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The most studied form of epigenetics is DNA methylation and several studies have investigated
the link between the methylome and body weight. In paper I we analyzed the methylation
profile of whole blood in 46 subjects measured with Illumina 27K chip. We provide evidence
that obesity influences age driven epigenetic changes. These identified markers may prove
to be valuable biomarkers for the understanding of the molecular basis of aging, obesity and
associated diseases. In paper II we studied the effect of bariatric surgery, and subsequent
weight loss, on methylation and relating this to normal weight controls. In paper II we found
115 promoters had altered methylation after surgery. Among these promoters, an enrichment
for genes involved in metabolic processes was found (n=36, p<0.05). In addition, these 51
promoters was more similar after surgery to that of normal-weight controls, than it had been
at baseline (p<0.0001). One of the major comorbidities of severe obesity is obstructive sleep
apnea and lack of sleep is highly correlated with obesity. Paper III shows how acute sleep
deprivation increases portion size and affects food choice in 16 young men. In paper VI, whole
genome DNA methylation profiles of whole blood was assessed following both conditions
by the Illumina 450K methylation in the same trial as in paper III. This paper shows how
sleep deprivation affects DNA methylation profiles of whole blood in a manner both dependent
and independent on monocyte subpopulations. Hypothesis free genome wide analysis revealed
differential methylation in ING5, a gene previously known to be differentially expressed in sleep
deprivation.
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Introduction 

Obesity and its associated co-disorders are some of the largest global health 
problems and are together with the increasing elderly population in many 
western countries a major challenge for the healthcare system. The risk for 
several age related diseases such as cancer, type-2 diabetes and neurodegen-
erative diseases are increased by obesity and overweight (1-3). Hence, it is 
of utmost importance to understand the mechanisms that underlie these con-
nections and the development of obesity and age related diseases. Recent 
progress in genetic research has revealed a growing number of genetic vari-
ants that predispose carriers to age related diseases, in particular cancers (4). 
However, the genetic loci associated with obesity have only been able to 
explain a small fraction of the variation in BMI and other factors are likely 
more important. The dramatic increase in the incidence of obesity and diabe-
tes seems to have developed over the same time as the progressive decrease 
in self-reported sleep duration (5). In modern day society, many sleep only 
5-6h per night and the trend is continuing (6). It seems restricted sleep is a 
good predictor of obesity and longitudinal analyses of the 1982-1984, 1987 
and 1992 National Health And Nutrition Examination Survey (NHANES) 
indicate an odds ratio of 2-2.5 of being obese (BMI>30) with 1-4h of sleep 
(7). An average increase of 2 BMI units was found in subjects with 1-4h 
sleep compared to 7h sleep. The longitudinal data may be skewed since se-
verely obese subjects often report obstructive sleep apnea (OSA), or sleep 
disordered breathing (SDB). This may result in a feedforward cascade of 
negative events generated by sleep loss and hypoxia which likely exuberates 
metabolic disturbances. Even if data are skewed by this effect, it has been 
shown that sleep loss contribute to insulin resistance and type 2 diabetes 
either directly or indirectly by having a deleterious effect on the  components 
of glucose metabolism and appetite regulation (8). Human sleep is normally 
restricted to a 7-9h period and glucose levels must be maintained during this 
extended fast. In healthy subjects this is the case but wakeful subjects in a 
resting position will see their glucose levels fall by 0.04-0.1 mM/h (9). Apart 
from glucose regulation, sleep disturbances likely leads to obesity by in-
creasing appetite (10), and it has been shown that chronic sleep deprivation 
leads to marked hyperphagia in rats (11). One hormone that is important for 
appetite regulation is leptin which is known to increase energy intake. Inter-
estingly, sleep deprivation under continuous nutrition showed a persistence 
of sleep related leptin decrease indicating that leptin is not only governed by 
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energy levels (12). This increase in leptin is accompanied with an increase in 
ghrelin which is also indicative of an impaired glucose metabolism. A sys-
tematic review of the links between sleep deprivation and obesity highlights 
several potential causal mechanisms. Sleep deprivation leads to increased 
hunger, altered thermoregulation, and increased fatigue, all of which results 
in increased caloric intake and reduced energy expenditure (13). In the last 
few years epigenetic alterations have been given an increasing amount of 
attention as important factors in disease (14) and data suggests that circadian 
epigenetic patterns are important for rest-activity rhythms, thermogenesis, 
and satiety (15).  In contrast to genetic variations, the epigenetic profile is 
dynamic and varies with both intrinsic and extrinsic factors throughout life-
time.  

Epigenetics and obesity 
An important example when discussing epigenetics and obesity is the so 
called “Dutch hunger syndrome”. The condition emerged as a direct result of 
prenatal starvation among pregnant Dutch mothers who suffered famine 
during the winter of 1944-1945 (16). Offspring from these mothers suffered 
from both cardiovascular and metabolic disease and it was later shown that 
this was at least in part mediated by epigenetic mechanisms, specifically 
differential methylation of the insulin-like growth factor II  IGF2  locus (17). 
Another recent cohort analysis investigates the correlation between DNA 
methylation and body mass index (BMI) found three loci related to the gene 
coding for Hypoxia-inducible factor 3 alpha (HIF3A) (18). Other examples 
of links between epigenetics and obesity are the fact that numerous transcrip-
tion factors and histone modifiers have shown to prevent diet induced obesi-
ty (19, 20). 

Epigenetics and sleep 
Studies have been done showing that epigenetic regulation is present in key 
genes involved in the sleep-wake cycle, e.g. the circadian clock. The circadi-
an clock instructs 24h rhythmicity on gene expression in essentially all cells 
and DNA methylation in CLOCK and BMAL1 genes, which are crucial for 
maintaining circadian rhythmicity, are modulated by obesity (21). One of the 
most consistent degrees of rhythmicity, phasing and amplitude of gene ex-
pression is found in the 5-methyltetrahydrofolate homocysteine methyltrans-
ferase (MTR). This gene is involved in DNA methylation which is a core 
epigenetic process in humans (22). Other epigenetic processes such as RNA 
editing and histone modifications have been shown do display diurnal pat-
terns but the most studied form of epigenetics is DNA methylation (23). In 
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mice, the period circadian clock gene (PER1) is regulated by DNA methyla-
tion (24) and DNA methylation of the frequency gene in neurospora is in-
volved in setting the proper phase of the circadian clock (25). Some studies 
suggest that monounsaturated fatty acids (MUFA) and polyunsaturated fatty 
acids could play a role in DNA methylation and epigenetic regulation of the 
circadian system (26). These observations suggest roles for DNA methyla-
tion in circadian clocks and that clock gene methylation profiles are involved 
in many diseases such as obesity, metabolic syndrome and cancer (21, 27).     

Epigenetics of the cell  
Cells employ epigenetic mechanisms mainly for three purposes; cellular 
memory, differentiation, and adaptation. Cellular memory includes mecha-
nisms aimed at maintaining cellular identity. These mechanisms become 
important after a differentiation event where cell identity is determined. Of-
ten, a single differentiation event is enough to establish a cellular memory 
that lasts throughout the lifespan of all daughter cells. Differentiation is im-
portant in embryonic development and lately, the epigenetic adaptation in 
response to environmental stimuli has received increasing attention from the 
research community (28). The maintaining, differentiation, and adaptation of 
complex gene expression patterns are governed by molecular mechanisms 
working in all stages of transcription. DNA methylation and chromatin mod-
ifications modulate transcription initiation, microRNA have the ability to 
degrade mRNA transcripts and circulating transcription factors that can be 
inherited from mother to daughter cell provide a molecular memory that 
does not require any transcription in the daughter cell in order to function. 

DNA methylation 
One of the most studied epigenetic mechanisms is the methylation of cyto-
sine residues, which is maintained and controlled by different DNA-
methyltransferases (DNMTs). Cytosines across the genome tend to be meth-
ylated (29), but in Cytosine phosphate Guanine (CpG) rich regions in prox-
imity of genes the methylation is dynamic and functions as a gene specific 
regulatory mechanism of transcription (30). Such cytosine enriched regions 
are called CpG islands and a higher methylation in this type of region is of-
ten associated with a reduced expression of the nearby gene, due to chroma-
tin rearrangement, inhibition of transcription activators and/or recruitment of 
transcription repressors (31-33). Hence, DNA methylation provides a regula-
tory mechanism of gene transcription and is essential for cell fate, differenti-
ation and tissue integrity. The methylation status of monozygotic twins di-
verge with age, which demonstrates that DNA methylation is susceptible to 
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environmental factors (34). This strengthens the notion that the metylome is 
an adaptive entity capable of changing an individual's gene expression pat-
tern due to environmental factors. In fact, it has been demonstrated that fac-
tors such as diet and nutrient intake affect the methylation status as well as 
conditions such as inflammation, oxidative stress and hypoxia (32). Several 
studies have reported genomic regions where the methylation level is differ-
entiated in obese individuals and varies with body-weight (35-38). In con-
trast, methylation levels are also associated with genetic variations and can 
thus be governed, at least in part, by genetic factors (39). With age the global 
methylation level of the genome (including non-CpG regions) is decreased, 
which leads to a global hypomethylation (40, 41). This may be caused by a 
lower expression of DNMT1 with age, which would lead to a slower de novo 
and maintenance of methylation. In contrast, several CpG islands in promot-
er regions are hypermethylated during aging (42-44). While this demon-
strates that the genome can be locally hypermethylated during aging, it is 
unclear if this is a general process for promoter associated CpG islands. 
These age associated methylation changes could be important in age driven 
diseases and has received particular attention for its potential important role 
in cancer (45). 

Measuring DNA methylation 
DNA methylation occurs as a covalent bonding of a methyl group to the 5’ 
position in the pyrimidine ring of cysteine residues. In recent years we have 
seen increased availability of methods for detection and quantification of 
DNA methylation. Early methods able to quantify the global average meth-
ylation were often based on high performance liquid chromatography 
(HPLC) but the bulk of methods in use today rely on sodium bisulfite con-
version (46) followed by single loci or genome wide quantification steps.  
Sodium bisulfite converts unmethylated cytosines to uracil making detection 
of methylation state possible by the vast array of sequence based methods. 
  

 
Figure 1: Bisulfite conversion of cytosines to uracil: Cytosines can have a double 
bond between the 4’ and 5’ carbon in which case a sulfate group can attack and 
subsequent deamination and desulfonation results in uracil. If there is a methyl 
group on the cytosine the initial sulfonation step is not possible due to there not 
being a reactive electron pair. 
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The first method to employ bisulfite conversion to measure methylation in a 
locus specific manner was methylation specific PCR (MSP or MS-PCR) 
(47). In this method primers are designed to amplify the product of either 
methylated or unmethylated DNA. The level of methylation can then be 
assessed by comparing the efficiency of one primer pair over the other. It is 
also possible to design methylation unspecific primers that amplify The 
DNA regardless of methylation state. The product is then available for se-
quencing for quantitative measurement. In contrast to bisulfite sequencing, 
MSP is not quantitative and variations of MSP such as MethylLight (48) or 
quantitative analysis of methylated alleles (QUAMA) (49) have been devel-
oped. Recent advances in microarray and sequencing technology have made 
available genome wide analysis of DNA methylation. 

Genome wide methylation analysis by array based methods 
Perhaps the most widely used methods for whole genome methylation profil-
ing is the Illumina BeadChip. The Illumina 27K BeadChip is designed by the 
manufacturer to preferentially target CpG sites in proximity to the promoter 
of 14,475 genes of the consensus coding sequences (CCDS) and known can-
cer genes as well as the promoter of 110 miRNA promoters. Hence, the array 
is designed to study CpG sites in proximity to genes and not the methylation 
of intergenic cytosines or repeat regions. The Illumina 450K is a major up-
grade to the earlier 27K chip and investigates over 15 times the amount of 
CpG sites (>485000) compared to its predecessor. This addition in probes 
means that the Illumina 450K is not only targeted towards CpG islands in 
promoter regions of genes. Apart from low and intermediate class islands, 
regions in intergenic and downstream regions of genes are also investigated 
(50). In fact, the 450K chip accomplishes this by employing both type I and 
type II probes while the 27K only uses type I probes. Type I probes use two 
bead types or probes per methylation loci, one for each of the methylated 
and unmethylated states. After successful hybridization of one of the probes, 
the methylation state is determined by single-base primer extension.  

 
 
Figure 2: The effect of bisulfite conversion on DNA sequence. The DNA sequence is 
converted so that unmethylated cytosines are transformed to uracil. The target CpG 
site is then identified by single base-pair extension. 



 16 

 Type II probes are universal and hybridize regardless of methylation state, 
the single-base extension step then occurs at the CpG site and the type of 
incorporated nucleotide determines the methylation signal. Both chip designs 
allow for 12 samples to be processed on the same chip. In paper II and IV, 
where we employ a within subject design, the samples from the same indi-
vidual was hybridized to the same physical chip in order to avoid inter-chip 
biases. 
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Aims 

The aim of this thesis was to investigate the connection between obesity, 
epigenetics and sleep. In the last years, epigenetic phenomena and intergen-
erational effects have been considered potential contributors to the obesity 
epidemic. Our growing recognition of the overall importance of epigenetics 
in the circadian clock and in associated diseases has major implications. This 
includes the potential to define the molecular basis for the poorly understood 
relationships that exists between circadian processes and neural develeop-
mental and neurodegenerative disorders, metabolic diseases, cancer and ag-
ing. Much recent research has focused on the crosstalk between the circadian 
clock and metabolism. Crosstalk between circadian rhythm and metabolism 
is essential for maintaining homeostasis and prevent metabolic disorders. 
Moreover, food availability and energy intake participates in this crosstalk, 
regulating the circadian clock as well as metabolic pathways. Paper I repre-
sents a first step in investigating the relationship between DNA methylation 
status, obesity in conjunction with age. In II and IV we conduct further hy-
pothesis free exploratory studies aimed at identifying new molecular markers 
and biological pathways that may regulate or be regulated by obesity and 
sleep. In paper III we aim to investigate the effects of sleep deprivation on 
food intake, thus further defining the complex dependency between obesity 
and sleep.   
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Materials and methods 

Ethics statement and subject description relating to 
paper I 
Written confirmed consent was acquired from all participants of the study. 
The study was approved by the Central Medical Ethics Committee of Latvia. 
Study samples were acquired from the Latvian Genome Data Base (LGDB), 
a national biobank of health and genetic information collected for adult resi-
dents of Latvia (over 18 years old). Health status of the participants was 
asserted by health care professionals according to International Classification 
of Diseases (ICD-10) codes. Information on a familial health status, ethnic 
and social background, lifestyle and anthropometric measurements were 
obtained in a questionnaire based interview. We selected 24 obese and 22 
lean female adults from a total group of 934 females, with a known FTO 
rs9939609 genotype, that were recruited to LGDB from 2003 to May 2009. 
Selection criteria included rs9939609 genotype, Body Mass Index (BMI) 
(lean <25kg/m2 and obese ≥30 kg/m2) and health status (participants diag-
nosed with endocrine diseases and malignant tumors before recruiting to 
LGDB were not included). Middle age females were selected and a compa-
rable age range of the lean (41-69 years old) and obese females (42-70 years 
old) were ascertained. The individuals were selected so that both the obese 
and lean groups were composed of equal proportions of homozygous carriers 
for the normal and risk allele of the rs9939609 SNP. Heterozygous individu-
als were excluded. Age weight and BMI details of the participants can be 
found in Table 1.  

Ethics statement and subject description relating to 
paper II 
Eleven obese patients who qualified for bariatric surgery according to inter-
national guidelines (51) and were willing to undergo a RYGB procedure 
were included in the study. During the RYGB procedure the largest part of 
the stomach was transected, and a small gastric pouch of about 20-30 ml was 
then anastomized to the proximal jejunum with the diameter of the pouch–
jejunal anastomosis standardized to be about 12 mm. In addition, the bili-
opancreatic limb is side to side anatomized to the jejunum 150 cm distal 
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from the pouch–jejunal anastomosis (Roux-en Y limb length, 150 cm). Pa-
tients were recruited in to the study at their time of surgery between 
20090820 and 20110210 and were followed up 6 months after the surgery. 
Thus patient follow-up was performed February 2010 for the first patient and 
August 2011 for the latest patient.  The subjects were chosen so that they 
were as healthy as possible apart from being obese.  Written informed con-
sent was obtained from all subjects, and the study was approved by the ethic 
committee of Canton St. Gallen, Switzerland. Ethical approval for the study 
was obtained 20080717. A consort flowchart of the selection procedure is 
available as figure 1. The control group comprising 16 normal-weight men 
was obtained from the control condition of an as of yet unpublished study 
(Clinical trial number: NCT01730742). This study was approved by the re-
gional ethic committee in Uppsala (regionala etikprövningsnämnden i Upp-
sala, www.epn.se), Sweden and written, informed consent was signed by all 
participants. For the determination of promoter-specific DNA methylation, 
whole blood was sampled after an overnight fast in EDTA coated tubes, both 
at baseline (~1-2 weeks before the surgery) and six months after RYGB. In 
the control group, whole blood was sampled in the morning after nocturnal 
sleep (data are not shown). Until assay, all whole blood samples were kept 
frozen at -80 C. Weight was measured while subjects were wearing light 
close. Fasting plasma glucose (FPG) levels were measured by routine clini-
cal laboratory analyses. 

Ethics statement and subject description relating to 
paper III and IV 
16 healthy normal-weight male subjects (BMI = 23.6 ±0.6, age = 23 ±0.9) 
were included in the study. Prior to the experiment, all subjects reported a 
normal sleep/wake rhythm with 7-8h of sleep starting between 22:00-23:30 
and ending 06:00-07:30. They were not on shift work, ate breakfast regular-
ly, and were not on any medication. Exclusion criteria included a history of 
medical disorders or sleep complaints. Subjects underwent a physical exam-
ination coupled with routine laboratory testing including C-reactive protein 
concentration and white blood cell counts. The study is registered with 
www.ClinicalTrials.gov (NCT01730742) and all participants gave written 
informed consent before participating in the study. The study itself employed 
a randomized and balanced within subject design where all subjects partici-
pated in two experimental conditions: sleep and total sleep deprivation. The 
experimental night was preceded by a 28.5 hours long baseline period con-
sisting of regulated and monitored sleep, exercise, and food intake. The sub-
jects arrived at 18:00 (day 0) and received a standardized meal. They were 
then allowed to sleep for eight hours (22:30-06:30) and lived in the standard-
ized environment until 20:30 the following evening (day 1) when they were 
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informed about whether or not they would be sleeping the coming night. 
Polysomnography was performed by use of Embla A10 recorders (Flaga hf, 
Reykjavik, Iceland) in order to ensure compliance. The polysomnography 
comprised of electroencephalography (EEG), electrooculography (EOG), 
and electromyography (EMG). Sleep stages were determined using the crite-
ria previously described by Hobson et. al.  (52) by an experienced scorer 
blinded to the study hypothesis. After the experimental night (day 2) they 
were subjected to a battery of blood and behavioral tests in a fasted state 
between 07:30 and 09:00. The test included CRP, white blood cell count, 
serum and plasma samples, glucose measurement, and a portion size task. 
Plasma concentrations of total ghrelin were assayed by a commercially 
available kit (EZGRT-89K, Millipore, Billerica, MA, USA).  

DNA isolation and bisulfite conversion 
DNA isolation was performed as we have previously described using the 
phenol chloroform method (53). Bisulfite conversion was performed with 
the EZ DNA Methylation-GoldTM kit (Zymo research): 500 ng of DNA was 
subjected to bisulfite treatment including heating to 98°C for 10 min fol-
lowed by conversion at 64°C for 150 min. The bisulfite conversion converts 
all (> 99%) unmethylated cytosine to uracil, which gives rise to a DNA se-
quence that can be defined by its initial methylation status.  

Whole genome microarray hybridization in papers I, II, 
and IV 
In paper I, the Illumina Infinium HumanMethylation27 BeadChip ar-
ray (Illumina) probes 27,578 different CpG sites across the whole ge-
nome and has been shown to yield reproducible results in agreement 
with  technologies such as bisulfite sequencing (54). In paper II the 
degree of DNA methylation was determined by the Illumina 450K 
methylation chip (Illumina, San Diego, USA). Both methylation chips 
use the same initial steps. The DNA was whole-genome amplified, 
enzymatically fragmented, precipitated, re-suspended and after hy-
bridization overnight at 48°C the difference between a C or a T nucle-
otide was detected by single-base primer extension. The fluorescent 
detection was done using the Illumina iScan scanner. Paper I and II 
the ratio between the signal from the C and the sum of the C and T 
signals, was performed with the GenomeStudio 2009.2 (Illumina) 
software. In paper IV this process was removed and preprocessing 
began from the IDAT files produced by the iScanner.  
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Meal size estimation in paper III 
The subjects were asked to choose their ideal portion size of 13 commonly 
consumed foods, seven of which were meal items (spaghetti Bolognese, 
penne and tomato sauce, rice curry (chicken tikka masala), boiled potatoes, 
oven fries, baguettes with garlic and herb butter, and cheese and tomato piz-
za) and six were snack items (cashew nuts, pretzels, Pringles, banana, KitKat 
and peanut M&Ms). The process measures satiety expectations and relies on 
the methodology ‘method of constant stimuli’(55). The experiment was car-
ried out on a laptop before breakfast on day 2 of the trial, both before and 
after the standardized breakfast. The ideal portion size was selected by using 
the arrow keys on the keyboard and thereby displaying the desired portion 
ranging from 83 to 750 kcal. The subjects were also asked to rate their per-
ceived hunger on a 100mm VAS scale both before and after the breakfast.  

Microarray preprocessing in paper I, II, and IV 
All preprocessing and analysis was done using the statistical software R 
(www.r-project.org) in conjunction with the limma package from Biocon-
ductor (56, 57). Papers I and II used beta values (value ranging from 0 to 1 
reflecting 0% to 100% methylation) obtained from Genomestudio (Illumina, 
San Diego, USA) as the starting point for preprocessing and analysis. In 
paper I, Downstream analysis was made using the entire dataset (excluding 
only high detection p-values). In paper II and IV, preprocessing was more 
extensive due to the more complicated nature of the Illumina 450K which 
was described earlier (58). In paper II, beta values were preprocessed using 
the Illumina Methylation Analyzer (IMA) package for R (59). Probes were 
excluded if they met any of the following criteria: at least one SNP in probe 
region matched multiple genomic regions, targeted sex chromosomes or had 
a detection p-value > 10^-5. In paper II, this filtering was followed by peak 
correction (60) and quantile normalization. In addition an average on all 
CpG sites located in the same promoter region was calculated as this analyti-
cal approach is proposed to be more meaningful from a biological perspec-
tive (61). In total, 16724 promoter regions were used for subsequent analysis 
in paper II. In paper IV, we employed an even more extensive preprocessing 
paradigm. GenomeStudio was bypassed in favor of the All sample Mean 
Normalization (ASMN) approach (62). Probe filtering was similar in paper 
II and IV with one exception. Paper IV used more recent annotation data to 
remove SNP related probes as well as ambiguous probes (50). Another dif-
ference is that while paper II averaged promoter associated probes for the 
same gene paper IV employed a broader approach based on more recent 
results (63). In paper IV, all probes within 2000 bp of the TSS was used in 
downstream analysis resulting in 167490 eligible probes. These probes went 
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through quantile normalization and Beta Mixture Quantile dilation (BMIQ) 
before any analysis was made.    

Statistical analysis in paper I 
Linear regression of methylation and age was performed using the lmFit 
function in limma (robust regression, 1000 iterations). A Benjamini-
Hochberg p-value < 0.05 was considered significant. For genes with signifi-
cant probes, all other probes for that same gene were also investigated.  A 
nominal p-value < 0.05 was considered significant for these adjacent probes. 
Each probe was investigated for potential interaction between age and 
weight group (obese and lean) using general linear models. Probes that had a 
significant interaction were also analyzed within the obese and lean group 
separately to retrieve the group specific effect of aging on the methylation 
level of the site.  Furthermore, the probes with no significant interaction 
were analyzed without the interaction term to detect the main effect of obesi-
ty and age on the methylation level. The influence of the FTO rs9939609 
genotype, which lies in intron one and is not likely to have any cis effects, on 
the methylation pattern was investigated by implementing a linear model 
controlled for age and weight group. The significant genes were analyzed for 
enrichment of function using the Consensus database (64, 65) with all the 
14,446 genes represented in the Illumina Infinium HumanMethylation27 
BeadChip array that passed QC used as a background. Both KEGG (66), the 
Kyoto Encyclopedia of Genes and Genomes (which catalogues genes based 
on the biological pathway they are involved in) and level 4 biological pro-
cess GO terms (67) were used for enrichment analysis. 

Statistical analysis in paper II 
The initial analysis aimed to examine if RYGB surgery would reduce the 
genome-wide distance between promoter DNA methylation of obese patients 
and the control group (comprising normal-weight men). To this aim, the 
Euclidean distance of all promoters (i.e. 16724) was estimated for both pre-
surgery time point vs. control group and postsurgery time point vs. control 
group. These distances were then compared by means of a pairwise t test. In 
the second analysis, presurgery DNA methylation of the above mentioned 
16724 promoter regions was compared with that obtained at six month after 
RYGB (controlled for multiple comparisons, i.e. Bonferroni corrected). All 
significant promoter hits revealed by this pre/post comparison were then 
subjected to an additional Euclidean distance analysis. Overall, a p-value < 
0.05 was considered significant. Enrichment analysis was performed using 
the ConsensusPath database (64).  
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Statistical analysis in paper III 
The initial analysis compared the effect of TSD on portion size for the most 
liked items. The items were chosen by a median split resulting in 7 of the 
food items, 4 meal items and 3 snack items. A multivariate ANOVA was 
used to explore the effect TSD and/or breakfast received on perceived hun-
ger ratings, ghrelin concentrations and selected portion size. The pairwise 
comparison between sleep and TSD used weighted contrasts and was ana-
lyzed using SAS (version 9.5; SAS institute Inc.). All data are represented as 
means ± SEM and overall, a p-value < 0.05 was considered significant.  

Statistical analysis in paper IV 
A pairwise linear regression for sleep vs sleep deprivation adjusting for the 
ratio of neutrophils to leukocytes was fitted to each probe. The optimal p-
value threshold was determined by maximizing the ratio of observed signifi-
cant hits over the number of expected false positives. The significant probes 
were then selected as seeds for a second analysis where the change in meth-
ylation was compared to the median change in technical replicates. In this 
step a Benjamini-Hochberg corrected p-value < 0.05 was considered signifi-
cant. A nominal p-value of 0.05 was considered significant for adjacent 
probes. Probes relating to genes previously shown to be differentially ex-
pressed in sleep deprivation were chosen for a targeted analysis (68). Addi-
tionally, the relation between DNA methylation and mRNA expression for 
significant probes were assessed using a separate cohort (GeoID: E-GEOD-
49065). Enrichment analysis of biological pathways and molecular interac-
tions were performed using Consensus path and GeneMANIA (69) respec-
tively.          
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 Results 

Results of genome wide methylation analysis 
investigating variations with age and obesity 
In paper I, we wanted to ascertain whether age, obesity and their interaction 
could predict the methylation status of specific CpG sites using an array that 
predominantly targets regions in proximity of promoters. We also sought to 
replicate previous findings that a genetic variation within the FTO gene is 
associated with methylation changes (70). A linear model was implemented 
where the methylation of each site was evaluated as a linear function of obe-
sity, age and their interaction term. In the case of the age associated genes, 
statistical analysis using ConsensusPathDB was used to identify enriched 
functional clusters among the differentially methylated genes. Significant 
correlation between age and methylation levels after Benjamini-Hochberg 
correction (FDR < 0.01) was observed in 125 probes of which 13 also 
proved significant under Bonferroni correction. 70 of these 125 probes were 
annotated to genes that had multiple probes associated to age with a nominal 
p-value < 0.05. Of all 125 probes, 34 showed reduced methylation with age 
and 91 were hypermethylated. An enrichment analysis of functional and 
biological terms revealed the KEGG pathway map04080 “Neuroactive lig-
and-interceptor interaction” to be enriched in this dataset (FDR<0.01). Nine 
of the members of this KEGG group (PTGDR, MTRN1A, PRLHR, HTR7, 
MLNR, GRIA2, GRM1, GLRA1, THRB) were found among our age related 
sites. We identified an additional 10 regions after Benjamini-Hochberg cor-
rection where the methylation levels depended on the interaction between 
obesity and age and analyzed them separately in the lean and obese group 
(paper I, Figure 1). In eight (ADCY1, CXADR, KCNS2, LMX1B, FNDC4, 
NAT8L, AQPEP and FBLIM1) of the ten cases the obese subjects displayed 
decreased methylation with age when compared to their lean counterparts, 
whereas the opposite was true for the remaining two sites (RNH1 and 
NNAT). The gene “Long intergenic non coding RNA 304”-LINC00304 
(Illumina ID: cg03819692, position chr16:87753140, located 11 bp from the 
transcription start site) displayed higher methylation (p-value = 0.0030, ad-
justed with Benjamini-Hochberg, FDR < 0.001) in the obese individuals 
compared to the lean, independent of age (paper I, Figure 2a). No other gene 
was found to be differentially methylated between obese and lean individu-
als. Furthermore, no differential methylation level could be detected between 
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the normal and risk allele carriers of the FTO gene. The average methylation 
level of all probes on the array was calculated. This value was fitted to a 
linear model and investigated for correlation with age and obesity. A trend 
for the average genome-wide methylation levels to increase (p-value = 0.10) 
with age was observed. No differential global methylation level was detected 
between the obese and lean individuals (p-value > 0.25). It is important to 
stress that the genome-wide average methylation does not reflect the global 
methylation, which includes intergenic sites that are underrepresented on the 
array. 

Results of genome wide methylation analysis 
investigating the effect of bariatric surgery on 
methylation profile 
The mean genome-wide Euclidean distance between promoters of obese 
patients at six month after RYGB surgery and controls was significantly 
shorter, as compared to that at baseline (p-value < 0.001). An additional 
analysis demonstrated that at six month after RYGB surgery, the DNA 
methylation of 51 promoters was significantly different from corresponding 
presurgery values (28 were upregulated and 23 were downregulated, p-value 
< 0.05 for all promoters, Bonferroni corrected). The mean DNA methylation 
of these 51 promoters was also more similar after surgery to that of controls, 
as compared to that at baseline (p-value < 0.0001). Importantly, when con-
trolling for the RYGB surgery-induced drop in weight (-24% of respective 
baseline value) and fasting plasma glucose concentrations (-16% of respec-
tive baseline value), the DNA methylation of only one out of 51 promoters 
(~2%) remained significant at the postsurgery time point. An enrichment 
analysis of GO-terms biological processes using DAVID functional analysis 
revealed an enrichment for genes involved in metabolic processes 
(GO:0008152) (FDR < 0.05).  

Results from sleep deprivation experiment 
As mentioned, paper III and IV are based on the same sleep deprivation ex-
periment. Sleep characteristics indicate a full night’s sleep in the control 
condition (total sleep time = 442±6 min, wake = 30±6 min, sleep stage 1 = 
5±1 min, sleep stage 2 = 219 ± 11 min, slow-wave sleep = 115±6 min, REM 
sleep = 103±8min, sleep efficiency = 92±1%). Plasma concentration of CRP 
was less than 6 mg/ml indicating an absence of infection and white blood 
cell counts were normal (5.2±0.7).  
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Results from portion size, hunger and ghrelin measurements 
The portion size was larger after TSD compared to sleep both in the fasted 
state where there was an increase of 11% (p-value = 0.07) and in the sated 
state where the increase was 6% (p-value = 0.01). The effect was most prom-
inent when considering the most liked items where there was an increase of 
14% (p-value = 0.02) in the fasted state and 12% (p-value < 0.01) in the 
fasted state. Moreover, in contrast to the portion size pattern before break-
fast, subjects selected larger portions of snack but not meal items in their 
TSD condition, 14% (p-value = 0.02). An increase in portion size was ac-
companied with an increase in hunger rating after TSD in both before and 
after breakfast (24%, p-value < 0.01 and 15%, p-value = 0.04 respectively). 
As expected, ghrelin concentrations were also higher in the TSD condition, 
13% (p-value = 0.04). 

Genome wide methylation analysis in sleep deprivation 
We discovered 269 probes that were differentially methylated in sleep vs 
sleep deprivation (Supplementary table S1). Figure 2a (paper IV) depicts the 
quota between observed and expected number of significant probes correlat-
ed to TSD and N/L. A nominal p-value threshold of 10^-2.5 was decided 
based on this figure. This corresponded to a maximum ratio of 1.22 between 
observed and expected number of hits. Consensus path (64) enrichment 
analysis with all analyzed probes as background revealed two pathways to be 
enriched among the DMR. The enriched pathways were the NOTCH 
(NOTCH4, RING1, HES1, CCND1, MAML1, FDR<0.05) and WNT 
(CCND1, FZD8, FRAT1, FZD6, WNT4, FDR<0.05, source: Wikipathways 
(71)) signaling pathways. The 269 probes were mainly situated in high den-
sity CpG regions (see figure 2b, paper IV). The opposite was true for N/L 
ratio correlated probes. Both TSD and N/L ratio linked probes displayed a 
different distribution than the background (chi-squared test, p-value < 0.05).  
Many probes shared its closest gene with other probes and 119 (44%) of the 
genes in supplementary table S1 (paper IV) had more than one significant 
probe. Even if no single probe displayed a correlation with expression large 
enough to pass Benjamini-Hochberg correction, there was an enrichment of 
low p-values. 26 of the 237 probes with available expression data showed a 
correlation between methylation and expression (p-value < 0.05) compared 
to 11.85 which would be expected by chance (binomial p-value < 0.001). We 
directed an analysis of methylation-methylation correlations for the 100 
high-CpG promoter probes (within 2000 base-pairs upstream of TSS) and 
this is represented by the correlation plot in figure 3 (paper IV). The probes 
connected to the enriched pathways (NOTCH and WNT signaling) and are 
highlighted in this plot. In the NOTCH pathway, three of the probes (RING1, 
MAML1, HES1) were located in the upstream region of their gene and two 
(NOTCH4, CCND1) were located downstream. The two downstream genes 
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correlated well with the methylation of the upstream probes (R = -0.38, sd = 
0.06 across all comparisons). Two of the WNT probes are next to each other 
in the correlation plot and a correlation test between these two and CCND1, 
WNT4, and FZD6, showed a correlation trend where the p-value for all three 
comparisons were less than 0.1. This indicated that there is a correlation 
between the upstream and downstream probes in both the WNT and the 
NOTCH category. One of the 269 probes was situated 69 base-pairs up-
stream of the ING5-gene in a high density CpG region, a gene that was also 
shown to be differentially expressed in total sleep deprivation by Möller-
Levet et. al. (68). They also reported differential expression of 121 other 
genes which corresponds to 1631 probes on the Illumina 450K chip. In an 
identical paired analysis coupled with comparison of technical replicates as 
used initially these probes were analyzed specifically and 4 methylation 
probes proved significant under Benjamini-Hochberg correction in this tar-
geted analysis (see figure 4, paper IV).  
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Conclusions 

In paper I we found one loci where there was differential methylation be-
tween obese and lean individuals. The novel epigenetic marker is in the 
proximity of the gene LINC00304. The exact function of LINC00304 is un-
known but long intergenic non-coding RNA’s are often associated with tran-
scriptional regulation. There was a considerable age-dependency in the data 
and we determined that 135 genomic sites are subject to differential methyla-
tion during aging and that this process is influenced by weight in a subset of 
loci. Genes involved in neuroactive, ligand-receptor interaction are 
overrepresented among the age-related probes (n=125). We identified 10 
sites with an interaction effect between obesity and aging, one of which is 
LMX1B, a gene recently identified as an obesity susceptibility loci (24). In-
triguingly, the gene is known to be involved in both obesity and age realated 
diseases (72). The transcription factor LMX1B, is involved in the develop-
ment and maintenance of dopaminergic neurons, and is associated with Park-
inson's disease (72). Another age related DMR reported in paper I is situated 
close to the NNAT gene which is associated to obesity (73). The NNAT is 
regulated by leptin and is an example of what is considered an imprinted 
gene. Our results regarding this gene could therefore reflect a differance in 
infancy between subjects. Imprinting is a potential confounder in cross sec-
tional epigenetic studies and in paper II and IV we limit this by using paired 
samples. In paper II we use a similar number of subjects (24 in paper II vs 47 
in paper I) but were nevertheless able to identify 51 differentially methylated 
regions. Moreover, when comparing the genome wide distance between pre 
and post surgery to controls, we demonstrate that RYGB decreases the ge-
nome wide distance between promoter-specific DNA methylation in whole 
blood. The shortened distance was most pronounced among the 51 DMR’s 
but was also detected on a genome wide level. This indicates that a majority 
of the methylation changes in the obese patients 6-months after surgery was 
related to their shared conditions, i.e. RYGB and subsequent weight loss. As 
one might expect, metabolic processes were enriched among genes with 
promoter probes whose DNA methylation was significantly changed at 6 
month after RYGB surgery. Several of these might account for some meta-
bolic and clinical benefits that are typically observed. For instance, INCA1, 
whose methylation was about 12% lower at 6 month after RYGB than it had 
been at baseline, may have an anti-cancer effect due to its anti-proliferative 
properties (74). As discussed previously, one of the factors that may cause 
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obesity is sleep deprivation induced hyperphagia (11). In paper III we 
demonstrate that total sleep deprivation (TSD) increases both feelings of 
hunger and plasma ghrelin levels the following morning.  This translated into 
increased portion size regardless of the type of food offered before breakfast. 
However, postprandial portion sizes were only larger in the snack category. 
The fact that sleep deprivation increased portion size in the fasted state irre-
spective of the type of food offered suggests that overeating following sleep 
loss may represent a homeostatic compensatory response. This homeostatic 
response is likely produced to compensate for the energy deficits that result 
from sleep deprivation (9, 75). Another factor may be the increase of leptin 
associated with TSD (12) which together with increases in ghrelin plasma 
concentrations may represent a hedonic response involving appetite regula-
tion. Epigenetic responses to total sleep deprivation has previously been 
observed for specific genes e.g. CLOCK, PER1 and BMAL1 (21, 23, 27) and 
in paper IV we demonstrate that TSD induces significant changes in the epi-
genetic profile in blood, which are partly independent from the ratio of neu-
trophils over leukocytes (N/L ratio). CpG sites relating to 269 different 
genes were found to be differentially methylated after TSD. One of the de-
tected CpG sites belongs to the gene ING5 and has previously been shown to 
be differentially expressed as a result of TSD (68). ING5 is a tumor repressor 
gene that is acting by acetylating p53 in response to DNA damage (76). Nat-
urally, disruption of ING5 has been linked to several types of cancers, par-
ticularly gastric cancers (77, 78). A directed analysis based on previously 
known differential expression in sleep deprivation revealed additional three 
genes (CIT, USP46, and FGFR1OP2) where methylation affected by TSD in 
humans. In mice, the USP46 is responsible for the phenotypes found in the 
CS mouse strain. CS mice exhibit several distinct phenotypes related to cir-
cadian behavioral rhythms and tail mobility, the latter is a phenotype used to 
measure depression-like behavior in mice (79). SNP analysis in a Japanese 
population confirmed USP46 as a gene linked to major depressive disorder 
(MDD) in humans (80). CpG sites within genes of the NOTCH and WNT 
signaling pathway appeared to be enriched after sleep deprivation. NOTCH 
signaling has been especially associated to embryonic development and cell 
fate (81). Disruptions in cell fate determining mechanisms may lead to vari-
ous cancer forms. The WNT pathway plays a role in cancerogenesis as well. 
Stem cell cancer growth can be stopped by inhibiting key features of notch 
and WNT signaling (82). In line with our results, Both NOTCH and WNT 
signaling pathways have earlier been linked to sleep in different ways. 
NOTCH signaling modulates sleep homeostasis in Drosophila by regulating 
the expression of the Bunched gene, which modulates the sensitivity to sleep 
loss (83). The association between NOTCH and sleep homeostasis was hith-
erto mainly demonstrated in nerve cells but the DNA methylation profile 
show a strong overlap between blood and brain (84, 85), which made it rea-
sonable to perform our studies whole blood. The results of these studies in-
dicate a bidirectional association between sleep, the immune system and 
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inflammatory markers (86, 87). This is likely triggered by inflammatory 
cytokines in a manner similar to those found in depressed or alcoholic pa-
tients (86). Based on the obtained results we hypothesize that TSD depend-
ent changes in blood cell composition are reflected in N/L dependent shifts 
in the methylation profile, which are especially located in low-CpG regions. 
In contrast to that, N/L ratio independent methylation changes induced by 
TSD were detected high density CpG regions. Several limitations apply in 
the genome wide methylation experiments. In paper I the size and specificity 
of the sample is the major concern coupled with the fact that it is a cross-
sectional study which is sensitive to imprinting events. Moreover the rela-
tively small changes reported is cause for caution since technical replicated 
in 5% of the probes display a difference of 13.6% (88) and the biggest 
change is that of SERHL which changes -12% between the oldest and the 
youngest subject. In paper II and IV we attempt to alleviate problem with 
cross-sectional studies by using paired samples. In paper IV we also take 
monocyte subpopulations into account. All methylation studies and meas-
urements were performed in whole blood and extrapolation of these results 
on methylation patterns in other tissues should be done with caution. Despite 
our limitations we are able to provide new evidence of the link between obe-
sity and chronobiology. However, considerable effort is required to unravel 
the complexity of these epigenetic, hedonic, homeostatic, and environment 
interactions and to evaluate their potential reversibility.                
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Perspectives 

The aim of this thesis was to investigate the complex nature of the interplay 
between sleep and obesity. In paper III we present a causal link between 
sleep deprivation and obesity via increased portion sizes. It is clear from the 
results in paper I that not only is DNA methylation largely determined based 
on other factors i.e. age, but these different phenotypes interact with each 
other to form progressive methylation patterns that were discernible between 
old and young obese subjects. We were able to define epigenetic marks con-
nected with both obesity and total sleep deprivation in papers II and IV. This 
means that if there is an epigenetic link between sleep and obesity, the direc-
tion and mechanism of it remains to be elucidated. Nevertheless, it is likely 
that at least some of the epigenetic dysregulation preceding or succeeding 
obesity can be affected by novel treatment options. In rats for example, pan-
creatic β-cell deficits and impaired glucose tolerance in small weight off-
spring is partially ameliorated by improved postnatal lactation (89). Other 
researchers are investigating the possibility of targeting epigenetic mecha-
nism with small molecule drugs (90). Identifying the best epigenetic targets 
and developing the best therapeutic strategies are topics of great interest. So 
far, DNA methyltransferases and demethylases have been successfully used 
in cancer therapy (91). These drugs target the entire methylation machinery 
in an attempt to modulate total cell transcription but in the future it might be 
able to target specific loci. New drugs for specific modulation have been 
slow to materialize, however, largely because epigenetic mechanisms and 
their role in gene expression are more complex than originally thought. Re-
gardless of treatment options, DNA methylation could become useful as a 
biomarker for sleep deprivation. Various professionals such as pilots and 
truck drivers could benefit from being able to determine objectively if they 
have had enough sleep. Cortisol and melatonin levels are already viable for 
this purpose although cortisol suffers from the fact that it responds different-
ly to acute and chronic sleep deprivation (92).    
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Svensk sammanfattning 

Den mest välkända mekanismen för epigenetisk reglering är DNA-
metylering och flera studier har undersökt kopplingen mellan metylering och 
overvikt. I artikel I så analyserade vi metyleringsprofilen hos 46 försöksper-
soner med microarrayer (Illumina 27K). Effekten på försökspersonernas 
DNA metylering studerades baserat på fetma och ålder. Artikel I visar att 
övervikt och fetma påverkar åldersberoende metyleringsmönster, vilket ger 
en möjlig molekylär länk mellan åldrande och övervikt. Detta kan visa på 
biomarkörer som kan användas för att förstå mekanismerna bakom åldrande, 
övervikt, och relaterade sjukdomar. I artikel II använde vi en annan microar-
ray (Illumina 450K) för att undersöka effekten av gastrisk bypass, och påföl-
jande viktnedgång, på metylering och relaterade detta till metyleringen hos 
friska frivilliga kontroller. Vi lyckades definera 115 ställen i genomet där 
metyleringen hade ändrats efter magsäcksoperation och 41 av dessa visade 
sig korrelera med BMI. Bland dessa så var gener inblandade i metaboliska 
processer överrepresenterade (n=36, p<0.05). Dessutom var förändringarna 
sådana att patienterna var mer lika kontrollerna efter operationen (p<0.0001). 
Våra resultat från artikel II kan lägga en grund för framtida studier på effek-
ter av magsäcksoperationer och då hjälpa till att klarlägga de molekylära 
mekanismerna. Sömnbrist är starkt korrelerat med övervikt samtidigt som en 
av problemen med svår övervikt är obstruktiv sömnapné. Artikel III visar 
hur sömnbrist ökar portionsstorleken på ett sätt som drivs av bade homeosta-
tiska och hedoniska faktorer. Självvald portionsstorlek efter sömnbrist verkar 
bero på bade individens hunger och vilken typ av mat som erbjuds. I artikel 
IV så undersökte vi hur sömndepravering påverkar metyleringsprofilen I 
helblod I ssamma individer som I artikel IV. Artikeln visar att sömndeprave-
ring påverkar DNA metylering på ett sätt som bade beror på och är obero-
ende av blodcellernas subpopulationer. Analysen visade an ING5, tillsam-
mans med 269 andra gener var differentiellt metylerade vid sömnbrist. Detta 
antyder att DNA metylering är en cirkadisk process i människor.       
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