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Abstract

Considering the more and more important issues concerning the climate changes
and the global warming, the automotive industry is paying more and more atten-
tion to vehicle concepts with full electric or partly electric propulsion systems.
The introduction of electric power sources allow the designers to implement more
advanced motion control systems in vehicle, such as active suspensions. An ex-
ample of this concept is the Autonomous corner module (ACM), designed by S.
Zetterström. The ACM is a modular based suspension system that includes all
features of wheel control, such as control of steering, wheel torque and camber
individually, using electric actuators. With a good control strategy it is believed
that is it possible to reduce the fuel consumption and/or increase the handling
properties of the vehicle.

In particular, camber angle has a significant effect on vehicle handling. How-
ever, very few efforts have been done in order to analyse its effects on tire dissipated
energy.

The aim of this study is to develop a new tire model, having as starting point
the simple Brush Tire model, in order to analyse the tire behaviour, in terms of
forces generated and energy dissipated, for different dynamic situations. In order
to reach this scope, the characteristic equations of the rubber material are imple-
mented in a 3D Multi-Line brush tire model. In this way the energy dissipated,
thus the rolling resistance force, can be studied and analysed, considering also the
tire geometry.

From the results of this work it is possible to assert that the angular parame-
ters (e.g. camber angle) affect the power losses in rolling tires, as well as the tire
geometry influences their rolling resistance. Thus, using a good control strategy,
it is possible to reduce the power losses in tires.

Keywords: Multi-Line Brush Tire model, Masing model, rolling resistance.
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Chapter 1

Introduction

1.1 Background

The car is one of the most common means of transport in the last decades.
According to Ward’s research, the number of vehicles in operation worldwide
surpassed the one billion unit mark in 2010 for the first time ever [1]. It is
one of the symbols of the country’s financial resources, and its number is
in perpetual growth. The vehicle propulsion is provided by an engine or
motor, usually by an internal combustion engine, or an electric motor, or
a combination of the two, such as hybrid electric vehicles. The commercial
drilling and production of petroleum began during the mid-1850’s, thus the
internal combustion engine became the predominant mode of propulsion,
due to the extremely high energy density of the liquid fossil fuel.

During the last two decades, the climate change issues, to which the
vehicle emissions play an important role in the formation of the greenhouse
gases, and the diminishing fossil fuel resource become problems of primary
importance. The future trends of the new vehicle concepts seems to go
towards the complete, or partial, electrification of the propulsion system.
Thanks to the introduction of electric power source, more advanced motion
control systems, such as active suspension and individual wheel control, can
be implemented, by the increasing use of electric actuators. Consequently,
various chassis strategy and suspension control systems can be implemented
in the vehicle, in order to optimize performance and fuel consumption.

The camber angle, γ, denotes the outward angular lean of the wheel
plane relative to the vehicle reference frame [2]. In conventional vehicles
(cars, trucks) the camber angle is small, and it is function of the suspension
design. However, electrification of vehicle actuators enable active control of
camber angles instead of passively tilting the wheel, according to suspension
geometry. One example of a suspension system realized with active camber
control is the Autonomous corner modul (ACM), designed by S. Zetterström
in 1998 [3]. The ACM is a modular based suspension system that includes
all features of wheel control, such as control of steering, wheel torque and
camber individually.

The aim with this work is to investigate and get increased understand-
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ing of the effect of camber as well as different operating conditions on the
energy dissipation in rolling tires, using a dynamic model, typical of studies
concerning the rubber behavior. It is motivated by the constant research on
the minimization of the energy needed to move vehicles.

1.2 Outline of the thesis
The work is divided in seven chapters: in the first one the background and the
motivations of this work are explained; in Chapter 2 the fundamental notions
about tire and tire dynamics are briefly described, including the wheel axis
system used in the thesis; in Chapter 3 the two most famous and utilized tire
models are described and commented, the Magic Formula and the Brush Tire
model; the mechanics of rubber and its modelling are discussed in Chapter
4, where the rubber model used in the work is discussed and analysed; in
Chapter 5 the Multi-Line Brush tire model is derived, explaining all the
factors and the dynamics involved; the validation and the results coming
from the model are discussed in Chapter 6. Finally, in Chapter 7, some
conclusions of the work is made as well as some recommendations for future
work.
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Chapter 2

Fundamentals of tire dynamics

In this chapter a brief review of the fundamental aspects of wheel dynam-
ics and kinematics are shown. But first a brief introduction on axis and
coordinate systems is discussed.

It’s very important to define correctly the axis coordinate system, in
order to avoid misunderstandings about the sign of forces and torques. In
literature two main axis orientation exists, both of them right-handed : the
ISO 8855 [4] and the SAE J670e [5]. In this work the ISO 8855 is taken as
reference, it means that the z-axis is pointing up from the ground plane, the
x-axis is pointing forward and the y is pointing to the left-hand-side of the
vehicle. The XR, YR, ZR is the right-handed orthogonal axis system whose
ZR axis is normal to the road surface at the center of tire contact, and whose
XR axis is perpendicular to the wheel spin axis YW , as shown in Figure 2.1.
The camber angle γ is positive if it rotates about XR axis, and the slip angle
α is positive if it rotates about ZR axis.

2.1 Kinematics

This section deals with the kinematics in tires, and describes the definitions
and the notations used in the thesis. The most important entities are illus-
trated in Figure 2.2. In the figure the vectors are illustrated by a bar over

Figure 2.1: Wheel axis coordinate system ISO 8855 [2]
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Figure 2.2: Kinematics of the wheel during braking and cornering.
(Left: bottom view; right: side view)

the letter, the magnitude of vectors is expressed by their components. The
wheel travel velocity is denoted by vector v̄ = (vx, vy), it is the velocity of
the wheel center, different from the XR axis (longitudinal axis of the wheel
plane pointed in the contact patch) by the slip angle α:

tan(α) =
vy
vx

(2.1)

The circumferential speed of the wheel is equal to:

vc = ωRe (2.2)

where ω is the wheel angular velocity, and Re is the effective rolling radius,
defined as the ratio Re = vx/ω0 between the longitudinal wheel speed and
the wheel angular velocity in free rolling. It’s important to notice that the
effective rolling radius Re is not equal to the height of the center wheel above
the ground zt neither to the wheel unloaded radius R0, but something in the
middle. The difference between zt and Re creates a longitudinal slip velocity,
that allows the tire to generate a longitudinal force needed to balance the
rolling resistance force (this will be discuss in the chpater 5). The slip velocity
is the relative motion of the tire in contact with the ground in the contact
patch. It is defined as:

v̄s = (vx − vc, vy) (2.3)

Thus the direction of the vector slip velocity is indicated by the angle β,
defined as:

tan(β) =
vs,y
vs,x

=
vy

vx − vc
(2.4)

It’s common to use the tire slip instead of the slip velocity as variable for
studying the forces generation in the contact patch. The tire slip is obtained

4



Table 2.1: Forces and moments acting on the wheel

Axis Force Moment

x Longitudinal force (Fx) Overturning torque (Mx)
y Lateral force (Fy) Rolling resistance torque (My)
z Vertical force (Fz) Aligning torque (Mz)

by normalizing the slip velocity with a reference velocity. Three slip defini-
tions are commonly used, based on different reference speed. However, in
this work the longitudinal slip κx is defined following the ISO 8855 [4]:

κx =
ω − ω0

ω0

=
ωRe − vx

vx
(2.5)

where ω is the angular velocity of the wheel about its spin axis and ω0 is the
free rolling angular velocity of the wheel that would be measured at zero slip
angle and zero camber angle. It means that ω0 is the longitudinal velocity
of the wheel center divided by the effective rolling circumference of the tire
at that speed and load condition. Thus κx will be negative for braking oper-
ations (negative Fx force) and positive for accelerating operations (positive
Fx force).

2.2 Tire mechanics
The forces and torques generated in the contact patch are considered pos-
itive if they have the same direction of the axis system of Figure 2.1. The
longitudinal force Fx is positive if pointing forward (accelerating wheel), the
lateral force Fy is positive if pointing to the left-hand side of the vehicle, and
Fz is positive if pointing up. The longitudinal and lateral forces, Fx and Fy,
lie on the road plane, defined by XR and YR axis respectively. In the same
way the generated moments are positive if pointing on the same direction
of their reference axis (Table 2.1). Forces and torques are created in the
contact patch between wheel and ground by the velocity difference between
the tread of the wheel and the road. As previously discussed, the velocity
difference is expressed by the slip parameters, κx for longitudinal slip and
α for lateral slip. Two different kinds of slip exist: pure slip signifies that
either α or κx are zero, instead combined slip means that both α and κx have
non-zero values. These two different situations will be studied further.

2.2.1 Rolling resistance

When a tire is vertically loaded on a flat surface the greatest part of its
deformation will be in the contact region between tire and ground. Thus
the circular profile of the tread surface is flattened, the tread elements are
compressed and the sidewalls deformed. If the tire then is rolling on the
surface, each element of the tread is repeatedly compressed and deformed
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Figure 2.3: Forces acting on a free rolling tire

as it passes through the contact patch. Since the rubber is not a perfectly
elastic material, these compression-recovery cycles cause an internal energy
loss, indeed, the energy used to deform the radial section of the tire doesn’t
all return when the section takes its original shape. This internal energy
loss must not be confused with other external energy loss sources, such as
a deformable road surface (sand or snow) or the slip between road and tire.
For a non-rolling tire the vertical pressure distribution on the contact path is
symmetric along the longitudinal direction. However, when the tire is rolling
this distribution shifts forward, and the center of application is not under
the wheel center anymore, but shifted forward at a distance e (Figure 2.3).
The uneven vertical pressure distribution creates a torque about the center
of the wheel, opposite to ω. The distance e may be calculated from moment
balance around the wheel axle:

e = zt
FR
FN

(2.6)

where FR is the rolling resistance force, FN the tire normal load and zt the
loaded tire radius. The rolling resistance coefficient, fr, is defined as

fr =
FR
FN

(2.7)

By using Equation 2.6 in Equation 2.7, fr can be expressed as

fr =
e

zt
(2.8)

In the following another way to calculate the rolling resistance coefficient fr
will be defined, knowing the vertical pressure distribution. Secondary causes
of rolling resistance are the fan effect of the rotating tire by the air outside
(2− 4% of the total rolling resistance force) and the slippage between tread
and road (∼ 5%).
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Chapter 3

Existing tire models

The tire represents the only link between the vehicle and the ground, thus
it is of extreme importance a good knowledge about its behaviour under dif-
ferent operating conditions. Great efforts have been done by the automotive
industry in the field of tire modelling, thus an extensive bibliography is avail-
able. Figure 3.1 briefly describes different approaches used in tire modelling.
Semi-empirical tire models, such as Magic Formula, that fit to tire test data
were developed to represent tires in vehicle dynamic simulations. With the
improvement of computational power, complex tire models were studied in
order to predict the force and moment characteristics of the tire based on its
physical features and construction. While the later are widely used for ride,
comfort and durability purposes, the semi-empirical models are more com-
mon for dynamic handling simulations, since the computational efforts are
smaller. In this chapter the two simplest tire models are briefly described:
the Magic Formula and the Brush Model.

Figure 3.1: Four categories of possible types of approach to develop
a tire model [6]
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3.1 Magic Formula model

The Magic Formula is a semi-empirical tire model developed by Hans B.
Pacejka [6]. Semi-empirical means that the equations describing the force
generation have no particular physical basis, but they can fit a wide va-
riety of experimental data with good accuracy. Since there is no physical
background, scaling factors have to be obtained from measurements.

The general form of the Magic Formula is [6]:

y = D sin
[
C arctan[(1− E)x+ (E/B) arctan(Bx)]

]
(3.1)

where y represents the force (lateral or longitudinal) or the torque (self-
aligning torque) and x is the slip quantity the force or torque depends on.
B,C,D,E are factors that have a particular geometric meaning, in fact,
referring to Figure 3.2:

• B is a stiffness factor;

• C is a shape factor;

• D is the peak value;

• E is a curvature factor;

• the product BCD is the slope of the curve at the origin;

The relation in Equation 3.1 can be used in case of ply-steer and conicity
effects as well as wheel camber by adding new parameters, like a vertical or
an horizontal offset:

Y (X) = y(x) + SV , x = X + SH

in this relation SV and SH represent the vertical and horizontal shift respec-
tively. The values obtained are normalized to the vertical load acting on the
wheel.

Approximation of the normal load dependence may be introduced as:

C = a0 (3.2)
D = a1F

2
z + a2Fz (3.3)

B = (a3F
2
z + a4Fz)/(CDe

a5Fz) (3.4)
E = a6F

2
z + a7Fz + a8 (3.5)

The entire model is presented in [6]. The Magic Formula typically produces
a curve that passes from the origin, reaches a maximum and subsequently
tends to a horizontal asymptote, see Figure 3.2.

The aligning torque is obtained by multiplying the lateral force, calcu-
lated using 3.1, with the pneumatic trail tp, plus the residual torque Mzr:

Mz = −tpFy +Mzr (3.6)
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Figure 3.2: Magic Formula factors [7]

The pneumatic trail is the distance between the application point of the
total lateral force and the YR axis. Its behaviour is described by another
trigonometrical function:

tp(αt) = Dtcos
[
Ct arctan[Btαt − Et

(
Btαt − arctan(Btαt)

)
]
]

(3.7)

where αt is function of the slip angle plus an offset:

αt = tanα + SHt (3.8)

In the same way the residual torque Mzr is described by a cosine relation:

Mzr(αr) = Dr cos[arctan(Brαr)] (3.9)

with:
αr = tanα + SHf (3.10)

The cosine function allows the curve to have a peak shifted sideways, and
to tend to an asymptote close to zero. As possible to see in Figure 3.3 the
peak is shifted horizontally by a quantity equal to −SH , D determines the
magnitude of the peak value, as well as C determines the shape of the curve,
influencing the asymptotic value ya.

Some observations about this model have to be done. The Magic For-
mula model is limited to quasi steady-state conditions only, in case of pure
cornering or braking or a combination of those two. It is a global method, i.e.
it doesn’t describe what happens in each point of the contact patch, but just
the final result (force, torque). It has not a physical background, but it’s just
a very accurate way to fit experimental data. Moreover, it doesn’t describe
the energy dissipated inside the material and during the sliding conditions
(for high slip velocity), as well it doesn’t describe the behaviour of rolling
resistance.
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Figure 3.3: Aligning torque behaviour, Magic Formula [6]

In this work the Magic Formula represents the basis for comparison of
the Multi-Line Brush model that is developed during this thesis, in order to
validate it for steady-state handling issues.

3.2 Brush Tire model
The Brush Tire model is a very simplified way to model the creation of forces
and torques between tire and road. A great number of works describes this
approach, see e.g. [5, 8, 9], and it was quite popular in the 1960’s and 1970’s,
before empirical approaches became the most used. In this section its basis
are discussed.

The Brush Tire model describes the generation of forces in the contact
patch considering the contact region formed by small volumes of rubber,
acting as springs. Considering Figure 3.4, a system of coordinate axis is set
in such a way that the origin is in the middle of the contact patch. Thus
the x-axis is pointing forward, along the longitudinal direction of the wheel,
and the y-axis is pointing laterally, as described in chapter 2. The contact
patch is 2a long. On the top of the bristles a vertical pressure distribution
is applied, and they are stretched longitudinally and laterally because of the
slip velocity v̄s. This model is based on these assumptions:

• the normal load has a parabolic distribution along the contact patch,
assuming zero value at the edges;

• the friction between the bristles and the ground is described by the
simple Coulomb model:

Fx,y = µFz if Fx,y > µFz (sliding condition) (3.11)

where µ is the friction coefficient between bristles and road, Fx and
Fy are the longitudinal and lateral force respectively generated by the
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Figure 3.4: Brush tire model, deformation of the tire rubber (Top:
side view; bottom: top view

stretching of the bristle, and Fz is the vertical load applied on that
bristle. In this way it is possible to divide the contact patch into the
adhesive and the sliding region;

• the carcass is considered as infinitely stiff;

• each bristle is assumed to deform independently in the longitudinal and
lateral directions;

In the adhesive region the bristles adhere to the road surface and the defor-
mation is allowed by the static friction. In the sliding region, instead, the
forces produced are function of the sliding friction through Equation 3.11,
thus the resulting force is independent of bristle deformation [10]. From Fig-
ure 3.4 it is possible to depict the deformation of the bristle δxb along the
x-axis as well the deformation δyb along the y-axis. Considering a slip angle
α, in the adhesion region the bristle is forced to follow a straight line with
slope equal to tanα, from the leading edge (a, 0) as long as no sliding occurs.
Thus the lateral deformation δyb is function of the longitudinal coordinate
x:

δyb = (a− x) tanα (3.12)

Consequently, assuming the lateral stiffness of the bristle equal to cpy, the
lateral force per unit of length in the adhesion region for each bristle is:

Fyb,a = cpyδyb (3.13)

The sliding region occurs when the relation 3.11 is true, in this case when:

Fyb,a > µFzb (3.14)
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where Fzb is the normal load applied on top of the bristle at the x coordinate.
If Equation 3.14 is valid, then the lateral force will be equal to:

Fyb,s = µFzb (3.15)

The total lateral force will be equal to the sum of the forces generated by
each bristle along the whole contact patch:

Fy =

a∫
−xt

Fyb,adx+

−xt∫
−a

Fyb,sdx (3.16)

as well the aligning torque Mz will be the algebraic sum of the aligning
torques of each bristle around z-axis:

Mz =

a∫
−xt

xFyb,adx+

−xt∫
−a

xFyb,sdx (3.17)

where −xt is the longitudinal coordinate where sliding occurs. The bristles
have similar behaviour in the longitudinal direction. For pure longitudinal
slip, if vx is the longitudinal wheel center speed, the coordinate for a bristle
tip at the contact area front edge will after time ∆t be:

xl = a− vx∆t (3.18)

On the other hand the upper tip of the bristle, which moves with a velocity
Reω, will have the coordinate:

xu = a−Reω∆t (3.19)

Consequently, using equation 2.5 the longitudinal bristle deformation will
be:

δxb = xl − xu = κx(vx∆t) = κx(a− x) = −κx(x− a) (3.20)

Introducing the longitudinal bristle stiffness cpx and dividing the region in
adhesion and sliding part, as done before, it’s possible to obtain the same
result for the total longitudinal force:

Fx =

a∫
−xt

Fxb,adx+

−xt∫
−a

Fxb,sdx (3.21)

where Fxb,a = cpxδxb (adhesion region) and Fxb,s = µFzb (sliding region).
In this demonstration the friction coefficient µ is assumed to be equal for

both lateral and longitudinal direction, and not function of the velocity of
the wheel center vx. These assumptions make the problem much more easier
comparing to reality. In the same way the assumption on the symmetric
normal load is not true, because in reality the application point of the normal
load is not the origin (0, 0), but it is a point shifted forward, as will be seen
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in chapter 5. Moreover, using just one line of bristles, it doesn’t allow to
have a 3D picture of all the forces acting in the contact patch, and this is a
big drawback if the effects of camber angle have to be studied.

However, even with these assumptions, the brush tire model reaches to
explain the nature of the forces in the contact patch with a strong physical
background. Meanwhile it requires smaller number of model parameters for
describing the steady-state characteristic.

3.3 Conclusion
In this chapter the two simplest tire models had briefly reviewed. They repre-
sent two different approaches to the modelling problem: the Magic Formula
is an empirical model, that fits experimental data to some trigonometrical
expressions. It has not a physical background and requires the determina-
tion of a great number of parameters. The Brush Tire model is a simple
theoretical model, which can describe physically the nature of the force born
in the contact patch. Due to its simplicity, it could give good results just for
some simple situations.

In the next chapter, the Brush Tire model will be used as basis for the
development of a Multi-Line Brush model, and a certain number of features
will be added, to represent the reality as accurate as possible with a physical
model, instead the Magic Formula will be used as reference.
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Chapter 4

Rubber properties and modelling

In the previous chapter the Brush Tire model has been explained. It is
a theoretical model useful to understand and simulate the generation of
forces in the tire-road contact. However, the elements used to describe the
rubber behaviour are just linear elastic springs, very simple to deal with but
they don’t represent real rubber behaviour. In this chapter the principal
mechanical properties of rubber are presented, as well as the main models
used in literature to describe its mechanical behaviour.

4.1 Mechanical properties

A tire is an advanced engineering product made of rubber and a series of
synthetic components cooked together [11]. The materials of modern pneu-
matic tires are synthetic rubber, natural rubber, fabric, wire, carbon black
and other chemical compounds. This mix produces a mechanical behaviour
not easily predictable, that is function of a great number of parameters:
amplitude and phase of the harmonic force applied, temperature, wear and
so on. For the purpose of this work the response of this mix to harmonic
excitations is of primary importance.

(a) (b)

Figure 4.1: Typical hysteresis loop of a harmonically excited rubber.
Sinusoidal excitation with three different amplitudes. A lower
frequency (1 Hz) has been set in 4.1a than in 4.1b (10 Hz)
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The main characteristic of the rubber is its elasticity, which in most cases
is non-linear. The response to a harmonic excitation of a rubber component
is similar to that in Figure 4.1. The force (F ) and displacement (x) graph
shows a clear hysteresis loop. It means that the force needed to deform the
material of a certain quantity x is greater than the force released by the
material during the recovery phase, therefore a certain quantity of energy is
dissipated inside the material itself. Since the force-displacement curves are
not the same during the loading and unloading phase, they create a loop,
and the area within the loop is the amount of dissipated energy (converted
in thermal energy). The hysteresis is function of the amplitude and of the
frequency: the dissipated energy increases with increasing frequency, this is
due to viscous effects. There will always be hysteresis in the material, no
matter how low the frequency is, because of friction effect inside the material.
Thus it is possible to divide the characteristics of rubber into three different
parts:

• Elastic part;

• Viscous part;

• Friction part;

How much each of these effects acts on the final mechanical behavior of
the rubber is function of the compound of the rubber itself, as well as other
parameters like temperature and geometry.

It is not easy to model precisely the rubber response to a given input, that
is why some assumptions have to made, in order to simplify the problem.

4.2 Modelling of the rubber compound
As explained in the previous section, three different effects are simultaneously
present in a rubber compound: elastic, viscous and friction effects. Thus the
response of the rubber will be the sum of these effects:

F = Fe + Fv + Ff (4.1)

where Fe is the elastic force, Fv is the viscous force and Ff is the friction
force. A fundamental assumption needed to try to represent correctly the
rubber behaviour is that these three effects are independent of each other.
In reality this is not completely true, but is necessary for the establishment
of a simple mathematical model. In the same way, the effects due to the
temperature dependence are not taken into account, since they make the
computational and modelling effort much bigger.

4.2.1 Visco-elastic force

The elastic and the viscous part represent the so called viscoelastic effect.
Mathematically, the elastic part can be represented by a spring element, as
well as the viscous effect can be represented by a dash-pot element. Many
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(a) (b)

Figure 4.2: Maxwell visco-elastic model. Frequency analysis (Bode
diagram), k = 1000 N/m, c = 10 Ns/m

efforts have been made in the literature to present a model, that is a com-
bination of springs and dash-pot elements, that can represent and simulate
the rubber behavior. Some of them are presented below.

The Maxwell model

The Maxwell model [12] is presented as a spring element (with elastic con-
stant k) connected in series with a dash-pot element (c). The stress σ and
the strain ε are function of time through the relation:

σ̇(t)

k
+
σ(t)

c
= ε̇(t) (4.2)

This model is usually applied to the case of small deformations. If a sudden
deformation ε0 is applied and held on, the stress decays from the inital value
kε0 to zero with a characteristic time of c/k. In Figure 4.2 the frequency
analysis of a Maxwell element is shown. For low frequency the amplitude of
the response is neglictable, this does not represent the reality, as well as the
loss factor φ is null for high frequencies.

Kelvin-Voigt model

The Kelvin-Voigt model [13] represents the viscous and elastic effect with a
spring element connected in parallel with a dash-pot element, as can be seen
in Figure 4.3. The stress σ and the strain ε are governed by the law 4.3:

σ(t) = kε(t) + cε̇(t) (4.3)

Acccording to [14] the Kelvin-Voigt model doesn’t represent dynamic
stiffness and damping very good when optimized over a large frequency
range. In fact, for high frequencies, the dynamic stiffness becomes too high,
because of the dash-pot element. This does not allow to model the real case.
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(a) (b)

Figure 4.3: Kelvin-Voigt visco-elastic model. Frequency analysis
(Bode diagram), k = 1000 N/m, c = 10 Ns/m

Standard Linear Solid (SLS) model

The Standard Linear Solid model, also known as Zener model [12], is formed
by a spring connected in parallel with a Maxwell element (dashpot plus
spring). It is also called the Three Parameters Maxwell model, where the
three parameters are the elastic stiffnesses of the springs and the damping
of the dash-pot element. A representation is shown in Figure 4.4. From the
Bode diagram of the same figure it is possible to notice that the dynamic
stiffness is limited both for low frequency and high frequency. For low values
of excitation frequency the dynamic stiffness has a value next to the elastic
stiffness of the spring 1, because of the dash-pot element, which nullify the
effect of the spring 2. On the other hand, for high values of frequency,
the dash-pot element acts as a rigid connection, and the dynamic stiffness
becames the sum of the elastic stiffness of the two springs. Moreover, it’s of
fundamental importance for the dynamic of the Multi-Line Brush model to
notice the peak in the loss factor φ, for frequencies around k2/c.

The three parameter Maxwell model follows the relation 4.4.

σ̇(t) = −k2

c
σ(t) +

k1k2

c
ε(t) + (k1 + k2)ε̇ (4.4)

There is no easy analitical solution to equation 4.4, thus it is solved numer-
ically.

Generalized Maxwell model

The Generalized Maxwell model [12], also known as Maxwell-Wiechert model,
it is the most general form of linear model for viscoelasticity. Here a spring
element is connected in parallel with i Maxwell elements (see Figure 4.5). It
is a more general case of the Three Parameter Maxwell model: in fact for
i = 1 the generalized Maxwell model becomes the Three Parameter Maxwell
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(a) (b)

Figure 4.4: Three parameter maxwell visco elastic model. Frequency
analysis (Bode diagram), k1 = 1000 N/m, k2 = 1000 N/m, c = 10

Ns/m

Figure 4.5: Scheme of the generalized Maxwell model

model. Using different Maxwell elements it can take into account the relax-
ation which doesn’t occur at a single time, but in a sets of time. However
it’s more complex to deal with, since the number of parameters increases
notably.

From previous attempts of modelling the rubber behavior in a rolling tire
[15] the Three Parameters Maxwell model has been chosen as the one which
can simulate more realistically the visco-elastic forces, thus it will be used
in the next chapters to model the visco-elastic effects of the rubber in the
Multi-Line Brush model.

4.2.2 Friction force

As said previously, the tire is made of a compound of materials, first of
all rubber (natural or synthetic) cooked together with carbon black, silica,
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fabric, steel, nylon and other elements. The synthetic rubber used to manu-
facture tires is made by the polymerization of a great variety of petroleum-
based monomers. During the polymerization, monomers form long chains of
polymers which, during their deformation, dissipate energy, because of the
inner friction caused by the stretching of these chains. This inner friction
allows the generation of the hysteresis loop in the force-deformation diagram
(see Figure 4.1) and represent the rate independent energy dissipation.

Different models try to simulate friction, in different ways. Here the
Masing model and the Berg model [16] are briefly examinated.

The Masing model

The Masing model describes the friction effect using Coulomb friction el-
ements. It is a discrete model, i.e. it uses a finite number (n) of Jenkin
elements connected in parallel (Figure 4.6). The Jenkin elements are com-
posed by a spring element (with elastic constant ki) in series with a Coulomb
friction element with the adhesive force Ri.

The total friction force caused by a x(t) displacement is described by:

Ff (x) =
n∑
i=1

Fi(x(t)) (4.5)

where Fi is the force of the i:th Jenkin element. Since there is a Coulomb
friction element, the force Fi can assume two values, the first relation in
Equation 4.6 is valid if the Coulomb element is sticking, the second one if it
is not:

Ḟi =

{
kiẋ |Fi| < Ri or (|Fi| = Ri and sign(ẋFi)) ≤ 0

0 else
(4.6)

Since in equation 4.6 the function sign is used, it is not a linear function,
thus some problems could arise when it is implemented in the Matlab code.
In the Appendix it is reported how the Equation 4.6 is implemented. This
non linearity obligate us to use a fixed-step integration/derivation in time,
increasing the computational effort.

Figure 4.7 shows an example of a Masing friction model with five Jenkin
elements. From the figure the Payne effect is captured. The Payne effect
describes the reduction of stiffness (defined as the ratio of the maximum
Force achieved to maximum deflection) with increasing amplitude, typical of
rubber elements. This graph has been obtained with a fixed-step integration
in time.

The Berg model

Berg [16] models the friction of rubber bushings using two parameters, x2

and Ff,max, and two reference states, xs and Fs, that are the displacement
and the force at the turning poing respectively. More about this model can
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(a) Masing model (b) Jenkin element

Figure 4.6: Discrete masing model

Figure 4.7: Force displacement loop of Masing friction model with
five Jenkin elements.

be found in [14] and in [16]. The friction force Ff in the Berg model is
described as:

Ff = Ffs if x = xs (4.7)

Ff = Ffs +
x− xs

x2(1− α) + (x− xs)
(Ff,max − Ffs) if x > xs (4.8)

Ff = Ffs +
x− xs

x2(1 + α)− (x− xs)
(Ff,max + Ffs) if x < xs (4.9)

where
α =

Ffs
Ff,max

(4.10)

x2 is the displacement needed to create the friction force Ff = Ff,max/2 from
the state (xs, Ffs) = (0, 0). Ff,max is the maximum friction force that can
be developed and x2 controls how fast this force is developed in relation to

21



Figure 4.8: Berg model, [16]

displacement. The Figure 4.8 shows how a Berg friction curve looks like.
When this function is excited at constant amplitude, after some cycles of
transient response it reaches a steady state. The parameterizations of the
Berg friction model is made from experimental data at low frequency, since
the viscous force can be neglected then. In [14] a comparison between these
friction models is discussed. In [15] the author uses and compares both the
Masing and the Berg model, in order to establish which one is the best to
represent the internal friction forces for a turning wheel. The main result
is that the Berg model doesn’t manage to converge to a stable value, but it
oscillates. That’s why the Masing model will be used in the next chapter to
simulate the friction forces of a tire.

4.3 Rubber model used in this work
The final model chosen for describing the rubber behaviour in the Multi-line
brush model is composed by a three parameters Maxwell element in parallel
with a five elements Masing model (figure 4.9). From now on this model will
be called rubber element, to simplify the notation along the work.

Thus the law that governs the rubber element is:

F = Fve + Ff (4.11)

where Fve is the force of the Three Parameters Maxwell visco-elastic model:

Ḟve(δ, t) = −k2

c
Fve(t) +

k1k2

c
δ(t) + (k1 + k2)δ̇ (4.12)

and Ff is the friction force of the Masing model:

Ff (δ) =
n∑
i=1

Fi(δ(t)) (4.13)

22



Figure 4.9: Rubber element, on the left the visco-elastic part is
represented by a Three Parameters Maxwell model, on the right the

friction part is represented by the five elements Masing model

with Fi are defined by Equation 4.6. δ represents the deflection of the rubber
element, and it can be along the XR, YR or ZR axis. Since this is the first
approach to study the rolling tire dynamics with rubber modelling properties,
the elastic stiffnesses of the springs in the visco-elastic model have the same
values, in order to simplify the problem.

An example of the response of the rubber element to a sinusoidal displace-
ment input is shown in Figure 4.10. As can be seen for increasing values of
frequency the hysteresis loop becames bigger, it means a bigger quantity of
energy is dissipated throught the viscous and the friction part. The energy
dissipated dependance on the frequency is due to the viscous part, according
to Figure 4.4 (b), in particular the loss factor increases with the frequency
until it reaches the peak. After that, the energy dissipated, i.e. the area
hemmed-in by the force-displacement curve, starts to decrease.

The presented rubber element will be used to construct the brush model,
and it will be used in place of the elastic springs of the original Brush model.

4.4 Conclusion

In this section the mechanical properties of rubber materials have been dis-
cussed. The response of the material to a displacement is a force made by
three components: elastic, viscous and friction part. The first one is the
most evident characteristic of a rubber material, and in this work it will be
represented by a linear elastic element (spring), even if in reality the be-
haviour is more similar to a cubic curve. The viscous part represents the
rate dependent response, the energy dissipated by viscous forces is function
of the frequency of excitation of the rubber element. The latter one, the
friction part, represents the rate-independent energy dissipation, it is not
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Figure 4.10: Dynamic response of the rubber element for two
sinusoidal inputs

function of the frequency and it is represented by a five elements Masing
model. The three components of the force response are gathered together
into a rubber element model.

The rubber element model is the fundamental component of the Multi-
Line Brush model, developed in the next chapter.
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Chapter 5

Development of a Multi-Line
Brush Tire model

In this chapter a 3D Multi-Line Brush tire model is developed, according
to the Brush tire theory. The model takes as input the side slip angle α,
the longitudinal slip κx, the camber angle γ, the longitudinal velocity of the
wheel vx and the normal load acting on the wheel Fz. It gives as output the
longitudinal and lateral forces (Fx and Fy), the overturning, rolling resistance
and aligning torques (Mx,My andMz), as well as the rolling resistance factor
and the distribution of energy dissipated.

5.1 Introduction

The tire is modelled as it is formed by l longitudinal lines, and each line
contains n bristle elements, as can be seen in Figure 5.1. Each bristle1

element is composed by three rubber elements, one for each direction XR,
YR and ZR, which behave independently for each direction. Each rubber
element can’t create torque, but torques on the wheel are created by the
different distribution of the forces of each bristle along the contact patch.
The sum of the forces created by each bristle gives the total force for the
direction considered. The coordinate system used is explained in Chapter
2. The longitudinal velocity vx will always be considered positive, but the
model is valid also for negative values.

5.2 Geometry

For the construction of the geometry of the tire let’s consider the code of a
real tire. An example of ISO code of a tire could be:

225︸︷︷︸
B

/ 45︸︷︷︸
sr

R17︸︷︷︸
2Rr

(5.1)

1"Bristle" here has not the meaning of spring, but it is the elementary part of the tire model.
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Figure 5.1: Representation of the model with 7 lines

where B is the cross-section width of the tire (in mm), sr is the percentage
ratio of B to the side-wall height sw, Rr is the tire rim radius (in inches).
Other parameters are wr that is the width of the tire rim and α0, that is the
angle between the side-wall and the axis ZW . In figure 5.2a the shape of the
wheel is schematically shown. In this case the lateral angle is α0 = 5 deg.
The tread is modelled as a very flat parabola, in order to simulate the real
vertical load distribution. The peak of the parabola is 2 mm deeper than the
height of the side-wall sw. In Figure 5.2c the tread shape is shown in blue,
where Rmean is the mean tread radius on the (YW , ZW ) plane (see Section
5.4).

From Figure 5.2b each element of the tread has been parametrized to
the wheel axis system (Xw, Yw), in such a way to have a Rw(i, k) coordi-
nate, which stands for the distance of the point considered from the Yw axis
(considered positive if it stands in the negative Zw plane, in order to avoid
negative values), and a b(i, k) coordinate, which is the distance of the point
from the Zw axis. i is the index for each bristle in the line, k is the index
of each line. From their definition it’s important to notice that Rw and b
don’t depend on the camber angle γ, since they are defined in the wheel
axis system. Moreover, since the wheel is axis-symmetric, the radius of the
bristles Rw varies only along the Yw direction, thus:

Rw(i, k) = Rw(k) (5.2)

In the same way also the distance b(i, k) is function only of the line consid-
ered, thus:

b(i, k) = b(k) (5.3)
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(a) (b) (c)

Figure 5.2: Front view of the wheel

The Equation 5.3 is not true in the real case, because the cross sections
of the tread can move laterally. However, since in this model there are not
elements that link the bristles to each other (it is not a finite element model),
the Equation 5.3 is necessary. From Figure 5.3, on each line a segment angle
θ′ is introduced, to enclose the whole area of interest. The segment angle is
equally divided in n − 1 parts, so the vector of angular coordinate can be
constructed as:

ϕ̄ = (ϕ1, ϕ2, . . . , ϕn) (5.4)

in such a way that:
ϕi − ϕi−1 = θ′/(n− 1) (5.5)

where n is the number of bristles on each line. Obviously the segment angle
is bigger than the angle formed by the bristles in contact with the ground.
A value of θ′ = 90 is big enough for normal conditions. ϕi represents the
angular coordinate of each bristle. The vector ϕ̄ is not function of the line
considered, since each line has the same number of bristles in the same
angular position. Thus a simple vector is enough to describe all the angular
position of all the lines.

5.3 Outline of the code

In order to calculate the forces and the deflections acting on the tire bristles
a precise order in the different phases of the code is followed, and it is
showed in Figure 5.4. Setting the initial vertical coordinate of the wheel
center equal to the unloaded wheel radius, the vertical deflection of each
bristle is calculated first. Thus, from the rubber model, the vertical force
developed by each bristle is calculated, and, from its sign, it is possible to
establish which bristles are in contact with the road. Those bristles can
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Figure 5.3: Side view of the wheel
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generate a longitudinal and lateral force, that can be calculated from the
lateral and longitudinal deflection. Then, if the force generated (combination
of longitudinal and lateral) is bigger than the friction limit of the bristles
with the ground, the same force is limited to the friction limit, losing in this
way the information about the longitudinal and lateral deflections of bristles.
Thus they are calculated again in an approximated way, later explained. At
this point, the forces and the deflections in all the directions are known, thus
it’s possible to analyse the energy and power dissipated, both by internal
friction and by sliding. After that, the total forces (sum of the forces of each
bristle) are updated with the load sensitive factors. The total forces and
moments are then used in the quarter car model to find out the new vertical
position of the wheel center, and all the cycle starts again.

Each cycle analyses a finite time interval dt, and it is repeated until a
certain final time is reached, around 2 seconds.

5.4 Dynamics
As the tire starts to roll, the angular position of all the bristles change, and
it is updated in this way:

ϕ̄ = ϕ̄− ω · dt (5.6)

where dt is the time step considered, and ω is calculated as:

ω = (1 + κx)
vx

Rmean

(5.7)

In the Equation 5.7 Rmean is the mean radius of the wheel, i.e. the mean of
the vector Rw. The Rmean is used instead of Re because the effective rolling
radius is not so easy to calculate. This means that a longitudinal force Fx
will occur only if κx 6= 0. It is possible that the bristle ϕi moves out from
the segment-angle θ′, if this happens, then the angular coordinate of that
element will be modified as:

ϕi = ϕi − θ′ if ϕi > θ′/2 (5.8)
ϕi = ϕi + θ′ if ϕi < −θ′/2 (5.9)

Knowing the angular position it is possible to calculate the deflection δ
along the three axis XR, YR and ZR (the contact between the ground and
the tire happens on the road plane, that is why the deflection are calculated
on the road axis system). Introducing the time j, the deformation along the
vertical axis δz will be:

δz = −zt(j) +Rw(k) · cos(ϕ̄) · cos(γ)− b(k) · sin(γ) (5.10)

where δz is the matrix of the vertical deflections. It has l rows (number
of bristle lines) and n columns (number of bristles for each line). zt is the
vertical coordinate of the wheel center in the road axis system, it means
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that in steady state condition zt is equal to the radius of the loaded wheel
(positive). Its value is updated by the quarter car model. The value of the
deflection along the ZR axis is used to calculate the vertical force acting on
each bristle: if the deflection is positive it means that the bristle is compressed
between the rim and the road, if negative it means that the bristle is not in
contact with the road. Thus the following control is set:

δz = 0 if δz ≤ 0 (5.11)

In order to calculate the vertical force on each bristle the Equations on
the rubber element are used, in particular the Equation 4.11, from which it
is possible to establish:

fz = frubber(δz) (5.12)

In the Equation 5.12 fz is the matrix of the vertical forces applied to the
bristles, and it assumes positive values if the force is applied from the ground
to the bristle (positive according to ZR axis), i.e. the bristle is compressed. It
has the same size of the matrix δz, l rows and n columns. Since the dynamics
of the problem is not linear (as a simple spring of the traditional brush
model), for some bristles of the contact patch the resulting force fz could
be negative, meaning that the road is "pulling" the bristle down. Obviously
this phenomenon couldn’t happen in reality, that’s why in code the sequent
control is needed:

fz = 0 if fz < 0 (5.13)

Thus

in_contact =

{
1 if fz = 0

0 if fz > 0
(5.14)

For the vertical direction it is possible to calculate directly the value of
the deflection. For the longitudinal and lateral direction, however, this is
not possible, but the deflection δx,y will be the integration of the time-step
deformation dx and dy in time:

δa,x = δa,x + dx (5.15a)
δa,y = δa,y + dy (5.15b)

where δa,x and δa,y are the longitudinal and lateral deflections respectively
in the adhesion region. When the bristle is entering the contact patch, its
deflections δa,x and δa,y are null. In order to calculate the deflection after
entering the contact patch, the tip of the bristle is assumed as stick to the
ground (that moves with a speed vx), instead the top of the bristle„ fixed
to the carcass, has a speed equal to w ·Rmean. The longitudinal and lateral
increment dx and dy of the bristles are respectively:

dx = vδa,x · dt (5.16a)
dy = vδa,y · dt (5.16b)

where vδa,x and vδa,y are respectively the longitudinal and lateral deforma-
tion velocity of the bristles in the adhesion region. Since the tip of the bristle
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adheres to the road, the deformation velocity of the bristles in the adhesion
region are equal to the slip velocity vs,x and vs,y, i.e. the difference of the
road velocity and the wheel circumferential speed:

vδa,x = vs,x (5.17a)
vδa,y = vs,y (5.17b)

where:

vs,x =ω ·Rmean − vx · −Ψ̇ · b(k) (5.18a)

vs,y =− ω ·Rmean · sin(ϕ̄) · sin(γ)− vy −Rw · sin(ϕ̄) · Ψ̇ (5.18b)

where Ψ̇ is the yaw rate (considered equal to 0 if not specified). In the
Equation 5.18a the speed of deformation of the bristle vδa,x is not function
of the radial coordinate Rw(k), this means that the longitudinal force is
symmetric about the XR axis, whatever the camber angle γ is.

The deflections δa,x, δa,y, and the deformation speeds vδa,x and vδa,y , are
set to 0 if the bristles are not in contact with the ground. This operation is
done because the bristles considered are only the ones of the segment angle
θ′, so it is impossible to study the free dynamics of part of the wheel that
are not in contact with the road.

From the Equations 5.15 the force matrices fa,x and fa,y in the adhesion
region are calculated using the rubber element equation 4.11:

fa,x = frubber(δa,x) (5.19a)
fa,y = frubber(δa,y) (5.19b)

The values of the forces are correct only in the adhesion region. For this
reason the case where the bristle starts to slide has to be discussed.

5.5 Sliding region
When longitudinal slip or lateral slip occurs, the deflection δx,y increases
from the leading edge to the trailing edge. In the same way the forces fx,y
increase as well, until they became so high that overcome the friction limit
with the road.

The friction between road and tread is not easy to model, it is function
of the rubber compound, the pattern of the tread as well as the road, the
relative velocity of the surfaces. In the original brush model the friction
is modelled with just two parameters, the static friction and the dynamic
friction. When the resultant force on the (XR, YR) plane is greater than
the product between the static friction and the vertical force acting on the
bristle, the resultant force is limited itself by the dynamic friction. A focus
on the friction in the Brush Tire model can be found in [10], and a deeper
focus on the friction effect and modelling can be found in [17], [18] and [19].

31



−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

v
s
 [m/s]

µ
µ
s

µ
c

Figure 5.5: Dynamic friction model, µs = 1.1, µc = 0.9, vstr = 3.5
m/s

In this work a frictionfunction is used. It depends on the sliding velocity
between the tread and the road with a function described in Equation 5.20
for both longitudinal and lateral direction:

µx(vslid,x) = µc,x +
µs,x − µc,x

1 + |vslid,x/vstr,x|2.5
(5.20a)

µy(vslid,y) = µc,y +
µs,y − µc,y

1 + |vslid,y/vstr,y|2.5
(5.20b)

where vslid,x and vslid,y are the sliding velocity of the surfaces in contact.
µs is the value of the friction when the sliding velocity is null, i.e. the static
friction. µc is the value of the friction at the asymptote and vstr is the
Stribeck velocity. In Figure 5.5 it is shown an example of dynamic friction
function.

The dynamic friction is function of the sliding velocity between the sur-
faces, in the case of rolling tire the two surfaces are the tread and the road,
i.e. the tip of the bristle and the road. However, implementing the sliding
velocity in the code results in numerical problems, such as stability and con-
vergence. For this reason the deformation velocity will be used, instead of the
actual sliding velocity. The difference in the resulting forces is very small,
since the difference in the friction coefficient µ is small. In the following
chapter the difference will be showed.

vslid ≈ vδ (5.21)

The friction coefficient in the Equation 5.20 is different between the two
directions (lateral and longitudinal) because in most part of real cases the
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friction is anisotropic. In [10] the author deals with different methods of
considering an anisotropic friction. The individual bristle starts to slide
when the relation 5.22 is valid:

f 2
x

(µs,xfz)2
+

f 2
y

(µs,yfz)2
> 1 (5.22)

which is the equation of the friction ellipse, described in [10]. If the condition
in Equation 5.22 is valid, then the forces (lateral and longitudinal) can’t
be calculated using Equation 5.19, but it will be a function of the friction
coefficient µ and of the vertical load Fz:

fs,x =
µ2
xvslid,x

(µxvslid,x)2 + (µyvslid,y)2
fz (5.23a)

fs,y =
µ2
yvslid,y

(µxvslid,x)2 + (µyvslid,y)2
fz (5.23b)

where µx and µy are those obtained with the Equations 5.20. Equation
5.23 represents the distribution of the total force (limited by friction) in the
XR, YR plane between the longitudinal and lateral direction. In this case
the Maximum Dissipation Rate principle is used. The theory is presented
in [20], and it asserts that the total friction force is generated in such a way
that the mechanical work W = −v̄s · F̄s is maximized under the constraint:(

fs,x
fzµx

)2

+

(
fs,y
fzµy

)2

≤ 1 (5.24)

This results in the Equations 5.23. According to literature this is the
most correct way to deal with anisotropic friction.

Figure 5.6 shows the difference in the slip-force diagram between a con-
stant friction coefficient and a dynamic friction model.

However, applying the equation 5.23 for the calculation of the forces in
the sliding region, the relation on the displacement of the bristles, Equation
5.15, loses its validation, as well as the knowledge about the visco-elastic
and friction forces. In order to evaluate the new internal friction force in the
rubber element, the evaluation of the actual deformation in the sliding region
is needed. Since the relation in Equation 5.19 is not linear, it is not so easy to
elaborate the inverse relation of the rubber element equation. Thus, for the
calculation of the deflection in the sliding region only the Three Parameters
Maxwell Model is used.

δs,x = f3pM(fs,x) (5.25a)
δs,y = f3pM(fs,y) (5.25b)

The Figure 5.7 shows the difference between the longitudinal deflection
in the contact patch, calculated using the relations 5.25 (solid line) and the
relations 5.15, thus without considering the sliding phenomenon.
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Figure 5.8: The deflection process along the x-axis, adhesion region

In Figure 5.8 the deflection process along the x-axis is shown. The top
of the bristle moves with a velocity equal to ωRmean, the bottom is stuck to
the ground, thus it moves with the velocity of the road (vx), the deflection
velocity vδ,x will be then calculated with Equation 5.18a. However, when the
bristle slides, the bottom part of the bristle is not moving with the velocity
of the road, but with an higher velocity. It is possible to calculate it using
Equation 5.25. In fact the deformation velocity of the bristle will be equal
to:

vδ,x =
δx(t)− δx(t− dt)

dt
(5.26a)

vδ,y =
δy(t)− δy(t− dt)

dt
(5.26b)

where δx = δa,x and δy = δa,y in the adhesion region, and δx = δs,x and
δy = δs,y for the sliding region. Thus the sliding velocity of the bristle on
the road will be:

vslid,x = vs,x − vδ,x (5.27a)
vslid,y = vs,y − vδ,y (5.27b)

where vs,x and vs,y are the slip velocities defined in Equation 5.18. This
should be the correct velocities that have to be used in the equations for
the calculus of the friction coefficient between road and tire. However, since
their calculation is done after the estimation of the friction coefficient itself
with the approximation considered in Equation 5.21, it generates numerical
instability. A deeper focus could be done in order to stabilize the calculation,
but this is not done in this work.
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5.6 Load sensitivity factors
In reality the forces (longitudinal and lateral) developed in the contact patch,
are function of the vertical load applied on the wheel. It means that the ratio
Fx/Fz is not constant for different vertical load, but decreases for increasing
vertical load. This behaviour is set into the model in two ways. When the
wheel is cambered, for instance, the vertical load distribution is not equal
on the contact patch, thus some lines will be more loaded than others. This
uneven load distribution will affect the total force that the tire can develop.
For each contact line the nominal vertical load is:

F ′z0 = (msprung +munsprung)g/l (5.28)

where l is the number of lines of the model. Thus the normalized change
for each contact line in the vertical load is:

df ′z(k) =

∑n
i=1 fz(i, k)− F ′z0

F ′z0
(5.29)

The update forces for each line will be then:

fx(i, k) = fx(i, k) · (1− lsdf ′z(k)) (5.30a)
fy(i, k) = fy(i, k) · (1− lsdf ′z(k)) (5.30b)

where ls is the sensitive load coefficient, equal to 0.15. The coefficient ls
affects the generation of forces for different distribution of vertical load (dif-
ferent inclination of the wheel), but maintaining constant the total vertical
load Fz.

Moreover the generation of forces is function of the vertical load total
value, thus a second load sensitivity factor has to be set up:

dfz =
Fz − Fz0
Fz0

(5.31)

fx(i, k) = fx(i, k) · (1− lz,xdfz) (5.32a)
fy(i, k) = fy(i, k) · (1− lz,ydfz) (5.32b)

where Fz0 is the nominal tire load, Fz is the effective vertical load on the
wheel, lz,x and lz,y are the total load sensitivity factors, and they are set up
in order to fit the experimental data in the best way. In the Figure 5.9 the
effect of the total load sensitivity factor is shown, and it reflects the real
phenomenon. The same phenomenon happens for the lateral force.

5.7 Quarter car model
The forces on each bristle, calculated with Equation 5.12 and 5.19, and
modified with the load sensitivity factors and with the dynamic friction
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relation, are added together to obtain the total values of the forces for each
time step:

Fx(j) =
n∑
i=1

l∑
k=1

fx(i, k) (5.33a)

Fy(j) =
n∑
i=1

l∑
k=1

fy(i, k) (5.33b)

Fz(j) =
n∑
i=1

l∑
k=1

fz(i, k) (5.33c)

The forces generated are included in a quarter car model, where the wheel
is connected to the suspension, modelled as a spring and a damper, and
to the sprung masses, loaded on top of the suspension. The initial vertical
position zt of the center wheel is set just some millimetres bigger than the
unloaded radius Rw. The vertical force, output from the wheel model Fz
represents the input for the quarter car model, and it gives as output the
position of the sprung mass:

Fs = ksusp · (zt(j)− z(j)) + csusp · (żt(j)− ż(j)) (5.34a)
z̈(j + 1) = Fs/msprung − g (5.34b)
ż(j + 1) = ż(j) + z̈(j + 1) · dt (5.34c)
z(j + 1) = z(j) + ż(j + 1) · dt (5.34d)
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Instead for the unsprung mass:

z̈t(j + 1) = (Fz(j)− Fs) /munsprung − g (5.35a)
żt(j + 1) = żt(j) + z̈t(j + 1) · dt (5.35b)
zt(j + 1) = zt(j) + żt(j + 1) · dt (5.35c)

(5.35d)

The j is the time index, and it should be little enough to avoid a bad
discretization in time. The Figure 5.10a shows the evolution in time of the
longitudinal force for a κx = 0.1 and Fz = 4100 N, and for ksusp = 45000
N/m and for csusp = 5000 Ns/m.

Moreover, with the forces matrices fx, fy and fz, it’s possible to calculate
the torque matrices:

Mx(j) =
∑
i,k

(fz(i, k) · b(k)) (5.36a)

My(j) = −
∑
i,k

(fz(i, k) · tan(ϕ̄) · zt(j) +
∑
i,k

(fx(i, k) · zt(j)) (5.36b)

Mz(j) =
∑
i,k

(fy(i, k) · tan(ϕ̄) · zt(j)) +
∑
i,k

(fx(i, k) · b(k)) (5.36c)

It’s important to notice that the torque calculated with Equation 5.36
are referred to the road plane (XR, YR). This means that when the wheel is
cambered the torque My, needed to calculate the rolling resistance, can’t be
calculated with Equation 5.36, but the effective resistance torque will be:

My,w = My · cos(γ) + sin(γ) ·Mz (5.37)

In this way the rolling resistance fr can be calculated as:

fr(j) =
My,w(j)

Fz(j)zt(j)
(5.38)
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where Fz is the vertical load applied on the wheel, zt(j) is the distance
between the contact patch central point and the wheel rotational axis (YW ).

The relation in Equation 5.38 for the calculus of the rolling resistance
coefficient is valid only when the longitudinal force fx is zero (i.e. κx = 0),
otherwise the torque My,w becomes equal to the driving or braking torque,
plus the rolling resistance torque.

5.8 Flexible lateral carcass

The original Brush Tire model assumes the carcass as infinitely stiff. How-
ever this is not the real case, since the carcass is not stiff, but flexible. In
this work an attempt to include this feature has been made.

The sidewalls are modelled as rotating springs with a damper (the damper
is needed to make the solution converges). They have an initial inclination
α0. When a lateral force occurs, the sidewalls rotate of an angle λ, defined
in this way:

λ(j) =
0.5 · Fy(j) · cos(γ) · sw + λ(j − 1)dr/dt

kr + dr/dt
(5.39)

where kr = 500 Nm/rad and dr = 10 Nms/rad are the elastic torsional
stiffness and the torsional damping respectively of each sidewall. When the
inclination of the sidewall changes, the values of the width b and radius Rw

of the tread change as well. Defining the initial inclination of the sidewall
with the angle α0, each line of the model has an inclination about the Zw
axis equal to:

αsw,0 = (−α0, . . . , α0) (5.40)

The inclination is updated with the angle λ in this way:

αsw(j) = αsw,0 + λ(j) (5.41)

Thus the new radius coordinate and width coordinate will be:

Rw = Rr + Sw · cos(αsw(j)) (5.42a)
b = wr + Sw · sin(αsw(j)) (5.42b)

Figure 5.11 shows the lateral deflection of the carcass if a lateral force is
applied. It is possible to observe the angle λ and the variation of the contact
patch shape. When the tire is cambered, the deflection of the carcass causes
a more even vertical force distribution, making the tire generate more lateral
force, because of the load sensitivity coefficients. As shown in Figure 5.12 the
camber allows a more even distribution of the vertical distribution, increasing
the generated force.
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5.9 Energy and work
Depending on how the model is set up, different kinds of work and energy
losses can be estimated. A first attempt to classify the energy losses is made
up dividing them into internal energy loss and external energy loss : the first
category is referred to the energy losses inside the rubber element, i.e. the
visco-elastic and friction model of rubber, the second one is referred to the
energy losses outside the rubber element, i.e. the sliding of the bristles with
the road.

5.9.1 External losses

The main external loss in the wheel is caused by the sliding between the
tread and the road surface in the sliding region of the contact patch. The
model allows the prediction of the amplitude of the sliding region, where it’s
possible to know the force (longitudinal, lateral and vertical) applied in that
part, as well as the sliding velocity of the bristles (see Equation 5.27). Thus
the instantaneous power dissipated for each bristle element is:

ps,x(i, k) = fs,x · vslid,x (5.43a)
ps,y(i, k) = fs,y · vslid,y (5.43b)

The total instantaneous power dissipated through sliding is then:

Ps(j) =
∑
i,k

ps,x(i, k) +
∑
i,k

ps,y(i, k) (5.44)

The work can simply be calculated integrating the power in time:

Ws(t) =

∫ t

t0

Psdt (5.45)

Numerically, the integer is approximated with the simple trapezoidal rule:

Ws(j) =
Ps(j) + Ps(j − 1)

2
dt (5.46)

The Equation 5.46 describes the work made by sliding forces in the time
interval dt, thus the total work developed in time will be the sum of the
work developed for each time step.

5.9.2 Internal losses

The internal losses are identified as the energy dissipation that occurs inside
the rubber element. As previously described, the rubber element is made
of three parts: an elastic element, a viscous element and a friction element.
The first one, modelled as a spring doesn’t dissipate energy, since all the
energy used to compress the spring is released in the recovery phase. The
viscous and the friction elements, instead, cause energy losses.
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Each bristle is made of three rubber elements for each direction, thus it is
possible to calculate the energy dissipated for internal friction and the total
internal energy for each direction. The energy dissipation for friction is:

wf =

∫
f̄f · ds̄ (5.47)

Dividing it into the three components along the three axis directions and
using the trapezoidal rule for the approximation of the integrals, it results:

wf,x(j) =
ff,x(j) + ff,x(j − 1)

2
·
(
δx(j)− δx(j − 1)

)
(5.48a)

wf,y(j) =
ff,y(j) + ff,y(j − 1)

2
·
(
δy(j)− δy(j − 1)

)
(5.48b)

wf,z(j) =
ff,z(j) + ff,z(j − 1)

2
·
(
δz(j)− δz(j − 1)

)
(5.48c)

wf is a matrix describing the friction work of each bristle. Thus the total
energy dissipated by friction in the time dt is:

Wf,x(j) =
∑
i,k

wf,x(j) (5.49a)

Wf,y(j) =
∑
i,k

wf,y(j) (5.49b)

Wf,z(j) =
∑
i,k

wf,z(j) (5.49c)

Wf (j) = Wf,x(j) +Wf,y(j) +Wf,z(j) (5.49d)

The energies fraction of each time-step will then be added together. In
a case of perfect elasticity (no friction and no viscous effects) the sum of
the energies dissipated in time is different than zero (because of oscillations
caused by the physics of the problem), but the mean in time is always null.
In real cases, the mean has a positive rate, different than zero. The friction
effect causes the dissipation of a part of energy since the force released in the
recovery phase is not the same of the loading phase. The dissipated energy
will be then equal to the loop-area described in the force-displacement graph
and it represents its rate-independent fraction. Thus it will create a rolling
resistance torque, because the wheel is rolling, no matter its speed. The
energy rate dissipated by internal friction will be just the derivatives in time
of the previous relations:

Ẇf,x(j) =
Wf,x(j)−Wf,x(j − 1)

dt
(5.50a)

Ẇf,y(j) =
Wf,y(j)−Wf,y(j − 1)

dt
(5.50b)

Ẇf,z(j) =
Wf,z(j)−Wf,z(j − 1)

dt
(5.50c)

Ẇf (j) =
Wf (j)−Wf (j − 1)

dt
(j) (5.50d)
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The total energy dissipated by the rubber element is:

wt =

∫
f̄ · ds̄ (5.51)

where s̄ is the displacement vector of the bristle. Applying the same rule as
before, it results:

wt,x(j) =
fx(j) + fx(j − 1)

2
(δx(j)− δx(j − 1)) (5.52a)

wt,y(j) =
fy(j) + fy(j − 1)

2
(δy(j)− δy(j − 1)) (5.52b)

wt,z(j) =
fz(j) + fz(j − 1)

2
(δz(j)− δz(j − 1)) (5.52c)

(5.52d)

Also in this case wt is the matrix of the energy dissipated of each bristle.
The total energy dissipated in the time dt will be the sum of the energies of
each bristle:

Wt,x(j) =
∑
i,k

wt,x(j) (5.53a)

Wt,y(j) =
∑
i,k

wt,y(j) (5.53b)

Wt,z(j) =
∑
i,k

wt,z(j) (5.53c)

Wt(j) = Wt,x(j) +Wt,y(j) +Wt,z(j) (5.53d)

For a generic time t∗ the total energy dissipated until then will be the
cumulative value of Wt, i.e. the sum of all the values from t = 0 to t = t∗.
Instead the rate of internal energy dissipated is the derivative in time of the
previous relations, thus:

Ẇt,x(j) =
Wt,x(j)−Wt,x(j − 1)

dt
(5.54a)

Ẇt,y(j) =
Wt,y(j)−Wt,y(j − 1)

dt
(5.54b)

Ẇt,z(j) =
Wt,z(j)−Wt,z(j − 1)

dt
(5.54c)

Ẇt(j) =
Wt(j)−Wt(j − 1)

dt
(j) (5.54d)

5.10 Conclusion
In this section the Multi-Line Brush model developed for this work has been
explained and discussed. The Brush Tire model and the models for the pre-
diction of the rubber behaviour have been combined together in order to
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obtain a more realistic tire model, that can deal with dynamics and energy
dissipation as well. The visco-elastic and friction characteristics of rubber
elements are modelled with the Three Parameters Maxwell model and the
Masing model respectively. The dynamics of each rubber elements is, in-
stead, governed by the dynamics of the Brush Tire model. The model ob-
tained is not simple, the number of parameters is much more greater than
the Brush Tire model, but it is more complete and with a strong physical
basis.
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Chapter 6

Validation and results

In this chapter the results deriving from the Multi-Line Brush Tire model
are analysed and compared with the Magic Formula Tire model and some
experimental data. In the first section, the results are validated, and in the
second section, all the other results, coming from the model, are discussed
and analysed, based on the literature about tire behaviour.

6.1 Validation

In this section the results of the Multi-Line Brush model are compared with
the Magic Formula Tire model by Pacejka and with some experimental re-
sults. These are steady-state tests, meaning that the time response of the
tire is not taken into account. Data for the Magic Formula Tire model is
available for the pure slip tests (pure longitudinal and pure lateral slip).
Experimental data is available just for combined slip.

6.1.1 Comparison with Magic Formula

The Figure 6.1 shows a comparison between the Magic Formula Tire model
and the Multi-Line Brush Tire model for the longitudinal pure slip. The two
curves are very similar, except for the elastic region, where the two models
behave differently in function of the vertical force applied. It’s important
to notice that in this case the Magic Formula Tire model is just given as
that graph, all the data about the tire are not available. This could be the
cause of the difference in the Figure 6.1. Furthermore, in this case the Magic
Formula results are symmetric about the y-axis, which is why in the graph
just positive values of longitudinal slip κx are reported.

Figure 6.2 shows a comparison between the Magic Formula Tire model
and the Multi-Line Brush Tire model for the lateral force. The two curves
agree quite well, except for very low vertical load. Again, all the data are not
available, so the values of the Multi-Line Brush Tire model are calculated
in order to fit as good as possible the Magic Formula Tire model results.
That could be the cause of the not so good fit in some parts of the curve.
However, the approximation is still acceptable. A possible solution to the
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Figure 6.3: Comparison between experimental data (marker) and
Multi-Line Brush Tire model (Red line) for α = −2°

difference between the two methods in the elastic region could be the linear
elastic stiffness in the vertical direction. Indeed, in real cases the vertical
stiffness of the tire is not linear, but it could be approximated better with a
cubic curve. In that case, for high vertical load, the contact patch is bigger,
it means that more bristles are in contact, thus the longitudinal and lateral
force transmitted should be bigger.

6.1.2 Comparison with experimental data

Some data regarding an experimental test on a 225/45R17 Pirelli tire have
been available to compare with data coming from the Multi-Line Brush Tire
model. The tests are conducted for two different fixed slip angle (α1 = −2°
and α2 = 4°), whereas the longitudinal slip κx varies. The longitudinal
velocity of the vehicle is fixed to 65 km/h and the normal load is constant
(except for dynamic oscillations) equal to 4120 N. From the data, knowing
the loaded radius of the wheel (measured data) and the unloaded one (from
the tire geometry), it’s possible to determine the vertical stiffness of the
wheel. Later, the values of lateral and longitudinal stiffness are derived
in such a way that the curve of the Multi-Line Brush Tire model fits the
experimental data of longitudinal and lateral force in the elastic region. The
data about the friction between the tire and the ground are derived from the
sliding region of the force-slip curve, in order to fit as best as possible the
experimental data. The results are shown in Figure 6.3 for a fixed slip angle
of -2° and in Figure 6.4 for a slip angle of 4°.

It’s possible to observe how the Multi-Line Brush Tire model generally
agrees with the experimenetal data, except for Figure 6.3b, where for high
values of longitudinal slip the lateral force decreases almost instantaneously.
It’s hard to say why this behaviour occurs, since the author of this work
has not performed the experimental test, and there is no complete and com-
mented report of the experimental tests. Of course, the model in the two
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Figure 6.4: Comparison between experimental data (marker) and
Multi-Line Brush Tire model (Red line) for α = 4°

tests (α = −2° and α = 4°) has exactly the same values (stiffness, friction,
vertical load etc), except for the slip angle. This means that the model can
simulate various situations of combined slip, maintaing costant its coeffi-
cients, which are characteristics of the particular tire. The coefficients used
in the model are reported in the Appendix C.

6.2 Results

The previous paragraph shows that the Multi-Line Brush Tire model reflects
the results obtained with the Magic Formula Tire model and experimental
data for combined slip. After this validation, a series of simulations (for
which there are no experimental data available at the moment) are performed
with the Multi-Line Brush Tire model. The results from those simulations
are presented and discussed in this chapter.

6.2.1 Effect of camber

In Figure 6.5 the lateral force is plotted as function of the slip angle α and
the camber angle γ, with κx = 0. As experimental data suggest, a positive
camber wheel (positive if the angle γ is positive about the x-axis) increases
the lateral force for positive slip angle α. This because the camber angle
counteracts the carcass deflection, making the distribution of the vertical
load more even, thereby increasing the lateral force. The effect of camber is
very clear in Figure 6.6, where the lateral force distribution in the contact
patch is shown. For a cambered wheel (on the right) the distribution of
the lateral force is more even than for the non-cambered wheel. This is
because the vertical load distribution is different. The dark zones represent
the bristles that create more force, thus, in the second figure, there are more
dark zones, especially in the middle of the contact patch, instead of the figure
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Figure 6.5: Lateral force for different camber angles

on the left, where the dark zones are positioned near the lateral edge of the
contact patch, reducing the total lateral force generated.

It exists an optimum value for the camber angle that maximize the lateral
force generated for a given slip angle α. As an example the Figure 6.7a shows
this behaviour where, in this case, the maximum force generated corresponds
to an angle slightly larger than 3°. A camber angle creates a lateral force
even with slip angle equal to zero. It is called camber thrust and the force
generated is shown in Figure 6.7b.

In Figure 6.8 the contact patch with the bristles which are sliding (pink
zones) is shown, for the slip angle α = 2°. On the left, the wheel is not
cambered, the contact patch is shifted a bit more through the positive part
of the y-axis than in the cambered wheel (on the right). The tilting angle
γ makes the distribution of the lateral force to be more even, indeed in the
not cambered wheel 1387 bristles are in contact with the ground, against
the 1402 of the cambered wheel (with n = 100 and l = 25), this means that
the vertical load in the cambered wheel is more even on the contact patch,
thus its distribution is more even. This causes a total lateral force bigger
in the cambered wheel case, than in the not cambered, because of the load
distribution factors.

6.2.2 Combined slip

The comparison of the Multi-Line Brush Tire model with the experimental
data of the previous paragraph deals with a case of combined slip. In this
section different situations are studied: combined slip with zero camber angle
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first, and combined slip with various camber angle later.

Longitudinal and lateral force with zero camber angle

Figure 6.9 shows the force-slip diagram for a null camber angle and Fz = 4000
N. In Figure 6.9a the longitudinal slip κx varies from -1 to +1, with five
different slip angle α. As can be seen, the longitudinal force is maximized
for a null slip angle, instead with increasing slip angle the longitudinal force
decreases. This is because the total force that can be transmitted between
the tire and the road is limited by friction, thus if longitudinal and lateral
slip exists simultaneously, the total force will be split in two components,
basing on the friction coefficients of each direction. It’s important to notice
that the drop of the longitudinal force is not function of the sign of the slip
angle, because the lateral friction coefficient is considered independent on
the direction of the lateral sliding velocity. From Figure 6.9b it’s a bit hard
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Figure 6.9: Combined slip for γ = 0°

to see, but in the elastic region, near the peak of the curve, the force values
corresponding to negative values of longitudinal slip are slightly greater than
those for positive values of κx. It means that in the braking phase (κx < 0)
the lateral force achievable for a given slip angle is bigger than that one
during the accelerating phase with the same slip angle, and the same value
of longitudinal slip (positive). This behaviour is predicted also by the simple
brush theory.

Effect of camber in combined slip

In this section the effect of a camber angle for the force generation on com-
bined slip is studied. Figure 6.10 shows the effects of camber angle on the
longitudinal force for two slip angles. Regardless the sign of the slip angle
and of the inclination of tilting angle, the maximum longitudinal force is
always achieved with zero camber angle. The figures are focused just on the
peaks of the curves, because the difference will not be evident. From Figure
6.10a, it is possible to see that for positive side slip angle and positive camber
angles the force generated is higher than for negative values of camber angle.
A possible explanation could be that a positive camber angle associated to
a positive slip angle makes the vertical distribution more even, thus a bigger
force (both lateral and longitudinal) can be generated, comparing with the
case of negative slip angle. The same could be say about the Figure 6.10b.

The camber has a completely different effect on the lateral force. As said
in the previous chapter, a positive camber angle coupled with a positive slip
angle makes the lateral force increase. The curves in Figures 6.11 show this
effect.
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Figure 6.11: Lateral force with fixed longitudinal slip and various
camber angles

6.2.3 Self-aligning torque

The self-aligning torque Mz arises from the different distribution of the lat-
eral force along the contact patch. It’s calculated using Equation 5.36c of
the previous chapter. The results are shown in Figure 6.12. The values of
the Mz torque show a behaviour similar to reality in the first part, where
the torque presents a peak. For high slip angles α, the torque value reaches
an asymptote, different than zero. This is because for high values of side
slip angle all the bristles are sliding, thus the distribution of the lateral force,
that generates the aligning torque, has the same "shape" of the vertical force,
with a corrective factor equal to the friction between the road and the tread.
However, the distribution of the vertical force has a parabolic distribution
with the total force shifted a bit forward and, since the lateral force has
the same kind of distribution, it creates a constant torque. There are no
experimental data available at this moment, in order to compare the results
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Figure 6.12: Self aligning torque Mz for different vertical loads

obtained with the Multi-Line Brush Tire model.

6.2.4 Rolling resistance

As explained in the paragraph 2.2.1, the main contribution to the rolling
resistance is given by the non-symmetric vertical load distribution about the
y-axis. This is shown in Figure 6.13a, where the vertical application point
(i.e. the point where the force has zero moment) is not positioned along the
vertical axis of the tire, but shifted forward, at xR = 0.0033 m. This creates
a rolling resistance coefficient equal to fr = 0.0105.

The main reason for this kind of distribution is the internal friction force,
acting inside the rubber element. Using the Masing model, the internal
friction forces have the behaviour shown in Figure 6.13b for a single line. It’s
possible to see that in the leading edge, where the bristles start to deflect,
the friction force increases, reaching a maximum value, meaning that all the
Jenkin elements in the Masing model are sliding. When the bristle starts to
decompress, the forces change sign, until all the elements slide again. This
change in sign causes an imbalance in the force distribution, the bristles
corresponding to positive x values (in the front of the tire) generate a vertical
force greater than the ones corresponding to negative x values. This effect
allows the shifting of the application point forward, generating a resistant
My torque on the wheel axis. In order to have a constant velocity speed
of the wheel, a tractive torque must be applied at the wheel. In order to
transmit the torque to the road, a little sliding between tread and road must
occur but in the same time this sliding makes the rolling coefficient slightly
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Figure 6.13: Vertical force distribution (n = 100, l = 25) in 6.13a;
internal friction forces using Masing model in 6.13b, for one single line

increases. However, this effect is not considered in this work, since it’s not
easy to be implemented in a Matlab code and the error committed with this
approximation is quite small. The peak value of the friction force is function
of the coefficients in the Masing model, thus a deeper analysis on the tire
material should be done, in order to identify with good approximation these
parameters.

Dependence on vertical load

The literature suggests that the rolling resistance coefficient is vertical load
dependent, however, its behaviour depends a lot on the tire construction
and materials. According to [17] the rolling resistance coefficient generally
increases for increasing vertical load, but for some tires it decreases. The
Figure 6.14a shows the results coming from the model. In this case the
rolling resistance coefficient decreases with increasing vertical load, this can
be explaining considering that, in the model, the vertical stiffness of the
tire is linear, instead of decreasing with the normal load. If a cubic elastic
stiffness is introduce in the model, the rolling coefficient will increase, since a
decreasing vertical stiffness makes the rolling resistance coefficient increases,
as can be seen from Figure 6.14b. In order to obtain more precise data about
the behaviour of rolling resistance under different loads, the data about the
Masing model should be investigated deeper, because in this situation, all
the Jenkin elements are sliding when the tire is rolling, thus the friction
force can’t increase, even if the vertical load (thus the vertical deflection)
increases.
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Figure 6.14: Dependence of the rolling resistance on the vertical
load Fz in 6.14a; Dependence of the rolling resistance on the vertical

stiffness in 6.14b

Dependence on the longitudinal speed

The rolling resistance coefficient is function of the vehicle speed [21]. Typi-
cally it increases with increasing vehicle speed, however this function is not
so distinct, but depends on the tire characteristic and construction. But,
generally, the rolling resistance increases with increasing vehicle speed. The
results are shown in Figure 6.15. The dependency on the rolling speed arises
from the dynamic model of the rubber element, in effect the viscous part
is the only rate-dependent element, and, for vehicle typical speed, the loss
factor increases with increasing speed, before reaching the peak.

The behaviour of the coefficient reflects the Bode diagram of the Three
Parameters Maxwell model. Thus it can simulate the reality until a certain
limit of speed. The value of the limit depends on the value of the viscous
coefficient in the visco-elastic model along the z-direction, as can be seen in
Figure 6.16.

For increasing values of vertical viscous coefficient the rolling resistance
increases in its maximum value and decreases the velocity corresponding to
the maximum value. After the peak the rolling resistance decreases because
of the frequency response of the Three Parameters Maxwell model, where
the loss factor has a peak and then it decreases.

Dependence on camber angle

The tilting angle of the wheel, i.e. the camber angle, affects the rolling
resistance coefficient. In Figure 6.17 it is shown two simulations obtained
from the model with two different vertical tire stiffness. For the "hard"
tire (circle markers) the camber has almost no effect. Actually for small
angles the rolling resistance coefficient decreases a bit, but the decrease is
almost negligible. For the "soft" wheel instead, the camber angle has a
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more evident effect, with increasing the camber angle the rolling resistance
coefficient increase. The coefficient has been calculated using Equation 2.7.

Dependence on the tire geometry

It’s predictable that the tire geometry has a certain influence on the rolling
resistance. In Table 6.1 the "soft" tire is used, in such a way that the
influence of camber can be observed. The main geometric dimensions of the
tire are: the tread width, the rim radius, the rim width and the side-wall
length.

All the other coefficients in the model are the same (stiffness, damping,
etc.) for all the simulations. First of all it is possible to notice that for larger
rim radius the rolling resistance coefficient is smaller, and this effect is veri-
fied in reality. In the same way, if the ratio between the side-wall length and
the tread width decreases (thus the sidewall length decreases, maintaining
constant the tread width) the rolling resistance coefficient increases signifi-
cantly. For a bigger tread width the rolling resistance coefficient is smaller,
this because the contact patch has a larger width, thus the application point
of the vertical load is less shifted forward. The rim width has no direct effect
on the rolling resistance, however, the rolling coefficient of a small rim width
tire is more sensible to camber angle, since it increases more maintaining
constant the camber angle (line 2 and 5).
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Table 6.1: Rolling resistance coefficient for different geometries

Rim Di-
ameter
[in]

Tread
Width
[in]

Rim
Width
[in]

Sidewall
length
/ Tread
Width

fr for
γ = 0°

fr for
γ = 5°

∆

17 255 8 0.55 0.0195 0.0208 +6.67%
17 225 8 0.55 0.0201 0.0213 +5.97%
17 225 8 0.35 0.0221 0.0233 +5.43%
17 225 7 0.35 0.0221 0.0234 +5.88%
17 225 7 0.55 0.0201 0.0214 +6.47%
15 225 8 0.55 0.0211 0.0224 +6.16%
15 225 8 0.35 0.0234 0.0247 +5.55%
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Figure 6.18: Energy dissipation rate by friction elements along the
z-axis for different vertical loads

6.2.5 Energy losses

In this section the energy losses, both internal and external, are studied and
discussed.

Internal Loss

The internal losses are represented by that fraction of energy dissipated
inside the rubber element. How to calculate them has already been discussed
in paragraph 5.9.2.
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Figure 6.18 shows the power dissipated by internal friction (from the
Masing model) in the rubber element along the z-axis for different longitudi-
nal speeds and different vertical loads. The dependence on the vehicle speed
and the vertical load is obvious: if the wheel rolls faster, it turns more times
per unit of time, thus the bristles deflect more often, increasing the power
dissipated by internal friction. However it is not linear, and this reflects
the behaviour of the rolling resistance coefficient with the vehicle speed (see
Figure 6.15). Moreover it is almost linear with the vertical load.

Figure 6.19 shows the energy dissipated by internal friction (thus inside
the rubber elements) along the lateral direction for α = 7° in the interval
time dt = 0.0005 s. It’s possible to observe that the largest part of the
energy dissipated is situated on the trailing and on the leading edge of the
contact patch, this because those are the places where the deflection rate
is maximum. Instead of the center part, where the deflection reaches its
maximum, but its rate is very low.

In Figure 6.20 the lateral power loss by internal friction and the total
(visco-elastic and friction) lateral internal power loss are shown as function
of the camber angle. The curves shapes reflect the shape of the force-slip
diagram. The internal power loss increases in the first region, where the
bristles are sticking and it is constant where the bristles are sliding. How-
ever, the total (friction plus visco-elastic) power loss for a cambered wheel is
slightly lower than the non-cambered tire in the sliding region. This could
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direction

happen since for a cambered tire with a side slip angle different than zero the
distribution of the lateral deflection along the contact patch is more uniform.

It’s interesting to compare the total internal friction power loss, i.e. the
sum of the power dissipated by internal friction along the three directions,
for different camber angles and different side slip angles. However, since for
a certain side slip angle the lateral force developed is function of the camber
angle, the total power dissipated by internal friction has been normalized
on the lateral force developed, as can be seen in Figure 6.21. The ratio of
the power loss on the lateral force is smaller for a cambered wheel than for
an non-cambered wheel, thus the power dissipated to obtain a certain value
of lateral force is smaller for a cambered wheel. Further more simulations
should be done in order to find the optimal camber angle to minimize the
internal friction power loss.

In Figure 6.22 the longitudinal friction power loss Ẇf,x is shown, function
of the longitudinal slip κx. It’s important to notice that the value of the
longitudinal slip κx affects the value of the angular wheel speed ω. In effect
for κx = −1 the angular wheel speed is ω = 0, thus the friction loss becomes
null. That is why in Figure 6.22b the friction loss has been normalized on
the angular speed. In this last graph, it shows a certain symmetry between
the positive and negative values of longitudinal slip. As said for the friction
loss for the y-axis, the peak corresponds to the maximum force generated,
then it decreases.

The behaviour of the friction power losses has a predictable behaviour,
thus the friction power is maximum where the force generated, thus the
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bristle deflection, is maximum.

External loss

The external losses are represented by that part of energy dissipated outside
the rubber element, i.e. the sliding between the tire and the road.

In Figure 6.23 the energy dissipated by sliding for different slip on the
time is shown. Obviously the energy dissipated increases with increasing the
slip. The energy dissipated during the sliding between the tire and the road
is mainly converted in heat and wear.

Lateral sliding

In Figure 6.24 two different situations are shown, both for a side slip angle
of 3°. In Figure 6.24a the local power dissipation, due to sliding, is shown
in the contact patch, for a null camber angle. It’s possible to see how the
most part of the energy dissipated is located near the edge of the contact
patch. This because the carcass is deflected, thus the vertical load is shifted
to the side opposite to the curving direction. In Figure 6.24b the wheel has
a camber angle equal to 2°, thus it generates more lateral force, but, most of
all, it shows a more even power dissipation along the contact patch, focused
more in the center of the contact patch. This allows a more even wear and
heat distribution. The blue area is the sticking region, where the sliding
power is null.

In the lateral case it is possible to define an output power of the system
"tire", that is the product between the lateral speed of the tire and the
lateral force developed:

Py,out = Fy · vy (6.1)
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Figure 6.24: Sliding power along the y-axis for a side slip angle
α = 3°

and a sliding power, defined as the product between the lateral force gener-
ated in the sliding region and the sliding velocity of the bristles with road:

Py,slid = Fy,slid · vy,slid (6.2)

In Figure 6.25 they are plotted for different side slip angles and two
different camber angles. It’s possible to notice that the values between the
two camber angles are not so different, both the powers are larger for the
cambered wheel, this means that cambering the tire it’s possible to obtain
an higher value of lateral force, as said in the previous paragraphs.

Longitudinal case

In the longitudinal case the distribution of the power dissipated by sliding
has a different shape, as can be seen in Figure 6.26.

The main amount of sliding power is located in the center of the contact
patch, this because for high values of slip ratio κx the longitudinal force fol-
lows the vertical force distribution, because all the bristles are sliding. Thus
the maximum of the force is located in the middle, where the vertical force
is maximal. In the same way as done before, it’s possible to define an output
power for the longitudinal case as the product between the longitudinal force
and the longitudinal speed of the wheel:

Px,out = Fx · vx (6.3)

and the sliding power, defined as before:

Px,slid = Fx,slid · vx,slid (6.4)

However, in this case, it is possible also to define an input power, as the
product between the driving torque and the angular speed of the wheel:

Px,in = My · ω (6.5)

64



Figure 6.25: Power dissipated by lateral sliding for different camber
angles
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Figure 6.26: Sliding power distribution for κx = 40%

65



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

4 F
z
 = 4 kN , v

x
 = 36 km/h

κ
x

P
o
w

e
r 

[W
]

 

 

Input Power

Output Power

Sliding Power

Figure 6.27: Longitudinal input, output and sliding power.

In Figure 6.27 these three powers are diagrammed for different slip ratio κx.
The input power increases in all the range of the longitudinal slip ratio, even
for high values of κx. In the same time, the output power in the first part
increases, in the same way of the input power, instead in the last part, the
output power decreases because of the reduction of the longitudinal force for
high values of κx. In the same time the sliding power increases in all the
range, because of the increasing sliding velocity. Moreover, it results that
the output power is not exactly the difference between the input power and
the sliding one, because of the power dissipated by internal friction (Masing
model), but its amount is almost negligible (less than 1 kW, see previous
chapter).

Defining an input and an output power, it is possible to define a sort of
efficiency of the wheel, as the ratio between the output and the input power,
and it is shown in Figure 6.28. As experience can suggest, it decreases
with increasing the slip ratio, but it is not dependent on the vertical load
applied to the wheel and on the longitudinal speed. However, it doesn’t
take into account the internal losses, that characterizes the rolling resistance
coefficient.
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Figure 6.28: Tire efficiency for different slip ratio
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Chapter 7

Conclusions and
recommendations

In this chapter some conclusions and some recommendations about future
work are presented.

7.1 Conclusions

This thesis work has been conducted with the target of studying the en-
ergy dissipation in rolling tires. Two different factors are involved in energy
dissipation:

• internal losses: these are the losses due to deflection of the tire mate-
rial, mainly the rubber. The continuous successions of compression and
stretching of the material, due to the fact that the tire is rolling, cre-
ates hysteresis phenomena that allows the dissipation of energy, mainly
transformed into heat;

• external losses: this part is represented by the losses that occur for
certain situations, and they are due to the fact that the tread of the
tire slides on the road surface, dissipating energy for external friction.

The main aim of this work is the development of a new tire model, the
Multi-Line Brush Tire model, which can described these two energy dissi-
pation phenomena for different dynamic situations. The developed model
can describe quite well the generation of the rolling resistance force, using
the laws of the rubber mechanics, and its behaviour in different dynamics
case. The model takes into account the tire geometry as well, which can
be a parameter in order to minimize the energy dissipation of a vehicle in
motion. In the same way the camber angle could be a parameter that could
be varied in order to reduce the internal friction losses when the vehicle is
turning.

A lot of other dynamics cases and situations can be studied using the
Multi-Line Brush Tire model.
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7.2 Drawbacks
The developed Multi-Line Brush Tire model have some drawbacks, that can
be corrected in the future:

• number of parameters: comparing to the simple Brush Tire model the
number of parameters needed for the Multi-Line Brush Tire model is
much higher, this because it can describe phenomena that the simple
brush tire model can’t, like the dynamic friction between the tread and
the road, or the energy analysis;

• numerical instability issues: all the equations in time have been solved
using numerical models of the first or second order. This could creates
some instability issues in those equations. This problem can be solved
by implementing solver relation with a higher order (like Runge-Kutta
equations), but this will increase the calculation time;

• not adapt for on-board analysis: since the code divides the contact
patch in a certain number of bristles, for each one of them a lot of equa-
tions have to be solved for each time step, thus the software (MATLAB)
takes 7-8 seconds for a 2 seconds simulation, this disqualifies the model
for on-board use.

7.3 Recommended future work
The model can be improved by implementing other features, like a flexible
carcass along the vertical and longitudinal direction, or implementing a more
high order solver for the numerical equations. In the same way the model
can be implemented into a 4 wheel car model, in this way some more generic
conclusions about the total energy dissipation in the tires of a vehicle for
different dynamics cases can be stated, and the problem about the optimiza-
tion of the energy loss can be faced. In order to allow the implementation of
a on-line control strategy of the wheel parameters (particularly the camber
angle) some maps can be created with the model, where the energy dissi-
pation is calculated for different variables (such as longitudinal speed, side
slip angle, slip ratio, etc.), with the target of finding the best combination of
these parameters to minimize the energy dissipation. These "maps" could
be implemented then into the Electronic Control Unit of the vehicle.
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Appendix A

Force code implementation

In this appendix the formula used to implement the rubber model equation
in Matlab are explained and discussed.

A.1 Visco-elastic force
The differential equation for the calculus of the force developed by the visco-
elastic parts has been presented in Chapter 4.2.1. In particular, since in the
model the Three Parameters Maxwell model has been used, the equation to
be analysed is equation 4.4, here reported:

σ̇(t, ε) = −k2

c
σ(t) +

k1k2

c
ε(t) + (k1 + k2)ε̇ (A.1)

where, referring to Figure 4.4a:

• σ(t) is the force developed by the system along one axis (x-, y- or z-axis);

• ε(t) is the deformation applied to the model along one axis (x-,y- or
z-axis);

• k1 and k2 are the stiffness of the elastic springs;

• c is the viscous coefficient of the damping;

In the model the deformation ε is the input, and the output is the force
developed. As it is possible to see that the derivative of the force is a
function of the derivative of the deformation, thus an analytical solution is
quite tough to be found. That’s why a numerical solution is used instead
of the analytical one, in order to simplify the calculation, even with a final
error due to the numerical solution.

The method adopted is the Crank-Nicolson method for the solution of
the differential Equation 4.4. It’s a second order method in time, implicit
and numerically stable, consisting in a combination of the forward Euler
method and the backward Euler method. The differential equation 4.4 can
be written in this form:

σ̇(t, ε) = F (σ, ε, t) (A.2)
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Assuming that ∆t is the time-step interval, the equation A.2 can be
approximated with:

σt+∆t − σt
∆t

≈ 1

2
(Ft+∆t (σ, ε, t) + Ft (σ, ε, t)) (A.3)

where:

• σt+∆t is the force developed at the time t+ ∆t, thus it is the unknown
variable;

• σt is the force developed in the time t, it’s known since it is the initial
condition of the differential problem;

• Ft+∆t is the Equation 4.4 calculated at the time (t+ ∆t);

• Ft is the same function calculated in the time t;

The derivative of the deflection ε is approximated with a first-order Euler
method, thus:

ε̇t+∆t ≈
εt+∆t − εt

∆t
(A.4a)

ε̇t ≈
εt − εt−∆t

∆t
(A.4b)

Here the first order is used since the value of the next step of the deflection
is unknown, in fact it is calculated from the value of the force, that is the
product of code.

Using Equation A.4 in Equation A.3 the final relation implemented in
Matlab is obtained:

σt+∆t =

(
c

2c+ k2∆t

)(
(2− k2∆t/c)σt + (k1k2∆t/c+ k1 + k2)εt+∆t

+ (k1k2∆t/c)εt − (k1 + k2)εt−∆t

)
(A.5)

The Equation A.5 is calculated for each time step, and the output of one
time step became the input of the next time step.

A.2 Friction force

The model used for the estimation of the internal friction forces is the Mas-
ing model, explained in the paragraph 4.2.2. It consists of five spring plus
dashpots elements in parallel (Figure 4.6), thus five equations are needed to
be solved for each time step.

The general equation for the Masing model is:

σ(ε) =
n∑
i=1

σi(ε(t)) (A.6)
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where σi is the force of the i:th Jenkin element, thus:

σ̇i =

{
kiε̇ |σi| < Ri or (|σi| = Ri and sgn(ε̇σi)) ≤ 0

0 else
(A.7)

where ε is the deformation applied to each Jenkin element (equal for all of
them, since the elements are connected in parallel), it could be along the x-,
y- or z-axis; σi is the force developed by the i:th Jenkin element; Ri is the
static Coulomb friction force of the i:th Jenkin element; ki is the stiffness of
the spring in the Jenkin element.

Defining the incremental deflection as ∆ε = εt+∆t − εt the Equation A.7
is implemented in Matlab in this way:

σi,tr = σi + ki∆ε (A.8a)

σi =
(

(|σi,tr| > Ri) · sign(σi,tr)
)
·Ri +

(
|σi,tr| ≤ Ri

)
· σi,tr (A.8b)

The σi,tr is a trial value of the friction force, if it is larger than the static
friction force Ri, it becomes equal to the same Ri, and this behaviour is
described by Equation A.8b. The absolute values are needed to make the
relation works for both negative and positive velocities.

It’s important to notice that the Equation A.8b is not linear, but piece-
wise defined. Thus the result is not smooth.
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Appendix B

Magic Formula Tire Model
implementation

B.1 Longitudinal slip
In this appendix the values of the coefficients of the Magic Formula used
in this work are listed. It is divided into two sections: in the first part
the coefficients for the longitudinal slip diagram are listed, as well as in the
second part the coefficients values for the lateral slip are listed.

% Magic Formula for longitudinal slip
Fz=2000; %Vertical load
F_z0=4000; %Nominal vertical load
p_Cx1=1.685;
p_Dx1=1.21; p_Dx2=-0.037;
p_Ex1=0.344; p_Ex2=0.095; p_Ex3=-0.02; p_Ex4=0;
p_Hx1=-0.002; p_Hx2=0.002;
p_Kx1=21.51; p_Kx2=-0.163; p_Kx3=0.245;
p_Vx1=0; p_Vx2=0;
lambda_Hx=0; lambda_Vx=0;
dfz=(Fz-F_z0)/F_z0;
mu_x=p_Dx1+p_Dx2*dfz;
Dx=mu_x*Fz;
Cx=p_Cx1;
Kxk=Fz*(p_Kx1+p_Kx2*dfz)*exp(p_Kx3*dfz);
Bx=Kxk/(Cx*Dx+eps);
Shx=(p_Hx1+p_Hx2*dfz)*lambda_Hx;
Svx=Fz*(p_Vx1+p_Vx2*dfz)*lambda_Vx;

Ex=@(k)(p_Ex1+p_Ex2*dfz+p_Ex3*dfz^2)*(1-p_Ex4*sign(k+Shx));

Fx=@(k)Dx*sin(Cx*atan((Bx*(k+Shx)-
(p_Ex1+p_Ex2*dfz+p_Ex3*dfz^2)*(1-p_Ex4*sign(k+Shx))*
*(Bx*(k+Shx)-atan(Bx*(k+Shx))))))+Svx;

B.2 Lateral slip
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% Magic Formula for lateral slip
Fz=9.82*200*1;
gamma=0*pi/180;
R_0=0.3;
F_z0=4000;
Vxc=16;
p_Cy1=1.193;
p_Dy1=-0.99; p_Dy2=0.145; p_Dy3=-11.23;
p_Ey1=-1.033; p_Ey2=-0.537; p_Ey3=-0.083; p_Ey4=-4.787; p_Ey5=0;
p_Hy1=0.001; p_Hy2=-0.001; p_Hy3=0;
lambda_Hy=0; lambda_Vy=0;
p_Ky1=-14.95; p_Ky2=2.130; p_Ky3=-0.028; p_Ky4=2;
p_Ky5=0; p_Ky6=-0.92; p_Ky7=-0.24;
p_Vy1=0.045; p_Vy2=-0.024; p_Vy3=-0.532; p_Vy4=0.039;

dfz=(Fz-F_z0)/F_z0;
mu_y=(p_Dy1+p_Dy2*dfz)*(1-p_Dy3*gamma^2);
D_y=mu_y*Fz;
C_y=p_Cy1;
K_ysy=p_Ky1*F_z0*sin(2-atan(Fz/(p_Ky2*F_z0)))*(1-p_Ky3*abs(gamma));
B_y=K_ysy/(C_y*D_y+eps);
S_Hy=(p_Hy1+p_Hy2*dfz)*lambda_Hy+p_Hy3*gamma;
S_Vy=Fz*((p_Vy1+p_Vy2*dfz)*lambda_Vy+gamma*(p_Vy3+p_Vy4*dfz));

Ey=@(alfa)(p_Ey1+p_Ey2*dfz)*(1-(p_Ey3+p_Ey4*gamma)*sign(alfa));

Fy=@(alfa)D_y*sin(C_y*atan((B_y*(alfa+S_Hy)-((p_Ey1+p_Ey2*dfz)*
*(1-(p_Ey3+p_Ey4*gamma)*sign(alfa))*(B_y*(alfa+S_Hy)-
atan(B_y*(alfa+S_Hy)))))))+S_Vy;
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Appendix C

Pirelli test, Multi-Line Brush
Tire model coefficients

Here the values of the Multi-Line Brush Tire model coefficients used to fit
the Pirelli test data are shown.

B=0.225; %Width of the tire [m]
w_r=7*25.4*0.001; %Rim width [m]
S_w=w_r*0.45; %Length of the tire side wall [m]
R_r=17/2*25.4*0.001; %Radius of the tire rim [m]

load_sensitivity_y=0.15;
load_sensitivity_x=0.1;
cpx = 2578500/n/lines; %Longitudinal bristle stiffness [N/m]
cpy = 2664450/n/lines; %Lateral bristle stiffness [N/m]
cpz = 1117350/n/lines; %vertical bristle stiffness [N/m]
dpx = 133/n/lines; %Longitudinal damping for each bristle [Ns/m]
dpy = 133/n/lines; %Lateral damping for each bristle [Ns/m]
dpz = 38/n/lines; %Vertical damping for each bristle [Ns/m]

k_rs=600; %torsional stiffness carcass
d_rs=10; %Damping carcass

k=45000; %Spring suspension stiffness[N/m]
d=1000*5; %Damping suspension car [Ns/m]

%% Friction tire-Ground
%longitudinal friction
mux_s=1.3; % Static friction coefficient
mux_c=1.05; % Coulomb friction coefficient
vx_str=3.5; % Stribeck velocity

%lateral friction
muy_s=1.24; % Static friction coefficient
muy_c=0.9; % Coulomb friction coefficient
vy_str=2; % Stribeck velocity
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