+ γkeke

T
k+1 (17)

=

Bk 0 0
0 αk+1 0
0 0 Ck+1

+ γkeke
T
k+1 + γk+1ek+1e

T
k+2. (18)

It follows that

BtQk = Bt

(
Ik
0

)
=

(
Bk
0

)
, BT

t Qk =

(
BT
k

0

)
+ γkek+1e

T
k . (19)

We introduce the following partitioning of Ṗk,

Rn×k 3 Ṗk =


Ṗ

(1)
k

ṙTk

Ẏk

 , Ṗ
(1)
k ∈ Rk×k, Ẏk ∈ R(n−k−1)×k, (20)

and of Q̇k,

Rn×k 3 Q̇k =


Q̇

(1)
k

ṡTk

Żk

 , Q̇
(1)
k ∈ Rk×k, Żk ∈ R(n−k−1)×k. (21)
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We will use the following notation for Ṗk+1,

Rn×(k+1) 3 Ṗk+1 =


Ṗ

(1)
k ṗ

(1)
k+1

ṙTk 0

Ẏk ṗ
(2)
k+1

 . (22)

From skew-symmetry we see that ṗ
(1)
k+1 = −ṙk; thus when Ṗk is known

we immediately have Ṗ
(1)
k+1. The same applies to Q̇k and Q̇

(1)
k+1. We next

introduce the partitionings into (16) and consider the top equations (rows 1
through k):

BkṖ
(1)
k + γkekṙ

T
k = Q̇

(1)
k Bk + Ḃk, (23)

BT
k Q̇

(1)
k = Ṗ

(1)
k BT

k + ḂT
k + γkṗ

(1)
k+1e

T
k , (24)

the middle equations (row k + 1),

αk+1ṙ
T
k + γk+1e

T
1 Ẏk = ṡTkBk, (25)

αk+1ṡ
T
k = ṙTk B

T
k + γ̇ke

T
k , (26)

and the bottom equations (rows k + 1 through p),

Ck+1Ẏk = ŻkBk, (27)

CTk+1Żk + γk+1e1ṡ
T
k = ẎkB

T
k + γkṗ

(2)
k+1e

T
k . (28)

Consider the first step of the algorithm, where we shall compute q̇1, α̇1, and
γ̇1, given ṗ1. We will consider each of the equations (23)–(28) for k = 1.
The first top equation (23) reads

α1ṗ
(1)
1 + γ1ṙ1 = α1q̇

(1)
1 + α̇1.

Since both ṗ
(1)
1 and q̇

(1)
1 are equal to zero, this gives α̇1 = γ1ṙ1. The second

top equation (24) reads

α1q̇
(1)
1 = α1ṗ

(1)
1 + α̇1 + γ1ṗ

(1)
2 ,

which gives γ1ṗ
(1)
2 = −α̇1; this is the same as we get using the skew-

symmetry requirement. For k = 1 (25) becomes

α2ṙ1 + γ2e
T
1 Ẏ1 = α1ṡ1,
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which gives ṡ1, since the quantities on the left side are all known. The second
middle equation (26) is

α2ṡ1 = α1ṙ1 + γ̇1,

which gives γ̇1. Equation (27) reads C2Ẏ1 = α1Ż1, which implies that the
whole vector q̇1 = (0 ṡ1 Ż

T
1 )T is computed. Finally, the lower part of the

vector ṗ2 is obtained from (28).
We then assume that Ṗk, Q̇k−1, Ḃk−1, and γ̇k−1 are known3. In an

analogous manner, by considering columns k of each of the equations (23)–
(28), we can now compute α̇k, γ̇k, q̇k, and ṗk+1.

It is clear that, provided that, provided that (7)-(8) hold, i.e., the αi’s
and the γi’s are nonzero, (23)–(28) define a linear recursion for computing
Ḃk, Q̇k, and Ṗk+1 from a starting vector ṗ1. The algorithm outlined above
is given in full detail i Appendix C. We will refer to is as Algorithm D.

If we regard the quantities Ṗk and Ḃk as intermediate and consider only
the elements of Q̇k as unknowns, then it is clear that the recursion is equiv-
alent to a block lower triangular linear system, since the first column of Q̇k,
q̇1, is computed from ṗ1, and then the rest of the columns are computed one
by one. Due to skew-symmetry, only the elements below the main diagonal
in Q̇k need be computed. If we organize those elements column-wise from
left to right in a vector

Rk(t−(k+1)/2) 3 Φ̇k =


φ̇1
φ̇2
...

φ̇k

 , φ̇j ∈ Rt−j ,

we have a linear system of equations

KkΦ̇k = Ψ̇k, Ψ̇k =


ψ̇1

0
...
0

 , (29)

where Ψ̇k ∈ Rk(t−(k+1)/2) and ψ̇1 consists of the last t− 1 components of ṗ1.
Partition Kk and its inverse Kk conformally with the partitioning of Φ̇k,

Kk =


K11

K21 K22
... · · · . . .

Kk1 · · · · · · Kkk

 , Kk =


K11

K21 K22
... · · · . . .

Kk1 · · · · · · Kkk

 ,

3As well as Ṗ
(1)
k+1 and Q̇

(1)
k , by skew-symmetry.
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where the blocks Kij and Kij have dimensions (t − i) × (t − j). Then the
strictly lower triangular part of Q̇k can be computed from

φ̇i = Ki1ψ̇1, i = 1, 2, . . . , k. (30)

The first block column of the inverse can be computed by solving
K11

K21 K22
... · · · . . .

Kk1 · · · · · · Kkk



K11

K21
...

Kk1

 =


Ik−1

0
...
0

 , (31)

i.e. applying Algorithm D t− 1 times with unit vectors as starting vectors.
Similarly, the recursion for Ṗk can be written as a block lower triangular

linear system of equations with matrix Mk. Denoting the column vectors
of the strictly lower triangular part of Ṗk by η̇i ∈ Rt−i, we get

η̇i = Mi1ψ̇1, i = 1, 2, . . . , k, (32)

where the matrices Mi1 ∈ R(t−i)×(t−1) are from the first block column of the
inverse Mk of Mk.

The corresponding expression for the diagonals α̇ = (α̇1 α̇2 · · · α̇t)T ,
and γ̇ = (γ̇1 γ̇2 · · · γ̇t−1)T of Ḃt can also be computed using Algorithm D.
We can write

N (α)α̇ =

(
ψ̇1

0

)
, (33)

where N (α) ∈ Rt×t is a lower triangular matrix4. So we can writeα̇1
...
α̇k

 = N
(α)
k ψ̇1, (34)

where N
(α)
k ∈ Rk×(t−1) consists of the first k rows and the first t−1 columns

of the inverse of N (α). Similarly γ̇1
...

γ̇k−1

 = N
(γ)
k−1ψ̇1, (35)

4Considering (23) for k = t, we see that α̇t is determined from ψ̇1, see Appendix C;
thus the zero in the right hand side of (33).
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where N
(γ)
k−1 ∈ R(k−1)×(t−1). Both N

(α)
t and N

(γ)
t−1 can be computed by

applying Algorithm D to the unit matrix.
Since the dimension of Kt is t(t− 1)/2 the work for applying Algorithm

D once is O(t4) operations. Thus the computation of all first column blocks
of the inverse matrices requires O(t5) operations.

3.2 The Frechet derivative of Fk(y)

The Frechet derivative of a function F (y) is defined as the matrix J(y) that
satisfies

lim
h→0

1

‖h‖
‖F (y + h)− F (y)− Jh‖ = 0.

We will now derive an expression for the Frechet derivative of Fk, using the
perturbation theory.

We have yk = Fk(y) = UkU
T
k y. We now define the perturbed function

in terms of our reparametrization,

Fk(ȳ) = ŪkŪ
T
k ȳ = UtQk(ε)(Qk(ε))

T

(
UTk ȳ
UTk ȳ

)
.

Then, since

Qk(ε) = Qk(0) + εQ̇k(0) +O(ε2) =

(
Ik
0

)
+ ε

(
Q̇

(1)
k

Q̇
(2)
k

)
+O(ε2), (36)

we get

Qk(ε)Qk(ε)
T =

(
Ik 0
0 0

)
+ ε

(
Q̇

(1)
k 0

Q̇
(2)
k 0

)
+ ε

(
(Q̇

(1)
k )T (Q̇

(2)
k )T

0 0

)
+O(ε2)

=

(
Ik 0
0 0

)
+ ε

(
0 (Q̇

(2)
k )T

Q̇
(2)
k 0

)
+O(ε2),

where we have taken into account the skew-symmetry of Q̇
(1)
k . It follows

12



that

Fk(ȳ)− Fk(y) = Ut

((
Ik 0
0 0

)
+ ε

(
0 (Q̇

(2)
k )T

Q̇
(2)
k 0

)
+O(ε2)

)(
UTk ȳ
UTk ȳ

)
− Ut

(
UTk y

0

)
= εUkUkδy + ε(Uk Uk)

(
0 (Q̇

(2)
k )T

Q̇
(2)
k 0

)(
UTk y
UTk y

)
+O(ε2)

(37)

=: εJFk (δy) +O(ε2).

Clearly, from (29), Q̇k is a linear function of ṗ1, and by (11), a linear
function of δy. Therefore JFk (δy) is a linear operator and the Frechet deriva-
tive of F . However, for our computations we need an explicit expression for
the matrix of JFk .

For i = 1, 2, . . . , k we define K
(k)
i1 ∈ R(t−k)×(t−1) to be the t− k last rows

of the corresponding matrix block Ki1, and note that by (30),

Q̇
(2)
k = (K

(k)
11 ψ̇1 K

(k)
21 ψ̇1 · · · K(k)

k1 ψ̇1). (38)

Then we set
Ǩk = Ǩk(U

T
k y) ∈ R(t−k)×(t−1), (39)

where Ǩk(z) =
∑k

i=1 ziK
(k)
i1 .

Further, we define the matrix

K̃k =


yTUkK

(k)
11

yTUkK
(k)
21

...

yTUkK
(k)
k1

 ∈ Rk×t. (40)

We will need the following lemma.

Lemma 2. The vector ψ̇1, consisting of the last t − 1 components of the
vector ṗ1, is given by

ψ̇1 = Π1δy, Π1 = τB̂T
t U

T
t , (41)

where τ = 1/‖BT
t U

T
t y‖, and B̂t ∈ Rt×(t−1) consists of columns 2 to t of Bt.
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Proof. From (11) we have

p1(ε) =
1

‖BT
t U

T
t y(ε)‖

BT
t U

T
t y(ε),

with y(ε) = y + εδy. Differentiating this and evaluating the derivative for
ε = 0, we get

ṗ1 = τ
(
I − τ2BT

t U
T
t y y

TUtBt
)
BT
t U

T
t δy. (42)

As is seen from (11) τBT
t U

T
t y = p1(0) = e1, so we get the expression (41)

by removing the first row of (42).

We now have a computable expression for the Frechet derivative of Fk.

Theorem 3. The Frechet derivative of the function Fk(y) is

JFk = UkU
T
k + τUt

(
K̃k

Ǩk

)
B̂T
t U

T
t , (43)

where B̂t is given in Lemma 2, and K̃k and Ǩk are defined in (39)-(40).

Proof. Inserting (38) into the second term of (37) we have first, with z =
UTk y,

Q̇
(2)
k UTk y = (K

(k)
11 ψ̇1 K

(k)
21 ψ̇1 · · · K(k)

k1 ψ̇1)z

=
k∑
i=1

ziK
(k)
i1 ψ̇1 = Ǩkψ̇1,

and then, similarly,

(Q̇
(2)
k )TUTk y = (yTUk(K

(k)
11 ψ̇1 K

(k)
21 ψ̇1 · · · K(k)

k1 ψ̇1))
T

=


yTUkK

(k)
11 ψ̇1

yTUkK
(k)
21 ψ̇1

...

yTUkK
(k)
k1 ψ̇1

 = K̃kψ̇1,

which, using (41), lead to (43).

Using the identity tr(UtAU
T
t ) = tr(A) in (43) we get

tr(JFk ) = k + τ tr

((
K̃k

Ǩk

)
B̂T
t

)
.

Obviously the second term in the expression (43) for JFk is due to the non-
linearity of the function Fk(y).
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3.3 The Frechet Derivative of Hk(y)

With our parameterization the perturbed vector of regression coefficients is

β̄k = V̄kB̄
−1
k ŪTk ȳ = VtPk(ε)(Bk(ε))

−1(Qk(ε))
TUTt ȳ =: Hk(ȳ).

For small enough ε (i.e. for ε < 1/‖ḂkB−1k ‖), the perturbed inverse is given
by

B̄−1k = (Bk + εḂk +O(ε2))−1 = B−1k − εB
−1
k ḂkB

−1
k +O(ε2))−1,

where we have used the Neumann series expansion. Using this, (36), and
the analogous expression for Pk(ε) , we get

β̄k = Vt

((
Ik
0

)
+ εṖk +O(ε2)

)(
B−1k − εB

−1
k ḂkB

−1
k +O(ε2))−1

)
((
Ik 0

)
+ εQ̇Tk +O(ε2)

)
UTt (y + εδy)

= VkB
−1
k UTk y + ε

(
VkB

−1
k UTk δy + VtṖkB

−1
k UTk y

− VkB
−1
k ḂkB

−1
k UTk y + VkB

−1
k Q̇TkU

T
t y
)

+O(ε2). (44)

Obviously the Frechet derivative is inside the parentheses, and, in order to
find its matrix, we must express the terms with dotted quantities as a matrix
times δy, as in the previous section.

Recall the definition of the matrix inverse Mk that gives the column
vectors of Ṗk (32), and define the matrix blocks

M
(0)
i1 =

(
0
Mi1

)
∈ Rt×(t−1), i = 1, 2, . . . , k, (45)

where we have put i zero rows at the top to get a matrix with t rows. Now
we define

M̆k = M̆k[B
−1
k UTk y] ∈ Rt×(t−1), (46)

where, for z ∈ Rk, M̆k[z] =
∑k

1 ziM
(0)
i1 . Next we define

M
(1)
i1 = ETkM

(0)
i1 ∈ Rk×(t−1), i = 1, 2, . . . , k,

where ETk =
(
Ik 0

)
; thus M

(1)
i1 consists of the first k rows of M

(0)
i1 . Then

we put

M̂k =


yTUTk B

−T
k M

(1)
11

yTUTk B
−T
k M

(1)
21

...

yTUTk B
−T
k M

(1)
k1

 ∈ Rk×(t−1). (47)
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Further, define

K̂k =


yTUTt K

(0)
11

yTUTt K
(0)
21

...

yTUTt K
(0)
k1

 ∈ Rk×(t−1), (48)

where the definition of the matrices K
(0)
i1 ∈ Rt×(t−1) is analogous to that of

M
(0)
i1 . In analogy to (46) we define

K̆k = K̆k[U
T
k y] ∈ Rk×(t−1), (49)

where, for z ∈ Rk, K̆k[z] =
∑k

i=1 ziK
(1)
i1 , and the definition of K

(1)
i1 ∈

Rk×(t−1) is completely analogous to that of M
(1)
i1 .

Finally, define

N̂k = ΩkN
(α)
k ∈ Rk×(t−1), (50)

where Ωk = diag(ω1, ω2, . . . , ωk) := diag(B−1k UTk y), and N
(α)
k ∈ Rk×(t−1),

see (34). Similarly

N̆k =

(
Ω̄kN

(γ)
k−1

0

)
∈ Rk×(t−1), (51)

where N
(γ)
k−1 ∈ R(k−1)×(t−1), see (35), and Ω̄k = diag(ω2, . . . , ωk).

Theorem 4. Let the matrices M̆k, M̂k, K̂k, K̆k, N̂k, N̆k, be defined by
(46)–(51). The Frechet derivative of the function Hk(y) is

JHk = VkB
−1
k UTk + τ

(
VtM̆k − VkM̂k (52)

−VkB−1k (N̆k + N̂k − K̂k + K̆k)
)
B̂T
t U

T
t , (53)

where τ and B̂T
t are given in (41).

Proof. We start from (44), and express Ṗk using (32), which gives

Ṗk =
(
M

(0)
11 ψ̇1 M

(0)
21 ψ̇1 · · ·M (0)

k1 ψ̇1

)
− Ek

(
M

(0)
11 ψ̇1 M

(0)
21 ψ̇1 · · ·M (0)

k1 ψ̇1

)T
Ek =: T1 − T2,

where

Ek =

(
Ik
0

)
∈ Rt×k.

16



For the third term in the right hand side of (44) we first get,

VtT1B
−1
k UTk y = VtM̆k[B

−1
k UTk y]Π1δy,

where we have used (46) and Lemma 2. Then, performing a few elementary
matrix operations, we get

VtT2B
−1
k UTk y = VkM̂kΠ1δy,

This leads to the first two terms in (53). The derivation of the last two
terms in (53) is analogous.

For the term in (44) involving Ḃk we get, due to bidiagonality,

ḂkB
−1
k UTk y =


α1ω1

...
αk−1ωk−1
αkωk

+


γ1ω2

...
γk−1ωk

0

 = ΩkN
(α)
k ψ̇1 +

(
Ω̂kN

(γ)
k ψ̇1

0

)
,

which, using Lemma 2, leads the first two terms in (53).

In our numerical experiments we will compute the singular values of the
Frechet derivative, and this is done by computing the singular values of
V T
t J

H
k Ut.

4 Numerical Examples

In this section we first report the results of the computation of degrees of
freedom for PLS using three algorithms: The one described in Appendix B
(denoted D-L), the algorithm by Krämer and Sugiyama [5] (denoted D-K),
mentioned at the end of Appendix B, and the one based on perturbation
theory proposed in this paper (denoted Pert). We then give an example of
the computation of the Frechet derivative for the regression coefficients.

The tests were performed on a four-core desktop computer with clock
frequency 3.1 GHZ using Matlab R2013a. Execution times were measured
using Matlab’s tic-toc functions. As is well-known, timing experiments in
Matlab are difficult to evaluate, because there are many system- and coding-
dependent factors that influence the execution time. The cookie problem is
so small that all methods executed in less than a second (7 steps for D-K and
D-L, 70 for Pert). The kin32 is relatively large, and D-K and D-L executed
14 steps in 3 and 24 seconds, respectively. The Pert method required less
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than 0.1 second for 32 steps. Of course, only the order of magnitude is
relevant in such a comparison.

We computed the degrees of freedom for two problems, the kin32 and
cookie problems, both described in [5] (originally published at http://

www.cs.toronto.edu/~delve and in [6]). In the first problem X has di-
mension 8192× 32 and in the second 72× 700. However, in both cases the
differentiation approaches D-L and D-K became completely unstable5 quite
early, so we had to stop after few steps, see the results illustrated in Figure
1.

We also computed the eigenvalues of JFk for the two problems. For the
kin32 problem all the non-zero eigenvalues were very close to 1 already after
11 steps. This is about the same step when the degrees of freedom curve
levels off. Similar behavior occurs for the cookies problem.

If Fk had been linear, the degrees of freedom curve would have been a
straight line of slope 1 (first term in (43)). The results in Figures 1 and 2
indicate that after a small number of steps the non-linear procedure creates a
model of the same complexity (in terms of the number of degrees of freedom)
and with the same eigenvalue properties (of the Frechet derivative) as a
linear projection of considerably higher dimension. Note that the eigenvalues
of the Frechet derivative converge towards those of an orthogonal projection.

For efficiency and storage reasons it is not feasible to perform t =
min(m,n) steps of the algorithm for very large problems. Therefore we
must ask whether an approximation of the Frechet derivative for a smaller
value of t gives the same information as with a large value. Our experiment
illustrated in Figure 3 indicates that the answer is affirmative. We computed
degrees of freedoms for our two test sets with different values of t, between
min(m,n)/2, approximately, and min(m,n). Obviously, the maximum value
for the number of degrees of freedom is t + 1. In both cases all the curves
level off to become constant at the same model dimension. This is not sur-
prising, since the fact that PLS has captured almost all the structure of the
problem at a certain step does not depend on how many extra steps are
performed. On the other hand, the Frechet derivative (43) clearly depends
on t. However, due to its property of choosing the basis vectors to maximize
covariance, PLS orders the information so that the absolute values of the
components of the vector UTt y decrease almost monotonically, see Figure
4, in contrast to the behavior of the coordinates of y in terms of the left

5The instability is not due to loss of orthogonality in the computed basis vectors: we
used reorthogonalization in the GK process so that the computed matrices Uk and Vk had
perfectly orthogonal column vectors in the floating point system, e.g., ‖UT

t Ut−I‖ ≈ 10−15.
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Figure 1: The estimated number of degrees of freedom for the kin32 problem
(top) and the cookie problem (bottom). The model dimension is given on
the horizontal axis.
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Figure 2: Real and imaginary parts of the eigenvalues of the Frechet deriva-
tive JFk for the kin32 problem (two top graphs) and the cookie problem
(two bottom). The model dimension is given on the horizontal axis.
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Figure 3: Degrees of freedom curves for different values of t: kin32 problem
(left) and the cookie problem (right). The model dimension is given on
the horizontal axis, and the value of t can be read off from the end of each
curve.

singular vectors. Therefore, in these examples, the contributions from the
second term in (43) to the degrees of freedom become smaller as t increases.

From the limited numerical experiments reported above, we believe that
the Frechet derivative computed by our approach can be used for reliable
computations of the degrees of freedom for the PLS model.
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Figure 4: Absolute values of the coordinates of the right hand side y in terms
of the columns of Ut (solid curve) and the left singular vectors (dashed curve)
for the kin32 problem (left) and the cookie problem (right).

We then computed the singular values of the Frechet derivative for dif-
ferent model dimensions. The results are illustrated in Figure 5. It is seen
that the singular values “stabilize” at about the same model dimension as
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the number of degrees of freedom curves level off.
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Figure 5: The singular values of the Frechet derivative for the kin32 problem
(left) and the cookie problem (right) The model dimension is given on the
horizontal axis.

Appendices

A PLS: The NIPALS formulation

NIPALS PLS

1. X0 = X

2. for i=1,2,. . . ,k

(a) wi = 1
‖XT

i−1y‖
XT
i−1y

(b) ti = 1
‖Xi−1wi‖ Xi−1wi

(c) pi = XT
i−1ti

(d) Xi = Xi−1 − tipTi

In the statistics/chemometrics literature the vectors wi, ti, and pi are
called weight, score, and loading vectors, respectively. Notice that the ti
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vectors are scaled to have norm 1. The deflation of the data matrix in item
2d, and the corresponding deflation of the right hand side y can be written

(Xi, yi) = (I − titTi )(Xi−1, yi−1).

It is shown in [2] that deflation of the right hand side is essential for the
stability of this version of PLS.

B Computing the Frechet Derivative: Differenti-
ation Approach

We here sketch the differentiation approach for computing the degrees of
freedom. From (2) and (5) we get

Dk = 1 + tr(
∂(UkU

T
k y)

∂y
).

Since UkU
T
k y =

∑k
i=1 uiu

T
i y, DOF can be computed recursively,

Dk = Dk−1 + tr(
∂(uku

T
k y)

∂y
).

Thus we can compute the degrees of freedom Di recursively along with the
orthogonal vectors. Note that if a vector u is a function of y then

∂(uuT y)

∂y
=
(
uT yI + uyT

) ∂u
∂y

+ uuT .

The initialization of the recursion can be rewritten

ṽ1 = XT y, γ0 = ‖ṽ1‖, v1 = 1/γ0ṽ1,

ũ1 = Xv1, α1 = ‖ũ1‖. u1 = 1/α1ũ1,
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with derivatives

∂ṽ1
∂y

= XT ,

∂γ0
∂y

= 1/‖ṽ1‖ṽT1
∂ṽ1
∂y

= vT1
∂ṽ1
∂y

,

∂v1
∂y

= −1/γ20 ṽ1
∂γ0
∂y

+ 1/γ0
∂ṽ1
∂y

= − 1

γ0

(
v1
∂γ0
∂y
− ∂ṽ1

∂y

)
,

∂ũ1
∂y

= X
∂v1
∂y

,

∂α1

∂y
= 1/‖ũ1‖ũT1

∂ũ1
∂y

= uT1
∂ũ1
∂y

,

∂u1
∂y

= −1/α2
1ũi

∂αi
∂y

+ 1/α1
∂ũ1
∂y

= − 1

α1

(
u1
∂α1

∂y
− ∂ũ1

∂y

)
.

Similarly, rewriting the main statements

ṽi = XTui−1 − αi−1vi−1,
γi−1 = ‖ṽi‖,
vi = 1/γi−1ṽi,

ũi = Xvi − γi−1ui−1,
αi = ‖ũi‖,
ui = 1/αiũi,

the corresponding statements differentiated are

∂ṽi
∂y

= XT ∂ui−1
∂y

− vi−1
∂αi−1
∂y

− αi−1
∂vi−1
∂y

,

∂γi−1
∂y

= 1/‖ṽi‖ṽTi
∂ṽi
∂y

= vTi
∂ṽi
∂y

,

∂vi
∂y

= −1/γ2i−1ṽi
∂γi−1
∂y

+ 1/γi−1
∂ṽi
∂y

= − 1

γi−1

(
vi
∂γi−1
∂y

− ∂ṽi
∂y

)
,

∂ũi
∂y

= X
∂vi
∂y
− ui−1

∂γi−1
∂y

− γi−1
∂ui−1
∂y

,

∂αi
∂y

= 1/‖ũi‖ũTi
∂ũi
∂y

= uTi
∂ũi
∂y

,

∂ui
∂y

= −1/α2
i ũi

∂αi
∂y

+ 1/αi
∂ũi
∂y

= − 1

αi

(
ui
∂αi
∂y
− ∂ũi
∂y

)
.

Note that the derivatives ∂ui/∂y are matrices in Rm×m. Therefore, if m�
n, the recursion is computationally very heavy, as we have to repeatedly
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multiply large, dense matrices by XT . In [5, Algorithm 1] a scheme is
described that avoids computing ∂ui/∂y by applying the Lanczos recursion
for XTX.

C Computation of Ṗk, Q̇k, and Ḃk

Here we give the algorithm for computing Q̇k, Ḃk and Ṗk. For readability
we use the notation Ck+1 = Bt(k + 2 : t, k + 2 : t).

Algorithm D: Computation of Ṗt, Q̇t, and Ḃt

Starting vector Ṗ1:t,1 = ṗ1

1. Q̇2,1 = 1
α1

(α2Ṗ2,1 + γ2Ṗ3,1)

2. Q̇3:t,1 = 1
α1
C2Ṗ3:t,1

3. Ṗ3:t,2 = 1
γ1

(CT2 Q̇3:t,1 + γ2Q̇2,1e1 − α1Ṗ3:t,1)

4. α̇1 = γ1Ṗ2,1; γ̇1 = α2Q̇2,1 − α1Ṗ2,1

5. for k = 2, . . . , t− 2

(a) Q̇1:k−1,k = −Q̇Tk,1:k−1
(b) α̇k = γkṖk+1,k − γk−1Q̇k,k−1
(c) Q̇k+1,k = 1

αk
(αk+1Ṗk+1,k + γk+1Ṗk+2,k − γk−1Q̇k+1,k−1)

(d) Q̇k+2:t,k = 1
αk

(Ck+1Ṗk+2:t,k − γk−1Q̇k+2:t,k−1)

(e) γ̇k = αk+1Q̇k+1,k − αkṖk+1,k

(f) Ṗ1:k,k+1 = −Ṗ Tk+1,1:k

(g) Ṗk+2:t,k+1 = 1
γk

(CTk+1Q̇k+2:t,k + γk+1Q̇k+1,ke1 − αkṖk+2:t,k)

6. Q̇1:t−2,t−1 = −Q̇Tt−1,1:t−2

7. Q̇t,t−1 = 1
αt−1

(αtṖt,t−1 − γt−2Q̇t,t−2)

8. Ṗ1:t−1,t = −Ṗ Tt,1:t−1

9. α̇t−1 = γt−1Ṗt,t−1 − γt−2Q̇t−1,t−2

10. Q̇1:t−1,t = −Q̇Tt,1:t−1
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11. γ̇t−1 = αtQ̇t,t−1 − αt−1Ṗt,t−1

12. α̇t = −γt−1Q̇t,t−1
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