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Abstract
Graphics Processing Units (GPU) and their development tools have advanced
recently, and industry has become more interested in using them. Among several
development frameworks for GPU(s), OpenCL provides a programming environ-
ment to write portable code that can run in parallel. This report describes two case
studies of algorithm implementations in OpenCL. The first algorithm is Median
Filtering which is a widely used image processing algorithm. The other algorithm
is RSA which is a popular algorithm used in encryption. The CPU and GPU im-
plementations of these algorithms are compared in method and speed. The GPU
implementations are also evaluated by efficiency, stability, scalability and porta-
bility. We find that the GPU implementations perform better overall with some
exceptions. We see that a pure GPU solution is not always the best and that a
hybrid solution with both CPU and GPU may be to prefer in some cases.

Sammanfattning
Graphics Processing Units (GPU) har på senare tid utvecklats starkt. Det har
kommit fler verktyg för utveckling och det ses mer och mer som ett allvarligt alter-
nativ till att utveckla algoritmer för Central Processing Units (CPU). Ett populärt
system för att skriva algoritmer till GPU är OpenCL. Det är ett system där man
kan skriva kod som körs parallellt på många olika plattformar där GPU är den
primära. I denna rapport har vi implementerat två olika algoritmer i OpenCL.
En av dem är en algoritm för bildbehandling kallad Median Filtering. Den and-
ra är RSA vilket är en populär krypteringsalgoritm. Vi jämför de seriella CPU
implementationerna mot de parallella GPU implementationerna och analyserar
även stabiliteten, portabiliteten och skalbarheten hos GPU implementationerna.
Resultatet visar att GPU implementationerna överlag presterar bättre än de se-
riella med vissa undantag. Vi ser att en ren GPU lösning inte alltid är den bästa
utan att framtiden nog ligger i ett hybridsystem där CPU:n hanterar vissa fall och
GPU:n andra fall.
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Chapter 1

Introduction

1.1 Problem statement
Graphics Processing Units (GPU) and their development tools have advanced re-
cently, and industry has become more interested in using them. Among several
development frameworks for GPU(s), OpenCL provides a programming environ-
ment to write portable code that can run in parallel. At the moment, there is
not much documentation about developing with this framework in non-scientific
applications. Syntronic AB is an engineering design house which works with both
electronics and software and they are interested in more documentation and ex-
perience in this area which prompted this master thesis. The goal of the thesis is
to consider two popular algorithms from two different application domains, imple-
ment them on GPU and evaluate them for performance, scalability, stability and
portability.

1.2 Algorithm choices
The two chosen algorithms are median filtering and RSA encryption and decryp-
tion. Median filtering was chosen because it is an often used image filter which
has a high potential for massive parallelization. Syntronic has an interest in image
processing and how its performance can be increased by parallelization which is
why this algorithm was chosen. Another area that Syntronic has interests in is
RSA cryptosystems and how they can be sped using parallelism and GPUs.

1.3 Main challenge
The main challenge of this thesis will be to implement the algorithms in an efficient
manner using OpenCL on GPU. The algorithms need to be analyzed for opportu-
nities to parallelize. We also need to realize what is not worth parallelizing. We
also need to analyze the GPU hardware and OpenCL framework to see how we
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2 Introduction

can implement these parallelizations and what we can do to optimize them for
speed.

1.4 Outline of the thesis
We will begin by giving background on the technology and frameworks used. We
will follow up by describing the Median filter algorithm and how we parallelize it.
The results of the parallelization and implementation will than be presented and
discussed. After that the RSA cryptosystem will be presented and discussed in
the same manner. The end of the thesis will be about general OpenCL and GPU.
There will be an appendix in the end with the main GPU kernels. Note that all
the code will not be in the appendix, only enough to get a general overview of how
the kernels work.

1.5 Abbreviations and definitions
• CCDF - Complementary Cumulative Distribution Function.

• CPU - Central Processing Unit.

• CRT - Chinese Remainder Theorem, used in the RSA implementation.

• CTMF - Constant Time Median Filtering.

• CU - Compute Unit, consists of Processing Elements and memory. Executes
work-groups.

• Global memory - Main memory. Visible from host side, and shared across
all threads.

• GPU - Graphic Processing Unit.

• Local memory - Memory shared by threads in the same work-group.

• OpenCL - Framework for writing parallel code.

• OpenMP - Open Multi-Processing, an API for parallelizing operations on
the CPU.

• PE - Processing Element, executes work-items.

• Private memory - Memory only available to a single thread.

• RSA - Asymmetric cryptosystem designed by Rivest, Shamir and Adleman.

• SIMD - Single Instruction Multiple Data, the same instruction is performed
on multiple data.

• SIMT - Single Instruction Multiple Thread, the same instruction is per-
formed by multiple threads in parallel.
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• SkePU - A skeleton programming framework for multicore CPU and multi-
GPU systems.

• Work-item - Instance of a kernel that is to be executed by a Processing
Element.

• Work-group - A group of work items.





Chapter 2

Background

This chapter gives a brief overview of the main differences between a CPU and a
GPU, and also some information about programming for a GPU using OpenCL
and SkePU.

2.1 Difference between CPU and GPU
A multi-core CPU mainly uses the Multiple Instructions-Multiple Data (MIMD)
strategy for parallelizing the work. This means that a given CPU can execute
different threads with different instructions and different data on different cores.
A GPU on the other hand uses the Single Instruction-Multiple Threads (SIMT)
strategy, which means that all threads will run the same instructions. This ap-
proach is powerful when there is a large amount of data so that multiple threads
can be executed on the data.
They also differ in hardware. A CPU has typically a few powerful cores (typically
4 on consumer CPUs right now), which means that the cores have a low instruction
latency but the CPU has a lower theoretical throughput than a GPU. A GPU has
many cores, hundreds, even thousands depending on the model. These cores are
not as powerful as the CPU cores, which gives the GPU cores a higher latency.
The winning factor of the GPU is the high throughput possible with all these
cores.
Using all these cores in a SIMT manner puts some requirements on the algorithm
used though. It needs to be highly parallelizable, and in a data parallel way. Also,
computations with a high arithmetic intensity are more likely to get close to the
maximum performance of a GPU, as the GPU can use this fact to hide the slow
memory accesses.

2.2 OpenCL
OpenCL is a framework for portable programming for different kinds of devices.
OpenCL code can execute across heterogeneous platforms consisting of many dif-
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6 Background

ferent types of devices, for example CPUs, GPUs, digital signal processors (DSPs),
field-programmable gate arrays (FPGAs) and other types of processors. The
framework defines different models but leaves the implementation of these models
up to the device. The most interesting model for us, when running a program on
one GPU, are the Execution Model and the Memory Model. See the OpenCL 1.2
specification [23] for more information.

2.2.1 Execution Model
OpenCL is executed by having a host send kernels and data to the devices, which
then execute these kernels using the data provided. When a kernel is submitted
for execution by the host, an index space is created. This index space defines how
many instances of the kernel will be executed. Each instance is called a work-item,
and these work-items can be grouped together into work-groups. Each work-item
has a global ID and will run the same kernel as all the other work-items. The
data provided may make the work-items differ in execution path, but they all run
the same kernel. An illustration of the index space, work-items and work-groups
is given by Figure 2.1. Each cell in the illustration represents a work-item, while
each collection of cells is a work group. The global ID of each thread is given by its
position in the grid which can be thought of as the index space. The work-items
are executed in groups called wavefronts.
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Figure 2.1: An illustration of the index space, work-items and work-groups in
OpenCL. Adapted from the OpenCL specification [23].

The index space, which in OpenCL is called an NDRange, can be in 1, 2 or
3 dimensions. In Figure 2.1, both the NDRange and the work-group are in 2
dimensions. The kernel will run for each work-item in the index space and each
work-item will use its global id, which is in 1, 2 or 3 dimensions depending on the
dimensionality of the NDRange, to figure out which data it will work on.

2.2.2 Memory Model
The conceptual OpenCL device architecture is a part of the memory model, and
it is how the architecture of the devices looks according to OpenCL. A visual
overview is given by Figure 2.2. This model resembles the hardware architecture
of the GPU, which is why OpenCL code typically runs faster on a GPU than a
CPU.
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Figure 2.2: The memory model of OpenCL. Image reprinted with permission from
the OpenCL specification [23]. © Khronos Group 2012

We will go through all the components in a bottom-up approach. First we have
the Processing Element. This is a virtual scalar unit that is used for executing
work-items. A specific work-item may execute on one or more processing elements.
Private Memory is private to each work-item. Variables defined in Private Memory
are not visible to other work-items.
A Compute Unit consists of Processing Elements and Local Memory. Work-groups
execute on Compute Units. A work-group is guaranteed to only be executed on a
single Compute Unit.
Each Compute Unit has Local Memory attached. This memory is shared between
all the work-items in a work-group, and is a way of communicating between them.
The Global/Constant Memory Cache is a cache between the Compute Device and
the Global Memory and Constant Memory.
A Compute Device consists of Compute Units, and might be for example a GPU.
There is also the Compute Device Memory which has two parts, Global Memory
and Constant Memory.
The GPUs nowadays conform really well to this model, while CPUs are not as
good a match.
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Coalesced memory access

An important concept when speeding up memory intensive kernels is memory
coalescing. This concept is primarily used when accessing the global memory
which is the slowest memory on the GPU. Coalesced memory access is done by
combining multiple memory accesses into a single access reducing the total amount
of memory accesses done which speeds up the execution time. This is achieved
by moving data in the memory so that the data we know will be accessed at the
same is continuous in memory. All memory accesses from the Processing Elements
will be combined into as few accesses as possible by the Compute Unit. This is
achieved by reading the memory in segments which are called cache lines. The
size of these cache lines differ but an example would be 64 bytes.
Let us presume that we have a kernel which is being executed by one wavefront,
64 threads. Each thread is accessing 8 bytes of memory and no two threads are
accessing the same data. If all blocks of 8 bytes are spread out in a way in memory
such that the distance, in bytes, between each block is larger than 56 bytes we
would need 64 memory accesses to read all the data. If the blocks instead are laid
out in a continuous manner in memory only 8 memory accesses are needed. The
reason is because of the cache-line. As each memory access will read 64 bytes,
each memory access will read data for 8 threads.
So by making sure that the memory accessed by each Compute Unit is laid out in
a continuous manner we can reduce the amount of memory accesses dramatically.
Doing this also means that we might need to rearrange the data in memory before
launching our kernels. Testing needs to be done to evaluate if the time saved
by reducing the memory accesses is larger than the time spent rearranging the
memory.

2.3 SkePU
SkePU is a skeleton programming framework for multicore CPUs and multi-GPU
systems. A skeleton can be thought of as high-level program structure or algo-
rithm. The skeletons in SkePU describes how an operation will be carried out on
a set of data. Given an operation to apply, and data to apply it to, the skeleton
will carry out the operation according to its specifications. Let us say that we
have a large array. We want to add the number 2 to each element to this array.
That is what is called a Map operation, an identical operation that is carried out
on all elements. Doing this on a single-threaded CPU would mean that we just
loop over all the elements and add 2 to each. We could also write an OpenCL
kernel that adds 2 to a single element and launch this kernel using as many threads
as there are elements. But this would mean that we need to setup the OpenCL
environment, move the buffer to GPU memory, launch the kernel, and copy the
resulting buffer back. It would be a lot of code just to do this simple task.
A simpler way to do this on the GPU would be to use SkePU. SkePU has a map
skeleton, where the only thing that we need to provide is the function that is to
be applied to each element and the input buffer. We would then send this to the
Map skeleton, and SkePU would handle all the environment work and copying of
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memory. This could be accomplished in less than 10 lines of code. It can also
be run using OpenCL, CUDA, OpenMP or normal sequential CPU. It also has
support for multiple GPUs.



Chapter 3

Median filtering

This chapter will describe the first case study, the median filtering algorithm, what
optimizations are done, and what the results are.

3.1 Algorithm description
Median filter is an often used filter for noise reduction or blurring of images. It is
the foundation of many more advanced filters, which makes it a good candidate for
optimizations using parallelization. Also, as images increase in amount of pixels a
multicore solution is becoming more promising. A median filter is applied to each
pixel and replaces it by the median of itself and its neighbours. The neighbours
are chosen using a square kernel with radius r, where r usually is even to make
the median calculation faster.

11



12 Median filtering

Figure 3.1: An example of a median filter with a radius of 2. In this case, the
median of the shaded area is 11 which would become the new value for the pixel
in the middle.

In Figure 3.1 we see a kernel with a radius of 2. The value of the pixel in the
middle of the shaded area will be the median of the pixels in the 3×3 area around
it.

3.1.1 Constant-Time Median Filtering
The fastest serial implementation that we know of at the moment is the Constant-
Time Median Filtering (CTMF) [17]. We will begin by defining what a histogram is
as it is something that Constant-Time Median Filtering is built on. A histogram is
another way to represent a collection of data where we count how many occurrences
of each value that exists in the data. An example is the way Constant-Time Median
Filtering uses histograms. Let us presume we want to create a histogram for an
image. Each pixel in the image has a value in the range [0, 255]. For this reason
the histogram we create will have 256 bins. Each bin will contain how many pixels
there are with that specific value. So if the second bin, with index 1, had a value
of 134 it would mean that there are 134 pixels with the value 1 in the image.
The Constant-Time Median Filtering algorithm is based on adding and subtracting
such histograms. To see why that is effective, we first need to talk about some
attributes of histograms.
One of these is that of distributivity. We will use the notation H(A) to denote
the histogram for the region A. The operator ∪ will be used to denote a union
of regions. Adding histograms is done by adding each pair of bins together. For
disjoint regions A and B, Equation 3.1 holds.

H(A ∪B) = H(A) +H(B) (3.1)

So for example, if we create a histogram for each column of an image, we can
calculate the histogram for 3 columns by adding together the 3 column-histograms.
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The action of adding histograms to each other takes linear time in terms of the
number of bins in the histogram. In our case the number of bins is the same as
the bit depth of the image. The bit depth of an image is the number of bits used
to indicate the color of a single pixel. The bit depth of the images we use is 256.
The same can be said for subtracting histograms. That is, Equation 3.2 holds.
Subtracting histograms is done by subtracting the bins pairwise.

H(A ∪B) = H(A)−H(B) (3.2)

This means that adding or subtracting histograms from each other is a con-
stant time operation in regards to the amount of elements in the histogram. In
our case, the number of elements in a given histogram is the number of pixels that
the histogram contains.
Adding and subtracting an element from a histogram is also a constant time op-
eration.
Finding the median in a histogram is also constant with regards to the amount of
elements in the histogram.
With these attributes in mind, we can construct an algorithm for median filtering
which uses constant time in regards to filter size. In CTMF, there are two differ-
ent types of histograms. One is the kernel histogram, which represents the median
kernel. This kernel histogram will sweep over the image from left to right, and
begin on the left end of the next row when the last row is done. The other type of
histogram is the column histogram. These histograms are added and subtracted
to the kernel histogram as it sweeps over the image. The amount of elements in a
column that the column histogram includes is equal to 2r + 1.

Figure 3.2
Downward movement of column
histogram. Adapted from [17].

Figure 3.3
Kernel histogram sweeping right.

Adapted from [17].

Figure 3.2 shows how the column histograms move down one row by removing
the topmost pixel and adding the pixel from the row below the histogram, while
Figure 3.3 shows how the kernel histogram sweeps over the column histograms
by removing the leftmost column histogram and adding the rightmost column
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histogram. Both these steps will be done in constant time with regard to the filter
radius r.
There is still one step left, that sadly is not constant in time. It is the initialization.
To initialize the column histograms, we need to create a new histogram from the
r first elements in each column. This takes O(w · r) time, where w is the width of
the image. This initialization is only done once per image. The kernel histogram
also needs to be built in the initialization and each time we go down one row.
This consists of adding the r first columns histograms together, and has a time
complexity of O(r). This is only done once per row. Given a large enough image,
the amortized time complexity of this algorithm will be O(1) in terms of filter size.
More about this can be read in the paper by Perreault and Hébert [17].
The amount of work done is linear in terms of the number of pixels in the image.
For every row with w pixels in the image we need to move w histograms down one
row. For every pixel in the row we need to move the kernel histogram one step
to the right and calculate the median. All these operations are constant. Given
that each row contains n pixels the work done is O(w · n) where w · n will be the
number of pixels in the image. We also have the initalization work of O(w · r).
Both of these scale linearly with the number of pixels in the image.

3.2 General parallelizations done
3.2.1 Data parallelization
One simple way to parallelize this algorithm is doing data parallelization. We
divide the image into subimages and process different parts of the image in parallel
using this algorithm. Here there are two things to consider when choosing how
large each subimage will be. If the subimages are too large, the GPU will not be
used to its full potential as the parallelization is too small. We will also have a
problem where the amount of local memory used by each work-group will be large
which means that the number of wavefronts in execution in each Compute Unit
will decrease. If the subimages are too small, the initialization overhead will get
too large, slowing down the algorithm even though we have a lot of parallelism.

3.2.2 Histogram parallelization
Another way is to parallelize the histogram operations. Adding and removing a
pixel is not parallelizable on a single histogram, but if we remove a pixel from
all histograms in parallel and then add the next rows pixel in parallel to all his-
tograms we can speed it up. We can also parallelize the adding and subtracting
of histograms. Each such operation consists of 256 independent scalar operations
which means that we can parallelize them with a simple map operation. The
problem is finding the median. This is sadly a sequential operation which is hard
to parallelize. Therefore we do a small change to the algorithm by using Comple-
mentary Cumulative Distribution Functions (CCDFs) [19] instead of histograms.
More information about this is in a later chapter.
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3.3 Other median filtering alternatives
There are other methods for calculating the median in an image. The easiest
would be by using stencil computations. For every pixel, read in the pixel in the
neighbourhood with radius r and calculate the median. This is easily parallelizable
and also scales linearly in terms of image size. This approach will be implemented
in SkePU, see Section 3.5. The main reason we chose CTMF instead is because of
the scaling with filter radius. The SkePU implementation scales linearly in terms
of image size while the CTMF implementation is constant. This can also be seen in
the results later where the SkePU implementation performs well with lower filter
sizes but worse with larger filter sizes.

3.4 GPU specific parallelizations and optimiza-
tions

3.4.1 Complementary Cumulative Distribution Functions
As said in Section 3.2.2, there is a problem of finding the median in histograms
in a parallel fashion. By using CCDFs instead, we can do all the operations in
parallel. This approach has been done before by Sánchez and Rodríguez [20] in
their implementation of median filtering. We will show how this works by defining
CCDF-sorting. To define the Complementary Cumulative Distribution Function
(CCDF) we first define the Cumulative Distribution Function (CDF). The CDF is
a function given by Equation 3.3 for a real-valued random variable X. The right-
hand side of the equation is the probability that the random variable X takes on
values less than or equal to x.

FX(x) = P (X ≤ x) (3.3)

The CCDF is the complement of the function defined in Equation 3.3. The
formal definition for this is given in Equation 3.4.

FX(x) = 1− FX(x) = 1− P (X ≤ x) = P (X > x) (3.4)

Now, if we instead of working on random variable X want to work with a vector
y with n elements and where a ≤ yi ≤ b ∀i ∈ [0, n − 1], and we want to sort this
vector, we replace the probability function P (X > x) with the counting function
Cx(y) given by Equation 3.5.

Cx(y) =
n−1∑
i=0

I[yi>x] (3.5)

The indicator function I is defined in Equation 3.6.

I[yi>x] =
{

1 if yi > x

0 otherwise
(3.6)
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We will use the ccdf(x) to denote the Complementary Cumulative Distribution
Function of x in the following definitions.
To sort the vector y we need to create a temporary vector t = ccdf(y) where
tj = Cj(y) ∈ [0, n], j ∈ [a, b]. From this we can get the sorted vector of y, called
z. This vector is given by z = ccdf(t) where zk = Ck(t) ∈ [a, b], k ∈ [0, n− 1]. So
for example, assume that we have the vector y = [5, 3, 8, 7, 2], a = 0, b = 8. Calcu-
lating t we get t = [5, 5, 4, 3, 3, 2, 2, 1, 0]. We use this to calculate z = [8, 7, 5, 3, 2]
which is the sorted vector. We can see that, if we only wanted the maximum
number in this vector, we only needed to calculate z0 = C0(t), and if we only
wanted the minimum, we could calculate zn−1 = Cn−1(t). So if we wanted the
kth number in the sorted sequence z we only need to calculate zk = Ck(t). The
median can be found in the middle of the sorted sequence. If we choose the vector
y so that n is odd, we will find the median at k = (n−1)/2. So to find the median
of the vector y we need to calculate z(n−1)/2 = C(n−1)/2(t).
CCDFs also share the same attribute as the histograms in that CCDFs can be
added and subtracted to each other to create CCDFs of larger areas, see Equa-
tion 3.7.

ccdf(A ∪B) = ccdf(A) + ccdf(B) (3.7)

This means that we can use CCDFs in the same way as histograms with a
CCDF for each column which will be added and subtracted to create the CCDF
for the kernel. So why did this change make the algorithm better suited for GPU?
Let us compare some points.

Initialization

Initialization of a histogram in parallel is possible. The initialization process only
happens once for each column in each subimage. This can be parallelized by, for
example, using one thread for each pixel that is added in the initialization and
adding to the same histogram using atomic operations. So if we, for example, are
going to create a histogram from 32 pixels in a column we launch 32 threads and
let them add to the column histogram at the same time. The problem with this is
that nearby pixels have a high chance of being similar, meaning that the memory
access to the histogram might be sequentialized as the threads will attempt to
write to the same bins in the histogram.
For CCDFs it is a little different. In the case of histograms, only one bin is updated
for each pixel added to the histogram. In the worst-case scenario for the CCDF,
all bins need to be updated. This means that using one thread per bin in the
CCDF is more efficient. So all the threads read the same pixel and update the bin
assigned to them. This is not as bad as it might seem, as all of the threads for
a CCDF are in the same work-group meaning that the data can be cached. All
writes to the CCDF will also be coalesced.
So for the initialization step histograms need fewer threads, but the bin accesses
might be serialized if many threads accesses the same bin. For CCDFs more
threads are needed, but the bin accesses will be parallelized as all threads access
different bins. The initialization is written in pseudocode at Algorithm 1. Note
that it assumes that all CCDFs are adjacent in memory.
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Algorithm 1 Initialization of CCDFs
function Initialization(columnCCDFs, startRow, startColumn, numRows,
numColumns, image)
Input: The CCDFs for the columns, the starting row, the starting column,
the number of rows and columns in the image and the image itself.

for CCDFId from 0 to numColumns− 1 do
globalBinId = CCDFId ∗NUM_BINS + threadId
columnsCCDFs[globalBinId] = 0
for rowId from startRow to startRows+ numRows− 1 do

if image[startColumn+ CCDFId][rowId] > threadId then
columnsCCDFs[globalBinId] + +

end if
end for

end for
end function

Adding and subtracting histograms and CCDFs

Both the histograms and CCDFs will have the same bin size, and adding two of
them together is just adding bins with the same index together. The same can
be said for subtraction. This can be done by using one thread per bin, so these
operations will be parallelized in the same way for both.
So for adding and subtracting histograms and CCDFs to/from each other the
same parallelizations can be done. The code for adding and subtracting CCDFs
and histograms is given below in Algorithm 2 and Algorithm 3.

Algorithm 2 Add two CCDFs.
function Add(CCDF1, CCDF2)
Input: The two CCDFs to be added.
Output: The result of the addition.

CCDFResult[threadId] = CCDF1[threadId] + CCDF2[threadId]
return CCDFResult

end function

Algorithm 3 Subtract two CCDFs.
function Subtract(CCDF1, CCDF2)
Input: The two CCDFs to be subtracted.
Output: The result of the subtraction.

CCDFResult[threadId] = CCDF1[threadId]− CCDF2[threadId]
return CCDFResult

end function
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Adding and removing elements

Adding or removing elements in a histogram only changes the value of one bin.
In a CCDF, all the values in all of the bins might change. This means that more
threads are needed for the CCDF.
So the histogram wins out in adding and removing elements. The pseudocode for
adding and removing elements can be found at Algorithm 4 and Algorithm 5.

Algorithm 4 Add an element to the CCDF
function AddElement(CCDF, element)
Input: The CCDF and the element to be added.

if element > threadId then
CCDF [threadId] = CCDF [threadId] + 1

end if
end function

Algorithm 5 Remove an element from the CCDF
function AddElement(CCDF, element)
Input: The CCDF and the element to be added.

if element > threadId then
CCDF [threadId] = CCDF [threadId]− 1

end if
end function

Finding the median

Finding the median in a histogram is a typically sequential operation. There are
techniques for reducing the amount of operations needed which will be explained
in Section 3.5.3, but it will still be sequential.
In a CCDF, the median is found by calculating the element at the (n − 1)/2’th
position in the sorted sequence that can be retrieved from the CCDF. This can be
done by calculating C(n−1)/2(t) where t is the CCDF. This can be done in parallel
using a parallel reduction algorithm. Further improvements were done inspired
by Harris’ presentation on optimizing parallel reductions on CUDA [13]. This is
where the problem with parallel histograms is found. Finding the median is a
sequential operation, and will be done once per pixel. By using a CCDF, we can
parallelize this as seen in Algorithm 6.

3.4.2 CCDF example
We will here use an example to show how the CCDF algorithm works. We will
use an image where the only allowed values are in the range [0, 7] to simplify the
process. We median-filter a small part of an image with 16 pixels using a 3 × 3
filter.
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Algorithm 6 Calculate the median from a CCDF
function CalculateMedian(CCDF, kernelRadius)
Input: The CCDF the radius of the kernel used.

numIndices = (2 ∗ kernelRadius+ 1)2 − 1
sumBuffer[threadId] = CCDF [threadId] > numIndices/2
for stride = NUM_BINS/2; stride > 0; stride >>= 1 do

if threadId > stride then
sumBuffer[threadId] = sumBuffer[threadId] +

sumBuffer[threadId+ stride]
end if

end for
return sumBuffer[0]

end function

Figure 3.4: Calculation of column CCDFs.

What we see in Figure 3.4 is the starting column CCDFs. The left figure is
the image where the lightly shaded area is the area covered by the CCDFs. The
right figure shows the CCDFs, one for each column. Each CCDF consists of 3
elements because we know that the filter size is 3 × 3. We will begin calculating
the median on the second row, second column. This is to make the example more
clear. We initialize the kernel CCDF by adding the CCDFs A,B and C together.
The darkly shaded area in Figure 3.5 is the kernel.

Figure 3.5: Initializing of kernel CCDF.

We now have a CCDF of the kernel. We calculate the median by counting the
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elements in the kernel CCDF which are larger than (2·(kernelRadius−1))2/2 = 4.
The number of elements that are larger than 4 is 3, so 3 is the median of the pixel
at location (1, 1) in the image using a 3× 3 median filter. We will now move the
kernel CCDF one pixel to the right by removing CCDF A and adding CCDF D.

Figure 3.6: Moving the kernel CCDF one pixel to the right.

Figure 3.6 gives us the new kernel area and CCDF. We do as before and count
the number of elements which are larger than 4. The answer is 4, which is the
median of the pixel in position (2, 1). The process of moving the kernel to the right
continues until we have calculated the median of all pixels on that row. Then we
need to move the column CCDFs one step down.

Figure 3.7: Removing the first row from the column CCDFs.

Figure 3.7 shows how the column CCDFs look after removing the first row from
them. For example, in CCDF A, all elements with an index smaller than 3 were
decremented.

Figure 3.8: Adding the last row to the column CCDFs.
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Figure 3.8 shows how the column CCDFs look after adding the last row to
them. For example, in CCDF A, all elements with an index smaller than 2 were
incremented. The process with initializing the kernel CCDF now begins again and
the kernel CCDF will sweep from left to right over the column CCDFs.

3.4.3 Tiling
We use a technique called tiling to subdivide the image into subimages. We will
then let one work-group work on a subimage each. The benefit of this is that all
the structures used can be stored in the local memory, making memory accesses
much faster than if global memory was used. As the algorithm uses dependencies
between the different rows to speed up the time taken, we will initially use as large
subimages as possible. The size of a subimage is limited by the size of the local
memory. As the images we work on have a bit-depth of 256, each CCDF will use
256 bins. If we make the assumption that the filter radius will never be larger
than 127 then we can use one byte to represent each bin in the column CCDFs
and two bytes to represent each bin in the kernel CCDF. There is also a temporary
array used when calculating the median which also uses two bytes for each bin.
Each column CCDF then has a size of 256 bytes, while the kernel CCDF and the
temporary array has a size of 512 bytes each. To find out the maximum number
of CCDFs that we can store in the local memory we need to find out the size of
the local memory on the device. When that is known Equation 3.8 can be used to
calculate the maximum amount of columns.

Maximum number of columns = (localMemSize− 2 ∗ 512)/256 (3.8)

The value 2 ∗ 512 comes from that the kernel CCDF and temporary array also
needs to be on local memory and uses 2 bytes per value. On the device we use for
developing, this is 32768 bytes. This means that the total amount of CCDFs we
can store in the local memory is 125. This means that a work-group can handle
at maximum 125 columns, as 1 CCDF is needed for the kernel. There are some
more points we need to consider when choosing the amount of columns that each
work-group should handle:

1. The local memory is shared for each compute unit. This means that all the
work-groups on that compute unit share this local memory. They cannot
access each other’s local memory, but they need to share the memory space.

2. We want to maximize occupancy, that is, how many work-groups each com-
pute unit is responsible for. We want this value as large as possible to enable
context switching to hide the memory latency. This means as small tiles as
possible, to minimize the local memory needed for each tile.

3. We want to do as few initializations as possible, which means as large tiles
as possible.

The last two points go against each other. This is where we need to do testing
and decide the optimal size of the tiles. These limitations mean that the largest
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tile size possible is 125 columns, while the smallest is 1 column. If each tile is
125 columns then we would have 1 workgroup per compute unit which is a low
occupancy. Testing will be done to establish a good tile size.
Another part is the amount of rows in a tile. By having many rows in a tile we will
have few column CCDF initializations which is a good thing. But having fewer
rows in a tile means that there will be more tiles per image which means higher
parallelism.

3.4.4 Memory
In OpenCL there are two ways of accessing data from global memory. Either by
reading it as normal data, or by using a sampler and accessing it as a texture. A
sampler is an object that handles access to textures. The sampler can be initial-
ized with different rules, for example what coordinates that should be used when
accessing the sampler, how edges should be handled, how interpolation between
pixels should be handled. The sampler can then be used by simply supplying it
with a coordinate and it will return the pixel value given the rules it was ini-
tialized with. The operations of the sampler are also implemented closer to the
hardware by the hardware vendor which makes it faster than if we would imple-
ment those operations in the kernel. Sampling in textures is achieved by using the
Image2D [23] structure in OpenCL. The following sections will look at the benefits
and problems of both.

Image2D

A large benefit of using Image2D is that accessing data outside the image will
be handled by the sampler. So if we try to read from a coordinate outside the
image the sampler used will interpolate that value by the rule that was decided
on when creating the sampler. So if we for example initialize the sampler with
the rule CLK_ADDRESS_CLAMP_TO_EDGE, all out-of-image accesses will
be clamped to the edge instead. This means that there is no branching in the code
for the edge cases as those are handled by the hardware. This means less thread
divergence, which means faster code. The problem with Image2D is that there is
a cache that always will be checked first. This means, that if one accesses each
element only once, which is what this algorithm does, every access will be a cache
miss. Another drawback is that that memory access for Image2D is not coalesced.
Implementing memory access using Image2D was straightforward and no modifi-
cations were needed.

Buffers

Buffers are one-dimensional data containers that can be sent and read from the
GPU. The large benefit of buffers is the ability to do coalesced reading and writing.
This speeds up memory accesses if the reading is done in a coalesced manner.
Implementation of memory access using buffers needed some extra work. Firstly,
the pixel information in the images needs to be altered. The pixels are stored in the
following order in the image: r0, g0, b0, r1, g1, b1, .., rn−1, gn−1, bn−1 where n is the
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number of pixels in the image. Median filtering is done one channel at a time, which
means that this memory layout is not good for coalesced reading. For example,
the cache line on the development GPU is 64 bytes wide. Each color value of a
pixel is 8 bit. This means that a total of 8 color values can be read in one memory
access. As we are only interested in one channel, we would at most get 3 values to
use in each memory access. Assume we have an image with 65536 pixels. Using
the above memory layout, 21846 memory accesses would be needed to read all the
data in the red channel of the image. This can be optimized by rearranging the
data in the following order before execution. r0, r1, ..rn−1, g0, g1, ..gn−1, b0, b1, bn−1
Where n is the number of pixels in the image. Using this memory layout means
that all the color values in the cache line will be used except when reading at the
end of each color sequence. Using the above example with 65536 pixels, only 8192
memory accesses would be needed to read alll the data in the red channel. This
difference will scale with the size of the image, meaning that the speed gained will
be higher on larger images.
So to use buffers to their full potential, we begin by rearranging the data in the
image as shown before. Then we run the algorithm, and join the data together
again before saving the resulting image. We also need to make sure that the data
is read in a coalesced way in the algorithm.
One drawback is that we need to handle the edge cases ourselves, by clamping the
indexing of the image.

3.5 SkePU
Median filtering is a kernel operation, which means that it is trivial to parallelize.
The simplest parallelization is just to let each thread handle one channel in one
pixel and launch numPixels · numChannels threads. Let the thread sample the
image around the pixel that it is responsible for and output a value. This approach
was implemented in SkePU [28].

3.5.1 Median filtering in SkePU
SkePU has a MapOverlap2D [5] skeleton which gives us the possibility to write a
simple function which will be launched for every element in a Matrix and which
has access to the Matrix elements in its vicinity. That is exactly what we need
for implementing Median filtering. What we need now is a sequential algorithm
to implement in the kernel.

3.5.2 Sequential calculation of Median kernel
Note that the CTMF is an algorithm to median filter a whole image. What we need
now is an algorithm to calculate a single median value given a median kernel and
pixel position. Two different algorithms were considered. Histograms were chosen
because of the results in the comparison of median filtering algorithms done by
Juhola, Katajainen and Raita [12]. Median of medians was also considered given
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the work by Dinkel and Zizzi on median finding on digital images [6]. We will go
through both and motivate why we chose one of them.

Median of medians

A selection algorithm is an algorithm for finding the kth smallest number in an
array. It can be done in two ways. Either via sorting the array and just picking
the number at position k or by partitioning the array. The algorithm we are
interested in is partitioning-based which means that it will try to partition the
array to reduce the amount of elements that needs to be sorted.
The most fitting for our problem is Quickselect. Quickselect works by partitioning
the input into two using a pivot value. It is then decided which partition the wanted
value is and that part is further partitioned using a pivot value. This continues
until the needed value is found. Let us first define a function for partitioning an
array using a pivot value, see Algorithm 7.
This function will be used in the selection function given at Algorithm 8.
Quickselect as given in Algorithm 8 has a best-case performance of O(n), but has
a worst-case performance of O(n2). The problem is in how to choose the pivot.
The optimal value in our case would be the median. That would mean that only
one partitioning would be needed. There is an algorithm called Median of medians
that tries to do exactly this. It approximates a median which will then be used as
a pivot value in the quickselect algorithm. It does this by dividing the data into
groups of 5, calculating the median of each group and then calculating the median
of these group-medians. This median is what is called the median of medians.
This is not the true median though, only an approximation that can later be used
as a pivot in the quickselect algorithm to find the true median faster. The number
5 is chosen because it is odd and small enough that the median calculation in
each group will be fast. This algorithm uses a variant of the select algorithm
at Algorithm 8: Instead of returning the value of the selected element, selectIdx
returns the index of that element. Also note that selectIdx cannot use the median
of medians as pivot selection function.
The median of medians algorithm at Algorithm 9 moves all the group-medians to
the beginning of the array and then runs the Quickselect algorithm on these. By
using the median of medians function at Algorithm 9 as a pivot selection strategy
we can reduce the worst-case time of the select algorithm from O(n2) to O(n)
when using it to get the median. Further proof of this can be read in Dinkel and
Zizzi’s work on median filtering [6]. Reading the kernel values into an array also
has a worst-case time of O(n). This means that using quickselect with median of
medians as a pivot selection strategy has a worst and best case performance of
O(n).

3.5.3 Histogram median method
Another method is to use histograms to calculate the median. This is a method
that works great when we have domain knowledge about the possible values of the
elements we are trying to find the median of. We know that the values are integers
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Algorithm 7 Partition an array using a pivot value
function Partition(array, left, right, pivotIndex)
Input: An array, its left and rightmost indices and the pivotIndex.
Output: The index of the pivot value after partitioning.

pivotV alue = array[pivotIndex]
swap(array[pivotIndex], array[right])
storeIndex = left
for i from left to right− 1 do

if array[i] < pivotV alue then
swap(array[storeIndex], array[i])
storeIndex+ +

end if
end for
swap(array[right], array[storeIndex])
return storeIndex

end function

Algorithm 8 Select the k-th smallest element in the array and return its index.
function Select(array, left, right, k)
Input: An array, its left and rightmost indices and the index k of the element
searched for.
Output: The k-th smallest element.

if left = right then
return array[left]

end if
pivotIndex = selectedP ivot(array, left, right)
partition(list, left, right, pivotIndex)
if k = pivotIndex then

return array[k]
else if n < pivotIndex then

return select(array, left, pivotIndex− 1, k)
else

return select(array, pivotIndex+ 1, right, k)
end if

end function
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Algorithm 9 Select and approximate median.
function MedianOfMedians(array, left, right)
Input: An array, its left and rightmost indices.
Output: The approximate median.

numMedians = ceil((right− left)/5)
for i from 0 to numMedians do

subLeft = left+ i ∗ 5
subRight = subLeft+ 4
if subRight > right then

subRight = right
end if
medianIdx = selectIdx(array, subLeft, subRight,

(subRight− subLeft)/2)
swap(array[left+ i], array[medianIdx])

end for
return selectIdx(array, left, left+ numMedians− 1, numMedians/2)

end function

in the range [0, 2b − 1], where b is the number of bits in the input values. In the
case of our images we know that b = 8. The algorithm given in Algorithm 10
shows how to find the median in a histogram.
In our case where b = 8 this leads to an average of 128 comparisons and subtrac-
tions, and a worst case of 255 comparisons and subtractions. We can improve this
further by using multi-layer histograms [2]. We will use two levels of histograms.
One with 2b/2 bins and one with 2b bins. The FindMedianNaive function is then
rewritten as the FindMedian function given as Algorithm 11.

Algorithm 10 Find the median in a histogram.
function FindMedianNaive(histogram, N)
Input: A histogram and the number of elements N in the histogram.
Output: The median.

count = N/2
for i from 0 to 2b − 1 do

count = count− histogram[i]
if count < 0 then

return i
end if

end for
end function
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Algorithm 11 Find the median in a histogram.
function FindMedian(coarseHistogram, fineHistogram, N)
Input: The coarse and fine histograms and the number of elements N in the
histograms.
Output: The median.

coarseIndex = 0
count = N/2
for i from 0 to 2b/2−1 do

count = count− coarseHistogram[i]
if count < 0 then

coarseIndex = 2b/2 ∗ i
count = count+ coarseHistogram[i]
break

end if
end for
for i from 0 to 2b/2−1 do

count = count− fineHistogram[coarseIndex+ i]
if count < 0 then

return coarseIndex+ i
end if

end for
end function

Looking at our case with b = 8 again we see that we have reduced the number
of comparisons and subtractions to 16 in the average case and 32 in the worst case.
We have sacrificed some memory in the process as we now need 2b + 2b/2 bytes of
memory to store the histograms.
The worst case complexity of this algorithm is O(2b + n). The 2b term will be
constant while the n term will increase with larger filters.

3.5.4 Choice of algorithm
The algorithm that was finally chosen was the histogram approach. The reasons
are as follows:

• The histogram approach is similar to our other approach which makes for
an interesting comparison

• Both of these algorithms suffer from thread divergence when run on the GPU.
But the operations in the divergent parts are much cheaper in the case of
the histogram approach. Only comparisons and subtractions are done, while
the median of medians approach would do calculation of pivot elements and
partitioning of the input array in the divergent parts.

• The histogram approach is easier to implement. This is important as we
cannot create functions in the kernel which we later can call.
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One drawback of the histogram approach is the use of memory. The histogram
needs 2b + 2b/2 bytes of memory for its histograms while the median of medians
approach needs n bytes of memory for the array. As we have b = 8, this means
that the histogram approach will use more memory as long as the radius of the
kernel is smaller than 8 which is usually the case.

3.6 Experimental Evaluation
The AMD GPU used in these tests is an ASUS Radeon R9 280x-DC2T-3GD5 with
32 Compute Units running at 970 MHz. The CPU in this computer is an Intel
i3570k and the amount of RAM is 8 GB. The OpenCL version used is 1.2.
The Nvidia GPU is a Tesla M2050 with 14 Compute Units running at 1150 MHz.
This computer has 16 processors, each being an Intel Xeon E5520 running at 2.27
GHz, and the amount of RAM is 24 GB. The OpenCL version used is 1.1.
The CPU used in the testing is an Intel i3570k with 4 physical cores running at
3.4 GHz and the amount of RAM is 8 GB.
The compiler used was g++ 4.8.1 with the O2 and msse2 flags. No extra OpenCL
flags were used when compiling the kernels.

3.6.1 Tiling

Figure 3.9: Comparison of execution time for different tile sizes using quadratic
tiles

Tests were done with various tiling sizes. Figure 3.9 shows a comparison of different
sizes using quadratic tiles.
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Tests were also done using rectangular tiles, but they showed no performance gain
over quadratic tiles. We see that 16 × 16 is the best tile size for the AMD GPU,
while 32× 32 is the most optimal for the Nvidia GPU.

3.6.2 Image2D or buffers

Figure 3.10: Comparison of buffer and Image2D implementation run on a 8
megapixel RGB image.

Both methods of memory access was implemented and tested. The results can be
seen in Figure 3.10. This test was only done on the AMD GPU as OpenCL 1.2 is
needed for Image2D. The Nvidia GPU only supports OpenCL 1.1.
The buffer implementation performs slightly better and is the one used in the rest
of the thesis.
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3.6.3 CPU vs GPU implementation

Figure 3.11: Comparison of the scaling with filter radius between CPU implemen-
tation and GPU implementation. Execution time is including operations to move
the data to and from the GPU.

The CPU implementation is the Constant-Time Median Filtering implementation
found in OpenCV 2.4.10. One thing to note about the OpenCV implementation
is that sorting networks are used for filters where the filter radius is less than or
equal to 2. That is the reason for the high slope of the curve in Figure 3.11 at those
radius values. These were still included to show that the GPU implementation was
faster than those too. We see that the AMD GPU implementation is the fastest
while the single-threaded SkePU implementation is the slowest. The difference
between the Nvidia GPU and the AMD GPU has many reasons. The AMD GPU
has more processing power overall and has a newer version of OpenCL. AMD also
focuses more on optimizing their OpenCL drivers while Nvidia has more focus
on CUDA. We see that the SkePU implementations start out as the fastest but
scales the worst with increasing filter size. The SkePU OpenMP implementation
performs well, just slightly worse than the SkePU GPU implementations. It seems
like the SkePU OpenMP implementation actually scales better.
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Figure 3.12: Comparison of the scaling with image size between CPU implemen-
tation and GPU implementation. Execution time is including operations to move
the data to and from the GPU.

Figure 3.12 shows us the scaling with regard to image size. We see that the
AMD GPU implementation is the fastest. The SkePU implementations, besides
the singlethreaded CPU one, performs really well when considering how simple
the implementation is. Overall, the AMD GPU implementation is the one that
scales the best with both filter size and image size.

3.6.4 Stability and scalability of GPU implementation
As seen in Figure 3.11 and in Figure 3.12, the stability of the implementation at
higher values is good. There are some things that limits the scalability of this
implementation though.
There is a theoretical limit on the scalability of the algorithm, as the filter needs
to fit inside one tile. This means that the limits calculated in Section 3.4.3 apply
on the filter size. For example, on the developer machine, this sets a filter size
limit of 125 ∗ 125.

3.6.5 Portability
There are some parameters that limit portability.
As mentioned in the previous section, the tile size will limit the size of the filter.
So depending on the size of the local memory of the GPU, the maximum filter size
will change. This can be calculated using Equation 3.8.
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3.6.6 Ease of programming
The final kernel ended up being 162 lines of code. The only algorithmic changes
between Constant-Time Median Filtering and the GPU implementation is that the
GPU implementation is data parallel and that it uses CCDFs instead of histograms.

3.7 Challenges and benefits of porting this algo-
rithm to OpenCL

3.7.1 Challenges
Not much was needed to change about the basic algorithm. CCDFs were used
instead of histograms and data parallelizations were done both on the image and
the CCDFs. The biggest challenges were in the implementation details.
One example is indexing. Indexing was easy using Image2D as it was accessed
using a sampler. But using buffers made the indexing more challenging.
The buffer implementation also needed 2 additional kernels. One was for ar-
ranging the data from the r0, g0, b0, r1, g1, b1, .., rn−1, gn−1, bn−1 format into the
r0, r1, ..rn−1, g0, g1, ..gn−1, b0, b1, bn−1 format. This was needed to be able to ac-
cess the global memory in a more coalesced manner. Another kernel was needed
to reverse the process after the filtering was done.
Debugging is also harder on the GPU. With so many threads running on so many
different cores, running a normal debugger is not feasible. There are GPU debug-
gers but they are primitive in comparison with CPU debuggers. This means that
debugging is mostly done by writing from the GPU into buffers and reading the
buffers on the CPU after the kernels have run.

3.7.2 Benefits
The biggest benefit is the speed increase. Using hardware at similar costs the GPU
implementation maintains a higher throughput of pixels. The kernels can also be
run on all platforms supporting OpenCL which also means that it can be run on
CPUs. The development of new hardware moves more and more into more parallel
hardware which means that the GPU implementation will scale better with future
hardware.



Chapter 4

RSA

4.1 Algorithm description
Following is a description of the general RSA algorithm and the usual optimizations
done. Notice that these are also used in sequential implementations and are not
specific for the parallel one.

4.1.1 General description
RSA is an asymmetric cryptography algorithm that is often used in conjunction
with a symmetric cryptography algorithm for secure data transmission. The name
comes from the initials of the surnames of Rivest, Shamir and Adleman who pub-
lished the algorithm 1977. RSA consists of a public key called e, a private key
called d and a modulus called n. The modulus n is a product of two primes. Given
a message transformed into an integer m which fulfills the constraint m < n, the
encrypted message c is calculated using Equation 4.1.

c = me mod n (4.1)

To decrypt the cipher text c an identical equation is used where the private
key is used instead of the public key, see Equation 4.2:

m = cd mod n (4.2)

A big drawback of RSA is that modular exponentiation is an expensive oper-
ation as the m, c, e and d are k-bit integers where normal values for k are 1024,
2048 or 4096 bits. This leads to a large number of exponentiations if a naive
implementation is used.

4.1.2 Algorithm usage
RSA is mainly used to encrypt the keys which are used for symmetric encryption.
Symmetric encryption provides much higher security while also being faster to
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encrypt and decrypt. Asymmetric encryption is used to encrypt the key before
sending it to the recipient. Let us say that Alice wants to send a message to Bob
securely over the internet. The flow would look like this:

1. Alice initiates contact with Bob and informs him that she wants to commu-
nicate securely.

2. Bob generates a RSA key pair and sends his public key to Alice.

3. Alice encrypts her message using a symmetric algorithm.

4. Alice encrypts the symmetric key with Bob’s public key.

5. Alice sends the encrypted data along with the encrypted symmetric key to
Bob.

6. Bob decrypts the symmetric key using his private key.

7. Bob decrypts the message using the symmetric key.

We will call one symmetric key being encrypted and decrypted in this way a
block of input. So the data being encrypted and decrypted using RSA will already
be divided into blocks, where each symmetric key will be one block. That is why
we will talk about blocks of input instead of bytes of input in the rest of this thesis.
We will also focus more on decrypting than encrypting. Both are done in the same
way, but the largest common exponent used for encryption is usually 65537, while
the exponent used for decryption will have as many bits as the RSA keys have.
This means that encryption is far cheaper than decryption. It also means that
this optimization is most needed at computers which create and receive a lot of
connections using small messages. A prime example of this would be servers using
the SSL protocol.

4.1.3 Key generation
According to the PKCS # 1 v2.2 Cryptography Standard [25] the public key
consists of the following parts:

• n - the RSA modulus, a positive integer

• e - the RSA public key, a positive integer

The private key can be given in two different forms, where the first form is:

• n - the RSA modulus, a positive integer

• d - the RSA private key, a positive integer

The second form includes more parts which are used to speed up the calcu-
lations. It also includes support for multi-prime keys, where the modulus is a
product of more than two primes. This is not used often and will not be men-
tioned here, as the implementation done in this work does not support multi-prime
keys. This form is as follows:
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• p - the first factor, a positive integer, prime

• q - the second factor, a positive integer, prime

• dP - the first factor’s CRT exponent, a positive integer

• dQ - the second factor’s CRT exponent, a positive integer

• qInv - the CRT coefficient, a positive integer

CRT stands for Chinese Remainder Theorem, and is one of the optimizations
that will explained in this paper. The process of generating a key is as follows.

1. Choose two different prime numbers p and q.

2. Compute n = p · q. The number of bits in this number decides the length of
the key.

3. Compute the totient ϕ(n) = (p− 1) · (q − 1)

4. Choose a number 1 < e < ϕ(n) that is coprime to ϕ(n). Choosing a prime
makes it easier to check this.

5. Compute d ≡ e−1 mod ϕ(n)

e is often chosen to be 3, 17 or 65537 depending on key length. These are
primes, have a low Hamming Weight and a short bit length which makes the
encryption more efficient. In the binary case, the Hamming Weight of an integer
is the number of bits that have the value 1 in the binary representation of the
integer. This together with the short bit length are important factors as modular
exponentiation often is done using the square-and-multiply algorithm which will
be described later.

4.2 General optimizations done
Calculating the modular exponentiation is an expensive operation. One of the
reasons is the modulo operation. We need to calculate the remainder after a
division. This means that we will do a trial division to get the quotient which
we will then use to calculate the remainder. The integers involved are also large,
typically between 1024 and 4096 bits. Reducing the size of these numbers and
increasing the speed of the modular exponentiation is necessary to use RSA in
real time applications.
Decrypting is a more expensive process than encrypting. The reason for this is
because the exponent e in the public key is usually not larger than 65537 while
the exponent d in the private key can be as large as the key size. So for a key
size of 1024 bits the maximum value of d is 21024 − 1. It is because of this that
decrypting is much more expensive than encrypting. We will primarily discuss
the decrypting aspect in the following chapters just because of this reason. All
optimizations but the Chinese Remainder Theorem optimization will be applicable
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for both encrypting and decrypting though.
There are a few optimizations that are done in almost all RSA implementations,
both sequential and parallel ones. We will here go through the process of using
these to calculate a modular exponentiation. We will later in the thesis go through
the steps in a more detailed way.
Say that we want to decrypt the cipher c by calculating m = cd mod n. The
process is as follows:

1. We implement and use a multiprecision system. This is because the integers
used in the modular exponentiation are too large for normal data types which
usually only support a maximum of 64 bits.

2. We then reduce the size of d and n from k bits to k/2 bits by using the
Chinese Remainder Theorem together with Fermat’s little theorem. This
also splits the modular exponentiation into two modular exponentiations
which gives us more parallelism.

3. We reduce the amount of modular multiplications to do by using the square-
and-multiply method. With this we can decrease the maximum amount of
modular multiplications from 2k−1 down to k where k is the number of bits
in the integers.

4. We reduce the calculation cost of each modular multiplication. This is done
by using Montgomery reduction. Montgomery reduction removes the need
of doing a trial division when doing the modulo operation by converting
the integers to montgomerized form where we can choose which modulus we
want to use. We choose a modulus which is a power of two which means that
all modulo and division operations will be just bitmasking and bitshifting.

We will now go through each of these steps in more detail.

4.2.1 Multiprecision system
The integers used in these calculations are larger than 1024 bits which means that
we cannot represent them using normal program integers. Instead we use a mul-
tiprecision system where the only limit is the memory of the GPU.
A multiprecision system is defined as a string of numbers d1, d2 · · · dn that denotes
the decimal number d1b

n−1 + d2b
n−2 · · · dnb

0 where 0 ≤ di < b and the only limit
for n is the memory of the host system. The last part is the important one which
makes it a multiprecision system.
We want to use the largest base possible in our implementation to use the capa-
bilities of the GPU in the most efficient manner. The largest possible integer in
OpenCL has a size of 64 bits so the largest base we can use is 264 and it is the
base which we will use.

4.2.2 Chinese Remainder Theorem
The terms d and n in Equation 4.2 contribute a lot to the complexity of the
encryption and decryption. Reducing the size of these two variables would give us
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a lot in terms of speed.
The Chinese Remainder Theorem [16] does this. It is a way to break up a modulo
operation into multiple modulo operations with smaller numbers. The more factors
of the modulus we have, the more parts we can break the operation into. In this
thesis we only use two factors of the modulus which means that we will only split
the modulo operations into two. Therefore the following explanation will only
use the special case of having two factors. A more indepth description and a
description of using more than two factors can be found in Johann Großschädls
paper on using the Chinese Remainder Theorem in RSA [10].
The general process to will be as follows:

1. We use the two factors p and q to split the modular exponentiation. Instead
of doing a modular exponentiation using n, we will do two separate modular
exponentiations using p and q.

2. We will also reduce the exponent d by applying Fermat’s little theorem [16]
on the two resulting modular exponentiations.

3. We will solve the two modular exponentiations separately.

4. We will then use the two results to calculate the final answer.

The character k will be used to denote the number of bits in one block of input,
which is the same as the number of bits in the public and private keys.
This theorem assumes that we have the factors of the modulus n which are p and
q in the case of the second form of the private key seen before. This also means
that it can only be used while decrypting as we do not know the factors of the
modulus when doing public encryption. The theorem is a way of solving equations
of the form given in Equation 4.3.{

x ≡ a1 mod n1

x ≡ a2 mod n2
(4.3)

We will use this to rewrite Equation 4.2 into Equation 4.4.{
m ≡ cd mod p
m ≡ cd mod q

(4.4)

Notice that we now calculate c mod p and c mod q instead of c mod n, as n =
p · q. This means that we can do modulo calculations in k/2 bits instead of k bits
which will make the calculations a lot faster.
We are now going to create a running example, to illustrate the steps. Say that
we want to calculate 15698621197377 mod 2639387. We know the factors of the
modulus, which are p = 1693 and q = 1559. We can then rewrite our problem as:{

m ≡ 15698621197377 mod 1693
m ≡ 15698621197377 mod 1559

(4.5)
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Before doing anything more here, let us look into what the three terms dP ,
dQ and qInv in the second private key form are. The mathematical definition is
given below.

• dP = d mod (p− 1)

• dQ = d mod (q − 1)

• qInv = q−1 mod p

For our running example this would mean:

• dP = d mod (p− 1) = 1133

• dQ = d mod (q − 1) = 833

• qInv = q−1 mod p = 518

These values will be used in the optimizations done below.
We have shown how to reduce the size of the modulus n but we also want to reduce
the size of the exponent d. This can be done by also using Fermat’s little theorem
which states that given a prime z and an integer a, the number az−a is an integer
multiple of z. This can also be written as az ≡ a mod z.
Something that follows from this given that the positive integers x and y fulfill
x ≡ y mod (z − 1) is that for every integer a we have ax ≡ ay mod z.
So given that we have dP = d mod (p−1), we can rewrite (cd mod p) to (cdP mod
p). The same can be done for the q factor.{

m ≡ cdP mod p
m ≡ cdQ mod q

(4.6)

This is the biggest gain from using CRT. We managed to reduce the exponents
from a maximum of k bits down to a maximum k/2 bits. We can also do these
two k/2 modular exponentiations in parallel, which is especially good for our GPU
implementation.
In our example this would mean:{

m ≡ 15698621133 mod 1693
m ≡ 1569862833 mod 1559

(4.7)

And if we calculate the two expressions in the system above we get:{
m ≡ 826 mod 1693
m ≡ 1217 mod 1559

(4.8)

So after having calculated both modular exponentiations in Equation 4.6 we
will need to obtain m.
Let us first show the formal definition. We want to solve for x in an equation in
the form given in Equation 4.3. First let [a−1]b denote the multiplicative inverse
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of a mod b given by the Extended Euclidian algorithm [16]. The solution to the
system given in Equation 4.3 is then given in Equation 4.9.

x ≡ a1n2[n2
−1]n1 + a2n1[n1

−1]n2 (4.9)
Another way to write this in the terms we have is as follows. Let us set mp =

cdP mod p and mq = cdQ mod q. We can then obtain m by using Algorithm 12.

Algorithm 12 Calculate m given m1 and m2.
Input: mp, mq, p, q, qInv.
Output: m
h = (mp −mq) · qInv mod p
m = mq + q · h
return m

In the case of our example, this gives us h = ((826− 1217) · 518) mod 1693 =
622 which will give us m = 1217 + 1559 ∗ 622 = 970915 which is the answer to
15698621197377 mod 2639387.

4.2.3 Square-and-multiply
Doing modular exponentiation is an expensive operation, and as d can be as large
as the key length, for example 2048 bits, doing modular exponentiation the naive
way is unfeasible. The standard way of doing it is by using the square-and-multiply
algorithm instead. See Knuth [14] for a more in-depth description. The square-
and-multiply algorithm uses two following mathematical properties to speed up
the calculation:

1. xm =
{
x · (x2) m−1

2 , if m is odd
(x2) m

2 , if m is even

2. (a · b) mod c = ((a mod c) · (b mod c)) mod c

Let us say we want to calculate 59 mod 11. We could do this the naive way
which would lead to 8 modular multiplications. Or we could first rewrite it using
the first attribute above:

(52 · 52 · 52 · 52 · 51) mod 11

This would mean that we only need five multiplications. One to calculate 52 and
the other four to multiply the factors together. We would also only need one
modulo operation. We can do even better by rewriting the expression to :

(54 · 54 · 51) mod 11

Now we only need four multiplications. Two to calculate 54 and two to multiply
the factors together. We also need to do a modulo operation.
It can also be written as:

(58 · 51) mod 11
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This would give us the same amount of operations. The problem with the above is
that we do modulo arithmetic. The multiprecision system has an upper limit and
will overflow if the integers are too big. The multiplications would overflow before
the modulo operation was done. Therefore we need to use the second attribute
mentioned above to rewrite the expression a little more:

((58 mod 11) · 51) mod 11

We would then need to precalculate:

58 mod 11 = ((54 mod 11) · (54 mod 11) mod 11)

This means that we need to precalculate:

54 mod 11 = ((52 mod 11) · (52 mod 11) mod 11)

This also means that we need to precalculate:

52 mod 11 = (5 · 5 mod 11)

Each precalculation is one modular multiplication which means that we end up
doing a total of four modular multiplications instead of the 8 that we mentioned
in the beginning. Given in an algorithmic way it would be done as follows:

1. x = 5

2. Calculate x2 = (x · x) mod 11

3. Calculate x4 = (x2 · x2) mod 11

4. Calculate x8 = (x4 · x4) mod 11

5. Calculate 59 mod 11 = (x · x8) mod 11
Another way to look at this is to look at the binary form of 9 which is 10012.

Compare this to what we calculated above, but written in the following form:

((1 · 58) · (0 · 54) · (0 · 52) · (1 · 51)) mod 11)

Each bit in the binary form of 9 is combined with the exponent of the value of the
position of the bit to form the above expression. An algorithmic way of writing
this algorithm can be seen in Algorithm 13.
The expected number of modular multiplications needed using this method is given
by 3j

2 where j is the amount of bits in the integers. This is a drastic reduction
from the naive method. For example in the case of 2048 bits the worst case for
the square-and-multiply algorithm is 2 · j = 4096 modular multiplications. The
worst case for the naive algorithm would be 24096 − 1 modular multiplications.
Also, as long as the exponents have the same amount of bits, the values of them
do not change the execution time that much. This gives the algorithm stable time
behaviour such that we can predict more accurately how long time it will take to
encrypt and decrypt. The reason that we wanted a low amount of bits and a low
Hamming Weight of the exponent e is because of this algorithm. A low number of
bits mean that we will do less modular multiplications. And we do one modular
multiplication for each bit set to 1 in the exponent, so a low Hamming Weight
means less modular multiplications.
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Algorithm 13 Calculate ge mod m
Input: g, m and a positive integer e = (ej , ej−1 . . . e1, e0)2.
A = 1
for i = j down to 0 do

A = A2 mod m
if ei = 1 then

A = A · g mod m
end if

end for
return A

4.2.4 Montgomery reduction
Modular multiplication is a very expensive operation as described before. We
have reduced the size of the exponent d and the modulus n by using the Chinese
Remainder Theorem. We have also reduced the number of modular multiplications
needed in the modular exponentiation by using the square-and-multiply method.
We still have not solved the problem that the modular multiplication in itself is
expensive. As said before, the modulo operations requires a trial division which
we want to avoid.
Montgomery reduction [16] is a way to avoid this trial division. It is used to
calculate large modular multiplications in an efficient manner. It uses a certain
attribute of the modulo operation to accomplish this. Say that we have an integer
in base 10, for example 7523. Then:

1. 7523 mod 1000 = 523

2. 7523 mod 100 = 23

3. 7523 mod 10 = 3

If the modulus is an integer of the form 10x where x is a positive integer,
then the modulus operation becomes a mask operation. We can just mask away
everything but the x rightmost digits.
The same can be done in base 2. Say that we have 214 which is [11010110]2.
Calculating 214 mod 16 = 214 mod 24 just means bitmasking away everything
but the 4 rightmost bits. This is much cheaper than doing a trial division. It is
also something that takes constant time on the GPU, where we can parallelize this
operation using one thread for each word in the integer. The problem is how to
rewrite a modular multiplication so that we can change the modulus to an integer
in the form 2x. Note that we use 264 as a base in our implementation as mentioned
in Section 4.2.1, so we actually want an integer in the form 264x . The modulus we
choose can be expressed both in the form 2x and in the form 264x . The explanation
will continue with the assumption that we use base 2.
The general process of applying Montgomery reduction is as follows:

1. Decide which modulus we want to use. In our case this is a modulus which
can be written in the form 2x.
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2. Convert the involved integers to montgomerized form. This is the form where
we will carry out our montgomery reduction and Equation 4.10 details how
the conversion is done.

3. Use a special algorithm to calculate the modular multiplication. Note that
we can also do modular exponentiation here by repeating the modular mul-
tiplication.

4. Convert the result back to normal form.

Say we want to calculate c = a · b mod m. First we need to pick an integer R.
This will be our new modulus used when doing calculations in the montgomerized
form, which means that we want it to be an integer of the form 2x. The only
requirements are that R and m are coprime and that R is larger than our current
modulus m. In other words, gcd(R,m) = 1 and R > m. In our case the first
requirement is easy. We know that m is a prime. Also, R is a power of two and m
will be uneven as it is a prime. The second requirement can also be fulfilled easily.
If we assume that all calculations are done using integers that are k bit in size,
then we just need to choose an integer which uses more than k bits. R = 2k is a
good choice. It fulfills the requirements and is an integer in the form 2x which we
wanted. We will now convert our input a and b into montgomerized form. This
can be done using Equation 4.10.

ā = a ·R mod m where gcd(R,m) = 1,m < R (4.10)

We will call ā above the montgomerized form of a.
So now we have our input a and b in the montgomerized forms ā and b̄. Sadly the
next step involves more steps than just a modulo operation. We will compute the
modular multiplication by calculating ā · b̄ · R−1 mod m. We must first calculate
two additional values, R−1 and m′.

• R−1 is defined by the equation R · R−1 ≡ 1 mod m and is calculated with
the Extended Euclidian algorithm.

• m′ is defined by the equation R·R−1−m·m′ = 1 and can easily be calculated
as R, m and R−1 are known.

Now we can calculate ā · b̄ ·R−1 mod m by using Algorithm 14.
The good thing about this is that the most expensive operations in Algo-

rithm 14, the division and modulo, is done by R. So for the modulo operation
we will just mask away all but the k rightmost bits, while in the division we will
just shift the integer k bits to the right. The rest is multiplications, additions and
subtractions which are cheaper than the trial division that we would otherwise
need.
Now we have the result in montgomerized form, let us call it c̄. We need to turn
this back into our normal form using Equation 4.11.

c = c̄ ·R−1 mod m where gcd(R,m) = 1,m < R (4.11)
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Algorithm 14 Montgomery reduction

Input: ā, b̄
R−1 such that R ·R−1 ≡ 1 mod m
m′ such that R ·R−1 −m ·m′ = 1

Output: ā · b̄ ·R−1 mod m
T = ā · b̄
M = T ·m′ mod R
U = (T +M ·m)/R
if U ≥ m then

return U −m
else

return U
end if

We now have our result c = a · b mod m. Note that we need a few values to
use Algorithm 14 namely R−1 and m′. Both of them can be precomputed once for
each private key, which means that it is a low overhead when using this technique.
And as said before, if we choose R = 2k where k is the number of bits of the private
key parts p and q, then all divisions and modulo operations in Algorithm 14 can
be done using bit masking and bit shifting.
We still have a problem though. We need to do modular multiplications with
the modulus m when converting to and from the montgomerized form, see Equa-
tion 4.10 and Equation 4.11. These can also be done using Montgomery reduction.
We write the Montgomery reduction as function Mont(ā, b̄) = ā · b̄ · R−1 mod m.
This function will be calculated using Algorithm 14 so that the modulo operation
with regards to m will never be carried out. It then follows that:

Mont(a,R2) = a ·R2 ·R−1 mod m = a ·R mod m = ā

This is equal to Equation 4.10. So to calculate ā we just calculate ā = Mont(a,R2).
In this way we avoid the trial division by m. R2 can be precalculated once for each
private key. And because of the rules of modular multiplication we can actually
calculate R̄ = R2 mod m and use that instead of R2, so ā = Mont(a, R̄).
Similarly, we can go from montgomerized form using Montgomery reduction by
calculating:

Mont(c̄, 1) = c̄ · 1 ·R−1 mod m = c̄ ·R−1 mod m = c

This is equal to Equation 4.11. So c = Mont(c̄, 1).
Note that because we have used the Chinese Remainder Theorem to split our
modular exponentiation into two modular exponentations we have two modulus,
p and q. This means that we get two R̄ values, R̄p and R̄q.
Say for example that we want to calculate 372 ∗ 385 mod 919 in base 10. We
want to skip doing expensive modulo operations and would rather prefer to use
Algorithm 14. The process would be as follows:
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1. We need a new modulus R. We choose the number 1000 as that means all
modulo and division operations will only be masking and shifting. It also
fulfills the requirements R > m and gcd(R,m) = 1.

2. We calculate R̄ = R2 mod m = 10002 mod 919 = 128. We also calculate
R−1 = 295 and n′ = 321.

3. We then convert the two multiplication factors a = 372 and b = 385 to
montgomerized form. ā = Mont(a, R̄) = 724 and b̄ = Mont(b, R̄) = 858.

4. We calculate c̄ = Mont(ā, b̄) = 283 using the Montgomery reduction in
Algorithm 14.

5. We convert c̄ = 283 back to normal form by calculating c = Mont(c̄, 1) = 775
which is the result of 372 ∗ 385 mod 919.

The next step is to incorporate the Montgomery reduction into the square-and-
multiply algorithm where we are doing the modular multiplications. Let us declare
the function MontReduce(ā, b̄,m) which does Montgomery reduction with the in-
puts ā, b̄ and the modulusm as seen in Equation 14. We assume that the rest of the
needed values are precomputed and known by the function. Incorporating Mont-
gomery reduction into the square-and-multiply algorithm given in Section 4.2.3
above we get Algorithm 15.

Algorithm 15 Calculate ge mod m
Input: g, m, R2 mod m and a positive integer e = (ej , ej−1 . . . e1, e0)2.
Ā = MontReduce(1, R2 mod m,m)
Ḡ = MontReduce(g,R2 mod m,m)
for i = j down to 0 do

Ā = MontReduce(Ā, Ā,m)
if ei = 1 then

Ā = MontReduce(Ā, Ḡ,m)
end if

end for
A = MontReduce(Ā, 1,m)
return A

In general it is the same as the square-and-multiply defined at Algorithm 13.
The differences are as follows:

• We begin by converting the number 1 and our input g to montgomerized
form which gives us Ā and Ḡ. The rest of the calculations are done in the
montgomerized form.

• We then do a Montgomery reduction to calculate A2 in montgomerized form.

• Every time we find a bit which is set to 1 we calculate the A · g in the
montgomerized form using Montgomery reduction.
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• We end the algorithm by converting our montgomerized result Ā back into
the normal form which gives us the result A.

So first we transform the data to montgomerized form. We then run the algo-
rithm but replace all modular multiplications with Montgomery reduction. Then
we transform the data back to our normal form before returning it.
The main thing to note is that when calculating a modular exponentiation using
Montgomery reduction we only need to convert the input to montgomerized form
once. We also only need to convert the result back to normal form once.

4.2.5 Barret reduction
So can we use Montgomery reduction for all the modular operations we do? The
answer is yes, but that it is not always worth it. The reason is that it is expensive
to convert back and forth between normal form and the montgomerized form. So
when it is only a simple modular multiplication and not a modular exponentiation
it is usually not worth it.
Two examples can be found in the CRT calculations given in Section 4.2.2. In
Equation 4.6, c is an integer of k bits, while p and dP have k/2 bits. We want all
the integers in those equations to be k/2 bits in size.
We solve this by calculating c mod p and c mod q first. The result from these
operations will be an integer of k/2 bits. We then use the square-and-multiply
algorithm when all values are of k/2 bits. We could do these modulo operations
using Montgomery reduction, but transforming the values to montgomerized form,
calculating the value and transforming it back takes longer time than doing a
normal modulo operation.
Another example is in Algorithm 12. We do a single modular multiplication with
p which is more efficient to do using normal modulo computation because of the
same reasons as given above.
An algorithm called Barret reduction[16] is implemented for this modulo operation,
see Algorithm 16. It calculates x mod m where x has the double amount of bits
as m which is exactly our situation in the case of c mod p and c mod q.

Algorithm 16 Calculate x mod m
Input: Positive integers x = (x2k−1, . . . x1, x0)b,m = (mk−1 . . .m1,m0) and
µ = bb2k/mc.
q1 = bx/bk−1c, q2 = q1 · µ, q3 = bq2/b

k+1c
r1 = x mod bk+1, r2 = q3 ·m mod bk+1, r = r1 − r2
if r < 0 then

r = r + bk+1

end if
while r ≥ m do

r = r −m
end while
return r

The while loop at the end runs a maximum of 2 iterations since 0 ≤ r < 3m.
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4.3 General parallelizations done
Many of the algorithms below use a variable called id. This is the id of the current
thread. This is something that is supplied by the OpenCL framework and does
not need to be calculated or given as an argument.
We will also use the term word. One word is one part of the multiprecision system.
So if we use a binary system each bit would be one word and if we use a system in
base 10 each word would be one digit. In our case each word is a number in the
range [0, 264 − 1] as our system uses a base of 264.
The term block will also be used. The input to RSA is usually symmetric keys.
These come in different sizes such as 1024, 2048 or 4096 bits. These keys are
usually referred to as blocks. So one block means one key in our case.
We will now describe the general parallelizations done.

1. The first parallelization is done across blocks. As described above, RSA
is used to encrypt and decrypt symmetric keys mostly. This means that
the input is already divided into blocks of 1024, 2048 or 4096 bits. So the
first parallelization is simply launching these blocks at the same time using
multiple threads. We will launch one thread for each word in each block.

2. The second parallelization is done per block. We will split each block into
two sub-blocks using CRT. These sub-blocks will be decrypted in parallel
using multiple threads. The threads will be split in half where each half
decrypts one sub-block.

3. The third parallelization is done per sub-block. Each sub-block has multiple
threads which can be used to decrypt the sub-block. We use these threads
by implementing parallel versions of the operators used in the algorithms in
Section 4.2. These parallel implementations usually works by having each
thread be responsible for one word. So we have parallel implementations of
addition, subtraction, multiplication and so on which do calculations using
the multiprecision system that we have defined.

Let us go through an example with the parallelizations done so far. We will use
the second form of the private key shown in Section 4.1.3. We have a group of
l blocks that we want to decrypt, let us call them c1, c2 · · · cl. Each of these are
4096 bits in size. This means that our private key components n and d are also
4096 bits in size. The two modulus factors p and q will then be 2048 bits in size.
The two CRT exponents dP and dQ will also be 2048 bits as well as the CRT
coefficient qInv.

1. We will first parallelize these l blocks on data level. All blocks will be run in
parallel. So we calculate how many words we will need in base 264 for each
block. The blocks are 4096 bits in size and each word is 64 bits, this means
that we need 64 words per block. We want to use one thread per word so
we launch a total of 64l threads in parallel. Each block is handled similarly
so we will only follow one of them through the process. The block we will
follow will be c1.
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2. We will begin by splitting the block into sub blocks using CRT which will
give us two different modular exponentiations to solve: m1p = cdP

1 mod p
and m1q = cdQ

1 mod q. Let us also split the 64 threads we have for this
block into two parts; t1p and t1q. The 32 threads in t1p are responsible for
calculating m1p while the 32 threads in t1q are responsible for calculating
m1q. All the integers in these equations are 2048 bits in size except c1 which
is 4096 bits in size. We would like all of the integers to be 2048 bits. That
would mean that we would only need to use a multiprecision system with
32 instead of 64 words in the rest of the calculations. Therefore we let the
threads in t1p use Barret reduction to calculate c1p = c1 mod p. The threads
in t1q will do the same to calculate c1q = c1 mod q. We can now rewrite the
two modular exponentiations to m1p = cdP

1p mod p and m1q = cdQ
1q mod q.

All the integers are now 2048 bits in size and we can continue.

3. The threads in t1p will use the square-and-multiply algorithm together with
Montgomery reduction as seen in Algorithm 15 to solve the equation m1p =
cdP

1p mod p. The threads in t1q will do the same to solve the expression
m1q = cdQ

1q mod q.

4. We now have the two parts m1p and m1q of the final decrypted message m1.
The threads in tp will use Algorithm 12 to join these two parts together to
form the final decrypted message m.

Note that in the last step we only use the threads in tp. This means that half the
threads will be idle. This is not efficient. The way we solve it is to use a separate
kernel for this last step which only uses half the amount of threads for each block.
We will write more about this in a later chapter.
As seen in the example above we have multiple threads available when decrypting
each sub block. We had 32 threads to use when calculating m1p and 32 threads to
use when calculatingm1q. We use these threads by parallelizing the operators used
in the CRT, square-and-multiply, Barret reduction, and Montgomery reduction
calculations.
The rest of the chapter will describe how we parallelize the most used operators in
these calculation. Most of these implementations are parallelized versions of the
operations found in the Handbook of Applied Cryptography [16].

4.3.1 Add carries and overflows
Most of the algorithms for arithmetic needs to be able to handle carries or over-
flows of words. For example the multiplication 6 · 8 = 48. But suppose that our
multiprecision system only had one word in base 10 to use. The result of the
multiplication would then be 8, with an overflow of 4. To get the correct result we
need to calculate this overflow and add it to the next word in the system. These
overflows are generally referred to as carries when used in this way.
There are OpenCL functions which calculate and return the overflow from addi-
tions and multiplications. These will be referred to as carryAdd and carryMultiply
in the pseudocode. Both overflows and carries will henceforth be referred to as
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carries to simplify the explanations.
The carries are used to build a carry array. The result of an addition or multipli-
cation between two n word integers will maximally be 2n words long. The carry
array will therefore also be 2n in size. This carry array will then be added to the
result in the end of the operation, where the result will also be 2n words long.
This is done often, so the function will be presented here and then only referred to
when it is used. Note that the adding of carries can overflow, this means that the
multiprecision system was too small for the calculation and this situation needs to
be detected. See Algorithm 17 for the function definition.

Algorithm 17 Add carries c to x and output the result in result.
function AddCarries(c, x, result)
Input: Positive integers c = (c2n, . . . c1, c0)264 , x = (x2n−1, . . . x1, x0)264

and id = id of thread
Output: True if the addition did not overflow, false if it did overflow.

successF lag = 0
while c! = 0 do

overflowV ar = carryAdd(c[id+ n], x[id+ n])
result[id+ n] = c[id+ n] + x[id+ n]
c[id+ n] = 0
c[id+ n− 1] = c[id+ n− 1 + overflowV ar
overflowV ar = carryAdd(c[id], x[id])
result[id] = c[id] + x[id]
c[id] = 0
if id == 0 then

successF lag = 1− overflowV ar
else

c[id− 1] = c[id− 1] + overflowV ar
end if

end while
return successF lag

end function

4.3.2 Addition
Parallel addition in its core is to let every thread take care of the addition of one
pair of words each. So the first thread adds the first word of both blocks together,
the second adds the second word of both blocks together and so on. The carries
generated when doing these word additions then needs to be added to the result.
We implemented this as a three step process. First all words are added in parallel
using the carryAdd operation which returns the carry from the addition. These
are used to build the carry array. Then the words are added to each other ignoring
carries. The carries are then added to the result using the AddCarries function
defined at Algorithm 17. See Algorithm 18 for pseudocode of the addition.



4.3 General parallelizations done 49

Algorithm 18 Calculate x+ y and output the result in result.
function Add(x, y, result)
Input: Positive integers x = (xn−1, . . . x1, x0)264 ,
y = (yn−1, . . . y1, y0)264 and id = id of thread

Output: True if the addition did not overflow, false if it did overflow.
overflow[id+ n− 1] = carryAdd(x[id], y[id])
tempResult[id] = x[id] + y[id])
return AddCarries(tempResult, overflow, out result)

end function

4.3.3 Subtraction
Subtraction is very similar to addition. The only difference is that we get borrows
instead of carries. Subtraction is also done in a three-step process. First we
calculate if any borrowing is needed by comparing the size of the words. We
use this information to build a borrow array. We then borrow where needed and
subtract accordingly. We then need to subtract the borrow array from our result.
This algorithm only handles unsigned data, which means that it can underflow.
This can detected if the most significant word needs to borrow. See Algorithm 19
for pseudocode.
There are some cases where the subtraction will underflow. Those cases only
appear in situations where we are doing modular arithmetic though. So if we
calculate (x−y) mod p and the subtraction underflows we can handle it by instead
calculating (p− (0− (x− y))) mod p.

4.3.4 Multiplication
Multiplication is the most complicated of the operations. It is best explained by
looking at Figure 4.1 while reading.
It is a variant of long multiplication. We multiply all words of the first integer
with all words of the second to create two matrices. One with the preliminary
result, called loword, and one with the overflow, called highword. Each thread is
responsible for one column in the loword matrix and one column in the highword
matrix. These threads are responsible for adding their respective columns to the
final result.
A carry array is calculated while adding. This will be sent together with the inter-
mediate result to the AddCarries function described in Algorithm 17. The result
of that operation is then returned. Note that the multiplication cannot overflow,
the maximum size of the result when multiplying two n word integers is 2n. Pseu-
docode is given at Algorithm 20. The operation called carryMultiply is used to
retrieve the carry, also known as the highword result of each multiplication. This
implementation is inspired by the multiplication description that can be found in
the SSLShader [11].
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Algorithm 19 Calculate x− y and output the result in result.
function Subtract(x, y, result)
Input: Positive integers x = (xn−1, . . . x1, x0)264 ,
y = (yn−1, . . . y1, y0)264 and id = id of thread

Output: True if the subtraction did not underflow, false if it did underflow.
tempResult = |x[id]− y[id]|
if y[id] > x[id] then

borrows[id+ n− 1] = 1
tempResult = 264 − tempResult

end if
result[id] = tempResult
while borrows! = 0 do

if result[id] == and borrows[id] == 1 then
didBorrow = 1
result[id] = 264 − 1

else
didBorrow = 0
result[id] = result[id]− borrows[id]

end if
if id == 0 and didBorrow 6= 0 then

return false
end if

end while
return true

end function
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Figure 4.1: Calculation of 329 ∗ 435 = 143115 in base 10. Adding of carries is not
included.

Note that the algorithm described at Algorithm 20 requires a lot of memory
to store the loword and highword matrices. The optimized implementation uses a
single loop and interleaves all calculations to avoid this memory cost.

4.3.5 Division by R

The only division we need to do is to divide by R as we are using Montgomery
reduction. We know that the value of R is 2k where k is the number of bits in
the CRT factors. This can be done by simply shifting the integer n words to the
right. This can be seen in the pseudocode given at Algorithm 21. Note that the
input is an integer with 2k bits.

4.3.6 Modulo by R

Another operation that is always done by R, if we are not using Barret reduction,
is the modulo operation. It is simply done by masking the input so that the n
highest words are set to 0. See pseudcode at Algorithm 22. Note that the input
is an integer with 2n words.
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Algorithm 20 Calculate x · y.
function Multiply(x, y)
Input: Positive integers x = (xn−1, . . . x1, x0)264 ,
y = (yn−1, . . . y1, y0)264 and id = id of thread

Output: The result result = (result2k−1, . . . result1, result0)264

for i = n− 1 down to 0 do
lowWord[i] = x[n− 1− i] ∗ y[id]
highWord[i] = carryMultiply([n− 1− i], y[id])

end for
for i = n down to 0 do

carries[i+ id− 1] = carries[i+ id− 1] +
carryAdd(result[i+ id], lowWord[n− i− 1])

tempResult[i+ id] = tempResult[i+ id] + lowWord[n− i]
end for
for i = n− 1 down to 0 do

carries[i+ id− 1] = carries[i+ id− 1] +
carryAdd(result[i+ id], highWord[n− i− 1])

tempResult[i+ id] = tempResult[i+ id] + highWord[n− i]
end for
if id 6= 0 then

carries[id− 1] = carries[id− 1] +
carryAdd(result[id], lowWord[n− 1])

end if
tempResult[id] = tempResult[id] + highWord[n− 1]
AddCarries(tempResult, carries, out result)
return result

end function

Algorithm 21 Calculate x/R.
function DivideByR(x)
Input: positive integers x = (x2n−1, . . . x1, x0)264 and id = id of thread
Output: The result result = (resultn−1, . . . result1, result0)264

result[id] = 0
result[id+ n] = x[id]
return result

end function

Algorithm 22 Calculate x mod R.
function ModuloByR(x)
Input: positive integers x = (x2n−1, . . . x1, x0)264 and id = id of thread
Output: The result result = (resultn−1, . . . result1, result0)264

result[id] = 0
result[id+ n] = x[id+ n]
return result

end function
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4.4 GPU specific parallelizations and optimiza-
tions

4.4.1 Multiprecision operations
All multiprecision operations are done in parallel where each thread is usually
responsible for one word. This means that the time taken does not increase that
much with the number of words in the integers. Instead the number of needed
threads will increase. More threads per block means that less blocks will be calcu-
lated at the same time in the GPU, as each block needs more resources. The time
needed for each block will only increase slightly because of the additional thread
synchronizing needed.

4.4.2 Kernel handling
There are two different kernels being used. The first one is responsible for the
modular exponentiation. It will do the following:

1. Transfer all needed data from global to local memory.

2. Split the block using CRT.

3. Do modular exponentiation on the sub-blocks.

4. Write the split result to global memory.

The second kernel is responsible for joining the split result together again:

1. Transfer the split result to local memory.

2. Join it together using Algorithm 12.

3. Write the result to global memory.

The calculations are now done, and the result is stored in the GPU global memory.
There are multiple reasons for using two kernels instead of one:

• The modular exponentiation kernel uses one thread for each word in the
block. This means that the number of threads used, given number of blocks
i and number of words per block n, is i · n. The second kernel uses half the
amount of threads per block. So the number of threads used by the second
kernel is i · n/2.

• The kernel would need to read more data into local memory, which is bad
when we want to maximize the kernel occupancy.

• The thread divergence would be higher. In the square-and-multiply algo-
rithm the thread divergence is decided by the exponent used. If the whole
workgroup uses the same modulus and exponent the thread divergence will
be non-existent. This is optimal and would not be the case if we only used
one kernel.
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• Less kernel complexity. Each kernel has less input and less code, which
makes it easier to test and optimize.

One drawback of the multiple kernel approach is that there will be more global
memory accesses. First the first kernel reads and writes to global memory. Then
the second kernel also needs to read and write to global memory. It will still be
faster though, mainly because of the different amount of threads launched and
thread divergence.

4.4.3 Memory handling
As much calculations as possible are carried out on private memory. The interme-
diate results are stored in the private memory for as long as possible before they
are transferred to the local memory. Global memory is only accessed at the start
and end of each kernel and always in a coalesced manner.

4.4.4 Workgroup optimization
OpenCL executes threads in wavefronts of size 64. This means that we always
want the workgroups to be multiples of 64. This is achieved by adjusting the
number of blocks that each workgroup will process.
We also want to minimize local memory storage and thread divergence. This is
achieved by letting all threads in a workgroup work with the same modulus. The
input block will be divided into two factors using the Chinese Remainder Theo-
rem, one part which will be calculated modulo p, and one which will be calculated
modulo q. Each workgroup will only use one of these modulus in their calculations.
An example of these principles is as follows:
We want to decrypt 4 blocks of input which have a key size of 2048 bits. The
number of threads launched using the modular exponentiation kernel will be 128.
These will be divided into two workgroups of 64 threads. Let us call these work-
group 0 and workgroup 1. Each workgroup calculates 4 modular exponentiation
in parallel using 16 threads for each one. Workgroup 0 will calculate the first CRT
factor, while workgroup 1 will calculate the second. So the calculations will be
carried out as follows:

• Thread 0-15 in workgroup 0 will calculate the first CRT factor of block 0.

• Thread 0-15 in workgroup 1 will calculate the second CRT factor of block 0.

• Thread 16-31 in workgroup 0 will calculate the first CRT factor of block 1.

• Thread 16-31 in workgroup 1 will calculate the second CRT factor of block
1.

• Thread 32-47 in workgroup 0 will calculate the first CRT factor of block 2.
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• Thread 32-47 in workgroup 1 will calculate the second CRT factor of block
2.

• Thread 48-63 in workgroup 0 will calculate the first CRT factor of block 3.

• Thread 48-63 in workgroup 1 will calculate the second CRT factor of block
3.

Using this layout means that the threads in each workgroup will have as little
thread divergence as possible.
The workgroup layout for the second kernel is different. This will also be padded
so that each workgroup uses at least 64 threads. But we only need half the amount
of threads as the modular exponentiation kernel. We will launch 64 threads in only
one workgroup where this workgroup is responsible for all 4 input blocks. It will
look as follows:

• Thread 0-15 will join together the CRT factors of block 0.

• Thread 16-31 will join together the CRT factors of block 1.

• Thread 32-47 will join together the CRT factors of block 2.

• Thread 48-63 will join together the CRT factors of block 3.

4.5 Experimental Evaluation
4.5.1 CPU vs GPU implementation
The most interesting values for key length today are 1024, 2048 and 3072 bit. As
of NIST Recommendations [24], a key size of 1024 is not safe after 2010. A key
size of 2048 is recommended and deemed secure until 2030 where a key size of
3072 bits is needed to be secure. Larger key sizes are projected to be needed after
that. The following data will focus on 2048 bit and 4096 bit encryption. 2048 bit
because it is the key size deemed secure right now, and 4096 bit to show how it
may hold up in the future. There are still implementations that use 1024 bit as
the key size though, so we will include data on that too.
The CPU implementation tested is from the OpenSSL [27] library. It is a widely
used library that is deemed to be among the fastest and also placed overall fastest
in a comparison done by Bingmann [3].
The AMD GPU used in these tests is an ASUS Radeon R9 280x-DC2T-3GD5 with
32 Compute Units running at 970 MHz. The CPU in this computer is an Intel
i3570k and the amount of RAM is 8 GB. The OpenCL version used is 1.2.
The Nvidia GPU is a Tesla M2050 with 14 Compute Units running at 1150 MHz.
This computer has 16 processors, each being an Intel Xeon E5520 running at 2.27
GHz, and the amount of RAM is 24 GB. The OpenCL version used is 1.1.
The CPU used in the testing is an Intel i3570k with 4 physical cores running at
3.4 GHz and the amount of RAM is 8 GB. Two implementations were tested using
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the OpenSSL library, one running on a single core, and one running on all 4 cores
using OpenMP.
The compiler used was g++ 4.8.1 with the O2 and msse2 flags. No extra OpenCL
flags were used when compiling the kernels.
All values include both the time taken to send the data to the GPU and the time
taken to retrieve the result.

Figure 4.2: Decryption using a 1024 bit key.

We see in Figure 4.2 that the single threaded CPU solution is the slowest,
which is no real surprise. The OpenMP implementation scales much better, but
not as good as the GPU solutions. The Nvidia GPU is faster than the AMD GPU
at input sizes which are lower than 512 which can be attributed to its higher clock
speed while the AMD GPU is faster at larger input sizes which can be attributed
to its higher amount of Compute Units. The CPU implementations are faster at
lower inputs. For input sizes below 256, the CPU OpenMP implementation is
the fastest one. Above that the GPUs are faster. Another important part is the
latency. The latency is the time it takes to get the first result back, which is the
same as the amount of time it takes to calculate one input.
We can see the latencies in Table 4.1a. These were measured by decrypting a
single block of input. We see that the CPU implementations are far ahead on
this part. On the other hand, the GPU implementations have higher throughput
as seen in Table 4.1b. This suggests that a combined solution is the best, where
different implementations are used based on the size of the input.
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Latency in ms
AMD GPU 36,01 ms
Nvidia GPU 19,76 ms
CPU Singlethreaded 0,8 ms
CPU OpenMP 0,8 ms

(a) Latency of 1024 bit decryption

Throughput in blocks/sec
AMD GPU 33700,28 blocks/sec
Nvidia GPU 12758,26 blocks/sec
CPU Singlethreaded 1526,59 blocks/sec
CPU OpenMP 5588,757 blocks/sec

(b) Throughput of 1024 bit decryption

Table 4.1: Latency and throughput of 1024 bit decryption

Latency in ms
AMD GPU 135,43 ms
Nvidia GPU 65,73 ms
CPU Singlethreaded 4,3 ms
CPU OpenMP 4,3 ms

(a) Latency of 2048 bit decryption

Throughput in blocks/sec
AMD GPU 4473,54 blocks/sec
Nvidia GPU 2450,51 blocks/sec
CPU Singlethreaded 238,99 blocks/sec
CPU OpenMP 826,74 blocks/sec

(b) Throughput of 2048 bit decryption

Table 4.2: Latency and throughput of 2048 bit decryption

Figure 4.3: Decryption using a 2048 bit key.

We see the same pattern in Figure 4.3 which uses a key size of 2048 bits. The
breakpoints are different though. The Nvidia GPU will be faster than the AMD
GPU for input sizes below 256, and the CPU OpenMP implementation will be the
fastest one for input sizes below 128.
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Latency in ms
AMD GPU 481,16 ms
Nvidia GPU 270,27 ms
CPU Singlethreaded 31,3 ms
CPU OpenMP 31,3 ms

(a) Latency of 4096 bit decryption

Throughput in blocks/sec
AMD GPU 528,12 blocks/sec
Nvidia GPU 305,994 blocks/sec
CPU Singlethreaded 31,71 blocks/sec
CPU OpenMP 116,35 blocks/sec

(b) Throughput of 4096 bit decryption

Table 4.3: Latency and throughput of 4096 bit decryption

The CPUs still have the lowest latency while the GPUs have the higher through-
put, which still points to a solution using both platforms.

Figure 4.4: Decryption using a 4096 bit key.

Using a key size of 4096 bit gives us the result that we see in Figure 4.4. The
Nvidia GPU will be faster than the AMD GPU for input sizes below 128, and the
CPU OpenMP is the fastest one when the input size is below 64.
The latencies and throughput follows the same patterns as before.
The reasons for the AMD GPU beating the Nvidia GPU in throughput are many.
The major reason is probably that the AMD GPU is more powerful when com-
paring the number of compute units and the frequencies of these compute units.
Another reason is that AMD takes OpenCL more into account when developing
their drivers while Nvidia is more concerned with CUDA. A third is that CUDA
uses a wavefront size of 32 threads instead of 64, which might mean that the Nvidia
card is not as specialized in handling wavefronts of size 64 as the AMD is.
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Figure 4.5: Decryption on 1024 blocks of input with different keysizes.

Figure 4.5 shows us the scaling of the implementations when the key size varies.
Decryption was done on 1024 blocks of input, and the key size was varied between
512 and 4096 bits. We see that the GPU implementations has the best scaling,
something we could also see in the values above.

4.5.2 GPU implementation vs SSLShader
As mentioned before, the fastest GPU implementation we could find of the RSA
algorithm is in SSLShader [11]. The multiplication algorithm used in this thesis is
made after the design described in the SSLShader paper. Their implementation is
written in CUDA and the GPU they use in their testing is a Nvidia GTX580 with
16 Compute Units running at 1544 MHz. Their results will be compared against
our implementation running on the AMD GPU used in this thesis.
The results in Table 4.4 and Table 4.5 show how much more optimization and

Key size 512 1024 2048 4096
SSLShader 1,1 3,8 13,83 52,46
Our impl. 13,06 36,01 135,43 481,17

Table 4.4: Latencies of decryption using different key sizes in ms.

work can be done on our implementation. The SSLShader is highly optimized,
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Key size 512 1024 2048 4096
SSLShader 322167 74732 12044 1661
Our impl. 146664 33700 4473 528

Table 4.5: Throughput of decryption using different key sizes in blocks/sec.

down to instruction-level. There is a lot more that can be done, such as using a
Constant Length Nonzero Window in the square-and-multiply algorithm which will
reduce the amount of modular multiplications by taking advantage of subsequent
zeros in the exponent, interleaving calculations based on domain knowledge, un-
rolling loops, minimizing divergence, minimizing local memory use, avoiding bank
conflicts and so on. These optimizations are not as major as the ones done in this
thesis, but they all add up to a faster implementation.
The graphs shown here focuses on the scaling with the number of input blocks
and the scaling with key size. There is also a small variation in performance based
on the individual keys. The most important factor is the Hamming Weight of the
exponents in the modular exponentiation. A low Hamming Weight means that
the square and multiply algorithm will do less modular multiplications. We did
not see a large change in runtime when testing with different randomized keys,
and all the comparisons between implementations in this chapter used the same
keys.

4.5.3 Stability and scalability of the GPU implementation
As seen in the figures in Section 4.5.1 the scaling with regards to key size is good
on the GPU. It scales better than the OpenMP CPU implementation does. There
are some limits to this scaling though. The GPU has a global memory which is
often smaller than the RAM of the CPU. This means that the GPU cannot work
on as much data at the same time as the CPU does. This will probably not be a
problem though. Using 4096 blocks of data, each being 4096 bits large, is about 2
megabyte. This is nothing compared to the memory size of GPUs today which is
in the order of gigabytes.
This GPU implementation assumes that it is possible to use one thread for each
word of the input, and that each CRT factor can be done by one workgroup each.
The maximum workgroup size in OpenCL is 256 threads, which means that the
largest block that one workgroup can process is 16384 bits.
There is also a limit in local memory. If we assume that we hit the upper limit of
256 threads in a workgroup the size of the local memory needed for the kernel using
the most local memory would be around 26 kilobytes. This would be enough even
for older GPUs which only have 36 kilobytes of local memory. So the hard limit
would be at 256 threads meaning that the maximum key size this implementation
can handle is 16384 bits.
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4.5.4 Portability
As mentioned in the previous section, the largest limit on portability would be
the workgroup size of the GPU. The second limit would be the local memory that
each Compute Unit has. A third limit would be the global memory of the GPU,
but that will probably not be a problem.

4.5.5 Ease of programming
This was more challenging than median filtering. The kernel was larger and the
algorithms involved were more complicated. The final kernel size was 971 lines.
This includes both kernels used and the functions they use.
One thing we did that helped a lot in the testing was to put the base used by
the multiprecision system as a C macro in the kernel. This means that we could
change from a base of 28 to a base of 264 easily. This is done by the preprocessor
in C and therefore does not interfere with the optimizations the compiler can do.
So the lowest base possible could be used for debugging while the base could be
increased after the debugging was done.
It was also easy to debug in the sense that we could send in single values and see
what output we got. We also implemented the RSA algorithm in C++ using the
Boost library. This meant that we could test run single parts of the algorithm
easily.

4.5.6 Test conclusions
All data suggests that a hybrid solution would be the best. We mentioned earlier
that servers communicating via the SSL protocol are a prime target for optimiza-
tion. One way to do it would be to let the CPU handle RSA encryptions and
decryptions until the queue of jobs has grown above a certain limit and then
process the queue in parallel using a GPU solution. This would also offload the
CPU, making it possible for the CPU to do other tasks while the GPU does the
encryption or decryption.

4.6 Challenges and benefits of porting this algo-
rithm to OpenCL

4.6.1 Challenges
The biggest challenge was getting all the local memory management correct. Bar-
riers are used to synchronize threads in the same workgroup when accessing local
memory, but they will also slow down execution. So we want to use as few as
possible without getting race problems. These problems can be hard to debug as
they do not always appear and often give different results every time they are run.
Another challenge was in understanding the algorithms used, and understanding
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what assumptions could be done about the data to implement them in a smart way.

4.6.2 Benefits
The benefits of this implementation is that it is faster when doing RSA operations
on multiple blocks at the same time and that it offloads the CPU. The GPU imple-
mentation maintains a higher throughput of input blocks and scales better than
the CPU implementation. The OpenCL kernel can also be run on all hardware
that supports OpenCL.



Chapter 5

General insights about
porting algorithms to GPU

In this chapter we will go through some general tips on parallelization and GPU
programming based on our experiences during this thesis.

5.1 Memory handling
A lot of performance can be gained by thinking about which memory that should
be used. Often the best choice is to use private memory where possible, then
local memory, and lastly global memory. Global memory should be avoided as
much as possible as the cost of reading and writing to it is large. The fastest
memory is the private memory, so storing the variables in private memory before
doing calculations is generally a good idea. Sharing data between threads within
the same workgroup can be done using local memory which is a good way to
avoid unnecessary global memory accesses. CodeXL [26] can be used to analyze
what limits the kernel occupancy when the implementation is done. The report
generated by CodeXL can be used to optimize the memory usage. CodeXL might
also show that the most limiting factor is the registers. In that case it might make
sense to actually move some calculations from private memory to local memory,
but this needs to be decided by testing.
Global memory accesses can be sped up by reading and writing in a coalesced
manner. It might be necessary to run additional kernels to rearrange the data for
coalesced memory access. If this is beneficial or not also needs to be decided by
testing.
The amount of local memory is limited and shared across all work-group running
on the same Compute Unit. One of the most limiting factors for kernel occupancy
in our case was this local memory limit. We managed to reduce this by analyzing
the usage of local memory, removing and reusing as much as possible.
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5.2 Choice of algorithm
The first question to ask before porting an algorithm is if it is parallelizable.
Most algorithms are data parallelizable which can be enough to make GPU a
good choice. Some algorithms are not worth parallelizing and works better on the
CPU.

5.3 Debugging
Debugging on OpenCL is harder than debugging on a single-threaded CPU. There
are a few ways to do it though.

5.3.1 Buffers
The easiest way is just to output an intermediary result to a buffer and read it on
the CPU side. This can be tricky depending on how the indexing of the wanted
elements is. It is easy to write the wrong value to the buffer and in that way get
the wrong value on the CPU side, which is hard to detect. This is generally the
best way to read a lot of output from the GPU, and it is also one of the easiest
ways to debug a kernel.

5.3.2 Printing
It is possible to print from the kernel. The device that is running the code needs
to have a printf extension which then needs to be enabled in the kernel. This will
print for each thread which makes it hard to read in the case of a lot of threads,
but it is a viable way to debug when using a low amount of threads.

5.3.3 CodeXL
CodeXL is development suite from AMD which includes a GPU debugger, a GPU
profiler, a CPU profiler and a static OpenCL kernel analyzer. The debugger allows
us to step through the kernel one instruction at a time while being able to see the
private memory. Note that this only works on AMD GPUs. This is the most
informative way of debugging an OpenCL kernel but it is also the slowest. The
instructions will be slower when running the debugger and it can be hard to find
the thread we want to observe when there are a large amount of threads. One
drawback is that it is not possible to see the local memory when debugging using
a GPU. It is possible if debugging with an AMD CPU though.

5.3.4 Macros
OpenCL C supports the #DEFINE command. This is great for debugging in
some cases. An example is the RSA implementation done in this thesis. We could
define the base of the multi-precision system to be of the type unsigned char while
debugging. This made it a lot easier to read the output and follow along in the
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calculations using pen and paper where needed. We then changed the define of
the base to be unsigned long when running the final tests. This is also what the
final implementation uses.

5.4 SkePU
As with most skeleton frameworks, it is really useful when there is a skeleton for
the task you need but hard to use if there is no skeleton that fits well. An example
is median filtering using the MapOverlap2D skeleton. It fits well at a glance, but
it is missing edge handling. There is no way to get automatic edge handling and
the kernel does not know its index which means that we cannot clamp the index
either. The way this is solved is by padding. But there was no skeleton that suited
padding in the way it needed to be done for median filtering which meant that the
padding was implemented on CPU in the end. SkePU is also meant for simpler
kernels which means that there is no way to create functions and call them from
the kernel. This leads to big code if something more complex is to be done but
works well for smaller implementations.
SkePU is great when implementing smaller kernels or combinations of kernels using
different skeletons. The implementation is easy and it will run on OpenCL, CUDA,
OpenMP and single-threaded CPUs.

5.5 General OpenCL tips
There is often a need to share local memory between different subgroups of threads
within a work-group. This is solved using offsets. A problem is that local memory
can only be allocated either in the host code before calling the kernel or in the
kernel. It cannot be allocated in other functions in the device code. Sending both
the local memory and the offset to each function will take a lot of arguments if
there is a lot of local memory. But we can send pointers to local memory as
arguments for functions. This gives us a way to remove the offsets from most
of the function calls. The way to do this is to calculate the offsets and allocate
the local memory in the kernel, and then call another function, with all the local
memory pointers offset by the offsets, which then does all the calculation. This
function will then have no idea about the offsets and can use the local memory
pointers without any offsets.
Checking the error codes returned by the OpenCL API greatly helps debugging.
Almost all calls to the OpenCL API return an error code. This can be read and
converted to readable error. Missing to read one of these might make another API
call later fail with a strange error, when the real error happened before that call
but was not read. By checking the error codes from all OpenCL API calls we can
avoid some strange bugs.
There are some cases where it is just not worth the time to parallelize, some tasks
are faster on the CPU. Some typical examples are when the data size is small, when
the algorithm is strictly sequential or when the overhead of transferring data to
and from the GPU might be larger than the execution time. Some problems are
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better solved in a sequential manner, while some are better solved in a parallel
manner.



Chapter 6

Related Work

6.1 GPGPU
K. Komatsu and others made an evaluation of OpenCL in terms of performance
and portability by comparing it to CUDA [15]. They raise some interesting points
in what the differences in performance between OpenCL and CUDA could be
caused by. They found that CUDA is in general faster given essentially identical
kernels. They found that a large part is the difference in optimizations applied by
the compilers when generating code, the CUDA C compiler generated more opti-
mized code than the OpenCL C compiler even though the kernels were essentially
identical.
While testing the portability they conclude that the work group size and optimiza-
tion options needs to be tuned for each device which is similar to what we found
when deciding the tile size on different devices for our Median filtering.
For a more in depth comparison of CUDA vs OpenCL the paper written by Fang
and others [8] is a good read. They chose 16 benchmarks and found that CUDA
was faster for most applications. By investigating further into the problem they
find that this was mostly caused by the differences in the programming model, the
architecture, optimizations done on the kernels and in the compiler. Their analysis
shows that OpenCL can achieve similar performance as CUDA when taking these
into account.
We made a comparison between our GPU implementation and an OpenMP imple-
mentation of RSA using OpenSSL. The code run was not the same, so the com-
parison was not the best. Shen and others made a comparison between OpenMP
and OpenCL when run on the CPU which shows that OpenCL can also be made
CPU friendly and is a good alternative to OpenMP [21]. By tuning the code for
multi-core CPU usage and investigate the compiler flags OpenCL outperforms or
achieve similar performance in 80% of their cases. Just as Komatsu and others
found earlier, they also find that the OpenCL compiler is one of the main reasons
for poor performance in OpenCL.
Enmyren and Kessler [7] is a recommended read for more information about
SkePU. It contains more detailed information, benchmarks and examples.
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6.2 Median filtering
The main related work in median filtering is the CUDA implementation of the
CCDF median filter made by Sánchez and Rodrígue [20]. It shows a higher
throughput than the implementation done in this thesis, 35-57 megapixels per
second in comparison to the 20-33 megapixels per second our AMD implementa-
tion computes. The main implementation differences are in the threads used per
tile and tile size. Their platform supports up to 512 threads per block, while ours
only supports 256. This means that they can run 512 threads per tile instead of
256 which means that they can process two CCDFs in parallel in the same tile.
They also use rectangular tiles instead which we also tried, but we got better
performance using square tiles. It might also be because their implementation is
more polished than ours.
Another interesting median filtering implementation on GPU is the one made by
Perrot, Domas and Couturier [18]. The general principle in that implementation
is to let each thread handle one pixel each. The important part of this algorithm
is that the data is read into registers where all the calculation is done. This makes
the calculations and memory accesses fast but limits the kernel size as the reg-
ister count per thread is limited. For example, the maximum register count per
thread for the Fermi architecture is 63. They use a special algorithm to reduce
the amount of registers needed to improve the parallelism and make it possible to
use larger filter sizes. They still have a lower limit on filter size than the CCDF
implementation though.
Using a formula from their paper we can see that the largest filter that can be used
on the Fermi architecture is 11× 11. The throughput is impressive for filter sizes
up to 7× 7 and it is by far the fastest for those sizes. It does not scale as good as
the CCDF implementation with increasing filter size though and they only include
data with filter sizes up to 7× 7.
Median filtering is often used for de-noising in image processing which is usually
done inside a camera’s hardware. For this purpose 3x3 filters are usually used
to avoid the blurring effect of median filtering. Cheap, power efficient and fast
hardware implementations of median filtering are therefore of interest. Most of
the hardware implementations we have found uses sorting networks to do their
filtering. This is the same method used by OpenCV when doing median filtering
with a filter radius up to 7.
The fastest hardware implementation we could find was the one done by Abadi and
others [1]. They use sorting networks specialized for the 3x3 filter. They change
the sorting network to first sort column wise, then row wise and lastly using these
result to get the final value. The idea of sorting the columns first is somewhat
similar to our way of doing the sorting with column CCDFs. They also read the
image in a row by row structure, using as many hardware filters as there are pixels
in a row. This is also similar to how we read the image by moving our CCDFs
down one row at a time, using as many CCDFs as there are pixels in a row. They
simulate their implementation using a Field Programmable Gate Array(FPGA) as
the target device and median filters an image with 500 pixels per row in 6 clock
cycles per row.
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6.3 RSA
The work done by Jang and others on the SSLShader [11] was important while
doing this RSA implementation. They have, as far as we know, the fastest RSA
implementation on the GPU. Their implementation is done using CUDA instead
of OpenCL and they have made more optimizations as mentioned in Section 4.5.2.
A comparison between the SSLShader and our implementation can be read in Sec-
tion 4.5.2.
Another way to speed up RSA calculations is to implement the RSA operations
closer to the hardware. An example of this is the algorithm made by Song and
others which uses FPGAs [22]. They attain high speeds using cheaper hardware
and less power which can be important especially in mobile devices. It is not the
fastest RSA implementation on hardware that we have found, but it is the most
scalable and efficient when considering the hardware used. It can also be executed
in parallel conveniently. The hardware implementation used in their chapter only
uses Montgomery reduction and the square and multiply algorithm. They do not
do any splitting of the input using CRT. They split the input integers into blocks
of 17 bits before calculation. This can be seen as doing calculations using base
217. In comparison, our GPU implementation uses a base of 264.
Another important aspect of RSA is security of the hardware. There are attacks
on RSA cryptosystems that attack the hardware structure instead of the algo-
rithm itself. One type of attack is the Side Channel Attack (SDA). This is an
attack where the architecture’s hardware characteristics leakage is analyzed. By
analyzing factors such as the power dissipation, computation time, electromag-
netic emission information about the processed data can be extracted. This can
be used to deduce the keys and messages. Fournaris and Koufopavlou [9] designed
a hardware architecture and made modifications to the RSA algorithm to protect
against such attacks by disassociating the leaked information from the secret data
and minimizing the information leakage. Their algorithm uses CRT, Montgomery
reduction and the square and multiply algorithm to speed up the encryption and
decryption of messages. One modification they do is to introduce random numbers
into the calculations. This randomness is later removed by using a special CRT
reconstruction method. The hardware architecture they propose has protection
against SDA attacks while maintaining efficiency both in speed and hardware size.





Chapter 7

Discussion

Multi-core GPUs have a lot of power that can be used for algorithms which can be
easily parallelized, such as the median filter, and also for some algorithms which
are not as easy as the RSA encryption. Data parallelization is usually possible
if the input data are not dependent on each other but parallelizing the internal
operations of the algorithm can be tricky. We can see that the median filtering
benefits greatly from the massive parallelization of the GPU implementation. This
is something that is often seen in filtering operations as they are easily paralleliz-
able. In this case we would opt for a pure GPU solution to calculating the median
and let the CPU handle other tasks.
In the case of the RSA algorithm we see that a pure GPU solution might not be
the best. Latency is really important so that the CPU can start using the key to
decrypt the symmetrical data. So the best approach in this case would probably
be a hybrid solution where the CPU handles the decryption of the keys until the
queue of keys is too large or the CPU is too busy to decrypt keys. Then the whole
queue could be decrypted in parallel on a GPU.
SkePU is a good framework which works really well if the problem suits the skele-
tons that exists. It is particularly suited for solutions where the kernel is small and
does not include any external functions. These types of frameworks make it easier
to implement a parallel solution across multiple platforms but have the drawback
of being harder to optimize. They offer good speedups considering the low adap-
tation overhead but we recommend using OpenCL or another such framework if
it is important to achieve the highest speed possible.
Overall GPU solutions seem to be a good path forward when looking for more
computing power. There are some things that need to be taken into consideration
when choosing which algorithms to parallelize, but in many cases the algorithms
can be parallelized on data level. In that case a GPU solution could be faster than
CPU solutions given large datasets.

71





Chapter 8

Future work

There are still optimizations to do both on the median filter algorithm and the RSA
algorithm. It would also be interesting to implement these in CUDA and compare
the performance between them. There is also a new OpenCL specification which
was released in November 2013. It has a lot of changes and it would be interesting
to see if these change the implemented algorithms in some way. Solutions using
multiple GPUs which run in parallel is also an interesting area which could speed
up calculations where large datasets are used. SkePU already supports this, but
not the OpenCL implementations that we did. It would be interesting to see if the
datasets used for median filtering and RSA encryption are large enough to benefit
from multiple GPUs.
It would also be useful to develop a formula to calculate the throughput of pixels
and cryptographic blocks on a device given its specifications. This would mean
that it would be easier to compare CPUs and GPUs without benchmarking them.
Dastgeer and Kessler [5] discusses metrics which can be used to optimize the tile
size and also calculate the tile size dynamically for different filter sizes. The prop-
erties of the GPU are also included in this calculation. This would be interesting
to apply to our Median filtering implementation.

73





Bibliography

[1] H.Z.H. Abadi, S. Samavi and N. Karimi, Image Noise Reduction by Low Com-
plexity Hardware Median Filter, 21st Iranian Conference on Electrical Engi-
neering, pp 1-5, 2013.

[2] L. Alparone, V. Cappellini, and A. Garzelli, A Coarse-to-Fine Algorithm for
Fast Median Filtering of Image Data With a Huge Number of Levels, Signal
Processing, vol. 39, no. 1-2, pp. 33-41, 1994.

[3] T. Bingmann, Speedtest and Comparison of Open-Source Cryptog-
raphy Libraries and Compiler Flags, http://panthema.net/2008/
0714-cryptography-speedtest-comparison/, 2008.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algo-
rithms, Third Edition, 2009

[5] U. Dastgeer and C. Kessler, A performance-portable generic component for 2D
convolution computations on GPU-based systems, Proc. MULTIPROG-2012
Workshop at HiPEAC-2012, 2012.

[6] K. Dinkel and A. Zizzi, Fast Median Finding on Digital Images, University of
Colorado at Boulder, Department of Aerospace Engineering Sciences, http://
kevindinkel.com/files/FastMedianFindingOnDigitalImages.pdf, 2012.

[7] J. Enmyren and C. Kessler, SkePU: A multi-backend skeleton programming
library for multi-GPU systems, Proceedings of the fourth International Work-
shop on High-level Parallel Programming and Applications, pp 5-14, 2010.

[8] J. Fang, A.L Varbanescu and H. Sips, A Comprehensive Performance Compar-
ison of CUDA and OpenCL, International Conference on Parallel Processing,
pp 216-225, 2011.

[9] A.P Fournaris and O. Koufopavlou, CRT RSA Hardware Architecture with
Fault and Simple Power Attack Countermeasures, 15th Euromicro Conference
on Digital System Design, pp 661-667, 2012.

[10] J. Großschädl, The Chinese Remainder Theorem and its Application in a
High-speed RSA Crypto Chip, 16th Annual Conference, Computer Security
Applications ACSAC ’00, pp 384-393, 2000.

75



76 Bibliography

[11] K. Jang, S.Han, S. Han, S. Moon and K. Park, SSLShader: cheap SSL accel-
eration with commodity processors, NSDI’11 Proceedings of the 8th USENIX
conference on Networked systems design and implementation:1-1, 2011.

[12] M. Juhola, J. Katajainen, and T. Raita , Comparison of algorithms for stan-
dard median filtering, Signal Processing, vol. 39, no. 1, pp. 204-208, 1991.

[13] M. Harris, Optimizing Parallel Reduction in CUDA, http://developer.
download.nvidia.com/compute/cuda/1.1-Beta/x86\_website/projects/
reduction/doc/reduction.pdf, NVIDIA Developer Technology, 2007.

[14] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley,
3rd edition, 1997.

[15] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa and H. Kobayashi,
Evaluating Performance and Portability of OpenCL Programs, In The Fifth
International Workshop on Automatic Performance Tuning.

[16] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, 1997.

[17] S. Perreault and P. Hébert, Median Filtering in Constant Time, IEEE Trans-
actions on Image Processing 16(9):2389-2394, 2007.

[18] G. Perrot, S. Domas and R. Couturier, Fine-tuned High-speed Implemen-
tation of a GPU-based Median Filter, Journal of Signal Processing Systems
75(3):185-190, 2014.

[19] T. Ryan, Modern Engineering Statistics, chapter 14, p. 468, Wiley-
Interscience, 2007.

[20] R. M. Sánchez and P. A. Rodríguez, Bidimensional median filter for parallel
computing architectures, IEEE International Conference on Acoustics, Speech
and Signal Processing, pp 1549-1552, 2012.

[21] J. Shen, J. Fang, H. Sips A.L. Varbanescu, Performance Gaps between
OpenMP and OpenCL for Multi-core CPUs, 41st International Conference
on Parallel Processing Workshops, pp 116-125, 2012.

[22] B. Song, K. Kawakami, K. Nakano and Y. Ito, An RSA Encryption Hardware
Algorithm Using a Single DSP Block and a Single Block RAM on the FPGAB,
Networking and Computing (ICNC), pp 140-147, 2010.

[23] The OpenCL Specification Version 1.2, https://www.khronos.org/
registry/cl/specs/opencl-1.2.pdf, Khronos OpenCL Working Group,
2012.

[24] Recommendation for Key Management, Special Publication 800-57 Part 1
Rev. 3, NIST, 2012.



Bibliography 77

[25] PKCS #1 v2.2: RSA Cryptography Standard,
http://www.emc.com/emc-plus/rsa-labs/pkcs/files/
h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf, RSA Labo-
ratories, 2012.

[26] http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/,
2014.

[27] https://www.openssl.org/, 2014.

[28] http://www.ida.liu.se/~chrke/skepu/, 2014.





Appendix A

Median filter code

// Kernel r e s p o n s i b l e f o r r e a r r a n g i n g the data from RGBRGBRG to
RRRGGGBBB to g ive c o a l e s c e d reads when f i l t e r i n g each channel .

__kernel void Sp l i tChanne l s ( __global uchar ∗ inputBuf fer , __global
uchar ∗ outputBuffer , __private i n t numPixels ) {
i n t g loba l Index = get_global_id (0 ) ;
i n t colorRead = g loba l Index %3;
i n t g l o b a l I n d e x O f S p e c i f i c C o l o r = g loba l Index /3 ;

i n t outputIndex = colorRead ∗ numPixels +
g l o b a l I n d e x O f S p e c i f i c C o l o r ;

outputBuf fer [ outputIndex ] = inputBuf f e r [ g l oba l Index ] ;
}

// Kernel r e s p o n s i b l e f o r r e a r r a n g i n g the data from RRRGGGBB to
RGBRGBRGB a f t e r the f i l t e r i n g i s done .

__kernel void JoinChannels ( __global uchar ∗ inputBuf fer , __global
uchar ∗ outputBuffer , __private i n t numPixels ) {
i n t g loba l Index = get_global_id (0 ) ;

i n t colorRead = g loba l Index / numPixels ;
i n t g l o b a l I n d e x O f S p e c i f i c C o l o r = g loba l Index%numPixels ;

i n t outputIndex = g l o b a l I n d e x O f S p e c i f i c C o l o r ∗3 + colorRead ;
outputBuf fer [ outputIndex ] = inputBuf f e r [ g l oba l Index ] ;

}

// Main median f i l t e r .
// NUM_BINS i s a constant with the number o f b ins needed , 256

normally .
__kernel void medianFi l t e r ( __global uchar ∗ inputBuf fer , __global

uchar ∗ outputBuffer , __local uchar ∗ columnsCCDFs , __global uchar
∗ r e s u l t B u f f e r , __private uchar kernelRadius , __private ushort

numColumns , __private ushort numRows , __private ushort numBlocksX
, __private ushort numBlocksY , __private i n t pictureWidth ,
__private i n t p ic tureHe ight , __private i n t b u f f e r O f f s e t ) {
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// Create l o c a l memory . The l o c a l memory f o r the column CCDFs i s
c r ea ted b e f o r e s t a r t i n g the k e r n e l as i t d i f f e r s with f i l t e r
r ad i u s .

__local ushort kernelCCDF [NUM_BINS ] ;
__local uchar tempArray [NUM_BINS ] ;
uchar k e r n e l S i z e = 2∗ kerne lRadius +1;

// Ca l cu la te i n d i c e s and some cons tant s .
const s i z e_t groupId = get_group_id (0 ) ;
const s i z e_t blockIdY = groupId /numBlocksX ;
const s i z e_t blockIdX = groupId − blockIdY ∗numBlocksX ;
const s i z e_t s ta r tP ixe lX = blockIdX ∗numColumns ;
const s i z e_t s ta r tP ixe lY = blockIdY ∗numRows ;
const s i z e_t startRow = sta r tP ixe lY −( k e r n e l S i z e −1) /2 ;
const s i z e_t numColsTimeNumBlocksX = numColumns∗numBlocksX ;
const s i z e_t numCols2KernelRad = numColumns + 2∗ kerne lRadius ;

// Create the column CCDFs.
CreateColumnCCDFs ( columnsCCDFs , inputBuf fer , startRow , k e r n e l S i z e

, s ta r tP ixe lX − kernelRadius , numCols2KernelRad , pictureWidth
, p ic tureHe ight , tempArray , b u f f e r O f f s e t ) ;

f o r ( u int rowId = 0 ; rowId < numRows;++rowId ) {
// I n i t i a l i z e the k e r n e l CCDF f o r every row .
CreateKernelCCDF ( kernelCCDF , columnsCCDFs , 0 , k e r n e l S i z e ) ;
f o r ( u int columnId = 0 ; columnId < numColumns;++columnId ) {

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
// Ca l cu la te the median f o r t h i s p i x e l
CalculateMedian ( kernelCCDF , k e r n e l S i z e , tempArray ) ;
i f ( get_loca l_id (0 ) == 0) {

u int coordX = s tar tP ixe lX + columnId ;
u int coordY = s tar tP ixe lY + rowId ;
outputBuf fer [ b u f f e r O f f s e t + coordX + coordY∗

numColsTimeNumBlocksX ] = tempArray [ 0 ] ;
}

// Move to the next p i x e l by adding and removing CCDFs
from the k e r n e l CCDF

i f ( columnId < numColumns−1){
MoveKernel ( kernelCCDF , columnsCCDFs , columnId ,

k e r n e l S i z e ) ;
}

}

// Move the column CCDFs one step down when done with t h i s
row .

i f ( rowId < numRows−1){
MoveColumnsCCDFDown( columnsCCDFs , inputBuf fe r ,

startRow+rowId , k e r n e l S i z e , s ta r tP ixe lX −
kernelRadius , numCols2KernelRad , pictureWidth ,
p ic tureHe ight , tempLocal , b u f f e r O f f s e t ) ;

}
}

}
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// NUM_WORDS i s a constant which i s how many words each block i s .
Note that t h i s i s the number o f words in the block a f t e r apply ing
CRT, so k /2 .

// BITMODE i s the bitmode which i s used as a base . Can be uchar ,
unshort , u int or ulong . ulong i s used in the f i n a l implementation
.

// NUMBERS_PER_GROUP = 64/NUM_WORDS, which i s how many b locks each
workgroup w i l l handle .

//
// The k e r n e l which s p l i t s the input us ing CRT and then does Modular

exponent ia t i on on the r e s u l t which then i s wr i t t en to the
outputbu f f e r .

// The names s i n g l e , s ing lePlusOne and double r e f e r s to the amount o f
words in the b u f f e r . S i n g l e = NUM_WORDS, s ing lePlusOne =

NUM_WORDS+1, double = 2∗NUM_WORDS.
__kernel void ModularExponentiation ( __global BITMODE∗ inputBuf fer ,

__global BITMODE∗ pqBuffer , __global BITMODE∗ pqDashBuffer ,
__global BITMODE∗ pqPrimeBuffer , __global BITMODE∗ pqMyBuffer ,
__global BITMODE∗ pqLoopExponentBuffer , __global BITMODE∗
outputBuf fer ) {
// Note that a l l l o c a l memory must be d ec l a r ed in the kerne l , and

can ' t be dec l a r e d in f u n c t i o n s . This i s why there i s a l o t
o f d e c l a r a t i o n s here which are then sent i n t o the f u n c t i o n s .

__local BITMODE input [NUMBERS_PER_GROUP∗2∗NUM_WORDS] ;
__local BITMODE pq [NUM_WORDS] ;
__local BITMODE pqPrime [NUM_WORDS] ;
__local BITMODE pqDash [NUM_WORDS] ;
__local BITMODE pqLoopExponent [NUM_WORDS] ;
__local BITMODE pqMy [NUM_WORDS+1] ;

// As noted above , a l l temporary b u f f e r s used must be de c l a r ed in
the k e r n e l and not in any funct i ons , so everyth ing i s

dec l a r e d here .
__local BITMODE s i n g l e R e s u l t [NUMBERS_PER_GROUP∗NUM_WORDS] ;
__local BITMODE over f l ow [NUMBERS_PER_GROUP∗(2∗NUM_WORDS + 1) ] ;
__local BITMODE singleWordPlusOneTemp1 [NUMBERS_PER_GROUP∗(

NUM_WORDS+1) ] ;
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__local BITMODE singleWordPlusOneTemp2 [NUMBERS_PER_GROUP∗(
NUM_WORDS+1) ] ;

__local BITMODE doubleWordTemp1 [NUMBERS_PER_GROUP∗2∗NUM_WORDS] ;
__local bool c o n t r o l B i t ;

s i z e_t l o c a l I d = get_loca l_id (0 ) ;
s i z e_t g l o b a l I d = get_global_id (0 ) ;
// This index i s the one that w i l l be used in the i n t e r n a l

f u n c t i o n s .
// This i s to s i m p l i f y funct i ons , as a l l threads w i l l now have

i n d i c e s between 0 and NUM_WORDS
s i ze_t modThreadIndex = l o c a l I d % NUM_WORDS;

// Indexing c a l c u l a t i o n s . Both f o r the input and f o r the
temporary b u f f e r s .

s i z e_t groupId = get_group_id (0 ) ;
s i z e_t inputNumberInGroup = l o c a l I d / NUM_WORDS;
s i z e_t groupOf f se t = inputNumberInGroup ∗2∗NUM_WORDS;
s i z e_t s i n g l e O f f s e t = inputNumberInGroup∗NUM_WORDS;
s i z e_t s i n g l e P l u sO n eO f f s e t = inputNumberInGroup ∗(NUM_WORDS+1) ;
s i z e_t doub l eOf f s e t = inputNumberInGroup ∗2∗NUM_WORDS;
s i z e_t o v e r f l o w O f f s e t = inputNumberInGroup ∗(2∗NUM_WORDS+1) ;
s i z e_t g l o b a l O f f s e t ;
s i z e_t o f f s e t M u l t i p l i e r ;
i f ( groupId % 2 == 0) {

g l o b a l O f f s e t = groupId ∗64 ;
o f f s e t M u l t i p l i e r = 0 ;

}
e l s e {

g l o b a l O f f s e t = ( groupId −1) ∗64 ;
o f f s e t M u l t i p l i e r = 1 ;

}

// Reading o f input to our l o c a l i n p u t b u f f e r
input [ groupOf f se t + modThreadIndex ] = inputBuf f e r [ g l o b a l O f f s e t +

groupOf f se t + modThreadIndex ] ;
input [ groupOf f se t + modThreadIndex + NUM_WORDS] = inputBuf f e r [

g l o b a l O f f s e t + groupOf f se t + modThreadIndex + NUM_WORDS] ;

// Reading o f the v a r i a b l e s which are not unique to each group o f
threads in the workgroup . Al l threads in the workgroup w i l l

use the se v a r i a b l e s .
i f ( l o c a l I d < NUM_WORDS) {

pqMy [ l o c a l I d ] = pqMyBuffer [ l o c a l I d + o f f s e t M u l t i p l i e r ∗(
NUM_WORDS+1) ] ;

pqMy [NUM_WORDS] = pqMyBuffer [NUM_WORDS + o f f s e t M u l t i p l i e r ∗(
NUM_WORDS+1) ] ;

pq [ l o c a l I d ] = pqBuffer [ l o c a l I d + o f f s e t M u l t i p l i e r ∗NUM_WORDS] ;
pqPrime [ l o c a l I d ] = pqPrimeBuffer [ l o c a l I d + o f f s e t M u l t i p l i e r ∗

NUM_WORDS] ;
pqDash [ l o c a l I d ] = pqDashBuffer [ l o c a l I d + o f f s e t M u l t i p l i e r ∗

NUM_WORDS] ;
pqLoopExponent [ l o c a l I d ] = pqLoopExponentBuffer [ l o c a l I d +

o f f s e t M u l t i p l i e r ∗NUM_WORDS] ;
}
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
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// Cal l to an i n t e r n a l f u n c t i o n where the r e a l work i s done . This
i s to s i m p l i f y that funct ion , as i t doesn ' t need to care

about b u f f e r o f f s e t s , as those are handled here .
ModularExponent iat ionInterna l ( input + doubleOf f se t , s i n g l e R e s u l t

+ s i n g l e O f f s e t , pq , pqPrime , pqDash , pqLoopExponent , pqMy,
over f l ow + o ve r f l o wO f f s e t , singleWordPlusOneTemp1 +
s ing l eP lusOneOf f s e t , singleWordPlusOneTemp2 +
s ing l eP lusOneOf f s e t , doubleWordTemp1 + doubleOf f set , &
cont ro lB i t , modThreadIndex ) ;

// Write the r e s u l t to g l o b a l memory
outputBuf fer [ g l o b a l O f f s e t + groupOf f se t + modThreadIndex +

o f f s e t M u l t i p l i e r ∗NUM_WORDS] = s i n g l e R e s u l t [ s i n g l e O f f s e t +
modThreadIndex ] ;

}

// I n t e r n a l f u n c t i o n f o r ModularExponentiation . This f u n c t i o n doesn ' t
know about o f f s e t s or such , which s i m p l i f i e s des ign .

void ModularExponent iat ionInterna l ( __local BITMODE∗ input , __local
BITMODE∗ s i n g l e R e s u l t , __local BITMODE∗ n , __local BITMODE∗
nPrime , __local BITMODE∗ nDash , __local BITMODE∗ nLoopExponent ,
__local BITMODE∗ nMy, __local BITMODE∗ over f low , __local BITMODE∗

singleWordPlusOneTemp1 , __local BITMODE∗ singleWordPlusOneTemp2 ,
__local BITMODE∗ doubleWordTemp1 , __local bool ∗ cont ro lB i t ,

s i z e_t modThreadIndex ) {
// singleWordsPlusOneTemp3 <− input % p
// Ca lcu la te input % n , where n i s p or q , t h i s f u n c t i o n i s n ' t

aware o f that . This i s to reduce the input to a b i t s i z e o f k
/2 .

BarretReduct ion ( input , n , s i n g l e R e s u l t , nMy,
singleWordPlusOneTemp1 , singleWordPlusOneTemp2 ,

over f low , doubleWordTemp1 ,
cont ro lB i t , modThreadIndex ) ;

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
// Move the r e s u l t to a temporary b u f f e r .
singleWordPlusOneTemp1 [ modThreadIndex ] = s i n g l e R e s u l t [

modThreadIndex ] ;
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
// Do modular exponent ia t i on us ing square and mult ip ly and

montgomery reduct ion .
MontModMult( singleWordPlusOneTemp1 , s i n g l e R e s u l t , nLoopExponent ,

n , nPrime , nDash , over f low , cont ro lB i t ,
singleWordPlusOneTemp2 , doubleWordTemp1 , input ,
modThreadIndex ) ;

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
// The r e s u l t w i l l be in s i n g l e R e s u l t .

}

// This k e r n e l reads the two c a l c u l a t e d CRT f a c t o r s and j o i n s them
tog e the r to the f i n a l r e s u l t .

__kernel void chineseRemainderJo iner ( __global BITMODE∗ inputBuf fer ,
__global BITMODE∗ pqBuffer , __global BITMODE∗ qInvBuffer ,
__global BITMODE∗ pqMyBuffer , __global BITMODE∗ outputBuf fer ) {
// Same as in the prev ious kerne l , a l l l o c a l memory needs to be

dec l a r e d and a l l o c a t e d in the k e r n e l .
// Input v a r i a b l e s .
__local BITMODE messagePartP [NUMBERS_PER_GROUP∗NUM_WORDS] ;
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__local BITMODE messagePartQ [NUMBERS_PER_GROUP∗NUM_WORDS] ;
__local BITMODE p [NUM_WORDS] ;
__local BITMODE q [NUM_WORDS] ;
__local BITMODE qInv [NUM_WORDS] ;
__local BITMODE pMy[NUM_WORDS+1] ;

// Temporary v a r i a b l e s .
__local BITMODE s i n g l e R e s u l t [NUM_WORDS] ;
__local BITMODE over f l ow [NUMBERS_PER_GROUP∗(2∗NUM_WORDS + 1) ] ; ;
__local BITMODE singleWordPlusOneTemp1 [NUMBERS_PER_GROUP∗(

NUM_WORDS + 1) ] ;
__local BITMODE singleWordPlusOneTemp2 [NUMBERS_PER_GROUP∗(

NUM_WORDS + 1) ] ;
__local BITMODE doubleWordTemp1 [NUMBERS_PER_GROUP∗2∗NUM_WORDS] ;
__local BITMODE doubleWordTemp2 [NUMBERS_PER_GROUP∗2∗NUM_WORDS] ;
__local bool c o n t r o l B i t ;

// C a l c u l a t i o n o f the threadindex which w i l l be used in the inner
f u n c t i o n s .

s i z e_t l o c a l I d = get_loca l_id (0 ) ;
s i z e_t modThreadIndex = l o c a l I d % NUM_WORDS;

// Indexing c a l c u l a t i o n s .
s i z e_t groupId = get_group_id (0 ) ;
s i z e_t inputNumberInGroup = l o c a l I d / NUM_WORDS;
s i z e_t g l o b a l O f f s e t = groupId ∗128 ;
s i z e_t groupOf f se t = inputNumberInGroup ∗2∗NUM_WORDS;
s i z e_t s i n g l e O f f s e t = inputNumberInGroup∗NUM_WORDS;
s i z e_t s i n g l e P l u sO n eO f f s e t = inputNumberInGroup ∗(NUM_WORDS+1) ;
s i z e_t doub l eOf f s e t = inputNumberInGroup ∗2∗NUM_WORDS;
s i z e_t o v e r f l o w O f f s e t = inputNumberInGroup ∗(2∗NUM_WORDS+1) ;

// Reading o f input .
messagePartP [ s i n g l e O f f s e t + modThreadIndex ] = inputBuf f e r [

g l o b a l O f f s e t + groupOf f se t + modThreadIndex ] ;
messagePartQ [ s i n g l e O f f s e t + modThreadIndex ] = inputBuf f e r [

g l o b a l O f f s e t + groupOf f se t + NUM_WORDS + modThreadIndex ] ;

// Reading o f data which i s not unique to the groups in a
workgroup .

i f ( l o c a l I d < NUM_WORDS) {
p [ l o c a l I d ] = pqBuffer [ l o c a l I d ] ;
q [ l o c a l I d ] = pqBuffer [NUM_WORDS + l o c a l I d ] ;
qInv [ l o c a l I d ] = qInvBuf fer [ l o c a l I d ] ;

pMy[ l o c a l I d ] = pqMyBuffer [ l o c a l I d ] ;
pMy[NUM_WORDS] = pqMyBuffer [NUM_WORDS] ;

}
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Ca l l to i n t e r n a l f u n c t i o n to s i m p l i f y index ing .
ChineseRemainderJo iner Interna l ( messagePartP + s i n g l e O f f s e t ,

messagePartQ + s i n g l e O f f s e t , s i n g l e R e s u l t + s i n g l e O f f s e t , p ,
q , qInv , pMy, over f l ow + o ve r f l o wO f f s e t ,
singleWordPlusOneTemp1 + s ing l eP lusOneOf f s e t ,
singleWordPlusOneTemp2 + s ing l eP lusOneOf f s e t , doubleWordTemp1
+ doubleOf f se t , doubleWordTemp2 + doubleOf f set , &cont ro lB i t ,
modThreadIndex ) ;
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// Write r e s u l t to outputbu f f e r .
outputBuf fer [ g l o b a l O f f s e t + groupOf f se t + modThreadIndex ] =

doubleWordTemp1 [ doub l eOf f s e t + modThreadIndex ] ;
outputBuf fer [ g l o b a l O f f s e t + groupOf f se t + modThreadIndex +

NUM_WORDS] = doubleWordTemp1 [ doub l eOf f s e t + modThreadIndex +
NUM_WORDS] ;

}

// I n t e r n a l h e l p e r f u n c t i o n to s i m p l i f y index ing .
ChineseRemainderJo iner Interna l ( __local BITMODE∗ messagePartP , __local

BITMODE∗ messagePartQ , __local BITMODE∗ s i n g l e R e s u l t , __local
BITMODE∗ p , __local BITMODE∗ q , __local BITMODE∗ qInv , __local
BITMODE∗ pMy, __local BITMODE∗ over f low , __local BITMODE∗
singleWordPlusOneTemp1 , __local BITMODE∗ singleWordPlusOneTemp2 ,
__local BITMODE∗ doubleWordTemp1 , __local BITMODE∗
doubleWordTemp2 , __local bool ∗ cont ro lB i t , s i z e_t modThreadIndex
) {

// Ca lcu la te a = m_p − m^q % n .
// D e s c r i p t i v e functionnames are h e l p f u l because the re i s no

I n t e l l i S e n s e or such .
SingleArg1MinusSingleArg2AddArg3IfNegAndReturnTrue ( messagePartP ,

messagePartQ , p , s i n g l e R e s u l t , over f low ,
singleWordPlusOneTemp1 , cont ro lB i t , modThreadIndex ) ;

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Ca l cu la te b = a∗ qInv
M u l t i p l i c a t e ( s i n g l e R e s u l t , qInv , doubleWordTemp1 , over f low ,

cont ro lB i t , modThreadIndex ) ;
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Ca l cu la te b % n
BarretReduct ion ( doubleWordTemp1 , p , s i n g l e R e s u l t , pMy,

singleWordPlusOneTemp1 , singleWordPlusOneTemp2 , over f low ,
doubleWordTemp2 , cont ro lB i t , modThreadIndex ) ;

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Ca l cu la te c = q∗h
M u l t i p l i c a t e ( s i n g l e R e s u l t , q , doubleWordTemp1 , over f low ,

cont ro lB i t , modThreadIndex ) ;
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Move q to a b u f f e r with 2∗NUM_WORDS in s i z e , to prepare f o r
the next f u n c t i o n which adds two 2∗NUM_WORDS b u f f e r s .

doubleWordTemp2 [ modThreadIndex ] = 0 ;
doubleWordTemp2 [NUM_WORDS + modThreadIndex ] = messagePartQ [

modThreadIndex ] ;
b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

// Add m_q to c , c a l c l u a t i n g the f i n a l r e s u l t m which w i l l be put
i n t o doubleWordTemp1 .

AddArg2ToArg1DoubleWordsWillReturnTrueIfOverflow ( doubleWordTemp1 ,
doubleWordTemp2 , over f low , cont ro lB i t , modThreadIndex ) ;

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
}
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