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ABSTRACT
Clouds play a crucial role in the Arctic climate system. Therefore, it is essential to accurately and reliably quantify and
understand cloud properties over the Arctic. It is also important to monitor and attribute changes in Arctic clouds. Here,
we exploit the capability of the CALIPSO-CALIOP instrument and provide comprehensive statistics of tropospheric

thin clouds, otherwise extremely difficult to monitor from passive satellite sensors. We use 4 yr of data (June 2006—May
2010) over the circumpolar Arctic, here defined as 67-82°N, and characterize probability density functions of cloud
base and top heights, geometrical thickness and zonal distribution of such cloud layers, separately for water and ice

phases, and discuss seasonal variability of these properties. When computed for the entire study area, probability
density functions of cloud base and top heights and geometrical thickness peak at 200-400, 1000-2000 and 400-
800 m, respectively, for thin water clouds, while for ice clouds they peak at 6-8, 7-9 and 400—-1000 m, respectively. In

general, liquid clouds were often identified below 2 km during all seasons, whereas ice clouds were sensed throughout
the majority of the upper troposphere and also, but to a smaller extent, below 2 km for all seasons.

1. Introduction

The Arctic climate system has undergone rapid changes in the re-
cent few decades, primarily driven by increasing anthropogenic
emissions (Gillett et al., 2008; Shindell and Faluvegi, 2009).
These changes have been amplified by various feedback mecha-
nisms. For example, the Arctic temperature has been increasing
more than twice the global average since the mid-1960s (ACIA,
2005). The role of clouds with respect to both short-term changes
(Kay and Gettelman, 2009) and long-term changes (Liu et al.,
2009a) in the Arctic climate is vital as clouds are radiatively
and dynamically coupled to every aspect of the Earth System
(see Curry et al., 1996, for a comprehensive overview). How-
ever, our limited understanding of cloud properties along with
a poor representation in climate models has contributed large
uncertainties in estimating future climate change. This is espe-
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cially true for the Arctic region (Tjernstrom et al., 2008), where
ground-based observations are very sparse, and space-based ob-
servations from passive remote sensing instruments have limited
capabilities (e.g. Karlsson and Dybbroe, 2009).

Recently, the need is expressed to identify, and more im-
portantly, to characterize the various cloud regimes that are
likely most susceptible to the influence of aerosols originating
from anthropogenic activities (Stevens and Feingold, 2009). One
such cloud category is low-level optically and geometrically thin
clouds in the Arctic (see Turner et al., 2007, for an overview).
It has been suggested that the part of the recent warming over
the Arctic is due to changes in the aerosol regimes (Shindell and
Faluvegi, 2009), which in turn may affect thin clouds and en-
hance or diminish the trends. Various mechanisms with which
aerosols can affect clouds in the Arctic have been proposed
(Blanchet and Girard, 1994; Garrett and Zhao, 2006; Lubin and
Vogelmann, 2006). Large solar zenith angles in summer and the
absence of solar radiation in winter result in the long-wave com-
ponent of cloud forcing being dominant for most part of the year
(Walsh and Chapman, 1998). Hence, aerosol indirect effects in
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78 A. DEVASTHALE ET AL.

the long-wave spectrum are especially important for the Arctic
region (Garrett et al., 2002; Garrett and Zhao, 2006; Lubin and
Vogelmann, 2006). Aerosols impact the emissivity of thin wa-
ter clouds by increasing the infrared optical depth of thin water
clouds and may thus change the long-wave radiation re-emitted
towards the surface (Garrett et al., 2002). It is therefore essential
to quantify the properties of such clouds so as to fully assess
their susceptibility to changes in aerosol loadings.

Detection of optically and geometrically thin clouds present
a challenge for passive instruments, especially when the surface
below is snow and ice and/or very cold as is often the case in
the Arctic (Karlsson and Dybbroe, 2009). The data from the
Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)
instrument onboard Cloud-Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) satellite (Winker et al., 2009)
provides an unprecedented opportunity to investigate these
clouds at very high vertical resolution, due to its strong sen-
sitivity to clouds with optical thickness less than 5. This paper
is first of the two-part series where we exploit this capability
of CALIPSO-CALIOP. In this paper we provide comprehensive
statistics on optically thin cloud properties over the circumpolar
Arctic, here defined as 67-82°N (Note that the satellite cov-
erage is limited to <~82°N). We herein compute probability
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density functions (PDFs) of cloud top and base heights as well
as geometrical thickness, for water and ice phase cloud layers
separately and also discuss seasonal variations. We also present
the zonal distributions of water and ice clouds. In the companion
paper (Devasthale et al., 2011), we present similar statistics for
aerosols over the same region and time period.

The paper is organized as follows. In Section 2, we briefly
discuss the data used, followed by a discussion of results in
Section 3. Summary and conclusions are provided in Section 4.

2. CALIOP data

In the present analysis, we used the recently released standard
CALIPSO 5 km Cloud Layer Version 3 product. The details
of CALIPSO products, algorithms and their validations can be
found in Hu et al. (2009), Liu et al. (2009b), Vaughan et al.
(2009), Winker et al. (2009) and Young and Vaughan (2009).
A snapshot of the CALIOP curtain over the Arctic is shown
in Fig. 1. The top panel shows 532 nm attenuated backscatter,
whereas middle and bottom panels show corresponding depo-
larization ratios and vertical feature mask. In the first image, the
warm colours (red to white) denote high-attenuated backscat-
ter corresponding to clouds whereas the lower attenuated

, Cloud layers
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Fig. 1. A snapshot of CALIOP curtain over the Arctic. The top panel shows vertically resolved 532 nm attenuated backscatter, whereas middle and
bottom panels show corresponding depolarization ratio and vertical feature mask.
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VERTICAL DISTRIBUTION OF THIN CLOUDS OVER THE ARCTIC 79

backscatter (yellow to blue) corresponds to aerosols and clear air
as illustrated by the vertical feature mask in the lower panel. The
middle panel is a plot of the volume depolarization ratio used
to discriminate between aerosols and clouds (Liu et al., 2009)
and identify aerosol subtypes (Omar et al., 2009). CALIPSO
observes a significant amount of high depolarization ratio parti-
cles near the surface, which is labelled cloud but are more likely
diamond dust or ice fog.

A rigorous quality control is applied by selecting only high
confidence estimates for the analysis. For example, based on
the information in the feature classification flags, the retrievals
are used only if: (a) the feature is classified as cloud; (b) The
quality of the feature classification is set to ‘high’ and (c) the
cloud phase discrimination quality (Hu et al., 2009) is also set to
‘high’. The data used here cover a 4-yr period from June 2006
to May 2010. Data are analysed for the four seasons separately,
winter (December, January and February; DJF), spring (March,
April and May; MAM), summer (June, July and August; JJA)
and autumn (September, October and November; SON).

The lidar signal becomes substantially saturated as cloud opti-
cal thickness increases more than 3, and becomes fully saturated
above 5. Thus, the statistics presented here are essentially for
clouds with optical depths less than 3, which is the main aim of

this study. Given this limit on optical depth, the cloud types that
would be analysed here are transparent cirrus, low-level overcast
partly transparent clouds, transition stratocumulus, transparent
altocumulus, etc. The cloud layers in which the lidar signal
was fully attenuated, and thus cloud base information was not
retrieved, are discarded in the analysis. Clouds categorized in
either water or ice phases are analysed. At the time of this writ-
ing, the information on the mixed-phase clouds was missing
in the CALIPSO 5 km layer products. Previous studies have
shown that the mixed-phase clouds are present over the Arctic,
although full characterization over the entire Arctic Ocean is
lacking, and information is limited to only few locations (Shupe
et al., 2006; Verlinde et al., 2007; de Boer et al., 2009; Ehrlich
et al., 2009; Gayet et al., 2009). Such clouds may have been
classified in liquid or ice categories in our analysis depending
upon the dominant phase of condensate. The lidar retrievals be-
low 100 m can be sometimes noisy and hence due care is taken
to avoid such cases using quality flags. It should finally be noted
here that observations poleward of ~82° are not available due
to CALIPSO’s orbital configuration.

Figure 2 shows the total number of cloud layers finally used for
the analysis for each season, while at the same time providing
an overview of the study domain. It is worth noting that the
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Fig. 2. Total number of observations used in
the analysis for four seasons (June
2006—May 2010) after applying high-quality

flags mentioned in Section 2. 0 500
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distribution is far from homogeneous. In winter and spring, there
is a strong bias in the data distribution towards the very highest
latitudes and also towards the northern North Atlantic sector. In
summer and autumn, the distribution is more homogeneous in
general, but still with a bias to more northerly locations. The
presence of Greenland, with its special properties, is also quite
obvious in the plots.

3. Results and discussions

Figure 3 presents the relative distribution of the number of
cloud layers over the whole study area. The clear sky fraction is
largest in winter at ~28%, and smallest in autumn at ~17%. In
general, single-layer only clouds occur about 35-45% of the
time, whereas two-layer cloud systems occur around 20% of the
time. Multiple layered cloud systems, with up to six to seven
layers, also occur frequently. In a previous study, Intrieri et al.
(2002) reported occurrence of up to five cloud layers using 1-yr
of ground-based remote sensing measurements over the Surface
Heat Budget of the Arctic (SHEBA) area (Uttal et al., 2002). The
occurrence of multilayered clouds during SHEBA was larger
than that for single layer clouds in June and July. A direct com-
parison with their results is difficult because we analysed the
seasonal statistics over much larger area and for a different time
period.

Figures 4 and 5 show zonal distributions of water and ice
phase clouds, respectively, and their seasonal variability. The
bin size is 200 m in the vertical (y-axis) and 1° in the zonal
direction (x-axis). In each longitude-height bin, all the observa-
tions in Fig. 2 are aggregated according to height and location.
Also note the dome-like structure around 20-60°W is due to
the Greenland topography. Water clouds (Fig. 4) show strong

intraannual variability within the lowermost 2 km in the tro-
posphere. Here it is necessary to take into account the role of
synoptic-scale weather patterns over the study area when inter-
preting the results, because they will have first-order influence
on the regional distribution of cloud amount and type. In win-
ter, the semi-permanent Icelandic low brings cyclones up to the
Norwegian, Greenland and Barents Seas. This is the most dom-
inating feature that governs the cloud distribution over the study
area, clearly reflected for the winter and spring cases in Fig. 4.
In contrast, the Siberian and Beaufort highs lead to much lower
cloud amounts. In summer, however, the contrast between these
semi-permanent highs and lows weakens considerably, result-
ing into more uniform distribution of low-level water clouds
along the Arctic Circle. This is also well reflected in Fig. 4. In
spring and autumn, the areas of northern Alaska, East Siberian
Sea, Chukchi Sea and Beaufort Sea extending into the Arctic
Ocean show relatively high low-level thin water cloud amounts
compared to other seasons. The annual variability of the sea ice
distribution is also important as is the distribution of land and
sea in the study domain. Although snow and ice surfaces domi-
nate in winter, the northern North Atlantic sector of the domain
is largely ice free in summer while the North Pacific sector, for
example, likely has more influence from sea ice. This, however,
is rapidly changing, as this is the sector where most of the recent
increase in melt has occurred.

Cirrus clouds dominate the distribution of thin ice clouds in
the upper troposphere for all seasons (Fig. 5). One noticeable
feature seen in the zonal distribution is the change in the heights
and amounts of these clouds over Greenland, which gradually
smears out eastwards in winter and spring seasons. The role
of waves in the predominantly westerly flow across Greenland,
especially during positive phases of Arctic Oscillation (AO), is
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Fig. 4. The zonal distribution of water phase clouds and their seasonal variations. The height on Y-axis is in km. The observations over the 67-82N
are aggregated for each bin, and each bin is normalized by the total number of observations in the entire joint histogram.
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Fig. 5. Same as in Fig. 1, but for ice phase clouds.

crucial. The centre of action of the AO is usually situated over the
northern Greenland at 100 hPa and over the southern Greenland
at 500 hPa. Strong winds passing over Greenland generate buoy-
ancy waves that propagate to the upper troposphere and lower
stratosphere region leading to such a pattern. In winter, signifi-
cant fractions of thin ice clouds are also observed in the lower
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troposphere over the eastern Canadian archipelago, Greenland
and to some extent over parts of the Greenland and Barents Seas.

The thermodynamic phase of a thin cloud, its vertical posi-
tion in the atmosphere and its seasonal variability has varying
impact on the radiative fluxes in the atmosphere and the surface.
Moreover, the relative frequency of occurrence of water and ice
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clouds, especially in the lowermost troposphere, has strong in-
fluence on the radiation reaching the surface in the Arctic due
to different refractive indices of water droplets and ice crystals.
The relative vertical distribution would also have influence on
their susceptibility to aerosols, thus further adding complexity
in determining their overall role in aerosol—cloud interactions in
the Arctic. The frequency of occurrence of water and ice phase
clouds for different seasons as a function of height is shown in
Fig. 6. Vertical distribution of water phase clouds show that their
occurrence is largest in autumn followed by summer, spring and
winter. Liquid water clouds are as expected most prominent in
the lower troposphere, mostly below 1-2 km. Interestingly, in
the lowermost troposphere (up to 400 m), a significant pres-
ence of both ice and liquid is observed in all seasons. This
is consistent with observations from SHEBA, showing liquid
water in low clouds at very low temperatures and from the Arc-
tic Summer Cloud Ocean Study (ASCOS) campaign showing
prevailing low-level mixed-phase clouds at relatively high sum-
mer temperatures. There are, however, also several problems
with CALIOP measurements of ice phase clouds at these lev-
els. For example, in winter, apart from ice clouds there is a
possibility that CALIOP is detecting boundary-layer ice crys-
tals (Wilson et al., 1993; Bourdages et al., 2009), ice fog, dia-
mond dust or ice precipitation (Clark et al., 1996) falling below
thin water clouds (Intrieri and Shupe, 2004) or combination of
these phenomena. The zonal distribution shows that the Cana-
dian archipelago contributes mostly to the ice phase clouds in
the lowermost troposphere (Fig. 5). As this is rugged terrain
there is a possibility that the snow or ice crystals blown by
wind from such terrain could be detected by CALIOP (Lesins
etal., 2009). Although all of these phenomena are reported to be
present in the Arctic, there is still not enough literature available

0.35 04

observations that satisfy high-quality criteria
given in Section 2 are used for the analysis.

to establish their relative importance covering the entire Arctic
region.

The PDFs of cloud base and cloud top heights are shown in
Fig. 7. The PDFs for both water and ice clouds are skewed.
The PDFs for cloud base height of water clouds peak in the two
lowermost bins (i.e. below 400 m) in all seasons. The PDFs for
water clouds in summer are very broad compared to other sea-
sons. There is also a clear seasonality in the PDFs of cloud base
height between summer and winter months, with the PDF peak-
ing sharply around 200—400 m in winter, whereas in summer,
the PDF is quite broad additionally showing substantial amount
of clouds with bases at around 2—4 km. This is somewhat unex-
pected in the light of many earlier studies showing that summer
is dominated by low clouds (e.g. Intrieri et al., 2002; Tjernstrom
et al., 2004). A possible reason for this is that the domain in this
study includes significant land areas whereas many earlier stud-
ies are over the ice-covered ocean. Over land in summer higher
cloud bases in summertime convection could be expected. The
PDFs of top height for water clouds peak around 1-2 km in
line with the expected predominance of low water clouds. Inter-
estingly, the liquid clouds above 2 km in summer and autumn
are geometrically thinner than those found in winter and spring.
Thus, the vertical distribution of cloud liquid water content, as
well as liquid droplet radius, will have a distinct influence on the
radiative transfer through such clouds. The PDFs of cloud base
height for ice phase clouds are broad but peak at around 6—8 km,
whereas for cloud tops they peak around 7-9 km.

Figure 8 shows the PDFs of cloud geometrical thickness. The
distributions for both water and ice phase clouds are positively
skewed, with broader distributions for ice-phase clouds than
for liquid phase clouds. The seasonal variations in the peaks
of PDFs are clearly visible. The geometrical thickness of thin
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liquid-phase clouds peaks around 400-800 m, whereas for ice-
phase clouds, the PDFs peak around 400-1000 m. In winter, geo-
metrically very thick but optically thin ice clouds (predominantly
cirrus) are also observed in many cases. A qualitative comparison
with the results from previous studies using lidar/radar observa-
tions at few stations or from observational campaigns over the
Arctic shows generally good agreement with our results. For ex-
ample, Intrieri et al. (2002), using radar-lidar data for the period
of 1-yr over the SHEBA area, provide histograms of the lowest
cloud base height that peak in the lowermost 1-km bins for all
seasons. Sedlar and Tjernstrom (2009) identified single-layer
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clouds with cloud top below 2.2 km occurring across 60% of
the time during late summer from the Arctic Ocean Expedition
2001. Dong and Mace (2003) also report cloud base heights of
Arctic stratus over the ground station at Barrow, Alaska, in the
lowermost 1 km for the summer 2000.

4. Conclusions

We provide, for the first time, extensive statistics on optically
thin water and ice clouds over a large part of the Arctic using
the CALIPSO data for the period June 2006 through May 2010.
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The CALIOP instrument is ideally suited to study optically thin
clouds (with optical depth <3), especially over the Arctic where
such clouds are present in significant amounts in the lowermost
troposphere. These clouds are also susceptible to the aerosol
influence in the Arctic, and hence accurate information on their
characteristics is needed to assess the impact of a changing
aerosol climate. In this study, we have characterized PDFs of
cloud base and top heights, geometrical thickness and zonal dis-
tribution of such cloud layers separately for water and ice clouds
and discussed seasonal variability of these properties. The PDFs
are in general broad and long-tailed. When computed for the
entire study area, the PDFs of cloud base and top heights and
geometrical thickness peak at 200-400, 1000-2000 and 400-800
m, respectively, for thin water clouds, whereas for ice clouds,
they peak at 6—8 km, 7-9 km and 400-1000 m, respectively. The
zonal distribution of thin water and ice clouds shows the foot-
prints of major synoptic weather patterns (i.e. semi-permanent
highs and lows, Arctic Oscillation) in the regional distribution
of clouds over the Arctic. When the CALIOP data set becomes
longer it would be interesting to investigate interannual varia-
tions, and correlations of some of these findings with the AO
index variations (e.g. Wang and Key 2005). At the present this
is not possible due to the length of the satellite data record.
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