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Sparsity Optimization in Design of
Multidimensional Filter Networks

Mats Andesson∗ Oleg Burdakov†

Hans Knutsson∗ Spartak Zikrin†

Abstract Filter networks are used as a powerful tool used for reducing the image processing time
and maintaining high image quality. They are composed of sparse sub-filters whose high sparsity ensures
fast image processing. The filter network design is related to solving a sparse optimization problem
where a cardinality constraint bounds above the sparsity level. In the case of sequentially connected
sub-filters, which is the simplest network structure of those considered in this paper, a cardinality-
constrained multilinear least-squares (MLLS) problem is to be solved. Even when disregarding the
cardinality constraint, the MLLS is typically a large-scale problem characterized by a large number of
local minimizers, each of which is singular and non-isolated. The cardinality constraint makes the
problem even more difficult to solve.

An approach for approximately solving the cardinality-constrained MLLS problem is presented. It is
then applied to solving a bi-criteria optimization problem in which both the time and quality of image
processing are optimized. The developed approach is extended to designing filter networks of a more
general structure. Its efficiency is demonstrated by designing certain 2D and 3D filter networks. It is also
compared with the existing approaches.

Keywords: Sparse optimization; Cardinality Constraint; Multicriteria Optimization; Multilinear
Least-Squares Problem; Filter networks; Medical imaging.

1 Introduction

Linear filtering is widely used in solving applied problems. We consider multidimensional finite impulse
response (FIR) filters employed in noise reduction, segmentation and image registration for medical image
analysis (Hemmendorff et al. 2002; Estepar 2007; Westin et al. 2001). The design of such filters is aimed
at, on one hand, providing a sufficiently high image quality and robustness of image processing and, on
the other hand, reducing the image processing time. The quality and processing time are two important
characteristics in filtering. From the viewpoint of the multicriteria optimization (Ehrgott 2005; Mietinen
1999), they can be considered as two conflicting objectives, because any improvement in the quality
requires a longer processing time.

A FIR filter is represented in the spatial domain by a limited-size kernel defined by a finite number
of coefficients. They are the filter parameters chosen to meet certain requirements. So-called dense filters
are characterized by a complete set of coefficients. They ensure the best approximation to a desired
frequency response, and hence image quality. The processing time is proportional to the number of
operations in the convolution of an image with the kernel, which in turn is proportional to the number
of non-zero coefficients. Multidimensional images are typical for medical image applications, where the
number of filter coefficients grows exponentially with the image dimension, which dramatically increases
the processing time in three-dimensional (3D) and four-dimensional (4D) cases. The processing time
can be reduced by means of sparse filters, i.e., by decreasing the number of non-zero coefficients, but this
increases the approximation error and degrades the image quality.
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The development of design techniques for sparse FIR filters has been active in the past several years in
the signal processing society, see, e.g., Baran et al. (2010), Lu and Hinamoto (2011), Rusu and Dumitrescu
(2012). However it was mainly limited to single 1D and 2D filters. Here we consider a much more difficult
problem of designing filter networks.

An effective approach aimed at reducing the image processing time, while maintaining its reasonably
high quality, was proposed in Andersson et al. (1999) and Knutsson et al. (1999). Instead of traditionally
used dense filter, it is based on using a network of sparse filters with kernels of smaller size. They are
referred to as sub-filters.

Filter network can be represented as a directed acyclic graph, whose nodes stand for sub-filters
(Svensson et al., 2005b). Sequentially connected sub-filters act as a single dense filter defined by their
convolution in the spatial domain. The key property here is the sparsity, because if to compare a single
dense filter and a filter network that provide equally good approximation of the same desired frequency
response, the latter has far fewer non-zero coefficients.

In medical image analysis, several filters are usually required to process a signal, with each of them
approximating a certain desired frequency response. An important feature of filter networks is that they
can be efficiently used instead of such sets of filters (Knutsson et al., 1999).

The design of filter networks is a nontrivial procedure comprised of the following stages.

1. Choose a network structure, i.e., a number of sub-filters and their connection.

2. Choose a sparsity pattern, i.e., a total number of non-zero coefficients and their placement for each
sub-filter.

3. Choose values of the coefficients.

The choices to be made at these stages are related to solving some optimization problems. The
multi-extremal and multi-criterial nature of the problems makes it difficult, and in the most cases practi-
cally impossible, to solve them using conventional optimization methods. For this reason, the successful
network design was restricted to special types of filters, for instance those used for analyzing local struc-
tures (Svensson et al. 2005a; George et al. 2008; Norell et al. 2011). The lack of efficient optimization
approaches was a bottleneck for the further progress in filter network design.

So far, the decisions on a network structure and its sparsity pattern were mainly based on the
individual expertise of specialists in filtering and their intuition. Given a sparsity pattern, the choice of
the coefficients at stage 3 is related to solving a weighted nonlinear least-squares problem (Andersson
et al. 1999; Svensson et al. 2005b; Norell et al. 2011). Even in the case of sequentially connected filters,
the resulting problem is of a multilinear least-squares (MLLS) type, which is a non-convex large-scale
optimization problem. This is a very difficult global optimization problem that may have a large number
of local minima, and each of them is singular and non-isolated. In Andersson et al. (2012), we developed
a global search strategy for approximately solving the MLLS problem.

Here we develop practically efficient approaches for the problem of finding an optimal design at stages
2 and 3. This problem is related to sparse optimization, where the task is to find a solution of a low
cardinality, which is the number of non-zero coefficients. Sparse optimization is an intensively developing
research area (Tropp and Wright 2010; Sun et al. 2013). It should be emphasized that, in general, sparse
optimization problems are NP-hard even in the case of a simple objective function like in the linear least-
squares (Muthukrishnan, 2005). Our problems are much more difficult because of the multi-extreme
nature of the objective functions. Therefore, any direct application of the existing sparse optimization
methods has practically no chance to find an acceptable approximate solution for stages 2 and 3.

Our approach is aimed at solving, with a practically acceptable accuracy, the cardinality-constrained
nonlinear least-squares problem associated with filter design. It exploits the special structure of the
objective function that allows for reducing the problem to a sequence of relatively easier cardinality-
constrained linear least-squares problems. An important feature of this paper is that the objective
function here is, in contrast to the most of the publications on sparse optimization, non-convex and
multi-extremal.

We also develop an approach for approximately solving the bi-criteria optimization problem (Ehrgott
2005; Mietinen 1999), where the approximation error and the number of non-zero coefficients are to be
minimized. The resulting approximations of Pareto optimal solutions enable the practitioners to find at
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stages 2 and 3 a trade-off between the image processing quality and the processing time. Our approach
is based on the aforementioned techniques for solving the cardinality-constrained nonlinear least-squares
problem.

The solution obtained for stages 2 and 3 allows for improving the choice of the network structure
made at stage 1. This is done by removing the redundant connections between sub-filters, and even some
of the sub-filters.

Our paper is organized as follows. In Sect. 2, we develop methods for finding sparse solution to the
MLLS problem related to the design of sequential filter networks. These methods are extended further
in Sect. 3 to the design of networks of a more general structure. Numerical results in design of two- and
three-dimensional filter networks are presented in Sect. 4. They indicate the efficiency of our approach.
Sect. 5 includes some conclusions and discussion of future work.

2 Design of sequentially connected sub-filters

Consider the case of L sequentially connected filters (Fig. 1) and the optimization problems related to
the design of such filter networks.

Figure 1: Sequential connection of L sub-filters

If L = 1, the kernel of a single filter of dimensionality d is determined by a finite number of coefficients
c = [c1, . . . , cl] ∈ Cl located in the discrete spatial positions {ξk}lk=1, where ξk ∈ Zd (Granlund and
Knutsson 1995; Bigun 2006). For a frequency u ∈ Rd, the output of the filter is defined by the Fourier
transform

F (u) =

l∑
k=1

ck exp(−iuT ξk), F : Rd → C,

which depends linearly on c.
In the FIR filter design problem (Dudgeon and Mersereau, 1990), it is typical to sample the Fourier

domain in m points u1, . . . , um and split filter coefficients into real and imaginary parts. This allows for
introducing the real-valued x ∈ Rn and A ∈ Rm×n such that their product Ax represents the frequency
response of the filter in the sampled points. Alternatively, one can impose symmetry constraints, when
either real or imaginary part of c is used. In either case, the sparse x defines a sparse filter, and the
number of its non-zero components is proportional to the non-zero filter coefficients.

Consider the more general case when L ≥ 1. Let xi ∈ Rni and Ai ∈ Rm×ni denote the individual
characteristics of sub-filter i, for i = 1, . . . , L. By the convolution theorem (Bracewell and Bracewell,
1986), the frequency response of the sequentially connected sub-filters is defined by the multilinear oper-
ator

A(x) ≡(A1x1) ◦ (A2x2) · · · ◦ (ALxL), (1)

where x = [xT1 , . . . , x
T
L]T ∈ Rn, n = n1 + · · · + nL and ◦ denotes the component-wise vector product.

Given a desired frequency response b ∈ Rm, the design of a filter network at stages 2 and 3 requires
seeking for a sparse approximation:

Find sparse x such that b ≈ A(x). (2)

In design of filters of dimensionality d, the most typical values are m ∈ [10d, 40d], L ∈ [2, 10], ni ∈ [3d, 15d].
We shall refer to xi as segment i of x. The number of non-zero components in x and xi will be called
their sparsity level.
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In the following subsections, we formulate (2) as a cardinality-constrained optimization problem and
present our approaches for solving such problems.

2.1 Cardinality-constrained MLLS

Suppose, the total number of non-zero components in the network is bounded above by a given value k,
with k ∈ [5d, 60d] being the most typical choice. Then we turn (2) into the following sparse optimization
problem, in which the Euclidean norm of the approximation error is minimized subject to the cardinality
constraint:

min
‖x‖0≤k

‖b−A(x)‖2 ≡ f(x). (3)

Here ‖x‖0 stands for the number of non-zero components of x. In this paper, we consider the standard
Euclidean norm of the approximation error for simplicity only, bearing in mind that our reasoning remains
valid for any weighted Euclidean norm. Such weighted norms are usually used in practice.

If to disregard in (3) the cardinality constraint ‖x‖0 ≤ k, the resulting unconstrained optimization
problem is an MLLS problem. It is a non-convex, typically large-scale, optimization problem with a large
number of local minimizers. Each of the local minimizers is singular and non-isolated.

If L = 1, problem (3) is a sparse linear least-squares problem, known also as compressed sensing and
compressive sampling (Tropp and Wright, 2010). Since it is NP-hard (Muthukrishnan, 2005), the more
general cardinality-constrained MLLS problem (3) with L ≥ 1 is also NP-hard.

Our approach is based on the following observation. Given a feasible solution x for (3), consider
the problem of finding a better sparsity pattern and values of the components for segment i, when the
components of the other segments in x are fixed. Denoting ki = ‖xi‖0 for the given xi, we can formulate
it as the following cardinality-constrained linear least-squares problem for the new xi ∈ Rni

min
‖xi‖0≤ki

‖b−DiAixi‖2, (4)

where
Di = diag ((A1x1) ◦ . . . ◦ (Ai−1xi−1) ◦ (Ai+1xi+1) ◦ . . . ◦ (ALxL)) .

From the theoretical point of view, problem (4) is still NP-hard. But in practice, the greedy pursuit
algorithms, such as the orthogonal matching pursuit (OMP) and the orthogonal least-squares pursuit
(OLS) (Chen et al. 1989; Pati et al. 1993) are able to produce reasonably good approximate solutions.
They successively extend the basis composed of already selected columns of the matrix DiAi. At each
iteration, a new basis element is selected of the remaining columns of this matrix following a greedy prin-
ciple according to which its addition to the basis should decrease in the best way the approximation error
in (4). We shall refer to the outlined algorithm of approximately solving problem (4) as greedy(x, i, ki).
Its implementation could involve OMP or OLS. Algorithm greedy(x, i, ki) changes the segment xi of
the vector x to an approximate solution of (4) and returns the resulting vector x.

It is necessary to mention some other sparse optimization algorithms originally proposed for recon-
structing sparse solution of underdetermined linear systems, namely, those based on convex relaxation of
the cardinality constraint, such as gpsr (Figueiredo et al., 2007), spgl1 (van den Berg and Friedlander,
2009), l1 ls (Kim et al., 2007), the l1-magic package (Candès and Romberg, 2005), SolveLasso in the
SparseLab toolbox (Donoho et al., 2007) and iterative thresholding algorithms, such as IHT (Blumensath
and Davies, 2009), AIHT (Blumensath, 2012). They were developed mainly for solving compressed
sensing problems in which the number of columns is vastly larger than the number of rows, while in our
problem (4) ni is a few times less than m. In our numerical experiments, these algorithms were often less
successful in solving (4) in terms of the approximation accuracy than the fairly fast greedy algorithms.

Our approach for solving problem (3) leans upon the above mentioned observation. The approach
consists in using approximate solution of (4) for decreasing the current value of the objective function f(x).
One of the ways is to improve the sparsity pattern of each segment of x. The other way is to try to decrease
f(x) by decreasing the number of non-zero components in one segment and increasing accordingly the
number of non-zero components in the rest of segments. In the both cases, the corresponding component
values of each segment of x are obtained by approximately minimizing f(x).
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This general approach can be implemented in various ways. One of such implementations is, first,
outlined and then formally presented below by our cardinality-constrained alternating least-squares al-
gorithm ccals(x).

In ccals(x), x is a given starting feasible solution. The algorithm returns an approximate solution
of (3) whose cardinality does not exceed k. Its each major iteration consists of the two phases described
below. The algorithm iterates over these phases until no improvement is achieved. In this process, it
successively generates candidate solutions xc and stores in x the best of them, i.e. the one whose objective
function value is currently the lowest.

In phase one, the sparsity pattern of each segment i is individually improved using greedy(x, i, ki)
for alternating index i. In this phase, the number of non-zero components of each segment of x remains
the same, while their locations and values may change.

In any of the phases, as soon as a new sparsity pattern is obtained, the candidate solution xc is further
refined by means of the described below algorithm als(xc). It keeps the sparsity pattern unchanged. This
algorithm implements a local optimization strategy called alternating least squares, known also as block-
coordinate relaxation or nonlinear Gauss-Seidel algorithm (Ortega and Rheinboldt, 2000). Algorithm
als(xc) exploits the special structure of the objective function in the MLLS problem in the following
way. It solves, for alternating index j, the linear least-squares problem that consists in minimizing f(xc)
over the segment xcj while keeping fixed the rest of the segments of xc. Whenever xc provides in this
process an improvement, which means f(xc) < f(x), xc is stored in x.

In phase two, we try to improve the currently best approximate solution of (3) by redistributing the
sparsity level between the segments. This is done in two loops running over the segments. In the outer
loop, the sparsity level of segment i is decreased by one, and the corresponding sparsity is obtained by
means of greedy(x, i, ki−1). The resulting temporary solution xt is then refined by als and used in the
inner loop. The inner loop iterates over the segments j 6= i. At each inner iteration, greedy(xt, j, kj +1)
is used with the aim to improve the temporary solution by increasing by one the sparsity level of segment
j. The resulting candidate solution xc is then refined using als as described above.

Consider the following alternative ways of implementing our approach. The outlined implementation
can be extended to the case when one or more non-zero components of one segment are reallocated at a
time in the other segments. This would make the new implementation more computationally demanding,
but at the same time, this would have more chances to improve the objective function in (3), which is
essentially the filter approximation quality. Another alternative is to improve the approximation for the
new sparsity pattern by solving the corresponding MLLS problem using either the global search approach
developed in Andersson et al. (2012) or by randomly generating starting points and refining each of them
by als.

In the presentation of our approach, we use a specific local search algorithm, als, to minimize
‖b − A(x)‖2 for a given sparsity pattern. It should be underlined that any other appropriate local
search, like the Levenberg-Marquardt algorithm (Nocedal and Wright, 2006), can be used instead of
als. Similarly, problem (4) can be solved not necessary by greedy algorithms. The choice of the specific
algorithms depends of the network structure and the ideal frequency response to be approximated. For the
problem instances considered in this paper, the als and greedy algorithms were the most appropriate.

6



Algorithm CCALS(x)
improvement← true
f ← f(x)
while improvement

// phase 1:
while improvement

improvement← false
for i = 1, . . . , L

ki ← ‖xi‖0
if ki > 0

xc ← greedy(x, i, ki)
xc ← als(xc)
if f(xc) < f

improvement← true
x← xc, f ← f(xc)

end(for)
end(while)
// phase 2:
improvement′ ← true
while improvement′

improvement′ ← false
for i = 1, . . . , L

ki ← ‖xi‖0
if ki − 1 > 0

xt ← greedy(x, i, ki − 1)
xt ← als(xt)
for j = 1, . . . , i− 1, i+ 1, . . . , L

kj ← ‖xtj‖0
if kj + 1 ≤ nj

xc ← greedy(xt, j, kj + 1)
xc ← als(xc)
if f(xc) < f

improvement′ ← true
x← xc, f ← f(xc)

end(for)
end(for)
if improvement′

improvement← true
end(while)

end(while)

2.2 Bi-criteria optimization problem

The optimization problems related to the design of a filter network was so far considered for a given
sparsity level of x. In this subsection, the sparsity level of x is allowed to vary.

Consider the following bi-criteria optimization problem:

min
x∈Rn

{f(x), ‖x‖0}, (5)

in which both the approximation error f(x) and the sparsity level ‖x‖0 are minimized.
The solution of problem (5) is a, so-called, Pareto set (Mietinen 1999; Ehrgott 2005). Point x∗ ∈ Rn

is called Pareto optimal if there is no other point x′ ∈ Rn which would have a better objective function
value in one of the two criteria and not worse in the other. In our case, the Pareto set is composed of the
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pairs {f(x∗), ‖x∗‖0} computed for all Pareto optimal points x∗. Note that the value of f(x∗) is obviously
monotonically decreasing with the increasing value of ‖x∗‖0.

In the simplest case, when the network consists of a single filter (L = 1) and f(x) = ‖b− Ax‖2, the
Pareto set can be efficiently approximated by the algorithms like OMP and OLS. At each iteration of
these algorithms the sparsity level is increased by one.

We present below an approach aimed at approximately solving problem (5) for L ≥ 1. Note that, in
contrast to L = 1, in the case of L > 1 there is practically no chance to find an exact minimizer of f(x)
for fixed sparsity pattern. Our approach is implemented in Pareto Set Approximation algorithm psa(x).
The algorithm generates, for monotonically decreasing values of k, a sequence x(k) such that ‖x(k)‖0 = k,
and the set of pairs {fk, k}, where fk ≡ f(x(k)), approximates the Pareto set.

To construct a new approximation to the Pareto optimal solution of smaller cardinality, we try to
decrease in the best way the sparsity level of the recently constructed one. We temporarily store the
current solution x of cardinality k as xt and iterate over the segments. For segment i, its sparsity level
is decreased by δ using greedy(xt, ki − δ, i), and then the generated candidate solution xc is refined by
als. The best of the candidate solutions is further refined by ccals and constitutes an approximation
to the Pareto optimal solution of cardinality k − δ.

In general, it may happen, that the new approximate solution dominates one or more of those
already generated for larger cardinality. To preserve the monotonicity of the Pareto set, the new solution
substitutes for those dominated. The substituted solutions can be improved by refining the dominating
solution for the increasing cardinality.

Here the parameter δ is not specified. It can be either fixed or adjusted dynamically depending on the
relations between fk and fk+δ. For instance, a small relative change in the objective function indicates
that one can choose a larger value of δ without any significant deviation from the Pareto set. In principle,
it is possible to approximate a Pareto set using monotonically increasing values of k, but in our numerical
experiments the reverse order was more successful.

Algorithm PSA(x)
x← ccals(x)
K ← ‖x‖0, k ← K
x(k)← x
fk ← f(x)
while max{‖xi‖0} > δ

xt ← x, f ←∞
for i = 1, . . . , L

ki ← ‖xti‖0
if ki − δ > 0

xc ← greedy(xt, i, ki − δ)
xc ← als(xc)
if f(xc) < f

x← xc, f ← f(xc)
end(for)
x← ccals(x)
x(k)← x, fk ← f(x)

end(while)
while k + δ ≤ K

if fk < fk+δ
x(k + δ)← x(k), fk+δ ← fk

k ← k + δ
end(while)

The developed approaches can be extended to design of a more general class of filter networks, where
sub-filters are connected not only sequentially, but also in parallel.
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3 Design of layered filter networks

Consider filter networks of acyclic structure in which sub-filters are grouped into layers according to the
following principle (Svensson et al., 2005b). Arcs that begin in a sub-filter of one layer can end only in
sub-filters of the lower layers, which means that there are no direct connections between the sub-filters
of the same layer. In the special case, when layered network is composed of sequentially connected
sub-filters, each layer consists of only one sub-filter.

Consider the frequency response of layered filter networks. It can be presented as a sum of terms of
the type (1), with the number of terms being equal to the number of all directed paths in the acyclic
graph from the starting to the terminal node. If sub-filters i and j belong to the same layer then, due
to the layered structure, Aixi and Ajxj never appear in the same term. This means that, for any given
layer, if the coefficients of the sub-filters in the other layers are fixed, the network frequency response
depends linearly on the coefficients of the sub-filters in the given layer. We will exploit this feature of
layered filter networks.

Figure 2: Filter network of parallel two-layers structure

For illustration, consider a simple filter network of a parallel structure with two layers (see Fig. 2).
Here the first layer is composed of the sub-filters F11 and F12 and the second is composed of the sub-filters
F21 and F22. For more sophisticated layered filter networks, see, e.g., Svensson et al. (2005a) and George
et al. (2008). Denote the individual characteristics of sub-filter Fij , i, j = 1, 2, by Aij ∈ Rm×nij and
xij ∈ Rnij . Then the error of approximating the desired frequency response b takes the form

f(x) = ‖b− (A11x11) ◦ (A21x21)− (A12x12) ◦ (A22x22)‖2, (6)

where x =
[
xT11, x

T
21, x

T
12, x

T
22

]T ∈ Rn and n = n11 +n21 +n21 +n22. This approximation quality measure
is the objective function in the general cardinality-constrained nonlinear least-squares problem

min
‖x‖0≤k

f(x) (7)

associated with the design of filter networks.
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We will now show how to adapt algorithms ccals and psa to solving problems (7) and (5), respec-
tively, when the objective function f(x) is defined by (6). For this purpose, denote xi = [xTi1, x

T
i2]T ∈

Rni1+ni2 and Dij = diag(Asjxsj), where i, s ∈ {1, 2} and i 6= s. Let x be a given feasible solution for
(7) such that ‖xi‖0 = ki. Consider the problem of finding an optimal sparsity pattern and values for the
components of x that correspond to the sub-filters in layer i ∈ {1, 2}, provided that the values of the
other components are kept unchanged. It can be written as the following cardinality-constrained linear
least-squares problem in the new values of the corresponding components xi ∈ Rni :

min
‖xi‖0≤ki

‖b− [Di1Ai1, Di2Ai2]xi‖2 . (8)

Observe that this problem resembles to (4). This implies that the filter network on Fig. 2 can be
treated by algorithms ccals and psa as a sequential connection of two sub-filters, with each of them
corresponding to one layer.

It can be easily verified, that the problem of improving the sparsity of each layer in layered filter
networks of a general structure can be reduced to solving a cardinality-constrained linear least-squares
problem like (8). This is the key observation that permits adopting algorithms ccals and psa for the
purpose of designing layered filter networks.

4 Numerical Experiments

Our numerical experiments were related to designing 2D and 3D filters of the monomial class (Knutsson
et al., 2011), whose frequency response has the form

R(ρ)D(û),

where u = ρû and ρ = ‖u‖2. Here R(ρ) is the lognormal radial part (Knutsson 1982; Granlund and
Knutsson 1995) and D(û) is the directional part along the coordinate axes. Such filters are efficiently
used for estimating local structure in medical imaging. Depending on the properties of the frequency
response, we distinguish band-pass (BP) and high-pass (HP) filters of various order and direction.

The numerical experiments were performed on a Linux machine with a 6-core 2.27GHz Intel Xeon
E5520 processor. All algorithms were implemented in matlab R2011b and accelerated by parallelizing
the for-loops in ccals and greedy by means of the Matlab routine parfor. Our implementation of
algorithm greedy was based on OLS, because it was most often producing solutions of a higher accuracy
than OMP. We used procedure greed ols from the package sparsify by Blumensath (2011).

4.1 Sequential filter network

In the first series of experiments, we considered 3D filter networks composed of sequentially connected
sub-filters. Procedure ccals was applied to solving the cardinality-constrained MLLS problem (3). For
assessing the approximation quality, we used the relative error calculated by the formula

ε =
√
f(x)/‖b‖. (9)

In practice, the approximation is considered as acceptable when ε ≤ 0.2.
Our test problems were related to the following choice of parameters in problem (3):

m = 1330, L = 5, n = 217, N = (63, 63, 63, 14, 14), k = 20,

where N = (n1, . . . , nL).
We choose the initial solution in the way that all 20 non-zero components are distributed in the first

sub-filter. This means that the sparsity level of each of the other sub-filters is zero. Our convention here
is to view such sub-filters as if they are not involved in the actual signal processing by acting as identity
operators.

The initial location of the nonzero components in the first sub-filter and their values are found using
OLS. The resulting relative error denoted by ε0 is presented in Table 1. It refers to a single sparse
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Filter ε0 εsp εd ∆ε · 100% sub-filters sparsity

BP 0.22 0.06 0.21 72.39 [9,0,0,4,7]
HP 0.19 0.04 0.19 80.31 [9,0,4,0,7]
BP, 1:st order, x 0.08 0.04 0.07 45.69 [9,0,8,3,0]
HP, 1:st order, y 0.17 0.02 0.16 85.30 [1,9,4,6,0]
BP, 2:nd order, x2 0.30 0.08 0.26 73.91 [6,5,0,0,9]
BP, 2:nd order, xy 0.21 0.07 0.19 68.02 [8,3,9,0,0]
HP, 2:nd order, x2 0.26 0.09 0.23 63.66 [2,8,5,5,0]
HP, 2:nd order, xy 0.24 0.14 0.23 42.11 [16,2,2,0,0]

Table 1: Performance of algorithm CCALS in designing 3D filter networks composed of
sequentially connected sub-filters

filter used instead of a filter network. The sparsity of the filter network was then improved by means of
algorithm ccals. The resulting relative error is denoted by εsp. The relative improvement is calculated
by the formula

∆ε =
ε0 − εsp
ε0

.

The last column in Table 1 presents the distribution of non-zero components among the sub-filters. One
can see that not all of the sub-filters are used, typically, just a half of them. This information is of great
importance for improving the network structure. For reference, we report the approximation error εd for
the single dense filter whose number of components is equal to 63. It should be emphasized that this
dense filter has approximately three times more coefficients than in our networks. This is indicative of
the speed-up in the signal processing time provided by filter networks. The presented approximation
quality illustrates one more advantage of filter networks over single filters, even if they are dense.

4.2 Parallel filter network

The second series of experiments is related to designing a 2D filter network of the parallel structure
presented by Fig. 2. We compared our algorithm ccals with the genetic algorithm tailored by Langer
et al. (2005) to solving problem (7) with f(x) defined by (6). The choice of the parameters involved in
defining problem (7) was the following:

m = 1225, n = 968, nij = 242 for i, j = 1, 2 and k = 88.

The solution time reported by Langer (2004) was 48 hours on a computer with a 900 Mhz processor
on a SunFire 6800 server. Our algorithm ccals was run from 50 randomly generated starting points of
the given cardinality. It produced a better approximation of the same desired frequency response, and
this took only a few minutes of the CPU time. We mention here the CPU time just for information
because in our case a modern PC was used. The approximation error is presented in Table 2, where the
first three rows reproduce the results reported in Langer et al. (2005). In one of these rows, the low-rank
approximation corresponds to the case when all sub-filters in the network are one-dimensional. This
approach is based on the singular value decomposition (Andersson et al. 1999; Ansari and Hou 2012).
The expert filter design mentioned in the table corresponds to the sparsity pattern suggested by experts
in designing filter networks. Our results are reported in the last row.

The sparsity pattern produced by ccals is presented in Fig. 3. In total, 44 complex-valued coeffi-
cients are placed, which corresponds to 88 non-zero real-valued decision variables in (7). One can see that
only one of the two parallel branches of the network is used, which implies that a network of sequential
structure might be a better choice for designing the considered filter then the parallel structure in Fig. 2.
This illustrates one more important feature of our approach, namely, its ability to improve not only the
network sparsity pattern, but also its structure.

11



Method Normalized error

low-rank approximation 0.119
expert filter design 0.109
genetic algorithm by Langer et al. (2005) 0.054
CCALS 0.049

Table 2: Design of the 2D filter network of parallel structure

4.3 Pareto set approximation

In the third series of experiments, we evaluated the efficiency of algorithm psa aimed at approximating
the Pareto set in problem (5). It was applied in designing a 2D BP filter of order 1 along axis x with
m = 360. We considered several network structures with the following parameters presented in Table 3.

Structure Parameters

a) sequential L = 3, n = 30, N = (13, 13, 4)
b) sequential L = 2, n = 37, N = (25, 12)
c) parallel (Fig. 4) n = 56, nij = 13, i, j = 1, 2, n31 = 4
d) single n = 40

Table 3: List of network structures and their parameters

Recall that in algorithm psa, δ is the step of decreasing the sparsity level. We observed in practice
that for some, typically large, values of k the optimal objective function value changes slowly with k. In
such cases, larger values of the step δ look more suitable for uniformly approximating the Pareto set by
algorithm psa. Therefore, to make our implementation of this algorithm more time efficient, the value of
δ was chosen adaptively for each k. A proper value of δ was chosen in the process of running algorithm
greedy in the cycle for i of algorithm psa.

The results of Pareto set approximation in problem (5) are presented in Fig. 5 and Fig. 6 in the
form of a set of non-dominated pairs (k, εk), where εk is the relative error calculated by formula (9) for
the sparsity level equal to k.

Note that algorithm ccals is able to approximate the Pareto set if to run it for various values of
sparsity level. For each k, we run ccals from 30 randomly generated starting points and then choose
the best objective function value. In Fig. 5, these results are presented along with those produced by
algorithm psa for designing filter network of structure a) in Table 3. They speak in favor of the efficiency
of psa in terms of its filter approximation accuracy. Its success is explained by the fact that, for the
current value of k, a good starting point for solving (3) can be produced from the previously generated
solution for the larger cardinality.

Fig. 6 presents the Pareto set approximations produced by algorithm psa for the filter networks of
the structures a)–d) in Table 3. One can see that the best design is obtained for the filter network of
the parallel two-layers structure. Based on its Pareto set approximation, filter network developers can
choose one of the non-dominated solutions, depending on the design preferences. For instance, one can
either use 24 non-zero components with the relative error 0.06 or improve the image processing time by
using only 13 components. However, in the latter case, the image quality is slightly worse, because the
corresponding relative error is 0.07.

12



5 5

55
55

5 5-5

-5-5

-5 -5

-5 -5-5

00

0 0

0

00

0

-5

Figure 3: The sparsity pattern produced by ccals for the filter network in Fig. 2. Sparsity
pattern for sub-filters F11 (top left), F12 (top right), F21 (bottom left) and F22 (bottom
right), where each cell corresponds to a spatial position associated with certain non-zero
coefficient in Z2. The black cells refer to the non-zero coefficients.

5 Conclusions

The main aim of this paper was not in designing certain filter networks, but rather in developing opti-
mization tools that can be used for this purpose. We have developed an efficient approach for optimizing
sparsity pattern of filter networks. Its ability to improve network structure allows for automating some
stages of designing filter networks. The Pareto set approximation offers practitioners a means of finding
a proper trade-off between the image processing quality and time.

The numerical experiments were conducted with the purpose of demonstrating some of the high
potentials of our generic approach. The presented results refer to some of its possible implementations.
There are strong grounds for believing that, in the future, more refined implementations will be able
to demonstrate in full scale the efficiency of our approach. These implementations improve, within an
acceptable computation time, the approximation accuracy produced by the existing algorithms, while
keeping the same sparsity.

The range of possible applications goes beyond the design of filter networks. Similar problems occur,
e.g., in factor analysis, chemometrics, psychometrics (Leardi et al. 2000; Leurgans and Ross 1992; Lopes
and Menezes 2003; Paatero 1997; Wang et al. 2003). Our approach may be extended to solving such
problems.
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